M oo dard
OMG Sengares
|]

Organization.

Unified POS Retail Peripheral
Architecture

Version 1.16.1 (change bar version)

This specification adds to and extends the UPOS 1.16 specification.

An OMG® UPOS RCSD Publication

OMG Document Number: formal/25-03-05
Normative reference: https://www.omg.org/spec/UPQOS/

Copyright © 2011-2023 Object Management Group

Use of Specification - Terms, Conditions & Notices

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this International
Standard in any company’s products. The information contained in this document is subject to change without notice.

Licenses

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this International Standard hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
International Standard to create and distribute software and special purpose specifications that are based upon this
International Standard, and to use, copy, and distribute this International Standard as provided under the Copyright Act;
provided that: (1) both the copyright notice identified above and this permission notice appear on any copies of this
International Standard; (2) the use of the specifications is for informational purposes and will not be copied or posted on any
network computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this International Standard. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the specifications
in your possession or control.

Patents

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require
use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

General Use Restrictions

Any unauthorized use of this International Standard may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of
this work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission of
the copyright owner.

Disclaimer Of Warranty

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this International Standard is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted to you to use this International Standard.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii)
of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and
(2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.
227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 9C Medway Road, PMB 274, Milford, MA 01757, U.S.A.

Trademarks

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG
Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®,
and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

Compliance

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this International Standard
if and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this International Standard, but may not claim compliance or conformance with this International
Standard. In the event that testing suites are implemented or approved by Object Management Group, Inc., software
developed using this International Standard may claim compliance or conformance with the specification only if the
software satisfactorily completes the testing suites.

OMG?’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page https://www.omg.org, under Specifications - Issues.

Document Submitter

VINX Corp.

Document Publishing Supporters

OPOS-J
SorimachiGiken Co. Ltd.
Microsoft Japan Ltd.
SEIKO EPSON Corp.
Toshiba TEC Corp.

Star Micronics Corp.
Fujitsu Frontec Corp.
NCR Corporation
Sharp Corporation
Omron Social Solutions Corp.
NEC Platforms Corp.
Transaction Media Networks Inc.

UPOS Table of Contents

1 Introduction and Architecturecccoooiiiiiiiiin, 1
1.1 What is Unified POS? ... 1
1.1.1 About This Documentationcccoooiiiiiiiiiiic e 1

1.1.2 GOAIS .o a e e e e e e e aaaa——— 3

1.1.3 DepPendenCIES.......ccooiiiiiiieeee e 3

1.1.4 UnifiedPOS Relationship to Conforming Platform Mappings.................... 4

1.1.5 Who Should Read This Documentoooommiiiiiiiiiiiee e 4

1.2 CONfOMMANCE......ccoii e 5
1.2.1 Unified POS ..ot 5

1.3 Architectural OVEIVIEWcoooiiiiii e 6
1.3.1 GENEIAL ...t aaa 6

1.3.2 Architectural Componentsccccooiiiiiiiiiiiiiiccee e 6

1.3.3 USE OF UML ..ot e e e e e e e e e e e e e e e e e e e 7

1.3.:4 Dala TYPES ittt 9

1.3.5 Device Behavior Modelscooooiiiiiiiiiic e 10

1.3.6 Device Sharing Model ... 14

2 Common Properties, Methods, and Events 35
2.1 GENEIAl oo 35
2.2 SUMMAIY ettt e e e et e e e e e e e e et a e e e e e eeaan e e e e eeeennnnaeeeens 35
2.3 General Informationcoooiiiii i 37
2.3.1 Common PME Class Diagram Updated in Release 1.10 38

2.4 Properties (UML attributes)oooeeiiiiii i, 39
2.4.1 AutoDisable Property ... 39

242 CapCompareFirmwareVersion Property Revised in Release 1.14 .39

2.4.3 CapPowerReporting Property Updated in Release 1.11 39

244 CapStatisticsReporting Property Added in Release 1.8 40

245 CapUpdateFirmware Property Updated in Release 1.14 40

246 CapUpdateStatistics Property Added in Release 1.8 40

2.4.7 CheckHealthText Propertyccooieiiiiiiiiiiiiiieeeeeee e 40

2.4.8 Claimed Property ...t 41

2.4.9 DataCount Propertyooooiiiiiiiiiiiiiiiiie e 41
2.4.10 DataEventEnabled Propertycccoooiiiiiiiiiiiiieeee e 41
2.4.11 DeviceControlDescription Propertycoooooiiiiiiiiiiiiiieee e 42
2.4.12 DeviceControlVersion Propertyccccoceeeiiiiiiiiieiiiiceeeee e 43
2.4.13 DeviceEnabled Property ... 43

Unified POS, v1.16.1

2.4.14 DeviceServiceDescription Propertyooooeuviiiiiiiiiiiiii e 44

2.4.15 DeviceServiceVersion Propertyccccoveeeiiiiiiiiiiie e 44
2416 FreezeEvents Property Updated in Release 1.12 .45
2417 OUPULID Propertyoooeoeeiieiiiieii e e e e e 45
2.4.18 PowerNotify Propertyuuuuiiiiiiiiie e 45
2419 PowerState Property Updated in Release 1.11 .46
2.4.20 PhysicalDeviceDescription Propertyccccccoiiiiiiiiiiiiiiiiieeeeeeeeees 46
2.4.21 PhysicalDeviceName Propertycooooeiiiiiiiiiiiiiiieeiie e 47
2.4.22 State ProPertyeeeiieeiieieeee e 47
2.5 Methods (UML operations)ccceeuiiiiiiiiiiiiie e 48
2.5.1 checkHealth Methoduuiiiiiiiii e 48
2.5.2 claim Method Updated in Release 1.11 48
2.5.3 clearlnput Methodooiiiiiii e 49

Added in Release 1.10 .49
Updated in Release 1.7 49

2.5.4 clearlnputProperties Method
2.5.5 clearOutput Method

2.5.6 Close MethOdiiiiiiiiii e 49
2.5.7 compareFirmwareVersion Method Added in Release 1.9 ...50
2.5.8 directlO Methodccoomiiiiiiiiiee e 51
2.5.9 open Method Updated in Release 1.7 51
2.5.10 release Methodcoooiiiiiiiiiiic e 53

2.5.11 resetStatistics Method Updated in Release 1.10 53

2.5.12 retrieveStatistics Method Added in Release 1.8 54
2.5.13 updateFirmware Method Added in Release 1.9 55
2.5.14 updateStatistics Method Updated in Release 1.10 56

2.6 Events (UML INterfaces)ccccuvveeeeiiiiiiiicccee e 58
2.6.1 DataEVvent ... 60

2.6.2 DirectlOEvent Updated in Release 1.7 60

2.6.3 ErrorEvent Updated in Release 1.13 61

2.6.4 OutputCompleteEvent Updated in Release 1.13 .62

2.6.5 StatusUpdateEvent Updated in Release 1.9 63
... 65
3.1 GENEIAL ... 65
A 1 U 1o] 0= T PP 65
3.3 General Information.............cooiii i 68
3.3.1 Capabiliti©s ..ccoeeeeee e 68

3.4 Belt Class Diagramoooeeiiiiiiiiiieeee e e e e e 69
3.5 Belt Sequence Diagrameiiiiiiii i 70
K28 Tt B 1 [Yo 1= USRS 72

Unified POS, v1.16.1

3.5.2 DeVice Sharingcccoooeiiiiieeeeeeee e 72

3.5.3 Belt State Diagram ... 73

3.6 Properties (UML attributes)coooiiviiii i 74
3.6.1 AutoStopBackward Propertycccccoeeiiiiiiiiiiiiiiieececie e 74

3.6.2 AutoStopBackwardDelayTime Propertyccccooceeeeiiiiiiiiiiiiiiiinnns 74

3.6.3 AutoStopBackwardltemCount Propertycccovvviiiiiiiiiiiiiieeeeeeeeeee 74

3.6.4 AutoStopForward Propertycccoeeiieiiieieiiieeeeeeeeieee e 75

3.6.5 AutoStopForwardDelayTime Propertycccooeeeiiiiiiiiiiiiiiiinieis 75

3.6.6 AutoStopForwardltemCount Propertycccovvviiiiiiiiiciiiiieieeeeeeeeeee 75

3.6.7 CapAutoStopBackward Propertycccccoeiiiiiiiiiiiiccceee e 76

3.6.8 CapAutoStopBackwardltemCount Propertycvceiiiiiiiiieeeeeeeee, 76

3.6.9 CapAutoStopForward Propertycccccceeeeiiiiiiieeiceeee e 76
3.6.10 CapAutoStopForwardltemCount Propertyooovvviiiiiiiieiieeeeeeeeeee, 76

3.6.11 CapLightBarrierBackward Propertyccccooiiiiiiiiiiiiiis 77
3.6.12 CapLightBarrierForward Propertycccccoieiiiiiiiiiicciei e 77
3.6.13 CapMoveBackward Propertyccccoooeeiiiiiiiiiiiiieeeceee e 77
3.6.14 CapSecurityFlapBackward Propertyccccovriiiiiiiiiiiiiicee e 77
3.6.15 CapSecurityFlapForward Propertyccccoeiiiiiiiiiiicccceieeee e 78
3.6.16 CapSpeedStepsBackward Propertycccoovriiiiiiiiiiiiiee e 78
3.6.17 CapSpeedStepsForward Propertycccceeveeiiiiiiiiiiiiciiiee e 78
3.6.18 LightBarrierBackwardInterrupted Propertyccccovvvviiiiiiiiiiiiiieeeeee 78
3.6.19 LightBarrierForwardInterrupted Propertycccooveiiiiiiiiiiiii e 79
3.6.20 MotionStatus Property ... 79

3.6.21 SecurityFlapBackwardOpened Propertyooooviviiiiiiiieiiiiieeeeeeeee, 79
3.6.22 SecurityFlapForwardOpened Propertyoooooiiiiiiiiiiiiieeeeeeeeeee 80

3.7 Methods (UML operations)cooeiiviiiiiiiieceeceeeeeeeee e 81
3.7.1 adjustitemCount Methoduuiiiiiiiiii e 81

3.7.2 moveBackward Methodoeiiiiiii e 81

3.7.3 moveForward Methodcooiiiimiiiii e 82

3.7.4 resetBelt Method ... 82

3.7.5 resetltemCount Methodoueiiiiiii e 82

3.7.6 stopBelt Method ... 83

3.8 Events (UML interfaCes)cooveeuuiiiiiieiiee e 84
3.8.1 DIreCtiOEVENT ... 84

3.8.2 StatusUpdateEvent ... 84

4 Bill ACCEPIOr ... 87
4.1 GENEIAl ... 87
S 101 o = YRS 87
4.3 General Information ..o 90
4.3.1 Capabiliti€scoovuuiieiiiiie e 90

4.4 Bill Acceptor Class Diagramoooouuiiiiiiieiiiiie e 91

Unified POS, v1.16.1 iii

g B VT Yo [SO 92

4.4.2 Bill Acceptor Sequence Diagramcoooviiiiiiiiiiiiiiiee e 93

4.4.3 Bill Acceptor State Diagram ... 94

4.4.4 DeViCe ShariNgcccooiiiiiiiiiiiieee e 94

4.5 Properties (UML attributes)ooooevviiiiiiiieii e 95
451 CapDiscrepancCy Propertycccoooiooiiiiiiieeiiieieee e e e e e e e 95

452 CapFullSensor Property ..o e 95

453 CapJamSensor Propertycccooooiiiiiiiieeeiiieee e 95

454 CapNearFullSensor Property ... 95

455 CapPauseDeposit Propertycccccoiiiiiiiiiiieiicees e 96

456 CapRealTimeData Propertyccccooiiiiiiiiiiiecccceee e 96

4.5.7 CurrencyCode Propertyeeeeeeeiiiiiiiiiiiieeeiee e 96

4.5.8 DepositAmount Property ... 96

459 DepositCashList Property ..o 97
4.5.10 DepositCodeList Property ... 97

4.5.11 DepositCounts Property Updated in Release 1.12 98
4.5.12 DepositStatus Propertyccccooeeiiiiiiiiieieeeeeie e 98
4.5.13 FullStatus Propertyccceeeiiiiiiiiiiieieeee s 99
4.5.14 RealTimeDataEnabled Propertyoooommmiiiiiiiiiiiiii e 99

4.6 Method (UML 0perations)oveeeieiiiiiiieeieeeeiiee e 100
4.6.1 adjustCashCounts Method Updated in Release 1.12...... 100

4.6.2 beginDeposit Method ..o 100

4.6.3 endDeposit Methodcccooiiiiiiiiiii e 101

4.6.4 endDeposit Methodcccoooiiiiiiiiiii e 102

4.6.5 fixDeposit Methoduciiiiiiiiiiiie e 103

4.6.6 pauseDeposit Methodccoooi i 103

4.6.7 readCashCounts Method Updated in Release 1.12 104

4.7 Events (UML interfaces)oovi oo 105
4.7.1 DataBEvent ... —————— 105

4.7.2 DIireCtlOEVENT ..o 105

4.7.3 StatusUpdateEvent ... 106

O Bill DiSpenser ..., 107
ST B C 7= =T - | PP 107
T2 U [10 4 F= T Y 107
5.3 General Information ..o 110
5.3.1 Capabiliti€sccoooiiiiieeee e 110

5.3.2 Bill Dispenser Class Diagram ... 111

5.3.3 MOGEI .. 111

5.3.4 Bill Dispenser Sequence Diagramoooovmiiiiiiiiiiiiieee e, 113

Unified POS, v1.16.1

5.3.5 Bill Dispenser State Diagramcccccoeeiiiiiiiiiiiiiieiccee e 114

5.3.6 DeViICe ShariNgueeeeiiiiiiiiiiiii e 114

5.4 Properties (UML attributes)ccoooviiiiiiiii e, 115
5.4.1 ASYNCMOdE Propertyoooouuiiiiiiiiiiiie e 115

5.4.2 AsyncResultCode Property ... 115

5.4.3 AsyncResultCodeExtended Propertycccooooiiiiiiiiiiiiiciicieeeeeeee, 115

5.4.4 CapDiscrepancy Propertyccieoiiiiiiieieeeeeeeeeeeee e 116

545 CapEmptySensor Property ... 116

546 CapdamSensor Propertyooueeeiiiiiiiieiieeeeieeeeeeeeeee e 116

5.4.7 CapNearEmptySensor Propertycccccccoiieiiiiiiiiiiiiiceee e 116

5.4.8 CurrencyCashList Property ... 117

5.4.9 CurrencyCode Propertyoooeuuiumiiiiiiie e 117
5.4.10 CurrencyCodeList Propertyccccooviiiiiiiiiiiiiiieeccceeee e 117

5.4.11 CurrentEXit Property ... 118
5.4.12 DeViCeEXits Property ... 118
5.4.13 DeviceStatus Propertyoooouimieiiiiiiee e 119
5.4.14 EXItCashList Property ...t 119

5.5 Methods (UML 0perations)uueeiiiieeieeeiieeieeiiieeee e e e e 120
5.5.1 adjustCashCounts Method Updated in Release 1.12 .120

5.5.2 dispenseCash Methodoouiiiiiiiiiiii e 120

5.5.3 readCashCounts Method Updated in Release 1.12 121

5.6 Events (UML interfaces)oouuuuuiiiiiiiii e 122
5.6.1 DIreCtOEVENTouiiiiiiiiiiiieee e 122

5.6.2 StatusUpdateEvent ... 122

6 BIOMELrCS ..couiei 125
6.1 GENETAl ..o 125
5.2 SUMMAIY .eiiiieieiie et e et e e e e et e e e e e eaeanan s 125
6.3 General Informationooouiiiiiiii s 129
6.3.1 Capabiliti©Sccoeiiiiieie e 129

6.3.2 Biometrics Class Diagramcoooiiiiiiiiiiiiiiiiiieeeeeeee e 131

B.3.3 MOAEI e 132

6.3.4 Device Sharingccoooiiiiiiccr e 133

6.3.5 Biometrics Sequence Diagramsccccooiiiiiiiiiiiii s 134

6.3.6 Biometrics State Diagramooiiiiiiiiiiiii e 137

6.4 Properties (UML ALribUtes)eeiiiiieiiiie e 138
6.4.1 AlGorithm Property ... 138

6.4.2 AlgorithmList Propertyooooouimiiiiiiiiiiie e 138

6.4.3 BIRPIroperty ... 138

6.4.4 CapPrematchData Property Updated in Release 1.11 139

6.4.5 CapRawSensorData Property Updated in Release 1.12 .140

6.4.6 CapRealTimeData Property Updated in Release 1.12 .140

Unified POS, v1.16.1

\"

6.4.7

6.4.8

6.4.9

6.4.10
6.4.11
6.4.12
6.4.13
6.4.14
6.4.15
6.4.16
6.4.17
6.4.18

6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8

6.6 Events (UML Interfaces)

DataBventooooeeieii e,
DirectlOEventooooeveeiiiiiiiiiian,

6.6.1
6.6.2
6.6.3
6.6.4

/ Bump Bar

7.1 General
7.2 Summary
7.3 General Information

7.3.1 Capabilitiesccceerrriiiiiiiieeee.
7.3.2 Bump Bar Class Diagram
7.3.3 Model ...ccooviiiii
7.34 Input—BumpBarcccceeeeeiirinnnnnnn.
7.3.5 Output — Tone
7.3.6 Device Sharingcoovvvviiiiicieennn.
7.3.7 Bump Bar State Diagram
7.4 Properties (UML attributes)
7.4.1 AsyncMode Propertycccoeeveennnn.

Vi

CapSensorColor Property

CapSensorOrientation Property
CapSensorType Property

CapTemplateAdaptation Property

RawSensorData Property
RealTimeDataEnabled Property

SensorBPP Propertycccccuvveeeee

SensorColor Property

SensorHeight Property

SensorOrientation Property
SensorType Property

SensorWidth Property
6.5 Methods (UML operations)

beginEnrollCapture Method
beginVerifyCapture Method

endCapture Method

identify Method

identifyMatch Method
processPrematchData Method
verify Method

verifyMatch Method

ErrorEvent
StatusUpdateEvent

Updated in Release 1.12 142
Updated in Release 1.12 142

Updated in Release 1.11 .144
Updated in Release 1.11 145

Updated in Release 1.11 146
Updated in Release 1.11 .146

Updated in Release 1.12 .147
Updated in Release 1.12 .148
Updated in Release 1.11 ..149

Updated in Release 1.12 150
Updated in Release 1.12 .151

Updated in Release 1.11 ...153
Updated in Release 1.13 154

... 161

Unified POS, v1.16.1

7.4.2 AutoToneDuration Propertyooeiiiiiiiiiiiiie e 163

7.4.3 AutoToneFrequency Property ... 163

7.4.4 BumpBarDataCount Propertyccccooooioiiiiiiiiiiiieee e 164

7.45 CapTone Property ...t 164

7.4.6 CurrentUnitlD Property ... 164

747 ErrorString Property ...t 165

7.4.8 ErrorUnits Propertycoooo oo 165

7.4.9 EventString Property ... 166
7.4.10 EventUnitlD Property ... 166

7.4.11 EventUnits Property ... 166
7412 KeYS PrOPEItY ..cooeiiiiiiiiiiee ettt 166
7.4.13 TimMEOUL PrOPEItY ...ccooiiiiiiiiiieii ettt 167
7.4.14 UnitsONliNg Propertycooooiiiiiiiiieccee e 167

7.5 Methods (UML 0perations)ueeioiieeieeeiieieeiiiicee e 168
7.5.1 bumpBarSound Methodccoooiiiiiiiiiiii e, 168

7.5.2 checkHealth Method (CommON)ueuiiiiiieeiieieeee e 169

7.5.3 clearlnput Method (COMMON) ... 169

7.5.4 clearOutput Method (Common) Updated in Release 1.7 .170

7.5.5 setKeyTranslation Method ..., 170

7.6 Events (UML interfaces)cocevveeiiiiiiiiieecci e 171
7.6.1 DataBEVeNt ... 171

7.6.2 DIreCtIOEVENTeeiiiiiee e 172

7.6.3 ErrorEvent Updated in Release 1.10...... 172

7.6.4 OutputCompleteEvent ... 174

7.6.5 StatusUpdateEvent ... 174

8 Cash Changer ..., 175
8.1 GENEIAI ..coeeee e 175
o 02 1 U0] 0 0= 175
8.3 General Information............ccooi i 179
8.3.1 Capabilities Updated in Release 1.11 179

8.3.2 Cash Changer Class Diagram Updated in Release 1.11 180

8.3.3 Model Updated in Release 1.11 .181

8.3.4 Cash Changer Sequence Diagram Added in Release 1.7 ...185

8.3.5 Cash Changer State Diagram Updated in Release 1.8 ..186

8.3.6 DeVvice Sharingccooiiiiiiieeeee e 186

8.4 Properties (UML attributes)eeeiiiiiiii e, 187
8.4.1 ASYNCMOdE PrOPEItYcooeiieiiiieeeceee e 187

8.4.2 AsyncResultCode Propertycccocoeiiieiiiiiiiiiiiieeeiee e 187

8.4.3 AsyncResultCodeExtended Propertyccoooveeiiiiiiiiiis 187

8.4.4 CapDeposit Property Added in Release 1.5 188

8.4.5 CapDepositDataEvent Property Added in Release 1.5 188

Unified POS, v1.16.1

vii

8.4.6

8.4.7

8.4.8

8.4.9

8.4.10
8.4.11
8.4.12
8.4.13
8.4.14
8.4.15
8.4.16
8.4.17
8.4.18
8.4.19
8.4.20
8.4.21
8.4.22
8.4.23
8.4.24
8.4.25
8.4.26
8.4.27
8.4.28
8.4.29
8.4.30

8.5 Methods (UML operations)

8.5.1
8.5.2
8.5.3
8.5.4
8.5.5
8.5.6
8.5.7
8.5.8

8.6.1
8.6.2
8.6.3

9 Cash Drawer

9.1 General

viii

CapDiscrepancy Property
CapEmptySensor Property
CapFullSensor Property

CapJamSensor Property
CapNearEmptySensor Property

CapNearFullSensor Property

CapPauseDeposit Property
CapRealTimeData Property
CapRepayDeposit Property

CurrencyCashList Property
CurrencyCode Property
CurrencyCodelList Property
CurrentExit Propertyccccccvvvvneee.

CurrentService Property

DepositAmount Property

DepositCashList Property
DepositCodeList Property
DepositCounts Property
DepositStatus Property

DeviceExits Propertyccccccceeeee.
DeviceStatus Propertyccccccceoee.
ExitCashList Propertycccccccceeeen.

FullStatus Property
RealTimeDataEnabled Property
ServiceCount Property

adjustCashCounts Method
beginDeposit Method

dispenseCash Method
dispenseChange Method

endDeposit Method
fixDeposit Method
pauseDeposit Method

readCashCounts Method
8.6 Events (UML interfaces)

DataEvent

DirectlOEventccooovviveeiiiiieeene.
StatusUpdateEvent

Added in Release 1.5 190
Added in Release 1.11 190
Added in Release 1.5 ...191

Added in Release 1.5 ..195
Added in Release 1.5 .196
Added in Release 1.5 ..196
Added in Release 1.5 197

Updated in Release 1.14 .198
Added in Release 1.11 .199
Updated in Release 1.14 .199

... 200

Added in Release 1.11 ..200
Added in Release 1.5 ..201

... 201
... 202

Added in Release 1.5 ...203
Added in Release 1.5 ..204
Added in Release 1.5 204

... 206

Unified POS, v1.16.1

9.2 SUMIMAIY ...t ettt ettt e e e e e e e e e e eeeeees 209

9.3 General Informationccooiiiiiii i 212
9.3.1 Capabiliti©Seueiiiieeee e 212

9.3.2 Cash Drawer Class Diagram Updated in Release 1.8 .212

9.3.3 Cash Drawer Sequence Diagram Updated in Release 1.12 213

9.3.4 DeViCE SNAING ...euiiiiiiiiiiiiiiie e 214

9.4 Properties (UML attributes)coooiiiiiiiii e, 215
9.4.1 CapStatus Property ... 215

9.4.2 CapStatusMultiDrawerDetect Property Added in Release 1.5 215

9.4.3 DrawerOpened Property Updated in Release 1.14 216

9.5 Methods (UML operations)c.ucoieiiiiiiiiieeeeeeecee e 217
9.5.1 openDrawer Methodooooiiiiiiiiiii e 217

9.5.2 waitForDrawerClose Method ... 217

9.6 Events (UML interfaces)oouuuuuiiiiiiii e 218
9.6.1 DIreCtOEVENToieieiiiiiiiieieee e 218

9.6.2 StatusUpdateEvent Updated in Release 1.13...219

10 CAT - Credit Authorization Terminal 221
10,1 GENEIAl ...eeeeeeeee e 221
(T2 ¥ o1 ¢ = YRS 221
10.3 General Infformation ... 226
10.3.1 Description of termMScooiiiiiiicee e 226
10.3.2 Capabiliti®S ...ccceeeiieeeeeee e 227
10.3.3 CAT Class Diagram Updated in Release 1.9 229
L0 TR S /o To 1= PRSP 230
10.3.5 DeViCe ShariNgeeeeeiieiiiiiiiiiiie e 233
10.3.6 CAT Sequence Diagram Added in Release 1.7 .234
10.3.7 CAT State Diagramooooviiiiieiiciiee e 235

10.4 Properties (UML attributes)ccoooeiiiiiiiiiiiii e 236
10.4.1 AccountNumber Property Updated in Release 1.9 .236
10.4.2 AdditionalSecuritylnformation Property Updated in Release 1.7 .236
10.4.3 ApprovalCode Property Updated in Release 1.9 .236
10.4.4 ASYNCMOAE PrOPEILYcooiiiiieiiiiieee e a e e e e 237
10.4.5 Balance Property Added in Release 1.9 ..237
10.4.6 CapAdditionalSecuritylnformation Propertycccccoviiiiiiiin. 237
10.4.7 CapAuthorizeCompletion Propertycccoovviiiiiiiciiciee e 237
10.4.8 CapAuthorizePreSales Property ... 237
10.4.9 CapAuthorizeRefund Property ..o 238
10.4.10 CapAuthorizeVoid Propertyccccccooooeiiiiiiiiieeeeeeeeie e 238
10.4.11 CapAuthorizeVoidPreSales Propertyooooiiiiiiiiiiiiieeeeeeeees 238
10.4.12 CapCashDeposit Property Added in Release 1.9 239

Unified POS, v1.16.1 ix

10.4.13 CapCenterResultCode Propertycccccovoiiiiiiiiiiiiiiiiiieeeeeeeeeen 239

10.4.14 CapCheckCard Propertyccccoeeieiiiiiiieeeeeee e 239
10.4.15 CapDailyLog Propertyccccueuiiiiieeiiieieeeeieeee e 239
10.4.16 Caplnstallments Property ... 240
10.4.17 CapLockTerminal Property Added in Release 1.9 ...240
10.4.18 CapLogStatus Property Added in Release 1.9 ..240
10.4.19 CapPaymentDetail Property ... 240
10.4.20 CapTaxOthers Propertyccooooiiiiiiiiiiiiccee e 241
10.4.21 CapTransactionNumber Propertyooooueuiiiiiiiineeeieeeeeeeeeeeeeiiinenes 241
10.4.22 CapTrainingMode Propertyeeeeeeiiiiiiiiiieeieeeeeeeeeeeeee e 241
10.4.23 CapUnlockTerminal Property Added in Release 1.9 241
10.4.24 CardCompanyID Propertyccccueeeeeeiiiiiiiiiiieeeeee e 242
10.4.25 CenterResultCode Property ... 242
10.4.26 DailyLog Propertyoiiiiiiiiec e 243
10.4.27 LogStatus Property Added in Release 1.9 .245
10.4.28 PaymentCondition Property Updated in Release 1.9 245
10.4.29 PaymentDetail Property Updated in Release 1.9 246
10.4.30 PaymentMedia Property Updated in Release 1.9 ..252
10.4.31 SequenceNumber Property ... ee e 252
10.4.32 SettledAmount Property Added in Release 1.9 ..252
10.4.33 SlipNumber Property Updated in Release 1.7 .252
10.4.34 TrainingMode Propertyeeeeeeiieiiiiiiiaaeeeeeeeeeeeee e 253
10.4.35 TransactionNumber Propertyooioiiiiiiiiiieeeie e 253
10.4.36 TransactionType Property Updated in Release 1.10 .253
10.5 Methods (UML operations)cccuuiiiiiiieiiiiiieeeeeee e 254
10.5.1 accessDailyLog Method Updated in Release 1.9 .254
10.5.2 authorizeCompletion Method ..., 255
10.5.3 authorizePreSales Method ... 256
10.5.4 authorizeRefund Methodoeviiiiiiiiiiiiii e 257
10.5.5 authorizeSales Method ..o 258
10.5.6 authorizeVoid Methodccccuuuiiiiiiiii e 259
10.5.7 authorizeVoidPreSales Method ... 260
10.5.8 cashDeposit Method Added in Release 1.9 .261
10.5.9 checkCard Method Updated in Release 1.9 .262
10.5.10 lockTerminal Method Added in Release 1.9 ...263
10.5.11 unlockTerminal Method Added in Release 1.9 ..263
10.6 Events (UML interfaces)......cccceeviiieiieiiccieee e 264
10.6.1 DireCtiOEVENT ... 264
10.6.2 ErrorEvent Updated in Release 1.9 .264
10.6.3 OutputCompleteEvent ..o 266
10.6.4 StatusUpdateEvent Updated in Release 1.9 .266

Unified POS, v1.16.1

11 CheCK SCaNNEr ... e 267

111 GENEIAl e 267
(I 7 U .o ¢ = VPSR 267
11.3 General Information ... 271
11.3.1 Capabilii€Scccoiiiiiieeeeeeee e 271
11.3.2 Check Scanner Class Diagram Updated in Release 1.9 .272
11.3.3 Model Updated in Release 1.11 273
11.3.4 Device Sharingcooooiiiiieeeeeee e 275
11.3.5 Check Scanner Sequence Diagramcccoccviiiiiiiiiiiiiiiiieeeaeeeeeeen 276
11.3.6 Check Scanner State Diagramcccooviiiiiiiiiiiiiiceie e, 277
11.4 Properties (UML attributes)cooovreeiniiiii e 278
11.4.1 CapAutoContrast Property Added in Release 1.9 .278
11.4.2 CapAutoGenerateFilelD Propertycccccoiriiiiiiiiiicciee e 278
11.4.3 CapAutoGeneratelmageTagData Propertyccccccoviviiiiiiiiiiiinnnnnn. 278
11.4.4 CapAutoSIZe Propertyoueeeeeiiiiiiii i e e e e e e e eeeeeeees 279
11.4.5 CapColor Propertyooooiiiiiiiieieeee e 279
11.4.6 CapConcurrentMICR Property ... 280
11.4.7 CapContrast Property Added in Release 1.9 280
11.4.8 CapDefineCropArea Propertycooeiiiiiiiiiiiiiiicciieiee e, 280
11.4.9 CaplmageFormat Property ... 281
11.4.10 CaplmageTagData Property Updated in Release 1.11 281
11.4.11 CapMICRDEVICE Propertycccceeeeiiieeiiiiiiiieeeeceeee e eeeenas 282
11.4.12 CapStorelmageFiles Property ... 282
11.4.13 CapValidationDevice Propertycccccceeiiiiiiiiieeeeccieeee e 283
11.4.14 COlOr PrOpEItYcoiieieeeeeeeee ettt e e e e e e e e eeeaaans 283
11.4.15 ConcurrentMICR Property ... 284
11.4.16 Contrast Property Added in Release 1.9 284
11.4.17 CropAreaCount Propertycccooeeiiiiieiiiiiiieeeeeece et eeeeeeeeaans 285
11.4.18 DocumentHeight Property ... 285
11.4.19 DocumentWidth Propertyoeiiiiiiiiiiieeere e 285
11.4.20 FilelD PrOPEITYueeeiiiiiiiiiiieiieeie et a e e e e 286
11.4.21 Filelndex Property Updated in Release 1.13 .286
11.4.22 ImageData Property ...t 287
11.4.23 ImageFormat Propertycooooiiiiiiiiieee e 287
11.4.24 ImageMemoryStatus Property ... 288
11.4.25 ImageTagData Property Updated in Release 1.13 ..288
11.4.26 MapMode Property Updated in Release 1.13 289
11.4.27 MaxCropAreas Property ..o 290
11.4.28 QUAIItY PrOPertYeeeeeiiiiiiiiiiiiiee e 290
11.4.29 QualityList PrOpertyooooviiiiiiiiiie ettt 290
11.4.30 RemaininglmagesEstimate Propertycccoiiiiiiis 291
11.5 Methods (UML 0perations)ccoovvieiiiiiiiiiiiiee e 292
11.5.1 beginInsertion Method ... 292

Unified POS, v1.16.1 Xi

12 Coin Acceptorccooeviveiiiiiiiiiieeeennn.

12.1 Generaloouuiieiiieiee e
12.2 SUMMACNY ..o

12.3 General Information.......................o.....
12.3.1 Capabilitiesccovveirreiiiiiiiiiiieeeeeee,
12.3.2 Coin Acceptor Class Diagram
12.3.3 Modelccccvviieeeeiiieeee e

Xii

11.5.2 beginRemoval Method
11.5.3 clearlimage Methodccciieeiis
11.5.4 defineCropArea Method
11.5.5 endlInsertion Method
11.5.6 endRemoval Method

11.5.7 retrievelmage Method
11.5.8 retrieveMemory Method
11.5.9 storelmage Method

11.6 Events (UML interfaces)ccccceunns
11.6.1 DataEventccooevviiiiiiiiiiieeee,
11.6.2 DirectlOEventccooviiiiiiiiiiiieee,
11.6.3 ErrorEventc.covvvviiiiiiiieeen,
11.6.4 StatusUpdateEventcc.ccooooo.

12.3.4 Coin Acceptor Sequence Diagram

12.3.5 Coin Acceptor State Diagram
12.3.6 Device Sharingccccccciviiiiiiiiiieeen.

12.4 Properties (UML attributes)
12.4.1 CapDiscrepancy Property
12.4.2 CapFullSensor Property
12.4.3 CapJamSensor Property
12.4.4 CapNearFullSensor Property
12.4.5 CapPauseDeposit Property
12.4.6 CapRealTimeData Property
12.4.7 CurrencyCode Property
12.4.8 DepositAmount Property
12.4.9 DepositCashList Property
12.4.10 DepositCodelList Property
12.4.11 DepositCounts Property
12.4.12 DepositStatus Propertyccccec.....
12.4.13 FullStatus Propertyccccccvvviiiieeeen.
12.4.14 RealTimeDataEnabled Property

12.5 Methods (UML operations)

Updated in Release 1.11 298
Updated in Release 1.11 299
Updated in Release 1.13 .300

Unified POS, v1.16.1

12.5.1 adjustCashCounts Method ..., 319

12.5.2 beginDeposit Method ... 320
12.5.3 endDeposit Methodooovmiiiiiiiiii e 320
12.5.4 fixDeposit Methodooommmiiiiiiii e, 321
12.5.5 pauseDeposit Method ... 321
12.5.6 readCashCounts Methodccoooiiiiiiiiiiiiiiicc e 322

12.6 Events (UML interfaces) ..o 323
12.6.1 DataBEVveNnt ... 323
12.6.2 DIreCtIOEVENTuuiiiiiiiiiiiieie e 323
12.6.3 StatusUpdateEvent ... 324

13 CoiN DISPENSEroeeiiieee e 325
13.1 GENEIAl ..eeeeeeeee e 325
13.2 SUMMAIY ..ot e e e e e e e e e e e e e e e eaeenneens 325
13.3 General Information..............cooiiiiiiiiii 328
13.3.1 Capabilities Updated in Release 1.11 .328
13.3.2 Coin Dispenser Class Diagram Updated in Release 1.11 .329
13.3.3 Coin Dispenser Sequence Diagram Added in Release 1.7 .330
13.3.4 Coin Dispenser State Diagram Updated in Release 1.11 .331
13.3.5 Model Updated in Release 1.11 332
13.3.6 DeViCe ShariNgeeeeeiiiiiiiiiiiieee e 332

13.4 Properties (UML attributes)ccooorviiiiiiii e 333
13.4.1 CapEmptySensor Propertycccooioooiiiiiiicieeeeceee e 333
13.4.2 CapJamSensor Propertycccoooooiiiiiiiiiiiieeeecee e e eeeeeeeenes 333
13.4.3 CapNearEmptySensor Property ... 333
13.4.4 DispenserStatus Propertyccoooiioiiiieiiiieeeeeeeere e 333

13.5 Methods (UML operations)..........cccovvviieiiiiiiiiiiieie e 334
13.5.1 adjustCashCounts Method Added in Release 1.11 .334
13.5.2 dispenseChange Methodcccooiiiiiiiiiiiiiiiece e, 334
13.5.3 readCashCounts Method Added in Release 1.11 335

13.6 Events (UML interfaces).........ccoeeiieiiiiiiiieiie e 336
13.6.1 DIreCtIOEVENTuuiiiiiiiiiiiieie e 336
13.6.2 StatusUpdateEvent ... 337

14 Electronic Journalcccooiiiiiiiieee 339
14,1 GENEIAl ...eeieieeee e 339
(S U 0] = oY PSR 339
14.3 General Infformation ... 343
14.3.1 Capabilii€Scccooiiiiiiieeeeeece e 343
14.3.2 Electronic Journal Class Diagram ..o 344

Unified POS, v1.16.1 xiii

Xiv

14.3.3 MOGEI ... 345

14.3.4 DeViCe ShariNG ...ooooviiiiiiiiiieie e e e e e e e e e e e aaaeeraaaanas 346
14.3.5 Electronic Journal Sequence Diagramsooooiiiiiiiiiiniiiiiiieeeeeeeenn. 347
14.3.6 Electronic Journal State Diagramccccooeiiiiiiiiiiiiiiiieeeeeeee e 349
14.4 Properties (UML Attributes)ooooeeiiiiiiiiiii e 350
14.4.1 ASYNCMOdE Propertyceeeeiiiiiiiiiieiiiieeeee e 350
14.4.2 CapAddMarker Property ... 350
14.4.3 CapErasableMedium Propertyoooooemmiiiiiiiiiiiiie e 350
14.4.4 CaplnitializeMedium Propertyooouveiiiiiiiiieeeeeeeeeeeeeeenn 350
14.4.5 CapMediumlisAvailable Property Updated in Release 1.11 .350
14.4.6 CapPrintContent Property Updated in Release 1.11 ..351
14.4.7 CapPrintContentFile Property Updated in Release 1.11 .351
14.4.8 CapRetrieveCurrentMarker Propertyccccceeeeeiiiiiiiiieiiieiieeeeeeeiiinennns 351
14.4.9 CapRetrieveMarker Propertyooooriiiiiiiiiiiiiii e, 351
14.4.10 CapRetrieveMarkerByDateTime Propertyccooiiiiiiiiiiiiiiiieeee, 352
14.4.11 CapRetrieveMarkersDateTime Propertycccceeeeeeiiiiiiiiiiiiiiin, 352
14.4.12 CapStation Property ... 352
14.4.13 CapStorageEnabled Property ... 352
14.4.14 CapSuspendPrintContent Propertyccccceeeiiiiiiiiiieiiiiieeeenn 353
14.4.15 CapSuspendQueryContent Propertycccccoovviiiiiiiiiiiiiiiiieeeeeeeeeen 353
14.4.16 CapWaterMark Property ... 353
14.4.17 FlagWhenldle Property ... 353
14.4.18 MediumFreeSpace Propertyoooooviiiiiiiiiiiii e 354
14.4.19 MediumID Property ... 354
14.4.20 MediumlsAvailable Property Updated in Release 1.11 ..354
14.4.21 MediumSize Property ..o 354
14.4.22 Station Property ... 355
14.4.23 StorageEnabled Property Updated in Release 1.11 ..355
14.4.24 Suspended Property ...t 355
14.4.25 WaterMark Propertyc...ueuieiiiiiiiieeeeeeeeeeeeeee e 356
14.5 Methods (UML operations)couvueeiiiiiiiieieeeeeeeeeee e 357
14.5.1 addMarker Method ... 357
14.5.2 cancelPrintContent Method ..o, 357
14.5.3 cancelQueryContent Methodccovviiiiiiiiiiiiiiii e 357
14.5.4 eraseMedium Method ... 358
14.5.5 initializeMedium Methodcoooi i 358
14.5.6 printContent Method Updated in Release 1.11 ..359
14.5.7 printContentFile Method Updated in Release 1.11 ..359
14.5.8 queryContent Method Updated in Release 1.11 ..360
14.5.9 resumePrintContent Methodcccooiiiiiiiiiiiee 360
14.5.10 resumeQueryContent Methodcccccciiiiiiiiiiiiii 361
14.5.11 retrieveCurrentMarker Method ... 361

Unified POS, v1.16.1

14.5.12 retrieveMarker MethOdcooonioeioee e 362

14.5.13 retrieveMarkerByDateTime Method ..., 363
14.5.14 retrieveMarkersDateTime Methodcccccoooiiiiiiii e, 364
14.5.15 suspendPrintContent Method ..., 364
14.5.16 suspendQueryContent Method ..., 365

14.6 Events (UML interfaces)ooouuiiiiiiiiiiii e 366
14.6.1 DataBEvent ... 366
14.6.2 DIreCtiOEVENLoovneiie e 366
14.6.3 ErMOrEVENT ..o 367
14.6.4 OutputCompleteEventiiiiiiiiiiii e, 368
14.6.5 StatusUpdateEvent Updated in Release 1.12 ..369

15 Electronic Value Reader/Writercccoiiiiiiiiiinn, 371
15.1 GENEIAl ... 371
15.2 SUMMAIY oottt e e e e e e e e e eeeeneeeennnnns 371
15.3 General Infformation ... 375
15.3.1 Capabiliti®Scceeeieieeeeeeee e 375
15.3.2 Addedin Release 1.14 ... 376
15.3.3 Added in Release 1.14.1 ... 377
15.3.4 Added in Release 1.15 ... e 377
15.3.5 EVRW Class Diagram ...t 380
15.3.6 MOAEI ... 382
15.3.7 Life Cycle of Sub-Service Added in Release 1.14.1 ..389
15.3.8 The Service with Variations Added in Release 1.14.1 .390
15.3.9 The Connection Model of EVR/W Devices and Payment Center...............
Added in Release 1.14.1 391

15.3.10 Transaction Mode SUPPOItoouuiiiiiiiiiiiieeeeeeeccee e 392
15.3.11 DeViCe Sharingccoooiiiiiieeeeeeeece e 392
15.3.12 EVRW Sequence Diagram ... 393
15.3.13 EVRW State Diagramouuuiiiiiiiiiieieeeeeeeie et 397
15.3.14 Error Model Updated in Release 1.14.1 ... 398

15.4 Properties (UML attributes) ... 401
15.4.1 AccountNumber Property Updated in Release 1.14..401
15.4.2 AdditionalSecuritylnformation Propertycccooooiiiiiiiii, 401
15.4.3 Amount Property Updated in Release 1.14 ..401
15.4.4 ApprovalCode Propertyecciiiiiiiiiieiieiieeeeeeeee e e eeeeeeeenns 402
15.4.5 ASYNcMode Property ... 402
15.4.6 Balance Property Updated in Release 1.14..402
15.4.7 BalanceOfPoint Property Updated in Release 1.14 ..403
15.4.8 CapActivateService Property ... 403
15.4.9 CapAdditionalSecuritylnformation Property Added in Release 1.15 .403
15.4.10 CapAddValue Propertycccooiioiiiiiiiiiiiieieeeeee et ee e 403
15.4.11 CapAuthorizeCompletion Property Added in Release 1.15 ...404

Unified POS, v1.16.1 XV

XVi

15.4.12 CapAuthorizePreSales Property
15.4.13 CapAuthorizeRefund Property
15.4.14 CapAuthorizeVoid Property

15.4.15 CapAuthorizeVoidPreSales Property
15.4.16 CapCancelValue Property
15.4.17 CapCrdSensor Property
15.4.18 CapCashDeposit Property
15.4.19 CapCenterResultCode Property
15.4.20 CapCheckCard Property
15.4.21 CapDailyLog Property
15.4.22 CapDetectionControl Property
15.4.23 CapElectronicMoney Property
15.4.24 CapEnumerateCardServices Property
15.4.25 CaplndirectTransactionLog Property
15.4.26 Caplnstallments Property
15.4.27 CapLockTerminal Property
15.4.28 CapLogStatus Property
15.4.29 CapMediumID Property
15.4.30 CapMembershipCertificate Property
15.4.31 CapPaymentDetail Property
15.4.32 CapPINDevice Property

15.4.33 CapPoint Property

15.4.34 CapSubtractValue Property
15.4.35 CapTaxOthers Property
15.4.36 CapTrainingMode Property
15.4.37 CapTransaction Property
15.4.38 CapTransactionLog Property
15.4.39 CapTransactionNumber Property
15.4.40 CapUnlockTerminal Property
15.4.41 CapUpdateKey Property
15.4.42 CapVoucher Property
15.4.43 CapWriteValue Property
15.4.44 CardCompanylD Property
15.4.45 CardServiceList Property
15.4.46 CenterResultCode Property
15.4.47 CurrentService Property

15.4.48 DailyLog Property

15.4.49 DetectionControl Property
15.4.50 DetectionStatus Property
15.4.51 ExpirationDate Property
15.4.52 LastUsedDate Property

15.4.53 LogStatus Property
15.4.54 MediumID Property

Added in Release 1.15 ...
Added in Release 1.15 ..
Added in Release 1.15 ...
Added in Release 1.15 ...

Added in Release 1.15
Added in Release 1.15
Added in Release 1.15
Added in Release 1.15

Added in Release 1.14.1
Added in Release 1.15
Added in Release 1.15

Added in Release 1.15
Added in Release 1.14

Added in Release 1.15
Updated in Release 1.14.1
Added in Release 1.15
Updated in Release 1.14.1
Added in Release 1.15 ..

Updated in Release 1.14
Updated in Release 1.14 ..

Updated in Release 1.14

Unified POS, v1

404
404
404
405
405
405

.406
.406

406
407
407
407
408
408

.408

408
409
409

.409
.409
.410

410
410

.410
411

411
411

411

412
412
412
412

413
413
414

..414

415
417
418

..418

418
419

419

.16.1

15.4.55 PaymentCondition Property Updated in Release 1.15 ..420
15.4.56 PaymentDetail Property Added in Release 1.15 ..421
15.4.57 PaymentMedia Property Added in Release 1.15 ..427
15.4.58 PINEnNtry Property Added in Release 1.14 .428
15.4.59 Point Property Updated in Release 1.14 .428
15.4.60 ReaderWriterServiceList Property Updated in Release 1.14.1 ..429
15.4.61 SequenceNumber Propertycccccoiieeiiiiiiiiieeeeeeciee e 429
15.4.62 ServiceType Property Added in Release 1.14.1 ..430
15.4.63 SettledAmount Property Updated in Release 1.14 ..430
15.4.64 SettledPoint Propertyooovviuiiiiiiiieee e 431
15.4.65 SlipNumber Property Added in Release 1.15 ..431
15.4.66 TrainingModeState Property Added in Release 1.14 ..431
15.4.67 TransactionLog Property ..o 432
15.4.68 TransactionNumber Property Added in Release 1.15 ..432
15.4.69 TransactionType Property Added in Release 1.15 ..432
15.4.70 VoucherID Property Updated in Release 1.14 ..433
15.4.71 VoucherIDList Property Updated in Release 1.14 ..433
15.5 Methods (UML operations)..........ccceeeuiiiiieiiiiiiieeeeeeece e 434
15.5.1 accessDailyLog Method Added in Release 1.15 ..434
15.5.2 accessData Method Added in Release 1.14.1 ..435
15.5.3 accessLog Method Updated in Release 1.14.1 ..436
15.5.4 activateEVService Method Added in Release 1.14.1 ..437
15.5.5 activateService Methodooooviiiiiiiiii e 438
15.5.6 addValue Method ... 438
15.5.7 authorizeCompletion Method Added in Release 1.15 ..439
15.5.8 authorizePreSales Method Added in Release 1.15 ..440
15.5.9 authorizeRefund Method Added in Release 1.15 ..441
15.5.10 authorizeSales Method Added in Release 1.15 ..442
15.5.11 authorizeVoid Method Added in Release 1.15 ..443
15.5.12 authorizeVoidPreSales Method Added in Release 1.15 ..444
15.5.13 beginDetection Method ... 445
15.5.14 beginRemoval Methodcccccoeiiiiiiiiiiiie e 446
15.5.15 cancelValue Method ... 447
15.5.16 captureCard Method ... 447
15.5.17 cashDeposit Method Added in Release 1.15 ..448
15.5.18 checkCard Method Added in Release 1.15 ..449
15.5.19 checkServiceRegistrationToMedium Method Added in Release 1.14.1 ..450
15.5.20 clearParameterinformation Method Added in Release 1.14 ..450
15.5.21 closeDailyEVService Method Added in Release 1.14.1 ..451
15.5.22 deactivateEVService Method Added in Release 1.14.1 ..452
15.5.23 endDetection Methodcoooiiiiiii i 453
15.5.24 endRemoval Method ... 453
15.5.25 enumerateCardServices Method ..., 454

15.5.26 lockTerminal Method
15.5.27 openDailyEVService Method

Updated in Release 1.14.1 ...454
Added in Release 1.14.1 ...455

Unified POS, v1.16.1 Xvii

15.5.28 queryLastSuccessfulTransactionResult Method Added in Release 1.14 ..455

15.5.29 readValue Methodccoooiiiiiiiii e 456
15.5.30 registerServiceToMedium Method Added in Release 1.14 ...456
15.5.31 retrieveResultinformation Method Added in Release 1.15 .457
15.5.32 setParameterinformation Method Added in Release 1.14 ..466
15.5.33 subtractValue Method ... 467
15.5.34 transactionAccess Method ..o, 468
15.5.35 unlockTerminal Method Updated in Release 1.14.1 ..469
15.5.36 unregisterServiceToMedium Method Added in Release 1.14.1 .469
15.5.37 updateData Method Added in Release 1.14.1 ..470
15.5.38 updateKey Method Updated in Version 1.14.1 ..471
15.5.39 writeValue Method ... 471

15.6 Events (UML interfaces)cooooveeiiiiiiiiiie e 472
15.6.1 DataEVvent ... 472
15.6.2 DIreCtiOEVENLoiiie e 472
15.6.3 ErrOrEVENt ... —————— 473
15.6.4 OutputCompleteEvent ... 475
15.6.5 StatusUpdateEvent ... 475
15.6.6 TransitionEvent Updated in Release 1.14 ..476

16 Fiscal Printer ... 481
16.1 GENEIAl ..o 481
16.2 SUMMAIY ..ot e e e e e e e e e e et e e e e e e eaa e e eeeeeanans 481
16.3 General Informationcooiiiii i 485
16.3.1 Fiscal Printer Class Diagramcccccoiiiiiiiiiiiiiiiiieeeeeeeeee e 486
16.3.2 General ReqQUIrEMENTSccccoeeeiiiiiiiiieeecee e 487
16.3.3 Fiscal Printer MOAEScoiiiiiiiie e 487
16.3.4 Model Updated in Release 1.12 .488
16.3.5 Error Model Updated in Release 1.13 489
16.3.6 Release 1.8 Additional Model Clarificationsccccoeeiiiiiiiiiiiiinnnnns 491
16.3.7 Fiscal Printer States Updated in Release 1.8 ..492
16.3.8 Fiscal Printer State Diagram Added in Release 1.12 .495
16.3.9 Document Printingccccuuiiiiiiiiie e 496
16.3.10 Ordering of Fiscal Receipt Print Requests Updated in Release 1.13 .496
16.3.11 Fiscal Receipt Layouts Updated in Release 1.8 ..499
16.3.12 Example of a Fiscal Receiptooooiiiiiiiiiiii 500
16.3.13 Totalizers and Fiscal MEMOIYcoovvviiiiiiiiiiieeie e 501
16.3.14 COUNLEIS ...t e e e e 501

16.3. 15 VAT TabIES ooeeieeeeeeeeeeeeeeeee ettt 501
16.3.16 Receipt DUPlICAtIONcoiiiiiiiiieeieeeecee e 501

xviii

16.3.17 Currency Amounts, Percentage Amounts, VAT Rates, and Quantity

Unified POS, v1.16.1

AN OUNES oo 502

16.3.18 CUrrenCy Changeooooiiiiiiiiiiiiiiiii e 502
16.3.19 DEVICE ShaliNG ...eeeeeeiiiiiiiiiiiiii e e e 502
16.4 Properties (UML attributes)coooveeiniiiiii e 503
16.4.1 ActualCurrency Property Updated in Release 1.12 ..503
16.4.2 AdditionalHeader Property Added in Release 1.6 ..504
16.4.3 AdditionalTrailer Property Added in Release 1.6 ...504
16.4.4 AmountDecimalPlaces Property ... 505
16.4.5 ASYNCMOAE PrOPEItYcoooiiiiiiiieicee e a e 505
16.4.6 CapAdditionalHeader Property Added in Release 1.6 .505
16.4.7 CapAdditionalLines Property Updated in Release 1.13 ..505
16.4.8 CapAdditionalTrailer Property Added in Release 1.6 ..506
16.4.9 CapAmountAdjustment Propertycccoooiimiiiiiciiiieee e, 506
16.4.10 CapAmountNotPaid Property Deprecated in Release 1.11 ..506
16.4.11 CapChangeDue Property Added in Release 1.6 ..506
16.4.12 CapCheckTotal Property Updated in Release 1.11 ..507
16.4.13 CapCoVverSensor Propertycccccooooieeeeiiiiieeeeeees e e e e e eeeeeeeens 507
16.4.14 CapDoubleWidth Propertycccoooiiiiiiiiiiiiieeeecces e 507
16.4.15 CapDuplicateReceipt Property ..., 507
16.4.16 CapEmptyReceiptlsVoidable Property Added in Release 1.6 ...508
16.4.17 CapFiscalReceiptStation Property Added in Release 1.6 508
16.4.18 CapFiscalReceiptType Property Added in Release 1.6 ..508
16.4.19 CapFixedOutput Propertycccooiiiiiiiiiieere e 508
16.4.20 CapHasVatTable Propertycccccooiiiiiiiiiiiiieeeciicie e 508
16.4.21 CaplndependentHeader Property ... 509
16.4.22 CapltemList Property ... 509
16.4.23 CapJrnEmptySensor Propertycccoeeeeiiiiiiiceeeciee e 509
16.4.24 CapJrnNearEndSensor Propertycoooviiiiiiiiiiiiiiiiieeee e 509
16.4.25 CapJdrnPresent Property ... 510
16.4.26 CapMultiContractor Property Added in Release 1.6 ...510
16.4.27 CapNonFiscalMode Property ... 510
16.4.28 CapOnlyVoidLastltem Property Added in Release 1.6 ..510
16.4.29 CapOrderAdjustmentFirst Propertyooovmmiiiiiiiiiiiiiiieee e 510
16.4.30 CapPackageAdjustment Property Added in Release 1.6 .511
16.4.31 CapPercentAdjustment Property ... 511
16.4.32 CapPositiveAdjustment Property ... 511
16.4.33 CapPositiveSubtotalAdjustment Property Added in Release 1.11 511
16.4.34 CapPostPreLine Property Added in Release 1.6 .512
16.4.35 CapPowerLossReport Property ... 512
16.4.36 CapPredefinedPaymentLines Propertyccccocoeeeieiiiiniiiiinnnn. 512
16.4.37 CapReceiptNotPaid Propertyccccceeeiiiiiieiiicciiiee e 512
16.4.38 CapReCEmMptySensor Property ... 513
16.4.39 CapRecNearEndSensor Propertyoooooviieeiiiiiiiiieiieee e 513
16.4.40 CapRecPresent Propertycccoooiiiiiieiiiiieeeeeees e e e 513
16.4.41 CapRemainingFiscalMemory Propertyccccoceveeeeiiiiiiiieeeeeeeeeeeeeees 513

Unified POS, v1.16.1 XixX

16.4.42 CapReservedWord Propertyoooeeeviiiiiiiiiiiieeeee e 513
16.4.43 CapSetCurrency Property

16.4.44 CapSetHeader Propertyoooooo oo 514
16.4.45 CapSetPOSID Propertycoooeiiiiiiieeeeeieee e 514
16.4.46 CapSetStoreFiscallD Propertyoooooiemiiiiiiiiiieeie e 514
16.4.47 CapSetTrailer Property ... 515
16.4.48 CapSetVatTable Property ... 515
16.4.49 CapSIpEmptySensor Propertyooooieeiiiiiiiiiiiieee e 515
16.4.50 CapSlpFiscalDocument Propertyeeeeieoiiieeeiieieiiiieeeeeeen 515
16.4.51 CapSIpFUllSIip Propertyccoooee oo 515
16.4.52 CapSIpNearEndSensor Propertyoueeeciieeiiiiieeeeieeeeeeeen 516
16.4.53 CapSIpPresent Property ... 516
16.4.54 CapSlpValidation Property ... 516
16.4.55 CapSubAmountAdjustment Propertyccccccvviiiiieeiiiieiiiiieeeeei 516
16.4.56 CapSubPercentAdjustment Propertycccooooiiiiiiiiiiiiiiiiiieeeeeeeen 516
16.4.57 CapSubtotal Property ... 517
16.4.58 CapTotalizerType Property Added in Release 1.6517
16.4.59 CapTrainingMode Propertyeeeeeeeeeeiiiiiiaoeiieeeeeeeeeeeeeee 517
16.4.60 CapValidatedJournal Propertyooooviiiiiiiiiiiiiieee e 517
16.4.61 CapXRepOort Propertycccooooeoiiiiiiiiieeee e 517

XX

16.4.62 ChangeDue Property
16.4.63 CheckTotal Property
16.4.64 Contractorld Property
16.4.65 CountryCode Property

16.4.66 CoverOpen Propertycccccuvvvnneee.

16.4.67 DateType Property
16.4.68 DayOpened Property
16.4.69 DescriptionLength Property

16.4.70 DuplicateReceipt Property
16.4.71 ErrorLevel Propertycccccuvvvnneee.

16.4.72 ErrorOutID Property

16.4.73 ErrorState Propertyc.ccceeeeee
16.4.74 ErrorStation Propertycccccvvveeee.
16.4.75 ErrorString Propertyccccvvvvennee.

16.4.76 FiscalReceiptStation Property
16.4.77 FiscalReceiptType Property

16.4.78 FlagWhenldle Property
16.4.79 JrnEmpty Propertyooovvnnnnnnein.
16.4.80 JrnNearEnd Propertyccccvveeeeee.
16.4.81 Messagelength Property

16.4.82 MessageType Property

16.4.83 NumHeaderLines Property
16.4.84 NumTrailerLines Property

Added in Release 1.6 518
Updated in Release 1.11 518
Added in Release 1.6 519
Updated in Release 1.12 .520

.. 520

Updated in Release 1.11 ..521
Updated in Release 1.6 .522
Updated in Release 1.6 .522

.. 523
.. 523

Updated in Release 1.6 524

.. 524
.. 524
.. 525

Added in Release 1.6 ..525
Updated in Release 1.11 ..526

.. 527
.. 527
.. 527
.. 528

Added in Release 1.6 .528

Unified POS, v1.16.1

16.4.85 NumVatRates Property ... 530

16.4.86 PostLine Property Added in Release 1.6 ...531
16.4.87 PredefinedPaymentLines Propertycccccuiiiiiiiiiiiiiiiies 531
16.4.88 PreLine Property Added in Release 1.6 .532
16.4.89 PrinterState Property Updated in Release 1.13 .533
16.4.90 QuantityDecimalPlaces Property Updated in Release 1.6 .534
16.4.91 QuantityLength Property Updated in Release 1.6 .534
16.4.92 RECEMPLY Property ... 535
16.4.93 RecCNearENd Property ... 535
16.4.94 RemainingFiscalMemory Propertycccocooeriiiiiiiiiiiiiieee e 535
16.4.95 ReservedWord Property ... 536
16.4.96 SIPEMPLY Propertycoooooeeiieeeieeieee e 536
16.4.97 SlpNearENd Property ... 536
16.4.98 SlipSelection Property ... 537
16.4.99 TotalizerType Property Added in Release 1.6 537
16.4.100TrainingModeActive Property ... 538
16.5 Methods (UML operations) ... 539
16.5.1 beginFiscalDocument Method Updated in Release 1.11 .539
16.5.2 beginFiscalReceipt Method Updated in Release 1.11 ..541
16.5.3 beginFixedOutput Methodcoooiiiiiiiiiiii e 542
16.5.4 beginInsertion Methodceiiiiiiiiiiii e 543
16.5.5 beginltemList Methodccoooiiiii e 544
16.5.6 beginNonFiscal Method ... 545
16.5.7 beginRemoval Methodiiiiiiiiiiiii e 546
16.5.8 beginTraining Method ... 547
16.5.9 clearError Methodoooviiiiiiiiiie e 547
16.5.10 endFiscalDocument Methodoooiiiiiiiiiiiie e 548
16.5.11 endFiscalReceipt Method Updated in Release 1.6 549
16.5.12 endFixedOutput Methodovviiiiiiii e 550
16.5.13 endInsertion Method ... 550
16.5.14 endltemList Method Updated in Release 1.13 .551
16.5.15 endNonFiscal Methodeuiiiiiiiiii e 551
16.5.16 endRemoval Method ... 552
16.5.17 endTraining Method ... 552
16.5.18 getData Method Updated in Release 1.12 .553
16.5.19 getDate Method Updated in Release 1.6 556
16.5.20 getTotalizer Method Updated in Release 1.6 557
16.5.21 getVatEntry Method Updated in Release 1.11 .558
16.5.22 printDuplicateReceipt Methodcooovviiiiiiiiiiiiceeee 559
16.5.23 printFiscalDocumentLine Method ... 560
16.5.24 printFixedOutput Methodcoiiiiiiiii e 561
16.5.25 printNormal Method Updated in Release 1.7 562
16.5.26 printPeriodicTotalsReport Method ..., 564
16.5.27 printPowerLossReport Method ..., 565
16.5.28 printRecCash Method Added in Release 1.6 566

Unified POS, v1.16.1 XXi

16.6 Events (UML Interfaces)

17 Gate

17.1 General

XXii

16.5.29 printRecltem Method

16.5.30 printRecltemAdjustment Method
16.5.31 printRecltemAdjustmentVoid Method
16.5.32 printRecltemFuel Method

16.5.33 printRecltemFuelVoid Method
16.5.34 printRecltemRefund Method

16.5.35 printRecltemRefundVoid Method
16.5.36 printRecltemVoid Method

16.5.37 printRecMessage Method

16.5.38 printRecNotPaid Method

16.5.39 printRecPackageAdjustment Method
16.5.40 printRecPackageAdjustVoid Method
16.5.41 printRecRefund Method

16.5.42 printRecRefundVoid Method

16.5.43 printRecSubtotal Method

16.5.44 printRecSubtotalAdjustment Method .

16.5.45 printRecSubtotalAdjustVoid Method
16.5.46 printRecTaxID Method

16.5.47 printRecTotal Method

16.5.48 printRecVoid Method

16.5.49 printRecVoidltem Method

16.5.50 printReport Method

16.5.51 printXReport Method ...

16.5.52 printZReport Method
16.5.53 resetPrinter Method

16.5.54 setCurrency Method
16.5.55 setDate Method
16.5.56 setHeaderLine Method

16.5.57 setPOSID Methodcccoocvieiiiineenne

16.5.58 setStoreFiscallD Method

16.5.59 setTrailerLine Methodcoevveniennn..l.
16.5.60 setVatTable Methodccvevveieian...

16.5.61 setVatValue Method
16.5.62 verifyltem Method

16.6.1 DirectlOEvent
16.6.2 ErrorEvent

16.6.3 OutputCompleteEvent

16.6.4 StatusUpdateEvent

Updated in Release 1.6 ..567
Updated in Release 1.11 569
Added in Release 1.11 571
Added in Release 1.6 573
Added in Release 1.6 575
Added in Release 1.12 .577
Added in Release 1.12 .579
Added in Release 1.11 ..581
Updated in Release 1.13 583
Updated in Release 1.11 584
Added in Release 1.6 585
Added in Release 1.6 587
Updated in Release 1.12 .589
Updated in Release 1.12 .591
Updated in Release 1.6 593
Updated in Release 1.11 594
Added in Release 1.6 597
Added in Release 1.6 599
Updated in Release 1.14 600
Updated in Release 1.6 602
Deprecated in Release 1.11 604
Updated in Release 1.11 607

.. 610

Updated in Release 1.11 .618
Updated in Release 1.13 ..619

Unified POS, v1.16.1

17.2 SUMMAIY it e et e ettt e e e e e e e e e e e eeeeseennnnnnns 625
17.3 General Infformation ... 628
17.3.1 Capabiliti®S ...ccceeeee e 628
17.3.2 Gate Class Diagram ... 629

17.3.3 Gate Sequence Diagramccccoeeeeiiiiiiiiiiiiieece e 630

17.3.4 DeViCe ShariNguueeeeiiiiiiiiiiii e 631

17.4 Properties (UML attributes)ccooovvimiiiiiii e, 632
17.4.1 CapGateStatus Propertycccccooeeiiiiiiiiiiiiieeeeeee e, 632
17.4.2 GateStatus Property ... 632

17.5 Methods (UML 0perations)ccoovvieiiiiiiiiiiiiie e 633
17.5.1 openGate Methodoooiiiiiiiii e 633
17.5.2 waitForGateClose Method ... 633

17.6 Events (UML interfaces)ooouuiiiiiiiiiiiiiec e 634
17.6.1 DIreCtiOEVENL ..o e 634
17.6.2 StatusUpdateEventooiiiiiiiii e 635

18 Hard Totals ..o 637
18.1 GENEIAl ... 637
18.2 SUMMANY ...t e e e e e e e e e e ae s 637
18.3 General Informationcccoooii i 641
18.3.1 Capabilitiescccoieiiiiee e 641
18.3.2 Hard Totals Class Diagramccccoooeiiiiiiiiiiiiiieeecree e 642
18.3.3 Hard Totals Sequence Diagram Added in Release 1.7 ..643
LS TR S Y/ To 1= PR 644
18.3.5 Device Sharingccoooiiiiieeee e 645

18.4 Properties (UML attributes) ... 646
18.4.1 CapErrorDetection Property ..., 646
18.4.2 CapSingleFile Property ... 646
18.4.3 CapTransactions Propertyccccoioooiiiiiiiiiieeeceee e 646
18.4.4 FreeData Property ... 646
18.4.5 NumberOfFiles Property ... 647
18.4.6 TotalSSIZE Propertyoooooiiiiiiiiiiiiiii e 647
18.4.7 TransactionInProgress Propertycccccoveiiviieeeiiicciee e 647

18.5 Methods (UML operations)...........cooouiiiiiiiiiiiiiiie e 648
18.5.1 beginTrans Methodoooeiiiiiiiiiii e 648
18.5.2 claim Method (COMMON)ooviiiiiiieiie et 648
18.5.3 claimFile Method Updated in Release 1.8 .649
18.5.4 commitTrans Method ... 649
18.5.5 create Method ... 650
18.5.6 delete Method ... 651

Unified POS, v1.16.1 xxiii

18.5.7 fiINd MEthOd ..o 651
18.5.8 findByIndex Methodccuviiiiiiiii e 652
18.5.9 read Method Updated in Release 1.7 ..653
18.5.10 recalculateValidationData Methodccccceeiiiiiiiiiiiiiin 654
18.5.11 release Method (COmMmMON)oooiiiiiiiiiicee e 654
18.5.12 releaseFile Method ... 655
18.5.13 rename Methodueeiiiiiii e 655
18.5.14 rollback Methodeeii e 656
18.5.15 setAll Method Updated in Release 1.7 656
18.5.16 validateData Method ..o 657
18.5.17 write Method Updated in Release 1.7 ..657

18.6 Events (UML interfaces) ... 658
18.6.1 DIireCtiOEVENT ... 658
18.6.2 StatusUpdateEvent ... 658

19 IMage SCaANNErccoeviiieei e 659
191 GENEIAl ... 659
19.2 SUMMAIY .ot e e e e e e e e e e et e e e eeeeennns 659
19.3 General INformationcooooo i 663
19.3.1 CapabilitieSccoeieeiiecceee e ————— 663
19.3.2 Image Scanner Class Diagramcccooiiiiiiiiiiiiiiiiieeeeeeeee 664
19.3.3 Image Scanner Sequence Diagram 1cccoiiiiiiiiiiiiiieeeceeen 665
19.3.4 Image Scanner Sequence Diagram 2cccceeeeeieiieiiiiiiieeeeen 666
19.3.5 Image Scanner Sequence Diagram 3ccccooiiiiiiiiiiiiiiiieien 667
19.3.6 Image Scanner Sequence Diagram 4ccccccveeiiiiiiiieeei e 668
19.3.7 MOAEI ... e e e e 669
19.3.8 DevVvice Sharingcccooiiiiiiiiiiiii s 669
19.3.9 Image Scanner State Diagramccccooiiiiiiiiiiie 670

19.4 Properties (UML attributes)coouoiiiiiiiiiiiic e 671
19.4.1 AIMMOAE Propertycccoouiiiiiiiiiieieieeee e 671
19.4.2 BitsPerPixel Propertyccccooiioiiiiiiii et 671
19.4.3 CapPAIM PrOPEILY ..oooveiiiiiiii e 671
19.4.4 CapDecodeData Propertycccoooiiiiiiiiieiiiiieieeee e 671
19.4.5 CapHostTriggered Propertycoooiiiiiiieiiiiiiiiii e 672
19.4.6 Capllluminate Propertycccoiiiiiiiiiiiecee e 672
19.4.7 CaplmageData Property ... 672
19.4.8 CaplmageQuality Property ... 672
19.4.9 CapVideoData Property ... 673
19.4.10 FrameData Property ... 673
19.4.11 FrameType PrOPErtYccoeeeiiiieeiieeeeeeeee et 674

XXiv

Unified POS, v1.16.1

19.4.12 llluminateMode Property ... 674

19.4.13 ImageHeight Property ... 674
19.4.14 ImageLength Property ... 675
19.4.15 ImageMode Property ... 676
19.4.16 ImageQuality Property ... 677
19.4.17 IMageries Property ... 677
19.4.18 ImageWidth Property ... 678
19.4.19 VideoCount Property ... 678
19.4.20 VideoRate Property ... 679

19.5 Methods (UML operations)..........ccoeveeiuiiiieiiiiiiiie e 680
19.5.1 startSession Methodoueiiiiiiiii e 680

19.5.2 stopSession Methodoiiiiiiiiiiii e 680

19.6 Events (UML interfaces)ooouuiiiiiriiiiiiiieece e 681
19.6.1 DataBEvent ... 681

19.6.2 DireCtlO EVENLoueeiiiiieeeeeeee e 681

19.6.3 ErrorEvent ... 682

19.6.4 StatusUpdateEvent ... 683

20 1tem DiSpeNnSErcooeiiiei i 685
20.1T GENEIAl ..o 685
20.2 SUMMACY ..ot eaeraa s 685
20.3 General Informationcooouuiiii i 688
20.3.1 CapabilitieSuveeeiiiiiiiiiiiie e ———— 688
20.3.2 Item Dispenser Class Diagramccccooeeiiiiieiiiiiciiiceeceee e 689
20.3.3 Item Dispenser Sequence Diagramcccoooriiieiiiiiiiiiiiciieeee e 690
20.3.4 MOAEI ...t a e e e e e e e e e e e e e e 691
20.3.5 DevVice Sharingccooeiiiiiiieeee e 691
20.3.6 Item Dispenser State Diagramcccccuiimiiiiiiiiiii s 691

20.4 Properties (UML attributes)ccooevviiiiiiiiiic e 692
20.4.1 CapEmptySensor Propertyeecciciiieiiiiieieeeeeeeeeee e 692
20.4.2 CaplndividualSlotStatus Property ... 692
20.4.3 CapJamSensor Propertyoouuueuuiiiiiiieeiieeeeeee e 692
20.4.4 CapNearEmptySensor Propertyccccceeiieeiieieeiiiecceeee e 692
20.4.5 DispenserStatus Propertye.cocoooooiooeoeieeeeeeeeee e 693
20.4.6 MaxSIOts Propertycoooooiiiiiiiicee e 693

20.5 Methods (UML operations).........cccooveeiuiiiiiieiiiie e 694
20.5.1 adjustltemCount Methodcoooiiiiiiieee e 694
20.5.2 dispenseltem Methodoiiiiiiiiiii e 694
20.5.3 readltemCount Methodooeiiiiiiiii e 695

20.6 Events (UML interfaces)........ccuuuoieieiiiiiiiei e 696
20.6.1 DIreCtIOEVENToviiiiiiiieeiieeee e 696

Unified POS, v1.16.1 XXV

21.1
21.2
21.3

21.4

20.6.2 StatusUpdateEvent

21 Keylock

General ..o

General Informationcccovvveviiniiannl.

21.3.1 Capabilities
21.3.2 Keylock Class Diagram

21.3.3 Keylock Sequence Diagram
21.3.4 Model

21.3.5 Device Sharingcccevvvvvviviciieenn.
Properties (UML attributes)

21.4.1 CapKeylockType Property
21.4.2 ElectronicKeyValue Property
21.4.3 KeyPosition Property

21.4.4 PositionCount Property

Updated in Release 1.11 .702
Updated in Release 1.11 .702
Updated in Release 1.12 .703
Updated in Release 1.11 704

Added in Release 1.11 .705
Added in Release 1.11 ..705
Updated in Release 1.11 .706
Updated in Release 1.11 706

21.5 Methods (UML operations)ccoeeuuiiiiiiiiiiiiee e 707
21.5.1 waitForKeylockChange Method Updated in Release 1.11 707

21.6 Events (UML iNterfaces)cccceeeeieieeiiiieeeiicciee e 708
21.6.1 DIreCtiOEVENT ..o 708
21.6.2 StatusUpdateEvent Updated in Release 1.11 ..709

22 Lights oo 711
221 GENEIAl ... 711
22.2 SUMMACY ..iieiieie e e et et e e e et e e e e e e e e s e e e e e eeas e e eeeesaaaaaeeees 711
22.3 General Infformation ... 714
22.3.1 Capabiliti©S ...cccceei e 714
22.3.2 DevVice Sharingccoooiiiiiiieee e 714
22.3.3 Lights Class Diagramouuuiiiiiiiieeieeeeeeeeeeeeeeee e 714
22.3.4 Lights Sequence Diagramcccccooeiiiiiiiiiiiiiiie e 716

22.4 Properties (UML attributes)cooevriiiiiiiiiiiieiiie e 718
2241 CapAlarm Property ... 718
22.4.2 CapBlink Property ... 718
22.4.3 CapColor PrOpPEertYooooiiiiiiiiicceeeie e 718
22.4.4 CapPatternProperty Added in Release 1.16 .719
22.4.5 MaxLights Property ..o 719

22.5 Methods (UML operations)ccoeeuuiiiiiiieiiiiee e 720

XXvi

Unified POS, v1.16.1

22.5.1 swWitchOff Method ..o 720

22.5.2 switchOffPattern Method ... 720
22.5.3 sWitchON Methodccoooiiiiiiiie e 721
22.5.4 switchOnMultiple Method Added in Release 1.16 722
22.5.5 switchOnPattern Method Added in Release 1.16 723

22.6 Events (UML interfaces)cooiiieiiiiiiii e 723
22.6.1 DIreCtHOEVENTooiiieiiiiieieeeee et a e 723
22.6.2 StatusUpdateEvent ... 724

23 LiNe DISPIaY ..cvuieeeieei e 725
23.1 GENEIAl ...eeeeee e 725
23.2 SUMMAIY ittt e e e e e e et et e et eaaaaaar e e e e e e e eeeeeeeeennnnnns 725
23.3 General Information ... 730
23.3.1 Capabilities Updated in Version 1.7 .730
23.3.2 Line Display Class Diagram Updated in Release 1.7 .731
23.3.3 Line Display Sequence Diagram Added in Release 1.7 .732
23.3.4 Model Updated in Release 1.7 733
23.3.5 Display MOAESooeiiiiiiiiiiiaiie ettt 734
23.3.6 Data Characters and Escape Sequences Added in Release 1.7 735
23.3.7 DeViCe SNaringcooooeiiiiiieeeee e 735

23.4 Properties (UML attributes)ccooeveieiiiiiiiice e 736
23.4.1 BlinkRate Property Added in Release 1.6 736
23.4.2 CapBitmap Property Added in Release 1.7 ..736
23.4.3 CapBlink Propertycooooiiiiieeeee e 736
23.4.4 CapBlinkRate Property Added in Release 1.6 .737
23.4.5 CapBrightness Property ... 737
23.4.6 CapCharacterSet Property Updated in Release 1.5 .. 737
23.4.7 CapCursorType Property Updated in Release 1.8 .738
23.4.8 CapCustomGlyph Property Added in Release 1.6 .738
23.4.9 CapDescriptions Propertyeecciieiiiiiieeeeeeeeeeeeer e e e 738
23.4.10 CapHMarquee Property ... 739
23.4.11 CaplCharWait Property ... 739
23.4.12 CapMapCharacterSet Property Added in Release 1.7 ..739
23.4.13 CapReadBack Property Added in Release 1.6 ..739
23.4.14 CapReverse Property Added in Release 1.6 ...740
23.4.15 CapScreenMode Property Added in Release 1.7 ...740
23.4.16 CapVMarquee Property ... 740
23.4.17 CharacterSet Property Updated in Release 1.10 ..741
23.4.18 CharacterSetList Propertyeeiiiiiiiiiii e 741
23.4.19 ColUMNS PrOPEItYooeiiiiiiiiiiii it 742
23.4.20 CurrentWindow Property Updated in Release 1.6 ..742
23.4.21 u8CursorColumn Propertyueuuiciiiiiieiieeeeeeeeeeeeeee e 743
23.4.22 CUrsorROW Propertyooooiiiiiiiiiiiiie e 743

Unified POS, v1.16.1 XXVii

23.4.23 CursorType Property Updated in Release 1.8 ...744

23.4.24 CusorUpdate Propertyeeccooieiiiiieeeeeeeeeeeeees e 744
23.4.25 CustomGlyphList Property Added in Release 1.6 .745
23.4.26 DeviceBrightness Property ...t 745
23.4.27 DeviceColumns Property Updated in Release 1.7 .746
23.4.28 DeviceDescriptors Property ... 746
23.4.29 DeviceRows Property Updated in Release 1.7 ...746
23.4.30 DeviceWIiNdOWS Propertyoooouuiiiiiiiiiie e 746
23.4.31 GlyphHeight Property Added in Release 1.6 ..747
23.4.32 GlyphWidth Property Added in Release 1.6 ..747
23.4.33 InterCharacterWait Propertycccccoieeiiiiiiiiicceee e, 747
23.4.34 MapCharacterSet Property Added in Release 1.7 ..748
23.4.35 MarqueeFormat Property ..o 749
23.4.36 MarqueeRepeatWait Property ... 753
23.4.37 MarqueeType Propertyuuueccoooiaaeee e 754
23.4.38 MarqueeUnitWait Property ... 755
23.4.39 MaximumX Property Added in Release 1.7 ..755
23.4.40 MaximumY Property Added in Release 1.7 ..755
23.4.41 ROWS PrOPEITYeeiiiiiiiiiiieiieieee ettt 756
23.4.42 ScreenMode Property Added in Release 1.7 ..756
23.4.43 ScreenModelList Property Added in Release 1.7 ..757

23.5 Methods (UML operations)ccooeviiiiiiiiiiiiic e 758
23.5.1 clearDescriptors Method ..o 758
23.5.2 clearText Method Updated in Release 1.7 .758
23.5.3 createWindow Method Updated in Release 1.6 ..759
23.5.4 defineGlyph Method Updated in Release 1.7 ..760
23.5.5 destroyWindow Method ... 762
23.5.6 displayBitmap Method Added in Release 1.7 ..763
23.5.7 displayText Method Updated in Release 1.7 ..765
23.5.8 displayTextAt Method Updated in Release 1.7 ..767
23.5.9 readCharacterAtCursor Method Added in Release 1.6 ..767
23.5.10 refreshWindow Method ... 768
23.5.11 scrollText Method Updated in Release 1.7 ...769
23.5.12 setBitmap Method Added in Release 1.7 ..772
23.5.13 setDescriptor Methodcoooiiiiiiiii e 774

23.6 Events (UML interfaces)cooiviiiiiiiiii e 775
23.6.1 DIreCtIOEVENTouiiiiiiiiieeieiee e 775
23.6.2 StatusUpdateEvent ... 775

24 MICR - Magnetic Ink Character Recognition Reader777
241 GENEIAl ... 777

xxviii Unified POS, v1.16.1

24.2 SUMMANY oooeieeiiiiieee e

24.3 General Informationccoeviviiivininann...

24.3.1 Capabilitiesccccceeeieeiiiiiiiiiiee
24.3.2 MICR Class Diagramcceeeueeee

24.3.3 MICR Sequence Diagram

24.3.4 Model ...
24.3.5 Device Sharingcccccceeeeiiiiiiiiiiiiins

24.3.6 MICR - Character Substitution

24.4 Properties (UML attributes)
24.4.1 AccountNumber Property
24.4.2 Amount Propertyc.oeevvviiiiieeeennnnn.
24.4.3 BankNumber Propertycceenee
2444 CapValidationDevice Property
2445 CheckType Propertyccceovvvvinnnnnns

24.4.6 CountryCode Property

2447 EPC Propertycccccoeeeeiiiiiiiiiiiiieeiiiiinns

24.4.8 RawData Property

24.49 SerialNumber Propertyccceeee
24.4 .10 TransitNumber Property

24.5 Methods (UML operations).....................
24.51 begininsertion Method
24.5.2 beginRemoval Method
24.5.3 endlnsertion Methodcccoe..
2454 endRemoval Methodccceeeee

24.6 Events (UML interfaces)ccccccoeeeeeeeees

24.6.1 DataBventcoooiieiiiiiiiiiiieae,
24.6.2 DirectlOEventcoooeeviiiiiiiiiiaien.

24.6.3 ErrorEvent

24.6.4 StatusUpdateEventcccccceeene

25 Motion Sensor ..o,

25.1 General ..o,
25.2 SUMMANY ooovieiiiiieee e

25.3 General Informationcccccccooooee.
25.3.1 Capabilitiesccccceeeieeiieiiiiiies
25.3.2 Motion Sensor Class Diagram
25.3.3 Model ...oovviiiiiiiiii e
25.3.4 Device Sharingcccccceeeeiiiiiiiiiiiiines

25.3.5 Motion Sensor Sequence Diagram

25.3.6 Motion Sensor State Diagram
25.4 Properties (UML attributes)

Unified POS, v1.16.1

... 783

... 790

... 797

25.4.1 MOLON PrOPEITYueiiiiiiiiiiieeieeeee e 806

25.4.2 TiMEOUL PrOPertYoooiiiiiiiiei et 806

25.5 Methods (UML 0perations)ccoiiiiiiiiiiiiiiineeeeeeeeeeeeeeee e 807
25.5.1 waitForMotion Method ... 807

25.6 Events (UML interfaces)..........coviiiiiiiiiiiiiiieeee e 808
25.6.1 DIreCtiOEVENTooeei e 808
25.6.2 StatusUpdateEvent ... 809

26 MSR - Magnetic Stripe Readercoooeiiiiiiiiiienennnnn. 811
26.1 GENEIAl ... 811
P I T [o 2 =1 o UUU 811
26.3 General Information............c.ooiiiiiiii e, 815
26.3.1 Capabilities Updated in Release 1.12 ..815
26.3.2 MSR Class Diagram Updated in Release 1.12 ..817
26.3.3 Device Behavior Model Updated in Release 1.12 .818
26.3.4 MSR Encryption and Authentication Updated in Release 1.14 820
26.3.5 DEVICE SNAING ...uuiiiiiiiiiiiiiiiiiie e e e e e e e e e e e e e e e e e e 822
26.3.6 MSR Sequence Diagram Updated in Release 1.8 ..823
26.3.7 MSR Device Authentication Sequence Diagram Added in Release 1.12 .824
26.3.8 MSR State Diagramsoouuvuiiiiiiiiiei e 825

26.4 Properties (UML attributes)coooevveiiiiiiiiii e, 827
26.4.1 AccountNumber Property Updated in Release 1.13 ..827
26.4.2 AdditionalSecuritylnformation Property Added in Release 1.12 ..827
26.4.3 CapCardAuthentication Property Added in Release 1.12 ...828
26.4.4 CapDataEncryption Property Added in Release 1.12 ..828
26.4.5 CapDeviceAuthentication Property Added in Release 1.12 ..829
26.4.6 CaplSO Propertyooooeeeiiieiiiiiiee et e e 829
26.4.7 CapJISONE Propertyouuuuuuiiiiieeiiie et 829
26.4.8 CapJdISTWO Property ..o eeeeeeeeeees 830
26.4.9 CapTrackDataMasking Property Updated in Release 1.13 ..830
26.4.10 CapTransmitSentinels Property Added in Release 1.5 ..830
26.4.11 CapWritableTracks Property Added in Release 1.10 .831
26.4.12 CardAuthenticationData Property Added in Release 1.12 ...831
26.4.13 CardAuthenticationDatalength Property Updated in Release 1.13 ..832
26.4.14 CardPropertyList Property Added in Release 1.12 ...832
26.4.15 CardType Property Added in Release 1.12 ...832
26.4.16 CardTypelList Property Added in Release 1.12 ..833
26.4.17 DataEncryptionAlgorithm Property Added in Release 1.12 ...834
26.4.18 DecodeData Property Updated in Release 1.13 ..835
26.4.19 DeviceAuthenticated Property Added in Release 1.12 ..836

XXX Unified POS, v1.16.1

26.6.4 StatusUpdateEvent

26.4.20 DeviceAuthenticationProtocol Property Added in Release 1.12 ...836
26.4.21 EncodingMaxLength Property Updated in Release 1.10 ...836
26.4.22 ErrorReportingType Property Updated in Release 1.13 ..837
26.4.23 ExpirationDate Property Updated in Release 1.12 ..838
26.4.24 FirstName Property Updated in Release 1.12 ..839
26.4.25 Middlelnitial Property Updated in Release 1.12 ..839
26.4.26 ParseDecodeData Property Updated in Release 1.12 ..840
26.4.27 ServiceCode Property Updated in Release 1.12 ..841
26.4.28 Suffix Property Updated in Release 1.12 ..841
26.4.29 Surname Property Updated in Release 1.12 ...842
26.4.30 Title Property Updated in Release 1.12 ...842
26.4.31 Track1Data Property Updated in Release 1.12 ..843
26.4.32 Track1DiscretionaryData Property Updated in Release 1.12 ..843
26.4.33 Track1EncryptedData Property Added in Release 1.12 ...844
26.4.34 Track1EncryptedDatalLenght Property Updated in Release 1.13 ..844
26.4.35 Track2Data Property Updated in Release 1.12 ..845
26.4.36 Track2DiscretionaryData Property Added in Release 1.12 ..845
26.4.37 Track2EncryptedData Property Added in Release 1.12 .. 846
26.4.38 Track2EncryptedDatalLength Property Updated in Release 1.13 ..846
26.4.39 Track3Data Property Updated in Release 1.12 ..847
26.4.40 Track3EncryptedData Property Added in Release 1.12 ...847
26.4.41 Track3EncryptedDatalLength Property = Updated in Release 1.13 ...848
26.4.42 Track4Data Property Updated in Release 1.12 ...848
26.4.43 Track4EncryptedData Property Added in Release 1.12 ...849
26.4.44 Track4EncryptedDatalLength Property = Updated in Release 1.13 ... 849
26.4.45 TracksToRead Property Updated in Release 1.5 ...850
26.4.46 TracksToWrite Property Added in Release 1.10 ..851
26.4.47 TransmitSentinels Property Added in Release 1.5 .. 851
26.4.48 WriteCardType Property Added in Release 1.12 ..852
26.5 Methods (UML operations)ccoceeiiiiiiiiiiiiiiiec e 853
26.5.1 authenticateDevice Method Added in Release 1.12 ...853
26.5.2 deauthenticateDevice Method Added in Release 1.12 ...854
26.5.3 retrieveCardProperty Method Updated in Release 1.13 .855
26.5.4 retrieveDeviceAuthenticationData Method Added in Release 1.12 ..856
26.5.5 updateKey Method Added in Release 1.12 857
26.5.6 writeTracks Method Updated in Release 1.12 .858
26.6 Events (UML interfaces)ccoiiieoiiiiiiiiiiii e 859
26.6.1 DataEvent Updated in Release 1.12 ..859
26.6.2 DIreCtIOEVENTooiiiiiiiiiiiieeeee e 860
26.6.3 ErrorEvent Updated in Release 1.10 ..861

Updated in Release 1.12 .863

27 Pin Pad
27.1 General

Unified POS, v1.16.1

XXXii

27.2
27.3

27.4

SUMMArY ..o

General Informationccevvenennn...

27.3.1 Capabilitiescccceevrriviriiiiiinn.
27.3.2 Pin Pad Class Diagram

27.3.3 Pin Pad Sequence Diagram

27.3.4 Feature Not Supported
27.3.5 Note on Terminologycccccceeeenn.
27.3.6 Modelcccooeiiiiiiiee
27.3.7 Device Sharingeoevvvviininnnns
27.3.8 Pin Pad State Diagram

Properties (UML attributes)

27.4.1 AccountNumber Property
27.4.2 AdditionalSecurityInformation Property

27.4.3 Amount Property

27.5.1 beginEFTTransaction Method
27.5.2 computeMAC Method

27.5.3 enablePINEntry Method
27.5.4 endEFTTransaction Method
27.5.5 updateKey Methodc.coeeeenee.

27.5.6 verifyMAC Method

27.4.4 AvailableLanguagesList Propertyccccooviiiiiiiiiiiiiiiee e 876
27.4.5 AvailablePromptsList Propertycccccoiiiiiiieiiieieceeee e 876
27.4.6 CapDisplay Propertyouuuuuiiiiieiiii e 878
27.4.7 CapKeyboard Propertycciiiiiiiieiiieeeeeee et 878
27.4.8 CaplLanguage Property Updated in Release 1.9 .879
27.4.9 CapMACCalculation Propertycccccoeeeiiiiieieiecieie e 879
27.4.10 CapTone Property ... 880
27.4.11 EncryptedPIN Property ... 880
27.4.12 MaximumPINLength Propertycooeiiiiiiieicceee e, 880
27.4.13 MerchantID Property ...t 881
27.4.14 MinimumPINLength Property ... 881
27.4.15 PINEntryEnabled Property Updated in Release 1.12 ..881
27.4.16 Prompt PropertYoo it a e 882
27.4.17 PromptLanguage Property ...t 883
27.4.18 TerminallD Property ... e 883
27.4.19 Track1Data Propertycooe oot 884
27.4.20 Track2Data Property ...t 884
27.4.21 Track3Data Propertyeeeeiiiiioiii e 884
27.4.22 Track4Data Property Added in Release 1.5 ...885
27.4.23 TransactionType Property ...t 885
27.5 Methods (UML 0perations)ccoovvvieeeiiiiiiiiieie e 886

Updated in Release 1.14 ..886
Updated in Release 1.7 .887

Updated in Release 1.9 ..889

Unified POS, v1.16.1

27.6 Events (UML iNterfaces)..........uueiiieeee i 890

27.6.1 DataEVEN!oueeiiiiiei e 890
27.6.2 DIreCtHOEVENToeiiiiiiiiieeeeeeee e e 891
27.6.3 ErrOrEVENT ... 892
27.6.4 StatusUpdateEventooiiiiiiiiiiiie e 893

28 Point Card Reader/Writercccccoooiiiiiiniiiiiiiinne, 895
28.1 GENEIAl ... 895
28.2 SUMMANY ...ttt e e e e e e e e e e et e e e e e e e e e e e e eaesaan s 895
28.3 General Information ..o 900
28.3.1 CapabilitieSuveeeiiiiiiiiiiiiee e ———— 900
28.3.2 Point Card Reader/Writer Class Diagramcvviciiiieeeieeeeeeeeeee, 901
28.3.3 IMOAEI ...t a e e e e e e e e e e e e e e nnane 902
28.3.4 Card Insertion Diagramooooiiiiiiiii e 904
28.3.5 Printing Capability ..o 905
28.3.6 Cleaning Capability ... 906
28.3.7 Initialization of Magnetic Stripe Dataccccuviiiiiiis 906
28.3.8 DeVice Sharingcoooiiiiiiieeec e 906
28.3.9 Data Characters and Escape Sequences Updated in Release 1.7 ..907
28.3.10 Point Card Reader Writer Sequence Diagram Added in Release 1.7909
28.3.11 Point Card Reader Writer State Diagramccoviiiiiiiiiiieeieeennn, 910

28.4 Properties (UML attributes)coooooiiiiiiiiiiiiii e 911
28.4.1 CapBold Propertycccoooiiiiiieeeeeee e 911
28.4.2 CapCardEntranceSensor Property ... 911
28.4.3 CapCleanCard Propertyuueocooiiiiiieeeeeeeeeeeeeeee e e e e e e e 912
28.4.4 CapClearPrint Property ... 912
28.4.5 CapDhigh Property ... 912
28.4.6 CapDwide Property ... 912
28.4.7 CapDwideDhigh Propertyeeiiiiiieiiiiiieeeeeeeeeeee e 913
28.4.8 Capltalic Property ... 913
28.4.9 CapLeftOl Property ... 913
28.4.10 CapMapCharacterSet Property Added in Release 1.7 ..913
28.4.11 CapPrint Propertyooo oo 914
28.4.12 CapPrintMode Property ..o 914
28.4.13 CapRIghtO0 Propertyooooeiiiiiiiiiiiee e 914
28.4.14 CapRotate180 Property ... 914
28.4.15 CapTracksToRead Propertyccceoiiiiiiiiiiiiiiiieeeeeeee e 915
28.4.16 CapTracksTOWTite Propertycceiiiieeiiieeeeeeeeeeeeee e 915
28.4.17 CardState Property ... 916
28.4.18 CharacterSet Property Updated in Release 1.10 ...916
28.4.19 CharacterSetList Propertyueeiiiiiiiiiiie e 917
28.4.20 FontTypefaceList Property ... 917
28.4.21 LiNeChars Property ...t 917

Unified POS, v1.16.1 xxxiii

XXXiV

28.6 Events (UML Interfaces)
28.6.1 DataEventccccooiiiiiiiiieenen.

28.4.22 LineCharsList Property

28.4.23 LineHeight Property

28.4.24 LineSpacing Property

28.4.25 LineWidth Propertycccceee...
28.4.26 MapCharacterSet Property

28.4.27 MapMode Property

28.4.28 MaxLine Propertyccccvveeeeeee.
28.4.29 PrintHeight Property
28.4.30 ReadState1 Property
28.4.31 ReadState2 Property

28.4.32 RecvlLength1 Property
28.4.33 RecvLength2 Property

28.4.34 SidewaysMaxChars Property
28.4.35 SidewaysMaxLines Property
28.4.36 TracksToRead Property
28.4.37 TracksToWrite Property
28.4.38 Track1Data Property
28.4.39 Track2Data Property
28.4.40 Track3Data Property
28.4.41 Track4Data Property
28.4.42 TrackbSData Property
28.4.43 Track6Data Property
28.4.44 WriteState1 Property
28.4.45 WriteState2 Propertyccc......
28.4.46 Write1Data Propertyc........
28.4.47 Write2Data Property
28.4.48 Write3Data Propertyc........
28.4.49 Write4Data Propertyc.c.e....
28.4.50 Write5Data Property
28.4.51 Write6Data Property

28.5 Methods (UML operations)

28.5.1 beginlnsertion Method
28.5.2 beginRemoval Method

28.5.3 cleanCard Methodc........

28.5.4 clearPrintWrite Method

28.5.5 endlnsertion Method
28.5.6 endRemoval Method

28.5.7 printWrite Method

28.5.8 rotatePrint Method

28.5.9 validateData Method

Added in Release 1.7 ..919
Updated in Release 1.13 .920

... 936

Unified POS, v1.16.1

28.6.2 DIreCtIOBVENT ..o 938

28.6.3 ErrorEvent Updated in Release 1.10 .939
28.6.4 OutputCompleteEvent ... 940
28.6.5 StatusUpdateEvent ... 941

29 POS Keyboard ..o 943
29.1 GENEIAl ... 943
29.2 SUMMAIY oetiiiiiieee e e e e e e e e e eee e s e e e e e e e e e e eeeeeaesnnnnaaaeeaeaeeeeeeeennnnnnnnnnns 943
29.3 General Infformationccoouuiiiiiii 946
29.3.1 Capabiliti®Scoeeiiieiiieee e 946
29.3.2 POS Keyboard Class Diagramccccoeeeiiiieiiiiiiiiieeecceeeee e 946
29.3.3 POS Keyboard Sequence Diagram Updated in Release 1.8 ..947
29.3.4 MOAEI .o 948
29.3.5 DevVice Sharingcccooeiiiiiiieeee e 948

29.4 Properties (UML attributes)coooeeiiiiiiiiiiic e 949
29.4.1 CapKeyUp Propertyooooiiiiiiiicceee e 949
29.4.2 EventTypes Property ...t 949
29.4.3 POSKeyData Property ...ttt 949
29.4.4 POSKeyEVentType Propertycccccceeiiiiiiiieiieeeeeeiceeee e 950

29.5 Events (UML interfaces)ccooiieiiiiiiiiiiiiii e 951
29.5.1 DataEVeN!oueiiiiiiiiieie e 951
29.5.2 DIreCtIOEVENT ... 951
29.5.3 ErrorEvent Updated in Release 1.10 ..952
29.5.4 StatusUpdateEvent ..o 953

30 POS POWETcooiiiiiiiiiciiiii e, 955
30.1T GeNEIAl ... 955
30.2 SUMMAIY ..eiiiieeeeee e e e e e e e e e e e eanaa s 955
30.3 General Informationcooeiiiiii i 959
30.3.1 Capabiliti®scceeiiiiiiieee e 959
30.3.2 DevVice Sharingccooiiiiiiieeeeec e 959
K0 T0C T /T To 1= OO PRR PP 960
30.3.4 POSPower Class Diagram Updated in Release 1.16 ... 961
30.3.5 POSPower Sequence Diagramccccceeiiieeiiiiiiiiieeecece e 962
30.3.6 POSPower Standby Sequence Diagramccccccceeeviiiiiiiiininiiiiinns 963
30.3.7 POSPower State Diagramuuiiiiiiiiiiieeeeeeeeeeeeee e 964
30.3.8 POSPower PowerState Diagram - Part 1cccooiiiiiiei 965
30.3.9 POSPower PowerState Diagram - Part 2 ..., 966
30.3.10 POSPower PowerState Diagram - Part 3ccoiiiiiiiiiieeeeeeee 967
30.3.11 POSPower State Chart Diagram for Fan and Temperature 968
30.3.12 POSPower Battery State Diagramccccouiiiiiiiiiiiiiiies 969

Unified POS, v1.16.1 XXXV

30.3.13 POSPower Transitions State Diagramccccceviiiiiiiiiiiiieeeeee, 970

30.4 Properties (UML attributes)ccoooeeiiiiiiiiiicii e 971
30.4.1 BatteryCapacityRemaining Propertycccooiiiiiiiiiiiiiiiceeceeeeeeen 971
30.4.2 BatteryCapacityRemaininglnSeconds Property. Added in Release 1.16 971
30.4.3 BatteryCriticallyLowThreshold Propertyoovvviiiiiiiiiiiiieieeeeeeee, 971

30.4.4 BatteryCriticallyLowThresholdInSeconds Property
Added in Release 1.16 ..971

30.4.5 BatteryLowThreshold Property Added in Release 1.9 ..972
30.4.6 BatteryLowThresholdInSeconds Property =~ Added in Release 1.16 972
30.4.7 CapBatteryCapacityRemaining Propertyccccceeeiviiiiiiiiiiiiiiieieeennns 973

30.4.8 CapBatteryCapacityRemaininglnSeconds Property
Added in Release 1.16 .973

30.4.9 CapChargeTime Property Added in Release 1.16 .973
30.4.10 CapFanAlarm Propertyueccceiiiiieeiee e e 973
30.4.11 CapHeatAlarm Property ... e 974
30.4.12 CapQuickCharge Property ... 974
30.4.13 CapRestartPOS Propertycceeeiiieieiieeeeeeeeeeeeciee e 975
30.4.14 CapShutdownPOS Property ... 975
30.4.15 CapStandbyPOS Propertyccccccoeiiiieiiiieieeeeeeeicce e e eeeeeennaens 975
30.4.16 CapSuspendPOS Propertycccccooiieeeiiiieieeeeeeece e 975
30.4.17 CapUPSChargeState Property ... 976
30.4.18 CapVariableBatteryCriticallyLowThreshold Propertyccccceeeee. 976
30.4.19 CapVariableBatteryCriticallyLowThresholdInSeconds Property

Added in Release 1.16 976
30.4.20 CapVariableBatteryLowThreshold Propertycccccoeeeiiiiiiiiieiiennnnnn. 977

30.4.21 CapVariableBatteryLowThresholdInSeconds Property
Added in Release 1.16 ..977

30.4.22 ChargeTime Property Added in Release 1.16 977
30.4.23 EnforcedShutdownDelayTime Propertyoooovvvviiiiiiiiiiieiieeeeeeeeee 978
30.4.24 PowerFailDelayTime Property ... 978
30.4.25 PowerSource Property Added in Release 1.9 ..979
30.4.26 QuickChargeMode Propertyccoooeieoeiiiiiiiieeeeeeeeeeeee e 979
30.4.27 QuickChargeTime Property ... 980
30.4.28 UPSChargeState Propertyccccoeeiiiiiiiiiiiieeeeieie e 980
30.5 Methods (UML operations)ccoeeuuiiiiiiiiiiiie e 981
30.5.1 restartPOS Methodoovieeiiiiiiee e 981
30.5.2 shutdownPOS Methodcocooiiiiiiiiiiee e 982
30.5.3 standbyPOS Methodooeiiiiiiiiiiiiieeeeeeee e 983
30.5.4 suspendPOS Methodccoooeiiiiiiiiiiiiee e 984
30.6 Events (UML interfaces).........ucovviiiiiiiiiiiiieiee e 985
30.6.1 DIreCtiOEVENTcooiiiieeeeeee e 985
30.6.2 StatusUpdateEventcooooiiiiiiiiiie e 986

XXXVi Unified POS, v1.16.1

G N O T o 4] (=) (R 989

311 GENEIAl coeeeeceee e 989
31,2 SUMMAIY ..ot e e e e et e e e e e e eeenn s 989
31.3 General Information..............cooouiiiii i 997
31.3.1 Capabilities Updated in Release 1.8 .997
31.3.2 POS Printer Class Diagramooooiiiiiiiiiieiieeeeeeeeeeee e 998
31.3.3 POS Printer Class Diagram Updates Updated in Release 1.10 .999
31.3.4 Model Updated in Release 1.13 1000
31.3.5 DeViCe SNArNGeeeiiiiiiiiiiaiie e 1005
31.3.6 POS Printer State Diagramcoeiiiiiiiiiiieeeeeeeee e 1006
31.3.7 Page Mode Printing State Diagram Added in Release 1.9 ...1007
31.3.8 “Both sides printing” sequence Diagramccccceeeeiieiiiiiiiiiiiiinnne. 1008

31.3.9 Page Mode printing sequence Diagram Added in Release 1.9 ...1009
31.3.10 Data Characters and Escape Sequences Updated in Release 1.13 1010

31.3.11 POS Printer State Diagrams (Low Level)cccoooiiiin, 1016
31.4 Properties (UML attributes)cccoeeeiiiiiiiiiicc e 1021
31.4.1 AsyncMode Property ... 1021
31.4.2 CapCharacterSet Property Updated in Release 1.5 ..1021
31.4.3 CapConcurrentJrnRec Propertyccceeeiiieiiiiiiiiiiceeee e, 1022
31.4.4 CapConcurrentdrnSIp Property ... 1022
31.4.5 CapConcurrentPageMode Property Added in Release 1.9 ..1022
31.4.6 CapConcurrentRecSIp Propertycccccceeeeeeiiiiiiieeiieeee e 1023
31.4.7 CapCoverSensor Propertycccoooiiiiiie e 1023
31.4.8 Capdrn2Color Property ..o 1023
31.4.9 CapJdrnBold Property ..o 1024
31.4.10 CapJrnCartridgeSensor Property Added in Release 1.5 ..1024
31.4.11 CapJrnColor Property Added in Release 1.5 .1025
31.4.12 CapJdrnDhigh Propertyooommmiiiiiiiiee e 1025
31.4.13 CapdrnDwide Property ... 1025
31.4.14 CapJdrnDwideDhigh Propertyccccoooieiiiiiiieiieieeeeecee e 1026
31.4.15 CapJrnEmptySensor Propertyccccoooeiiiiiiieiiiiiieeceeee e 1026
31.4.16 Capdrnltalic Property ... 1026
31.4.17 CapJdrnNearEndSensor Propertycccceeeeeeiiieeeeeeicciee e 1026
31.4.18 CapJrnPresent Propertyooueeeiiiiiieiieeeeeeeeeeeeeeeee e 1027
31.4.19 CapdrnUnderline Propertyccoooiioeoiee e 1027
31.4.20 CapMapCharacterSet Property Added in Release 1.7 .1027
31.4.21 CapRec2Color Propertyooooueeeieiiiiieeeee e 1027
31.4.22 CapRecBarCode Propertycoooiiiooiiieeeeeeeee e 1028
31.4.23 CapRecBitmap Property ..o 1028
31.4.24 CapRecBoId Property ...t 1028
31.4.25 CapRecCartridgeSensor Property Added in Release 1.5 ..1028
31.4.26 CapRecColor Property Added in Release 1.5 ...1029
31.4.27 CapRecDhigh Propertyooooumeieiiieee e 1029

Unified POS, v1.16.1 XXXVii

XXXViii

31.4.28 CapRecDwide Propertyccccooieeiiiiiiieieeeeeeieie e 1029

31.4.29 CapRecDwideDhigh Property ..., 1030
31.4.30 CapRecEmptySensor Property ... 1030
31.4.31 CapRecltaliCc Propertycooiiioiieiieeeeeeeeeeecree e 1030
31.4.32 CapRecLeftO0 Propertycceeeeeeiiiiiiieeeeeeeeceee e, 1030
31.4.33 CapRecMarkFeed Property Added in Release 1.5 ..1031
31.4.34 CapRecNearEndSensor Propertyooooeeveveiiiiiiiiiiiieee e 1031
31.4.35 CapRecPageMode Property Added in Release 1.9 1031
31.4.36 CapRecPapercut Property ... 1032
31.4.37 CapRecCPresent Property ... 1032
31.4.38 CapRecRIght90 Propertycccooooiiiiiiiiieieeeeceeeeee e, 1032
31.4.39 CapRecRotate180 Property ... 1032
31.4.40 CapRecRuledLine Property Added in Release 1.13 ..1033
31.4.41 CapRecStamp Propertycccoieeeiiiiii i, 1033
31.4.42 CapRecUnderling Propertyooooeoooiiiiiiiiiecieeee e 1033
31.4.43 CapSIp2Color Property ..o e e e eeeeeeeees 1034
31.4.44 CapSIpBarCode Propertyccccceeieiieiieiiieeeeeieee e, 1034
31.4.45 CapSIpBitmap Propertycccoooo oo 1034
31.4.46 CapSIpBold Property ... e e 1034
31.4.47 CapSlpBothSidesPrint Property Added in Release 1.5 .1035
31.4.48 CapSlpCartridgeSensor Property Added in Release 1.5 ..1035
31.4.49 CapSlpColor Property Added in Release 1.5 ..1036
31.4.50 CapSIpDhigh Propertyccooiioiiiiiiiieeeeeeeeeseeeee e 1036
31.4.51 CapSIpDwide Propertycccooooio oo e e ee e 1036
31.4.52 CapSlpDwideDhigh Property ... 1037
31.4.53 CapSIpEmptySensor Property ..., 1037
31.4.54 CapSIpFullslip Property ... 1037
31.4.55 CapSIpltalic Property ... 1037
31.4.56 CapSIpLeft0 Propertyccccoeeeiiiiiieiiieeeeeeeeceeee e 1038
31.4.57 CapSlpNearEndSensor Property ... 1038
31.4.58 CapSlpPageMode Property Added in Release 1.9 ...1038
31.4.59 CapSIpPresent Propertycccoeeiiiiiiiieiiiieeeeeecccie e, 1038
31.4.60 CapSIpRIghtO0 Propertycccoooo oo 1039
31.4.61 CapSIpRotate180 Propertyccccceeeeiiieiieeecieiee e 1039
31.4.62 CapSlpRuledLine Property Added in Release 1.13 ...1039
31.4.63 CapSlpUnderline Property ... 1040
31.4.64 CapTransaction Propertyccccooiiiiiiieeeeeeeiesee e 1040
31.4.65 CartridgeNotify Property Added in Release 1.5 ...1041
31.4.66 CharacterSet Property Updated in Release 1.10 ..1042
31.4.67 CharacterSetList Property ..., 1042
31.4.68 CoverOpen Propertyuueueeeeiiee et e e eeeaaans 1043
31.4.69 ErrorLevel Propertyeo et 1043
31.4.70 ErrorStation Propertyeuucoiioiiiii e 1044

Unified POS, v1.16.1

31.4.71 ErrorString Propertyoooooiiiiieeee e 1044

31.4.72 FlagWhenldle Property ... 1045
31.4.73 FontTypefaceList Property ..., 1045
31.4.74 JrnCartridgeState Property Added in Release 1.5 ..1046
31.4.75 JrnCurrentCartridge Property Updated in Release 1.9 ... 1047
31.4.76 JInEMPLY Property ...t 1047
31.4.77 JrnLetterQuality Propertyoooooiiiiiiiiiieeeeeeeeeeee e 1048
31.4.78 JrnLineChars Property ...t 1048
31.4.79 JrnLineCharsList Property ... 1049
31.4.80 JrnLineHeight Propertycooooiieiiiiii i 1049
31.4.81 JrnLineSpacing Property ... 1050
31.4.82 JrnLineWidth Property ... 1050
31.4.83 JrnNearENd Property ... 1050
31.4.84 MapCharacterSet Property Added in Release 1.7 ...1051
31.4.85 MapMode Property Updated in Release 1.13 ..1051
31.4.86 PageModeArea Property Added in Release 1.9 ..1052
31.4.87 PageModeDescriptor Property Added in Release 1.9 ..1052
31.4.88 PageModeHorizontalPosition Property Added in Release 1.9 .1053
31.4.89 PageModePrintArea Property Added in Release 1.9 .1055
31.4.90 PageModePrintDirection Property Added in Release 1.9 .. 1055
31.4.91 PageModeStation Property Added in Release 1.9 ..1057
31.4.92 PageModeVerticalPosition Property Added in Release 1.9 ..1057
31.4.93 RecBarCodeRotationList Property Updated in Release 1.7 ...1058
31.4.94 RecBitmapRotationList Property Added in Release 1.7 ..1058
31.4.95 RecCartridgeState Property Added in Release 1.5 .. 1059
31.4.96 RecCurrentCartridge Property Updated in Release 1.9 ..1060
31.4.97 ReCEMPLtY Property ... 1060
31.4.98 RecLetterQuality Propertyoooooiiiiiiieeeeeeeeee e 1061
31.4.99 RecLineChars Property ... 1061
31.4.100RecLineCharsList Propertyccccceeveeiiiiiiieieiieeeeeeese e 1062
31.4.101RecLineHeight Property ... 1062
31.4.102RecLineSpacing Property ... 1062
31.4.103RecLinesToPaperCut Propertyccccoeeiiiiieiiiieiiecceeeeee e 1063
31.4.104RecLineWidth Propertyccooeeiiiiiiiiiceee e 1063
31.4.105RecNearENd Property ... 1063
31.4.106RecSidewaysMaxChars Propertyccccccoeeiviiiiiiiiiiiciiee e 1064
31.4.107RecSidewaysMaxLines Propertycccccceeeeiiiiiiiiiiiicicie e 1064
31.4.108RotateSpecial Property ... 1064
31.4.109SIpBarCodeRotationList Property Updated in Release 1.7 ..1065
31.4.110SIpBitmapRotationList Property Added in Release 1.7 ..1065
31.4.111SIpCartridgeState Property Added in Release 1.5 ..1066
31.4.112SIpCurrentCartridge Property Updated in Release 1.9 ..1067
31.4.113SIpEMPLY Propertyooooooiieeccee e 1067
31.4.114SlIpLetterQuality Propert ..o 1068
31.4.115SIpLineChars Propertyouuuciiiiiieee e 1068
31.4.116SlIpLineCharsList Propertycccooeeiiiiiiiiiiiiicieee e 1069

Unified POS, v1.16.1 XXXIiX

31.4.117SIpLineHeight Property ... 1069

31.4.118SlIpLinesNearEndToENd Propertyooovvimeiiiiiiiiiieieeeeeeeeeeeeeeeeins 1070
31.4.119SIpLineSpacing Property ... e 1070
31.4.120SIpLineWidth Propertycccooiiiiiiii i 1071
31.4.121SIpMaxLing€s Propertyuueeiiiiiiiiiiiieieeeeeeece et 1071
31.4.122SIpNearEnd Property ... 1072
31.4.123SIpPrintSide Property Added in Release 1.5 ...1073
31.4.124SIpSidewaysMaxChars Propertyooooovvmiiiiiiiiiiiiiiieeeeeeeieeeeeeeeiens 1073
31.4.125SIpSidewaysMaxLines Property ... 1074
31.5 Methods (UML operations)ccccoveeviiiiiiiiiiiiiie e 1075
31.5.1 beginlnsertion Method ... 1075
31.5.2 beginRemoval Method ... 1076

31.5.3 changePrintSide Method
31.5.4 clearPrintArea Method
31.5.5 cutPaper Method
31.5.6 drawRuledLine Method

31.5.7 endlnsertion Method
31.5.8 endRemoval Method

31.5.9 markFeed Method
31.5.10 pageModePrint Method
31.5.11 printBarCode Method
31.5.12 printBitmap Method
31.5.13 printimmediate Method
31.5.14 printMemoryBitmap Method
31.5.15 printNormal Method
31.5.16 printTwoNormal Method
31.5.17 rotatePrint Method
31.5.18 setBitmap Method
31.5.19 setLogo Method

31.5.20 transactionPrint Method

31.5.21 validateData Method

Updated in Release 1.9 ...1077
Added in Release 1.9 ..1078
Updated in Release 1.9 1079

Added in Release 1.13 ..1080

Added in Release 1.5 ..1085
Updated in Release 1.11 ...1087
Updated in Release 1.131089
Updated in Release 1.7 ..1094
Updated in Release 1.13 .1097
Added in Release 1.12 .1099
Updated in Release 1.7 ...1101
Updated in Release 1.9 ..1103
Updated in Version 1.11 ..1105
Updated in Release 1.7 ..1107
Updated in Release 1.10 .1108

31.6 Events (UML interfaces)covviriiiiiiiiiieccieeee e 1113
31.6.1 DIreCtiOEVENT ... e e e e e eeeeees 1113

31.6.2 ErrorEvent Updated in Release 1.9 ..1114

31.6.3 OutputCompleteEvent ... 1115

31.6.4 StatusUpdateEvent Updated in Release 1.8 ..1116

32 Remote Order Displayccoceeeviiiiieiiiiiieieeeeee e, 1119
32.1 GENEIAl ... 1119

32.2 SUMMANY ..ot e e e e e e e e e e e e e eaaaa s 1119

xI Unified POS, v1.16.1

32.3 General INformationooonieiie e 1124

32.3.1 Capabiliti®sccceiiieiiiee e 1124
32.3.2 Remote Order Display Class Diagramccooovviiiiiiiiieieceeeeee, 1125
32.3.3 Model Updated in Release 1.7 ...1126
32.3.4 DeVice Sharingccooooeiiiiiieeeeeee e 1129
32.4 Properties (UML attributes)coooiiriiiii e 1130
32.4.1 AsyncMode Property Updated in Release 1.11 ...1130
32.4.2 AutoToneDuration Property Updated in Release 1.11 ..1130
32.4.3 AutoToneFrequency Propertyccccccooiiiiiiiiiiiiiiiie 1130
32.4.4 CapMapCharacterSet Property Added in Release 1.7 ... 1131
32.4.5 CapSelectCharacterSet Propertyccccoeeieiiiiiiiieiceeee e 1131
32.4.6 CapTone Property ... 1131
32.4.7 CapToucCh Property ... 1132
32.4.8 CapTransaction Propertyueeeiiiiiiiiiiieeeeeeeeeeeiee e 1132
32.4.9 CharacterSet Property Updated in Release 1.10 .1133
32.4.10 CharacterSetList Property ..o 1133
32.4.11 CIOCKS PrOPertYcooiiieieeeeeeeee et 1134
32.4.12 Current UnitID Propertyoooooooiiiiiiiiiiee e 1134
32.4.13 DataCount Property (COMMON)cccoiiiiiiiiiiiiieieieeeee e 1135
32.4.14 ErrorString Propertyoooooiiiiieecceeee e 1135
32.4.15 ErrorUnits Property ... 1135
32.4.16 EventString Property ...t 1136
32.4.17 EVentType Property ...t 1136
32.4.18 EventUnitID Property ... 1136
32.4.19 EventUnits Propertyooooooiiiiieicceeee e 1137
32.4.20 MapCharacterSet Property Added in Release 1.7 ..1137
32.4.21 SystemCIocks Property ... 1137
32.4.22 SystemVideoSaveBuffers Propertyccccooviviiiiiiiiiiciiiieeeeeeeeeee 1138
32.4.23 TIMEOUL PrOopertyoiiiiieiie e 1138
32.4.24 UnitsONIINE Propertyoooooiiiiiiiiiiiiiiiieeeee e 1138
32.4.25 VideoDataCount Propertyueeeioiiiiiieeeeeeeeeeeeeeeeee e 1139
32.4.26 VideoOMOode Property ...t 1139
32.4.27 VideoModesList Propertyoooooiiiiiiiiiiieeeeeeeeeecee e 1140
32.4.28 VideoSaveBuffers Propertycccccoovveiiiiiiieiiiieeeieee e 1140
32.5 Methods (UML operations)cooveeieeiiiiiiiieeeiiieee e 1141
32.5.1 checkHealth Method (COmMMON)cccoiiiiiiiiiiei e 1141
32.5.2 clearlnput Method (COMMON)eeeeiiiiiiiiiiee e 1142
32.5.3 clearOutput Method (Common) Updated in Release 1.7 ... 1142
32.5.4 clearVideo Methodoooiiiiiiiiiee e 1143
32.5.5 clearVideoRegion Methodcccceiiiiiiiiiiiiii e, 1143
32.5.6 controlClock Methodoooiiiiiii e 1144
32.5.7 controlCursor Methodoooumeiiiiiii e 1146
32.5.8 copyVideoRegion Methodcccooiiiiiiiiiiiiii e 1147
32.5.9 displayData Method Updated in Release 1.7 1148
32.5.10 drawBoX Methodcooiiiiii e 1149

Unified POS, v1.16.1 xli

32.5.11 freeVideoRegion Method ... 1150

32.5.12 resetVideo Methodoouuiiiiiiiii e 1150
32.5.13 restoreVideoRegion Method ... 1151
32.5.14 saveVideoRegion Method ... 1152
32.5.15 selectCharacterSet Methodcooooiiiiiiiiiiiie e 1153
32.5.16 setCursor Methodeueeeiiiiii e 1153
32.5.17 transactionDisplay Method ... 1154
32.5.18 updateVideoRegionAttribute Method ..., 1155
32.5.19 videoSound Methodoeueiiiiii e 1156

32.6 Events (UML interfaces)cooeiieiiiiiiiii i 1157
32.6.1 DataBEVeNt ..o 1157
32.6.2 DIreCtiIOEVENTccoiiiiiiieeee e e 1158
32.6.3 ErrorEvent Updated in Release 1.10 1159
32.6.4 OutputCompleteEventcooiiiiiiiiiie e, 1160
32.6.5 StatusUpdateEvent ... 1160

33 RFID Scanner ..., 1161
3 Tt B 1Y T = | USRS 1161
33.2 SUMIMAIY ettt e e e et e e ettt e e e e e e e e e e eeeeeneenennns 1161
33.3 General Informationuueiiiiiii s 1165
33.3.1 CapabilitieScccceeiee e 1165
33.3.2 RFID Scanner Class Diagram ..o 1166
33.3.3 MOAEI .. e e e e e e 1167
33.3.4 RFID Scanner Sequence Diagramscccccciiiiiiiiiiiieieieeieeeeeeee 1169
33.3.5 RFID Scanner State Diagram ... 1172
33.3.6 DeVICE SNAING ...uueieiiiiiiiiiiiiiiiiee e e e e 1172

33.4 Properties (UML AttribUtes)coooeeiiiiiiiiiiicii e 1173
33.4.1 CapContinuousRead Propertyccccceviiiiieieiiiiiiicicieee e eeee e 1173
33.4.2 CapDisableTag Propertyccccoeoiiiiiiiiiiieiecieceee e, 1173
33.4.3 CapLockTag Property ... 1173
33.4.4 CapMultipleProtocols Propertyoooovviiiiiiiiiiiiieee e 1174
33.4.5 CapReadTimer Propertycccoeeiiiiiiieiiieeeeeeeeeee e e 1174
33.4.6 CapWriteTag Property ... 1175
33.4.7 ContinuousReadMode Propertyooooiiiiiiiiiiiiiiiiiiee e 1175
33.4.8 CurrentTagID Propertycccooiiiiiiiiiiiieieeeeeeceeee e, 1175
33.4.9 CurrentTagProtocol Property ... 1176
33.4.10 CurrentTagUserData Propertyccccovvveiieiiiiiiiiciiii e 1176
33.4.11 ProtocolMask Property ... 1177
33.4.12 ReadTimerInterval Property ...t 1177
33.4.13 TagCouNt Propertyooeeeiieiiiiii oo e e e e ee e eeaeeees 1177

xlii

Unified POS, v1.16.1

33.5 Methods (UML operations)coeeieeriiiiiiieiieiiiiceee e 1178
33.5.1 disableTag Methodooormmmiii e 1178
33.5.2 firstTag Method ... 1178
33.5.3 lockTag Method ... 1179
33.5.4 nextTag Methodcoooiiiiiii e 1179
33.5.5 previousTag Method ... 1180
33.5.6 readTags Method ... 1181
33.5.7 startReadTags Methodoovmeiiiiiiiiii e 1182
33.5.8 stopReadTags Methodcooooiiiiiiii e 1183
33.5.9 writeTagData Method ... 1184
33.5.10 writeTaglD Methodoooiiiie e 1184

33.6 Events (UML INterfaces)........ccoeeuueiiiiiiieiiiie e 1185
33.6.1 DataEVEeNteiiiiiee e 1185
33.6.2 DIreCtOEVENLoeeiiiiiiiiiee e 1185
33.6.3 ErrOorEVeNnt ... 1186
33.6.4 OutputCompleteEvent ... 1187
33.6.5 StatusUpdateEvent ... 1187

G Yoz | [Y 1189

34.1 GENEIAl ..oeeeiiieiee e 1189

X7 U [.0 4 = 1189

34.3 General Informationccoooiiiiiiii e 1193
34.3.1 CapabilitieSueeiiiiiiiiiiiieee e 1193

34.4 Scale Class Diagram Updated in Release 1.14 1195

34.5 Scale Sequence Diagram Added in Release 1.7 1196
34.5.1 MOAEI oo 1197
34.5.2 DeViICe SNAING ...eeeeiiiiiiiiiaii e 1197

34.6 Properties (UML attributes)cccoeeviiiiiiiiiicee e 1198

34.6.1 AsyncMode Property

34.6.2 CapDisplay Propertycccoovvviriviiiiiiienn.

34.6.3 CapDisplayText Property

34.6.4 CapFreezeValue Property

34.6.5 CapPriceCalcuating Property

34.6.6 CapReadLiveWeightWithTare Property
34.6.7 CapSetPriceCalculationMode Property
34.6.8 CapSetUnitPriceWithWeightUnit Property
34.6.9 CapSpecialTare Property

34.6.10 CapStatusUpdate Property

34.6.11 CapTarePriority Property

34.6.12 CapTareWeight Property

34.6.13 CapZeroScale Property

Unified POS, v1.16.1

Added in Release 1.3 1198
Added in Release 1.14 1199
Added in Release 1.3 1199
Added in Release 1.14 1199
Added in Release 1.14 1200
Added in Release 1.14 1200
Added in Release 1.14 1200
Added in Release 1.9 1201
Added in Release 1.14 1201
Added in Release 1.3 1201
Added in Release 1.3 1202

xliii

35 Scanner (Bar Code Reader)

xliv

34.7 Methods (UML operations)

34.8

35.1
35.2
35.3

35.4

34.6.14 MaxDisplayTextChars Property

34.6.15 MaximumWeight Property

34.6.16 MinimumWeight Property
34.6.17 SalesPrice Property
34.6.18 ScaleLiveWeight Property
34.6.19 StatusNotify Property
34.6.20 TareWeight Property
34.6.21 UnitPrice Property

34.6.22 WeightUnit Propertycccccccoevieennnn.

34.6.23 ZeroValid Property

34.7.1
34.7.2
34.7.3
34.7.4
34.7.5
34.7.6
34.7.7

displayText Method
doPriceCalculating Method
freezeValue Method
readLiveWeightWithTare Method

setPriceCalculationMode Method
setSpecialTare Method

34.7.8 setTarePriority Method

34.7.9 setUnitPriceWithWeightUnit Method
34.7.10 zeroScale Method

Events (UML interfaces)ce........

34.8.1 DataEvent

34.8.2 DirectlOEventccooveeeieiiiiiiiiiiiiiian,

34.8.3 ErrorEvent
34.8.4 StatusUpdateEvent

General ..o

General Informationc.coovvveviviiiiinn.

Capabilitiesccceeeeeeeeeeiiiiiiiiiiiiiii,
Scanner Class Diagramc........

35.3.1
35.3.2
35.3.3
35.3.4
35.3.5

Scanner Sequence Diagram

35.4.2 ScanData Property
35.4.3 ScanDatalLabel Property

readWeight Method

Model ..o
Device Sharingcccccceeeeeeviiiiiiinnnnnn.
Properties (UML attributes)
35.4.1 DecodeData Propertycccccccvvvenennn.

Added in Release 1.3 1202

Added in Release 1.14 ...1203
Updated in Release 1.6 .1203
Updated in Release 1.14 ..1204
Updated in Release 1.10 1205
Updated in Release 1.14 1206
Updated in Release 1.14 1206

... 1207

... Added in Release 1.13 1207

Updated in Release 1.7 1208
Added in Release 1.14 1208
Added in Release 1.14 .1211

Added in Release 1.14 1212

Added in Release 1.14 ...1216
Added in Release 1.14 ..1217
Added in Release 1.14 ..1218
Added in Release 1.14 .1219
Updated in Release 1.10 1220

Updated in Release 1.10 1222
Updated in Release 1.10 1223

Updated in Release 1.7 1233
Updated in Release 1.10 1234

Unified POS, v1.16.1

35.4.4 ScanDataType Property Updated in Release 1.14 ..1235

35.5 Events (UML interfaces)coouuuueiiiiiiiiiiiiiie e 1239
35.5.1 DataEVeN!uueiiiiiiii e 1239
35.5.2 DIreCHOEVENLoeeeiiiiiiieee e 1239
35.5.3 ErrorEvent Updated in Release 1.10 .1240
35.5.4 StatusUpdateEvent ... 1241

36 Signature Capturecoooviviiiiiiieie e 1243

36.1 GeNEral ..o 1243

36.2 SUMMAIY .oeeiiieieeiee et e e e e e e e e e e e e e e e aeenenns 1243

36.3 General Information.............ccoooiii i 1246
36.3.1 Capabilitiescooeeeiiiiiiiiie e 1246
36.3.2 Signature Capture Class Diagramcccooviiiiiiiiiiiiiiiicee e 1247
36.3.3 Signature Capture Sequence Diagram Updated in Release 1.8 1248
36.3.4 MOAEI oo 1249
36.3.5 DeVvice Sharingccooooiiiiiiiee e 1250

36.4 Properties (UML attributes)cccoooiiiiiiiiii 1251
36.4.1 CapDisplay Propertyoooooiiiiiiiiiiiie e 1251
36.4.2 CapRealTimeData Propertycccccoeiiiiiiiiiiiiiiieceee e 1251
36.4.3 CapUserTerminated Propertycccccoeieeiieiieieceeeeecieee e 1251
36.4.4 DeviceEnabled Property (COommon)ccooovviiiiiiiiiiiiiciieeeeeeeeeeee 1251
36.4.5 MaximumX Property ...t 1252
36.4.6 Maximumy Property ...t 1252
36.4.7 PointArray Property Updated in Release 1.7 1253
36.4.8 RawData Property Updated in Release 1.7 1254
36.4.9 RealTimeDataEnabled Propertycccoouuiiiiiiiiiiie 1254

36.5 Methods (UML operations)ccceeeiieeeeeiiieeeeeeiiiceeee e 1255
36.5.1 beginCapture Method ..., 1255
36.5.2 endCapture Methodooovuiiiiiiiiiiee e 1256

36.6 Events (UML interfaces)oooeeuiiiiiiieiiiieeeeei e 1257
36.6.1 DataEvent ... 1257
36.6.2 DIreCtHOEVENToeieiiiiiiiieeee e 1257
36.6.3 ErrorEvent Updated in Release 1.11 1258
36.6.4 StatusUpdateEvent ... 1259

37 Smart Card Reader/Writerccoooviiiiiiiiiieeeeeen, 1261

7.1 GENEIAl ccoeeeeeeee e 1261

37.2 SUMMAIY ettt e e e e e e e e e et et et e e e e e e e e eeeeeeas 1261

37.3 General Information ..o 1264
37.3.1 Capabilitiesooveeeieiiiiiie e 1264

Unified POS, v1.16.1 xlv

37.4 Smart Card Reader / Writer Class Diagramcccccevvvvvevnnnnnns 1265

AT 1Y, o To L= PR 1266
37.6 Card Insertion Diagramccccoovieeeeiiiiieeiiiciee e 1268
37.7 Device Sharingooooiiiiiiii e 1269
37.8 Data Transfer MOAESouvuuuiiiiiiiie e 1270
37.9 Smart Card Reader / Writer Sequence Diagramcccc......... 1271
37.10 Smart Card Reader / Writer State Diagramcceovvveeiinnnnns 1272
37.11 Properties (UML ALtributes)cooooiiiiiiiiiiiiiii s 1273
37.11.1 CapCardErrorDetection Propertyoooovimimiiiiiiiieeeeieeeeeeeeeeeeeeeiis 1273
37.11.2 CaplnterfaceMode Property ... 1273
37.11.3 CaplsoEmvMode Property ... 1274
37.11.4 CapSCPresentSensor Propertyooooiiiiiiiiciiiiiee e, 1274
37.11.5 CapSCSIOts Propertyeueeeooiioieeeeeeeeeeeeeeeee e 1275
37.11.6 CapTransmissionProtocol Propertyooovvviiiiiiiiiniiieeeeeeeeeeeeeeeies 1275
37.11.7 InterfaceMode Propertyccceieeeiiiiiiiiieeeeeeiee e, 1276
37.11.8 ISOEMVMOAE Propertyoceeeiiiiiiiiiiiiiiiiiiiieeee e 1277
37.11.9 SCPresentSensor Property ... 1278
37.11.10SCSIOt PrOPEILYcoeeeeeeeeeeeeeee et e e e eeaaans 1278
37.11.11TransactionInProgress Property ... 1279
37.11.12TransmissionProtocol Property ... 1279
37.12 Methods (UML operations)cceuuiiiiiieiiiiiieeeeceecee e 1280
37.12.1 beginlnsertion Method ... 1280
37.12.2 beginRemoval Methodccoiiiiiiiiiiiii e 1281
37.12.3 endInsertion Methodueiiiiiii s 1282
37.12.4 endRemoval Method ... 1282
37.12.5 readData Method Updated in Release 1.10 1284
37.12.6 writeData Methodoeeieiii e 1285
37.13 Events (UML Interfaces)ccooveeeviiiiiiiiiiieece e 1286
37.13.1 DataEvent Updated in Release 1.10 1286
37.13.2 DIreCtIOEVENLoooiiiiiieeeeee et 1286
37.13.3 ErrorEvent Updated in Release 1.10 .1287
37.13.4 OutputCompleteEventcooeiiiiiiiiee e, 1288
37.13.5 StatusUpdateEvent 1289

38 Tone INdicatorc.ovveeiii 1291
1 Tt B 1Y o1 = | U REPPPRRTR 1291
38.2 SUMMAIY .. e et e e e e e e e e e e e eean e e eeeas 1291

xlvi

Unified POS, v1.16.1

38.3 General INformation......co.oieiee e 1294

38.3.1 Capabiliti®scccceiiieiiie e 1294
38.3.2 Tone Indicator Class Diagramcccccooeieiiiiiiiiiiiiieeccee e 1294
38.3.3 Tone Indicator Sequence Diagram Added in Release 1.7 1295
38.3.4 Model Updated in Release 1.13 1296
38.3.5 DevVice Sharingcccoooeiiiiieee e 1297

38.4 Properties (UML attributes)cccoooiriiiiiii e 1298
38.4.1 AsyncMode Property Updated in Release 1.6 1298
38.4.2 CapMelody Property Added in Release 1.13 1298
38.4.3 CapPitch Propertyoooo oo 1298
38.4.4 CapVolume Propertyooooooiiiiiiiiieee e 1298
38.4.5 InterToneWait Property Updated in Release 1.6 1299
38.4.6 MelodyType Property Added in Release 1.13 1299
38.4.7 MelodyVolume Property Added in Release 1.13 1300
38.4.8 Tone1Duration Property Updated in Release 1.6 1300
38.4.9 Tone1Pitch Property Updated in Release 1.6 1300
38.4.10 Tone1Volume Property Updated in Release 1.6 1301
38.4.11 Tone2Duration Property Updated in Release 1.6 1301
38.4.12 Tone2Pitch Property Updated in Release 1.6 1301
38.4.13 Tone2Volume Property Updated in Release 1.6 1302

38.5 Methods (UML operations)coeeiieriiiiiiiiiieiiiicee e 1303
38.5.1 sound Method Updated in Release 1.13 1303
38.5.2 soundlimmediate Methodoiiiiiiiiii e 1304

38.6 Events (UML operations)ccuueiiiiiiiiiiiie e 1305
38.6.1 DIreCHOEVENToeeeiiiiiiieeee e 1305
38.6.2 ErrorEvent Updated in Release 1.9 1305
38.6.3 OutputCompleteEventccooooimiiiiiiiceee e 1306
38.6.4 StatusUpdateEvent ... 1307

39 Video Capturecoeeeiiiiii e, 1309
39.1 GENEIAl ..eeeeee e 1309
1S U [41 4 =T 1309
39.3 General Information............cooovviiiiiii s 1313
39.3.1 Capabilitiesccccoiiieiiiee e 1313
39.3.2 Video Capture Class Diagramccccviimiiiiiiiiiiiiiieee 1313

39.4 MOAEI ..o 1315
KL g 1Y/ [To [P EUURUPURRR 1315
39.4.2 DevViCe DENAVIOISuiiiiiiiii et 1315
39.4.3 Photo MOE ... 1315
39.4.4 VidEO MOGEoooeiiiiiiiiiieeee et 1316
39.4.5 DeViICe SNAING ...oeieiiiiiiiiiie e 1317

Unified POS, v1.16.1 xlvii

xlviii

39.5 Properties (UML attributes)cooooeiiiiiiiiiiiiiiii e 1318

39.5.1 AULOEXPOSUre Property ..o 1318
39.5.2 AULOFOCUS PrOPErtY ...cooeveeieiiiieiee e e e e 1318
39.5.3 AUtoGain Property ..ot 1318
39.5.4 AutoWhiteBalance Propertyccccooiiiiiiiiiiiiiiiieieeeeeeeee e 1319
39.5.5 Brightness Propertyuuueeioiiiiiiiiieeie s e e 1319
39.5.6 CapAssociatedHardTotalsDevice Propertycccccceieeiiiiiiiiiiinnnnn, 1320
39.5.7 CapAutoEXposure Property ... 1320
39.5.8 CapAUutoFOCUS Propertycccoiieiiiiiiiiiiiieieeeeeeee e 1320
39.5.9 CapAutoGain Propertceeiiiiiiiiiiiiieeeeeecee e 1320
39.5.10 CapAutoWhiteBalance Propertycooovviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeees 1321
39.5.11 CapBrightness Property ..o 1321
39.5.12 CapContrast Propertyccceeeiiiiiiiiiiiieeeeeeeeceeee e 1321
39.5.13 CapEXPOSUre PrOpPErtYcciiiiiiiie et e e e e e e e e e eeeeeees 1321
39.5.14 CapGain PrOPEertYooeeuiiiiiiiiiiiiee e e e et e e e e e e e e e eeeeeeeeaees 1322
39.5.15 CapHorizontalFlip Property ..., 1322
39.5.16 CapHUE PrOPEItYooeiiieiiiiiiiee ettt e e e e e eeeeeeeenees 1322
39.5.17 CapPhoto Property ...t 1322
39.5.18 CapPhotoColorSpace Property ..o, 1323
39.5.19 CapPhotoFrameRate Propertyooovvieiiiiiiiiiiieee e 1323
39.5.20 CapPhotoResolution Propertycccccovvviiiiiiiiiiciiee e 1323
39.5.21 CapPhotoType Propertyccceeeiiiiiiieeieiieeeeeecee e 1323
39.5.22 CapSaturation Propertyccccoooooioiiiiiiiieeeeeecceee e 1323
39.5.23 CapStorage Propertyeeeeecoiioiiiii et e e eeeaaens 1324
39.5.24 CapVerticalFlip Propertycccoeeeiiiiiiieiieeeeeeecee e, 1324
39.5.25 CapVide0o Propertyoeeeueeeiiiiiiei e e e e e ee e eeeenees 1324
39.5.26 CapVideoColorSpace Propertyooovveeeiiiieiiiiiiiee e 1324
39.5.27 CapVideoFrameRate Propertyoooorimmiiiiiiiiiee e, 1325
39.5.28 CapVideoResolution Propertycccoovviiiiiiiiiiiciiiee e 1325
39.5.29 CapVideoType Propertycccoiioiiiieieeeiiieeeeeeecee e e e e e 1325
39.5.30 Contrast Propertyoeeeeeeeiiiiii it 1325
39.5.31 EXPOSUIE PrOPEIY ...coeeeiiiiiiiiiiiiieee e e e e e et e e e e e e e e e e eeeeeeeeeees 1326
39.5.32 Gain PrOPEILYccceeieiieeeeeee ettt e e e e e e e e e e e e e eaaaeas 1326
39.5.33 HorizontalFlip Property ... 1326
39.5.34 HUE PropPertyceeeiiiiiiiiiiiiieee ettt a e 1327
39.5.35 PhotoColorSpace Propertycooeiiiiiiiiiiieeieiee e 1327
39.5.36 PhotoColorSpaceList Propertyooooirimiiiiiiiciieeeeeeeeeeeeeeeeee, 1328
39.5.37 PhotoFrameRate Property ... 1328
39.5.38 PhotoMaxFrameRate Property ... 1328
39.5.39 PhotoResolution Property ... 1329
39.5.40 PhotoResolutionList Property ... 1329
39.5.41 PhotoType Propertyooeeeeeieiiiiiiei et e e e e 1329
39.5.42 PhotoTypeList Property ... 1329

Unified POS, v1.16.1

39.5.43 RemainingRecordingTimelnSec Propertyooovviiiiiieieeieeeneen. 1330

39.5.44 Saturation Property ... 1330
39.5.45 StOrage Propertyoooooiiiiiiiiiiiieiiiie e 1330
39.5.46 VerticalFlip Property ...t 1332
39.5.47 VideoCaptureMode Propertycccccuiiiiiiiiiiiieeieeeeeeeeeee 1332
39.5.48 VideoColorSpace Propertycccceoiieeieeeeee e 1333
39.5.49 VideoColorSpaceList Propertycccccooeiiiiiiiiiiiiiecieeee e 1333
39.5.50 VideoFrameRate Property ...t 1334
39.5.51 VideoMaxFrameRate Propertyccccouiiiiiiiiiiiiie 1334
39.5.52 VideoResOoIution Propertyccooeevuiiiiiiiiiiiccie e 1334
39.5.53 VideoResolutionList Propertycccccouiiiiiiiiieiiieeeeeee 1335
39.5.54 VideoType Property ...ttt 1335
39.5.55 VideoTypeList Propertyccooooeiiiiiiiieiieee e 1335

39.6 Note: Video Capture Device Property Value Relationship 1336
39.7 Methods (UML operations)ecceeiiieeeeiiiieeeceeiiiieeeee e e 1336
39.7.1 startVideo Method ... 1336
39.7.2 stopVideo Methodoooiiiiiiiiee e 1337
39.7.3 takePhoto Method ... 1337

39.8 Events (UML interfaces)coouuuueiiiiiiiiiiiiieee e 1339
39.8.1 DIreCtOEVENToeeiiiiiiiiieeee e 1339
39.8.2 ErrOrEVENT ..o 1340
39.8.3 StatusUpdateEvent ... 1341

40 Individual Recognitionccooiiiiiiiiiiiiiiieee, 1343
O I I C 7= U= | PRSI 1343
40.2 SUMMAIY ettt e e e e e e e e e eeeeeennenennas 1343
40.3 General Information.............cooiiii i 1346
40.3.1 Capabilitiesccccceieiiiiiieeeeeee e 1346
40.3.2 Individual Recognition Class Diagramccccceeeeiiiiiieeieeesieeeeeeeenns 1346
40.3.3 MOAEL ... e e 1347
40.3.4 IndividualRecognitionFilterccccoiiiiiiiiiiiii 1347
40.3.5 IndividualRecognitionFilter Property Example Format 1348
40.3.6 IndividualRecognition Information Property Example Format 1352

40.4 Properties (UML attributes) ... 1353
40.4.1 CaplndividualList Propertycccccceeiiiiiiieiiiieiee e 1353
40.4.2 IndividuallDS Property ... 1353
40.4.3 IndividualRecognitionFilter Propertycccccoiiiiiiiiiiiiiiiieeeeen 1353

40.5 Events (UML interfaces)cccoeviiiieiiiiieeeeiiiee e 1354
40.5.1 DataBEvent ... 1354
40.5.2 DIreCtIOEVENTueiiiiiiiiieeeieeeeee e 1354
40.5.3 ErmorEvent ... 1355

Unified POS, v1.16.1 xlix

41 Sound ReCordercoooevuiiiiiiiieiic e 1357
i O B C 7= o= = | S 1357
41.2 SUMMAIY ..ottt e e e e e e e e e e e e as 1357
41.3 General Information.........cccoooe i 1361

41.3.1 Capabilitiesccooiiiiiiei e ————————— 1361
41.3.2 Sound Recorder Class Diagramcooovmiiimiiiiiiiiiiiieeee e 1361
41.3.3 MOAEI ..o —————————————— 1363
41.3.4 Device ShariNgcooooiiiiiiiiiiiiie e 1364
41.4 Properties (UML attributes)oooveviiieiiiiiiiiee 1365
41.4.1 CapAssociatedHardTotalsDevice Propertycccccooeiiiiiiiiiiiiieennnnes 1365
41.4.2 CapChannel Property ..o ee e 1365
41.4.3 CapSamplingRate Propertyccccoiiiiiiimiiccccee e, 1365
41.4.4 CapSoundType Propertyccccoooooooooiiiiiiieeiiceieee e 1365
41.4.5 CapVolume Propertyecccooiieeooeeieeeeeieeeeeiiseese e e e e e e e e e eeeeeeeeeees 1366
41.4.6 CapStorage Propertycccoiieiiiiiiiiiieieeeeeiee e 1366
41.4.7 CapRecordingLevel Property ... 1366
41.4.8 Channel Property ... 1367
41.4.9 ChannelList Propertyccooiiiiiiiii et 1367
41.4.10 RecordingLevel Property ... 1367
41.4.11 RemainingRecordingTimelnSec Propertyccooiiiiiiiiiiiiiiiineeee. 1368
41.4.12 SamplingRate Property ..o, 1368
41.4.13 SamplingRateList Property ... 1368
41.4.14 SoundData Propertyccccuuuuiiiiiiiiiieiiiiieeeee e 1369
41.4.15 SoundTypPe PrOPertYuueeeieieii it 1369
41.4.16 SoundTypeList Property ... 1369
41.4.17 StOrage Property ...ttt 1370
41.5 Methods (UML operations)ccceuueiiiiiiiiiiiieeeeeiciee e 1371
41.5.1 startRecording Methodccoooiiiiiiiii e 1371
41.5.2 stopRecording Method ... 1372
41.6 Events (UML interfaces)cooveviiiiiiiiiiicc e 1373
41.6.1 DataEvent ... 1373
41.6.2 DireCtlIOEVENTcoiiieeee s 1373
41.6.3 ErrorEvent ... 1374
41.6.4 StatusUpdateEvent ... 1375

42 Voice Recognitioncoviviiiiiiiiiiie e 1377
T B C 1Y T | 1377

I Unified POS, v1.16.1

42.2 SUMIMAIY ..ot e e et e ettt et a s e e e e e e e e e eeeeeesnnennns 1377

42.3 General Information..............cooiiii i 1380
42.3.1 CapabilitieSc.eeeiiiiiiie e 1380
42.3.2 Voice Recognition Class Diagramcooiiiiiiiiiiiiiiiiiiecceeeeeeeee 1380

42.4 MOAEI ..o 1380

42.5 DeVice ShariNgcoouuiiiiiiiiiie e 1382

42.6 Properties (UML attributes)coouviiiiiiiiiiiiiee e 1382
42.6.1 CaplLanguage Property ... 1382
42.6.2 HearingDataPattern Property ... 1382
42.6.3 HearingDataWordList Propertyccooieiiiiiiiiiiieeieeeeeeeeee 1383
42.6.4 HearingDataWordList Property ... 1384
42.6.5 HearingResult Propertycccoooiiiiiiiiiiiiieeeeeeeee e 1385
42.6.6 HearingStatus Propertyccccooeeiiiiiiiiiiiieeeieieee e, 1386
42.6.7 LanguageList Property ... 1386

42.7 Methods (UML 0perations)ccoovviiiiiiiiiiniiiiiee e 1387
42.7.1 startHearingFree Method ... 1387
42.7.2 startHearingSentence Method ... 1388
42.7.3 startHearingWord Methodcooiiiriiiii i 1390
42.7.4 StartHearingYesNo Method ..., 1391
42.7.5 stopHearing Methodcoooiiiiiiiiiiiii e 1391

42.8 Events (UML interfaces)ooveiviiiiiiii e 1392
42.8.1 DataEVENT ... 1392
42.8.2 DIreCtiOEVENLoovviiiiiieee e 1392
42.8.3 ErmorEvent ... 1393
42.8.4 StatusUpdateEvent ... 1394

43 Sound Player ..., 1395

G T I C 7= o =T = PSRRI 1395

43.2 SUMIMAIY .t e ettt a e e e e e e e e e eeeeeenaennnns 1395

43.3 General Information.............cooiiii i 1399
43.3.1 Capabilitiesc..eeeiiiiiie e 1399
43.3.2 Sound Player Class Diagramccoooiiiiiiiiiiiiiiiiciee e 1399
43.3.3 MOAEL ... 1400

43.4 Properties (UML attributes) ... 1401
43.4.1 CapAssociatedHardTotalsDevice Propertycccccceeeiiiiiiiiiiiiiiinnnnn, 1401
43.4.2 CapMultiPlay Property ... 1401
43.4.3 CapSoundTypeList Propertycccccoeiiiiiiiiiiiiiiiieee e eeeeeeeeeeeeenes 1402
43.4.4 CapStorage Propertyoeuueeiiiiiiiiiiieeeeieeeeeeeecee e 1402
43.4.5 CapVolume Property ... 1402
43.4.6 DeviceSoundList Property ... 1403

Unified POS, v1.16.1 li

43.4.7 OutputlDLISt Propertycccooeiiieiiieeiiieeeeeeite e ee e eeeeeeeees 1403

43.4.8 StOrage Propertyoooeeeeeiiiiiiiieie e a e e 1403
43.4.9 VoIUME Propertyccccoiiiiiiiiiiiieiee ettt 1404
43.5 Methods (UML operations)cceueeiiiiiiiiiiieeeeeeeee e 1405
43.5.1 playSound Methodouuiiiiiiiiiiiii e, 1405
43.5.2 stopSound Methodeueiiiiiiiiiiii e 1405
43.6 Events (UML interfaces)ccooeevviriiiiiiiiiii e 1406
43.6.1 DireCtIOEVENLcooiieeeee e 1406
43.6.2 ErmorEVeNnt ... 1407
43.6.3 OutputCompleteEventccoooiiiiiiiiiiice e, 1408
43.6.4 StatusUpdateEvent ... 1408

44 Speech SYnthesiscccooviviiiiiiiii e 1409
441 GENEIAI ..o 1409
S TU o1 o =Y 1409
44.3 General Information. ... 1413
44.3.1 CapabilitieSscccuvviiiieiiiceiee e 1413
44.3.2 Speech Synthesis Class Diagramccccccceiiiiiiiiiiiiiiiiieeeeeeee 1413
44.3.3 MOAEI ... e e e 1414
44.3.4 DeViCe ShariNgcoooeiiiiiiiiiiee e 1415
44.4 Properties (UML attributes)coiiiiiiiiiiii e 1415
44.4.1 CaplLanguage Propertyccccoooeiiiiiiiiiiiieeeeeceee e 1415
44.4.2 CapPitch Property ... 1415
44.4.3 CapSpeed Propertyueccceoieieeieeeeieeeieeeeeeeee s e e e e e e e eeeaaens 1415
44.4.4 CapVoiCe Propertyuuueuuuuiiiiieieiiee ettt e e eeeaaans 1416
44.4.5 CapVolume Propertyecocooooooo oo e e e eeeeeeeeeees 1416
44.4.6 Language Propertyccccceuiiiiiiiiiiiiieiiiieeeeeee e 1416
44,47 LanguageList Property ... 1417
44.4.8 OutputlDLISt Propertycccoooioeeoi oot 1417
44.4.9 Pitch Property ..o 1417
44.4.10 Speed Propertyooooeeeiiiiiiiiiii e 1418
44.4.11V0ICE Propertyoooiiiiee e 1418
44.4.12 VOICELISt Propertyccccoouiiiiiiiiiieiiiieeeeeeeeee e 1418
44,413 VOIUME PrOPEITY ...ttt a e 1419

44.5 Methods (UML operations)cooeuuuiiiiiiiniiiieiieeeeeeieeii e 1420
44.51 speak Methodccoooumiiiiiiiiiie e 1420
44.5.2 speakimmediate Methodccooiiii i 1422
44.5.3 stopCurrentSpeaking Method ..o 1422
44.5.4 stopSpeaking Methodcccoooiiiiiiiiiiiiii e 1423

Unified POS, v1.16.1

44.6 Events (UML interfaces)cccoouviriiiiiiiiiiiiiiciee e 1424

44.6.1 DIreCtIOEVENTueiiiiiiiiiiieieeeeeeee e 1424
44.6.2 ErrorEVeNnt ... 1425
44.6.3 OutputComplete EVENteiiiiiiiii e 1426
44.6.4 StatusUpdateEventccoooiiiiiiiiiic e 1426

45 Gesture Controlcoevvieiiiiie e 1427
451 GENEIAl ...ccoeeiee e 1427
45.2 SUMMAIY ..t e et e e e e et a e e e e e e e e e e e e eaaaaeeeees 1427
45.3 General Information.............coooiii i 1431
45.3.1 Capabilitiesccccuuiiiiiiiiieeeeeee e 1431
45.3.2 Gesture Control Class Diagramcooovriiiiiiiiiiiiiieeiee e, 1431
45.3.3 MOAEL ... e e e 1432
45.3.4 Automatic CoNtrolooovuiiiiiiie e 1432
45.3.5 POSE/MOLION ...ttt 1432
45.3.6 DeViCe ShariNgceueeiiiiiiiiiiiiiiiie e 1433

45.4 Properties (UML attributes)ccoovevviiiiiiiiic e 1434
45.4.1 AUtoMOdE Propertyooouuiiiiiiiiiee e 1434
45.4.2 AutoModeList Property ... 1434
45.4.3 CapAssociatedHardTotalsDevice Propertyccccooeeviiiiiiiiiiiiiiinnnnn, 1435
45.4.4 CapMotion Propertyooeeeeueuiiiiee e e e e eeeeeeeees 1435
45.4.5 CapMotionCreation Propertycccccooiiiiiiieiiiiiiccieie e 1435
45.4.6 CapPoSE PrOPErtYoooooiiiiiiiiiiiiie e ee et e e e e e e e e eeenens 1435
45.4.7 CapPoseCreation Property ... 1436
45.4.8 CapStorage Property ...t 1436
45.4.9 JoIntList Propertyoooooeiimiiiiiiii e 1437
45.4.10 MotioNLiSt PrOpertyeeeeeeeiiiiiiiiieiiie e 1437
45.4.11 PoseCreationMode Property ...t 1438
45.4.12 POSELISt PrOPEItY ...oooeeeeieiiiiiee ettt 1438
45.4.13 StOrage Propertyeueeeeeeeiiiiiiieeeeee e 1439
45.4.14 Table of Gesture Control Device Listed Items in Property 1440

45.5 Methods (UML 0perations)ccoovviiiiiiiiiiiiiiiiee e 1441
45.5.1 createMotion Methodoiiiiiiii e 1441
45.5.2 createPose Method ... 1441
45.5.3 getPosition Method ... 1442
45.5.4 setPosition Methodeeeiiiii e 1442
45.5.5 setSpeed Method ... 1444
45.5.6 startMotion Methodeeiiiiiiii e 1445
45.5.7 startPose Method ... 1446
45.5.8 stopControl Methodoiiiiiiiiiiiie e 1446

45.6 Events (UML interfaces)coiveiiiiiieiiieiie e 1447
45.6.1 DIreCtiOEVENT ... e 1447

Unified POS, v1.16.1 liii

A5.68.2 EITOrEVENT ..o e 1448

45.6.3 OutputCompleteEvent ... 1448
45.6.4 StatusUpdateEvent 1449

46 Device MONItOrccoviiiiiiii e 1451
4B.1 GENEIAl ..o s 1451
I U o1 o =Y 1451
46.3 General Information.........cccooo oo 1454
46.3.1 Capabiliti€Scccuiiiiiiii e 1454
46.3.2 Device Monitor Class Diagramccccviiiiiiiiiiiiiiiiceeeeeeeee 1454
46.3.3 MOGEI ..o e 1455
46.3.4 DeViCe ShariNgcooooiiiiiiiiieee e 1455
46.4 Properties (UML attributes)cooeeiiiiiiiiiiie e 1456
46.4.1 DeviceData Property ..o 1456
46.4.2 DeViceList Propertyccccccuuiiiiiiiiiieieieeieee e 1456
46.4.3 MonitoringDeviceList Propertycccccoiiiiiiieeeeeeeee 1457
46.5 Methods (UML operations)ccoeuuiiiiiiiiiiiiieeeeeeciee e 1458
46.5.1 addMonitoringDevice Methodcccoviiiiiiiiiiiieeeeee 1458
46.5.2 clearMonitoringDevices Methodcoooiviiiiiiiiiiiii e 1459
46.5.3 deleteMonitoringDevice Methodcccoooiiiiiiiiiii e 1460
46.5.4 getDeviceValue methodeueeiiiiiiiiiiii e 1460
46.6 Events (UML interfaces)cceevviieiiiiiiiiee e 1461
46.6.1 DataBEvent ... 1461
46.6.2 DIreCtiOEVENT ..o 1461
46.6.3 ErrorEvent ... 1462
46.6.4 StatusUpdateEvent ... 1463

47 Graphic Displayccoeiiiiii 1465
T I C 1= U= = | S 1465
S U o o =Y 1465
47.3 General Information.........cccooooo i 1469
47.3.1 Capabiliti€Scccueiiieiiii e 1469
47.3.2 Graphics Display Class Diagramcccccooeeiiiiiiiiiiiiiiiiiieeeeeee 1469
A7.3.3 MOAEI .o 1470
47.3.4 Device ShariNgcoooooiiiiiiiiiiii e 1472
47.4 Properties (UML Atributes)ccoovviiiiiiiiiiii e 1473

liv

Unified POS, v1.16.1

47.4.1 Brightness Property ... 1473

47.4.2 CapAssociatedHardTotalsDevice Propertycccccoooviiiiiiiiiiiiieennnns 1473
47.4.3 CapBrightness Property ...t 1473
47.4.4 CaplmageType Property ... 1473
47.4.5 CapStorage Property ...t 1474
47.4.6 CapURLBACK Propertycccooieiooiiiieeiiiieiieeeiiiccee e e e e eeeeeeeenens 1474
47.4.7 CapURLForward Propertycccccoooeeiiiiiiiieiiiiciciiee e 1474
47.4.8 CapVideoType Property ..o 1475
47.4.9 CapVolume Propertyoeueeooiiiiiieie e s e e e e e e eeeeeeenees 1475
47.4.10 DisplayMode Propertyccoooviiiiiiiiiieiee e 1475
47.4.11 IMmageType Property ... 1476
47.4.12 ImageTypeList Property ... 1476
47.4.13 LoadStatus Propertyeeeoeieiiiiiiiiiiieeeeeeeece et 1477
47.4.14 StOrage Propertyeeeeeeeeeiiiiiiiiieeee e 1477
47.4.15 URL Propertyc.ceueeiiiiiiiieieeeeeeee ettt 1478
47.4.16 VideoType Property ...t 1478
47.4.17 VideoTypeList Property ... 1478
47.4.18 VOIUME PrOPEITYuueiiiiiiiiiiiiiiiieee e 1479
47.5 Methods (UML operations)cceeueiiiiiiiiiiiieeeeeeecee e 1480
47.5.1 cancelURLLoading Methodccoooiiiiiiiiiiiiiieeeeeeee e 1480
47.5.2 goURLBack Methodccooiiiiiiiiii e 1480
47.5.3 goURLForward Methodcoouviiiiiiiiiiii e 1481
47.5.4 loadlmage Method ... 1481
47.5.5 10adURL Methodcooiiiiiiiiie e 1482
47.5.6 playVideo Method ... 1482
47.5.7 stopVideo Methodoooviiiiiiiiiii e 1483
47.5.8 updateURLPage Method ..o 1483
47.6 Events (UML interfaces)ooveiiiiiiiiiiicc e 1484
47.6.1 DIreCtIOEVENToueiiiiiiiieieeeeeeeee e 1484
47.6.2 ErrorEvent ... 1485
47.6.3 OutputCompleteEvent ... 1486
47.6.4 StatusUpdateEventccoooiiiiiiiic e 1486
Annex A - OLE for Retail POS-OPOS Implementation
ReferenCe ..o 1487
A.1 What is OLE for Retail POS? ... 1487
A.2 Who Should Read This Sectioncoovveviiiiiiiiiii e 1488
A.3 General OLE for Retail POS Control Model............cccooeeviivieiiiiiiiiieeeee, 1488
A.4 OPOS DefiNItiONSccceeeeeieeeeeeeee et 1489
A.5 How an Application Uses an OPOS Controlccoceiiiiiiiiiiiiiieeeeinn. 1490
A.6 When Methods and Properties May Be Accessed...........ccccevvviiiiiinnennnn. 1491
A.7 Status, Result Code, and State Model Updated in Release 1.11.. 1493

Unified POS, v1.16.1 Iv

A.8 Device Sharing MOAElccooiiiiiiiiieieee e 1496

A.9 Events Updated in Release 1.12.. 1497
A.10 OPOS Event Registration Sequence Diagram Added in Release 1.7. 1499
A.11 Input Model Updated in Release 1.12. 1500
A2 OUIPUE MOAEL.... ... e e 1502
A.13 Device Power Reporting Model Added in OPOS Release 1.3, Updated in Release 1.8 1503
A.14 Device Information Reporting Model Added in Release 1.8 . 1506
A.15 Update Firmware Device Model Added in Release 1.9 .. 1507
A.16 OPOS Component Descriptionscoeeeiiieiiiiiiieeiceeeeee e, 1508
A.17 Section 1: OPOS Data Types Updated in Release 1.12 .. 1509
A.18 Section 2: OPOS Interface Descriptionsccovvvviiiiieiieiiiciieeeeeeinn, 1511
A.19 OPOS Common Properties, Methods, and Events................................ 1511
A.20 Common Properties Updated in Release 1.9 .. 1511
A.21 Common Methods Updated in Release 1.10. 1512
A.22 OPOS Programmatic Names Updated in Release 1.12.. 1513
N e 0] 1= o (] PP 1514
A.24 MELNOMS ...t e e e e 1529
A2D EVENLES oo 1540
A.26 Peripheral INterfacesoooeuueiiiiiee e 1543
A.27 OPOS: Cash DraWerccoovuuiiieieeeee e 1544
A.28 OPOS: MICR ... e e e e e e e 1548
A.29 Section 3: OPOS Registry Usage Updated in Release 1.12... 1554
A.30 Section 4: OPOS Application Header Files Updated in Release 1.12... 1558
A.31 Section 5: Technical Details...........couviiiiiiiiii e, 1559
A.32 Section 6: Release 1.5 APl Change: ClaimDevice and ReleaseDevice 1562
A.33 Section 7: OPOS APG Change History Release 1.01ccccoeeeeeeee. 1563
A.34 Section 8: OPOS Control Programmer’s Guide..............cooovviiieeeeennnnnn.. 1574

Annex B - Java for Retail POS-JavaPOS Implementation

REFEIENCE ... 1609
B.1 What is Java for Retail POS7?........ e, 1609
B.2 BeNEIIS ..o 1609
B.3 DEPENUENCIES ...t 1610
B.4 Relationship to OPOS ... 1610
B.5 Who Should Read This SEeCHONcouieiiie e 1610

Ivi Unified POS, v1.16.1

B.6 APPENdiX OVEIVIEWuiiiiiiiiiie et e e 1611

B.7 Architectural OVErVIEWcoouuiiiiiieii e 1611
B.8 Architectural Components..........ccooviiiiiiiiiii e 1612
B.9 Device Behavior MOdEelSuiiiiiiiiiece e 1614
B.10 Introduction to Properties, Methods, and Eventscooall 1614
B.11 Device Initialization and Finalization ..o, 1615
B.12 Device Sharing Modeloooo o 1616
B.13 Data Types Updated in Release 1.11 . 1618
o e (=T o (o] 1 1618
B.15 Events Updated in Release 1.12.. 1621
B.16 JavaPOS Event Registration Sequence Diagram Added in Release 1.7 .. 1624
B.17 Device INput Model ... 1625
B.18 Device Output MOdelS..........ouuiiiiiiii e 1628
B.19 Device Power Reporting Model Added in JavaPOS Release 1.3

Updated in Release 1.8. .. 1630
B.20 Device Information Reporting Model Added in Release 1.8. .. 1633
B.21 Update Firmware Device Model Added in Release 1.9 . 1634
B.22 DeVICE StateScccviiiieii e 1634
G T I] (== T £ 1635
B.24 Version HandliNg..........ooo i 1635
B.25 Classes and Interfaces. ..o 1636
IR Y g o o] R 1636
B.27 Sample Class and Interface Hierarchies............ccccccooiiiiiiiiiiiiiieceennnn.. 1639
B.28 Sample Application Code.........coooivuiiiiiiiiiiece e 1642
B.29 Package Structure Updated in Release 1.13 .. 1643
B.30 DeVvice CONtrolS..........uiiiiiieeeie e 1652
B.31 Device Control Responsibilities...........cccoovviiiiiiiiiii e 1652
B.32 Device Service Managementoovueiiiiiiiii e 1653
B.33 Property and Method Forwarding...........ccoooviiiiiiiiiiiii e 1656
B.34 Event HandliNg.......oouuiiiic e 1657
B.35 Device Control Version Handlingccoooviiiiiiiiiiiiiiiiiiie e, 1659
B.36 DEVICE SEIVICES ...cooeeieii e 1661
B.37 Device Service Responsibilities ... 1661
B.38 Property and Method Processing...........coooeuuiiiiiiiiiiiiiiieeeeeeee 1661
B.39 Event Generationccooie i iiiii e 1662
B.40 PhysiCal DEVICE ACCESSccceuuiieiiiii ettt aaaes 1662
B.41 API Mapping RUIEScooiieeiiiie et 1662
B.42 JavaPOS Component DescCriplionS.........ccceuuviiiiiiieiiiiiieeeeeece e 1663

Unified POS, v1.16.1 Ivii

B.43 Section 1: JavaPOS Data TYPeS......ucciiiiiiiieieieeiiiiciee e 1664

B.44 Section 2: JavaPOS Interface Descriptionsccoooevviiiiiiiieiiiiieeee. 1665
B.45 JavaPOS Common Properties, Methods, and Eventsc............... 1666
o Tl o 0] o T= o 1 S 1669
B.A7 METNOAS ..o e e 1678
BAB EVENLS ... 1688
B.49 Peripheral Interfaces ... 1692
B.50 Section 3: Technical Details - OPOS and JavaPOS............................... 1698
B.51 OPOS to JavaPOS - API Mapping Rules............ccccooiiiiiiiiiiiiee 1698
B.52 APl DeVIatioNS.......cou i 1699
B.53 Mapping of CharacterSet Updated in Release 1.10.. 1700
B.54 Handling Binary Data inside Strings Added in Release 1.12.. 1701
B.55 Section 4: JavaPOS Change Historycooovviiiiiciiiii s 1702
Annex C - POS for .NET Implementation Reference.......... 1707
C.1 What is POS for .NET? Updated in Release 1.15. 1707
C.2 Who Should Read This Section Updated in Release 1.15. 1708
C.3 Overview of POS for .INET ... 1708
C.4 POS for .NET DefinitionScoiiiiiiieiiieeeeeee e 1709
C.5 Key POS for NET Features...........coii i 1710
C.6 Key Programming Construct Differences from OPOS 1712
C.7 Key Parameter Differences..........uuuueiiiiiii i 1735
C.8 Key Property Signature Differences...........cccoooviiiiiiiiiiiiiiiieieeceeeee 1736
C.O POSEXPIOrEr APl et 1737
C.10 Service Object RegiStryoooiiiiiiiii s 1738
C.11 Consuming Service ObJECES.........uiiiiiiiiiiii e 1740
C.12 Writing Service ODJECtS.......cooiviiiiieeee e 1741
C.13 Status, State Model, and EXceptions..........ccoovveeiiiiiiiiiiiiiiieieeeeeeee, 1742
C.14 Device Sharing Model...........cooeeriiiiiiie e 1743
C.15 Events Updated in Release 1.12.. 1744
C.16 Input Model Updated in Release 1.12.. 1745
CAT7 OUIPUE MOAEL ... e 1747
C.18 Device Power Reporting Model ..o 1748
C.19 Power Reporting Properties..........coooevieiiiiiie i 1749
C.20 Device Information Reporting Model.............coooveiiiiiiiiiiiii e 1750
C.21 POS for .NET Component Descriptions...........cccoeeveveieiiiiieeiiiieeeeiieeee, 1751

Iviii Unified POS, v1.16.1

C.22 COMMON PrOPertiESccvieeiiiei et 1755

C.23 CommMON MELNOAS..... e 1761
C.24 CommON BVENLS ... e 1774
C.25 POS for .NET vs. UnifiedPOS Members.........coouoiieiiieiiiieieeieeeeeeeeee, 1775
C.26 Interim Procedure Available For Legacy OPOS Services

Shim Code Usage Updated in Release 1.11.. 1776
C.27 Architecture Structures Added in Release 1.11... 1777
C.28 Method of Implementationooi i 1778
C.29 Method of AdMINIStrationooeeiieiii e 1780
Annex D - XMLPOS -XML POS Mapping Reference.......... 1785
DR O Y=Y Y 1=V A 1785
D.2 Referenced DOCUMENTScvuniiiiie et e e 1786
D.3 Taxonomy for Conversion from UnifiedPOS to XML uUpdated in Version 1.14.1 1786
D.4 Changes to XMLPOS Updated in Version 1.13. 1786
D.5 XMLPOS Architecture Overview Updated in Release 1.14 1787
D.6 UNIfIedPOS XML EITOIS ..oneeieiieeeeee et 1792
D.7 XMLPOS CommoON EVENLSoeeieeiieee e 1797
D.8 XMLPOS Common Propertiesccoeeeuieiiiiiieeeeiiieeeeeeeeeeeeeeee e 1799
D.9 XMLPOS Common Data.........coouiieiiiiie e 1800
D.10 ARTS COmMMON DAta ...c.oeeieiieeeeeee e 1801
D.11 UNIfIedPOS DEVICES ... e 1802
D.A2 NAFEM ProtOCOL ... e 2001
D. 13 Distributed FIleScoeieeeeeeee e 2011
DI B] (o TS =T= | Y O 2012
Annex E - Change History ..o, 2013
E. 1T Release VErsion 1.4 2013
E.2 Release Version 1.5 et 2013
E.3 REICASE VErISION 1.6.. .o et e e 2014
e e (Y= T A VAT £ (0] T 2016
E.5 Release Version 1.8... ... 2021
E.6 Release Version 1.0 e 2023
E.7 Release Version 1.0 2024
E.8 Release Version 1.1 ... et 2026
E.O REICASE VErSION 1.2 .. et 2029
E. 10 Release Version 1.13 ... et 2032

Unified POS, v1.16.1 lix

E. 11 Release Version 1.4o e, 2036

E.12 Release Version 1.14.1 ... e 2039
E. 13 Release Version 1.15. ... e 2041
E.14 Updated items inrelease 1.16ocoiiiiiiiiiiiiiee e 2043
Annex F - Additional Software References......................... 2045
Annex G - Additional Hardware References....................... 2047
Annex H - Deprecation Historycccoeiviiiiiiiiiiieee, 2051
Annex | - Systems Management Information...................... 2053
[.1 What is Systems Management? ... 2053
[.2 How is UnifiedPOS involved in Systems Management?.......................... 2053
[.3 Who Should Read This SecCtionccooi i 2053
[.4 UnifiedPOS Device Information Reporting Modelccccoovvieiinennnnee. 2054
[.5 Architectural OVEIVIEWouuiiiiiiice e 2057
[.6 Utilized CIM Data Types Updated in Release 1.13. 2059
[.7 Common Properties, Methods, and Events Updated in Release 1.14 . 2060
[.8 Common MethOdsS..........ii e 2061
1.9 Properties Updated in Release 1.13 . 2061
[.10 Peripheral INterfaces ... 2061
[.11 Technical Detailscoooeueiiii e 2168
Annex J - Device Statisticscccooeiviiiiiiiii, 2169
Jo1 GENETAI ... 2169
J.2 Device Category NameESsoouuuuiiiiiiiii e 2169
Annex K - Relationship to OMG Specifications 2179
K.1 Activities in Robotics Domain Task Force.........ccccoooviiiiiiiiiiiiice, 2179
K.2 ROIS SPecCifiCation.........ccoveeiiii e 2179
K.3 Robot Service Ontology [ROSO] RFP.......cooumiiii 2180
K.4 Interoprability between UPOS RCSD and ROIScccoovveiiiiiiiiiiiiiee 2181
K.5 Document History/Version HiStory ... 2184
LB GlOSSAIY ...ttt e e et e e e e e 2184

Ix Unified POS, v1.16.1

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at https.//www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from this URL:

https.://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PDF format, may be obtained
from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters

9C Medway Road, PMB 274
Milford, MA 01757

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult Attp./www.iso.org

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification. Go to the OMG main
page and select Specifications - Issues.

Unified POS, v1.16.1 Ixi

Ixii

Document Submitter

VINX Corp.

Document Publishing Supporters

OPOS-J
SorimachiGiken Co. Ltd.
Microsoft Japan Ltd.
SEIKO EPSON Corp.
Toshiba TEC Corp.

Star Micronics Corp.
Fujitsu Frontec Corp.
NCR Corporation
Sharp Corporation
Omron Social Solutions Corp.
NEC Platforms Corp.
Transaction Media Networks Inc.

Unified POS, v1.16.1

1

1.1

1.1.1

Unified POS, v1.16.1

Introduction and Architecture

What is Unified POS?

UnifiedPOS is the acronym for Unified Point of Service. It is an architectural specification for application
interfaces to point-of-service devices that are used in the retail environment. This standard is both operating
system independent and language neutral and defines:

« An architecture for application interface to retail devices.

« A set of retail device behaviors sufficient to support a range of POS solutions.

« The UnifiedPOS standard will include:

« The UnifiedPOS Retail Peripheral Architecture overview.

« Text descriptions of the interface to the functions of the device.

« UML terminology and diagrams for each device category, to describe:

- Relationships between classes/interfaces and objects in the system.

« Basis for creating C++, Java, IDL, or other OO technology to implement the UML design.

« Operational characteristics and details for implementations which are compliant to the UnifiedPOS
architecture. These were added in the Appendices for UnifiedPOS starting in Version 1.6. As new
Implementations become available, additional Appendices will be added in future versions of the standard.

« The UnifiedPOS standard will not include:
« Specific language API specifications.

« Complete software components. Hardware providers, software providers, or third-party providers develop and
distribute these components.

« Certification mechanism; this must be handled by individual language standard committees (such as the OLE
for Retail POS (OPOS), POS for .NET, and Java for Retail POS (JavaPOS) committees).

About This Documentation Updated in Release 1.12

Since the release of UnifiedPOS Version 1.4, the Retail Standards’ committees had been maintaining three
separate standard documents, OPOS, JavaPOS and UnifiedPOS. The architecture and device characteristics are
identical in each of these documents. The addition of new device categories and/or enhancements to existing
chapters required consultation and agreement on the technical content for the each of the separate standards.
However, in addition to that technical work, there is a heavy administrative burden in generating the correct
documentation for three different versions of the standard’s specification. That process was inherently error
prone in that the same changes had to be maintained in multiple documents. Confusion has resulted in cases
where differences have inadvertently appeared in the documentation.

In order to simplify the process and bring a higher quality of review to ongoing modifications of the
documentation, the UnifiedPOS standard committee made a change in the process for documenting its
requirements. Beginning with UnifiedPOS Version 1.6, only the UnifiedPOS document was updated and the
structure of the documentation was changed. The main body of the documentation includes the abstracted generic
description of all device categories plus additional general design and utilization guidelines. Specific reference
platform requirements are now found in the included annexes that outline the implementation information for

each of the specific existing implementations, such as OPOS, JavaPOS and POS For Dot Net. (Note: OPOS-J,
the POS Standards body from Japan, has and plans to continue to maintain a translated Japanese version of the
OPOS documentation for their developer community.)

The documentation is arranged in such a fashion that allows the new user to gather a general education about the
UnifiedPOS Standard by reading the “Introduction and Architecture” section. This section is designed to give an
overview of the material covered in the entire standard and provide an outline of the design features that must be
adhered to for a developer to implement the standard. For a first time reader, this section should be read and
understood, as it will make the remaining chapters and appendices more beneficial. For a familiar user, this
section may serve as a “fall-back™ reference for clarification of the requirements when developing a Device
Service or usage of the Device Services by an Application.

Chapter 2 outlines the Properties, Methods, and Events that are Common to all peripheral devices. It is important
to understand this section and make reference to it when questions arise on the common functionality that apply
to all device classes.

The following chapters define each of the POS peripheral devices that are covered in the standard. The specific
Properties, Methods, and Events that are peculiar to the peripheral are defined. Any additional helpful
information relevant to the POS peripheral are also included. As new POS peripherals are added a new chapter
will be added to describe the devices unique requirements.

Following the chapters describing the POS peripheral devices, annexes are included that outline specific details
on implementation dependencies for each of the supported Operating Systems and/or language specific
development platforms.

“Annex A” includes the definition, goals, and deliverables for OPOS. There are explanations for the input/output
and device sharing for Microsoft’s COM model for the operation of the interface. Event and error handling
unique to this implementation is described. It concludes with a version change history that guides the user in
understanding the evolution of the OPOS implementation of the standard.

“Annex B” includes the definition, goals, and deliverables for JavaPOS. There are explanations for the input/
output and device sharing for the Java model for the operation of the interface. Event and error handling unique
to this implementation is included. It also concludes with a version change history that is helpful to the user to
understand the evolution of the JavaPOS implementation requirements.

“Annex C” includes the definition, goals, and deliverables for POS for .NET. There are explanations for the
input/output and device sharing for Microsoft’s .NET model for the operation of the interface and the differences
from the OPOS COM architecture that affect implementation. Event and error handling unique to this
implementation are described. It also includes a version change history section and brief clarifications of the
design philosophy.

“Annex D” is included to provide information on the usage of XML for peripheral message mapping. Future
versions of the UnifiedPOS standard will evolve to a greater dependence upon XML as the command and
interoperability infrastructure of choice. There is increasing interest and focus on using XML for communicating
with peripheral devices. It opens up many new possibilities for creating Device Services that, when coupled with
Universal Plug and Play hardware connection technologies such as USB, will provide for true language and
operating system independence.

“Annex E” incorporates an overall Change History for the documentation. It is highly recommended that the
experienced user refer to this section as an aide for understanding the version to version documentation changes
as a resource to help in the updating of the device support and/or implementation changes necessary to the
software for efficient usage.

Unified POS, V1.16.1

1.1.2

1.1.3

Unified POS, v1.16.1

“Annex F” provides some additional software reference material that may prove helpful to the understanding of
the principals and documentation constructs that the UnifiedPOS standard incorporates. The developer is
encouraged to check this section as additional resource material will be added as the standard evolves from
version to version.

“Annex G” includes additional hardware reference material that is pertinent to the hardware design for
compliance to the UnifiedPOS standard. The USB Plus Power connector recommendations are outlined in this
section as well.

“Annex H” provides information on functionality and changes that are documented in the UnifiedPOS standard
in a version that will cause a previously defined function to be deprecated. While every attempt is made to
minimize the use of Deprecation, the reader is highly encouraged to review this section to ensure a firm
understanding of direction the standard is evolving.

“Annex 1” includes the definition, goals, and deliverables for Systems Management. Appendix [is targeted at a
systems management solution developer who requires access to POS-specific device information. It is also
targeted to the system developer who will provide device information from within the Services he provided.

“Annex J” includes the definitions and deliverables for UnifiedPOS Device Statistics. This information was
previously issued in a separate document, but starting with v1.12, the device statistics appendix was added as an
appendix to the specification.

“Annex K” describes the relationship to other OMG specifications and activities.

Goals

The goals of UnifiedPOS are to provide:
« Common device architecture that is international and extends across vendors, platforms, and retail format.
- Standards for application to device interfaces in an operating system independent and language neutral manner.

* Reduced implementation costs for vendors to support multiple (for example, Windows/COM, Windows/.NET,
and Java) platforms because they share the same architecture. This should produce speed to market for
innovation.

« An environment avoiding competition between standards while encouraging competition among
implementations.

Dependencies

Success of the goals of UnifiedPOS depends upon platform specific standard committees (such as JavaPOS and
OLE for Retail POS (OPOS) technical committees) to advance the architecture into platform specific
documentation, API definitions and implementations.

The specific technical implementations require:
« Platform specific implementation references. (See Annexes A, B, C, & D.)
« Source files, including:
« Definition files. Various interface and class files described in the standard.

- Example files. These will include a set of sample Control classes, to illustrate the interface presented to an
application.

1.1.4

1.1.5

UnifiedPOS Relationship to Conforming Platform Mappings

The UnifiedPOS specification formalizes and documents the underlying retail device architecture, shared by the
JavaPOS, OPOS, and POS for .NET standards, in an operating system independent and language neutral manner.
The first release of the UnifiedPOS Specification was Version 1.4.

The JavaPOS, OPOS, and POS for .NET standards have been established as conformant platform mappings of
the UnifiedPOS specification. In UnifiedPOS Version 1.6, appendices were added in order to document specific
implementation details for each of these platforms. JavaPOS will be recognized as the only UnifiedPOS
conformant, operating system neutral, Java language mapping (See Annex B). OPOS will be recognized as the
only UnifiedPOS conformant language neutral COM mapping (See Annex A). POS for .NET will be recognized
as the only UnifiedPOS conformant language neutral .NET mapping (See Annex C). Future UnifiedPOS
mappings to platforms other than Java, COM, and .NET will be included as appendices to the UnifiedPOS
specification as they become available.

This acceptance of the existing standards is based on their close conformance to a common design model.
Historically, the OPOS standards provided device interfaces for Win32-based terminals using ActiveX
technologies. The OPOS standard was used as the starting point for JavaPOS, due to:

« Similar purposes. Both standards involved developing device interfaces for a segment of the software
community.

* Reuse of device models. The majority of the OPOS documentation specifies the properties, methods, events,
and constants used to model device behavior. These behaviors are in large part independent of programming
language.

* Reduced learning curve. Many application and hardware vendors are already familiar with using and
implementing the OPOS APIs.

Therefore, retail application developers and Service writers can continue to write their code in conformance with
one or both of the JavaPOS or OPOS standards. The content of the UnifiedPOS specification, however, along
with the appropriate annex, will constitute the definition of how an application can be developed to meet the
UnifiedPOS standard. The standards committees do not intend to release future versions of the specific OPOS
and JavaPOS documents after the Version 1.6 specification.

The UnifiedPOS specification is also the basis for the POS for .NET implementation, which similarly adheres to
this common approach for the access and control of POS peripherals.

Who Should Read This Document

The UnifiedPOS Architecture is targeted to the standard committees that will provide the language specific
mapping and Programmer’s Guides. However, the application developer who will use POS devices, the system
developer who will write POS device code, and the suppliers of POS devices for retail may be interested in the
device characteristics as portrayed in this document.

This guide assumes that the standard committee member is familiar with the following:
* General characteristics of POS peripheral devices.
* UnifiedPOS terminology and architecture.

* UML for reading the design.

Unified POS, V1.16.1

1.2

1.2.1

1211

Unified POS, v1.16.1

Conformance

Unified POS

The UnifiedPOS specification formalizes and documents the underlying retail device architecture, shared by
JavaPOS, OPOS, and POS for .NET, which provide standard platform specific mappings of the UnifiedPOS
specification. JavaPOS, OPOS and POS for .NET also provide base classes and/or interfaces to be used for
implementations of UnifiedPOS conformant device interfaces. To be UnifiedPOS conformant POS applications
and device vendors have to provide implementation using an appropriate platform-specific mapping.

ARTS IP Policy

This specification was originally created under the ARTS IP Policy which can be found

here: https://www.omg.org/cgi-bin/doc?retail/2017-12-01

Summary Points

1. The Policy is applicable to all members of ARTS and acceptance of this Policy will be a condition of ARTS
membership. Non-members wishing to attend technical meetings must agree in writing to accept the Policy.

2. The Policy is applicable to the Data Model, ARTS XML, UnifiedPOS and future technical committees
established by the ARTS Board to develop specifications.

3. The Policy permits members that disclose intellectual property to reserve rights on how they will license its
use.

4. The Policy encourages members to immediately disclose upon discovery of intellectual property that maybe
embedded in ARTS specifications.

5. No member is required to conduct patent searches to search for intellectual property within ARTS
specification(s.)

6. Members who participate in the development of ARTS specifications must assign representatives with
reasonable knowledge in the field of work.

7. The Policy establishes defined periods for review of developing draft specifications for both technical
accuracy and intellectual property. A public review period is also provided.

8. Members who do not disclose intellectual property within an ARTS specification before that specification is
approved by the ARTS Board, must provide a 12-month royalty-free license to all implementers, during which
time ARTS may modify the specification to remove the infringing IP and each implementer may make
appropriate resolution.

9. There is a default reasonable and non-discriminatory (“RAND”) licensing obligation for members of Work
teams and Technical Committees with only limited exceptions.UnifiedPOS specification formalizes and
documents the underlying retail device.

1.3 Architectural Overview

1.3.1 General

UnifiedPOS defines a multi-layered architecture in which a POS Application interacts with the Physical or
Logical Device through the UnifiedPOS Control layer.

POS Application

UnifiedPOS Device

y
UnifiedPOS Control

¢

UnifiedPOS Service

Y
Physical (or logical) Device

1.3.2 Architectural Components

The POS Application (or Application) is an Application that uses one or more UnifiedPOS devices.

UnifiedPOS Devices are divided into categories called Device Categories, such as Cash Drawer and POS
Printer.

Each UnifiedPOS Device is a combination of these components:
« Control for a device category. The Control class provides the interface between the Application and the device

category. It contains no graphical component and is therefore invisible at runtime.

The Control has been designed so that all implementations of a device category’s control will be compatible.
Therefore, the Control can be developed independently of the Service for the same device category (they can
even be developed by different companies).

6 Unified POS, V1.16.1

« Service, which is a component called by the Control through the Service Interface. The Service is used by the
Control to implement UnifiedPOS-prescribed functionality for a Physical Device. It can also call special event
methods provided by the Control to deliver events to the Application.

A set of Service classes can be implemented to support Physical Devices with multiple Device Categories.

The Application manipulates the Physical Device (the hardware unit or peripheral) by calling the platform
specific APIs which conform to the UnifiedPOS standard. Some Physical Devices support more than one device
category. For example, some POS Printers include a Cash Drawer kickout, and some Bar Code Scanners include
an integrated Scale. However with UnifiedPOS, an application treats each of these device categories as if it were
an independent Physical Device. The UnifiedPOS Device standard developer is responsible for presenting the
peripheral in this way.

Note: Occasionally, a Device may be implemented in software with no user-exposed hardware, in which case it
is called a Logical Device.

1.3.3 Use of UML
The UnifiedPOS standard includes the use of UML terminology and diagrams to define device categories.
Following is a brief description of the extensions to UML to make it better fit the UnifiedPOS architecture (this
extension is expected and allowed by the UML, see Booch98 reference in the “UML References” in Annex D).
Should any discrepancies exist between the UML diagrams and the specification text, then the text takes
precedence.
Applies to UML .
Name Symbol Meaning
<<capability>> Class attribute stereotype which flags the attribute as a UnifiedPOS capability
<<prop>> Class attribute stereotype which flags the attribute as a UnifiedPOS property
stereotype to indicate that the class/interface will be mapped to a UnifiedPOS
<<event>> Class event which in turn is mapped to a JavaPOS event class or a COM event for
OPOS or a .NET event
constraint that indicates this Device Service or Service Object follows the
exclusive-use Class exclusive-use behavior defined in the UnifiedPOS documentation in section
“Exclusive-Use Devices” in Chapter 1.
constraint that indicates this Device Service or Service Object follows the
sharable Class sharable behavior defined in the UnifiedPOS documentation in section
“Sharable Devices” in Chapter 1.
constraint that indicates the mutability of the attribute. For example, in
read-only JavaPOS, read-only attributes translate to having a getter method for the
. Class attribute attribute and read-write attributes have getter and setter methods for
read-write attributes

Unified POS, v1.16.1

Name

Applies to UML
Symbol

Meaning

access after
<open>|
<open-claim>|
<open-enable>|

<open-claim-
enable>

Class attribute

constraint that indicates this attribute is accessible when the service is in the
state indicated. For example {access after opened-claim-enable} indicates
that the attribute is accessible when the service has been opened, claimed and
enabled in the order indicated.

raises-exception

Class operation

constraint that indicates this method can throw an exception if the
implementation language supports exception; otherwise, some mechanism is
used to notify the application that an invalid condition occurred. A value is
returned to indicate the error.

use after

<open>|
<open-claim>|
<open-enable>|

<open-claim-
enable>

Class operation

constraint that indicates this operation is accessible when the service is in the
state indicated. For example {use after open-claim-enable} indicates that the
method is accessible when the service has been opened, claimed and enabled
in the order indicated.

1.3.3.1 Package Diagram

UnifiedPOS uses Static Structure Diagrams to define common interfaces.

]

upos

]

events

(from upos)

Note: This package diagram is included to give some logical structure to the interfaces in the UnifiedPOS
interfaces UML diagrams. Some implementations may have a corresponding equivalence for the packages and
some may not. Also, note that the name ‘upos’ may be replaced by an implementation specific prefix (e.g.,
JavaPOS uses Java packages and maps the prefix ‘upos’ to ‘jpos’).

Unified POS, V1.16.1

1.3.4 Data Types

Updated in Release 1.13

UnifiedPOS uses textual references to data types which will be defined for specific language usage:

POS for

UnifiedPOS JavaPOS OPOS NET UML UnifiedPOS text Usage
boolean boolean BOOL bool in boolean Boolean true or false.
boolean by boolean[1] BOOL* Notused inout boolean Mutable boolean.
reference *x
binary byte[] BSTR byte[] in binary Immutable array of bytes.
binary by byte[1][] BSTR* Notused inout binary Mutable array of bytes. (Both its size
reference ok and contents may be modified.)
array of byte[][] SAFEARRAY Notused in binary[] Immutable array of array of bytes.
binary of BSTR *ok
byte byte LONG byte in byte 8-bit integer. (See HardTotals, setAll
method.)
int32 int LONG int or in int32 32-bit integer.
enum
int32 array int[] SAFEARRAY int[] in int32 array Immutable array of 32-bit integers.
of LONG
int32 array int[1][] SAFEARRAY Notused inout int32 Mutable array of 32-bit integers.
by reference * *x array (Both its size and contents may be
of LONG modified.)
int32 by int[1] LONG* Notused inout int32 Mutable 32-bit integer.
reference *ok
currency long CURRENCY decimal in currency 64-bit integer. Sometimes used for
or CY currency values where 4 decimal
places are implied. E.g., if the integer
is “1234567”, then the currency value
is “123.4567”. See footnote?
currency by long[1] CURRENCY* Notused inout Mutable 64-bit integer.
reference or CY* *x currency
string String BSTR string in string Text character string. See footnote?
string by String[1] BSTR* Notused inout string Mutable text character string. (Both its
reference ok size and contents may be modified.)
array of Point[] BSTR Point[] inout point[] Immutable array of points. Used by
points Signature Capture.
object Object BSTR* object inout object An object. This will usually be
subclassed to provide a Service-
specific parameter.
nls String LONG Culturel in nls Operating System National Language
nfo Support data type.

Unified POS, v1.16.1

a. Six decimal place precision is required for all computations in conversion between currencies but is not required for the
representation of the solution.

b. For data elements within comma delimited string data, no leading or trailing whitespace is permitted, unless that whitespace is
part of the data element. Comma delimited string data is typically used for a series of numbers, in which no whitespace should
be included in the string.

For Java:

The convention of type[1] (an array of size 1) is used to pass a mutable basic type. This is required since Java’s primitive types, such as
int and boolean, are passed by value, and its primitive wrapper types, such as Integer and Boolean, do not support modification. For
strings and arrays, do not use a null value to report no information. Instead use an empty string (“”’) or an empty array (zero length). In
some chapters, an integer may contain a “bit-wise mask.” That is, the integer data may be interpreted one or more bits at a time. The
individual bits are numbered beginning with Bit 0 as the least significant bit.

** POS for .NET does not use “out” parameters, return values are used instead.

1.3.5 Device Behavior Models

1.3.5.1 Introduction to Properties, Methods, and Events

An application accesses a POS Device via platform specific APIs.

The three elements of UnifiedPOS standard for APIs are:

« Properties. Properties are device characteristics or settings. A type is associated with each property, such as
boolean or string. An application may retrieve a property’s value, and it may set a writable property’s value.

» Methods. An application calls a method to perform or initiate some activity at a device. Some methods require
parameters of specified types for sending and/or returning additional information.

« Events. A Device implementation may call back into the application via events. The application may need to
register for events. The mechanism to do this is implementation specific.

Properties (UML Attributes)

Note: For each interface a UML listing of the properties and methods of the interface will be included in a table.
The properties are indicated as attributes. The generic UML naming pattern for attributes is the following:

visibility Name: type-expression = default-value { property-string }
where:

visibility in this document is always public for application visible interfaces but is not explicitly
shown.

Name is the name of the attribute

type-expression is the type of the attribute, which is one of UnifiedPOS types defined in Intro-8.

default-value' the default value of the attributes in UML, (optional)

property-string property value to apply to the element. For attributes, we define two such strings:
read-only and read-write, which indicates the mutability of the attribute.

1. Not used by UnifiedPOS standard

10 Unified POS, V1.16.1

An example of a property attribute is as follows:

DeviceEnabled: boolean { read-write }
Methods (UML Operations)

The generic UML pattern for methods is the following:

visibility name (parameter-list): return-type-expr { property string }
where:

parameter - list is a comma separated list of formal parameters using the following generic UML
naming pattern:

kind name: type-expression (= default—value)l

where:

kind is either: ‘in,” ‘out,” or ‘inout’ with the default set to ‘in’ if absent

property-string is a property string to apply to the element. For methods an additional property
string called ‘raises-exception’ is defined which means that this method can throw the exception if
the implementation language supports exception; otherwise, some mechanism is used to notify the
application that an invalid condition occurred.

An example of a method operation is as follows:
open (logicalDeviceName: string): void { raises-exception }

Events (UML Interfaces)

Events are being modeled as UML classes which will possibly contain attributes stereotyped with the event
stereotype. The generic UML pattern for events is a UML box with the stereotype <<event>> (class diagram)
with the event name and a list of the properties. This representation is different from Properties and Methods.

<<event>>
xxEvent

where:

XxxEvent stands for the UnifiedPOS event name and the second compartment of the box would contain a list of
attributes for the event.

1.default-value is not used by the UnifiedPOS standard

Unified POS, v1.16.1 1"

1.3.5.2 Device Initialization and Finalization Updated in Release 1.11

12

Initialization

The first actions that an application must take to use a Device are:
« Obtain a reference to a Control,

« Prepare Control for the events that the application needs to receive, if necessary.

To initiate activity with the Physical Device, an application calls the Control’s open method:

The logicalDeviceName parameter specifies a logical device to associate with the Device. The open method
performs the following steps:

« Creates and initializes an instance of the proper Service class for the specified name.

- Initializes many of the properties, including the descriptions and version numbers of the Device.

More than one instance of a Control may have a Physical Device open at the same time. Therefore, after the
Device is opened, an application might need to call the claim method to gain exclusive access to it. Claiming the
Device ensures that other Control instances do not interfere with the use of the Device. An application can
release the Device to share it with another Control instance— for example, at the end of a transaction.

Before using the Device, an application must set the DeviceEnabled property to true. This value brings the
Physical Device to an operational state, while false disables it. For example, if a Scanner Device is disabled, the
Physical Device will be put into its non-operational state (when possible). Whether physically operational or not,
any input is discarded until the Device is enabled.

Initialization and Error Reporting Added in Release 1.11

Error conditions may require that a Service fail during one or more of the initialization APIs - open, claim, and/
or DeviceEnabled=true. The following are recommendations for initialization-time error handling by Service
implementers. These guidelines are not mandated, however, because of the wide variation in some hardware
devices and their initialization requirements, and due to variations in already released Services.

open Primary purpose: Initialize the software stack, including the creation of the Service and initialization
of its supporting software components.

1. The Service must fail an open API call if software initialization fails.
Example: Supporting software components are not installed or available, so fail the API call.

2. If the Service must probe the device in order to correctly set open-time properties (such as capabilities), then
the Service should fail an open API call if it cannot access the device.
Example: A Service supports several line display models and sets the UnifiedPOS capabilities after
communicating with the device. If the device’s port is not available or the device does not respond, then the
Service cannot complete its open work and will need to fail the API call.

3. For other cases, the Service should succeed the open API call and report a failure (if needed) later.
Example: A Service cannot open an RS232 port during open. If the previous case (#2) above does not apply,
then the Service should succeed the open and report the port open failure during claim, if the port is still not
available.

claimPrimary purpose: Acquire exclusive access to the device, for exclusive-use devices.

Unified POS, V1.16.1

1. The Service must fail a claim API call if another process has claimed the device and the claim timeout expires.

2. If the device is not accessible, then the Service should fail a claim API call.
Examples: A required communications or I/O port cannot be opened or claimed. The Service determines that
the device is not present or is offline. For each of these cases, the Service should fail the API call.

For other cases, the Service should succeed the claim API call. This specifically includes cases where runtime
faults exist.

Examples: A POSPrinter receipt station is out-of-paper, or the POSPrinter receipt station detects a printer jam.
These are runtime faults that occur from time to time during operation, and are user correctable. The Service
should succeed the claim. POSPrinter runtime faults should be reported (after DeviceEnabled=true) by
StatusUpdateEvents and/or by exceptions from APIs such as printNormal.

DeviceEnabled = true Primary purpose: Final preparation for operation and application use.

3. If the device is not accessible, then the Service should fail a DeviceEnabled= true API call. (Note that the
device may have been accessible at claim but is now inaccessible.)
Example: The Service determines that the device is not present or is offline, so the Service should fail the API
call.

4. For other cases, the Service should succeed the DeviceEnabled=true API call. This specifically includes
cases where runtime faults exist.
Examples: See claim case (#3) above.

An application developer must be prepared for failures at any of the initialization points. With the variations in
hardware devices and in their Service implementations, a well-written application will respond predictably to the
widest range of error conditions and their reporting as possible.

Retail devices may communicate with a POS terminal using a wide variety of ports, including RS232, RS485,
Parallel, USB, Ethernet, and Wireless. In addition, devices may be powered directly by the terminal or by an
external power source. These guidelines may be applied to all of these devices. Two examples with typical
initialization follow.
Example 1: Hand-held scanner attached to a terminal's powered RS232 port.

* open: Succeed if software initialization is successful.

* claim: Succeed if open was successful and if an attempt to communicate with the device is successful.

* DeviceEnabled = true: Succeed if claim was successful and if an attempt to communicate with the device is
successful.

* While enabled: If the device is unplugged from the powered RS232 port, then detect the power state change
and report to the application. If the device is later plugged back in, then detect the power state change and report
to the application. For many devices, power state changes can be accomplished by monitoring the RS232 DSR
signal. (Note that hot unplugging and plugging in with this port type is probably not recommended by the
hardware vendor.)

Example 2: Deck scanner/scale attached to a terminal's USB port, powered by a “brick.”
* open: Succeed if software initialization is successful.
* claim: Succeed if open was successful and if an attempt to communicate with the device is successful.

* DeviceEnabled = true: Succeed if claim was successful and if an attempt to communicate with the device is
successful.

Unified POS, v1.16.1 13

* While enabled: If the device is unplugged from the USB port or from its power source, then detect the power
state change and report to the application. If the device is later plugged back in, then detect the power state
change and report to the application. An operating system-specific mechanism detects power state changes,
such as an open, write, or read failure with specific failure statuses.

Notice that the general initialization handling is very similar, even though the second example will typically
require somewhat more logic within the Service to monitor and re-initialize the device connection.

Finalization

After an application finishes using the Physical Device, it should call the close method. If the DeviceEnabled
property is true, close disables the Device. If the Claimed property is true, close releases the claim on the device.

Before exiting, an application should close all open Devices to free device resources in a timely manner.
Summary

In general, an application follows this general sequence to open, use, and close a Device:
Obtain a Control reference.
Prepare for events if necessary.
Call the open method to instantiate a Service and link it to the Control.

Call the claim method to gain exclusive access to the Physical Device. Required for
exclusive-use Devices; optional for some sharable Devices. (See “Device Sharing Model”
on page 14 for more information).

Set the DeviceEnabled property to true to make the Physical Device operational. (For
sharable Devices, the Device may be enabled without first claiming it.)

Use the device.
Set the DeviceEnabled property to false to disable the Physical Device.
Call the release method to release exclusive access to the Physical Device.
Call the close method to unlink the Service from the Control.
Release events receipt if necessary

Remove the reference to the Control

1.3.6 Device Sharing Model

Devices fall into two sharing categories:
« Devices that are to be used exclusively by one Control instance.
« Devices that may be partially or fully shared by multiple Control instances.
Any Physical Device may be open by more than one Control instance at a time. However, activities that an

application can perform with a Control may be restricted to the Control instance that has claimed access to the
Physical Device.

14 Unified POS, V1.16.1

1.3.6.1

1.3.6.2

1.3.6.3

Exclusive-Use Devices

The most common device type is called an exclusive-use device. An example is the POS printer. Due to physical
or operational characteristics, an exclusive-use device can only be used by one Control at a time. An application
must call the Device’s claim method to gain exclusive access to the Physical Device before most methods,
properties, or events are legal. Until the Device is claimed and enabled, calling methods or accessing properties
may cause a failure condition to occur.

An application may in effect share an exclusive-use device by calling the Control’s claim method before a
sequence of operations, and then calling the release method when the device is no longer needed. While the
Physical Device is released, another Control instance can claim it.

When an application calls the claim method again (assuming it did not perform the sequence of close method
followed by open method on the device), some settable device characteristics are restored to their condition at
the release. Examples of restored characteristics are the line display’s brightness, the MSR’s tracks to read, and
the printer’s characters per line. However, state characteristics are not restored, such as the printer’s sensor
properties. Instead, these are updated to their current values.

Sharable Devices

Some devices are sharable devices. An example is the keylock. A sharable device allows multiple Control
instances to call its methods and access its properties. Also, it may deliver its events to multiple Controls. A
sharable device may still limit access to some methods or properties to the Control that has claimed it, or it may
deliver some events only to the Control that has claimed it.

Events Updated in Release 1.12

UnifiedPOS architecture uses events to inform the application of various activities or changes with the Device.
The five event types follow.

Event Class Description Supported When A Device
Category Supports...
DataEvent Input data has been placed into device class- Event-driven input
category properties.
ErrorEvent An error has occurred during event-driven input or Event-driven input
asynchronous output. -or-
Asynchronous output
OutputCompleteEvent An asynchronous output has successfully Asynchronous output
completed.
StatusUpdateEvent A change in the Physical Device’s status has Status change notification
occurred.
Devices may be able to report device power state.
See “Device Power Reporting Model,” page 22.
DirectlOEvent This event may be defined by a Service provider Always, for Service-specific use
for purposes not covered by the specification.

Unified POS, v1.16.1

15

The Service must enqueue these events on an internally created and managed queue. All events are delivered in
a first-in, first-out manner. (The only exception is that a special input error event is delivered early if some data
events are also enqueued. See “Device Input Model,” page 18.) Events are delivered by an internally created and
managed Service thread. The Service causes event delivery by calling an event firing callback method in the
Control, which then delivers the event to the application.

The following conditions cause event delivery to be delayed until the condition is corrected:
« The application has set the property FreezeEvents to true.
« The event type is a DataEvent or an input ErrorEvent, but the property DataEventEnabled is false. (See
“Device Input Model,” page 18.)

Unless specified otherwise, properties that convey device state information (e.g., JrnEmpty and
DrawerOpened) are kept current while the device is enabled, regardless of the setting of the FreezeEvents

property.
Rules for event queue management are:
« The Device may only enqueue new events while the Device is enabled.

« The Device delivers enqueued events until the application calls the release method (for exclusive-use devices)
or the close method (for any device), at which time any remaining events are deleted.

« For input devices, the clearInput method clears data and input error events.

« For output devices, the clearOQutput method clears data and output error events.
1.3.6.4 Errors
UnifiedPOS architecture deals with two kinds of errors as discussed in “Methods (UML Operations)” on page 11

and explanation of exceptions:

« Errors that are “invalid or bad invocations” which are recognized by the Service validation of the request.
Method invocations and property accesses may be valid or invalid. If the action is invalid, an invalid condition
is set and the application is notified in a fashion appropriate to the platform. For specific implementations,
OPOS would produce a ResultCode other than OPOS_SUCCESS and JavaPOS would produce an exception.

« Errors that are caused by errant device behavior and produce error events.

1.3.6.5 Error Codes Updated in Release 1.11

This section lists the general meanings of the error code property when an invalid condition occurs. In general,
the property and method descriptions in later chapters list error codes only when specific details or information
are added to these general meanings. In UML each error code is:

E_xxx : int32 { frozen }

The error code is set to one of the following values:

Value Meaning
E _CLOSED An attempt was made to access a closed Device.

16 Unified POS, V1.16.1

Unified POS, v1.16.1

E_CLAIMED

E NOTCLAIMED

E NOSERVICE

E DISABLED
E ILLEGAL

E_NOHARDWARE
E_OFFLINE
E_NOEXIST
E_EXISTS
E_FAILURE

E_TIMEOUT

E BUSY

E _EXTENDED

E DEPRECATED

E CLOSED
E CLAIMED

E NOTCLAIMED

E DISABLED

An attempt was made to access a Physical Device that is claimed by
another Control instance. The other Control must release the Physical
Device before this access may be made. For exclusive-use devices, the
application will also need to claim the Physical Device before the access
is legal.

An attempt was made to access an exclusive-use device that must be
claimed before the method or property set action can be used.

If the Physical Device is already claimed by another Control instance,
then the status E_ CLAIMED is returned instead.

The Control cannot communicate with the Service, normally because of
a setup or configuration error.

Cannot perform this operation while the Device is disabled.

An attempt was made to perform an illegal or unsupported operation
with the Device, or an invalid parameter value was used.

The Physical Device is not connected to the system or is not powered on.
The Physical Device is off-line.

The file name (or other specified value) does not exist.

The file name (or other specified value) already exists.

The Device cannot perform the requested procedure, even though the
Physical Device is connected to the system, powered on, and on-line.

The Service timed out waiting for a response from the Physical Device,
or the Control timed out waiting for a response from the Service.

The current Service state does not allow this request. For example, if
asynchronous output is in progress, certain methods may not be allowed.

A device category-specific error condition occurred. The error condition
code is held in an extended error code.

The requested operation can not be performed since it has been
deprecated.

When more than one error code is valid, the most descriptive code
should be selected. For example, the closed, claimed, not claimed, and
disabled errors must follow this order of error reporting precedence,
from higher to lower:

The device must be opened.

The device is opened but not claimed. Another application has the device
claimed, so it cannot be claimed at this time.

The device is opened but not claimed. No other application has the device
claimed, so it can and must be claimed.

The device is opened and claimed (if this is an exclusive-use device), but not
enabled.

17

Extended Error Code

The extended error code is set as follows:

« When the error code is E EXTENDED, the extended error code is set to a device category-specific value, and
must match one of the values given in this document under the appropriate device category chapter.

» When the error code is any other value, the extended error code may be set by the Service to any Service-
specific value. These values are only meaningful if an application adds Service-specific code to handle them.

1.3.6.6 Device Input Model Updated in Release 1.13

The standard UnifiedPOS input model for exclusive-use devices is event-driven input. Event-driven input allows
input data to be received after DeviceEnabled is set to true. Received data is enqueued as a DataEvent, which
is delivered to an application.

If the AutoDisable property is true when data is received, then the Device will automatically disable itself,
setting DeviceEnabled to false. This will inhibit the Device from enqueuing further input and, when possible,
physically disable the device.

When the application is ready to receive input from the Device, it sets the DataEventEnabled property to true.
Then, when input is received (usually as a result of a hardware interrupt), the Device delivers a DataEvent. (If
input has already been enqueued, the DataEvent will be delivered immediately after DataEventEnabled is set
to true.) The DataEvent may include input status information through its Status property. The Device places the
input data plus other information as needed into device category-specific properties just before the event is
delivered.

Just before delivering this event, the Device disables further data events by setting the DataEventEnabled
property to false. This causes subsequent input data to be enqueued by the Device while an application processes
the current input and associated properties. When an application has finished the current input and is ready for
more data, it enables data events by setting DataEventEnabled to true.

(Added in 1.13) If an application causes disabling of the device (by setting DeviceEnabled=false, or by setting
AutoDisable=true and a subsequent input event is enqueued), then it may need logic to ignore additional data
until it reenables the device. In particular, input that is already received and enqueued will continue to be
delivered (unless the clearInput, release or close API is called, at which time undelivered input is discarded).
As stated in the Events section, the application may control the input delivery by using the DataEventEnabled
or FreezeEvents properties.

Error Handling Updated in Release 1.12

18

If the Device encounters an error while gathering or processing event-driven input, then the Device:
« Changes its State to S ERROR.

+ Enqueues an ErrorEvent with locus EL_INPUT to alert an application of the error condition. This event is
added to the end of the queue

« If one or more DataEvents are already enqueued for delivery, an additional ErrorEvent with locus
EL _INPUT DATA is enqueued before the DataEvents, as a pre-alert.

This event (or events) is not delivered until the DataEventEnabled property is true, so that orderly
application sequencing occurs.

Unified POS, V1.16.1

Unlike a DataEvent, the Device does not disable further DataEvents or input ErrorEvents; it leaves
the DataEventEnabled property value at true. Note that the application may set DataEventEnabled to
false within its event handler if subsequent input events need to be disabled for a period of time.

ErrorLocus

Description

EL_INPUT DATA

Only delivered if the error occurred when one or more DataEvents are already enqueued.

This event gives the application the ability to immediately clear the input, or to optionally
alert the user to the error before processing the buffered input. This error event is enqueued
before the oldest DataEvent, so that an application is alerted of the error condition
quickly.

This locus was created especially for the Scanner: When this error event is received from
a Scanner Device, the operator can be immediately alerted to the error so that no further
items are scanned until the error is resolved. Then, the application can process any backlog
of previously scanned items before error recovery is performed.

EL _INPUT

Delivered when an error has occurred and there is no data available.

If some input data was buffered when the error occurred, then an ErrorEvent with the
locus EL_INPUT_DATA was delivered first, and then this error event is delivered after
all DataEvents have been delivered.

If the Service has partial data that can be delivered with an ErrorEvent, the related data
properties should be filled in prior to delivery of the event with this ErrorLocus. If there
is no partial data to be delivered with the ErrorEvent, the data properties should be
cleared prior to delivery of this event.

Note: This EL_INPUT event is not delivered if: an EL_INPUT _DATA event was

delivered and the application event handler responded with an ER_CLEAR error response.

The application can cause the ErrorResponse property to be set one of the following:

ErrorResponse

Description

ER_CLEAR

Clear the buffered DataEvents and ErrorEvents and exit the error state, changing
State to S_IDLE.

This is the default response for locus EL_INPUT.

ER_CONTINUEINPUT

This response acknowledges the error and directs the Device to continue processing.
The Device remains in the error state, and will deliver additional data events as
directed by the DataEventEnabled property. When all input has been delivered and
the DataEventEnabled property is again set to true, another ErrorEvent is
delivered with locus EL_INPUT.

This is the default response when the locus is EL_INPUT_DATA, and is legal only
with this locus.

ER RETRY

This response directs the Device to retry the input. The error state is exited, and State
is changed to S_IDLE.

This response may only be selected when the device chapter specifically allows it and
when the locus is EL_INPUT. An example is the scale.

Unified POS, v1.16.1

19

1.3.6.7

20

The Device exits the Error state when one of the following occurs:
« The application returns from the EL_INPUT ErrorEvent.
« The application calls the clearInput method.

« The application returns from the EL_ INPUT DATA ErrorEvent with ErrorResponse set to ER_ CLEAR.
Miscellaneous Updated in Release 1.10

For some Devices, the Application must call a method to begin event driven input. After the input is received by
the Device, then typically no additional input will be received until the method is called again to reinitiate input.
Examples are the MICR and Signature Capture devices. This variation of event driven input is sometimes called
“asynchronous input.”

The DataCount property contains the number of DataEvents enqueued by the Device.

Calling the clearInput method deletes all input enqueued by a Device. clearInput may be called after open for
sharable devices and after claim for exclusive-use devices.

Calling the clearInputProperties method sets all data properties, that were populated as a result of firing a
DataEvent or ErrorEvent, back to their default values. This call does not reset the DataCount or State
properties.

The general event-driven input model does not specifically rule out the definition of device categories containing
methods or properties that return input data directly. Some device categories define such methods and properties
in order to operate in a more intuitive or flexible manner. An example is the Keylock device. This type of input
is sometimes called “synchronous input.”

Device Output Models

The UnifiedPOS output model consists of two output types: synchronous and asynchronous. A device category
may support one or both types, or neither type.

Synchronous Output

The application calls a category-specific method to perform output. The Device does not return until the output
is completed; this means the physical device has performed the intended operation. For example the printer has
successfully transferred all the output data as ink on the paper.

This type of output is preferred when device output can be performed relatively quickly. Its merit is simplicity.
Asynchronous Output Updated in Release 1.13

The application calls a category-specific method to start the output. The Device validates the method parameters
and produces an error condition immediately if necessary. If the validation is successful, the Device does the
following:

1. Buffers the request in program memory, for delivery to the Physical Device as soon as the Physical Device can
receive and process it.

Unified POS, V1.16.1

2. Sets the OutputID property to a unique integer identifier for this request. (For more information about the
OutputID property, see Chapter 2.)

3. Returns as soon as possible.

When the Device successfully completes a request, an QutputCompleteEvent is enqueued for delivery to the
application. A property of this event contains the output ID of the completed request. The application should
compare the returned OutputCompleteEvent property OutputID value with the OutputID value set by the
asynchronous process method call used to send the data in order to track what data has been successfully sent to
the device. If the request is terminated before completion, due to reasons such as the application calling the
clearOutput method or responding to an ErrorEvent with a ER_ CLEAR response, then no
OutputCompleteEvent is delivered.

If an error occurs while processing a request, an ErrorEvent is enqueued which will be delivered to the
application after the events already enqueued, including OutputCompleteEvents (according to the normal Event
delivery rules on page 15). No further asynchronous output will occur until the event has been delivered to the
application. If the response is ER_CLEAR, then outstanding asynchronous output is cleared. If the response is
ER_RETRY, then output is retried; note that if several outputs were simultaneously in progress at the time that
the error was detected, then the Service may need to retry all of these outputs.

This type of output is preferred when device output requires slow hardware interactions. Its merit is perceived
responsiveness, since the application can perform other work while the device is performing the output.

Note: Asynchronous output is always performed on a first-in first-out basis.
1.3.6.8 Device Power Reporting Model Updated in Release 1.8

Applications frequently need to know the power state of the devices they use. Note: This model is not intended
to report Workstation or POS Terminal power conditions (such as “on battery” and “battery low”). Reporting of
these conditions is now managed by the POSPower device category.

Model

UnifiedPOS architecture segments device power into three states:
« ONLINE. The device is powered on and ready for use. This is the “operational” state.
+ OFF. The device is powered off or detached from the terminal. This is a “non-operational” state.

« OFFLINE. The device is powered on but is either not ready or not able to respond to requests. It may need to
be placed online by pressing a button, or it may not be responding to terminal requests. This is a “non-
operational” state.

In addition, one combination state is defined:

« OFF_OFFLINE. The device is either off or offline, and the Service cannot distinguish these states.

Power reporting only occurs while the device is open, claimed (if the device is exclusive-use), and enabled.

Unified POS, v1.16.1 21

22

Note - Enabled/Disabled vs. Power States

These states are different and usually independent. UnifiedPOS defines “disabled” /
“enabled” as a logical state, whereas the power state is a physical state. A device may
be logically “enabled” but physically “offline.” It may also be logically “disabled” but
physically “online.” Regardless of the physical power state, UnifiedPOS only reports
the state while the device is enabled. (This restriction is necessary because a Service
typically can only communicate with the device while enabled.)

If a device is “offline,” then a Service may choose to fail an attempt to “enable” the
device. However, once enabled, the Service may not disable a device based on its power
state.

Unified POS, V1.16.1

1.3.6.9 Power State Diagram

[Device is closed] ﬁ/)
PowerState Unknown ///>\‘
t PS_UNKNOWN ' ‘

|
Device is closed]
|

| |

| Known PowerStates

/ [Device is Off or Offline] Off/Offline States
v +—
PowerState Online o= PowerState Standard Off/Offline
‘ PS_ONLINE PS_OFF_OFFLINE
‘\
[Dem [CapPowerReporti‘ng == PR_ADVANCED |
V

Advanced Off/Offline States

PowerState Advanced Offline
PS_OFFLINE

|
[Device is Off] (; [Device is Offline]

‘ PowerState Advanced Off ‘

PS_OFF

1.3.6.10 Power Properties

The UnifiedPOS device power reporting model adds the following common elements across all device classes.

« CapPowerReporting property. Identifies the reporting capabilities of the device.
The UML pattern for the property is:
PR _xxx : int32 { frozen }
This property may be one of:

* PR_NONE. The Service cannot determine the state of the device. Therefore, no power reporting is possible.

* PR_STANDARD. The Service can determine and report two of the power states - OFF_OFFLINE (that is,
off or offline) and ONLINE.

* PR_ADVANCED. The Service can determine and report all three power states - ONLINE, OFFLINE, and
OFF.

Unified POS, v1.16.1 23

* PowerState property. Maintained by the Service at the current power condition, if it can be determined. The
UML pattern for the property is:
PS_xxx : int32 { frozen }

This property may be one of:

«PS_ UNKNOWN
«PS_ONLINE
«PS_OFF
«PS_OFFLINE
«PS_OFF_OFFLINE

« PowerNotify property. The application may set this property to enable power reporting via

StatusUpdateEvents and the PowerState property. This property may only be changed while the device is
disabled (that is, before DeviceEnabled is set to true). This restriction allows simpler implementation of power
notification with no adverse effects on the application. The application is either prepared to receive
notifications or doesn't want them, and has no need to switch between these cases. The UML pattern for the
property is:

PN _xxx : int32 { frozen }

This property may be one of:

* PN_DISABLED
* PN _ENABLED

1.3.6.11 Power Reporting Requirements for DeviceEnabled

24

The following semantics are added to DeviceEnabled when

CapPowerReporting is not PR NONE, and
PowerNotify is PN ENABLED:

When the Control changes from DeviceEnabled false to true, then begin monitoring the power state:

If the Physical Device is ONLINE, then PowerState is set to PS_ ONLINE. A StatusUpdateEvent is
enqueued with its Status property set to SUE_ POWER ONLINE.

If the Physical Device’s power state is OFF, OFFLINE, or OFF_OFFLINE, then the Service may choose to fail
the enable by notifying the application with error code E NOHARDWARE or E_OFFLINE.

However, if there are no other conditions that cause the enable to fail, and the Service chooses to return success
for the enable, then PowerState is set to PS_OFF, PS_OFFLINE, or PS_OFF_OFFLINE.

A StatusUpdateEvent is enqueued with its Status property set to SUE_ POWER_OFF,
SUE POWER OFFLINE, or SUE POWER OFF OFFLINE.

When the Device changes from DeviceEnabled true to false, UnifiedPOS assumes that the Device is no longer
monitoring the power state and sets the value of PowerState to PS UNKNOWN.

Unified POS, V1.16.1

1.3.6.12 Device Information Reporting Model Added in Release 1.8

POS Applications, as well as System Management agents, frequently need to monitor the current configuration
and usage metrics of the various POS devices that are attached to the POS terminal.

Examples of configuration data are the device’s Serial Number, Firmware Version, and Connection Type.
Examples of usage data for the POSPrinter device are the Number of Lines Printed, Number of Hours Running,
Number of paper cuts, etc. Examples of usage data for the Scanner device are the Number of scans, Number of
Hours Running, etc. Examples of usage data for the MSR device are the Number of successful swipes, Number of
swipes resulting in errors, Number of Hours Running, etc. See below for examples of XML definitions of the
device statistics accumulated per POS device category.

In some cases, the data may be accumulated and stored within the device itself. In other cases, the data may be
accumulated by the Service and stored, possibly on the POS terminal or store controller.

In order for multiple applications (for example a POS application and a System Management application) to
obtain statistics from the same device, proper care must be taken by both applications so that the device can be
made accessible when required. This is done by using the claim method and by setting DeviceEnabled to true
when access to a device is required and then setting DeviceEnabled to false and using the release method when
access to the device is no longer needed. Coordination of device access via this mechanism is the responsibility
of the applications themselves.

Statistics Reporting Properties and Methods

The UnifiedPOS device information reporting model adds the following common properties and methods across
all device classes.

- CapStatisticsReporting property. Identifies the reporting capabilities of the device. When
CapStatisticsReporting is false, then no statistical data regarding the device is available. This is equivalent to
Services compatible with prior versions of the specification. When CapStatisticsReporting is true, then some
statistical data for the device is available.

- CapUpdateStatistics property. Defines whether gathered statistics (or some of them) can be reset/updated by
the application. This property is only valid if CapStatisticsReporting is true. When CapUpdateStatistics is
false, then none of the statistical data can be reset/updated by the application. Otherwise, when
CapUpdateStatistics is true, then (some of) the statistical data can be reset/updated by the application.

resetStatistics method. Can only be called if both CapStatisticsReporting and CapUpdateStatistics are true.
This method resets one, some, or all of the resettable device statistics to zero.

retrieveStatistics method. Can only be called if CapStatisticsReporting is true. This method retrieves one,
some, or all of the accumulated statistics for the device.

updateStatistics method. Can only be called if both CapStatisticsReporting and CapUpdateStatistics are
true. This method updates one, some, or all of the resettable device statistics to the supplied values.

XML Definitions for POS Device Statistics
The XML files containing the UnifiedPOS defined statistics for each device category are provided as downloads

from the web sites that also host this specification. These statistics can be referenced individually by name or as
a group using the “U_” string as (part of) the parameter to the statistics methods.

Unified POS, v1.16.1 25

Manufacturers/Service providers can add their specific statistics in the provided “ManufacturerSpecific” section.
These statistics can be referenced individually by name or as a group using the “M_" string as (part of) the
parameter to the statistics methods.

The following table contains the definitions of the information contained in the UnifiedPOS defined
Devicelnformation section covering all device categories.

<Devicelnformation> . L.

XML Definition Name Definition description
UnifiedPOSVersion Version of the UnifiedPOS specification supported
DeviceCategory Device category (e.g., POSPrinter)
ManufacturerName Device manufacturer’s name
ModelName Device model name
SerialNumber Device serial number
ManufactureDate Device manufacture date
MechanicalRevision Device hardware revision
FirmwareRevision Device firmware revision
Interface Device hardware interface (e.g., serial, USB)
InstallationDate Device installation date

The following is an example of the XML file that describes the “UnifiedPOS” defined statistics for the
CashDrawer device category.

<?xml version='1.0" ?>
<UPOSStat version=71.13.0" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance” xmlns="http://www.omg.org/UnifiedPOS/namespace/”
xsi:schemalLocation="http://www.omg.org/UnifiedPOS/namespace/UPOSStat.xsd”>
<Event>
<Parameter>
<Name>DrawerGoodOpenCount</Name>
<Value>1353</Value>
</Parameter>
<Parameter>
<Name>DrawerFailedOpenCount</Name>
<Value>2</Value>
</Parameter>
<ManufacturerSpecific>
<Name>MyPersonalStat</Name>
<Value>14.32</Value>
<unitofmeasure>meters</unitofmeasure>
</ManufacturerSpecific>
</Event>

26 Unified POS, V1.16.1

<Equipment>
<UnifiedPOSVersion>1.13</UnifiedPOSVersion>
<DeviceCategory UPOS="”CashDrawer” />
<ManufacturerName>Cashdrawers R Us</ManufacturerName>
<ModelName>CD-123</ModelName>
<SerialNumber>12345</SerialNumber>
<ManufactureDate>1999-12-31</ManufactureDate>
<MechanicalRevision>1A</MechanicalRevision>
<FirmwareRevision>1.0 Rev. B</FirmwareRevision>
<Interface>RS232</Interface>
<InstallationDate>2000-03-01</InstallationDate>

</Equipment>

</UPOSStat>

The most up-to-date files defining the XML tag names that conform to the ARTS Data

Dictionary and example schemas for the statistics for all device categories can be
downloaded from the ARTS web site at http://retail.omg.org

1.3.6.13 Update Firmware Device Model Added in Release 1.9

POS Applications frequently require the ability to update the firmware in the various POS devices that are
attached to the POS terminal. This model defines a consistent application interface for updating the firmware in
a device controlled by a UnifiedPOS control.

This model has the following capabilities:
« A property, CapUpdateFirmware, that indicates whether a device supports firmware updating.

« A property, CapCompareFirmwareVersion, that indicates whether a firmware file’s version can be compared
against the firmware version of the device.

+ A method, updateFirmware, to perform an asynchronous update of the firmware in a device.

+ A method, compareFirmwareVersion, to compare the firmware file’s version against the firmware version of
the device.

« Additional StatusUpdateEvent Status values to report the progress of an asynchronous update firmware
process.

The update firmware process is an asynchronous operation that reports its progress via StatusUpdateEvents.
This update firmware process applies to all device categories defined in UnifiedPOS.

The means by which a Service actually updates the firmware in the device is not covered by this document, only
the means by which the update firmware process is started and progress is reported.

1.3.6.14 Device States

UnifiedPOS defines a property State with the following values:

Unified POS, v1.16.1 27

http://www.nrf-arts.org
http://www.nrf-arts.org

S_CLOSED
S_IDLE

S BUSY
S_ERROR

The State property is set as follows:
« State is initially S CLOSED.

« State is changed to S_IDLE when the open method is successfully called.

- State is set to S BUSY when the Service is processing output. The State is restored to S_IDLE when the

output has completed.

« The State is changed to S ERROR when an asynchronous output encounters an error condition, or when an

error is encountered during the gathering or processing of event-driven input.

After the Service changes the State property to S ERROR, it notifies the application of this error. The
properties of this event are the error code and extended error code, the locus of the error, and a mutable

response to the error.

1.3.6.15 Device State Diagram

Closed
State == S_CLOSED

i)
/clos%
|

28

Opened
/open

[async output in progress]

Idle - T~ Busy
State == S_IDLE | _ State == S_BUSY
-

[async\aﬁtput done]

event done and async output]

\

\[async outplterrororinput event error]

ut]\

‘ Error ‘

[error eventdone and no async o

State == S_ERROR

Unified POS, V1.16.1

1.3.6.16 Version Handling

As UnifiedPOS evolves, additional releases will introduce enhanced versions of some Devices. UnifiedPOS
imposes the following requirements on Control and Service versions:

« Control requirements. A Control for a device category must operate with any Service for that category, as
long as its major version number matches the Service's major version number. If they match, but the Control's
minor version number is greater than the Service’s minor version number, then the Control may support some
new methods or properties that are not supported by the Service’s release. If an application calls one of these
methods or accesses one of these properties, the application will be notified of an error condition
(E_ NO_SERVICE).

« Service requirements. A Service for a device category must operate with any Control for that category, as
long as its major version number matches the Control's major version number. If they match, but the Service's
minor version number is greater than the Control's minor version number, then the Service may support some
methods or properties that cannot be accessed from the Control.

When an application wishes to take advantage of the enhancements of a version, it must first determine that the
Control and Service are at the proper major version and at or greater than the proper minor version. The versions
are reported by the properties DeviceControlVersion and DeviceServiceVersion.

1.3.6.17 Deprecation Handling Added in Release 1.11

In order to be able to rectify misunderstandings and/or ambiguities in the specification, a method of deprecation
is required in order to eliminate these items over time.

Deprecation can be applied to Properties and Methods, as well as parameters, constants, and enumerations.

When an element is marked as deprecated, then Service providers are required to support the element’s
functionality for the following two minor releases of the standard. Starting with the third release of the standard
after an element has been marked as deprecated, usage of the element will result in an E DEPRECATED status.

When an element is marked as deprecated, then support for the element will be removed from the standard in the
next major release of the standard after it is marked as deprecated.

All deprecated elements and the related versions when they were first marked as deprecated are listed in Annex
H, Deprecation History on page H-1.

1.3.6.18 Hydra Device Considerations Updated in Release 1.12
Initial Connectivity Model

When the development of the POS peripheral standard began, it was decided that the most flexible methodology
would be to have an application be able to communicate to a peripheral through a two-layer process. Since the
Microsoft’s COM platform was the first supported architecture, Control Object and Service Object names were
chosen. Later when Java was defined and the technology used precluded the use of “objects” as defined in the
Windows world, the names were closely linked using the terminology Device Control and Device Service.
Functionality however at the higher, abstracted level, remained the same.

Unified POS, v1.16.1 29

30

Control Object or Device Control (Control)

A thin layer of software was defined that would allow for what is commonly called “connecting the pipes”
wherein a communication port would be opened and a device name would be assigned so that the application is
able to communicate to the peripheral using that device name.

Service Object or Device Service (Service)

This incorporates usually vendor-specific code that interfaces with the peripheral device to allow for accessing,
monitoring, processing, all the functionality of the peripheral device and exposing it to a common set of
properties, methods, and events that an application needs to interact with the peripheral.

For mono-function peripheral devices, the process is very straightforward. In the most simplistic system one
instance of a Control is instantiated to connect to the Service. As example for a simple POSPrinter:

Note: only one physical connection port (RS-232 for example) is used in this example.

Application

A

Control

A

Service
Service for Functionality of Peripheral
Device and supports Physical

Connection to the Peripheral Device
A

A 4

POS Receipt
Printer

Keeping things simple but adding another level of complexity is the case when more than one application needs
to use the device. In this case, another Control is instantiated to the peripheral Service and all applications need
to recognize that the peripheral is capable of being shared (for this example, assuming a shareable device) and
utilize the claim and release methodology that the standard provides. In the POSPrinter example, this would look
like...

Note: only one physical connection port (RS-232 for example) is used in this example.

Unified POS, V1.16.1

Application One Application Two

A} A
A 4 \ 4
Control One Control Two
A} A
Y \ 4
Service

Service for Functionality of Peripheral Device and
supports Physical Connection to the Peripheral
Device

A

A 4

POS Receipt
Printer

Note, that as far as each application is concerned, it is connected to the peripheral device and only one physical
connection to the device is required... via the RS-232 serial connection in this example. This served the needs of
device sharing where cooperating applications were utilized.

1.3.6.19 Multi-Function (Hydra) Peripheral Devices

The model needed to be expanded to cover the peripherals that include multiple device class
functionality in a single unit. An example of such a device is a POS printer that may have additional
functionality of being able to control a Customer Line Display, Cash Drawer, MICR, or other
devices. These peripherals are referred to as “Hydra” peripherals alluding to the Greek mythology of
a multi-headed animal that was connected to a single body interface.

In the interaction of POS peripherals, the interface to the Application needs to be agnostic in its
knowledge in either of the following cases...one where multiple physical peripheral devices are used
or the other where one physical peripheral device incorporates the functionality of multiple physical
peripheral devices.

Where multiple physical peripheral devices are present, multiple “pipes” (RS-232 serial ports for instance) are
required...one for each of the physical peripheral devices.

In a Hydra peripheral only one “pipe” is required and it is used to communicate with all the various Device
peripheral functionality of the connected peripheral device.

For example, consider the cases where in one instance a separate POSPrinter device and a separate MICR device
is present; in another instance, a Hydra POSPrinter that has an incorporated MICR reader. The “look” to the
Application(s) has to be agnostic...it should not care nor should it have to know which type of hardware
device(s) are physically present. Ideally it should be able to use the same Application code to interact with either
of the two implementations. For example:

Unified POS, v1.16.1 31

32

Note: Application interfacing with two distinct peripherals.

Application That Needs Functionality for
MICR POSPrinter
v 1 v 1
MICR POSPrinter
Control Control
A A
\ 4
MICR Service POSPrinter Service
Separate Physical Separate Physical
Device Device
RS-232 Port 1 RS-232 Port 2

Note that in this case the application running the MICR and the POSPrinter consumes two separate ports but as

far as the Application is concerned it interfaces to the MICR and POSPrinter functionality without regard to the
fact that the two ports are used.

Note: Application interfacing with a Hydra peripheral.

Application That Needs Functionality for

MICR POSPrinter
MICR POSPrinter
Control Control

v 1 v 1

Service For Hydra Device
Has Functionality for both MICR and POSPrinter In One
Physical Package

RS-232 Port 1

MICR Device Function POSPrinter Device Function

Note that in this case the application running the MICR and POSPrinter consumes only one port but as far as the
application is concerned it interfaces to the MICR and POSPrinter functionality without regard to the fact that

only one port is used. It is up to the Hydra Service to control the port and route the functionality to and from the
proper interface.

Unified POS, V1.16.1

Considerations

While the desire is to have both interconnection techniques work the same with regards to the Application
interface, problems do arise. In the Hydra case, an error state in one of the specific device functions may block
the usage of the other function. This would not happen in the non-Hydra case since each peripheral is truly
separate.

In our Printer and MICR Hydra case, the printer running out of paper might present a condition that would
prevent reading a MICR code for instance. An error condition of “Out of Paper” would be reported through the
POSPrinter interface but would not have any meaning to a route through the MICR interface. The Application
requesting a MICR read in the Hydra case would be presented with an error or status condition that it would not
get in the discrete MICR peripheral case. This presents a potential “hang up” condition or unresolved error
situation.

Obviously an error condition needs to be reported to the application that is using the MICR functionality to alert
it of a problem and allow for resolution. Rather than reporting a meaningless error of “Out of Paper” to the
MICR application, a general E_FAILURE error would be sent back to the MICR application to alert it of the
problem. The MICR application would then be responsible to go through an error recovery procedure to rectify
the situation. It would go through an error recover operation that would present a console message informing the
operator of an impending problem with usage of the MICR device.

Operator knowledge of the specific device would then be used to correct the problem. In this case knowing that
the MICR is part of the printer would focus the attention of the Operator to the “Paper Out” status indicator. The
resolution would be to replace the paper which would then clear the error condition for the MICR as well as the
Printer.

Notice that every attempt is made to make the interaction with the peripheral device or Hydra peripheral device
“look the same” to the application. Careful Service design needs to be used to make sure this is accomplished.

Device vendors should define any limitations and unusual error conditions that may exist when accessing such

hydra devices in their user documentation. Application developers should be aware of the possibility of discrete
and Hydra POS devices when crafting their software and plan their error resolution accordingly.

Unified POS, v1.16.1 33

34

Unified POS, V1.16.1

2 Common Properties, Methods, and Events

2.1 General

The following Properties, Methods, and Events are used for all device categories unless noted otherwise in the
Usage Notes table entry. For an overview of the general rules and guidelines, see “Device Behavior Models” on
page 10.

2.2 Summary Updated in Release 1.10

The following property list is a summary of the JavaPOS Common Properties. This list is used throughout the
main UnifiedPOS chapters. Further details may be found in Annex B.

The OPOS implementation adds the following Common Properties:
BinaryConversion, OpenResult, ResultCode, and ResultCodeExtended.
Also, the last six properties are replaced by:

ControlObjectDescription, ControlObjectVersion, ServiceObjectDescription, ServiceObjectVersion,
DeviceDescription, and DeviceName.

Further details may be found in Annex A.

Properties (UML attributes)

Name Type Mutability Version %“:;‘g:
AutoDisable: boolean { read-write } 1.2 1
CapCompareFirmwareVersion: boolean { read-only } 1.9
CapPowerReporting: int32 { read-only } 1.3
CapStatisticsReporting: boolean { read-only } 1.8
CapUpdateFirmware: boolean { read-only } 1.9
CapUpdateStatistics: boolean { read-only } 1.8
CheckHealthText: string { read-only } 1.0

Claimed: boolean { read-only } 1.0

DataCount: int32 { read-only } 1.2 1
DataEventEnabled: boolean { read-write } 1.0 1
DeviceEnabled: boolean { read-write } 1.0
FreezeEvents: boolean { read-write } 1.0

OutputID: int32 { read-only } 1.0 2
PowerNotify: int32 { read-write } 1.3
PowerState: int32 { read-only } 1.3

State: int32 { read-only } 1.0
DeviceControlDescription: string { read-only } 1.0

Unified POS, v1.16.1 35

DeviceControlVersion: int32 { read-only } 1.0

DeviceServiceDescription: string { read-only } 1.0
DeviceServiceVersion: int32 { read-only } 1.0
PhysicalDeviceDescription: string { read-only } 1.0
PhysicalDeviceName: string { read-only } 1.0

Usage Notes:

1. Used only with Devices that have Event Driven Input.

2. Used only with Asynchronous Output Devices.

Methods (UML operations)

Name Version

open (logicalDeviceName: string): 1.0
void { raises-exception }

close (): 1.0
void { raises-exception }

claim? (timeout: int32): 1.0
void { raises-exception }

release? (): 1.0
void { raises-exception }

checkHealth (level: int32): 1.0
void { raises-exception }

clearInput (): 1.0
void { raises-exception }

clearInputProperties (): 1.10
void { raises-exception }

clearOutput (): 1.0

void { raises-exception }

directlO (command: int32, inout data: int32, inout obj: object): 1.0
void { raises-exception }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.9
void { raises-exception }

resetStatistics (statisticsBuffer: string): 1.8
void { raises-exception }

retrieveStatistics (inout statisticsBuffer: string): 1.8
void { raises-exception }

updateFirmware (firmwareFileName: string): 1.9
void { raises-exception }

updateStatistics (statisticsBuffer: string): 1.8
void { raises-exception }

Unified POS, V1.16.1

2.3

a. Note: In the OPOS environment starting with Release 1.5, the Claim and Release
methods are also defined as ClaimDevice and ReleaseDevice respectively due to
Release being a reserved method used by Microsoft’s Component Object Model

(COM).

Events (UML. interfaces)

Name

upos::events::DataEvent
Status:

upos::events::DirectlOEvent
EventNumber:
Data:
Obj:
upos::events::ErrorEvent
ErrorCode:
ErrorCodeExtended:
ErrorLocus:
ErrorResponse:

upos::events::QutputCompleteEvent

OutputID:

upos::events::StatusUpdateEvent

Status:

Usage Notes:

1. Used only with Devices that have Event Driven Input.

2. Used only with Asynchronous Output Devices.

General Information

Unified POS, v1.16.1

Type

int32

int32
int32
object

int32
int32
int32
int32

int32

int32

Mutability

{ read-only }

{ read-only }
{ read-write }
{ read-write }

{ read-only }
{ read-only }
{ read-only }
{ read-write }

{ read-only }

{ read-only }

Version

1.0

1.0

1.0

1.0

1.0

Usage
Notes

This section lists properties, methods, and events that are common to many of the peripheral devices covered in
this standard.

The summary section of each device category marks those common properties, methods, and events that do not
apply to that category as “Not Supported.” Items identified in this fashion are not present in the Control’s class.

A good understanding of the features of the UnifiedPOS architecture model is required. Please see “Device
Behavior Models” on page 10 for additional information.

37

2.31 Common PME Class Diagram Updated in Release 1.10

The following diagram shows the relationships between the Common classes.

<<Interface>>
BaseControl
(fromupos)
& <<capability>> CapCompareFirmwareVersion : boolean
gi<<capability>> CapPowerReporting : int32
<i<<capability>> CapStatisticsReporting : boolean

<<event>> &<<capability>> CapUpdateFirmware : boolean
UposEvent <<capability>> CapUpdateStatistics : boolean
(from events) &<<prop>> AutoDisable : boolean

fires | g<<prop>> CheckHealthText : string

&<<prop>> Claimed : boolean

&<<prop>> DataCount : int32

&i<<prop>> DataEventEnabled : boolean
&<<prop>> DeviceEnabled : boolean
&<<prop>> FreezeEvents : boolean
&<<prop>> OutputID : int32

&<<prop>> PowerNotify : int32

&<<prop>> PowerState : int32

&<<prop>> State : int32

&<<prop>> DeviceControlDescription : string
& <<prop>> DeviceControlVersion : int32
&<<prop>> DeviceSeniceDescription : string
& <<prop>> DeviceSeniceVersion : int32
&i<<prop>> PhysicalDeviceDescription : string
&i<<prop>> PhysicalDeviceName : string

Sopen(logicalDeviceName : string) : woid

Sclose() : void

Sclaim(timeout : int32) : void
®compareFirmwareVersion(firmwareFileName : string, out result : int32) : wid
Srelease() : void

®resetStatistics(statisticsBuffer : string) : void

ScheckHealth(level : int32) : void

Sclearinput() : wid

®clearlnputProperties() : void

®clearOutput() : void

®directlO(command : int32, inout data : int32, inout obj : Object) : void
SretrieveStatistics(inout statisticsBuffer : string) : void
\I®updateFirmware(firmwareFileName : string) : void

<<uses>/>/ SupdateStatistics(statisticsBuffer : string) : void
1 \ A \
/ |
<<utility>> (4 >
UposConst / \<<sends>>
(from upos) fi‘ie 7%/ <<sends>> <<uses>>
' N

<<exception>>
UposException

— (from upos)
<<sends>>
\ /é<sends>>
<<Interface>> <<Interface>> <<Interface>> <<interface>>
BumpBarControl MSRControl POSPrinterControl <DevCat>Control
(from upos) (from upos) (from upos) (from upos)

<DevCat> == all UnifiedPOS device
category names e.g. CashDrawer,
POSPrinter, MICR, ...

NOTE: AutoDisable, DataCount, and DataEventEnabled are used only with Devices that have Event Driven Input.
OutputID is used only with Asynchronous Output Devices.

38 Unified POS, V1.16.1

2.4 Properties (UML attributes)

2.4.1 AutoDisable Property

Syntax AutoDisable: boolean { read-write }
Remarks If true, the UnifiedPOS Service will set DeviceEnabled to false after it receives and enqueues data as a
DataEvent. Before any additional input can be received, the application must set DeviceEnabled to true.
If false, the UnifiedPOS Service does not automatically disable the device when data is received.
This property provides the application with an additional option for controlling the receipt of input data.
If an application wants to receive and process only one input, or only one input at a time, then this
property should be set to true. This property applies only to event-driven input devices.
This property is initialized to false by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
See Also “Device Input Model” on page 18.
2.4.2 CapCompareFirmwareVersion Property Revised in Release 1.14
Syntax CapCompareFirmwareVersion: boolean { read-only, access after open }
Remarks If true, then the Service/device supports comparing the version of the firmware in the physical device
against that of a firmware file; initialized by open method.
Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16
See Also compareFirmwareVersion Method.
2.4.3 CapPowerReporting Property Updated in Release 1.11
Syntax CapPowerReporting: int32 { read-only }
Remarks Identifies the reporting capabilities of the Device. It has one of the following values:
Value Meaning
PR_NONE The UnifiedPOS Service cannot determine the state of the device. Therefore,
no power reporting is possible.
PR_STANDARD The UnifiedPOS Service can determine and report two of the power states -
OFF_OFFLINE (that is, off or offline) and ONLINE.
PR_ADVANCED The UnifiedPOS Service can determine and report all three power states -
OFF, OFFLINE, and ONLINE.
This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16
See Also “Device Power Reporting Model” on page 22, PowerState Property, PowerNotify Property.

Unified POS, v1.16.1

39

2.4.4 CapStatisticsReporting Property Added in Release 1.8

245

2.4.6

247

40

Syntax CapStatisticsReporting: boolean { read-only }

Remarks If true, the device accumulates and can provide various statistics regarding usage; otherwise no usage
statistics are accumulated. The information accumulated and reported is device specific, and is retrieved
using the retrieveStatistics method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16

See Also retrieveStatistics Method.

CapUpdateFirmware Property Updated in Release 1.14

Syntax CapUpdateFirmware: boolean { read-only, access after open }

Remarks If true, then the device’s firmware can be updated via the updateFirmware method; initialized by open
method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also updateFirmware Method.

CapUpdateStatistics Property Added in Release 1.8

Syntax CapUpdateStatistics: boolean { read-only }

Remarks If true, the device statistics, or some of the statistics, can be reset to zero using the resetStatistics method,
or updated using the updateStatistics method.

If CapStatisticsReporting is false, then CapUpdateStatistics is also false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also CapStatisticsReporting Property, resetStatistics Method, updateStatistics Method.

CheckHealthText Property

Syntax CheckHealthText: string { read-only }

Remarks Holds the results of the most recent call to the checkHealth method. The following examples illustrate
some possible diagnoses:

* “Internal HCheck: Successful”

* “External HCheck: Not Responding”

* “Interactive HCheck: Complete”

This property is empty () before the first call to the checkHealth method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also checkHealth Method.

Unified POS, V1.16.1

2.4.8 Claimed Property

Syntax

Remarks

Errors

See Also

Claimed: boolean { read-only }

If true, the device is claimed for exclusive access. If false, the device is released for sharing with other
applications.

Many devices must be claimed before the Control will allow access to many of its methods and
properties, and before it will deliver events to the application.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

“Device Initialization and Finalization” on page 12, “Device Sharing Model” on page 14, claim Method,
release Method.

2.4.9 DataCount Property

Syntax

Remarks

Errors

See Also

DataCount: int32 { read-only }
Holds the number of enqueued DataEvents.

The application may read this property to determine whether additional input is enqueued from a device,
but has not yet been delivered because of other application processing, freezing of events, or other causes.
This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 16.

“Device Input Model” on page 18 DataEvent.

2.4.10 DataEventEnabled Property

Syntax

Remarks

Unified POS, v1.16.1

DataEventEnabled: boolean { read-write }

If true, a DataEvent will be delivered as soon as input data is enqueued. If changed to true and some
input data is already queued, then a DataEvent is delivered immediately. (Note that other conditions may
delay “immediate” delivery: if FreezeEvents is true or another event is already being processed at the
application, the DataEvent will remain queued at the UnifiedPOS Service until the condition is
corrected.)

If false, input data is enqueued for later delivery to the application. Also, if an input error occurs, the
ErrorEvent is not delivered while this property is false.

This property is initialized to false by the open method.

41

Errors

See Also

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

“Events (UML Interfaces)” on page 11 DataEvent.

2.4.11 DeviceControlDescription Property

Syntax

Remarks

Errors

See Also

DeviceControlDescription: string { read-only }
Holds an identifier for the UnifiedPOS Control and the company that produced it.

A sample returned string is:
“POS Printer UnifiedPOS Compatible Control, (C) 1998 Epson”

This property is always readable.
None.

DeviceControlVersion Property.

2.4.12 Device Control Version Property

Syntax

Remarks

Errors

See Also

42

DeviceControlVersion: int32 { read-only }
Holds the UnifiedPOS Control version number.

Three version levels are specified, as follows:

Version Level Description

Major The “millions” place.
A change to the UnifiedPOS major version level for a device class reflects
significant interface enhancements, and may remove support for obsolete
interfaces from previous major version levels.

Minor The “thousands” place.
A change to the UnifiedPOS minor version level for a device class reflects
minor interface enhancements, and must provide a superset of previous
interfaces at this major version level.

Build The “units” place.
Internal level provided by the UnifiedPOS Control developer. Updated when
corrections are made to the UnifiedPOS Control implementation.

A sample version number is: 1002038

This value may be displayed as version “1.2.38”, and interpreted as major version 1, minor version 2,
build 38 of the UnifiedPOS Control. This property is always readable.

None.

“Version Handling” on page 29 DeviceControlDescription Property.

Unified POS, V1.16.1

2.4.13 DeviceEnabled Property

Syntax DeviceEnabled: boolean { read-write }
Remarks Iftrue, the device is in an operational state. If changed to true, then the device is brought to an operational
state.

If false, the device has been disabled. If changed to false, then the device is physically disabled when
possible, any subsequent input will be discarded, and output operations are disallowed.

Changing this property usually does not physically affect output devices. For consistency, however, the
application must set this property to true before using output devices.

The Device’s power state may be reported while DeviceEnabled is true; See “Device Power Reporting
Model” on page 22 for details.

This property is initialized to false by the open method. Note that an exclusive use device must be
claimed before the device may be enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also “Device Initialization and Finalization on page 12.
2.4.14 DeviceServiceDescription Property

Syntax DeviceServiceDescription: string { read-only }
Remarks Holds an identifier for the UnifiedPOS Service and the company that produced it.

A sample returned string is:
“TM-U950 Printer UnifiedPOS Compatible Service Driver, (C) 1998 Epson”

This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 16.

2.4.15 DeviceServiceVersion Property

Syntax DeviceServiceVersion: int32 { read-only }
Remarks Holds the UnifiedPOS Service version number.

Three version levels are specified, as follows:

Unified POS, v1.16.1 43

Errors

See Also

Version Level Description

Major The “millions” place.
A change to the UnifiedPOS major version level for a device class reflects
significant interface enhancements, and may remove support for obsolete
interfaces from previous major version levels.

Minor The “thousands” place.
A change to the UnifiedPOS minor version level for a device class reflects
minor interface enhancements, and must provide a superset of previous
interfaces at this major version level.

Build The “units” place.
Internal level provided by the UnifiedPOS Service developer. Updated when
corrections are made to the UnifiedPOS Service implementation.

A sample version number is:
1002038
This value may be displayed as version “1.2.38”, and interpreted as major version 1, minor version 2,
build 38 of the UnifiedPOS Service.
This property is initialized by the open method.
A UposException may be thrown when this property is accessed. For further information,
see “Errors” on page 16.

“Version Handling” on page 29 DeviceServiceDescription Property.

2.4.16 FreezeEvents Property Updated in Release 1.12

Syntax

Remarks

Errors

FreezeEvents: boolean { read-write }

If true, the UnifiedPOS Control will not deliver events. Events will be enqueued until this property is set
to false.

If false, the application allows events to be delivered. If some events have been held while events were
frozen and all other conditions are correct for delivering the events, then changing this property to false
will allow these events to be delivered. An application may choose to freeze events for a specific
sequence of code where interruption by an event is not desirable.

Unless specified otherwise, properties that convey device state information (e.g., JrnEmpty and
DrawerOpened) are kept current while the device is enabled, regardless of the setting of this property.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

2.4.17 OutputiD Property

44

Syntax

Remarks

OutputID: int32 { read-only }
Holds the identifier of the most recently started asynchronous output.

When a method successfully initiates an asynchronous output, the Device assigns an identifier to the
request. When the output completes, an QutputCompleteEvent will be enqueued with this output ID as
a parameter.

The output ID numbers are assigned by the UnifiedPOS Service and are guaranteed to be unique among
the set of outstanding asynchronous outputs. No other facts about the ID should be assumed.

Unified POS, V1.16.1

Errors

See Also

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

“Device Output Models on page 20 OutputCompleteEvent.

2.4.18 PowerNotify Property

Syntax
Remarks

Errors

See Also

Unified POS, v1.16.1

PowerNotify: int32 { read-write }

Contains the type of power notification selection made by the Application. It has one of the following
values:

YValue Meaning

PN_DISABLED The UnifiedPOS Service will not provide any power notifications to the
application. No power notification StatusUpdateEvents will be fired, and
PowerState may not be set.

PN _ENABLED The UnifiedPOS Service will fire power notification StatusUpdateEvents
and update PowerState, beginning when DeviceEnabled is set to true. The
level of functionality depends upon CapPowerReporting.

PowerNotify may only be set while the device is disabled; that is, while DeviceEnabled is false.

This property is initialized to PN_DISABLED by the open method. This value provides compatibility
with earlier releases.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL One of the following occurred:

* The device is already enabled.
* PowerNotify =PN ENABLED but CapPowerReporting = PR NONE.

“Device Power Reporting Model Updated in Release 1.8 on page 21, CapPowerReporting Property,
PowerState Property.

45

2.4.19 PowerState Property Updated in Release 1.11

Syntax

Remarks

Errors

See Also

PowerState: int32 { read-only }

Identifies the current power condition of the device, if it can be determined.
It has one of the following values:

Value Meaning
PS_UNKNOWN Cannot determine the device’s power state for one of the following reasons:

CapPowerReporting = PR_NONE; the device does not support power
reporting.

PowerNotify = PN_DISABLED; power notifications are disabled.

DeviceEnabled = false; Power state monitoring does not occur until the
device is enabled.

PS ONLINE The device is powered on and ready for use. Can be returned if
CapPowerReporting = PR_STANDARD or PR ADVANCED.

PS_OFF The device is powered off or detached from the POS terminal. Can only be
returned if CapPowerReporting = PR ADVANCED.

PS OFFLINE The device is powered on but is either not ready or not able to respond to
requests. Can only be returned if CapPowerReporting = PR _ADVANCED.

PS_OFF_OFFLINE The device is either off or off-line. Can only be returned if

CapPowerReporting = PR_STANDARD.

This property is initialized to PS_ UNKNOWN by the open method. When PowerNotify is set to enabled
and DeviceEnabled is true, then this property is updated as the UnifiedPOS Service detects power
condition changes.

A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 16.

“Device Power Reporting Model Updated in Release 1.8 on page 21, CapPowerReporting Property,
PowerNotify Property.

2.4.20 PhysicalDeviceDescription Property

Syntax

Remarks

Errors

See Also

46

PhysicalDeviceDescription: string { read-only }
Holds an identifier for the physical device.

A sample returned string is:
“NCR 7192-0184 Printer, Japanese Version”

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

PhysicalDeviceName Property.

Unified POS, V1.16.1

2.4.21 PhysicalDeviceName Property

Syntax

Remarks

Errors

See Also

PhysicalDeviceName: string { read-only }

Holds a short name identifying the physical device. This is a short version of
PhysicalDeviceDescription and should be limited to 30 characters.

This property will typically be used to identify the device in an application message box, where the full
description is too verbose. A sample returned string is:

“IBM Model II Printer, Japanese”

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

PhysicalDeviceDescription Property.

2.4.22 State Property

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

State: int32 { read-only }

Holds the current state of the Device. It has one of the following values:

YValue Meaning

S CLOSED The Device is closed.

S IDLE The Device is in a good state and is not busy.

S BUSY The Device is in a good state and is busy performing output.

S _ERROR An error has been reported, and the application must recover the Device to a

good state before normal I/O can resume.

This property is always readable.
None.

“Device Information Reporting Model Added in Release 1.8 on page 25.

47

2.5

2.5.1

2.5.2

48

Methods (UML operations)

checkHealth Method

Syntax

Remarks

Errors

See Also

checkHealth (level: in£32): void { raises-exception }

The level parameter indicates the type of health check to be performed on the device. The following

values may be specified:

YValue Meaning

CH_INTERNAL Perform a health check that does not physically change the device. The device
is tested by internal tests to the extent possible.

CH_EXTERNAL Perform a more thorough test that may change the device. For example, a
pattern may be printed on the printer.

CH_INTERACTIVE Perform an interactive test of the device. The supporting UnifiedPOS Service
will typically display a modal dialog box to present test options and results.

Tests the state of a device.

A text description of the results of this method is placed in the CheckHealthText property. The health
of many devices can only be determined by a visual inspection of these test results.

This method is always synchronous.

A UposException may be thrown when this method is invoked. For further information, see

“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL The specified health check level is not supported by the UnifiedPOS Service.

CheckHealthText Property.

claim Method Updated in Release 1.11

Syntax

Remarks

Errors

claim (timeout: int32): void { raises-exception }

The timeout parameter gives the maximum number of milliseconds to wait for exclusive access to be
satisfied. If zero, then immediately either returns (if successful) or throws an appropriate exception. If
FOREVER (-1), the method waits as long as needed until exclusive access is satisfied.

Requests exclusive access to the device. Many devices require an application to claim them before they
can be used.

When successful, the Claimed property is changed to true.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Unified POS, V1.16.1

253

254

2.5.5

2.5.6

Value Meaning

E ILLEGAL This device cannot be claimed for exclusive access, or an invalid timeout
parameter was specified.
E TIMEOUT Another application has exclusive access to the device, and did not relinquish
control before timeout milliseconds expired.
See Also “Device Initialization and Finalization” on page 12, “Device Sharing Model” on page 14, release
Method.
clearlnput Method
Syntax clearInput (): void { raises-exception }

Remarks Clears all device input that has been buffered.

Any data events or input error events that are enqueued — usually waiting for DataEventEnabled to be
set to true and FreezeEvents to be set to false — are also cleared.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also “Device Input Model” on page 18.
clearinputProperties Method Added in Release 1.10

Syntax clearInputProperties (): void { raises-exception }

Remarks Sets all data properties that were populated as a result of firing a DataEvent or ErrorEvent back to their
default values. This does not reset the DataCount or State properties.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

See Also “Device Input Model” on page 18.
clearOutput Method Updated in Release 1.7

Syntax clearOutput (): void { raises-exception }

Remarks Clears all buffered output data, including all asynchronous output. Also, when possible, halts outputs that
are in progress. Any output error events that are enqueued — usually waiting for FreezeEvents to be set
to false — are also cleared.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

See Also “Device Output Model on page 20.

close Method
Syntax close ():void { raises-exception }
Remarks Releases the device and its resources.

If the DeviceEnabled property is true, then the device is disabled.
If the Claimed property is true, then exclusive access to the device is released.

Unified POS, v1.16.1 49

2.5.7

50

Errors

See Also

compareFirmwareVersion Method

Syntax

Remarks

Errors

A UposException may be thrown when this method is invoked. For further information, see

“Errors” on page 16.

“Device Initialization and Finalization on page 12 open Method.

Added in Release 1.9

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

firmwareFileName Specifies either the name of the file containing the firmware or a file
containing a set of firmware files whose versions are to be compared
against those of the device.

result Location in which to return the result of the comparison.

This method determines whether the version of the firmware contained in the specified file is newer than,
older than, or the same as the version of the firmware in the physical device.

The Service should check that the specified firmware file exists and that its contents are valid for this
device before attempting to perform the comparison operation.

The result of the comparison is returned in the result parameter and will be one of the following values:

Value

Meaning

CFV_FIRMWARE OLDER

CFV_FIRMWARE SAME

CFV_FIRMWARE NEWER

CFV_FIRMWARE DIFFERENT

CFV_FIRMWARE UNKNOWN

Indicates that the version of one or more of the firmware files is
older than the firmware in the device and that none of the

firmware files is newer than the firmware in the device.

Indicates that the versions of all of the firmware files are the same as
the firmware in the device.

Indicates that the version of one or more of the firmware files is
newer than the firmware in the device and that none of the firmware
files is older than the firmware in the device.

Indicates that the version of one or more of the firmware files is

different than the firmware in the device, but either:

* The chronological relationship cannot be determined, or

* The relationship is inconsistent -- one or more are older while one
Or more are newer.

Indicates that a relationship between the two firmware versions
could not be determined. A possible reason for this result could be
an attempt to compare Japanese and US versions of firmware.

If the firmwareFileName parameter specifies a file list, all of the component firmware files should reside
in the same directory as the firmware list file. This will allow for distribution of the updated firmware
without requiring a modification to the firmware list file.

A UposException may be thrown when this method is invoked. For further information,

“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL CapCompareFirmwareVersion is false.
E _NOEXIST The file specified by firmwareFileName does not exist or, if

firmwareFileName specifies a file list, one or more of the component
firmware files are missing.

Unified POS, V1.16.1

2.5.8

2.5.9

Unified POS, v1.16.1

See Also

E_EXTENDED ErrorCodeExtended = EFIRMWARE BAD_ FILE:
The specified firmware file or files exist, but one or more are either not in
the correct format or are corrupt.

CapCompareFirmwareVersion Property.

directlO Method

Syntax

Remarks

Errors

See Also

directlO (command: int32, inout data: int32, inout obj: object):
void { raises-exception }

Parameter Description

command Command number whose specific values are assigned by the UnifiedPOS
Service.

data An array of one mutable integer whose specific values or usage vary by
command and UnifiedPOS Service.

obj Additional data whose usage varies by command and UnifiedPOS Service.

Communicates directly with the UnifiedPOS Service.

This method provides a means for a UnifiedPOS Service to provide functionality to the application that
is not otherwise supported by the standard UnifiedPOS Control for its device category. Depending upon
the UnifiedPOS Service’s definition of the command, this method may be asynchronous or synchronous.

Use of this method will make an application non-portable. The application may, however, maintain
portability by performing directIO calls within conditional code. This code may be based upon the value
of the DeviceServiceDescription, PhysicalDeviceDescription, or PhysicalDeviceName property.

A UposException may be thrown when this method is invoked. For further information, see

“Errors” on page 16.

DirectlOEvent.

open Method Updated in Release 1.7

Syntax

Remarks

open (logicalDeviceName: string):
void { raises-exception }

The logicalDeviceName parameter specifies the device name to open.
Opens a device for subsequent 1/0.

The device name specifies which of one or more devices supported by this UnifiedPOS Control should
be used. The logicalDeviceName must exist in the operating system’s reference locater system (such as
the JavaPOS Configurator/Loader (JCL) or the Window’s Registry) for this device category so that its
relationship to the physical device can be determined. Entries in the reference locator’s system are
created by a setup or configuration utility.

The following sequence diagram shows the details of what needs to happen during the open method call
processing to allow the creation of the Service and its binding to the Control.

51

52

NOTE: shows the details of what should happen at open() time. This diagram tries to be generic w/o reference to particular
platform. Note also, that some platform binding might have "easier" or "harder" API to accomplish the same task.

:ClientApp :<DevCat> :Config :Loader :<DevCat>
(registry of senice properties) Senice

NOTE1: we are assuming that the :Config object has or can obtain at runtime the configuration information for the

senices that will be used. In particular the <DevCat> device is configured with logical name named "logicalName"
NOTE2: <DevCat> is a moniker for a generic control and DevCat == POSPrinter, Keylock, CashDrawer, ... all the
UnifiedPOS device categories

1: open(logicalName) - 5. fing properties of senice Lith logicalName

3: pass loader properties, and ask to %reate senice

\ 4: loader parses properties and loads the <DevCat>Servic%
7'3 <
\ / F 5: create and/or bind to sehice

- 1
T ‘ 6: retum éﬁr\lyce instanccy(o control ‘
]

The details of these steps might vary per platform and the
Config and Loader could be done by the same entity.
However, logically the actions above are happening on the
system.

When this method is successful, it initializes the properties Claimed, DeviceEnabled, DataEventEnabled, and
FreezeEvents, as well as descriptions and version numbers of the UnifiedPOS software layers. Additional
category-specific properties may also be initialized.

Errors A UposException may be thrown when this method is invoked. For further information,
see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL The UnifiedPOS Control is already open.

E NOEXIST The specified logicalDeviceName was not found.

E_NOSERVICE Could not establish a connection to the corresponding UnifiedPOS Service.

See Also “Device Initialization and Finalization on page 12
“Device Output Model” on page 20 close Method.

Unified POS, V1.16.1

2.5.10 release Method

Syntax

Remarks

Errors

See Also

release ():
void { raises-exception }

Releases exclusive access to the device.

If the DeviceEnabled property is true, and the device is an exclusive-use device, then the device is also
disabled (this method does not change the device enabled state of sharable devices).

A UposException may be thrown when this method is invoked. For further information, see

“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL The application does not have exclusive access to the device.

“Device Sharing Model” on page 14, claim Method.

2.5.11 resetStatistics Method Updated in Release 1.10

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

resetStatistics (statisticsBuffer: s#ring):void { raises-exception }

Parameter Description
statistics Buffer The data buffer defining the statistics that are to be reset.

(131}

This is a comma-separated list of name(s), where an empty string (“”’) means ALL resettable statistics
are to be reset, “U_" means all UnifiedPOS defined resettable statistics are to be reset, “M_"" means all
manufacturer defined resettable statistics are to be reset, and “actual namel, actual name2” (from the
XML file definitions) means that the specifically defined resettable statistic(s) are to be reset.

Resets the defined resettable statistics in a device to zero. All the requested statistics must be successfully
reset in order for this method to complete successfully, otherwise an ErrorCode of E_ EXTENDED is
returned.

Both CapStatisticsReporting and CapUpdateStatistics must be true in order to successfully use this
method.

This method is always executed synchronously.

A UposException may be thrown when this method is invoked. For further information, see

“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL CapStatisticsReporting or CapUpdateStatistics is false, or the named
statistic is not defined/resettable.

E EXTENDED ErrorCodeExtended = ESTATS ERROR:
At least one of the specified statistics could not be reset.
ErrorCodeExtended = ESTATS DEPENDENCY:
At least one other statistic is required to be reset in addition to a requested
statistic.

CapStatisticsReporting Property, CapUpdateStatistics Property.

53

2.5.12 retrieveStatistics Method Added in Release 1.8

54

Syntax

Remarks

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception }

Parameter Description
statistics Buffer The data buffer defining the statistics to be retrieved and in which the
retrieved statistics are placed.

(731}

This is a comma-separated list of name(s), where an empty string (“”’) means ALL statistics are to be
retrieved, “U_” means all UnifiedPOS defined statistics are to be retrieved, “M_" means all manufacturer
defined statistics are to be retrieved, and “actual namel, actual name2” (from the XML file definitions)
means that the specifically defined statistic(s) are to be retrieved.

Retrieves the requested statistics from a device.
CapStatisticsReporting must be true in order to successfully use this method.

This method is always executed synchronously.
All calls to retrieveStatistics will return the following XML as a minimum:

<?xml version=’'1.0" ?>

<UPOSStat version=71.13.0"” xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance” xmlns="http://www.omg.org/UnifiedPOS/namespace/”
xsi:schemalocation="http://www.omg.org/UnifiedPOS/namespace/UPOSStat.xsd”>

<Event>
<Parameter>
<Name>RequestedStatistic</Name>
<Value>1234</Value>
</Parameter>
</Event>
<Equipment>

<UnifiedPOSVersion>1.13</UnifiedPOSVersion>
<DeviceCategory UPOS="CashDrawer” />
<ManufacturerName>Cashdrawers R Us</ManufacturerName>
<ModelName>CD-123</ModelName>
<SerialNumber>12345</SerialNumber>
<FirmwareRevision>1.0 Rev. B</FirmwareRevision>
<Interface>RS8232</Interface>
<InstallationDate>2000-03-01</InstallationDate>

</Equipment>

</UPOSStat>

If the application requests a statistic name that the device does not support, the <Parameter> entry will
be returned with an empty <vValue>. e.g.,

<Parameter>
<Name>RequestedStatistic</Name>
<Value></Value>

</Parameter>
All statistics that the device collects that are manufacturer specific (not defined in the schema) will be

returned in a <ManufacturerSpecific> taginstead of a <Parameter> tag. e.g.,

<ManufacturerSpecific>

Unified POS, V1.16.1

<Name>TheAnswer</Name>
<Value>42</Value>
</ManufacturerSpecific>

When an application requests all statistics from the device, the device will return a <Parameter> entry
for every defined statistic for the device category as defined by the XML schema version specified by
the version attribute in the <UPOSStat> tag. If the device does not record any of the statistics, the
<Value> tag will be empty.

The most up-to-date files defining the XML tag names and example schemas for the
statistics for all device categories can be downloaded from the ARTS web site at http://

retail.omg.org.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E ILLEGAL CapStatisticsReporting is false or the named statistic is not defined.
See Also CapStatisticsReporting Property.
2.5.13 updateFirmware Method Added in Release 1.9
Syntax updateFirmware (firmwareFileName: string):
void { raises-exception, use after open-claim-enable }
Parameter Description
firmwareFileName Specifies either the name of the file containing the firmware or a file
containing a set of firmware files that are to be downloaded into the
device.
Remarks This method updates the firmware of a device with the version of the firmware contained or defined in

Unified POS, v1.16.1

the file specified by the firmwareFileName parameter regardless of whether that firmware’s version is
newer than, older than, or the same as the version of the firmware already in the device. If the
firmwareFileName parameter specifies a file list, all of the component firmware files should reside in the
same directory as the firmware list file. This will allow for distribution of the updated firmware without
requiring a modification to the firmware list file.

When this method is invoked, the Service should check that the specified firmware file exists and that its
contents are valid for this device. If so, this method should return immediately and the remainder of the
update firmware process should continue asynchronously.

The Service should notify the application of the status of the update firmware process by firing
StatusUpdateEvents with values of SUE_UF PROGRESS + an integer between | and 100 indicating
the completion percentage of the update firmware process. For application convenience, the
StatusUpdateEvent value SUE_UF _COMPLETE is defined to be the same value as

SUE _UF PROGRESS + 100.

For consistency, the update firmware process is complete after the new firmware has been downloaded
into the physical device, any necessary physical device reset has completed, and the Service and the
physical device have been returned to the state they were in before the update firmware process began.

55

http://retail.omg.org
http://retail.omg.org
http://retail.omg.org
http://retail.omg.org

For consistency, a Service must always fire at least one StatusUpdateEvent with an incomplete progress
completion percentage (i.e., a percentage between 1 and 99), even if the device cannot physically report
the progress of the update firmware process. If the update firmware process completes successfully, the
Service must fire a StatusUpdateEvent with a progress of 100 or use the special constant

SUE_UF COMPLETE, which has the same value. These Service requirements allow applications using
this method to be designed to always expect some level of progress notification.

If an error is detected during the asynchronous portion of a update firmware process, one of the following
StatusUpdateEvents will be fired:

YValue Meaning
SUE_UF_FAILED DEV_OK The update firmware process failed but the device is still
operational.

SUE UF FAILED DEV UNRECOVERABLE
The update firmware process failed and the device is neither usable
nor recoverable through software. The device requires service to be
returned to an operational state.

SUE_UF _FAILED DEV_NEEDS FIRMWARE
The update firmware process failed and the device will not be
operational until another attempt to update the firmware is
successful.

SUE _UF _FAILED DEV_UNKNOWN
The update firmware process failed and the device is in an
indeterminate state.

Errors A UposException may be thrown when this method is invoked. For further information, see

“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL CapUpdateFirmware is false.

E NOEXIST The file specified by firmwareFileName does not exist or, if
firmwareFileName specifies a file list, one or more of the component
firmware files are missing.

E EXTENDED ErrorCodeExtended = EFIRMWARE BAD FILE:

The specified firmware file or files exist, but one or more are either not in
the correct format or are corrupt.
See Also CapUpdateFirmware Property.
2.5.14 updateStatistics Method Updated in Release 1.10
Syntax updateStatistics (statisticsBuffer: string):
void { raises-exception }

Parameter Description

statistics Buffer The data buffer defining the statistics with values that are to be updated.

This is a comma-separated list of name-value pair(s), where an empty string name (““”’=valuel”) means

ALL resettable statistics are to be set to the value “valuel,” “U_=value2” means all UnifiedPOS defined

resettable statistics are to be set to the value “value2,” “M_=value3” means all manufacturer defined

resettable statistics are to be set to the value “value3,” and “actual_namel=value4,

actual name2=value5” (from the XML file definitions) means that the specifically defined resettable

statistic(s) are to be set to the specified value(s).

Remarks Updates the defined resettable statistics in a device. All the requested statistics must be successfully

56

updated in order for this method to complete successfully, otherwise an ErrorCode of E EXTENDED
is returned.

Both CapStatisticsReporting and CapUpdateStatistics must be true in order to successfully use this
method.

Unified POS, V1.16.1

Errors

See Also

Unified POS, v1.16.1

This method is always executed synchronously.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL CapStatisticsReporting or CapUpdateStatistics is false, or the named
statistic is not defined/updatable.

E EXTENDED ErrorCodeExtended = ESTATS ERROR:

At least one of the specified statistics could not be updated.
ErrorCodeExtended = ESTATS DEPENDENCY:

At least one other statistic is required to be updated in addition to a requested
statistic.

CapStatisticsReporting Property, CapUpdateStatistics Property.

57

2.6

58

Events (UML interfaces)

The UnifiedPOS standard utilizes a common UML base control structure to derive a specific implementation

case. The UML event base control model and interfaces are shown below for the events.

upos::BaseControl

<<event>>
UposEvent

(from events)

fires

<<Interface>>

BaseControl
(from upos)

<<utility>>
UposConst

(from upos)

<<uses>>
/

. <<sends>>

N\

<<exception>>
UposException
(from upos)

Unified POS, V1.16.1

upos::events interfaces

Unified POS, v1.16.1

<<event>>
UposEvent
<<event>> | (fromevents) - <<event>>
DataEvent — Nan OutputCompleteEvent
(from events) | / (from events)
£<<prop>> Status : int32 / LT‘ &<<prop>> OutputlD : int32
|
|
\
|
\
|
\
|
\
|
\
|
<<event>> \ <<event>>
DirectlOEvent \ StatusUpdateEvent
(from events) \‘ (from events)
&<<prop>> EventNumber : int32 \ £<<prop>> Status : int32
G<<prop>> Dat.a : iqt32 \‘
&<<prop>> Obj : object \‘
\
|
|
<<event>>
ErrorEvent

(from events)

&<<prop>> ErrorCode : int32
&<<prop>> ErrorCodeExtended : int32
&<<prop>> ErrorLocus : int32
g<<prop>> ErrorResponse : int32

59

2.6.1

2.6.2

DataEvent

<<event>> upos::events::DataEvent

Description
Attribute

Remarks

See Also

Status: int32 { read-only }
Notifies the application that input data is available from the device.
This event contains the following attribute:

Attribute Type Description
Status int32 The input status with its value dependent upon the device category; it may
describe the type or qualities of the input data.

When this event is delivered to the application, the DataEventEnabled property is changed to false, so
that no further data events will be delivered until the application sets DataEventEnabled back to true.
The actual byte array input data is placed in one or more device-specific properties.

If DataEventEnabled is false at the time that data is received, then the data is enqueued in an internal
buffer, the device-specific input data properties are not updated, and the event is not delivered. When
DataEventEnabled is subsequently changed back to true, the event will be delivered immediately if
input data is enqueued and FreezeEvents is false.

“Errors” on page 16, DataEventEnabled Property, FreezeEvents Property.

DirectlOEvent Updated in Release 1.7

<<event>> upos::events::DirectlOEvent

Description

Attributes

EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

Provides UnifiedPOS Service information directly to the application. This event provides a means for a
vendor-specific UnifiedPOS Service to provide events to the application that are not otherwise supported
by the UnifiedPOS Control.

This event contains the following attributes:

Attribute Type Description
EventNumber int32 Eventnumberwhose specific values are assigned by the Unified
POS Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and the

UnifiedPOS Service. This attribute is settable.

Obj object Additional data whose usage varies by the EventNumber and the UnifiedPOS
Service. This attribute is settable.!

1. Inthe OPOS environment, the format of this data depends upon the value of the BinaryConversion property. See BinaryConver-
sion property in Annex A.

60

Unified POS, V1.16.1

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described
as part of the UnifiedPOS standard. Use of this event may restrict the application program from being
used with other vendor’s devices which may not have any knowledge of the UnifiedPOS Service’s need

for this event.

See Also “Events” on page 15 directlO Method.

2.6.3 ErrorEvent

Updated in Release 1.13

<<event>> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an error has been detected and a suitable response is necessary to process

the error condition.

Attributes This event contains the following attributes:

Attribute Type
ErrorCode int32
ErrorCodeExtended
int32
ErrorLocus int32

ErrorResponse int32

Description
Error Code causing the error event. See the list of ErrorCodes under
“Errors” on page 16.

Extended Error Code causing the error event. These values are device
category specific.

Location of the error. See values below.

Error response, whose default value may be overridden by the application
(i.e., this attribute is settable). See values below.

The ErrorLocus attribute has one of the following values:

Value

Meaning

EL OUTPUT
EL_INPUT

EL_INPUT DATA

Error occurred while processing asynchronous output.

Error occurred while gathering or processing event-driven input. No
previously buffered input data is available.

Error occurred while gathering or processing event-driven input, and some
previously buffered data is available.

The application’s error event handler can set the ErrorResponse attribute to one of the following values:

(Updated in 1.13)

Unified POS, v1.16.1

61

2.6.4

62

Remarks

See Also

Value Meaning

ER RETRY Retry sending the data. The error state is exited.
May be valid for some input devices when the locus is EL_INPUT, in which
case the input is retried and the error state is exited. Typically valid for
asynchronous output devices when the locus is EL_OUTPUT, in which case
the asynchronous output is retried and the error state is exited. This is the
default response when the locus is EL_ OUTPUT.

ER CLEAR Valid for all loci: EL_INPUT, EL_ INPUT DATA, and EL_ OUTPUT. Clear
all buffered input or output data (including all asynchronous output). The
error state is exited. This is the default response when the locus is EL_INPUT.

ER_CONTINUEINPUT
Only valid when the locus is EL_INPUT DATA.
Acknowledges that a data error has occurred and directs the Device to
continue input processing. The Device remains in the error state and will
deliver additional DataEvents as directed by the DataEventEnabled
property. When all input has been delivered and DataEventEnabled is again
set to true, then another ErrorEvent is delivered with locus EL_INPUT.
This is the default response when the locus is EL_INPUT DATA.

This event is enqueued when an error is detected and the Device’s State transitions into the error state.
Input error events are not delivered until DataEventEnabled is true, so that proper application
sequencing occurs.

Unlike a DataEvent, the Device does not disable further DataEvents or input ErrorEvents; it leaves
the DataEventEnabled property value at true. Note that the application may set DataEventEnabled to
false within its event handler if subsequent input events need to be disabled for a period of time.

“Device Input Model” on page 18, “Error Handling” on page 18, “Device Output Model” on page 20.

OutputCompleteEvent Updated in Release 1.13

<<event>> upos::events::OutputCompleteEvent

OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the OutputID attribute has

Attribute

Remarks

See Also

completed successfully.
This event contains the following attribute:

Attribute Type _ Description
OutputID int32 The ID number of the asynchronous output request that is complete.

This event is enqueued after the requested data has been both sent and the UnifiedPOS Service has
confirmation that is was processed by the device successfully.

“Device Output Model” on page 20 OutputID Property.

Unified POS, V1.16.1

2.6.5 StatusUpdateEvent Updated in Release 1.9

<<event>>

Description
Attribute

Unified POS, v1.16.1

upos::events::StatusUpdateEvent
Status: int32 { read-only }

Notifies the application when a device has detected an operation status change.
This event contains the following attribute:

Attribute Type Description

Status int32 Device category-specific status, describing the type of status change.

Release 1.3 and later — Power State Reporting

Power State Reporting, added in Release 1.3, adds additional Status values of:

Value Meaning
SUE POWER ONLINE

The device is powered on and ready for use. Can be returned if
CapPowerReporting =PR_ STANDARD or PR_ ADVANCED.

SUE POWER_OFF The device is off or detached from the terminal. Can only be returned if

CapPowerReporting =PR_ ADVANCED.
SUE_POWER_OFFLINE

The device is powered on but is either not ready or not able to respond to

requests. Can only be returned if
CapPowerReporting = PR ADVANCED.
SUE POWER OFF OFFLINE
The device is either off or off-line. Can only be returned
if CapPowerReporting = PR STANDARD.

The common property PowerState is also maintained at the current power state of the device.

63

Release 1.9 and later — Update Firmware Reporting

The Update Firmware capability, added in Release 1.9, adds the following Status values for
communicating the status/progress of an asynchronous update firmware process:

Value Meaning

SUE UF PROGRESS + 1 to 100
The update firmware process has successfully completed 1 to 100 percent of
the total operation.

SUE_UF _COMPLETE The update firmware process has completed successfully. The value of this
constant is identical to SUE_UF_PROGRESS + 100.

SUE UF COMPLETE DEV_NOT RESTORED
The update firmware process succeeded, however the Service and/or the
physical device cannot be returned to the state they were in before the update
firmware process started. The Service has restored all properties to their
default initialization values.
To ensure consistent Service and physical device states, the application needs
to close the Service, then open, claim, and enable again, and also restore all
custom application settings.

SUE_UF FAILED DEV _OK
The update firmware process failed but the device is still operational.

SUE _UF _FAILED DEV_UNRECOVERABLE
The update firmware process failed and the device is neither usable nor
recoverable through software. The device requires service to be returned to an
operational state.

SUE UF FAILED DEV NEEDS FIRMWARE
The update firmware process failed and the device will not be operational
until another attempt to update the firmware is successful.

SUE UF FAILED DEV_UNKNOWN
The update firmware process failed and the device is in an indeterminate
state.

Remarks This event is enqueued when a Device needs to alert the application of a device status change. Examples
are a change in the cash drawer position (open vs. closed) or a change in a POS printer sensor (form
present vs. absent).

When a device is enabled, the Control may deliver this event to inform the application of the device state.
This behavior, however, is not required.

See Also “Device Input Model on page 18, CapPowerReporting Property, CapUpdateFirmware Property,
PowerNotify Property.

Unified POS, V1.16.1

3

3.1

3.2

Belt

General

This Chapter defines the Belt device category.

Summary

Properties (UML attributes)

Common

AutoDisable:

CapCompareFirmwareVersion:

CapPowerReporting:
CapStatisticsReporting:
CapUpdateFirmware:
CapUpdateStatistics:
CheckHealthText:
Claimed:

DataCount:
DataEventEnabled:
DeviceEnabled:
FreezeEvents:
OutputID:
PowerNotify:
PowerState:

State:

DeviceControlDescription:
DeviceControlVersion:

DeviceServiceDescription:

Unified POS, v1.16.1

Type
boolean
boolean
int32
boolean
boolean
boolean
string
boolean
int32
boolean
boolean
boolean
int32
int32
int32
int32

string
int32

string

Mutability
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-write }
{ read-write }
{ read-write }
{ read-only }
{ read-write }
{ read-only }
{ read-only }

{ read-only }
{ read-only }
{ read-only }

Version
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12

1.12
1.12
1.12

May Use After
Not supported
open
open
open
open
open
open
open
Not supported
Not supported
open & claim
open
Not supported
open

open

65

66

Properties (Continued)

Specific
CapAutoStopBackward:

CapAutoStopBackwardItemCount:

CapAutoStopForward:
CapAutoStopForwardItemCount:
CapLightBarrierBackward:
CapLightBarrierForward:
CapMoveBackward:
CapSecurityFlapBackward:
CapSecurityFlapForward:
CapSpeedStepsBackward:
CapSpeedStepsForward:

AutoStopBackward:
AutoStopBackwardDelayTime:
AutoStopBackwardItemCount:
AutoStopForward:
AutoStopForwardDelayTime:
AutoStopForwardItemCount:

LightBarrierBackwardInterrupted:

LightBarrierForwardInterrupted:
MotionStatus:
SecurityFlapBackwardOpened:
SecurityFlapForwardOpened:

Type

boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
int32

int32

boolean
int32
int32
boolean
int32
int32
boolean
boolean
int32
boolean

boolean

Methods (UML operations)

Common

Name

open (logicalDeviceName: string):
void { raises-exception }

close ():

Mutability
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

{ read-write }
{ read-write }
{ read-only }
{ read-write }
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

void { raises-exception, use after open }

claim (timeout: int32):

void { raises-exception, use after open }

Version
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12

1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12
1.12

May Use After
open
open
open
open
open
open
open
open
open
open

open

open

open

open

open

open

open
open, claim, & enable
open, claim, & enable
open, claim, & enable
open, claim, & enable

open, claim, & enable

Version

1.12
1.12

1.12

Unified POS, v1.16.1

release (): 1.12
void { raises-exception, use after open, claim }

checkHealth (level: int32): 1.12
void { raises-exception, use after open, enable }

clearInput (): Not supported
void { }

clearInputProperties (): Not supported
void { }

clearOutput (): Not supported
void { }

directlO (command: inz32, inout data: int32, inout obj: object): 1.12

void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.12
void { raises-exception, use after open, enable }

resetStatistics (statisticsBuffer: string): 1.12
void { raises-exception, use after open, enable }

retrieveStatistics (inout statisticsBuffer: string): 1.12
void { raises-exception, use after open, enable }

updateFirmware (firmwareFileName: string): 1.12
void { raises-exception, use after open, enable }

updateStatistics (statisticsBuffer: string): 1.12
void { raises-exception, use after open, enable }

Specific

Name

adjustItemCount (direction: int32, count: int32): 1.12
void { raises-exception, use after open, claim, enable }

moveBackward (speed: int32): 1.12
void { raises-exception, use after open, claim, enable }

moveForward (speed: int32): 1.12
void { raises-exception, use after open, claim, enable }

resetBelt (): 1.12
void { raises-exception, use after open, claim, enable }

resetitemCount (direction: inz32): 1.12
void { raises-exception, use after open, claim, enable }

stopBelt (): 1.12

void { raises-exception, use after open, claim, enable }

Unified POS, v1.16.1

Events (UML interfaces)
Name Type

upos::events::DataEvent

upos::events::DirectlOEvent

EventNumber: int32
Data: int32
Obj: object

upos::events::ErrorEvent
upos::events::OQutputCompleteEvent

upos::events::StatusUpdateEvent

Status: int32

3.3 General Information

Mutability Version

Not supported

1.12
{ read-only }
{ read-write }

{ read-write }

Not supported

Not supported

1.12
{ read-only }

The Belt programmatic name is “Belt.” This device category was added to Version 1.12 of the specification.

3.3.1 Capabilities

The Belt Control has the following capability:

« Supports a command to move the belt in forward direction.

« Supports commands to stop and reset the belt.

The Belt may have several additional capabilities, these are moving in backward direction, moving with different
speeds, light barriers, security flap, controlling an automatic stop and emergency stop. See 3.5.1 Model and the

capabilities properties for specific information.

68

Unified POS, v1.16.1

3.4 Belt Class Diagram

The following diagram shows the relationships between the Belt classes.

«exception» «interface» «utility» «utility»
UposException «sends» | BaseControl «uses» UposConst BeltConst

«uses»

S «sends» \/\ ==

«interface»
BeltControl

+CapAutoStopBackward : boolean
+CapAutoStopBackwardltemCount : boolean
+CapAutoStopForward : boolean
+CapAutoStopForwardltemCount : boolean
+CapLightBarrierBackward : boolean
+CapLightBarrierForward : boolean
+CapMoveBackward : boolean
+CapSecurityFlapBackward : boolean
+CapSecurityFlapForward : boolean
+CapSpeedStepsBackward : int32
+CapSpeedStepsForward : int32
+AutoStopBackward : boolean
+AutoStopBackwardDelayTime : int32
+AutoStopBackwardltemCount : int32
+AutoStopForward : boolean
+AutoStopForwardDelayTime : int32
+AutoStopForwardltemCount : int32
+LightBarrierBackwardInterrupted : boolean
+LightBarrierForwardInterrupted : boolean
+MotionStatus : int32
+SecurityFlapBackwardOpened : boolean
+SecurityFlapForwardOpened : boolean

+adjustltemCount(direction : int32, count : int32) : void
+moveBackward(speed : int32) : void
+moveForward(speed : int32) : void

+resetBelt() : void

+resetltemCount(direction : int32) : void

+stopBelt() : void

<<fires>1//”/ \\\\ffires»
«eventy «eventy
StatusUpdateEvent DirectlOEvent
+Status : int32 +EventNumber : int32
+Data : int32
+Obj : object

Unified POS, v1.16.1

3.5 Belt Sequence Diagram

The following sequence diagram shows the typical usage of the Belt device during an automatic stop scenario.

NOTE: We are assuming that the Application has already successfully opened and claimed the Belt Device
and is registered to receive events from the control. The belt should automatically stop after five items passing
the light barrier, that means CapAutoStopForward and CapAutoStopForwardltemCount are true.

Application Belt Control Belt Service Belt
| i | |
| i | |

L . L L

1: setDeviceEnabled(true)

2: setDeviceEnabled(true)
3: connect or somehow have
access to the hardware

4: adjustlitemCount
(BELT_AIC_FORWARD, 5)

5: adjustitemCount
(BELT_AIC_FORWARD, 5)

6: setAutoStopForward(true)

7: setAutoStopForward(true)

8: moveForward(speed1)

9: moveForward(speed1)

10: moves the belt forward

Assume that five items passed the light barrier
and another one is detected. The belt stops.

11: update MotionStatus to BELT_MT_STOPPED
and deliver SUE

11: notify client of new event

Application event handling
code takes appropriate action

70 Unified POS, v1.16.1

The following sequence diagram shows the typical usage of the Belt device during an emergency stop scenario
caused by an open security flap.

NOTE: We are assuming that the Application has already successfully opened and claimed the Belt Device
and is registered to receive events from the control. Emergency stop caused by an open security flap, that
means CapSecurityFlapForward is true.

Application Belt Control Belt Service Belt
T 7 T T
| | | |
| | | |

1: setDeviceEnabled(true)

2: setDeviceEnabled(true)
3: connect or somehow have
access to the hardware

4: moveForward(speed1)

5: moveForward(speed1)

6: moves the belt forward

Assume that an item opens the security flap.
The belt stops due to an emergency condition.

7: update MotionStatus to BELT_MT_EMERGENCY
and deliver SUE

8: notify client of new event

Application event handling code takes
appropriate action, calls for assistance
and the problem is finally fixed.

9: resetBelt()

10: resetBelt()

11: resets the belt

12: update MotionStatus to BELT_MT_STOPPED
and deliver SUE

13: notify client of new event

Application goes on with
normal operation.

14: moveForward(speed1)

15: moveForward(speed1)

16: moves the belt forward

Unified POS, v1.16.1

3.5.1 Model

The general model of a Belt is:

After the belt is enabled an application can call moveForward and stopBelt in order to control the motion.
If CapMoveBackward is true, the application may also call moveBackward.

Moving forward and backward may be available in different speeds defined by CapSpeedStepsBackward and
CapSpeedStepsForward.

Due to safety regulations a belt is usually equipped with security flaps at the end of the belt, at both ends if it
can move backwards. CapSecurityFlapBackward and CapSecurityFlapForward are defining the
availability of them.

CapAutoStopBackward and CapAutoStopForward tell an application if the belt supports an automatic stop.
Whether the application wants to use this feature can be controlled by setting AutoStopBackward and
AutoStopForward properties. The belt is stopped if an automatic stop condition becomes true. Usually such a
condition is controlled by light barriers, but it can also correspond to an internal state of the device which is not
exposed. The condition is device specific and has to be explained in the device documentation.

Light barriers may be available for handling an automatic stop feature. CapLightBarrierBackward and
CapLightBarrierForward define the availability of such barriers.

If CapAutoStopForwardItemCount is true the application may control the automatic stop feature depending
on a number of items passing the light barrier or any other item counting mechanism in forward direction by
calling adjustItemCount and resetlitemCount. In this case the belt is automatically stopped if
AutoStopForwardItemCount is zero and an additional item is detected. This feature may be also available
for backward direction.

If CapAutoStopForward is true, an application may also delay automatic stop in forward direction by setting
AutoStopForwardDelayTime. The delay time starts when an automatic stop condition becomes true. The belt
is stopped when the delay time has expired. During delay time automatic stop is cancelled if the automatic stop
condition becomes false. This feature may be also available for backward direction.

The application will be informed about any status change with a StatusUpdateEvent, also all corresponding
status properties will be updated before event delivery.

An emergency stop will occur if one of the security flaps is open or the operator presses an emergency button.
In this case technical assistance is needed and the application has to reset the belt by calling resetBelt. A
security stop will occur if the belt has been stopped due to safety requirement regulations but no technical
assistance is needed.

3.5.2 Device Sharing

Belt is an exclusive-use device. Its device sharing rules are:

72

The application must claim the device before enabling it.

The application must claim and enable the device before accessing some of the properties and methods, or
receiving events.

See the “Summary” table for precise usage prerequisites.

Unified POS, v1.16.1

3.5.3 Belt State Diagram

The following diagram illustrates the various state transitions within the Belt device category.

open claim

V2
‘ { Closed]/ /[Opened]/ Claimed

close release

close release

Enabled

moveForward motor fault
emergency stop

fire
event done

Emergency
Stop

done

stopBelt fire event -
H Stopped]/ /[Fire Events
done N

fire
event

automatic stop
pJemio4sAow

fire
event

°
[0]

done

automatic stop
pJemyoeganow

Motor Fault

motor fault

moveBackward
H Backward
emergency stop

Unified POS, v1.16.1

3.6 Properties (UML attributes)

3.6.1 AutoStopBackward Property

Syntax

Remarks

Errors

See Also

AutoStopBackward: boolean { read-write, access after open }

If true, the automatic stop feature in backward direction is enabled. If false, it is disabled. The belt will
automatically stop if an automatic stop condition becomes true.

If CapAutoStopBackward is false, then this property is always false.
This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CapAutoStopBackward Property.

3.6.2 AutoStopBackwardDelayTime Property

Syntax

Remarks

Errors

See Also

AutoStopBackwardDelayTime: in#32 { read-write, access after open }

Specifies a delay time in milliseconds for an automatic stop in backward direction. The delay time starts
when an automatic stop condition becomes true. The delay time counting stops and automatic stop is
cancelled if the condition becomes false.

If CapAutoStopBackward is false, then this property has no meaning, setting this property will be
ignored.

This property is initialized to zero (0) by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CapAutoStopBackward Property.

3.6.3 AutoStopBackwarditemCount Property

Syntax

Remarks

Errors

See Also

74

AutoStopBackwardItemCount: int32 { read-only, access after open }

Holds the actual item counter for an automatic stop in backward direction. If an item is detected this
property will be decreased. The automatic stop condition becomes true if the item counter mechanism
detects an additional item and the counter is already zero.

This property can be increased or decreased by calling the adjustItemCount method and can be reset to
zero by calling the resetItemCount method.

If CapAutoStopBackward or CapAutoStopBackwardItemCount is false, then this property has no
meaning.

This property is initialized to zero (0) by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CapAutoStopBackward Property, CapAutoStopBackwardItemCount Property, adjustitemCount
Method, resetitemCount Method.

Unified POS, v1.16.1

3.6.4 AutoStopForward Property

Syntax

Remarks

Errors

See Also

AutoStopForward: boolean { read-write, access after open }

If true, the automatic stop feature in forward direction is enabled. If false, it is disabled. The belt will
automatically stop if an automatic stop condition becomes true.

If CapAutoStopForward is false, then this property is always false.
This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CapAutoStopForward Property.

3.6.5 AutoStopForwardDelayTime Property

Syntax

Remarks

Errors

See Also

AutoStopForwardDelayTime: int32 { read-write, access after open }

Specifies a delay time in milliseconds for an automatic stop in forward direction. The delay time starts
when an automatic stop condition becomes true. The delay time counting stops and automatic stop is
cancelled if the condition becomes false.

If CapAutoStopForward is false, then this property has no meaning, setting this property will be
ignored.

This property is initialized to zero (0) by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CapAutoStopForward Property.

3.6.6 AutoStopForwardltemCount Property

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

AutoStopForwardItemCount: int32 { read-only, access after open }

Holds the actual item counter for an automatic stop in forward direction. If an item is detected this
property will be decreased. The automatic stop condition becomes true if the item counter mechanism
detects an additional item and the counter is already zero.

This property can be increased or decreased by calling the adjustItemCount method and can be reset to
zero by calling the resetItemCount method.

If CapAutoStopForward or CapAutoStopForwardItemCount is false, then this property has no
meaning.

This property is initialized to zero (0) by the open method.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

CapAutoStopForward Property, CapAutoStopForwardItemCount Property, adjustitemCount
Method, resetitemCount Method.

75

3.6.7 CapAutoStopBackward Property

3.6.8

3.6.9

Syntax

Remarks

Errors

CapAutoStopBackward: boolean { read-only, access after open }

If true, the device supports an automatic motor stop when moving backward, based on an automatic stop
condition.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CapAutoStopBackwardltemCount Property

Syntax

Remarks

Errors

See Also

CapAutoStopBackwardItemCount: boolean { read-only, access after open }

If true, the device supports an automatic motor stop when moving backward depending on the number
of items specified by AutoStopBackwardItemCount.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

AutoStopBackwardItemCount Property.

CapAutoStopForward Property

Syntax

Remarks

Errors

CapAutoStopForward: boolean { read-only, access after open }

If true, the device supports an automatic motor stop when moving forward, based on an automatic stop
condition.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

3.6.10 CapAutoStopForwarditemCount Property

76

Syntax

Remarks

Errors

See Also

CapAutoStopForwardItemCount: boolean { read-only, access after open }

If true, the device supports an automatic motor stop when moving forward depending on the number of
items specified by AutoStopForwardItemCount.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16

AutoStopForwardItemCount Property.

Unified POS, v1.16.1

3.6.11 CapLightBarrierBackward Property

Syntax

Remarks

Errors

See Also

CapLightBarrierBackward: boolean { read-only, access after open }

If true, the device has a backward light barrier and LightBarrierBackwardInterrupted holds the actual
state of the light barrier.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

LightBarrierBackwardInterrupted Property.

3.6.12 CapLightBarrierForward Property

Syntax

Remarks

Errors

See Also

CapLightBarrierForward: boolean { read-only, access after open }

If true, the device has a forward light barrier and LightBarrierForwardInterrupted holds the actual
state of the light barrier.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

LightBarrierForwardInterrupted Property.

3.6.13 CapMoveBackward Property

Syntax

Remarks

Errors

CapMoveBackward: boolean { read-only, access after open }
If true, the belt can move backward.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

3.6.14 CapSecurityFlapBackward Property

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

CapSecurityFlapBackward: boolean { read-only, access after open }

If true, the device has a backward security flap and SecurityFlapBackwardOpened holds the actual
state of the flap.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

SecurityFlapBackwardOpened Property.

77

3.6.15 CapSecurityFlapForward Property

Syntax

Remarks

Errors

See Also

CapSecurityFlapForward: boolean { read-only, access after open }

If true, the device has a forward security flap and SecurityFlapForwardOpened holds the actual state
of the flap.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

SecurityFlapForwardOpened Property.

3.6.16 CapSpeedStepsBackward Property

Syntax

Remarks

Errors

See Also

CapSpeedStepsBackward: int32 { read-only, access after open }

Defines how many speed steps the belt motor supports in backward direction, minimum is one (1). This
property is only valid if CapMoveBackward is true. If CapMoveBackward is false this property is
initialized to zero (0).

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CapMoveBackward Property.

3.6.17 CapSpeedStepsForward Property

Syntax

Remarks

Errors

CapSpeedStepsForward: int32 { read-only, access after open }
Defines how many speed steps the belt motor supports in forward direction, minimum is one (1).
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

3.6.18 LightBarrierBackwardinterrupted Property

78

Syntax

Remarks

Errors

See Also

LightBarrierBackwardInterrupted: boolean { read-only, access after open-claim-enable }

If true, the light barrier in backward direction is interrupted, otherwise it is false. An appropriate
StatusUpdateEvent indicating a status change will be enqueued.

If CapLightBarrierBackward is false, then this property is always false.
This property is initialized and kept current while the device is enabled.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CapLightBarrierBackward Property.

Unified POS, v1.16.1

3.6.19 LightBarrierForwardinterrupted Property

Syntax

Remarks

Errors

See Also

LightBarrierForwardInterrupted: boolean { read-only, access after open-claim-enable }

If true, the light barrier in forward direction is interrupted, otherwise it is false. An appropriate
StatusUpdateEvent indicating a status change will be enqueued.

If CapLightBarrierForward is false, then this property is always false.
This property is initialized and kept current while the device is enabled.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CapLightBarrierForward Property.

3.6.20 MotionStatus Property

Syntax

Remarks

Errors

MotionStatus: int32 { read-only, access after open-claim-enable }
Holds the current motion state of the device. It has one of the following values:

Value Meaning
BELT MT FORWARD The device is moving forward.

BELT MT BACKWARD
The device is moving backward.

BELT MT STOPPED The device has stopped due to an automatic stop, security stop or motor
timeout stop.

BELT MT EMERGENCY
Emergency stop, either a security flap is open or the emergency button was
pressed. Technical assistance is needed in order to reactivate the belt device.

BELT MT MOTOR FAULT
The device has stopped due to a motor failure like overheating or a defective
fuse. Technical assistance may be needed in order to reactivate the motor.

This property is initialized and kept current while the device is enabled.
An appropriate StatusUpdateEvent indicating a status change will be enqueued.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

3.6.21 SecurityFlapBackwardOpened Property

Syntax
Remarks

Errors

See Also

Unified POS, v1.16.1

SecurityFlapBackwardOpened: boolean { read-only, access after open-claim-enable }

If true, the security flap in backward direction is open, otherwise it is closed. An appropriate
StatusUpdateEvent indicating a status change will be enqueued. If CapSecurityFlapBackward is
false, then this property is always false. This property is initialized and kept current while the device is
enabled.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CapSecurityFlapBackward Property.

79

3.6.22 SecurityFlapForwardOpened Property

Syntax SecurityFlapForwardOpened: boolean { read-only, access after open-claim-enable }

Remarks If true, the security flap in forward direction is open, otherwise it is closed. An appropriate
StatusUpdateEvent indicating a status change will be enqueued.

If CapSecurityFlapForward is false, then this property is always false.
This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also CapSecurityFlapForward Property.

80 Unified POS, v1.16.1

3.7 Methods (UML operations)

3.7.1 adjustitemCount Method

Syntax

Remarks

Errors

See Also

adjustltemCount (direction: in#32, count: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
direction Specifies the auto stop item count property to be adjusted. May be either
BELT _AIC_BACKWARD or BELT AIC_ FORWARD.

count The count parameter contains the number of items to be adjusted.

Depending on direction either AutoStopBackwardItemCount or AutoStopForwardItemCount will
be adjusted by count. It can be an increment or decrement depending on whether count is positive or
negative.

This method is only valid if at least one of the corresponding capabilities
CapAutoStopBackwardItemCount or CapAutoStopForwardItemCount is true.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.
A possible value of the exception’s ErrorCode property is:

YValue Meaning
E ILLEGAL adjustItemCount is not supported or an invalid direction was specified.

CapAutoStopBackwardItemCount Property, AutoStopBackwardItemCount Property,
CapAutoStopForwardItemCount Property, AutoStopForwardItemCount Property,
resetltemCount Method.

3.7.2 moveBackward Method

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

moveBackward (speed: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
speed Specifies the speed step. Valid speed steps are 1 through
CapSpeedStepsBackward.

Starts the belt motor to move backward with the specified speed.
This method is only valid if CapMoveBackward is true.
Subsequent calls to moveBackward will change the speed.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.
A possible value of the exception’s ErrorCode property is:

Value Meaning
E ILLEGAL moveBackward is not supported or an invalid speed step was specified.

CapMoveBackward Property, CapSpeedStepsBackward Property.

81

3.7.3 moveForward Method

Syntax

Remarks

Errors

See Also

moveForward (speed: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
speed Specifies the speed step. Valid speed steps are 1 through
CapSpeedStepsForward.

Starts the belt motor to move forward with the specified speed.
Subsequent calls to moveForward will change the speed.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

CapSpeedStepsForward Property.

3.7.4 resetBelt Method

Syntax

Remarks

Errors

resetBelt ():
void { raises-exception, use after open-claim-enable }

Resets the belt after an emergency stop caused by an open security flap or a pressed emergency button.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

3.7.5 resetltemCount Method

Syntax

Remarks

Errors

See Also

82

resetltemCount (direction: inz32):
void { raises-exception, use after open-claim-enable }

Parameter Description
direction Specifies the auto stop item count property to be reset. May be either
BELT RIC BACKWARD or BELT RIC FORWARD.

Depending on direction either AutoStopBackwardItemCount or AutoStopForwardItemCount will
be reset to zero (0).

This method is only valid if at least one of the corresponding capabilities
CapAutoStopBackwardItemCount or CapAutoStopForwardItemCount is true.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.
A possible value of the exception’s ErrorCode property is:

YValue Meaning
E ILLEGAL resetltemCount is not supported or an invalid direction was specified.

CapAutoStopBackwardItemCount Property, AutoStopBackwardItemCount Property,
CapAutoStopForwardItemCount Property, AutoStopForwardItemCount Property,
adjustItemCount Method.

Unified POS, v1.16.1

3.7.6 stopBelt Method

Syntax stopBelt ():
void { raises-exception, use after open-claim-enable }

Remarks Stops the belt motor.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

Unified POS, v1.16.1

83

3.8

3.8.1

3.8.2

84

Events (UML interfaces)

DirectlOEvent

<<event >> upos::events::DirectlOEvent

Description

Attributes

Remarks

See Also

EventNumber: int32 {read-only }
Data: int32 { read-write }
Obj: object { read-write }

Provides Service information directly to the application. This event provides a means for a vendor-
specific Belt Service to provide events to the application that are not otherwise supported by the Control.

This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This property is settable.

Obj Object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Belt devices
which may not have any knowledge of the Service’s need for this event.

“Events” on page 15 directIO Method.

StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent

Description
Attributes

Status: int32 { read-only }
Notifies the application when the status of the Belt changes.
This event contains the following attribute:

Attribute Type _ Description
Status int32 The status reported from the Belt.

The Status attribute has one of the following values:

Value Description

BELT _SUE_AUTO_STOP
The belt has automatically stopped.

BELT SUE EMERGENCY_STOP
The belt has stopped caused by an emergency condition, either a security flap
is open or an emergency button has been pressed. Technical assistance is

needed.

BELT SUE SAFETY STOP
The belt has stopped for safety reasons. Technical assistance is not needed.

Unified POS, v1.16.1

BELT _SUE TIMEOUT_STOP
The belt has stopped due to a hardware timeout protecting the motor against
overheating.

BELT SUE MOTOR_OVERHEATING
The belt has stopped due to a motor overheating.

BELT SUE _MOTOR_FUSE_DEFECT
The belt has stopped due to a defective fuse.

BELT SUE LIGHT BARRIER BACKWARD INTERRUPTED
The light barrier in backward direction is interrupted.

BELT SUE LIGHT BARRIER BACKWARD OK
The light barrier in backward direction is no longer interrupted.

BELT SUE LIGHT BARRIER FORWARD INTERRUPTED
The light barrier in forward direction is interrupted.

BELT SUE LIGHT BARRIER FORWARD OK
The light barrier in forward direction is no longer interrupted.

BELT SUE SECURITY FLAP BACKWARD_ OPENED
The security flap in backward direction is open.

BELT SUE_SECURITY FLAP BACKWARD CLOSED
The security flap in backward direction is closed.

BELT SUE SECURITY FLAP FORWARD OPENED
The security flap in forward direction is open.

BELT SUE SECURITY FLAP FORWARD CLOSED
The security flap in forward direction is closed.

Note that Release 1.3 added Power State Reporting with additional Power
reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 1.

Remarks This event applies for status changes of the belt. It depends on the capabilities of the device which status
changes can be reported.

See Also “Events on page 15

Unified POS, v1.16.1 85

86

Unified POS, v1.16.1

4

4.1

4.2

Bill Acceptor

General

Summary

Properties (UML attributes)

Common

AutoDisable:

CapCompareFirmwareVersion:

CapPowerReporting:

CapStatisticsReporting:

CapUpdateFirmware:
CapUpdateStatistics:
CheckHealthText:
Claimed:
DataCount:
DataEventEnabled:
DeviceEnabled:
FreezeEvents:
OutputID:
PowerNotify:
PowerState:

State:

DeviceControlDescription:

DeviceControlVersion:

DeviceServiceDescription:

DeviceServiceVersion:

PhysicalDeviceDescription:

PhysicalDeviceName:

Unified POS, v1.16.1

Type
boolean
boolean
int32
boolean
boolean
boolean
string
boolean
int32
boolean
boolean
boolean
int32
int32
int32
int32

string
int32
string
int32
string

string

This Chapter defines the Bill Acceptor device category.

Mutability
{read-write}
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{read-only}
{read-only}
{read-only}
{read-write}
{read-write}
{read-write}
{read-only}
{read-write}
{read-only}
{read-only}

{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}

Version
1.11
1.11
1.11
1.11
1.11
1.11

May Use After
Not supported
open
open
open
open
open
open
open
open
open
open & claim
open
Not supported
open
open

open
open
open

open

87

Properties (Continued)

Specific Type Mutability Version May Use After
CapDiscrepancy: boolean {read-only} 1.11 open
CapFullSensor: boolean {read-only} 1.11 open
CapJamSensor: boolean {read-only} 1.11 open
CapNearFullSensor: boolean {read-only} 1.11 open
CapPauseDeposit: boolean {read-only} 1.11 open
CapRealTimeData: boolean {read-only} 1.11 open
CurrencyCode: string {read-write} 1.11 open
DepositAmount: int32 {read-only} 1.11 open
DepositCashList: string {read-only} 1.11 open
DepositCodeList: string {read-only} 1.11 open
DepositCounts: string {read-only} 1.11 open
DepositStatus: int32 {read-only} 1.11 open, claim, & enable
FullStatus: int32 {read-only} 1.11 open, claim, & enable
RealTimeDataEnabled: boolean {read-write} 1.11 open, claim & enable

Methods (UML. operations)

Common
Name Version
open (logicalDeviceName: string): 1.11
void { raises-exception }
close (): 1.11
void { raises-exception, use after open }
claim (timeout: int32): 1.11
void { raises-exception, use after open }
release (): 1.11
void { raises-exception, use after open, claim }
checkHealth (level: int32): 1.11
void { raises-exception, use after open, claim, enable }
clearInput (): 1.11
void { raises-exception, use after open, claim }
clearInputProperties (): Not supported
void { }
clearOutput (): Not supported
void { }
directIO (command: int32, inout data: int32, inout obj: object): 1.11

void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.11
void { raises-exception, use after open, claim, enable }

Unified POS, v1.16.1

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string):

void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

Specific

Name

adjustCashCounts (cashCounts: string):

void { raises-exception, use after open, claim, enable }

beginDeposit ():

void { raises-exception, use after open, claim, enable }

endDeposit (success: int32):

void { raises-exception, use after open, claim, enable }

fixDeposit ():

void { raises-exception, use after open, claim, enable }

pauseDeposit (control: int32):

void { raises-exception, use after open, claim, enable }

readCashCounts (inout cashCounts: string, inout discrepancy:

boolean):

void { raises-exception, use after open, claim, enable }

Events (UML interfaces)

Name

upos::events::DataEvent
Status:

upos::events::DirectlIOEvent
EventNumber:
Data:
Obj:

Unified POS, v1.16.1

Type

int32

int32
int32
object

Mutability

{ read-only }

{ read-only }
{ read-write }

{ read-write }

Version

1.11

89

4.3

4.3.1

90

Events (UML interfaces)

Name Type Mutability
upos::events::ErrorEvent Not supported
upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent

Status: int32 { read-only }

General Information

Version

The Bill Acceptor programmatic name is “BillAcceptor.” This device category was added to Version 1.11 of the

specification.
Capabilities

The Bill Acceptor has the following capabilities:
 Reports the cash units and corresponding unit counts available in the Bill Acceptor.
 Reports jam conditions within the device.

« Supports more than one currency.

The Bill Acceptor may also have the following additional capabilities:

 Reporting the levels of the Bill Acceptor’s cash units. Conditions which may be indicated include full, and

near full states.

« Reporting of a possible (or probable) cash count discrepancy in the data reported by the readCashCounts

method.

« The money (bills) which are deposited into the device between the start and end of cash acceptance is reported

to the application. The contents of the report are cash units and cash counts.

Unified POS, v1.16.1

4.4

Bill Acceptor Class Diagram

The following diagram shows the relationships between the Bill Acceptor classes.

<<exception>>
UposException

(from upos)

N
\
\

\
\

\
<<sends>>
\

<<Interface>>
<<event>> BillAcceptorControl <<uses>>
DataEvent (from upos)
(from events) B <<capability>> CapDiscrepancy : boolean -7
S~ B <<capability>> CapFullSensor : boolean
Tl E5<<capability>> CapJamSensor : Boolean
=~ _ |BS<<capability>> CapNearFullSensor : boolean
<<fires>> [B¥}<<capability>> CapPauseDeposit : boolean
B<<capability>> CapRealTimeData : Boolean
B <<prop>> CurrencyCode : string
<<ewent>> &5 <<prop>> DepositAmount : int32
DirectlOEvent ~ _ _ __ _ _ _ |[BB<<prop>> DepositCashList : string
(fomlsvents) B<<prop>> DepositCodeList : string
85 <<prop>> DepositCounts : string
<<fires>> &j<<prop>> DepositStatus : int32
B <<prop>> FullStatus : int32
_ _ ~{[88<<prop>> RealTimeDataEnabled : boolean
<<event>> = SadjustCashCounts(cashCounts : string)
StatusUpdateEvent <<fires>> | [¥beginDeposit()
(from events) @endDeposit(amount : int32)
Bfix Deposit()
WpauseDeposit(control : int32)
@readCashCounts(cashCounts : string, discrepancy : boolean)

Unified POS, v1.16.1

<<utility>>
UposConst
(from upos)

<<utility>>
BillAcceptorConst

(from upos)

91

441

92

Model

The general model of a Bill Acceptor is:

Supports several bill denominations. The supported cash type for a particular currency is noted by the list of
cash units in the DepositCashList property.

Consists of any combination of features to aid in the cash processing functions such as a cash entry holding
bin, a number of slots or bins which can hold the cash, and cash exits.

The removal of cash from the device (for example, to empty deposited cash) is controlled by the
adjustCashCounts method, unless the device can determine the amount of cash on its own. The application
can call readCashCounts to retrieve the current unit count for each cash unit.

Sets the cash slot (or cash bin) conditions in the FullStatus property to show full and near full status. If there
are one or more full cash slots, then FullStatus is BACC STATUS FULL.

Cash acceptance into the “cash acceptance mechanism” is started by invoking the beginDeposit method. The
previous values of the properties DepositCounts and DepositAmount are initialized to zero.

The total amount of cash placed into the device continues to be accumulated until either the fixDeposit method
or the pauseDeposit method is executed. When the fixDeposit method is executed, the total amount of
accumulated cash is stored in the DepositCounts and DepositAmount properties. If the pauseDeposit method
is executed with a parameter value of BACC DEPOSIT PAUSE, then the counting of the deposited cash is
suspended and the current amount of accumulated cash is also updated to the DepositCounts and
DepositAmount properties. When pauseDeposit method is executed with a parameter value of

BACC DEPOSIT RESTART, counting of deposited cash is resumed and added to the accumulated totals.

When the fixDeposit method is executed, the current amount of accumulated cash is updated in the
DepositCounts and DepositAmount properties, and the process remains static until the endDeposit method is
invoked with a BACC DEPOSIT COMPLETE parameter to complete the deposit.

When the clearInput method is executed, the queued DataEvent associated with the receipt of cash is cleared.
The DepositCounts and DepositAmount properties remain set and are not cleared.

Unified POS, v1.16.1

4.4.2 Bill Acceptor Sequence Diagram

NOTE: we are assuming that the :ClientApp already successfully open, Claimed and enabled the
Bill Acceptor device. This means that the Claimed, DeviceEnabled properties are == true
:ClientApp : BillAcceptorControl ‘ BillAcceptorSenvice ‘ ‘ : DataEvent ‘ ‘ Human Actor
;| setRealTimeDataEvents(tru| D D D

;| setRealTimeDataEvents (trué) Set so DepositAmount and
/U DepositCounts are updated for

~ |each Data Event

3: beginDeposit()

|
|
|
|
|
|
|
|
|
|
|
1
U 4: beginDeposit()
T
: 5: initialize DepositAmount and DepositCou‘pts
! | =1 !
| | |
| | |
| | iR 6: accept Cash
| | | \
| |
| |
| |
: : 8: enqueue| Data Event for delivery
| | = 1 |
: : 9: update DepositAmount and DepositCour]‘ts
| | |
! |
| , 10: deliver Data Event
|
: 11: notify ClientApp of event]

12: fixDeposit() N

13: fixDeposit

=—

15: endDeposit(int32)

I
16: endDeposit(int32) :

I 1)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
7: create Data Event : U
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

!
!
u

|
|
|
|
|
|
|
|
|
|
|
|
|
14: updateDeposjtAmount and DepositCour?ts
|
|
|
|
|
|
|
|
|
|

Unified POS, v1.16.1 93

4.4.3 Bill Acceptor State Diagram

clearlhput

¢Enabled(true)

Enabled

readCashCo@

clearlnput Clearlnput processing ‘

entry/ empty data queue

earinput

beginDeposit

Fix Mode ‘

‘ entry/ sync DepostAmount and DepositCount

Cash Acceptance

fixDeposi fixDepasit
entry/ DepositAmount = 0
entry/ DepositCount = 0
. Pause Mode ‘
pauseDeposi — OST R S‘?RW)sync DepostAmount and DepositCount
has room
e ety paliseDeposit(BACC_BEPOSIT PAUSE)

adjustCashCourt Mo Z

adjustCashCounts /

4.4.4 Device Sharing

The Bill Acceptor is an exclusive-use device, as follows:
« The application must claim the device before enabling it.

« The application must claim and enable the device before accessing some of the properties, dispensing or
collecting, or receiving events.

+ See the “Summary” table for precise usage prerequisites.

94 Unified POS, v1.16.1

4.5 Properties (UML attributes)

4.5.1 CapDiscrepancy Property

Syntax

Remarks

Errors

See Also

CapDiscrepancy: boolean { read-only, access after open }
If true, the readCashCounts method can report effective discrepancy values.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

readCashCounts Method.

4.5.2 CapFullSensor Property

Syntax

Remarks

Errors

See Also

CapFullSensor: boolean { read-only, access after open }
If true, the Bill Acceptor can report the condition that some cash slots are full.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

FullStatus Property, StatusUpdateEvent.

4.5.3 CapJamSensor Property

Syntax

Remarks

Errors

See Also

CapJamSensor: boolean { read-only, access after open }
If true, the bill acceptor can report a mechanical jam or failure condition.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

StatusUpdateEvent.

4.5.4 CapNearFullSensor Property

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

CapNearFullSensor: boolean { read-only, access after open }
If true, the Bill Acceptor can report the condition that some cash slots are nearly full.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

FullStatus Property, StatusUpdateEvent.

95

4.5.5 CapPauseDeposit Property

4.5.6

4.5.7

4.5.8

96

Syntax

Remarks

Errors

See Also

CapPauseDeposit: boolean { read-only, access after open }
If true, the Bill Acceptor has the capability to suspend cash acceptance processing temporarily.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16

pauseDeposit Method.

CapRealTimeData Property

Syntax

Remarks

Errors

See Also

CapRealTimeData: boolean { read-only, access after open }
If true, the device is able to supply data as the money is being accepted (“real time”).
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

RealTimeDataEnabled Property.

CurrencyCode Property

Syntax

Remarks

Errors

CurrencyCode: string { read-write, access after open }
Contains the active currency code to be used by Bill Acceptor operations.

This property is initialized to an appropriate value by the open method. This value is guaranteed to be
one of the set of currencies specified by the DepositCodeList property.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

See Also

Value Meaning
E ILLEGALA value was specified that is not within DepositCodeList.

DepositCodeList Property.

DepositAmount Property

Syntax

Remarks

DepositAmount: int32 { read-only, access after open }
The total amount of deposited cash.

For example, if the currency is Japanese yen and DepositAmount is set to 18057,
after the call to the beginDeposit method, there would be 18,057 yen in the Bill Acceptor.

This property is initialized to zero by the open method.

Unified POS, v1.16.1

Errors

See Also

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CurrencyCode Property.

4.5.9 DepositCashList Property

Syntax

Remarks

Errors

See Also

DepositCashList: string { read-only, access after open }
Holds the cash units supported in the Bill Acceptor for the currency represented by the CurrencyCode
property.

It consists of ASCII numeric comma delimited values which denote the ASCII semicolon character (“;”)
followed by ASCII numeric comma delimited values for the bills that can be used with the Bill Acceptor.
The semicolon (;”) is present to denote the start of bills when integrated within the bill dispenser

>

Below are sample DepositCashList values in Japan.

* %1000,5000,10000” ---
1000, 5000, 10000 yen bill.

* This property is initialized by the open method, and is updated when CurrencyCode is set.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CurrencyCode Property, DepositCodeList Property.

4.5.10 DepositCodeList Property

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

DepositCodeList: string { read-only, access after open }
Holds the currency code indicators for cash accepted.

It is a list of ASCII three-character ISO 4217 currency codes separated by commas. For example, if the
string is “JPY,USD,” then the Bill Acceptor supports both Japanese and U.S. monetary units.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CurrencyCode Property, DepositCashList Property.

97

4.5.11 DepositCounts Property Updated in Release 1.12

Syntax DepositCounts: string { read-only, access after open }

Remarks Holds the total of the cash accepted by the bill acceptor. Cash units inside the string are the same as the
DepositCashList property, and are in the same order.

For example if the currency is Japanese yen and string of the DepositCounts property is set to:
“;1000:80,5000:77,10000:0”

After the call to the beginDeposit method, there would be 80 one thousand yen bills and 77 five thou-
sand yen bills in the Bill Acceptor.

This property is initialized to zero by the open method

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also CurrencyCode Property.

4.5.12 DepositStatus Property

Syntax DepositStatus: int32 { read-only, access after open-claim-enable }
Remarks Holds the current status of the cash acceptance operation. It may be one of the following values:
YValue Meaning

BACC _STATUS DEPOSIT START
Cash acceptance started.
BACC_STATUS DEPOSIT END
Cash acceptance stopped.
BACC_STATUS _DEPOSIT COUNT
Counting or repaying the deposited money.
BACC _STATUS DEPOSIT JAM
A mechanical fault has occurred.
This property is initialized and kept current while the device is enabled.
This property is set to BACC_STATUS DEPOSIT END after initialization.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

98 Unified POS, v1.16.1

4.5.13 FullStatus Property

Syntax

Remarks

Errors

FullStatus: int32 { read-only, access after open }

Holds the current full status of the cash slots. It may be one of the following:

Value Meaning

BACC_STATUS _OK All cash slots are neither nearly full nor full.
BACC _STATUS FULL Some cash slots are full.
BACC_STATUS NEARFULL
Some cash slots are nearly full.
This property is initialized and kept current while the device is enabled.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

4.5.14 RealTimeDataEnabled Property

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

RealTimeDataEnabled: boolean {read-write, access after open-claim-enable}

If true and CapRealTimeData is true, each data event fired will update the DepositAmount and
DepositCounts properties. Otherwise, DepositAmount and DepositCounts are updated with the value
of the money collected when fixDeposit is called. Setting RealTimeDataEnabled will not cause any
change in system behavior until a subsequent beginDeposit method is performed. This prevents
confusion regarding what would happen if it were modified between a beginDeposit - endDeposit
pairing. This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL Cannot be set true if CapRealTimeData is false.

CapRealTimeData Property, DepositAmount Property, DepositCounts Property, beginDeposit
Method, endDeposit Method, fixDeposit Method.

99

4.6

4.6.1

4.6.2

100

Method (UML operations)

adjustCashCounts Method Updated in Release 1.12

Syntax

Remarks

Errors

See Also

adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cashCounts parameter contains cash types and amounts to be
initialized.

This method is called to set the initial amounts in the Bill Acceptor after initial setup, or to adjust cash
counts after replenishment or removal, such as a paid in or paid out operation. This method is called when
needed for devices which cannot determine the exact amount of cash in them automatically. If the device
can determine the exact amount, then this method call is ignored. The application would first call
readCashCounts to get the current counts, and adjust them to the amount being replenished. Then the
application will call this method to set the amount currently in the acceptor.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and string returned in cashCounts is set to:
“;1000:80,5000:77,10000:0”

as a result of calling the adjustCashCounts method, then there would be 80 one thousand yen bills and
77 five thousand yen bills in the Bill Acceptor.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

readCashCounts Method.

beginDeposit Method

Syntax

Remarks

beginDeposit ():
void { raises-exception, use after open-claim-enable }

Cash acceptance is started.

The following property values are initialized by the call to this method:
* The value of each cash unit of the DepositCounts property is set to zero.

* The DepositAmount property is set to zero.

After calling this method, cash acceptance is reported by DataEvents until fixDeposit is called while
the deposit process is not paused.

Unified POS, v1.16.1

4.6.3

Unified POS, v1.16.1

Errors

See Also

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL The call sequence is not correct.

DepositAmount Property, DepositCounts Property, endDeposit Method, fixDeposit Method, pau-
seDeposit Method.

endDeposit Method

Syntax

Remarks

Errors

See Also

endDeposit (success: int32):
void { raises-exception, use after open-claim-enable }

The success parameter holds the value of how to deal with the cash that was deposited. Contains one of
the following values:

Parameter Description
BACC _DEPOSIT COMPLETE The deposit is accepted and the mode is complete.

Cash acceptance is completed.

Before calling this method, the application must calculate the difference between the amount of the
deposit and the amount required.

The application must call the fixDeposit method before calling this method.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL One of the following errors occurred:
* The call sequence is invalid. beginDeposit and fixDeposit must be
called in sequence before calling this method.
DepositAmount Property, DepositCounts Property, beginDeposit Method, fixDeposit Method,
pauseDeposit Method.

101

4.6.4 endDeposit Method

102

Syntax endDeposit (success: int32):
void { raises-exception, use after open-claim-enable }

The success parameter holds the value of how to deal with the cash that was deposited. Contains one of the
following values:

Parameter Description
BACC _DEPOSIT COMPLETE The deposit is accepted and the mode is complete.

Remarks Cash acceptance is completed.

Before calling this method, the application must calculate the difference between the amount of the
deposit and the amount required.

The application must call the fixDeposit method before calling this method.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL One of the following errors occurred:
e The call sequence is invalid. beginDeposit and fixDeposit must be
called in sequence before calling this method.

See Also DepositAmount Property, DepositCounts Property, beginDeposit Method, fixDeposit Method,
pauseDeposit Method.

Unified POS, v1.16.1

4.6.5 fixDeposit Method

4.6.6

Unified POS, v1.16.1

Syntax

Remarks

Errors

See Also

fixDeposit ():
void { raises-exception, use after open-claim-enable }

When this method is called, all property values are updated to reflect the current values in the Bill
Acceptor.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

YValue Meaning
E ILLEGAL One of the following errors occurred:
* The call sequence is invalid. beginDeposit must be called before calling
this method.
DepositAmount Property, DepositCounts Property, beginDeposit Method, endDeposit Method,
pauseDeposit Method.

pauseDeposit Method

Syntax

Remarks

Errors

pauseDeposit (control: int32):
void { raises-exception, use after open-claim-enable }
The control parameter contains one of the following values:

Parameter Description
BACC _DEPOSIT PAUSE Cash acceptance is paused.
BACC DEPOSIT RESTART Cash acceptance is resumed.

Called to suspend or resume the process of depositing cash.

If control is BACC_DEPOSIT PAUSE, the cash acceptance operation is paused. The deposit process
will remain paused until this method is called with control set to BACC_DEPOSIT RESTART. It is
valid to call fixDeposit then endDeposit while the deposit process is paused.

When the deposit process is paused, the DepositCounts and DepositAmount properties are updated to
reflect the current state of the Bill Acceptor. The property values are not changed again until the deposit
process is resumed.

If control is BACC_DEPOSIT RESTART, the deposit process is resumed.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

103

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL One of the following errors occurred:
* The call sequence is invalid. beginDeposit must be called before calling
this method.

* The deposit process is already paused and control is set to
BACC_DEPOSIT PAUSE, or the deposit process is not paused and
control is set to BACC_DEPOSIT_RESTART.

See Also DepositAmount Property, DepositCounts Property, beginDeposit Method, endDeposit Method,
fixDeposit Method.
4.6.7 readCashCounts Method Updated in Release 1.12
Syntax readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }
Parameter Description
cashCounts The cash count data is placed into the string cashCounts.
discrepancy If discrepancy is set to true by this method, then there is some cash which was
not able to be included in the counts reported in cashCounts; otherwise it is
set false.
Remarks Each unit in cashCounts matches a unit in the DepositCashList property, and is in the same order.
For example if the currency is Japanese yen and string returned in cashCounts is set to:
“;1000:80,5000:77,10000:0”
as a result of calling the readCashCounts method, then there would be 80 one thousand yen bills and 77
five thousand yen bills in the Bill Acceptor.
Usually, the cash total calculated by cashCounts parameter is equal to the cash total in a Bill Acceptor.
There are some cases where a discrepancy may occur because of existing uncountable cash in a Bill
Acceptor. An example would be when a cash slot is “overflowing” such that the device has lost its ability
to accurately detect and monitor the cash.
Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.
See Also DepositCashList Property.

104

Unified POS, v1.16.1

4.7 Events (UML interfaces)

4.7.1 DataEvent

<< event >> upos::events::DataEvent

Description

Attributes

Status: int32 { read-only }

Notifies the application when the Bill Acceptor has accepted a bill.

This event contains the following attribute:

Attributes Type Description
Status int32 The Status parameter contains zero.

4.7.2 DirectlOEvent

<<event >> upos::events::DirectlOEvent

Description

Attributes

Remarks

See Also

Unified POS, v1.16.1

EventNumber: int32 { read-only }
Data: int32 {read-write }
Obj: object {read-write }

Provides Service information directly to the application. This event provides a means for a vendor-

specific Bill Acceptor Service to provide events to the application that are not otherwise supported by

the Control.

This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and

Service. This property is settable.

This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Bill Acceptor

devices which may not have any knowledge of the Service’s need for this event.

“Events” on page 15 directlO Method.

105

4.7.3 StatusUpdateEvent
<<event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }
Description Notifies the application that there is a change in the power status of the Bill Acceptor device.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Indicates a change in the status of the unit. See values below.

Note that Release 1.3 added Power State Reporting with additional Power
reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 2.

The Status parameter contains the Bill Acceptor status condition:

Value Meaning

BACC STATUS FULL Some cash slots are full.

BACC STATUS NEARFULL Some cash slots are nearly full.

BACC _STATUS FULLOK No cash slots are either full or nearly full.
BACC STATUS JAM A mechanical fault has occurred.

BACC STATUS JAMOK A mechanical fault has recovered.

Remarks Fired when the Bill Acceptor detects a status change.

For changes in the fullness levels, the Bill Acceptor is only able to fire StatusUpdateEvents when the
device has a sensor capable of detecting the full or near full states and the corresponding capability
properties for these states are set.

Jam conditions may be reported whenever this condition occurs.

See Also “Events” on page 15

106 Unified POS, v1.16.1

5

5.1

5.2

Bill Dispenser

General

Summary

Properties (UML attributes)

Common

AutoDisable:

CapCompareFirmwareVersion:

CapPowerReporting:
CapStatisticsReporting:
CapUpdateFirmware:
CapUpdateStatistics:
CheckHealthText:
Claimed:

DataCount:
DataEventEnabled:
DeviceEnabled:
FreezeEvents:
OutputID:
PowerNotify:
PowerState:

State:

DeviceControlDescription:
DeviceControlVersion:
DeviceServiceDescription:

DeviceServiceVersion:

PhysicalDeviceDescription:

PhysicalDeviceName:

Unified POS, v1.16.1

Type
boolean
boolean
int32
boolean
boolean
boolean
string
boolean
int32
boolean
boolean
boolean
int32
int32
int32
int32

string
int32
string
int32
string

string

This Chapter defines the Bill Dispenser device category.

Mutability
{read-write}
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{read-only}
{read-only}
{read-only}
{read-write}
{read-write}
{read-write}
{read-only}
{read-write}
{read-only}
{read-only}

{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}

Version
1.11
1.11
1.11
1.11
1.11
1.11

May Use After
Not supported
open
open
open
open
open
open
open
Not supported
Not supported
open & claim
open
Not supported
open
open

open
open
open

open

107

108

Properties (Continued)
Specific

CapDiscrepancy:
CapEmptySensor:
CapJamSensor:
CapNearEmptySensor:
AsyncMode:
AsyncResultCode:

AsyncResultCodeExtended:

CurrencyCashList:
CurrencyCode:
CurrencyCodeList:
CurrentExit:
DeviceExits:
DeviceStatus:

ExitCashList:

Type
boolean
boolean
boolean
boolean
boolean
int32
int32
string
string
string
int32
int32
int32

string

Methods (UML operations)

Common

Name

open (logicalDeviceName: string):
void { raises-exception }

close ():

Mutability
{read-only}
{read-only}
{read-only}
{read-only}
{read-write}
{read-only}
{read-only}
{read-only}
{read-write}
{read-only}
{read-write}
{read-only}
{read-only}
{read-only}

void { raises-exception, use after open }

claim (timeout: int32):

void { raises-exception, use after open }

release ():

void { raises-exception, use after open, claim }

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

clearInput ():

void { raises-exception, use after open, claim }

clearInputProperties ():

void { }

clearOutput ():
void {}

directlO (command: int32, inout data: int32, inout obj: object):

void { raises-exception, use after open }

Version

May Use After
open
open
open
open
open
open, claim, & enable
open, claim, & enable
open
open
open
open
open
open, claim, & enable

open

Version

1.11

Not supported
Not supported
Not supported

1.11

Unified POS, V1.16.1

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.11
void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string): 1.11
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

Specific

Name

adjustCashCounts (cashCounts: string): 1.11
void { raises-exception, use after open, claim, enable }

dispenseCash (cashCounts: string): 1.11
void { raises-exception, use after open, claim, enable }

readCashCounts (inout cashCounts: string, inout discrepancy: 1.11
boolean):

void { raises-exception, use after open, claim, enable }

Events (UML interfaces)

Name Type Mutability Version
upos::events::DataEvent Not supported
upos::events::DirectlOEvent 1.11

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent Not supported
upos::events::OutputCompleteEvent Not supported
upos::events::StatusUpdateEvent 1.11

Status: int32 { read-only }

Unified POS, v1.16.1 109

5.3 General Information

The Bill Dispenser programmatic name is “BillDispenser.” This device category was added in Version 1.11 of the
specification.

5.3.1 Capabilities

The Bill Dispenser has the following capabilities:
« Reports the cash units and corresponding unit counts available in the Bill Dispenser.
« Dispenses a specified number of cash units from the device in bills into a user-specified exit.
+ Reports jam conditions within the device.
« Supports more than one currency.
The Bill Dispenser may also have the following additional capabilities:

« Reporting the fullness levels of the Bill Dispenser’s cash units. Conditions which may be indicated include
empty and near empty states.

« Reporting of a possible (or probable) cash count discrepancy in the data reported by the readCashCounts
method.

110 Unified POS, V1.16.1

5.3.2 Bill Dispenser Class Diagram

The following diagram shows the relationships between the Bill Dispenser classes.

<<exception>> <<utility>>
UposException UposConst
(from upos) (from upos)
N\
\ T

N
. |

N\
<<sends>> ‘

<<Interface>> |

BillDispenserControl <<utility>>
(from upos) BillDispenserConst
@«capability» CapDiscrepancy: boolean <<uses>> (from upos)
%«capability» CapEmptySensor : boolean
@«capability» CapJamSensor : Boolean 7

B5<<capability>> CapNearEm ptySensor : boolean
@ <<prop>> AsyncMode : boolean
E5<<prop>> AsyncRes ultCode : int32
& <<prop>> AsyncRes ultCodeExtended :int32
<<event>> E8<<prop>> CurrencyCashList : string
DirectiOEvent & <<prop>> CurrencyCode : sting
(from events) - — ~@<<prop>> CurrencyCodeList : string
&<<prop>> CurrentExit: int32
<<fires>> E<<prop>> DeviceExits : int32
B¥<<prop>> DeviceStatus : int32
@<<prop>> ExitCashList : string

<<event>> e — W i R
StatusUpdateEvent adjustCashCounts(cashCounts : string)

« > SbeginDeposit()
{from events) fres ®dispenseCas h(cash Counts : string)
$dispenseChange(amount : int32)
®endDe posit(amount :int32)
SfixDeposit()
®pause Deposit(control : int32)
®readCashCounts(cashCounts : string, discrepancy : boolean)

5.3.3 Model

The general model of a Bill Dispenser is:

« Supports several bill denominations. The supported bill denomination for a particular currency is noted by the
list of cash units in the CurrencyCashList property.

Consists of any combination of features to aid in the cash processing functions such as a number of slots or
bins which can hold the cash, and cash exits.

This specification provides programmatic control only for the dispensing of cash. The accepting of cash by the
device (for example, to replenish cash) is controlled by the adjustCashCounts method, unless the device can
determine the amount of cash on its own. The application can call readCashCounts to retrieve the current unit
count for each cash unit, but cannot control when or how cash is added to the device.

May have multiple exits. The number of exits is specified in the DeviceExits property. The application chooses
a dispensing exit by setting the CurrentExit property. The cash units which may be dispensed to the current
exit are indicated by the ExitCashList property. When CurrentExit is 1, the exit is considered the “primary
exit” which is typically used during normal processing for dispensing cash to a customer following a retail
transaction. When CurrentExit is greater than 1, the exit is considered an “auxiliary exit.” An “auxiliary exit”
typically is used for special purposes such as dispensing quantities or types of cash not targeted for the

Unified POS, v1.16.1 1M1

112

“primary exit.”

Dispenses cash into the exit specified by CurrentExit when dispenseCash is called. With dispenseCash, the
application specifies a count of each cash unit to be dispensed.

Dispenses cash either synchronously or asynchronously, depending on the value of the AsyncMode property.
When AsyncMode is false, then the cash dispensing methods are performed synchronously and the dispense
method returns the completion status to the application.

When AsyncMode is true and no exception is thrown by dispenseCash, then the method is performed
asynchronously and its completion is indicated by a StatusUpdateEvent with its Data property set to
BDSP_STATUS ASYNC. The request’s completion status is set in the AsyncResultCode and
AsyncResultCodeExtended properties.

The values of AsyncResultCode and AsyncResultCodeExtended are the same as those for the ErrorCode
and ErrorCodeExtended properties of a UposException when an error occurs during synchronous dispensing.

Nesting of asynchronous Bill Dispenser operations is illegal; only one asynchronous method can be processed
at a time.

The readCashCounts method may not be called while an asynchronous method is being performed since
doing so could likely report incorrect cash counts.

May support more than one currency. The CurrencyCode property may be set to the currency, selecting from
a currency in the list CurrencyCodeList. CurrencyCashList, ExitCashList, dispenseCash,
dispenseChange and readCashCounts all act upon the current currency only.

Sets the cash slot (or cash bin) conditions in the DeviceStatus property to show empty and near empty status.
If there are one or more empty cash slots, then DeviceStatus is BDSP_STATUS EMPTY.

Unified POS, V1.16.1

5.3.4 Bill Dispenser Sequence Diagram

claimed and enabled the device

NOTE: We are assuming the clienApp has already successfully opened, ﬁ

::ClientApp : BillDispenserControl ::BillDispenserSenvice : StatusUpdateEwvent

* ﬂ

1: dispenseCash(string) |

U 2: dispenseCash(string)

Assume Bill
U' ~ ~ ~ |Dispenser is
getting low

|

|

|

|

|

|

| 3: update deviceStatus to BDSP_STATUS_NEAREMPTY (CapNearEmptySensor = true)
| | |
|

|

|

|

|

|

|

—

|
4: create new SUE Event 1
L

5: deliver SUE to control U

6: hotify ClientApp of new eyent

u

Unified POS, v1.16.1 113

5.3.5 Bill Dispenser State Diagram

nabled

E
setAsyncMode(false)

setAsyné Nea{/Em pty

ynchronous

setAsy

Asynchronous

Asynchronous

ad%sh@

ams

jams

5.3.6 Device Sharing

The Bill Dispenser is an exclusive-use device, as follows:
« The application must claim the device before enabling it.

« The application must claim and enable the device before accessing some of the properties, dispensing or
collecting, or receiving events.

« See the “Summary” table for precise usage prerequisites.

114 Unified POS, V1.16.1

5.4

5.4.1

5.4.2

5.4.3

Unified POS, v1.16.1

Properties (UML attributes)

AsyncMode Property

Syntax

Remarks

Errors

See Also

AsyncMode: boolean { read-write, access after open }

If true, the dispenseCash method will be performed asynchronously. If false, this method will be
performed synchronously.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

AsyncResultCode Property, AsyncResultCodeExtended Property, dispenseCash Method.

AsyncResultCode Property

Syntax

Remarks

Errors

See Also

AsyncResultCode: int32 { read-only, access after open-claim-enable }

Holds the completion status of the last asynchronous dispense request (i.e., when dispenseCash was
called with AsyncMode true).

This property is set before a StatusUpdateEvent is delivered with a Status value of
BDSP_STATUS_ASYNC.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

AsyncMode Property, dispenseCash Method.

AsyncResultCodeExtended Property

Syntax

Remarks

Errors

See Also

AsyncResultCodeExtended: int32 { read-only, access after open-claim-enable}

Holds the completion status of the last asynchronous dispense request (i.e., when dispenseCash was
called with AsyncMode true).

This property is set before a StatusUpdateEvent is delivered with a Status value of
BDSP_STATUS_ASYNC.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

AsyncMode Property, dispenseCash Method.

115

5.4.4 CapDiscrepancy Property

5.4.5

5.4.6

5.4.7

116

Syntax

Remarks

Errors

See Also

CapDiscrepancy: boolean { read-only, access after open }
If true, the readCashCounts method can report effective discrepancy values.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

readCashCounts Method.

CapEmptySensor Property

Syntax

Remarks

Errors

See Also

CapEmptySensor: boolean { read-only, access after open }
If true, the Bill Dispenser can report the condition that some cash slots are empty.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

DeviceStatus Property, StatusUpdateEvent.

CapJamSensor Property

Syntax

Remarks

Errors

See Also

CapJamSensor: boolean { read-only, access after open }
If true, the Bill Dispenser can report the occurrence of a mechanical fault in the Bill Dispenser.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

DeviceStatus Property, StatusUpdateEvent.

CapNearEmptySensor Property

Syntax

Remarks

Errors

See Also

CapNearEmptySensor: boolean { read-only, access after open }
If true, the Bill Dispenser can report the condition that some cash slots are nearly empty.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

DeviceStatus Property, StatusUpdateEvent.

Unified POS, V1.16.1

5.4.8 CurrencyCashList Property

Syntax

Remarks

Errors

See Also

CurrencyCashList: string { read-only, access after open }

Holds the cash units supported in the Bill Dispenser for the currency represented by the CurrencyCode
property.
The string consists of an ASCII semicolon character (*;””) followed by ASCII numeric comma delimited

units of bills that can be used with the Bill Dispenser. The semicolon (“‘;”) is present to indicate the units
are bills. This is used for merging multiple device services into the Cash Changer.

Below are sample CurrencyCashList values in Japan.
* “1000,5000,10000” ---
1000, 5000, 10000 yen bill.

This property is initialized by the open method, and is updated when CurrencyCode is set.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

CurrencyCode Property.

5.4.9 CurrencyCode Property

Syntax

Remarks

Errors

See Also

CurrencyCode: string { read-write, access after open }

Contains the active currency code to be used by Bill Dispenser operations. This property is initialized to
an appropriate value by the open method. This value is guaranteed to be one of the set of currencies
specified by the CurrencyCodeList property.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL A value was specified that is not within CurrencyCodeList.

CurrencyCodeList Property.

5.4.10 CurrencyCodelList Property

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

CurrencyCodeList: string { read-only, access after open }

Holds a list of ASCII three-character ISO 4217 currency codes separated by commas. For example, if the
string is “JPY,USD”, then the Bill Dispenser supports both Japanese and U.S. monetary units.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

CurrencyCode Property.

117

5.4.11 CurrentExit Property

Syntax CurrentExit: int32 { read-write, access after open }

Remarks Holds the current cash dispensing exit. The value 1 represents the primary exit (or normal exit), while
values greater than 1 are considered auxiliary exits. Legal values range from 1 to DeviceExits.

Below are examples of typical property value sets in Japan. CurrencyCode is “JPY” and
CurrencyCodeList is “JPY.”

« Bill Dispenser supports bills; an auxiliary exit is used for larger quantities of bills:
CurrencyCashList = “;1000,5000,10000”
DeviceExits =2
When CurrentExit = 1 : ExitCashList = “;1000,5000”
When CurrentExit =2 : ExitCashList = “;1000,5000,10000”

This property is initialized to 1 by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL An invalid CurrentExit value was specified.

See Also CurrencyCashList Property, DeviceExits Property, ExitCashList Property.

5.4.12 DeviceExits Property

Syntax DeviceExits: int32 { read-only, access after open }
Remarks The number of exits for dispensing cash.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CurrentExit Property.

118 Unified POS, V1.16.1

5.4.13 DeviceStatus Property

Syntax

Remarks

Errors

DeviceStatus: int32 { read-only, access after open-claim-enable }
Holds the current status of the Bill Dispenser. It may be one of the following:

Value Meaning
BDSP_STATUS OK The current condition of the Bill Dispenser is satisfactory.
BDSP_STATUS EMPTY
Some cash slots are empty.
BDSP_STATUS NEAREMPTY
Some cash slots are nearly empty.
BDSP_STATUS JAM A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. If more than one condition is
present, then the order of precedence starting at the highest is: fault, empty, and near empty.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

5.4.14 ExitCashList Property

Syntax
Remarks

Errors

See Also

Unified POS, v1.16.1

ExitCashList: string { read-only, access after open }

Holds the cash units which may be dispensed to the exit which is denoted by CurrentExit property. The
supported cash units are either the same as CurrencyCashList, or a subset of it. The string format is
identical to that of CurrencyCashList.

This property is initialized by the open method, and is updated when CurrencyCode or CurrentExit is
set.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

CurrencyCode Property, CurrencyCashList Property, CurrentExit Property.

119

5.5

5.5.1

5.5.2

120

Methods (UML operations)

adjustCashCounts Method Updated in Release 1.12

Syntax

Remarks

Errors

See Also

adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cashCounts parameter contains cash types and amounts to be initialized.

This method is called to set the initial amounts in the Bill Dispenser after initial setup, or to adjust cash
counts after replenishment or removal, such as a paid in or paid out operation. This method is called when
needed for devices which cannot determine the exact amount of cash in them automatically. If the device
can determine the exact amount, then this method call is ignored. The application would first call
readCashCounts to get the current counts, and adjust them to the amount being replenished. Then the
application will call this method to set the amount currently in the changer.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and string returned in cashCounts is set to:
“;1000:80,5000:77,10000:0”

as a result of calling the readCashCounts method, then there would be 80 one thousand yen bills and 77
five thousand yen bills in the Bill Dispenser.

A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY Cash units and counts cannot be initialized because an asynchronous method
is outstanding.

readCashCounts Method.

dispenseCash Method

Syntax

Remarks

dispenseCash (cashCounts: string):
void { raises-exception, use after open-claim-enable }

The cashCounts parameter contains the dispensing cash units and counts, represented by the format of

[73%3]

“;cash unit:cash counts,, cash unit:cash counts.” Units must be preceded by “;” to represent bills.

Dispenses the cash from the Bill Dispenser into the exit specified by CurrentExit. The cash dispensed
is specified by pairs of cash units and counts.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Unified POS, V1.16.1

Errors

See Also

Some cashCounts examples, using Japanese yen as the currency, are shown below.

+ 1000:10”
Dispense 10 one thousand yen bills.
* %1000:10,10000:5”
Dispense 10 one thousand yen bills and 5 ten thousand yen bills.

A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E BUSY Cash cannot be dispensed because an asynchronous method is in progress.

E ILLEGAL One of the following errors occurred:
The cashCounts parameter value was illegal for the current exit.
E EXTENDED ErrorCodeExtended = EBDSP_OVERDISPENSE:
The specified cash cannot be dispensed because of a cash shortage.

AsyncMode Property, CurrentExit Property.

5.5.3 readCashCounts Method Updated in Release 1.12

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cash count data is placed into cashCounts.

discrepancy If discrepancy is set to true by this method, then there is some cash which was
not able to be included in the counts reported in cashCounts; otherwise it is
set false.

The format of the string cashCounts is the same as cashCounts in the dispenseCash method. Each unit
in cashCounts matches a unit in the CurrencyCashList property, and is in the same order.

For example if the currency is Japanese yen and string returned in cashCounts is set to:
“;1000:80,5000:77,10000:0”

as a result of calling the readCashCounts method, then there would be 80 one thousand yen bills and 77
five thousand yen bills in the Bill Dispenser.

If CapDiscrepancy property is false, then discrepancy is always false.

Usually, the cash total calculated by cashCounts parameter is equal to the cash total in a Bill Dispenser.
There are some cases where a discrepancy may occur because of existing uncountable cash in a Bill
Dispenser. An example would be when a bill dispenser has diverted unusable bill to a holding area.

A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

YValue Meaning
E BUSY Cash units and counts cannot be read because an asynchronous method is in
process.

CapDiscrepancy Property, CurrencyCashList Property, dispenseCash Method.

121

5.6 Events (UML interfaces)

5.6.1 DirectlOEvent

<<event >> upos::events::DirectlOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object {read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Bill Dispenser Service to provide events to the application that are not otherwise supported by
the Control

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and the

Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service. This
property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Bill Dispenser
devices which may not have any knowledge of the Service’s need for this event.

See Also “Events Updated in Release 1.12” on page 15, directlO Method.
5.6.2 StatusUpdateEvent

<<event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the Bill Dispenser device.

Attributes This event contains the following attribute:
Attributes Type _ Description
Status int32 Indicates a change in the status of the unit. See values below.
Note that Release 1.3 added Power State Reporting with additional Power
reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 2.
The Status parameter contains the Bill Dispenser status condition:

122 Unified POS, V1.16.1

Value Meaning

BDSP_STATUS EMPTY Some cash slots are empty.

BDSP_STATUS NEAREMPTY Some cash slots are nearly empty.
BDSP_STATUS EMPTYOK No cash slots are either empty or nearly empty.
BDSP_STATUS JAM A mechanical fault has occurred.

BDSP_STATUS JAMOK A mechanical fault has recovered.
BDSP_STATUS ASYNC Asynchronously performed method has completed.

Remarks Fired when the Bill Dispenser detects a status change.

For changes in the fullness levels, the Bill Dispenser is only able to fire StatusUpdateEvents when the
device has a sensor capable of detecting the full, near full, empty, and/or near empty states and the
corresponding capability properties for these states are set.

Jam conditions may be reported whenever this condition occurs; likewise for asynchronous method
completion.

The completion statuses of asynchronously performed methods are placed in the AsyncResultCode and
AsyncResultCodeExtended properties.

See Also AsyncResultCode Property, AsyncResultCodeExtended Property, “Events Updated in Release 1.12”
on page 15.

Unified POS, v1.16.1 123

124 Unified POS, V1.16.1

6

6.1

6.2

Biometrics

General

This Chapter defines the Biometrics device category.

Summary

Properties (UML attributes)

Common
AutoDisable:

CapCompareFirmwareVersion:

CapPowerReporting:
CapStatisticsReporting:
CapUpdateFirmware:
CapUpdateStatistics:
CheckHealthText:
Claimed:
DataCount:
DataEventEnabled:
DeviceEnabled:
FreezeEvents:
OutputID:
PowerNotify:
PowerState:

State:

DeviceControlDescription:

DeviceControlVersion:
DeviceServiceDescription:

DeviceServiceVersion:

PhysicalDeviceDescription:

PhysicalDeviceName:

Unified POS, v1.16.1

Type
boolean
boolean
int32
boolean
boolean
boolean
string
boolean
int32
boolean
boolean
boolean
int32
int32
int32
int32

string
int32
string
int32
string

string

Mutability
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-write }
{ read-write }
{ read-write }
{ read-only }
{ read-write }
{ read-only }
{ read-only }

{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

Version
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10

1.10
1.10
1.10
1.10
1.10
1.10

May Use After

open
open
open
open
open
open
open
open
open
open

open & claim
open

Not supported
open

open

125

126

Properties (Continued)

Specific: Type Mutability Version
Algorithm: int32 { read-write } 1.10
AlgorithmList: String { read-only } 1.10
BIR: binary { read-only } 1.10
CapPrematchData: boolean { read-only } 1.10
CapRawSensorData: boolean { read-only } 1.10
CapRealTimeData: boolean { read-only } 1.10
CapSensorColor: int32 { read-only } 1.10
CapSensorOrientation: int32 { read-only } 1.10
CapSensorType: int32 { read-only } 1.10
CapTemplateAdaptation: boolean { read-only } 1.10
RawSensorData: binary { read-only } 1.10
RealTimeDataEnabled: boolean { read-write } 1.10
SensorBPP: int32 { read-only } 1.10
SensorColor: int32 { read-write } 1.10
SensorHeight: int32 { read-only } 1.10
SensorOrientation: int32 { read-write } 1.10
SensorType: int32 { read-write } 1.10

SensorWidth: int32 { read-only } 1.10

Methods (UML operations)

Common

Name

open (logicalDeviceName: string):
void { raises-exception }

close ():
void { raises-exception, use after open }

claim (timeout: int32):
void { raises-exception, use after open }

release ():
void { raises-exception, use after open, claim }

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

clearInput ():
void { raises-exception, use after open, claim }

May Use After
open & claim
open
open & claim
open
open
open
open
open

open

open
open & claim
open
open
open
open
open, claim, & enable
open, claim, & enable

open

Version

1.10

1.10

1.10

1.10

1.10

1.10

Unified POS, V1.16.1

clearInputProperties (): 1.10
void { raises-exception, use after open, claim }

clearOutput (): Not supported
void { }
directlO (command: int32, inout data: int32, inout obj: object): 1.10

void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.10
void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string): 1.10
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string): 1.10
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string): 1.10
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string): 1.10
void { raises-exception, use after open, claim, enable }

SpecificUpdated in Release 1.11

Name

beginEnrollCapture (referenceBIR: binary, payload: binary): 1.10
void { raises-exception, use after open, claim, enable }

beginVerifyCapture (): 1.10
void { raises-exception, use after open, claim, enable }

endCapture (): 1.10
void { raises-exception, use after open, claim, enable }

identify (maxFARRequested: in732, maxFRRRequested: int32, 1.11

FARPrecedence: boolean, referenceBIRPopulation: array of binary, inout
candidateRanking: int32 array, timeout: int32):

void { raises-exception, use after open, claim, enable }
identifyMatch (maxFARRequested: in732, maxFRRRequested: int32, 1.11
FARPrecedence: boolean, sampleBIR: binary, referenceBIRPopulation:
array of binary, inout candidateRanking: int32 array):

void { raises-exception, use after open, claim, enable }

processPrematchData (capturedBIR: binary, prematchDataBIR: binary, 1.10
inout processedBIR: binary):
void { raises-exception, use after open, claim, enable }

identifyMatch (maxFARRequested: in732, maxFRRRequested: int32, 1.11
FARPrecedence: boolean, sampleBIR: binary, referenceBIRPopulation:
array of binary, inout candidateRanking: int32 array):

void { raises-exception, use after open, claim, enable }
processPrematchData (capturedBIR: binary, prematchDataBIR: binary, 1.10

inout processedBIR: binary):
void { raises-exception, use after open, claim, enable }

Unified POS, v1.16.1 127

128

verify (maxFARRequested: int32, maxFRRRequested: int32, 1.10
FARPrecedence: boolean, referenceBIR: binary, inout adaptedBIR:

binary, inout result: boolean, inout FARAchieved: inz32, inout

FRRACchieved: int32, inout payload: binary, timeout: int32):

void { raises-exception, use after open, claim, enable }

verifyMatch (maxFARRequested: int32, maxFRRRequested: inf32, 1.10
FARPrecedence: boolean, sampleBIR: binary, referenceBIR: binary, inout

adaptedBIR: binary, inout result: boolean, inout FARAchieved: int32,

inout FRRAchieved: int32, inout payload: binary):

void { raises-exception, use after open, claim, enable }

Events (UML interfaces)

Name Type Mutability Version
upos::events::DataEvent 1.10
Status: int32 { read-only }
upos::events::DirectlOEvent 1.10
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }
upos::events::ErrorEvent 1.10
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }
upos::events::OQutputCompleteEvent Not supported
upos::events::StatusUpdateEvent 1.10
Status: int32 { read-only }

Unified POS, V1.16.1

6.3 General Information

6.3.1 Capabilities

All Biometric devices have the following capabilities:

« The device captures biometrics data from a biometrics sensor. The biometrics data is in the form of a
Biometrics Information Record (BIR) containing one or more Biometrics Data Blocks (BDB) which in turn
contain one or more biometric data samples or biometric templates.

This standard uses the term template (as adapted from the BioAPIl) to refer to the biometric enrollment data
for a user. The term biometric information record (BIR) refers to any biometric data that is returned to the
application; including raw data, intermediate data, processed sample(s) ready for verification or identification,
as well as enrollment data. Typically, the only data stored persistently by the application is the BIR generated
for enrollment (i.e., the template). The format of the Opaque Biometric Data Block (BDB) is indicated by the
Format field of the Header. This may be a standard or proprietary format. The BDB may be encrypted. The
digital signature is optional, and may be used to ensure integrity of the data during transmission and storage.
When present, it is calculated on the Header + BDB. For standardized BIR formats, the signature will take a
standard form (to be determined when the format is standardized). For proprietary BIR formats (all that exists
at the present time), the signature can take any form that suits the Service. For this reason, there is no C
structure definition of the signature. The BIR Data Type indicates whether the BIR is signed and/or encrypted.

“Opagque” Digital
Header Biometric Data Block Signature
Format ID
Length Header | BIR Data

Qualit Purpose | Biometric Type
{Header + BOB} ‘Version Type Owner Type ¥ P ¥P
4 1 1 2 2 1 1 4
< Product ID))
Creation | Creation | Subtype | Index Index

Cwner | Type Date Time Flag uuID)

2 2 4 3 1 1 16

« The Device captures Biometric data for the purposes of enrollment. The notion of enrollment requires a higher
level of quality for the final BIR that is created. Generally, the BIR will be the aggregation of series of
biometric captures.

1. BioAPI is defined by the BioAPI consortium (www.bioapi.org).

Unified POS, v1.16.1 129

 The Device captures Biometric data for the purposes of verification. Verification does not require the same
level of quality as enrollment.

 The Device has the ability to determine if two BIRs match within the degree of error specified by the False
Accept Rate (FAR) and False Reject Rate (FRR). The FAR is the margin of percentage error acceptable that
two non-matching biometric samples will be falsely deemed to match. The FRR is the margin of percentage
error acceptable that two matching biometric samples will be falsely deemed not to match.

« The Device has the ability to compare a BIR against a sample population of BIRs and create a rank ordering of
the population for identification purposes.

Some Biometrics Device may have the following additional capabilities:

+ The Device Returns the raw biometric data in “real time” as it is captured by the device. If this capability is
true and has been enabled by application by setting the RealTimeDataEnabled property to true, then a series
of StatusUpdateEvents are enqueued, each as a raw image defined by SensorBPP, SensorColor,
SensorHeight, and SensorWidth representing a partial biometrics image capture.

130 Unified POS, V1.16.1

6.3.2 Biometrics Class Diagram

The following diagram shows the relationships between the Biometrics classes.

«exception»
UposException

«sends»

«interface»
BaseControl

«uses»

«eventy
DataEvent

+Status : int32

Unified POS, v1.16.1

«sends»

«utility»
UposConst

«utility»
BiometricsConst|

«uses»

«interface»
BiometricsControl

+Algorithm : int32

+AlgorithmList : string

+BIR : binary
+CapPrematchData : boolean
+CapRawSensorData : boolean
+CapRealTimeData : boolean
+CapSensorColor : int32
+CapSensorOrientation : int32
+CapSensorType : int32
+CapTemplateAdaption : boolean
+RawSensorData : binary
+RealTimeDataEnabled : boolean
+SensorBPP : int32
+SensorColor : int32
+SensorHeight : int32
+SensorOrientation : int32
+SensorType : int32
+SensorWidth : int32

Note: Method parameters are
not listed due to space
limitations - refer to the
Methods section for details.

+beginEnrollCapture() : void
+beginVerifyCapture() : void
+endCapture() : void
+identify() : void
+identifyMatch() : void
+processPrematchData() : void
+verify() : void

+verifyMatch() : void

«fires»

«fires»

|
«fires»

«event»
DirectlOEvent

%

«event»
ErrorEvent

+EventNumber : int32
+Data : int32
+Obj : object

«eventy
StatusUpdateEvent|

+ErrorCode : int32

+ErrorLocus : int32

+ErrorResponse : int32

+ErrorCodeExtended : int32

+Status : int32

131

6.3.3 Model

The Biometrics device usage model is:

Open and claim the device.
Enable the device and set the property DataEventEnabled to true.

Begin capturing biometrics data by calling on of the following asynchronous methods beginVerifyCapture or
beginEnrollCapture. These methods activate the biometrics sensor to begin acquiring the biometrics data in
the relevant manner for the particular biometrics device. The result biometric data is stored in the BIR
property. The BIR data can be provided to the identifyMatch method and verifyMatch method for
comparison and matching purposes. The archival process of the BIR for future verification is application
dependent.

Perform synchronous biometric verifications through the verify method or synchronous biometric
identifications through the identify method.

If the device is capable of supplying biometrics data in real time as the biometric sample is captured
(CapRealTimeData is true), and if RealTimeDataEnabled is true, the biometrics data is presented to the
application as a series of partial biometric data through the RawSensorData property and notified to the
application through StatusUpdateEvents until the biometric sample is fully acquired. RawSensorData is not
queued rather it is up to the application to capture the data upon receiving the StatusUpdateEvent.

The Biometrics Device follows the general “Device Input Model” for event-driven input:

When input is received by the Service, it enqueues a DataEvent.
If AutoDisable is true, then the Device automatically disables itself when a DataEvent is enqueued.

A queued DataEvent can be delivered to the application when the property DataEventEnabled is true and
other event delivery requirements are met. Just before delivering this event, data is copied into properties, and
further data events are disabled by setting DataEventEnabled to false. This causes subsequent input data to be
enqueued while the application processes the current input and associated properties. When the application has
finished processing the current input and is ready for more data, it re-enables events by setting
DataEventEnabled to true.

An ErrorEvent (or events) is enqueued if the an error occurs while gathering or processing input, and is
delivered to the application when DataEventEnabled is true and other event delivery requirements are met.

The DataCount property may be read to obtain the number of queued DataEvents.

All enqueued input may be deleted by calling clearInput. See the clearInput method description for more
details.

Deviations from the general “Device Input Model” for event-driven input are:

132

The capture of biometrics data begins when beginEnrollCapture or beginVerifyCapture is called.

If biometrics capture is terminated by calling endCapture, then no DataEvent or ErrorEvent will be
enqueued.

Unified POS, V1.16.1

6.3.4 Device Sharing

The Biometrics is an exclusive-use device, as follows:
« The application must claim the device before enabling it.
« The application must claim and enable the device before accessing many of the Biometrics specific properties.

« The application must claim and enable the device before calling methods that manipulate the device or before
changing some writable properties.

« See the “Summary” table for precise usage prerequisites.

Unified POS, v1.16.1 133

6.3.5 Biometrics Sequence Diagrams

134

The following diagram illustrates the enrollment sequence for the Biometrics device category.

NOTE: Assumes that the Applciation has already successfully opened, claimed and enabled the control and is registered to receive events from the control.

N

Application

I

Biometrics Control

1: setDataEventEnabled(true)

3: beginEnrollCapture()

2: setDataEventEnabled(true)

Biometrics Service

I

8: Data Event delivered

4: beginEnrollCapture()

7: Create and fire a Data Event

Hardware

5: Enable hardware capture

I

6: Data captured and delivered

9: getBIR()

12: BIR data returned

10: getBIR()

11: BIR data returned

‘\::; 13: BIR data persisted

—_—_——— - — — — —

Unified POS, V1.16.1

The following diagram illustrates the verify sequence for the Biometrics device category.

NOTE: Assumes that the Applciation has already successfully opened, claimed and enabled the control and is registered to receive events from the control.

Biometrics

Service Hardware

I

I

5: Enable hardware capture

6: Data captured and delivered

15: Hardware

compares each enroliment BIR against the verify BIR

16: Hardware returns match data

Application Biometrics Control
| i
1: setDataEventEnabled(true)
2: setDataEventEnabled(true)
3: beginVerifyCapture()
4: beginVerifyCapture()
7: Create and fire a Data Event
8: Data Event delivered
9: getBIR()
10: getBIR()
11: BIR data returned
12: BIR data returned
The application provides a set of enrollment BIRs from which a match is to be found.
13: verify()
14: verify()
17: Return status and match data
18: Return status and match data

Unified POS, v1.16.1

135

136

The following diagram illustrates the verify - match sequence for the Biometrics device category.

NOTE: Assumes that the Applciation has already successfully opened, claimed and enabled the control and is registered to receive events from the control.

Application

Biometrics Control

I

1: setDataEventEnabled(true)

3: beginVerifyCapture()

2: setDataEventEnabled(true)

Biometrics Service

I

8: Data Event delivered

4: beginVerifyCapture()

7: Create and fire a Data Event

Hardware

5: Enable hardware capture

Il

6: Data captured and delivered

9: getBIR()

12: BIR data returned

10: getBIR()

11: BIR data returned

The

application provides the enroliment BIR of

the user to verify.

13: verifyMatch()

18: Return status and match data

14: verifyMatch()

17: Return status and match data

15: Hardware compares enrollment BIR against verify BIR

16: Hardware returns match data

—_— —

Unified POS, V1.16.1

6.3.6 Biometrics State Diagram

The following diagram illustrates the various state transitions within the Biometrics device category.

/ close()
/ open() / claim()
Closed]/ / close() /l Opened]/ / release() /l Claimed
A AN
/ close() / release() / setDeviceEnabled(true),

|/ setDeviceEnabled(false)

Enroll Capture

/ beginEnrollCapture()
~
/ endCapture()
~

/ beginVerifyCapture() Verify Capture
pture()

/ DataEvent fired

/ DataEvent fired

/ verifyMatch()

/ processPrematchData() / verify()

Identify

Verify Matching

Identify Matching Preprocess Data

Unified POS, v1.16.1

137

6.4

6.4.1

6.4.2

6.4.3

138

Properties (UML Attributes)

Algorithm Property

Syntax

Remarks

Errors

See Also

Algorithm: int32 { read-write, access after open-claim }

Contains the biometric algorithm currently in use for generating the biometrics template. The values can
be set to index the values contained in AlgorithmList. For example:

Value Meaning

0 Default value

1 First algorithm in AlgorithmList

2 Second algorithm in AlgorithmList, etc.

This property can only be updated when the device is opened and claimed, but not enabled.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

AlgorithmList Property.

AlgorithmList Property

Syntax
Remarks

Errors

See Also

AlgorithmList: string { read-only, access after open }
Contains the comma-delimited list of algorithms that are supported by the device.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16

Algorithm Property.

BIR Property 2

Syntax
Remarks

BIR: binary { read-only, access after open-claim-enable }3

This standard uses the term template to refer to the biometric enrollment data for a user. The term
biometric information record (BIR) refers to any biometric data that is returned to the application;
including raw data, intermediate data, processed sample(s) ready for verification or identification, as well
as enrollment data. Typically, the only data stored persistently by the application is the BIR generated
for enrollment (i.e., the template). The format of the Opaque Biometric Data Block (BDB) is indicated
by the Format field of the Header. This may be a standard or proprietary format. The BDB may be
encrypted. The digital signature is optional, and may be used to ensure integrity of the data during
transmission and storage. When present, it is calculated on the Header + BDB.

2. Biometrics Information Record (BIR) was originally defined by the BioAPI consortium

(www.bioapi.org).

3. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion

property. See BinaryConversion property in Annex A.

Unified POS, V1.16.1

For standardized BIR formats, the signature will take a standard form (to be determined when the format
is standardized). For proprietary BIR formats (all that exists at the present time), the signature can take
any form that suits the Service. For this reason, there is no C structure definition of the signature. The
BIR Data Type indicates whether the BIR is signed and/or encrypted.

Processed biometric data obtained through the methods beginEnrollCapture, beginVerifyCapture,
and verify are stored in this property upon successful completion.

“Opaque” Digital

Header Biometric Data Block Signature

Format ID
Length Header | BIR Data Quality Purpose

Biometric Type
{Header + BDE) Wersion Type Cwner Type Ly
4 1 1 2 2 1 1 4
< Product ID
Creation | Creation | Subtype | Index Index

Cwner | Type Date Time Flag {(UUID)
2 2 4 3 1 1 16
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 16.
See Also beginEnrollCapture Method, beginVerifyCapture Method, verify Method.

6.4.4 CapPrematchData Property Updated in Release 1.11

Syntax CapPrematchData: boolean { read-only, access after open }
Remarks If true, the Service is capable of using MOC (Match-On-Card) SmartCard technology to generate a
processed BIR based on prematch data stored on a SmartCard.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also processPrematchData Method.

Unified POS, v1.16.1 139

6.4.5 CapRawSensorData Property Updated in Release 1.12

6.4.6

6.4.7

140

Syntax CapRawSensorData: boolean { read-only, access after open }

Remarks If true, the Service is able to return unprocessed raw data from the biometrics sensor.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also RawSensorData Property.

CapRealTimeData Property Updated in Release 1.12

Syntax CapRealTimeData: boolean { read-only, access after open }

Remarks If true, the device is able to supply raw biometrics data as the biometrics information is being captured
(“real time”). This property value will be false if CapRawSensorData is false, since real time data is
only delivered via the RawSensorData property which requires that CapRawSensorData is true.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also RawSensorData Property, SensorBPP Property, SensorColor Property, SensorHeight Property,
SensorWidth Property.

CapSensorColor Property

Syntax CapSensorColor: int32 { read-only, access after open }

Remarks This capability indicates if this device supports image formats other than bi-tonal. CapSensorColor is a
logical OR combination of any of the following values:

Value Meaning
BIO_CSC_MONO Bi-tonal (B/W)
BIO_CSC GRAYSCALE Gray scale
BIO_CSC 16 16 Colors
BIO_CSC 256 256 Colors
BIO _CSC _FULL Full colors
This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 16.

Unified POS, V1.16.1

6.4.8 CapSensorOrientation Property

Syntax CapSensorOQOrientation: int32 { read-only, access after open }
Remarks This capability indicates the ability of the sensor image to be rotated prior to processing.
CapSensorOrientation is a logical OR combination of any of the following values:
Value Meaning
BIO_CSO_NORMAL 0°
BIO_CSO_RIGHT 90°
BIO_CSO _INVERTED 180°
BIO CSO_LEFT 270°
This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.
6.4.9 CapSensorType Property Updated in Release 1.11
Syntax CapSensorType: int32 { read-only, access after open-claim-enable }
Remarks This capability indicates the types of biometrics data that can be captured by the attached sensor.
CapSensorType is a logical OR combination of any of the following values:
Value Meaning
BIO CST FACIAL FEATURES Facial Features/Topography
BIO _CST_VOICE Voice
BIO _CST FINGERPRINT Fingerprint
BIO_CST IRIS Iris
BIO _CST RETINA Retina
BIO_CST_HAND_GEOMETRY Hand Geometry
BIO_CST _SIGNATURE_DYNAMICS Signature
BIO_CST KEYSTROKE DYNAMICS Keystrokes
BIO CST LIP. MOVEMENT Lip Movement
BIO_CST THERMAL FACE IMAGE Face Image
BIO CST THERMAL HAND IMAGE Hand Image
BIO_CST_GAIT Gait/Stride
BIO_CST_PASSWORD Password
Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.
See Also SensorType Property.

Unified POS, v1.16.1

141

6.4.10 CapTemplateAdaptation Property

Syntax
Remarks

Errors

See Also

CapTemplateAdaptation: boolean { read-only, access after open }

If true, the Service is able to return an adapted BIR that is the result of updating a reference BIR with
information taken from a sample BIR or capture BIR. The purpose of this adaptation is to keep the
reference BIR current as biometric data shifts over time.

This capability must be populated after open, claim, and enable because it is dependent on the selected
Algorithm.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

Algorithm Property, BIR Property, Verify Method, VerifyMatch Method.

6.4.11 RawSensorData Property Updated in Release 1.12

Syntax
Remarks

Errors

See Also

RawSensorData: binary { read-only, access after open-claim-enable }4

Holds the biometrics image data as raw pixel data scan lines from the top, left to the bottom, right.
SensorHeight and SensorWidth define the number of pixels. SensorBPP defines the number of bits per
pixel. SensorColor defines the interpretation of the pixel data. If CapRawSensorData is false, then this
property contains no meaningful value.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CapRawSensorData Property, CapRealTimeData Property, RealTimeDataEnabled Property,
SensorBPP Property, SensorColor Property, SensorHeight Property, SensorWidth Property.

6.4.12 RealTimeDataEnabled Property Updated in Release 1.12

Syntax

Remarks

Errors

RealTimeDataEnabled: boolean { read-write, access after open }

If true, then StatusUpdateEvents will be fired as updated partial biometric data is captured until
biometric capture is completed. Otherwise, the captured biometric data is enqueued as a single
DataEvent when biometric capture is completed.

Setting RealTimeDataEnabled will not cause any change in system behavior until a subsequent
beginEnrollCapture or beginVerifyCapture method is performed. This prevents confusion regarding
what would happen if it were modified between a beginEnrollCapture - endCapture or
beginVerifyCapture - endCapture pairing.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

4. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion property. See

142

BinaryConversion property in Annex A.

Unified POS, V1.16.1

See Also

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL Cannot set to true because CapRealTimeData is false.

CapRealTimeData Property, RawSensorData Property, SensorBPP Property, SensorColor Property,
SensorHeight Property, SensorWidth Property, beginEnrollCapture Method, beginVerifyCapture
Method, endCapture Method.

6.4.13 SensorBPP Property

Syntax
Remarks
Errors

SensorBPP: int32 { read-only, access after open }
Holds the Bit Per Pixel (BPP) encoding of the RawSensorData.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

6.4.14 SensorColor Property Updated in Release 1.11

Syntax
Remarks

Errors

See Also

Unified POS, v1.16.1

SensorColor: int32 { read-write, access after open }

This property is used to select the image capture mode for subsequent biometric capture operations.
Certain SensorType devices may not work with all the “colors” or color image type may not make sense.
Changing the SensorColor property will not affect any previously stored data currently residing in the
RawSensorData property or BIR property.

It may contain one of the following values:

YValue Meaning
BIO_SC MONO Bi-tonal (B/W)
BIO SC _GRAYSCALE Gray scale
BIO _SC 16 16 Colors

BIO _SC 256 256 Colors
BIO SC FULL Full color

This property can only be set to a value if the value is defined in CapSensorColor.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL Invalid sensor color specified. See CapSensorColor.

CapSensorColor Property, RawSensorData Property, SensorBPP Property, SensorHeight Property,
SensorWidth Property.

143

6.4.15 SensorHeight Property

Syntax SensorHeight: int32 { read-only, access after open }
Remarks Holds the height of the RawSensorData in pixels.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

6.4.16 SensorOrientation Property Updated in Release 1.11
Syntax SensorOrientation: inf32 { read-write, access after open-claim }
Remarks Holds the requested orientation adjustment to the received sensor data prior to BIR creation.
Value Meaning
BIO_SO NORMAL 0°
BIO_ SO _RIGHT 90°
BIO SO INVERTED 180°
BIO SO LEFT 270°

This property can only be updated when the device is opened and claimed, but not enabled.

This property can only be set to a value if the value is defined in CapSensorOrientation.
Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL Invalid sensor orientation specified. See CapSensorOrientation.

See Also CapSensorOrientation Property.

144 Unified POS, V1.16.1

6.4.17 SensorType Property Updated in Release 1.11

Syntax SensorType: int32 { read-write, access after open-claim-enable }

Remarks Holds the type of biometrics sensor being accessed.

Value Meaning

BIO ST FACIAL FEATURES Facial Topography
BIO ST VOICE Voice

BIO ST FINGERPRINT Fingerprint
BIO_ST IRIS Iris

BIO ST RETINA Retina

BIO ST HAND GEOMETRY Hand Geometry
BIO ST SIGNATURE DYNAMICS Signature

BIO ST KEYSTROKE DYNAMICS Keystrokes

BIO ST LIP. MOVEMENT Lip Movement

BIO ST THERMAL FACE IMAGE Thermal Face Image
BIO ST THERMAL HAND IMAGE Thermal Hand Image
BIO ST GAIT Gait/Stride

BIO_ST PASSWORD Password

This property can only be set to a value if the value is defined in CapSensorType.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL Invalid sensor type specified. See CapSensorType.

See Also CapSensorType Property.
6.4.18 SensorWidth Property

Syntax SensorWidth: int32 { read-only, access after open }
Remarks Holds the width of the RawSensorData in pixels.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also RawSensorData Property.

Unified POS, v1.16.1 145

6.5 Methods (UML operations)

6.5.1 beginEnrollCapture Method Updated in Release 1.11

Syntax

Remarks

Errors

See Also

beginEnrollCapture (referenceBIR: binary, payload: binary):
void { raises-exception, use after open-claim-enable }

Parameter Description
referenceBIR® Optional BIR to be adapted (updated). This parameter is ignored, if EMPTY.
payload5 Data that will be stored by the BSP. This parameter is ignored, if EMPTY.

Starts capturing biometrics data for purposes of enrollment. Although not required, enrollment captures
customarily result in a series of biometrics data captures whose aggregation form the final BIR.
Optionally if CapTemplateAdaptation is true, a referenceBIR can be provided for adaptation with the
enrollment. If a payload is provided that data is added into the resulting BIR.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E FAILURE referenceBIR could not be adapted.
E ILLEGAL Biometrics capture is already in progress.

BIR Property, CapTemplateAdaptation Property, endCapture Method.

6.5.2 beginVerifyCapture Method Updated in Release 1.11

Syntax

Remarks

Errors

See Also

beginVerifyCapture ():
void { raises-exception, use after open-claim-enable }

Starts capturing biometrics data for the purposes of verification. The resulting processed data is stored in
the BIR.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL Biometrics capture is already in progress.

BIR Property, endCapture Method.

5. In the OPOS environment, the format of referenceBIR and payload depends upon the value of the

146

BinaryConversion property. See BinaryConversion property in Annex A.

Unified POS, V1.16.1

6.5.3 endCapture Method

6.5.4

Unified POS, v1.16.1

Syntax endCapture():
void { raises-exception, use after open-claim-enable }

Remarks Stops (terminates) capturing biometrics data.
If RealTimeDataEnabled is false and biometrics data was captured, then it is placed in the properties
BIR and RawSensorData. If no biometrics data was captured, then BIR and RawSensorData are
EMPTY.
If RealTimeDataEnabled is true and there is biometric data remaining which have not been delivered
to the application by a StatusUpdateEvent, then the remaining biometric data is placed into the
properties BIR and RawSensorData. If no biometrics data was captured or all biometric data has been
delivered to the application, then BIR and RawSensorData are EMPTY.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E ILLEGAL Biometrics capture was not in progress.

See Also BIR Property, RawSensorData Property, RealTimeDataEnabled Property, beginEnrollCapture
Method, beginVerifyCapture Method, DataEvent.

identify Method Updated in Release 1.12
Syntax identify (maxFARRequested: int32, maxFRRRequested: int32, FARPrecedence: boolean,

referenceBIRPopulation: array of binary,
inout candidateRanking: int32 array, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

maxFARRequested The requested FAR criterion for successful verification, as defined in the
BioAPI specification.

maxFRRRequested The requested FRR criterion for successful verification, as defined in the
BioAPI specification. If zero, then this criterion is not provided.

FARPrecedence If both criteria are provided, this parameter indicates which takes precedence.

BIO FAR PRECEDENCE (TRUE) indicates that maxFARRequested takes
precedence, BIO FRR_PRECEDENCE (FALSE) indicates that
maxFRRRequested takes precedence.

referenceBlRPopulati0n6
An array of BIRs against which the Identify match is performed.

candidateRanking Array of BIR indices from the referenceBIRPopulation listed in rank order.
The indices are zero-based.

timeout Maximum number of milliseconds to attempt a successful biometric capture
before failing.

6. In the OPOS environment, the format of referenceBIRPopulation depends upon the value of the

BinaryConversion property. See BinaryConversion property in Annex A.

147

6.5.5

148

Remarks

This function captures biometric data from the attached device within the allotted timeout, and compares
it against a set of referenceBIRPopulation. It then returns a rank ordered array of
referenceBIRPopulation indices in candidateRanking. If nothing matches, an array with zero elements
is returned.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E ILLEGAL maxFARRequested, or maxFRRRequested, or referenceBIRPopulation was
not valid or Biometrics capture is in progress.
E TIMEOUT The specified timeout has elapsed before biometric data was captured.
identifyMatch Method Updated in Release 1.12

Syntax identifyMatch (maxFARRequested: int32, maxFRRRequested: int32, FARPrecedence: boolean,
sampleBIR: binary, referenceBIRPopulation: array of binary, inout candidateRanking: int32 array
):

void { raises-exception, use after open-claim-enable }

Parameter Description

maxFARRequested The requested FAR criterion for successful verification, as defined in the
BioAPI specification.

maxFRRRequested The requested FRR criterion for successful verification, as defined in the
BioAPI specification. If zero, then this criterion is not provided.

FARPrecedence If both criteria are provided, this parameter indicates which takes precedence.
BIO _FAR PRECEDENCE (TRUE) indicates that maxFARRequested takes
precedence, BIO_ FRR PRECEDENCE (FALSE) indicates that
maxFRRRequested takes precedence.

sampleBIR’ The BIR to be identified

referenceBIRPopulation 7
An array of BIRs against which the Identify match is performed.

candidateRanking Array of BIR indices from the referenceBIRPopulation listed in rank order.
The indices are zero-based.

Remarks This function accepts a sampleBIR, and compares it against a set of referenceBIRPopulation. It then
returns a rank ordered array of referenceBIR Population indices in candidateRanking. If nothing matches,
an array with zero elements is returned.

Errors A UposException may be thrown when this method is invoked. For further information, see

“Errors” on page 16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL maxFARRequested, or maxFRRRequested, or referenceBIRPopulation was

not valid or Biometrics capture is in progress.

7. In the OPOS environment, the format of sampleBIR and referenceBIRPopulation depends upon the value of the

BinaryConversion property. See BinaryConversion property in Annex A.

Unified POS, V1.16.1

6.5.6 processPrematchData Method Updated in Release 1.11

Syntax

Remarks

Errors

See Also

processPrematchData (sampleBIR: binary, prematchDataBIR: binary, inout processedBIR:
binary)
void { raises-exception, use after open-claim-enable}

Parameter Description

sampleBIR® BIR to be processed

prematchDataBIR 8 BIR containing prematch data previously emitted by the associated MOC
Library.

processedBIR 8 The newly constructed processed BIR

This function creates processed biometric samples suitable for Match-on-Card (MOC). It enables MOC
implementations that require the retrieval of “prematch” data from the card prior to the subsequent
matching operation. Since smart cards generally do not have the capability to capture and process
biometric samples, the on-card MOC functionality needs a host to perform off-card operations such as
sample acquisition and feature extraction. In this case, the card needs the host to perform an operation
based on prematch data that is retrieved from the card.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL sampleBIR was not valid, Biometrics capture is in progress, or
CapPrematchData is false.

CapPrematchData Property.

8. In the OPOS environment, the format of sampleBIR, prematchDataBIR, and processedBIR depends upon the
value of the BinaryConversion property. See BinaryConversion property in Annex A.

Unified POS, v1.16.1

149

6.5.7 verify Method

Syntax

Remarks

Errors

See Also

Updated in Release 1.12

verify(maxFARRequested: int32, maxFRRRequested: int32, FARPrecedence: boolean,
referenceBIR: binary, inout adaptedBIR: binary, inout result: boolean, inout FARAchieved: int32,
inout FRRAchieved: int32, inout payload: binary, timeout: int32):

void { raises-exception, use after open, claim, enable }

Parameter Description

maxFARRequested The requested FAR criterion for successful verification, as defined in the
BioAPI specification.

maxFRRRequested The requested FRR criterion for successful verification, as defined in the
BioAPI specification. If zero, then this criterion is not provided.

FARPrecedence If both criteria are provided, this parameter indicates which takes precedence.
BIO _FAR PRECEDENCE (TRUE) indicates that maxFARRequested takes
precedence, BIO_ FRR_PRECEDENCE (FALSE) indicates that
maxFRRRequested takes precedence.

referenceB]R9 The BIR to be verified against.

adaptedBIR 9

A pointer to the handle of the adapted BIR. This parameter can be EMPTY
(0x00) if an adapted BIR is not desired.

result A boolean value of true for a successful match or false for a failed match.

FARAchieved FAR Value indicating the closeness of the match.

FRRAchieved FRR Value indicating the closeness of the match.

payload ? If a payload is associated with the referenceBIR, it is returned in an allocated
binary if a successful match was made.

timeout Maximum number of milliseconds to attempt a successful biometric capture

before failing.

This function captures biometric data from the attached device within the allotted timeout, and compares
it against the referenceBIR. If the match is successful as indicated by a positive result and an adaptedBIR
handle was provided, the Service will attempt to adapt the referenceBIR from information take form the
captured BIR.

A UposException may be thrown when this method is invoked. For further information, see “Errors” on

page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL maxFARRequested, or maxFRRRequested, or referenceBIR was not valid or
Biometrics capture is in progress.

E TIMEOUT The specified timeout has elapsed before biometric data was captured.

BIR Property, CapTemplateAdaptation Property.

9. In the OPOS environment, the format of referenceBIR, adaptedBIR, and payload depends upon the value of the

150

BinaryConversion property. See BinaryConversion property in Annex A.

Unified POS, V1.16.1

6.5.8 verifyMatch Method

Syntax

Remarks

Errors

Updated in Release 1.12

verifyMatch (maxFARRequested: int32, maxFRRRequested: int32, FARPrecedence: boolean,
sampleBIR: binary, referenceBIR: binary, inout adaptedBIR: binary, inout result: boolean, inout
FARACchieved: int32, inout FRRAchieved: int32, inout payload: binary):

void { raises-exception, use after open, claim, enable }

Parameter Description

maxFARRequested The requested FAR criterion for successful verification, as defined in the
BioAPI specification.

maxFRRRequested The requested FRR criterion for successful verification, as defined in the
BioAPI specification. If zero, then this criterion is not provided.

FARPrecedence If both criteria are provided, this parameter indicates which takes precedence.
BIO _FAR PRECEDENCE (TRUE) indicates that maxFARRequested takes
precedence, BIO_ FRR_PRECEDENCE (FALSE) indicates that
maxFRRRequested takes precedence.

sampleBIR'® The BIR to be identified.

referenceBIRlO The BIR to be verified against.

adaptedBIR 10

result
FARAchieved
FRRAchieved
payload 10

A pointer to the handle of the adapted BIR. This parameter can be EMPTY
(0x00) if an adapted BIR is not desired.

A boolean value of true for a successful match or false for a failed match.
FAR Value indicating the closeness of the match.

FRR Value indicating the closeness of the match.

If a payload is associated with the referenceBIR, it is returned in an allocated
binary if a successful match was made.

This function compares a sampleBIR against the referenceBIR. If the match is successful as indicated by
a positive result and an adaptedBIR handle was provided, the Service will attempt to adapt the
referenceBIR from information taken from the captured BIR.

A UposException may be thrown when this method is invoked. For further information, see “Errors” on

page 16.

Some possible values of the exception’s ErrorCode property are:

YValue Meaning

E ILLEGAL maxFARRequested, or maxFRRRequested, or referenceBIR was not valid or

Biometrics capture is in progress.

10.In the OPOS environment, the format of sampleBIR, referenceBIR, adaptedBIR, and payload depends upon the

Unified POS, v1.16.1

value of the BinaryConversion property. See BinaryConversion property in Annex A.

151

6.6

6.6.1

6.6.2

152

Events (UML Interfaces)

DataEvent

<< event >> upos::events::DataEvent

Status: int32 { read-only }

Description Notifies the application that input data is available.

Attributes This event contains the following attribute:
Attributes Type Description
Status int32 BIO_DATA_ENROLL if enroll capture is completed.

BIO_DATA_VERIFY if verify capture is completed.

Remarks The properties BIR and RawSensorData are set to appropriate values prior to a DataEvent being
delivered to the application.

See Also “Events” on page 15, BIR Property, RawSensorData Property, beginEnrollCapture Method,
beginVerifyCapture Method, endCapture Method.

DirectlOEvent

<<event >> upos::events::DirectlOEvent

EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object {read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-

Attributes

Remarks

See Also

specific Biometrics Capture Service to provide events to the application that are not otherwise supported
by the Control.

This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and the

Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service. This
property is settable.

This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendors’ Biometric
devices which may not have any knowledge of the Service’s need for this event.

”Events” on page 15, directlO Method.

Unified POS, V1.16.1

6.6.3 ErrorEvent Updated in Release 1.11

<< event >> upos::events::ErrorEvent

Description

Attributes

Remarks

See Also

Unified POS, v1.16.1

ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Notifies the application that a Biometrics device error has been detected and a suitable response by the
application is necessary to process the error condition.

This event contains the following attributes:

Attributes Type _ Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes on page 17.
ErrorCodeExtended

int32 Extended Error code causing the error event. It may contain a Service-
specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden by the application.
(i.e., this property is settable). See values below.

The ErrorLocus property may be one of the following:

Value Meaning

EL_INPUT Error occurred while gathering or processing event-driven input. No
previously buffered input data is available.

EL_INPUT DATA Error occurred while gathering or processing event-driven input, and some

previously buffered data is available. (Very unlikely - sec Remarks.)

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus. The
application’s error processing may change ErrorResponse to one of the following values:

Value Meaning
ER CLEAR Clear all buffered input data. The error state is exited. Default when locus is
EL INPUT.

ER_CONTINUEINPUT
Used only when locus is EL_INPUT DATA. Acknowledges the error and
directs the Service to continue processing. The Service remains in the error
state and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and
DataEventEnabled is again set to true, then another ErrorEvent is
delivered with locus EL__INPUT. Default when locus isEL_INPUT DATA.

Enqueued when an error is detected while trying to read biometric capture data. This event is not
delivered until DataEventEnabled is set to true and other event delivery requirements are met, so that
proper application sequencing occurs.

With proper programming, an ErrorEvent with locus EL_ INPUT_DATA will not occur. This is
because each biometrics capture requires an explicit beginXxxxxxCapture method, which can generate
at most one DataEvent. The application would need to defer the DataEvent by setting
DataEventEnabled to false and request another capture before an EL_INPUT DATA would be
possible.

“Device Input Model Updated in Release 1.13” on page 18, “Device Information Reporting Model
Added in Release 1.8” on page 25.

153

6.6.4 StatusUpdateEvent

154

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Updated in Release 1.13

Description Notifies the application that there is a change in the status of a Biometric Capture device.

Attributes

Remarks

See Also

This event contains the following attribute:

Attributes Type Description

Status int32 Reports a change in the power state of a Biometrics device or reports a
requested user interaction with the Biometrics sensor to complete the capture.
In the case of the latter, the following directives can be issued:

Value

Meaning

BIO_SUE RAW DATA
BIO_SUE_MOVE_LEFT
BIO_SUE_MOVE_RIGHT
BIO_SUE_MOVE_DOWN
BIO_SUE_MOVE_UP
BIO_SUE_MOVE_CLOSER
BIO_SUE_MOVE_AWAY
BIO_SUE_MOVE_BACKWARD
BIO_SUE_MOVE_FORWARD
BIO_SUE_MOVE_SLOWER
BIO_SUE_MOVE_FASTER
BIO_SUE_SENSOR_DIRTY
BIO_SUE_FAILED READ

BIO_SUE_SENSOR_READY
BIO_SUE_SENSOR_COMPLETE

Raw image data is available.

The position was too far to the right.

The position was too far to the left.

The position was too high.

The position was too low.

The position was too far away.

The position was too near (close).

The position was too far forward.

The position was too far backward.

The motion was too fast, move slower.
The motion was too slow, move faster.
The sensor is dirty and requires cleaning.
Unable to capture data from the sensor, please retry the
operation.

(Added in Release 1.13)

The sensor is ready to scan a Biometric object

(Added in Release 1.13)

The sensor reports that the scan of a Biometric object is
complete.

Enqueued when the Biometric Capture device detects a power state change or user interaction.

“Events Updated in Release 1.12” on page 15

Unified POS, V1.16.1

7

71

7.2

Bump Bar

General

Summary

Properties (UML attributes)

Common

AutoDisable:

CapCompareFirmwareVersion:

CapPowerReporting:
CapStatisticsReporting:
CapUpdateFirmware:
CapUpdateStatistics:
CheckHealthText:
Claimed:

DataCount:
DataEventEnabled:
DeviceEnabled:
FreezeEvents:
OutputID:
PowerNotify:
PowerState:

State:

DeviceControlDescription:

DeviceControlVersion:
DeviceServiceDescription:

DeviceServiceVersion:

PhysicalDeviceDescription:

PhysicalDeviceName:

Unified POS, v1.16.1

This Chapter defines the Bump Bar device category.

Type
boolean
boolean
int32
boolean
boolean
boolean
string
boolean
int32
boolean
boolean
boolean
int32
int32
int32
int32

string
int32
string
int32
string

string

Mutability
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-write }
{ read-write }
{ read-write }
{ read-only }
{ read-write }
{ read-only }
{ read-only }

{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

Version
1.3
1.9
1.3
1.8
1.9
1.8
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3

13
1.3
1.3
1.3
1.3
1.3

May Use After
Not supported
open
open
open
open
open
open
open
open
open
open & claim
open
open
open

open

open
open
open

open

155

Properties (Continued)

Specific Type Mutability Version May Use After
AsyncMode: boolean { read-write } 1.3 open, claim, & enable
AutoToneDuration: int32 { read-write } 1.3 open, claim, & enable
AutoToneFrequency: int32 { read-write } 1.3 open, claim, & enable
BumpBarDataCount: int32 { read-only } 1.3 open, claim, & enable
CapTone: boolean { read-only } 1.3 open, claim, & enable
CurrentUnitID: int32 { read-write } 1.3 open, claim, & enable
ErrorString: string { read-only } 1.3 open
ErrorUnits: int32 { read-only } 1.3 open
EventString: string { read-only } 1.3 open & claim
EventUnitID: int32 { read-only } 1.3 open & claim
EventUnits: int32 { read-only } 1.3 open & claim
Keys: int32 { read-only } 1.3 open, claim, & enable
Timeout: int32 { read-write } 1.3 open
UnitsOnline: int32 { read-only } 1.3 open, claim, & enable

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string): 1.3
void { raises-exception }

close (): 1.3
void { raises-exception, use after open }

claim (timeout: int32): 1.3
void { raises-exception, use after open }

release (): 1.3
void { raises-exception, use after open, claim }

checkHealth (level: int32): 1.3
void { raises-exception, use after open, claim, enable }

clearInput (): 1.3
void { raises-exception, use after open, claim }

clearInputProperties (): Not supported®
void { raises-exception, use after open, claim }

clearOutput (): 1.3

void { raises-exception, use after open, claim }

directlO (command: int32, inout data: int32, inout obj: object): 1.3
void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.9
void { raises-exception, use after open, claim, enable }

156 Unified POS, V1.16.1

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

Specific
Name

bumpBarSound (units: int32, frequency: int32, duration: int32,
numberOfCycles: int32, interSoundWait: int32):

void { raises-exception, use after open, claim, enable }

setKeyTranslation (units: int32, scanCodes: int32, logicalKey: int32):
void { raises-exception, use after open, claim, enable }

a. No sensitive information is generated or stored.

Events (UML interfaces)
Name Type Mutability

upos::events::DataEvent

Status: int32 { read-only }

upos::events::DirectlOEvent

EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

upos::events::ErrorEvent

ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse int32 { read-write }

upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

upos::events::StatusUpdateEvent

Status: int32 { read-only }

Unified POS, v1.16.1

1.8

1.8

1.9

1.8

1.3

Version

13

1.3

1.3

1.3

13

157

7.3 General Information

7.3.1 Capabilities

The Bump Bar Control has the following minimal set of capabilities:
« Supports broadcast methods that can communicate with one, a range, or all bump bar units online.
« Supports bump bar input (keys 0-255).

The Bump Bar Control may also have the following additional capabilities:
« Supports bump bar enunciator output with frequency and duration.

« Supports tactile feedback via an automatic tone when a bump bar key is pressed.

158 Unified POS, V1.16.1

7.3.2 Bump Bar Class Diagram

The following diagram shows the relationships between the Bump Bar classes.

<<event>> <<utility>> <<utility>> | _ <Uses>> <<Interface>>
DataEvent BumpBarConst UposConst |~ BaseControl
(from events) (from upos) (from upos) | (fromupos)
N /“\<<uses>> ~ /
<< >>
\\ uses \ e e <<sends>>
) \ | | <<exception>>
ires |
<<event>> \ / UposException
DirectlOEvent \ ‘ / (from upos)
(from events) \ !
1 \ ‘ | 7
\ l
fires \ ‘ ” / <<sends>>
[
I
<<Interface>>
BumpBarControl
(from upos)

g<<capability>> CapTone : boolean
&<<prop>> AsyncMode : boolean
&<<prop>> Timeout : int32
@<<prop>> UnitsOnline : int32
g<<prop>> CurrentUnitID : int32

@<<prop>> Keys : int32
<<prop>> ErrorUnits : int32
&<<prop>> ErrorString : string
<<prop>> EventUnitID : int32
@<<prop>> EventUnits : int32
<<prop>> EventString : string

g<<prop>> AutoToneDuration : int32
@<<prop>> AutoToneFrequency : int32
&<<prop>> BumpBarDataCount : int32

®bumpBarSound(units : int32, frequency : int32, duration : int32, numCycles : int32) : void

| *%setKeyTranslation(units : int32, scanCodes : int32, logicalKey : int32) : void

fire ﬁ‘res ires
v \
<<event>> <<event>> <<event>>
ErrorEvent StatusUpdateEvent OutputCompleteEvent
(from events)

(from events)

(from events)

Unified POS, v1.16.1

159

7.3.3 Model

734

160

The general model of a bump bar is:

The bump bar device class is a subsystem of bump bar units. The initial targeted environment is food service,
to control the display of order preparation and fulfillment information. Bump bars typically are used in
conjunction with remote order displays.

The subsystem can support up to 32 bump bar units.

One application on one workstation or POS Terminal will typically manage and control the entire subsystem of
bump bars. If applications on the same or other workstations and POS Terminals will need to access the
subsystem, then this application must act as a subsystem server and expose interfaces to other applications.

All specific methods are broadcast methods. This means that the method can apply to one unit, a selection of
units or all online units. The units parameter is an int32, with each bit identifying an individual bump bar unit.
(One or more of the constants BB_UID 1 through BB_UID 32 are bitwise ORed to form the bitmask.) The
Service will attempt to satisfy the method for all unit(s) indicated in the units parameter. If an error is received
from one or more units, the ErrorUnits property is updated with the appropriate units in error. The
ErrorString property is updated with a description of the error or errors received. The method will then notify
the application of the error condition. In the case where two or more units encounter different errors, the
Service should determine the most severe error to report.

The common methods checkHealth, clearInput, and clearOutput are not broadcast methods and use the unit
ID indicated in the CurrentUnitID property. (One of the constants BB UID 1 through BB UID 32 are
selected.) See the description of these common methods to understand how the current unit ID property is
used.

When the current unit ID property is set by the application, all the corresponding properties are updated to
reflect the settings for that unit.

If the CurrentUnitID property is set to a unit ID that is not online, the dependent properties will contain non-
initialized values.

The CurrentUnitID uniquely represents a single bump bar unit. The definitions range from BB_UID 1 to
BB UID 32. These definitions are also used to create the bitwise parameter, units, used in the broadcast
methods.

Input — Bump Bar

The Bump Bar follows the general “Device Input Model” for event-driven input with some differences:

When input is received, a DataEvent is enqueued.

This device does not support the AutoDisable property, so the device will not automatically disable itself
when a DataEvent is enqueued.

An enqueued DataEvent can be delivered to the application when the DataEventEnabled property is true and
other event delivery requirements are met. Just before delivering this event, data is copied into corresponding
properties, and further data events are disabled by setting the DataEventEnabled property to false. This
causes subsequent input data to be enqueued while the application processes the current input and associated
properties. When the application has finished the current input and is ready for more data, it reenables events
by setting DataEventEnabled to true.

An ErrorEvent or events are enqueued if an error is encountered while gathering or processing input, and are
delivered to the application when the DataEventEnabled property is true and other event delivery
requirements are met.

Unified POS, V1.16.1

« The BumpBarDataCount property may be read to obtain the number of bump bar DataEvents for a specific
unit ID enqueued. The DataCount property can be read to obtain the total number of data events enqueued.

 Queued input may be deleted by calling the clearInput method. See clearInput method description for more
details.

The Bump Bar Service provider must supply a mechanism for translating its internal key scan codes into user-
defined codes which are returned by the data event. Note that this translation mus¢ be end-user configurable. The
default translated key value is the scan code value.

7.3.5 Output — Tone Updated in Release 1.7

The bump bar follows the general “Device Output Model,” with some enhancements:

« The bumpBarSound method is performed either synchronously or asynchronously, depending on the value of
the AsyncMode property.

« When AsyncMode is false, then this method operates synchronously and the Device returns to the application
after completion. When operating synchronously, the application is notified of an error if the method could not
complete successfully.

« When AsyncMode is true, then this method operates as follows:

* The Device buffers the request in program memory, for delivery to the Physical Device as soon as the
Physical Device can receive and process it, sets the QutputID property to an identifier for this request, and
returns as soon as possible. When the device completes the request successfully, the EventUnits property is
updated and an OutputCompleteEvent is enqueued. A property of this event contains the output ID of the
completed request.

If an error occurs while performing an asynchronous request, an ErrorEvent is enqueued. The EventUnits
property is set to the unit or units in error. The EventString property is also set.

Note: ErrorEvent updates EventUnits and EventString. If an error is reported by a broadcast method,
then ErrorUnits and ErrorString are set instead.

The event handler may call synchronous bump bar methods (but not asynchronous methods), then can either retry
the outstanding output or clear it.

« Asynchronous output is performed on a first-in first-out basis.

« All output buffered may be deleted by setting the CurrentUnitID property and calling the clearOutput
method. An OutputCompleteEvent will not be enqueued for cleared output. This method also stops any
output that may be in progress (when possible).

7.3.6 Device Sharing

The bump bar is an exclusive-use device, as follows:
« The application must claim the device before enabling it.
« The application must claim and enable the device before accessing many bump bar specific properties.
« The application must claim and enable the device before calling methods that manipulate the device.
« When a claim method is called again, settable device characteristics are restored to their condition at release.

« See the “Summary” table for precise usage prerequisites.

Unified POS, v1.16.1 161

7.3.7 Bump Bar State Diagram

162

Closed

Normal

[error event doneand no async re#uests]

Error

Unified POS, V1.16.1

7.4 Properties (UML attributes)

7.41 AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open-claim-enable }

Remarks If true, then the bumpBarSound method will be performed asynchronously.
If false, tones are generated synchronously.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also bumpBarSound Method, “Device Output Models” on page 21.
7.4.2 AutoToneDuration Property

Syntax AutoToneDuration: int32 { read-write, access after open-claim-enable }

Remarks Holds the duration (in milliseconds) of the automatic tone for the bump bar unit specified by the
CurrentUnitID property.

This property is initialized to the default value for each online bump bar unit when the device is first
enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also CurrentUnitID Property.
7.4.3 AutoToneFrequency Property

Syntax AutoToneFrequency: int32 { read-write, access after open-claim-enable }

Remarks Holds the frequency (in Hertz) of the automatic tone for the bump bar unit specified by the
CurrentUnitID property.

This property is initialized to the default value for each online bump bar unit when the device is first
enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also CurrentUnitID Property.

Unified POS, v1.16.1 163

7.4.4 BumpBarDataCount Property

Syntax

Remarks

Errors

See Also

BumpBarDataCount: int32 { read-only, access after open-claim-enable }
Holds the number of DataEvents enqueued for the bump bar unit specified by the CurrentUnitID
property.

The application may read this property to determine whether additional input is enqueued from a bump
bar unit, but has not yet been delivered because of other application processing, freezing of events, or
other causes.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CurrentUnitID Property, DataEvent.

7.4.5 CapTone Property

Syntax

Remarks

Errors

See Also

CapTone: boolean { read-only, access after open-claim-enable }
If true, the bump bar unit specified by the CurrentUnitID property supports an enunciator.

This property is initialized when the device is first enabled following the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CurrentUnitID Property.

7.4.6 CurrentUnitlD Property

Syntax

Remarks

Errors

Syntax

Remarks

164

CurrentUnitID: int32 { read-write, access after open-claim-enable }

Holds the current bump bar unit ID. Up to 32 units are allowed for one bump bar device. The unit ID
definitions range from BB_UID 1to BB _UID 32.

Setting this property will update other properties to the current values that apply to the specified unit. The
following properties and methods apply only to the selected bump bar unit ID:

* Properties: AutoToneDuration, AutoToneFrequency, BumpBarDataCount, CapTone, and Keys.
* Methods: checkHealth, clearInput, clearQutput.
This property is initialized to BB_UID 1 when the device is first enabled following the open method.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16 DataCount Property

DataCount: int32 { read-only, access after open }

Holds the total number of DataEvents enqueued. All units online are included in this value. The number
of enqueued events for a specific unit ID is stored in the BumpBarDataCount property.

The application may read this property to determine whether additional input is enqueued, but has not
yet been delivered because of other application processing, freezing of events, or other causes.

This property is initialized to zero by the open method.

Unified POS, V1.16.1

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also BumpBarDataCount Property, DataEvent Event, “Device Input Model” on page 18

7.4.7 ErrorString Property

Syntax ErrorString: string { read-only, access after open }

Remarks Holds a description of the error which occurred on the unit(s) specified by the ErrorUnits property,
when an error occurs for any method that acts on a bitwise set of bump bar units.

If an error occurs during processing of an asynchronous request, the ErrorEvent updates the property
EventString instead.

This property is initialized to an empty string by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also ErrorUnits Property.
7.4.8 ErrorUnits Property

Syntax ErrorUnits: int32 { read-only, access after open }

Remarks Holds a bitwise mask of the unit(s) that encountered an error, when an error occurs for any method that
acts on a bitwise set of bump bar units.

If an error occurs during processing of an asynchronous request, the ErrorEvent updates the property
EventUnits instead.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also ErrorString Property.

Unified POS, v1.16.1 165

7.4.9 EventString Property

Syntax

Remarks

Errors

See Also

EventString: string { read-only, access after open-claim }

Holds a description of the error which occurred to the unit(s) specified by the EventUnits property, when
an ErrorEvent is delivered.

This property is initialized to an empty string by the open method.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

EventUnits Property, ErrorEvent.

7.4.10 EventUnitID Property

Syntax

Remarks

Errors

See Also

EventUnitID: int32 { read-only, access after open-claim }

Holds the bump bar unit ID causing a DataEvent. This property is set just before a DataEvent is
delivered. The unit ID definitions range from BB_UID 1 to BB_UID 32.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

DataEvent.

7.4.11 EventUnits Property

Syntax

Remarks

Errors

See Also

EventUnits: int32 { read-only, access after open-claim }

Holds a bitwise mask of the unit(s) when an OutputCompleteEvent, ErrorEvent, or
StatusUpdateEvent is delivered.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

OutputCompleteEvent, ErrorEvent, StatusUpdateEvent.

7.4.12 Keys Property

166

Syntax

Remarks

Errors

See Also

Keys: int32 { read-only, access after open-claim-enable }
Holds the number of keys on the bump bar unit specified by the CurrentUnitID property.

This property is initialized when the device is first enabled following the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CurrentUnitID Property.

Unified POS, V1.16.1

7.4.13 Timeout Property

Syntax

Remarks

Errors

See Also

Timeout: int32 { read-write, access after open }

Holds the timeout value in milliseconds used by the bump bar device to complete all output methods
supported. If the device cannot successfully complete an output method within the timeout value, then
the method notifies the application of the error.

This property is initialized to a Service dependent timeout following the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

AsyncMode Property, ErrorString Property, bumpBarSound Method.

7.4.14 UnitsOnline Property

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

UnitsOnline: int32 { read-only, access after open-claim-enable }

Bitwise mask indicating the bump bar units online, where zero or more of the unit constants BB_UID 1
(bit 0 on) through BB_UID 32 (bit 31 on) are bitwise ORed. 32 units are supported.

This property is initialized when the device is first enabled following the open method. This property is
updated as changes are detected, such as before a StatusUpdateEvent is enqueued and during the
checkHealth method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

checkHealth Method, StatusUpdateEvent.

167

7.5

7.5.1

168

Methods (UML operations)

bumpBarSound Method

Syntax

Remarks

Errors

See Also

bumpBarSound (units: int32, frequency: int32, duration: int32,
numberOfCycles: int32, interSoundWait: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which bump bar unit(s) to operate on.

frequency Tone frequency in Hertz.

duration Tone duration in milliseconds.

numberOfCycles If FOREVER, then start bump bar sounding and, repeat continuously. Else

perform the specified number of cycles.

interSoundWait When numberOfCycles is not one, then pause for interSoundWait
milliseconds before repeating the tone cycle (before playing the tone again)

Sounds the bump bar enunciator for the bump bar(s) specified by the units parameter.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

The duration of a tone cycle is:
duration parameter + interSoundWait parameter (except on the last tone cycle)

After the bump bar has started an asynchronous sound, then the sound may be stopped by using the
clearOutput method. (When a numberOfCycles value of FOREVER was used to start the sound, then
the application must use clearQutput to stop the continuous sounding of tones.)

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL One of the following errors occurred:

numberOfCycles is neither a positive, non-zero value nor FOREVER.

numberOfCycles is FOREVER when AsyncMode is false.

A negative interSoundWait was specified.
units is zero or a non-existent unit was specified.
A unit in units does not support the CapTone capability.

The ErrorUnits and ErrorString properties may be updated before the
exception is thrown.

E _FAILURE An error occurred while communicating with one of the bump bar units
specified by the units parameter. The ErrorUnits and ErrorString
properties are updated before the exception is thrown. (Can only occur if
AsyncMode is false.)

AsyncMode Property, ErrorUnits Property, ErrorString Property, CapTone Property, clearOutput
Method.

Unified POS, V1.16.1

7.5.2 checkHealth Method (Common)

Syntax

Remarks

Errors

See Also

checkHealth (level: int32):
void { raises-exception, use after open-claim-enable }

The level parameter indicates the type of health check to be performed on the device. The following val-
ues may be specified:

Value Meaning

CH_INTERNAL Perform a health check that does not physically change the device. The
device is tested by internal tests to the extent possible.

CH_EXTERNAL Perform a more thorough test that may change the device.

CH_INTERACTIVE Perform an interactive test of the device. The Service will typically display a
modal dialog box to present test options and results.

When CH_INTERNAL or CH_EXTERNAL level is requested, the method will check the health of the
bump bar unit specified by the CurrentUnitID property. When the current unit ID property is set to a
unit that is not currently online, the device will attempt to check the health of the bump bar unit and report
a communication error if necessary. The CH_INTERACTIVE health check operation is up to the Service
designer.

A text description of the results of this method is placed in the CheckHealthText property.

The UnitsOnline property will be updated with any changes before returning to the application.

This method is always synchronous.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E FAILURE Anerroroccurredwhilecommunicatingwiththebumpbarunitspecified
by the CurrentUnitID property.

CurrentUnitID Property, UnitsOnline Property.

7.5.3 clearlnput Method (Common)

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

clearInput ():
void { raises-exception, use after open-claim }

Clears the device input that has been buffered for the unit specified by the CurrentUnitID property.

Any data events that are enqueued — usually waiting for DataEventEnabled to be set to true and
FreezeEvents to be set to false — are also cleared.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

CurrentUnitID Property, “Device Input Model” on page 18

169

7.5.4 clearOutput Method (Common) Updated in Release 1.7

Syntax

Remarks

Errors

See Also

clearOutput ():
void { raises-exception, use after open-claim }

Clears the tone outputs that have been buffered, including all asynchronous output, for the unit specified
by the CurrentUnitID property.

Any output complete and output error events that are enqueued — usually waiting for DataEventEnabled
to be set to true and FreezeEvents to be set to false — are also cleared.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

CurrentUnitID Property, “Device Output Model” on page 20

7.5.5 setKeyTranslation Method

Syntax

Remarks

Errors

See Also

170

setKeyTranslation (units: int32, scanCode: int32, logicalKey: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which bump bar unit(s) to set key translation for.
scanCode The bump bar generated key scan code. Valid values 0-255.

logicalKey The translated logical key value. Valid values 0-255.

Assigns a logical key value to a device-specific key scan code for the bump bar unit(s) specified by the
units parameter. The logical key value is used during translation during the DataEvent.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL One of the following errors occurred:

scanCode or logicalKey are out of range.

units is zero or a non-existent unit was specified.

The ErrorUnits and ErrorString properties are updated prior to notifying
the application of the error.

ErrorUnits Property, ErrorString Property, DataEvent.

Unified POS, V1.16.1

7.6 Events (UML interfaces)

7.6.1 DataEvent

<< event >> upos::events::DataEvent
Status: int32 {read-only }

Description Notifies the application when status from the bump bar is available.

Attributes

Remarks

See Also

Unified POS, v1.16.1

This event contains the following attribute:

Attributes

Type _ Description

Status

int32 See below.

The Status property is divided into four bytes. Depending on the Event Type, located in the low word,
the remaining 2 bytes will contain additional data. The diagram below indicates how the Stafus property

is divided:
High Word Low Word (Event Type)
High Byte Low Byte
Unused. Always zero. LogicalKeyCode BB DE KEY

Enqueued to present input data from a bump bar unit to the application. The low word contains the Event
Type. The high word contains additional data depending on the Event Type. When the Event Type is
BB DE KEY, the low byte of the high word contains the LogicalKeyCode for the key pressed on the
bump bar unit. The LogicalKeyCode value is device independent. It has been translated by the Service
from its original hardware specific value. Valid ranges are 0-255.

The EventUnitID property is updated before delivering the event.

“Device Input Model” on page 18, EventUnitID Property, DataEventEnabled Property, FreezeEvents

Property.

171

7.6.2 DirectlOEvent

<< event >> upos::events::DirectlOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Bump Bar Service to provide events to the application that are not otherwise supported by the

Control.

Attributes This event contains the following attributes:

Attributes Type _Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and the
Service. This property is settable.
Obj object Additional data whose usage varies by the EventNumber and Service. This
property is settable.
Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.

Use of this event may restrict the application program from being used with other vendor’s Bump Bar
devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15 directIO Method.

7.6.3 ErrorEvent

172

Updated in Release 1.10

<< event >>upos::events::ErrorEvent

ErrorCode: int32 { read-only }

ErrorCodeExtended: int32 { read-only }

ErrorLocus: int32 { read-only }

ErrorResponse: int32 { read-write }

Description Notifies the application that a Bump Bar error has been detected and a suitable response by the
application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type _ Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes in Chapter 2.
ErrorCodeExtended
int32 Extended Error code causing the error event. If ErrorCode is
E_EXTENDED, then see values below. Otherwise, it may contain a Service-
specific value.
ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32

Error response, whose default value may be overridden by the application
(i.e., this property is settable). See values below.

Unified POS, V1.16.1

Remarks

See Also

Unified POS, v1.16.1

The ErrorLocus property may be one of the following:

Value Meaning
EL_OUTPUT Error occurred while processing asynchronous output.
EL_INPUT Error occurred while gathering or processing event-driven input. No

EL_INPUT DATA

previously buffered input data is available.

Error occurred while gathering or processing event-driven input, and some
previously buffered data is available.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error event listener may change ErrorResponse to one of the following values:

Value Meaning
ER RETRY Use only when locus is EL_ OUTPUT.
Retry the asynchronous output. The error state is exited.
Default when locus is EL_OUTPUT.
ER CLEAR Clear all buffered output data (including all asynchronous output) or buffered

ER_CONTINUEINPUT

input data. The error state is exited.
Default when locus is EL_INPUT.

Use only when locus is EL_INPUT DATA. Acknowledges the error and
directs the Device to continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and the
DataEventEnabled property is again set to true, then another ErrorEvent is
delivered with locus EL_INPUT.

Default when locus is EL_ INPUT DATA.

Enqueued when an error is detected while gathering data from or processing asynchronous output for the

bump bar.

Input error events are not delivered until the DataEventEnabled property is true, so that proper
application sequencing occurs.

The EventUnits and EventString properties are updated before the event is delivered.

“Device Output Model” on page 20 “Device Information Reporting Model Added in Release 1.8” on
page 25, DataEventEnabled Property, EventUnits Property, EventString Property.

173

7.6.4 OutputCompleteEvent

7.6.5

174

<< event >> upos::events::OutputCompleteEvent

OutputlID: int32 { read-only }

Description Notifies the application that the queued output request associated with the OutputID attribute has

completed successfully.

Attributes This event contains the following attribute:
Attributes Type _Description
OutputID int32 The ID number of the asynchronous output request that is complete.
The EventUnits property is updated before delivering.
Remarks Enqueued when a previously started asynchronous output request completes successfully.
See Also EventUnits Property,”Device Output Model” on page 20
StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent

Status: int32 { read-only }

Description Notifies the application that the bump bar has had an operation status change.

Attributes

Remarks

See Also

This event contains the following attribute:

Attributes Type _ Description
Status int32 Reports a change in the power state of a bump bar unit.

Note that Release 1.3 added Power State Reporting with additional Power

reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional

Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 1.
Enqueued when the bump bar device detects a power state change.

Deviation from the standard StatusUpdateEvent (See “StatusUpdateEvent” description in Chapter 2)
» Before delivering the event, the EventUnits property is set to the units for which the new power state

applies.

* When the bump bar device is enabled, then a StatusUpdateEvent is enqueued to specify the bitmask

of online units.

e While the bump bar device is enabled, a StatusUpdateEvent is enqueued when the power state of
one or more units change. If more than one unit changes state at the same time, the Service may
choose to either enqueue multiple events or to coalesce the information into a minimal number of

events applying to EventUnits.

EventUnits Property.

Unified POS, V1.16.1

8

8.1

8.2

Cash Changer

General

Summary

Properties (UML attributes)

Common

AutoDisable:

CapCompareFirmwareVersion:

CapPowerReporting:
CapStatisticsReporting:
CapUpdateFirmware:
CapUpdateStatistics:
CheckHealthText:
Claimed:

DataCount:
DataEventEnabled:
DeviceEnabled:
FreezeEvents:
OutputID:
PowerNotify:
PowerState:

State:

DeviceControlDescription:
DeviceControlVersion:
DeviceServiceDescription:

DeviceServiceVersion:

PhysicalDeviceDescription:

PhysicalDeviceName:

Unified POS, v1.16.1

Type
boolean

boolean
int32
boolean
boolean
boolean
string
boolean
int32
boolean
boolean
boolean
int32
int32
int32
int32

string
int32
string
int32
string

string

This Chapter defines the Cash Changer device category.

Mutability
{read-write}
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{read-only}
{read-only}
{read-only}
{read-write}
{read-write}
{read-write}
{read-only}
{read-write}
{read-only}
{read-only}

{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}

Version
1.2
1.9
1.3
1.8
1.9
1.8
1.2
1.2
1.5
1.5
1.2
1.2
1.2
1.3
1.3
1.2

1.2
1.2
1.2
1.2
1.2
1.2

May Use After
Not supported
open
open
open
open
open
open
open
open
open
open & claim
open
Not Supported
open
open

open
open
open

open

175

176

Properties (Continued)

Specific

CapDeposit:
CapDepositDataEvent:
CapDiscrepancy:
CapEmptySensor:
CapFullSensor:
CapJamSensor:
CapNearEmptySensor:
CapNearFullSensor:
CapPauseDeposit:
CapRealTimeData:
CapRepayDeposit:

AsyncMode:
AsyncResultCode:

AsyncResultCodeExtended:

CurrencyCashList:
CurrencyCode:
CurrencyCodeList:
CurrentExit:
CurrentService:
DepositAmount:
DepositCashList:
DepositCodeList:
DepositCounts:
DepositStatus:
DeviceExits:
DeviceStatus:
ExitCashList:
FullStatus:
RealTimeDataEnabled:
ServiceCount:

Servicelndex:

Type

boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean

boolean

boolean
int32
int32

string
string
string
int32
int32
int32
string
string
string
int32
int32
int32
string
int32
boolean
int32
int32

Mutability
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}

{read-write}
{read-only}
{read-only}

{read-only}
{read-write}
{read-only}
{read-write}
{read-write}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-write}
{read-only}
{read-only}

Version
1.5
1.5
1.2
1.2
1.2
1.11
1.2
1.2
1.5
1.11
1.5

1.2
1.2
1.2

1.2
1.2
1.2
1.2

1.5
1.5
1.5
1.5
1.5
1.2
1.2
1.2
1.2

1.11
1.11

May Use After
open
open
open
open
open
open
open
open
open
open

open

open
open, claim, & enable

open, claim, & enable

open
open
open
open
open
open
open
open
open
open, claim, & enable
open
open, claim, & enable
open
open, claim, & enable
open, claim & enable
open

open

Unified POS, V1.16.1

Methods (UML operations)

Common
Name Version
open (logicalDeviceName: string): 1.2
void { raises-exception }
close (): 1.2
void { raises-exception, use after open }
claim (timeout: int32): 1.2
void { raises-exception, use after open }
release (): 1.2
void { raises-exception, use after open, claim }
checkHealth (level: int32): 1.2
void { raises-exception, use after open, claim, enable }
clearInput (): 1.5
void { raises-exception, use after open, claim }
clearInputProperties (): Not supported
void { }
clearOutput (): Not supported
void { }
directlO (command: inz32, inout data: int32, inout obj: object): 1.2

void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.9
void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string): 1.9
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

Specific

Name

adjustCashCounts (cashCounts: string): 1.11
void { raises-exception, use after open, claim, enable }

beginDeposit (): 1.5
void { raises-exception, use after open, claim, enable }

dispenseCash (cashCounts: string): 1.2
void { raises-exception, use after open, claim, enable }

dispenseChange (amount: int32): 1.2
void { raises-exception, use after open, claim, enable }

Unified POS, v1.16.1 177

178

endDeposit (success: int32):

void { raises-exception, use after open, claim, enable }

fixDeposit ():

void { raises-exception, use after open, claim, enable }

Events (UML. interfaces)

Name

upos::events::DataEvent

Status:
upos::events::DirectlOEvent

EventNumber:

Data:

Obj:
upos::events::ErrorEvent

upos::events::OutputCompleteEvent

upos::events::StatusUpdateEvent

Status:

Type Mutability
int32 { read-only }
int32 { read-only }
int32 { read-write }
object { read-write }
Not supported
Not supported
int32 { read-only }

1.5

1.5

Version

1.5

1.2

1.2

Unified POS, V1.16.1

8.3 General Information

The Cash Changer programmatic name is “CashChanger.”

8.3.1 Capabilities Updated in Release 1.11

The Cash Changer has the following capabilities:
 Reports the cash units and corresponding unit counts available in the Cash Changer.
- Dispenses a specified amount of cash from the device in either bills, coins, or both into a user-specified exit.

- Dispenses a specified number of cash units from the device in either bills, coins, or both into a user-specified
exit.

 Reports jam conditions within the device.
« Supports more than one currency.
The Cash Changer may also have the following additional capabilities:

 Reporting the fullness levels of the Cash Changer’s cash units. Conditions which may be indicated include
empty, near empty, full, and near full states.

 Reporting of a possible (or probable) cash count discrepancy in the data reported by the readCashCounts
method.

Release 1.5 and later — Support for the cash acceptance is added as an option.

« The money (bills and coins) which is deposited into the device between the start and end of cash acceptance is
reported to the application. The contents of the report are cash units and cash counts.

Release 1.11 and later — Support for the use of cash device sub-services

« The service can use sub-services for other cash devices to create a full-function cash changer service.
Properties are added for the extraction of information from the sub-services.

Unified POS, v1.16.1 179

8.3.2 Cash Changer Class Diagram Updated in Release 1.11

The following diagram shows the relationships between the CashChanger classes.

<<exception>> <<utility>>
UposException UposConst

(fomupog (from upos)

N\ <<sends>> />

\

<<Interface>> |
CashChangerControl ‘
(from upos) |
B <<capalility>> CapDeposit : boolean <<utility>>
B <<capability>> CapDepositDataE \ent : boolean CashChangerConst
SELEES B <<capability>> CapDiscrepancy : boolean (from upos)
DEEIAE B5<<capatility>> CapEmptySensor : boolean
fromevents B)<<capaility>> CapFullSensor : bodean -
) B <<capalility>> CapJamSensor : Boolean L7
fires B<<capability>> CapNearEmptySensor : boolean .7 <<uses>>
B <<capalility>> CapNearFullSensor : boolean
B <<capability>> CapPauseDeposit : boolean
B <<capalility>> CapRealTimeData : Boolean
<<ewnt> B <<capability>> CapRepayDeposit : boolean
DirectlOEvent BS<<prop>> AsyncMode : boolean
fromevents) fires B5<<prop>> AsyncResultCode : int32
< & <<prop>> AsyncResultCodeExtended : int32
& <<prop>> CurrencyCashList : string
& <<prop>> CurrencyCode : string
&% <<prop>> CurrencyCodeList : string
B<<prop>> CurrentExit : int32
<<event>> fires | EB<<prop>> CurrentSenice : int32
StatusUpdateEvent |- | B2<<prop>> DepositAmourt ; int32
(from events) & <<prop>> DepositCashList : string
& <<prop>> DepositCodelList : string
& <<prop>> DepositCounts : string
fires &5<<prop>> DepositStatus : int32
B<<prop>> DeviceExits : int32
<<ewent>> / B<<prop>> DeviceStatus : int32
EmorEvent & <<prop>> ExitCashList : string
(from events) & <<prop>> FullStatus : int32
E<<prop>> RealTimeDataEnabled : boolean
B <<prop>> SeniceCount : int32
E%<<prop>> Senicelndex : int32

PadjustCashCounts(cashCaunts : string)

®beginDeposit()

DdispenseCash(cashCounts : string)
BdispenseChange(amount : int32)

®endDepoasit(amount : int32)

SfixDeposit()

®pauseDeposit(contral : int32)

®readCashCounts(cashCounts : string, discrepancy : boolean)

180 Unified POS, V1.16.1

8.3.3 Model Updated in Release 1.11

The general model of a Cash Changer is:

Supports several cash types such as coins, bills, and combinations of coins and bills. The supported cash type
for a particular currency is noted by the list of cash units in the CurrencyCashList property.

Consists of any combination of features to aid in the cash processing functions such as a cash entry holding
bin, a number of slots or bins which can hold the cash, and cash exits.

Prior to Release 1.5 this specification provides programmatic control only for the dispensing of cash. The
accepting or removing of cash by the device (for example, to replenish cash) is controlled by the
adjustCashCounts method, unless the device can determine the amount of cash on its own. The application
can call readCashCounts to retrieve the current unit count for each cash unit, but cannot control when or how
cash is added to the device.

May have multiple exits. The number of exits is specified in the DeviceExits property. The application chooses
a dispensing exit by setting the CurrentExit property. The cash units which may be dispensed to the current
exit are indicated by the ExitCashList property. When CurrentExit is 1, the exit is considered the “primary
exit” which is typically used during normal processing for dispensing cash to a customer following a retail
transaction. When CurrentExit is greater than 1, the exit is considered an “auxiliary exit.” An “auxiliary exit”
typically is used for special purposes such as dispensing quantities or types of cash not targeted for the
“primary exit.”

Dispenses cash into the exit specified by CurrentExit when either dispenseChange or dispenseCash is
called. With dispenseChange, the application specifies a total amount to be dispensed, and it is the
responsibility of the Cash Changer device or the Control to dispense the proper amount of cash from the
various slots or bins. With dispenseCash, the application specifies a count of each cash unit to be dispensed.

Dispenses cash either synchronously or asynchronously, depending on the value of the AsyncMode property.
When AsyncMode is false, then the cash dispensing methods are performed synchronously and the dispense
method returns the completion status to the application.

When AsyncMode is true and no exception is thrown by either dispenseChange or dispenseCash, then the
method is performed asynchronously and its completion is indicated by a StatusUpdateEvent with its Data
property set to CHAN STATUS ASYNC. The request’s completion status is set in the AsyncResultCode and
AsyncResultCodeExtended properties.

The values of AsyncResultCode and AsyncResultCodeExtended are the same as those for the ErrorCode
and ErrorCodeExtended properties of a UposException when an error occurs during synchronous dispensing.
Nesting of asynchronous Cash Changer operations is illegal; only one asynchronous method can be processed
at a time.

The readCashCounts method may not be called while an asynchronous method is being performed since
doing so could likely report incorrect cash counts.

May support more than one currency. The CurrencyCode property may be set to the currency, selecting from
a currency in the list CurrencyCodeList. CurrencyCashList, ExitCashList, dispenseCash,
dispenseChange and readCashCounts all act upon the current currency only.

Sets the cash slot (or cash bin) conditions in the DeviceStatus property to show empty and near empty status,
and in the FullStatus property to show full and near full status. If there are one or more empty cash slots, then
DeviceStatus is CHAN _STATUS EMPTY, and if there are one or more full cash slots, then FullStatus is
CHAN_STATUS FULL.

After Release 1.5 — Support for cash acceptance is added as an option.
The cash acceptance model is as follows:

Unified POS, v1.16.1 181

182

Note that the AsyncMode property has no affect on methods that have been added for cash acceptance, since
these are treated as input methods.

The dispensing of change function of this device is not dependent upon the availability of a “cash acceptance”
function option. Dispensing of change and collection of money are two independent functions.

Receipt of cash (cash acceptance function) is an option that may be provided by the Cash Changer device.
Cash acceptance into the “cash acceptance mechanism” is started by invoking the beginDeposit method. The
previous values of the properties DepositCounts and DepositAmount are initialized to zero.

The total amount of cash placed into the device continues to be accumulated until either the fixDeposit method
or the pauseDeposit method is executed. When the fixDeposit method is executed, the total amount of
accumulated cash is stored in the DepositCounts and DepositAmount properties. If the
CapDepositDataEvent capability was previously set to true, then a DataEvent is generated to inform the
application that cash has been collected.

If the pauseDeposit method is executed with a parameter value of CHAN_ DEPOSIT PAUSE, then the
counting of the deposited cash is suspended and the current amount of accumulated cash is also updated to the
DepositCounts and DepositAmount properties. When pauseDeposit method is executed with a parameter
value of CHAN_ DEPOSIT_RESTART, counting of deposited cash is resumed and added to the accumulated
totals.

When the fixDeposit method is executed, the current amount of accumulated cash is updated in the
DepositCounts and DepositAmount properties, and the process remains static until an endDeposit method is
executed. At this point the “cash acceptance” mechanism is notified to stop accepting cash. If endDeposit
method receives a CHAN DEPOSIT CHANGE parameter, then the mechanism will dispense cash change
back to the user. If endDeposit is invoked with a CHAN_ DEPOSIT_NOCHANGE parameter, then the
mechanism will not dispense cash change back to the user. Finally, if endDeposit is invoked with a
CHAN_DEPOSIT REPAY parameter, then all collected cash is returned back to the user by the mechanism.

Two types of Cash Changer mechanisms are covered by this standard. In one case where CapRepayDeposit is
true, the bins that are used for collecting the cash are the same bins that are used for dispensing the cash as
change. In the other case where CapRepayDeposit is false, the bins that are used for collecting the cash are
different from the bins that are used for dispensing the change. In the first case, if a transaction is aborted for
any reason, the same cash the user input to the mechanism will be returned to the user. In the second case, it is
up to the application to dispense an equivalent amount of cash (not the same physical cash collected) back to
the user for an aborted transaction.

The Cash Changer mechanisms can only be used in one mode at a time. While the mechanism is collecting
deposited cash, it cannot dispense change at the same time. Therefore, while beginDeposit method is being
executed, no payment of change can occur. Only after an endDeposit method call can the proper amount of
change be determined (either by the application or by a “smart” Cash Changer) and dispensed to the user. Each
Cash Changer manufacturer must determine the amount of time it takes to process the received cash and place
in storage bins before it completes the endDeposit method.

When the clearInput method is executed, the queued DataEvent associated with the receipt of cash is cleared.
The DepositCounts and DepositAmount properties remain set and are not cleared.

After Release 1.11 — Support for the use of cash device sub-services.
The cash device sub-service model is as follows:

Cash Changer service can utilize other cash device sub-services, such as coin dispensers, coin acceptors, bill
dispenser, bill acceptors and other cash changers to access device hardware, creating a full function cash
changer service. Each call to the cash changer service will invoke the corresponding call to the sub-services.
Therefore, an open call will call the open method of all of the sub-services, claim will call claim, and so forth.
The same can be said for the cash changer properties. Some properties are available for dispensers, while
others are available only for acceptors. It is up to the aggregating cash changer service to analyze and interpret

Unified POS, V1.16.1

the results of its communications to the sub-services and report to the application. For example, if the open call

fails for one of the sub services, the exception should be passed up to the application. The mapping of the

properties and methods from service to sub-service is as follows:

Cash Coin Bill Coin Bill
Changer Dispenser Dispenser Acceptor Acceptor
CapDeposit
CapDepositDataEvent
CapDiscrepancy X X X X
CapEmptySensor X X
CapJamSensor X X X X
CapFullSensor X X
CapNearEmptySensor X X
CapNearFullSensor X X
CapPauseDeposit X X
CapRealTimeData X X
CapRepayDeposit
AsyncMode X
AsyncResultCode X
Cash Coin Bill Coin Bill
Changer Dispenser Dispenser Acceptor Acceptor
AsyncResultCodeExtended X
CurrencyCashList X
CurrencyCode X X X
CurrencyCodeList X
CurrentExit X
CurrentService
DepositAmount X X
DepositCashList X X
DepositCodeList X X
DepositCounts X X
DepositStatus X X
DeviceExits X
DeviceStatus Dispenser X
Status
ExitCashList X
FullStatus X X
ServiceCount
Servicelndex
RealTimeDataEnabled X X

Unified POS, v1.16.1

183

beginDeposit() X X
dispenseCash() X

dispenseChange() X

endDeposit() X X
fixDeposit() X X
pauseDeposit() X X
readCashCounts() X X X X

 ServiceCount lists the number of sub-services used by the cash changer.
« Servicelndex is a byte segmented property containing the index for each sub-service.

« Ifaccess to sub-service property and method information is desired, setting the CurrentService property to the
desired index will allow the application to request property information of the specified sub-service.

Coin Cash Changer Senice
|
|
l
POS <<Interface>> CashChangerSenice :
J—
Application - - — — = > CashCﬁlTszgomrol ————— > L - Bill Acgeptor
Senice
- -7
|
|
|
|
l
. . . | Bill Dispenser
Example of a Cash Changer Service using a coin cash changer - - Senice
service, a bill acceptor service and a bill dispenser service.

184 Unified POS, V1.16.1

8.3.4 Cash Changer Sequence Diagram Added in Release 1.7

NOTE: we are assuming that the :ClientApp already successfully open, Claimed and enabled the
CashChanger device. This means that the Claimed, DeviceEnabled properties are == true

:ClientApp | :CashChanger | |:CashChangerService| | :Human Actor |

—— register to receive Dataa/ent with Control

I 1
setDataEventEnabIed(t[uhi) setDataEventEnabIedﬂrLe)
T |
— beginDeposit() | beginDeposit() i DepositCounts and DepositAmount
' property values are initialjzed
1 |

accepting cash E;l

DepositCounts and DepositAmount
property values are quated

]

deliver DataEvent

eliver DataEvent

pauseDeposit(Pause)

-

|
|
|
ﬂ pauseDeposit(Pause)
|

while checL amount accepted |
is < amounjt of sale |
setDataEventEnabled(true)

setDataEventEnabled(rue)

pauseDeposit(Restart)

1]

pauseDeposit(Restart)

accepting cash

DepositCounts and DepositAmount
property values are quated

'J__deliver DataEvent |

eliver DataEvent

endloop T | |
~fixD it |) | DepositCounts and DepgsitAmount
“Depositl) J_' fixDeposit() | property values are finalized
endDeposit(Change/ Lr‘ .
Nochange/Repayment) ! endDeposit(Change/ [|

if there is change ' '
dispenseChange() or |
|

|

Nochange/Repayment i

T D| EJ |
|

dispenseCash() dispenseChange() or |

 dispenseCash() J—| change tl
endif | \T‘ IT[

Unified POS, v1.16.1 185

8.3.5 Cash Changer State Diagram Updated in Release 1.8

close
Open() Clalm()
. close() rel ; ase() -

setDeviceEnab
clearlnput()

ceEnabled(true)
Clearlnput Processing
entry/ empty data queue ‘

clearlhput()

FixMode ‘

‘ entry/ sync DepositCounts and DepositAmount

fire event entry/ enqueue StatusUpdateEvents

. Pay Money
done
[asyncMode == false] [asyncMode == true] Fire Events

‘ Synchronous Pay ‘ ‘ Async

8.3.6 Device Sharing

The Cash Changer is an exclusive-use device, as follows:
« The application must claim the device before enabling it.

« The application must claim and enable the device before accessing some of the properties, dispensing or
collecting, or receiving events.

+ See the “Summary” table for precise usage prerequisites.

186 Unified POS, V1.16.1

8.4 Properties (UML attributes)

8.4.1 AsyncMode Property

Syntax

Remarks

Errors

See Also

AsyncMode: boolean { read-write, access after open }

If true, the dispenseCash and dispenseChange methods will be performed asynchronously. If false,
these methods will be performed synchronously.
This property is initialized to false by the Open method.

5

A UposException may be thrown when this property is accessed. For further information, see “Errors’
on page 16.

AsyncResultCode Property, AsyncResultCodeExtended Property, dispenseChange Method,
dispenseCash Method.

8.4.2 AsyncResultCode Property

Syntax

Remarks

Errors

See Also

AsyncResultCode: int32 { read-only, access after open-claim-enable }

Holds the completion status of the last asynchronous dispense request (i.e., when dispenseCash or
dispenseChange was called with AsyncMode true).

This property is set before a StatusUpdateEvent event is delivered with a Status value of
CHAN_STATUS ASYNC.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

AsyncMode Property, dispenseCash Method, dispenseChange Method.

8.4.3 AsyncResultCodeExtended Property

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

AsyncResultCodeExtended: int32 { read-only, access after open-claim-enable}

Holds the completion status of the last asynchronous dispense request (i.e., when dispenseCash or
dispenseChange was called with AsyncMode true).

This property is set before a StatusUpdateEvent event is delivered with a Status value of
CHAN_STATUS ASYNC.

bl

A UposException may be thrown when this property is accessed. For further information, see “Errors’
on page 16.

AsyncMode Property, dispenseCash Method, dispenseChange Method.

187

8.4.4 CapDeposit Property Added in Release 1.5

Syntax CapDeposit: boolean { read-only, access after open }
Remarks If true, the Cash Changer supports cash acceptance.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also beginDeposit Method, endDeposit Method, fixDeposit Method, pauseDeposit Method.

8.4.5 CapDepositDataEvent Property Added in Release 1.5
Syntax CapDepositDataEvent: boolean { read-only, access after open }
Remarks If true, the Cash Changer can report a cash acceptance event.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also beginDeposit Method, endDeposit Method, fixDeposit Method, pauseDeposit Method.

8.4.6 CapDiscrepancy Property

Syntax CapDiscrepancy: boolean { read-only, access after open }
Remarks If true, the readCashCounts method can report effective discrepancy values.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also readCashCounts Method.

188 Unified POS, V1.16.1

8.4.7 CapEmptySensor Property

Syntax

Remarks

Errors

See Also

CapEmptySensor: boolean { read-only, access after open }
If true, the Cash Changer can report the condition that some cash slots are empty.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

DeviceStatus Property, StatusUpdateEvent.

8.4.8 CapFullSensor Property

Syntax CapFullSensor: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report the condition that some cash slots are full.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also FullStatus Property, StatusUpdateEvent.

8.4.9 CapJamSensor Property Added in Release 1.11

Syntax CapJamSensor: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report a mechanical jam or failure condition.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also DeviceStatus Property, StatusUpdateEvent.

8.4.10 CapNearEmptySensor Property

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

CapNearEmptySensor: boolean { read-only, access after open }
If true, the Cash Changer can report the condition that some cash slots are nearly empty.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

DeviceStatus Property, StatusUpdateEvent

189

8.4.11 CapNearFullSensor Property

Syntax CapNearFullSensor: boolean { read-only, access after open }
Remarks If true, the Cash Changer can report the condition that some cash slots are nearly full.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also FullStatus Property, StatusUpdateEvent.
8.4.12 CapPauseDeposit Property Added in Release 1.5

Syntax CapPauseDeposit: boolean { read-only, access after open }
Remarks If true, the Cash Changer has the capability to suspend cash acceptance processing temporarily.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also pauseDeposit Method.
8.4.13 CapRealTimeData Property Added in Release 1.11

Syntax CapRealTimeData: boolean { read-only, access after open }
Remarks If true, the device is able to supply data as the money is being accepted (“real time”).
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also RealTimeDataEnabled property.

190 Unified POS, V1.16.1

8.4.14 CapRepayDeposit Property Added in Release 1.5

Syntax

Remarks

Errors

See Also

CapRepayDeposit: boolean { read-only, access after open }
If true, the Cash Changer has the capability to return money that was deposited.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

endDeposit Method.

8.4.15 CurrencyCashList Property

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

CurrencyCashList: string { read-only, access after open }

Holds the cash dispensing units supported in the Cash Changer for the currency represented by the
CurrencyCode Property.

The string consists of ASCII numeric comma delimited values which denote the units of coins, then the
ASCII semicolon character (“;”) followed by ASCII numeric comma delimited units of bills that can be

(%4

used with the Cash Changer. If a semicolon (“;”) is absent, then all units represent coins.
Below are sample CurrencyCashList values in Japan.
+ “1,5,10,50,100,500” ---

1,5, 10, 50, 100, 500 yen coin.

+ “1,5,10,50,100,500;1000,5000,10000” ---
1,5, 10, 50, 100, 500 yen coin and 1000, 5000, 10000 yen bill.

* %1000,5000,10000” ---
1000, 5000, 10000 yen bill.

This property is initialized by the open method, and is updated when CurrencyCode is set.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CurrencyCode Property.

191

8.4.16 CurrencyCode Property

Syntax

Remarks

Errors

See Also

CurrencyCode: string { read-write, access after open }

Contains the active currency code to be used by Cash Changer operations. This property is initialized to
an appropriate value by the open method. This value is guaranteed to be one of the set of currencies
specified by the CurrencyCodeList property.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL A value was specified that is not within
CurrencyCodeList.

CurrencyCodeList Property.

8.4.17 CurrencyCodelist Property

Syntax

Remarks

Errors

See Also

CurrencyCodeList: string { read-only, access after open }

Holds a list of ASCII three-character ISO 4217 currency codes separated by commas. For example, if the
string is “JPY,USD,” then the Cash Changer supports both Japanese and U.S. monetary units.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CurrencyCode Property.

8.4.18 CurrentExit Property

Syntax

Remarks

192

CurrentExit: int32 { read-write, access after open }

Holds the current cash dispensing exit. The value 1 represents the primary exit (or normal exit), while
values greater then 1 are considered auxiliary exits. Legal values range from 1 to DeviceExits.

Below are examples of typical property value sets in Japan. CurrencyCode is “JPY” and
CurrencyCodeList is “JPY.”

Unified POS, V1.16.1

Errors

See Also

Unified POS, v1.16.1

* Cash Changer supports coins; only one exit supported:
CurrencyCashList = “1,5,10,50,100,500”
DeviceExits = 1
CurrentExit = 1 : ExitCashList = “1,5,10,50,100,500”

e Cash Changer supports both coins and bills; an auxiliary exit is used for larger quantities of
bills:
CurrencyCashList = “1,5,10,50,100,500;1000,5000,10000”
DeviceExits =2
When CurrentExit = 1 : ExitCashList =“1,5,10,50,100,500;1000,5000”
When CurrentExit = 2 : ExitCashList = “;1000,5000,10000”

* Cash Changer supports bills; an auxiliary exit is used for larger quantities of bills:
CurrencyCashList = “;1000,5000,10000”
DeviceExits = 2
When CurrentExit = 1 : ExitCashList = “;1000,5000”
When CurrentExit = 2 : ExitCashList = “;1000,5000,10000”

This property is initialized to 1 by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL An invalid CurrentExit value was specified.

CurrencyCashList Property, DeviceExits Property, ExitCashList Property.

193

8.4.19 CurrentService Property Added in Release 1.11

194

Syntax

Remarks

Errors

See Also

CurrentService: int32 { read-write, access after open }

Holds the current service. The value 0 represents the primary service, while values greater than 0 and less
than or equal to ServiceCount are used to request information from the integrated services. Legal values
range from 0 to ServiceCount. The readCashCounts method and all of the properties, common and
specific, are accessible when the CurrentService is greater than 0. CurrentService, ServiceCount and
Servicelndex will always reflect the primary service.

Below are examples of a cash changer service using services for separate Coin Acceptor and Dispenser
and a bills only cash changer. A StatusUpdateEvent indicting a jam has been received by the
application. Only the bill changer and the coin dispenser can detect a jam.

e Checking the values of the primary service:
CurrentService =0
ServiceCount =3
Servicelndex = 50528769 (X°03030201°)
DeviceStatus = CHAN_STATUS JAM
DeviceServiceDescription = “Integrated Cash Changer Service 1.11.05”

* Changing the service to get information about the coin dispenser:
CurrentService = 2
ServiceCount =3
Servicelndex = 50528769 (X°03030201°)
DeviceStatus = CHAN_ STATUS OK
DeviceServiceDescription = “Pennybrite Coin Dispenser Service”
* The coin dispenser looks ok. Check the bill changer:
CurrentService =3
ServiceCount =3
Servicelndex = 50528769 (X°03030201°)
DeviceStatus = CHAN_STATUS JAM
DeviceServiceDescription = “Benjamin Bill Changer Service”

This property is initialized to 0 by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL An invalid CurrentService value was specified.

ServiceCount Property, ServiceIndex Property.

Unified POS, V1.16.1

8.4.20 DepositAmount Property

Syntax

Remarks

Errors

See Also

DepositAmount: int32 { read-only, access after open }

The total amount of deposited cash.

For example, if the currency is Japanese yen and DepositAmount is set to 18057,
after the call to the beginDeposit method, there would be 18,057 yen in the Cash Changer.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CurrencyCode Property.

8.4.21 DepositCashList Property Added in Release 1.5

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

DepositCashList: string { read-only, access after open }

Holds the cash units supported in the Cash Changer for the currency represented by the CurrencyCode
property. It is set to an empty string when the cash acceptance process is not supported.

It consists of ASCII numeric comma delimited values which denote the units of coins, then the ASCII
semicolon character (“;”) followed by ASCII numeric comma delimited values for the bills that can be
used with the Cash Changer. If the semicolon (*;”) is absent, then all units represent coins.

Below are sample DepositCashList values in Japan.
* “1,5,10,50,100,500” ---
1, 5, 10, 50, 100, 500 yen coin.
+ “1,5,10,50,100,500;1000,5000,10000” ---
1, 5, 10, 50, 100, 500 yen coin and 1000, 5000, 10000 yen bill.
* “1000,5000,10000” ---
1000, 5000, 10000 yen bill.

This property is initialized by the open method, and is updated when CurrencyCode is set.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CurrencyCode Property.

195

8.4.22 DepositCodeList Property Added in Release 1.5

Syntax DepositCodeList: string { read-only, access after open }

Remarks Holds the currency code indicators for cash accepted. It is set to an empty string when the cash
acceptance process is not supported.

It is a list of ASCII three-character ISO 4217 currency codes separated by commas. For example, if the
string is “JPY,USD,” then the Cash Changer supports both Japanese and U.S. monetary units.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also CurrencyCode Property.

8.4.23 DepositCounts Property Added in Release 1.5

Syntax DepositCounts: string { read-only, access after open }

Remarks Holds the total of the cash accepted by the cash units. The format of the string is the same as cashCounts
in the dispenseCash method. Cash units inside the string are the same as the DepositCashList property,
and are in the same order. It is set to an empty string when the cash acceptance function is not supported.
For example if the currency is Japanese yen and string of the DepositCounts property is set to
1:80,5:77,10:0,50:54,100:0,500:87
After the call to the beginDeposit method, there would be 80 one yen coins, 77 five yen coins, 54 fifty
yen coins, and 87 five hundred yen coins in the Cash Changer.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also CurrencyCode Property.

196

Unified POS, V1.16.1

8.4.24 DepositStatus Property Added in Release 1.5

Syntax

Remarks

Errors

DepositStatus: int32 { read-only, access after open-claim-enable }
Holds the current status of the cash acceptance operation. It may be one of the following values:

Value Meaning
CHAN _STATUS DEPOSIT START

Cash acceptance started.
CHAN_STATUS_DEPOSIT _END

Cash acceptance stopped.
CHAN_STATUS_DEPOSIT _NONE

Cash acceptance not supported.
CHAN_STATUS_DEPOSIT COUNT

Counting or repaying the deposited money.
CHAN_STATUS_DEPOSIT JAM

A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. This property is set to
CHAN_STATUS DEPOSIT END after initialization, or to CHAN STATUS DEPOSIT NONE if the
device does not support cash acceptance.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

8.4.25 DeviceExits Property

Syntax

Remarks

Errors

See Also

DeviceExits: int32 { read-only, access after open }
The number of exits for dispensing cash.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CurrentExit Property.

8.4.26 DeviceStatus Property

Syntax

Remarks

Unified POS, v1.16.1

DeviceStatus: int32 { read-only, access after open-claim-enable }
Holds the current status of the Cash Changer. It may be one of the following:

Value Meaning
CHAN _STATUS OK The current condition of the Cash Changer is satisfactory.
CHAN STATUS EMPTY

Some cash slots are empty.
CHAN_STATUS NEAREMPTY

Some cash slots are nearly empty.
CHAN_STATUS JAM A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. If more than one condition is
present, then the order of precedence starting at the highest is: fault, empty, and near empty.

197

Errors

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

8.4.27 ExitCashList Property

Syntax
Remarks

Errors

See Also

ExitCashList: string { read-only, access after open }

Holds the cash units which may be dispensed to the exit which is denoted by CurrentExit property. The
supported cash units are either the same as CurrencyCashList, or a subset of it. The string format is
identical to that of CurrencyCashList.

This property is initialized by the open method, and is updated when CurrencyCode or CurrentExit is
set.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CurrencyCode Property, CurrencyCashList Property, CurrentExit Property.

8.4.28 FullStatus Property Updated in Release 1.14

198

Syntax

Remarks

Errors

FullStatus: int32 { read-only, access after open, claim, enable }
Holds the current full status of the cash slots. It may be one of the following:

Value Meaning
CHAN_STATUS OK All cash slots are neither nearly full nor full.
CHAN STATUS FULL Some cash slots are full.
CHAN_STATUS NEARFULL

Some cash slots are nearly full.

This property is initialized and kept current while the device is enabled.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

Unified POS, V1.16.1

8.4.29 RealTimeDataEnabled Property Added in Release 1.11

Syntax

Remarks

Errors

See Also

RealTimeDataEnabled: boolean {read-write, access after open-claim-enable}

If true and CapRealTimeData is true, each data event fired will update the DepositAmount and
DepositCounts properties. Otherwise, DepositAmount and DepositCounts are updated with the value
of the money collected when fixDeposit is called. Setting RealTimeDataEnabled will not cause any
change in system behavior until a subsequent beginDeposit method is performed. This prevents
confusion regarding what would happen if it were modified between a beginDeposit - endDeposit
pairing.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL Cannot be set true if CapRealTimeData is false.

CapRealTimeData property, DepositAmount property, DepositCounts property, beginDeposit
Method, endDeposit Method, fixDeposit Method.

8.4.30 ServiceCount Property Updated in Release 1.14

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

Servicelndex: int32 { read-only, access after open }

The value is divided into four bytes indicating the service index for each of the integrated service
types.The diagram below indicates how the property is divided:

A value of zero means that no integrated services are utilized.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Bill Dispenser Bill Acceptor Coin Dispenser ~ Coin Acceptor

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CurrentService Property, ServiceCount Property.

199

8.5

8.5.1

200

Methods (UML operations)

adjustCashCounts Method Added in Release 1.11

Syntax

Remarks

Errors

See Also

adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cashCounts parameter contains cash types and amounts to be initialized.

This method is called to set the initial amounts in the cash changer after initial setup, or to adjust cash
counts after replenishment or removal, such as a paid in or paid out operation. This method is called when
needed for devices which cannot determine the exact amount of cash in them automatically. If the device
can determine the exact amount, then this method call is ignored. The application would first call
readCashCounts to get the current counts, and adjust them to the amount being replenished. Then the
application will call this method to set the amount currently in the changer.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and the cashCounts parameter is set to
.1:80,5:77,50:54,100:0,500:87. as a result of calling the adjustCashCounts method, then there would be
eighty one yen coins, seventy-seven five yen coins, fifty-four fifty yen coins, zero one hundred yen coins,
and eighty-seven five-hundred yen coins in the Cash Changer.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

YValue Meaning

E BUSY Cash units and counts cannot be read because an asynchronous method is in
process.

readCashCounts Method.

Unified POS, V1.16.1

8.5.2 beginDeposit Method Added in Release 1.5

Syntax

Remarks

Errors

See Also

beginDeposit ():
void { raises-exception, use after open-claim-enable }

Cash acceptance is started.

The following property values are initialized by the call to this method:
e The value of each cash unit of the DepositCounts property is set to zero.
* The DepositAmount property is set to zero.

After calling this method, if CapDepositDataEvent is true, cash acceptance is reported by DataEvents
until fixDeposit is called while the deposit process is not paused.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning

E ILLEGAL Either the Cash Changer does not support cash acceptance, or the call
sequence is not correct.

CapDepositDataEvent Property, DepositAmount Property, DepositCounts Property, endDeposit
Method, fixDeposit Method, pauseDeposit Method.

8.5.3 dispenseCash Method

Syntax

Remarks

Unified POS, v1.16.1

dispenseCash (cashCounts: string):

void { raises-exception, use after open-claim-enable }
The cashCounts parameter contains the dispensing cash units and counts, represented by the format of
“cash unit:cash counts, ..;.., cash unit:cash counts”. Units before “;” represent coins, and units after «;”
represent bills. If ““;” is absent, then all units represent coins.

Dispenses the cash from the Cash Changer into the exit specified by CurrentExit. The cash dispensed
is specified by pairs of cash units and counts.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Some cashCounts examples, using Japanese yen as the currency, are shown below.

* “10:5,50:1,100:3,500:1”

Dispense 5 ten yen coins, 1 fifty yen coins, 3 one hundred yen coins, 1 five hundred yen coins.
* “10:5,100:3;1000:10”

Dispense 5 ten yen coins, 3 one hundred yen coins, and 10 one thousand yen bills.

+ “1000:10,10000:5”
Dispense 10 one thousand yen bills and 5 ten thousand yen bills.

201

Errors

See Also

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E BUSY Cash cannot be dispensed because an asynchronous method is in progress.
E ILLEGAL One of the following errors occurred:

o The cashCounts parameter value was illegal for the current exit.
e Cash could not be dispensed because cash acceptance was in progress.

E EXTENDED ErrorCodeExtended = ECHAN OVERDISPENSE:
The specified cash cannot be dispensed because of a cash shortage.

AsyncMode Property, CurrentExit Property.

8.5.4 dispenseChange Method

Syntax

Remarks

Errors

See Also

202

dispenseChange (amount: int32):
void { raises-exception, use after open-claim-enable }

The amount parameter contains the amount of change to be dispensed. It is up to the Cash Changer to
determine what combination of bills and coins will satisfy the tender requirements from its available
supply of cash.

Dispenses the specified amount of cash from the Cash Changer into the exit represented by CurrentExit.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

YValue Meaning
E BUSY The specified change cannot be dispensed because an asynchronous method
is in progress.

E ILLEGAL One of the following errors occurred:
* A negative or zero amount was specified.
e The amount could not be dispensed based on the values specified in
ExitCashList for the current exit.
* Change could not be dispensed because cash acceptance was in progress.
E EXTENDED ErrorCodeExtended = ECHAN OVERDISPENSE:
The specified change cannot be dispensed because of a cash shortage.

AsyncMode Property, CurrentExit Property.

Unified POS, V1.16.1

8.5.5 endDeposit Method Added in Release 1.5

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

endDeposit (success: int32):
void { raises-exception, use after open-claim-enable }

The success parameter holds the value of how to deal with the cash that was deposited. Contains one of
the following values:

Parameter Description

CHAN_DEPOSIT CHANGE The deposit is accepted and the deposited amount is greater than
the amount required.

CHAN_DEPOSIT NOCHANGE The deposit is accepted and the deposited amount is equal to or
less than the amount required.

CHAN DEPOSIT REPAY The deposit is to be repaid through the cash deposit exit or the cash
payment exit.

Cash acceptance is completed.

Before calling this method, the application must calculate the difference between the amount of the
deposit and the amount required.

If the deposited amount is greater than the amount required then success is set to
CHAN_DEPOSIT CHANGE. If the deposited amount is equal to or less than the amount required then
success is set to CHAN_DEPOSIT NOCHANGE.

If success is set to CHAN DEPOSIT REPAY then the deposit is repaid through either the cash deposit
exit or the cash payment exit without storing the actual deposited cash.

When the deposit is repaid, it is repaid in the exact cash unit quantities that were deposited. Depending
on the actual device, the cash repaid may be the exact same bills and coins that were deposited, or it may
not.

The application must call the fixDeposit method before calling this method.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL One of the following errors occurred:
* Cash acceptance is not supported.
* The call sequence is invalid. beginDeposit and fixDeposit must be
called in sequence before calling this method.

CapDepositDataEvent Property, DepositAmount Property, DepositCounts Property, beginDeposit
Method, fixDeposit Method, pauseDeposit Method.

203

8.5.6 fixDeposit Method Added in Release 1.5

Syntax fixDeposit ():
void { raises-exception, use after open-claim-enable }
Remarks When this method is called, all property values are updated to reflect the current values in the Cash
Changer.
Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E ILLEGAL One of the following errors occurred:
e Cash acceptance is not supported.
* The call sequence is invalid. beginDeposit must be called before calling
this method.
See Also DepositAmount Property, DepositCounts Property, beginDeposit Method, endDeposit Method,
pauseDeposit Method.
8.5.7 pauseDeposit Method Added in Release 1.5
Syntax pauseDeposit (control: int32):
void { raises-exception, use after open-claim-enable }
The control parameter contains one of the following values:
Parameter Description
CHAN_DEPOSIT PAUSE Cash acceptance is paused.
CHAN_ DEPOSIT RESTART Cash acceptance is resumed.
Remarks Called to suspend or resume the process of depositing cash.
If control is CHAN _DEPOSIT PAUSE, the cash acceptance operation is paused. The deposit process
will remain paused until this method is called with control set to CHAN DEPOSIT RESTART. It is
valid to call fixDeposit then endDeposit while the deposit process is paused.
When the deposit process is paused, the depositCounts and depositAmount properties are updated to
reflect the current state of the Cash Changer. The property values are not changed again until the deposit
process is resumed.
If control is CHAN DEPOSIT RESTART, the deposit process is resumed.
Errors A UposException may be thrown when this method is invoked. For further information, see

204

“Errors” on page 16.

Unified POS, V1.16.1

See Also

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL One of the following errors occurred:
e Cash acceptance is not supported.
* The call sequence is invalid. beginDeposit must be called before calling
this method.
* The deposit process is already paused and control is set to
CHAN_DEPOSIT PAUSE, or the deposit process is not paused and
control is set to CHAN DEPOSIT RESTART.

CapDepositDataEvent Property, CapPauseDeposit Property, DepositAmount Property, Deposit-
Counts Property, beginDeposit Method, endDeposit Method, fixDeposit Method.

8.5.8 readCashCounts Method

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description

cashCounts The cash count data is placed into the string cashCounts.

discrepancy If discrepancy is set to true by this method, then there is some cash which was
not able to be included in the counts reported in cashCounts; otherwise it is
set false.

The format of the string cashCounts is the same as cashCounts in the dispenseCash method. Each unit
in cashCounts matches a unit in the CurrencyCashList property, and is in the same order.

For example if the currency is Japanese yen and string returned in cashCounts is set to:
1:80,5:77,10:0,50:54,100:0,500:87

as a result of calling the readCashCounts method, then there would be 80 one yen coins, 77 five yen

coins, 54 fifty yen coins, and 87 five hundred yen coins in the Cash Changer.

If CapDiscrepancy property is false, then discrepancy is always false.

Usually, the cash total calculated by cashCounts parameter is equal to the cash total in a Cash Changer.
There are some cases where a discrepancy may occur because of existing uncountable cash in a Cash
Changer. An example would be when a cash slot is “overflowing” such that the device has lost its ability
to accurately detect and monitor the cash.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E BUSY Cash units and counts cannot be read because an asynchronous method is in
process.

CapDiscrepancy Property, CurrencyCashList Property, dispenseCash Method.

205

8.6

8.6.1

8.6.2

206

Events (UML interfaces)

DataEvent Updated in Release 1.11
<< event >> upos::events::DataEvent
Status: int32 { read-only }
Description Notifies the application when the Cash Changer has accepted cash.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 The Status parameter contains zero.
DirectlOEvent

<< event >> upos::events::DirectlOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object {read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Cash Changer Service to provide events to the application that are not otherwise supported by
the Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and the

Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service. This
property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Cash Changer
devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15 directlO Method.

Unified POS, V1.16.1

8.6.3 StatusUpdateEvent

<<event >> upos::events::StatusUpdateEvent

Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the Cash Changer device.

Attributes

Remarks

See Also

Unified POS, v1.16.1

This event contains the following attribute:

Attributes Type Description
Status int32 Indicates a change in the status of the unit. See values below.

Note that Release 1.3 added Power State Reporting with additional Power
reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 2.
The Status parameter contains the Cash Changer status condition:

Value Meaning

CHAN_STATUS_EMPTY Some cash slots are empty.

CHAN_STATUS _NEAREMPTY Some cash slots are nearly empty.
CHAN_STATUS_EMPTYOK No cash slots are either empty or nearly empty.
CHAN_STATUS_FULL Some cash slots are full.

CHAN_STATUS NEARFULL Some cash slots are nearly full.

CHAN _STATUS_FULLOK No cash slots are either full or nearly full.
CHAN_STATUS JAM A mechanical fault has occurred.
CHAN_STATUS_JAMOK A mechanical fault has recovered.
CHAN_STATUS_ASYNC Asynchronously performed method has completed.

Fired when the Cash Changer detects a status change.

For changes in the fullness levels, the Cash Changer is only able to fire StatusUpdateEvents when the
device has a sensor capable of detecting the full, near full, empty, and/or near empty states and the
corresponding capability properties for these states are set.

Jam conditions may be reported whenever this condition occurs; likewise for asynchronous method
completion.

The completion statuses of asynchronously performed methods are placed in the AsyncResultCode and
AsyncResultCodeExtended properties.

AsyncResultCode Property, AsyncResultCodeExtended Property,
“Events” on page 15

207

208 Unified POS, V1.16.1

9

9.1

9.2

Cash Drawer

General

This Chapter defines the Cash Drawer device category.

Summary

Properties (UML attributes)

Common
AutoDisable:

CapCompareFirmwareVersion:

CapPowerReporting:
CapStatisticsReporting:
CapUpdateFirmware:
CapUpdateStatistics:
CheckHealthText:
Claimed:
DataCount:
DataEventEnabled:
DeviceEnabled:
FreezeEvents:
OutputID:
PowerNotify:
PowerState:

State:

DeviceControlDescription:

DeviceControlVersion:

DeviceServiceDescription:

DeviceServiceVersion:

PhysicalDeviceDescription:

PhysicalDeviceName:

Unified POS, v1.16.1

Type
boolean

boolean
int32
boolean
boolean
boolean
string
boolean
int32
boolean
boolean
boolean
int32
int32
int32
int32

string
int32
string
int32
string

string

Mutability

{ read-write

H
{ read-only }

{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-write }
{ read-write }
{ read-write }
{ read-only }
{ read-write }
{ read-only }
{ read-only }

{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

Version
1.2

1.9
1.3
1.8
1.9
1.8
1.0
1.0
1.2
1.0
1.0
1.0
1.0
1.3
1.3
1.0

1.0
1.0
1.0
1.0
1.0
1.0

May Use After

Not supported

open
open
open
open
open
open
open

Not supported

Not supported
open
open

Not supported
open

open

209

210

Properties (Continued)

Specific Type Mutability Versio May Use After
n
CapStatus: boolean { read-only } 1.0 open
CapStatusMultiDrawerDetect: boolean { read-only } 1.5 open
DrawerOpened: boolean { read-only } 1.0 open & enable
Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string): 1.0
void { raises-exception })
close (): 1.0
void { raises-exception, use after open }
claim (timeout: int32): 1.0
void { raises-exception, use after open })
release (): 1.0
void { raises-exception, use after open, claim } ’
checkHealth (level: int32): 1.0
void { raises-exception, use after open, enable } Note :
clearInpl:]tog 3 :{) Not supported
clearInputProperties (): Not supported
void { }
clear O“tg::it d({) :} Not supported
directlO (command: int32, inout data: int32, inout obj: object): 1.0
void { raises-exception, use after open })
compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.9
void { raises-exception, use after open, claim, enable }
resetStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }
retrieveStatistics (inout statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }
updateFirmware (firmwareFileName: string): 1.9
void { raises-exception, use after open, claim, enable }
updateStatistics (statisticsBuffer: string): 1.8

void { raises-exception, use after open, claim, enable }

Unified POS, V1.16.1

Specific
Name

openDrawer ():

void { raises-exception, use after open, enable }

Note

waitForDrawerClose (beepTimeout: int32, beepFrequency: int32,
beepDuration: int32, beepDelay: int32):

void { raises-exception, use after open, enable }

Note

Note: Also requires that no other application has claimed the cash

Events (UML interfaces)

Name

upos::events::DataEvent
upos::events::DirectlOEvent

EventNumber:

Data:

Obj:
upos::events::ErrorEvent

upos::events::QutputCompleteEvent

upos::events::StatusUpdateEvent

Status:

Unified POS, v1.16.1

Type

int32
int32
object

int32

Mutability

Not supported

{ read-only }

{ read-write }

{ read-write }

Not supported

Not supported

{ read-only }

1.0

1.0

Version

1.0

1.0

211

9.3 General Information

The Cash Drawer programmatic name is “CashDrawer.”

9.3.1 Capabilities

The Cash Drawer Control has the following capability:
 Supports a command to “open” the cash drawer.
The cash drawer may have the following additional capability:

« Drawer status reporting of such a nature that the service can determine whether a particular drawer is open or
closed in environments where the drawer is the only drawer accessible via a hardware port.

« Drawer unique status reporting of such a nature that the service can determine whether a particular drawer is
open or closed in environments where more than one drawer is accessible via the same hardware port.

9.3.2 Cash Drawer Class Diagram Updated in Release 1.8

The following diagram shows the relationships between the Cash Drawer classes.

<<exception>> <<Interface>> <<uses>> <<utility>> <<utility>>
UposException BaseControl UposConst CashDrawerConst
(from upos) < (fromupos) (from upos) j (from upos)
<<sends>>
N _
\ b <<uses>> //
<<sends>> -~

<<Interface>>
CashDrawerControl
(from upos)

t%«capability» CapStatus : boolean
t%«capability» CapStatusMultiDrawerDetect : boolean
l.%«prop» DrawerOpened : boolean

WopenDrawer() : void
BwaitForDrawerClose(beepTimeout : int32, beepFrequency : int32, beepDuration : int32, beepDelay : int32) : void

fires fires

<<event>>
DirectlOEvent
(from events)
<<prop>> EventNumber : int32
gi<<prop>> Data : int32
#<<prop>> Obj : object

<<event>>
StatusUpdateEvent
(from events)

g<<prop>> Status: int32

212 Unified POS, V1.16.1

9.3.3 Cash Drawer Sequence Diagram Updated in Release 1.12

The following sequence diagram show the typical usage of a Cash Drawer open() > setDeviceEnabled(true) >
getDrawerOpened() = openDrawer(); as well as showing the unique sharing model of the Cash Drawer device
when used with multiple control instances open on the same physical device but by different applications.

NOTE: we are assuming that the :ClientApp(s) already successfully opened the controls. This
means that the platform specific loading/configuration/creation code executed successfully.

cd0:CashDrawe
r

Physical CD
Device

:CashDrawer
Servicel

Statusl vent ‘ ServiceO

‘ :ClientApp0 H :ClientApp1 ‘ ‘ cd1:CashDrawer ‘ ‘:Stnml' t ;| ‘ :CashDrawer

1: setDevigeEnabled(true) 2: setDeviceEnabled(true

3: connect or somehow have Lccesslo the hardware

|
Service returns
current state of
4: openDrawer() T 5: openDrawer() cash drawer
W |

6: send command to open physical (CD

If the command to open the physical CDI\™ CashDrawer AN
is successful then this will result in device is
StatusUpdateEvent delivered to any assumed open

T registered listeners. Thisisnot shown in successfully and
this diagram for simplicity. DrawerOpened

property is now
7: setDeviceEnabled(true) true
8: setDeviceEnabled(true) ‘
9: might communicate with

device (e.g. get cument drawer
state)

CashDrawer is now
open by call to cd1.
Assume that some
human actor closes
11: openDrawer() after open

10: openDrawer()

12: send command to open drawer

Assume the CashDrawer
issuccessfully claimed
at this point by
:ClientApp1

13: claim(timeout) 4: claim(timeout)

15: gpenDrawer() Thiscall resultsin a
UposException since
L . the CashDrawer device
16: openDrawer(isclaimed by the cd1
——|instance that isused by
:ClientApp1

17: throw UposExcep

[1
Assume that both L i 7
:ClientApp0 and :ClientApp1 Thiscall is
registered to receive events successful and)
- not shown. CashDrav.ver device
_|isopen since cd1
claimed the device
successfully

18: opepDrawer()

19: openDrawer()

20: new

H 21: send commangd to open CD

2

N

: deliver SUE to control

23: deliver event to all registered handlers

Y
ZI —__ | StatusUpdateEvent is delivered
24: notify client of new event to all registered handlers, even
though, in the situation above,

25: new only :ClientApp1 isallowed to
26: deliver SUE to control

call openDrawer() - since it
successfully claimed the CD.

|~ |

27: deliver eveft to all registered handlers Service0 also detects the cash drawer is
=1 opened, either via a message from
Service1, a StatusUpdateEvent from
Service 1, or from a lower level interface

28: notify client of new event

Unified POS, v1.16.1 213

9.3.4 Device Sharing

The cash drawer is a sharable device. Its device sharing rules are:

« After opening and enabling the device, the application may access all properties and methods and will receive
status update events.

« If more than one application has opened and enabled the device, each of these applications may access its
properties and methods. Status update events are delivered to all of these applications.

« If one application claims the cash drawer, then only that application may call openDrawer and
waitForDrawerClose. This feature provides a degree of security, such that these methods may effectively be
restricted to the main application if that application claims the device at startup.

« See the “Summary” table for precise usage prerequisites.

214 Unified POS, V1.16.1

9.4

9.4.1

9.4.2

Unified POS, v1.16.1

Properties (UML attributes)

CapStatus Property

Syntax CapStatus: boolean { read-only, access after open }

Remarks If true, the drawer can report status. If false, the Service is not able to determine whether the cash drawer
is open or closed.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CapStatusMultiDrawerDetect Property Added in Release 1.5

Syntax CapStatusMultiDrawerDetect: boolean { read-only, access after open }

Remarks If true, the status unique to each drawer in a multiple cash drawer conﬁguration1 can be reported.
If false, the following possibilities exist:
DrawerOpened: value of false indicates that there are no drawers open.
DrawerOpened: value of true indicates that at least one drawer is open and it might be the particular
drawer in question. This case can occur in multiple cash drawer configurations where only one status is
reported indicating either a) all drawers are closed, or b) one or more drawers are open.
Note: A multiple cash drawer configuration is defined as one where a terminal or printer supports
opening more than one cash drawer independently via the same channel or hardware port. A typical
example is a configuration where a “Y” cable, connected to a single hardware printer port, has separate
drawer open signal lines but the drawer open status from each of the drawers is “wired-or” together. It is
not possible to determine which drawer is open.
This property is only meaningful if CapStatus is true.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also CapStatus Property, DrawerOpened Property.

1. Multiple cash drawer configuration -- A hardware configuration where a printer or terminal controls more than one

cash drawer independently via the same channel or hardware port. A typical example is a configuration with a “Y”
cable connected to a single hardware port that controls two cash drawers.

215

9.4.3 DrawerOpened Property Updated in Release 1.14

216

Syntax

Remarks

Errors

See Also

DrawerOpened: boolean { read-only, access after open-enable }
If true, the drawer is open. If false, the drawer is closed.

If the capability CapStatus is false, then the device does not support status reporting, and this property
is always false.

Note: If the capability CapStatusMultiDrawerDetect is false, then a DrawerOpened value of true
indicates at least one drawer is open, and it might be the particular drawer in question in a multiple cash
drawer configuration. See CapStatusMultiDrawerDetect for further clarification.

This property is initialized and kept current while the device is enabled.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CapStatus Property, CapStatusMultiDrawerDetect Property.

Unified POS, V1.16.1

9.5

9.5.1

9.5.2

Unified POS, v1.16.1

Methods (UML operations)

openDrawer Method

Syntax

Remarks

Errors

openDrawer ():
void { raises-exception, use after open-enable }
Opens the drawer.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

waitForDrawerClose Method

Syntax

Remarks

Errors

See Also

waitForDrawerClose (beepTimeout: int32, beepFrequency: int32, beepDuration: int32,
beepDelay: int32):
void { raises-exception, use after open-enable }

Parameter Description

beepTimeout Number of milliseconds to wait before starting an alert beeper.
beepFrequency Audio frequency of the alert beeper in hertz.

beepDuration Number of milliseconds that the beep tone will be sounded.
beepDelay Number of milliseconds between the sounding of beeper tones.

Waits until the cash drawer is closed. If the drawer is still open after beep Timeout milliseconds, then the
system alert beeper is started.

Not all POS implementations may support the typical PC speaker system alert beeper. However, by
setting these parameters the application will insure that the system alert beeper will be utilized if it is
present.

Unless a UposException is thrown, this method will not return to the application while the drawer is
open. In addition, in a multiple cash drawer configuration where the CapStatusMultiDrawerDetect
property is false, this method will not return to the application while any of the drawers are open. When
all drawers are closed, the beeper is turned off.

If CapStatus is false, then the device does not support status reporting, and this method will return
immediately.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

CapStatus Property, CapStatusMultiDrawerDetect Property.

217

9.6 Events (UML interfaces)

9.6.1 DirectlOEvent

<< event >> upos::events::DirectlOEvent
EventNumber: int32 { read-only }
Data: int32 {read-write }
Obj: object {read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Cash Drawer Service to provide events to the application that are not otherwise supported by the
Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber

and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Cash Drawer
devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directlO Method.

218 Unified POS, V1.16.1

9.6.2 StatusUpdateEvent Updated in Release 1.13

<<event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application when the status of the Cash Drawer changes only while the device is enabled. A
StatusUpdateEvent may be enqueued when the device is enabled, to inform the application of the initial
or current state. However, this behavior is not required; the application must not depend upon it.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 The status reported from the Cash Drawer.

The Status property has one of the following values:
Value Meaning

CASH SUE DRAWERCLOSED

The Cash Drawer has been closed.
CASH_SUE_DRAWEROPEN

(Updated in Release 1.13) The Cash Drawer has been opened. Can only be
reported if the Cash Drawer is not locked (by Key or other locking means).

Note that Release 1.3 added Power State Reporting with additional Power
reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See description “StatusUpdateEvent" in Chapter 1.

Remarks If CapStatus is false, then the device does not support status reporting, and this event will never be
delivered to report status changes.

If CapStatusMultiDrawerDetect is false, then a CASH _SUE DRAWEROPEN value indicates that at
least one cash drawer is open and it might be the particular drawer in question for multiple cash drawer
configurations.

See Also ”Events” on page 15, CapStatus Property, CapStatusMultiDrawerDetect Property.

Unified POS, v1.16.1 219

220 Unified POS, V1.16.1

10 CAT - Credit Authorization Terminal

10.1 General

This Chapter defines the Credit Authorization Terminal device category.

10.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean { read-write 1.4 Not supported
H
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.4 open
Claimed: boolean { read-only } 1.4 open
DataCount: int32 { read-only } 1.4 Not supported
DataEventEnabled: boolean { read-write } 14 Not supported
DeviceEnabled: boolean { read-write } 1.4 open & claim
FreezeEvents: boolean { read-write } 1.4 open
OutputID: int32 { read-only } 14 open
PowerNotify: int32 { read-write } 1.4 open
PowerState: int32 { read-only } 14 open
State: int32 { read-only } 1.4 --
DeviceControlDescription: string { read-only } 1.4 -
DeviceControlVersion: int32 { read-only } 1.4 --
DeviceServiceDescription: string { read-only } 1.4 open
DeviceServiceVersion: int32 { read-only } 1.4 open
PhysicalDeviceDescription: string { read-only } 1.4 open
PhysicalDeviceName: string { read-only } 1.4 open

Unified POS, v1.16.1 221

222

Properties (Continued)

Specific

AccountNumber:

AdditionalSecurityInformation:

ApprovalCode:
AsyncMode:

Balance:

CapAdditionalSecurityInformation:

CapAuthorizeCompletion:

CapAuthorizePreSales:
CapAuthorizeRefund:
CapAuthorizeVoid:

CapAuthorizeVoidPreSales:

CapCashDeposit:
CapCenterResultCode:
CapCheckCard:
CapDailyLog:
Caplnstallments:
CapLockTerminal:
CapLogStatus:
CapPaymentDetail:
CapTaxOthers:

CapTransactionNumber:

CapTrainingMode:
CapUnlockTerminal:
CardCompanylD:
CenterResultCode:
DailyLog:
LogStatus:
PaymentCondition:
PaymentDetail:
PaymentMedia:
SequenceNumber:
Settled Amount:
SlipNumber:
TrainingMode:
TransactionNumber:
TransactionType:

Type
string

string

string

boolean

currency
boolean

boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
int32
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
string
string
string
int32
int32
string
int32
int32
currency
string
boolean
string
int32

Mutability
{ read-only }

{ read-write
H
{ read-only }

{ read-write
H
{ read-only }

{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

{ read-write
H
{ read-only }

{ read-only }
{ read-only }

{ read-write
H
{ read-only }

{ read-only }

Version
1.4
1.4

1.4
1.4

1.9
1.4

1.4
1.4
1.4
1.4
1.4
1.9
1.4
1.4
1.4
1.4
1.9
1.9
1.4
1.4
1.4
1.4
1.9
1.4
1.4
1.4
1.9
1.4
1.4
1.5
1.4
1.9
1.4
1.4
1.4
1.4

May Use After

open

open

open

open

open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open

open

Unified POS, V1.16.1

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string): 1.4
void { raises-exception }

close (): 1.4
void { raises-exception, use after open }

claim (timeout: int32): 1.4
void { raises-exception, use after open }

release (): 1.4
void { raises-exception, use after open, claim }

checkHealth (level: int32): 1.4
void { raises-exception, use after open, claim, enable }

clearInput (): Not
void { } supported

clearInputProperties (): Not

void { } supported
clearOutput (): 1.4

void { raises-exception, use after open, claim }

directIO (command: int32, inout data: int32, inout obj: object): 1.4
void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.9
void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string): 1.9
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

Specific
Name

accessDailyLog (sequenceNumber: int32, type: int32, timeout: int32): 1.4
void { raises-exception, use after open, claim, enable }

authorizeCompletion (sequenceNumber: int32, amount: currency, 1.4
taxOthers: currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

Unified POS, v1.16.1 223

224

authorizePreSales (sequenceNumber: int32, amount: currency,
taxOthers: currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

authorizeRefund (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

authorizeSales (sequenceNumber: int32, amount: currency, taxQthers:
currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

authorizeVoid (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

authorizeVoidPreSales (sequenceNumber: inf32, amount: currency,
taxOthers: currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

cashDeposit (sequenceNumber: int32, amount: currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

checkCard (sequenceNumber: int32, timeout: int32):
void { raises-exception, use after open, claim, enable }

lockTerminal ():
void { raises-exception, use after open, claim, enable }

unlockTerminal ():
void { raises-exception, use after open, claim, enable }

Events (UML interfaces)
Name Type Mutability

upos::events::DataEvent Not supported

upos::events::DirectlOEvent

EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

upos::events::ErrorEvent

ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse int32 { read-write }

upos::events::OQutputCompleteEvent

OutputID: int32 { read-only }

1.4

1.4

1.4

1.4

1.4

1.4

1.9

1.9

Version

1.4

1.4

1.4

Unified POS, V1.16.1

Events (UML interfaces)
Name Type Mutability Version

upos::events::StatusUpdateEvent 1.4
Status: int32 { read-only }

Unified POS, v1.16.1 225

10.3 General Information

The CAT programmatic name is “CAT.”

10.3.1 Description of terms

226

Authorization method
Methods defined by this device class that have the Authorize prefix in their name. These methods require
communication with an approval agency.

Authorization operation
The period from the invocation of an authorization method until the authorization is completed. This period
differs depending upon whether operating in synchronous or asynchronous mode.

Credit Authorization Terminal (CAT) Device

A CAT device typically consists of a display, keyboard, magnetic stripe card reader, receipt printing device,
and a communications device. CAT devices are predominantly used in Japan where they are required by law.
Essentially a CAT device can be considered a device that shields the encryption, message formatting, and
communication functions of an electronic funds transfer (EFT) operation from an application.

Purchase
The transaction that allows credit card or debit card payment at the POS. It is independent of payment methods
(for example, lump-sum payment, payment in installments, revolving payment, etc.).

Cancel Purchase
The transaction to request voiding a purchase on the date of purchase.

Refund Purchase

The transaction to request voiding a purchase after the date of purchase. This differs from cancel purchase in
that a cancel purchase operation can often be handled by updating the daily log at the CAT device, while the
refund purchase operation typically requires interaction with the approval agency.

Authorization Completion
The state of a purchase when the response from the approval agency is “suspended”. The purchase is later
completed after a voice approval is received from the card company.

Pre-Authorization
The transaction to reserve an estimated amount in advance of the actual purchase with customer's credit card
presentation and card entry at CAT.

Cancel Pre-Authorization
The transaction to request canceling pre-authorization.

Card Check

The transaction to perform a negative card file validation of the card presented by the customer. Typically
negative card files contain card numbers that are known to fail approval. Therefore the Card Check operation
removes the need for communication to the approval agency in some instances.

Daily log

The daily log of card transactions that have been approved by the card companies.

Payment condition

Condition of payment such as lump-sum payment, payment by bonus, payment in installments, revolving

payment, and the combination of those payments. Debit payment is also available. See the
PaymentCondition, PaymentMedia, and PaymentDetail properties for details.

Unified POS, V1.16.1

« Approval agency
The agency to decide whether or not to approve the purchase based on the card information, the amount of
purchase, and payment type. The approval agency is generally the card company.

10.3.2 Capabilities

The CAT control is capable of the following general mode of operation:

« This standard defines the application interface with the CAT control and does not depend on the CAT device
hardware implementation. Therefore, the hardware implementation of a CAT device may be as follows:

* Separate type (POS interlock)
The dedicated CAT device is externally connected to the POS (for instance, via an RS-232 connection).

* Built-in type
The hardware structure is the same as the separate type but is installed within the POS housing.

« The CAT device receives each authorization request containing a purchase amount and tax from CAT control.

+ The CAT device generally requests the user to swipe a magnetic card when it receives an authorization request
from CAT control.

« Once a magnetic card is swiped at the CAT device, the device sends the purchase amount and tax to the
approval agency using the communications device.

+ The CAT device returns the result from the approval agency to the CAT control. The returned data will be
stored in the authorization properties by the CAT control for access by applications.

Unified POS, v1.16.1 227

228

Electronic Money Device: Added in Release 1.9

The CAT Device Category is extended to support an Electronic Money Device that has the following attributes.

« A CAT device typically consists of a display, keyboard, magnetic stripe reader, receipt printing device, and a

communications device. CAT devices are predominanly used in Japan where they are required by law.
Essentially, a CAT device can be considered a device that shields the encryption message formatting and
communications functions of an Electronic Funds Transfer (EFT) operation from an application.

The Electronic Money Device receives the tendering information (amount of tender, tax, and other transaction
based information) from CAT control, and then starts the authorization processing.

When the Electronic Money Device is required, a Credit Card swipe on the CAT device is generally required
for authorization.

When a Card [Contact Type / Contactless Type] is input by the Electronic Money Device, it is formatted into
the authorization format with the transaction information and then communicated for authorization.

When the authorization is completed, the Electronic Money Device sends the settlement result to CAT control.
The settlement result is stored by the CAT control and passed back to the calling application.

The Electronic Money Device may save settlement result as DealingLog in the memory of the device. The
device may also send DealingLog to the Center by settlement processing.

Unified POS, V1.16.1

10.3.3 CAT Class Diagram

<<utility>>
UposConst

(from upos)

Updated in Release 1.9

<<exception>>
UposException
(from upos)

A
<<sends>>

<<event>> <<uses>>

ErrorEvent
(from events)

<<Interface>>
CATControl

(from upos)

.

<<ewvent>> fires
OutputCompleteEvent

(from events)

<<ewvent>>
StatusUpdateEvent

(from events)

<<event>>
DirectlOEvent fires
(from events) |<~——

& <<prop>> AccountNumber : string
B <<prop>> AdditionalSecurityInformation : string

% <<prop>> ApprovalCode : string

&<<prop>> AsyncMode : boolean

[&<<prop>> Balance : currency

&<<capability>> CapAdditionalSecurityInformation : boolean
B <<capability>> CapAuthorizeCompletion : boolean
%< <capability>> CapAuthorizePreSales : boolean
[&<<capability>> CapAuthorizeRefund : boolean

B <<capability>> CapAuthorizeVoid : boolean

B8 <<capability>> CapAuthorizeVoidPreSales : boolean
&<<capability>> CapCashDeposit : boolean

85 <<capability>> CapCenterResultCode : boolean
[&¥<<capability>> CapCheckCard : boolean

& <<capability>> CapDailyLog : int32

[<<capability>> Caplnstallments : boolean

& <<capability>> CapLockTerminal : boolean

¥ <<capability>> CaplLogStatus : boolean
&<<capability>> CapPaymentDetail : boolean

B <<capability>> CapTaxOthers : boolean

8% <<capability>> CapTransactionNumber : boolean
&<<capability>> CapTrainingMode : boolean

85 <<capability>> CapUnlock Terminal : boolean

& <<prop>> CardCompanyID : string

B <<prop>> CenterResultCode : string
[&<<prop>> DailyLog : string

& <<prop>> LogStatus : int32

B <<prop>> PaymentCondition : int32

8 <<prop>> PaymentDetail : string

B <<prop>> PaymentMedia : int32

B <<prop>> SequenceNumber : int32

&<<prop>> SettledAmount : currency

B <<prop>> SlipNumber : string

¥ <<prop>> TrainingMode : boolean

&<<prop>> TransactionNumber : string

B <<prop>> TransactionType : int32

®accessdailyLog()
®authorizeCompletion()
authorizePreSales()
WauthorizeRefund()
HauthorizeSales()
®authorizeVoid()
®authorizeVoidPreSales()
@cashDeposit()
®checkCard()

Slock Terminal()
Sunlock Terminal()

Unified POS, v1.16.1

229

10.3.4 Model

The general models for the CAT control are shown below:

 The CAT control basically follows the output device model. However, multiple methods cannot be issued for
asynchronous output; only one outstanding asynchronous request is allowed.

« The CAT control issues requests to the CAT device for different types of authorization by invoking the

230

following methods.

Function Method name Corresponding Cap property
Purchase authorizeSales None

Cancel Purchase authorizeVoid CapAuthorizeVoid

Refund Purchase authorizeRefund CapAuthorizeRefund
Authorization Completion authorizeCompletion CapAuthorizeCompletion
Pre-Authorization authorizePreSales CapAuthorizePreSales
Cancel Pre-Authorization authorizeVoidPreSales CapAuthorizeVoidPreSales

the following methods.

« The CAT control issues requests to the CAT device for special processing local to the CAT device by invoking

Function Method name Corresponding Cap property
Card Check checkCard CapCheckCard
Daily log accessDailyLog CapDailyLog

successfully completes:

« The CAT control stores the authorization results in the following properties when an authorization operation

Description

Property Name

Corresponding Cap Property

Credit Account number

AccountNumber

None

Additional information

AdditionalSecurityInformation

CapAdditionalSecurityInformation

Approval code ApprovalCode None

Card company ID CardCompanylID None

gggfcf’mm the approval CenterResultCode CapCenterResultCode
Payment condition PaymentCondition None

Payment detail PaymentDetail CapPaymentDetail
Sequence number SequenceNumber None

Slip number SlipNumber None

Center transaction number TransactionNumber CapTransactionNumber
Transaction type TransactionType None

The accessDailyLog method sets

the following property

Description

Property Name

Corresponding Cap Property

Daily log

DailyLog

CapDailyLog

Unified POS, V1.16.1

Electronic Money Device:

Added in Release 1.9

+ The CAT Control requires the Electronic Money Device to track each settlement and closing in the

DealingLog.
Function Method name Corresponding Cap property
Settlement authorizeSales None
Charge cashDeposit CapCashDeposit
Inquiry for the balances checkCard CapCheckCard
Closing DealingLog accessDailyLog CapDailyLog
Setting security lock lockTerminal CapLockTerminal
Releasing security lock unlockTerminal CapUnlockTerminal

+ When the CAT Control receives the settlement results from the Electronic Money Device it stores these results

in the following properties:

Description Property Name Corresponding Cap Property
Card ID AccountNumber None

Additional information AdditionalSecurityInformation CapAdditionalSecurityInformation
Approval code ApprovalCode None

Settled amount Settled Amount None

Balance Balance None

Sequence number SequenceNumber None

Transaction type TransactionType None

The accessDailyLog method sets

the following property

Description

Property Name

Corresponding Cap Property

DealingLog

DailyLog

CapDailyLog

 Sequence numbers are used to validate that the properties set at completion of a method are indeed associated
with the completed method. An incoming SequenceNumber argument for each method is compared with the
resulting SequenceNumber property after the operation associated with the method has completed. If the
numbers do not match, or if an application fails to identify the number, there is no guarantee that the values of
the properties listed in the two tables correspond to the completed method.

« The AsyncMode property determines if methods are run synchronously or asynchronously.

« When AsyncMode is false, methods will be executed synchronously and their corresponding properties will
contain data when the method returns.

« When AsyncMode is true, methods will return immediately to the application. When the operation associated
with the method completes, each corresponding property will be updated by the CAT control prior to an
OutputCompleteEvent. When AsyncMode is true, methods cannot be issued immediately after issuing a
prior method; only one outstanding asynchronous method is allowed at a time. However, clearOutput is an
exception because its purpose is to cancel an outstanding asynchronous method. The methods supported and
their corresponding properties vary depending on the CAT control implementation. Applications should verify

Unified POS, v1.16.1 231

232

that particular Cap properties are supported before utilizing the capability dependent methods and properties.

Results of synchronous calls to methods and writable properties will be stored in ErrorCode. Results of
asynchronous processing will be indicated by an OutputCompleteEvent or returned in the Errorcode
argument of an ErrorEvent. If ErrorCode or the ErrorCode argument is E EXTENDED, detailed device
specific information may be stored to ErrorCodeExtended in synchronous mode and stored to ErrorEvent
argument ErrorCodeExtended in asynchronous mode. The error code from the approval agency will be stored
in CenterResultCode in either mode.

Training mode occurs continually when TrainingMode is true. To discontinue training mode, set
TrainingMode to false.

An outstanding asynchronous method can be canceled via the clearQutput method.

The Daily log can be collected by the accessDailyLog method. Collection will be run either synchronously or
asynchronously according to the value of AsyncMode.

Following is the general usage sequence of the CAT control.
Synchronous Mode:

- open
- claim

- setDeviceEnabled (true)

- Definition of the argument SequenceNumber

- Set PaymentMedia Added in Version 1.5
- authorizeSales()

- Check UposException of the authorizeSales method

- Verify that the SequenceNumber property matches the value of the authorizeSales()
sequenceNumber argument

- Access the properties set by authorizeSales()
- setDeviceEnabled (false)

- release

- Close

Asynchronous Mode:

- open
- claim

- setDeviceEnabled (true)

- setAsyncMode (true)

- Definition of the argument SequenceNumber

- Set PaymentMedia Added in Version 1.5

- authorizeSales()

Unified POS, V1.16.1

- Check UposException of the authorizeSales method
- Wait for QutputCompleteEvent
- Check the argument ErrorCode

- Verify that the SequenceNumber property matches the value of the
authorizeSales() SequenceNumber argument

- Access the properties set by authorizeSales()
- setDeviceEnabled (false)
- release

- close
10.3.5 Device Sharing

The CAT is an exclusive-use device, as follows:
« After opening the device, properties are readable.
« The application must claim the device before enabling it.
« The application must claim and enable the device before calling methods that manipulate the device.

« See the “Summary” table for precise usage prerequisites.

Unified POS, v1.16.1 233

10.3.6 CAT Sequence Diagram Added in Release 1.7

This sequence diagram shows the typical synchronous usage of the AuthorizeSales process of the CAT device.

:Client App :CAT :CAT Service :CAT Hardware

i open(logicalName) i |

open(logicalName) |

T claim(timeout) |

claim(timeout)

A

setDeviceEnabIed(true)T

setDeviceEnabled(true)

s ?’PaymentMedia(mediaTyﬁe)

setPaymentMedia()

SequenceNumber

AuthorizeSaIesI(sequenceNumber, amouv|1t, tax, timeout)

Definition of the argumerﬁ

B

=1

AuthorizeSales(sequenceNumber, amount, tax, timeout)

send commands to
physical CAT

After human actor swipes the card,
the device sends the purchase amount
and tax to approval agency using the
communications device.

|_|_l

—

1
]
Set properties on |
return from successful i
1
1

authorization.

on successful retur

Check properties ﬁ T
n. |
|

234 Unified POS, V1.16.1

10.3.7 CAT State Diagram

The following diagram depicts the CAT states.

close()
open() claim()
H Closed G Opened Claimed]
release()
release()

Iset DeviceEnabled (false) clearOutput

Iset

Logging Enabled
Processing

accessDailyLog(

vViceEnabled (true)

Clear Output
Processing

Method processing

Done delivering even authorizeXyz(),
checkCard()

authorizeXyz(), f \
Syn:nhrgnous checkCard() Async Mode
ode

ErrorEvent OutputCompleteEvent
Processing Processing

- J

Unified POS, v1.16.1

235

10.4 Properties (UML attributes)

10.4.1 AccountNumber Property Updated in Release 1.9

Syntax AccountNumber: string { read-only, access after open }

Remarks This property is initialized to an empty string by the open method and is updated when an authorization
operation successfully completes.

Electronic Money Device: Credit Card number of the settled account.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

10.4.2 AdditionalSecuritylnformation Property Updated in Release 1.7

Syntax AdditionalSecurityInformation: string { read-write, access after open }1

Remarks An application can send data to the CAT device by setting this property before issuing an authorization
method. Also, data obtained from the CAT device and not stored in any other property as the result of an
authorization operation (for example, the account code for a loyalty program) can be provided to an
application by storing it in this property. Since the data stored here is device specific, this should not be
used for any development that requires portability.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also CapAdditionalSecurityInformation Property.
10.4.3 ApprovalCode Property Updated in Release 1.9

Syntax ApprovalCode: string { read-only, access after open }

Remarks This property is initialized to an empty string by the open method and is updated when an authorization
operation successfully completes.
Electronic Money Device: Approval Code for the settled account.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

1. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion property. See
BinaryConversion property in Annex A.

236 Unified POS, V1.16.1

10.4.4 AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, the authorization methods will run asynchronously.
If false, the authorization methods will run synchronously.
This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also Authorization Methods.

10.4.5 Balance Property Added in Release 1.9

Syntax Balance: currency { read-only, access after open }

Remarks Electronic Money Device: The balance of Credit Card.

Errors A UposException may be thrown when this property is accessed. For further information, see

“Errors” on page 16.

10.4.6 CapAdditionalSecuritylnformation Property

Syntax

Remarks

Errors

See Also

CapAdditionalSecurityInformation: boolean { read-only, access after open }
If true, the AdditionalSecurityInformation property may be utilized; otherwise it is false.

This property is initialized by open method.
A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

AdditionalSecurityInformation Property.

10.4.7 CapAuthorizeCompletion Property

Syntax

Remarks

Errors

See Also

CapAuthorizeCompletion: boolean { read-only, access after open }

If true, the authorizeCompletion method has been implemented; otherwise it is false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

authorizeCompletion Method.

10.4.8 CapAuthorizePreSales Property

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

CapAuthorizePreSales: boolean { read-only, access after open }

If true, the authorizePreSales method has been implemented; otherwise it is false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

authorizePreSales Method.

237

10.4.9 CapAuthorizeRefund Property

Syntax CapAuthorizeRefund: boolean { read-only, access after open }

Remarks If true, the authorizeRefund method has been implemented; otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also authorizeRefund Method.
10.4.10 CapAuthorizeVoid Property

Syntax CapAuthorizeVoid: boolean { read-only, access after open }
Remarks If true, the authorizeVoid method has been implemented; otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also authorizeVoid Method.
10.4.11 CapAuthorizeVoidPreSales Property

Syntax CapAuthorizeVoidPreSales: boolean { read-only, access after open }
Remarks If true, the authorizeVoidPreSales method has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also authorizeVoidPreSales Method.

238 Unified POS, V1.16.1

10.4.12 CapCashDeposit Property Added in Release 1.9

Syntax
Remarks

Errors

See Also

CapCashDeposit: boolean { read-only, access after open }

Electronic Money Device: Show the device has charged method by cashDeposit method or not. If true,
the cashDeposit method is implemented, otherwise false.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

cashDeposit Method.

10.4.13 CapCenterResultCode Property

Syntax
Remarks

Errors

See Also

CapCenterResultCode: boolean { read-only, access after open }
If true, the CenterResultCode property has been implemented; otherwise it is false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CenterResultCode Property.

10.4.14 CapCheckCard Property

Syntax
Remarks

Errors

See Also

CapCheckCard: boolean { read-only, access after open }
If true, the checkCard method has been implemented; otherwise it is false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

checkCard Method.

10.4.15 CapDailyLog Property

Syntax
Remarks

Errors

See Also

Unified POS, v1.16.1

CapDailyLog: int32 { read-only, access after open }
Shows the daily log ability of the device.
Value Meaning
CAT DL NONE The CAT device does not have the daily log functions.
CAT DL REPORTING The CAT device only has an intermediate total function which reads
the daily log but does not erase the log.
CAT DL SETTLEMENT The CAT device only has the “final total” and “erase daily log” functions.

CAT_DL REPORTING SETTLEMENT
The CAT device has both the intermediate total function and the final
total and erase daily log function.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

DailyLog Property, accessDailyLog Method.

239

10.4.16 Caplnstallments Property

Syntax Caplnstallments: boolean { read-only, access after open }

Remarks If true, the item “Installments” which is stored in the DailyLog property as the result of accessDailyLog
will be provided; otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also DailyLog Property.

10.4.17 CapLockTerminal Property Added in Release 1.9

Syntax CapLockTerminal: boolean { read-only, access after open }

Remarks Electronic Money Device: If true, the device has a security lock and the device can set the lock using
the lockTerminal method, otherwise false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also lockTerminal Method.

10.4.18 CapLogStatus Property Added in Release 1.9

Syntax CapLogStatus: boolean { read-only, access after open }

Remarks Electronic Money Device: If true, the device can notify the condition of the log by the LogStatus
property, otherwise false. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also LogStatus Property.

10.4.19 CapPaymentDetail Property

Syntax
Remarks

Errors

See Also

240

CapPaymentDetail: boolean { read-only, access after open }
If true, the device can notify the condition of the log by the LogStatus property, otherwise false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

PaymentDetail Property.

Unified POS, V1.16.1

10.4.20 CapTaxOthers Property

Syntax

Remarks

Errors

See Also

CapTaxOthers: boolean { read-only, access after open }

If true, the item “TaxOthers” which is stored in the DailyLog property as the result of access DailyLog

will be provided; otherwise it is false.

Note that this property is not related to the “TaxOthers” argument used with the authorization methods.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

DailyLog Property.

10.4.21 CapTransactionNumber Property

Syntax

Remarks

Errors

See Also

CapTransactionNumber: boolean { read-only, access after open }
If true, the TransactionNumber property has been implemented; otherwise it is false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

TransactionNumber Property.

10.4.22 CapTrainingMode Property

Syntax CapTrainingMode: boolean { read-only, access after open }

Remarks If true, the TrainingMode property has been implemented; otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also TrainingMode Property.

10.4.23 CapUnlockTerminal Property Added in Release 1.9

Syntax CapUnlockTerminal: boolean { read-only, access after open }

Remarks Electoric Money Device: If true, the device has a security lock and the device can release the lock using
the unlockTerminal method, otherwise false. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also unlockTerminal Method.

Unified POS, v1.16.1

241

10.4.24 CardCompanylID Property

Syntax

Remarks

Errors

CardCompanylD: string { read-only, access after open }

This property is updated when an authorization operation successfully completes. It shows credit card
company ID.

The length of the ID string varies depending upon the CAT device.
This property is initialized to an empty string by the open method

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

10.4.25 CenterResultCode Property

Syntax

Remarks

Errors

242

CenterResultCode: string { read-only, access after open }
Contains the code from the approval agency. Check the approval agency for the actual codes to be stored.

This property is initialized to an empty string by the open method and is updated when an authorization
operation successfully completes

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

Unified POS, V1.16.1

10.4.26 DailyLog Property

Syntax DailyLog: string { read-only, access after open }

Remarks Stores the result of the accessDailyLog method. The data is delimited by CR(13 decimal)+LF(10
decimal) for each transaction and is stored in ASCII code. The detailed data of each transaction is comma
separated [i.e., delimited by “,” (44)]. The details
of one transaction are shown as follows:

No Item Property Corresponding Cap Property
1 Card company ID CardCompanyID None
2 Transaction type TransactionType None
Transaction date None None
Note 1)
4 Transaction number | TransactionNumber CapTransactionNumber
Note 3)
5 Payment condition PaymentCondition None
6 Slip number SlipNumber None
7 Approval code ApprovalCode None
8 Purchase date None None
Note 5)
9 Account number AccountNumber None
10 Amount The argument Amount of the None
Note 4) authorization method or the amount
actually approved.
11 Tax/others The argument TaxOthers of the CapTaxOthers
Note 3) authorization method.
12 Installments None Caplnstallments
Note 3)
13 Additional data AdditionalSecurityInformation CapAdditionalSecurity
Note 2) Information

Unified POS, v1.16.1

Notes from the previous table:

1) Format
Item Format
Transaction date YYYYMMDDHHMMSS
Purchase date MMDD

Some CAT devices may not support seconds by the internal clock. In that case, the seconds field of
the transaction date is filled with “00.”

2) Additional data

The area where the CAT device stores the vendor specific data. This enables an application to
receive data other than that defined in this specification. The data stored here is vendor specific and
should not be used for development which places an importance on portability.

243

Errors

See Also

3) If the corresponding Cap property is false

Cap property is set to false if the CAT device provides no corresponding data. In such instances, the
item cannot be displayed so the next comma delimiter immediately follows. For example, if

“Amount” is 1234 yen and “Tax/others” is missing and “Installments™ is 2, the description will be
“1234,,2.” This makes the description independent of Cap property and makes the position of each

data item consistent.

4) Amount

Amount always includes “Tax/others” even if item 11 is present.

5) Purchase date

The date manually entered for the purchase transaction after approval.

Example An example of daily log content is shown below.

Item Description Meaning

Card company 1D 102 JCB

Transaction type CAT TRANSACTION_ SALES Purchase
Transaction date 19980116134530 1/16/199813:45:30
Transaction number 123456 123456

Payment condition

CAT_PAYMENT INSTALLME
NT 1

Installment 1

Slip number 12345 12345

Approval code 0123456 0123456

Purchase date None None

Account number 1234123412341234 1234-1234-1234-1234
Amount 12345 12345JPY

Tax/others None None

Number of payments 2 2

Additional data 12345678 Specific information

The actual data stored in DailyLog will be as follows:

102,10,19980116134530,123456,61,12345,0123456,,12341234123
41234,12345,,2,12345678[CR][LF]

Electronic Money Device: Setting DealingL.og which is a result of the Electronic Money Device which
does not have the communication module for closing processing done closing processing. It may be the

device which is enciphered DealingLog to everything except for Center.

A UposException may be thrown when this property is accessed. For further information, see “Errors”

on page 16.

CapDailyLog Property, accessDailyLog Method.

Unified POS, V1.16.1

10.4.27 LogStatus Property Added in Release 1.9

Syntax LogStatus: int32 { read-only, access after open }
Remarks Electronic Money Device: This property shows the status of the DealingLog of the device.
Value Meaning
CAT LOGSTATUS OK DealingLog has enough capacity.
CAT LOGSTATUS NEARFULL DealingLog is nearly full.
CAT LOGSTATUS FULL DealingLog is full.
This property is initialized by the open method and kept current while the device is enabled.
If DealingLog becomes full, depending on the device, the settlement processing may not be able to
operate.
Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.
See Also StatusUpdateEvent Event.
10.4.28 PaymentCondition Property Updated in Release 1.9
Syntax PaymentCondition: int32 { read-only, access after open }
Remarks Holds the payment condition of the most recent successful authorization operation.
This property will be set to one of the following values. See PaymentDetail for the detailed payment
string that correlates to the following PaymentCondition values.
Value Meaning
CAT_PAYMENT LUMP Lump-sum
CAT PAYMENT BONUS 1 Bonus 1
CAT PAYMENT BONUS 2 Bonus 2
CAT_PAYMENT BONUS_3 Bonus 3
CAT PAYMENT BONUS 4 Bonus 4
CAT PAYMENT BONUS 5 Bonus 5
CAT PAYMENT INSTALLMENT 1 Installment 1
CAT PAYMENT INSTALLMENT 2 Installment 2
CAT PAYMENT INSTALLMENT 3 Installment 3
CAT_PAYMENT BONUS COMBINATION 1
Bonus combination payments 1
CAT PAYMENT BONUS COMBINATION 2
Bonus combination payments 2
CAT PAYMENT BONUS COMBINATION 3
Bonus combination payments 3
CAT_PAYMENT BONUS COMBINATION 4
Bonus combination payments 4
CAT PAYMENT REVOLVING Revolving
CAT PAYMENT DEBIT Debit card
CAT PAYMENT ELECTRONIC MONEY Electronic Money
Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.
See Also PaymentDetail Property.

Unified POS, v1.16.1

245

10.4.29 PaymentDetail Property Updated in Release 1.9

Syntax PaymentDetail: string { read-only, access after open }

Remarks Contains payment condition details as the result of an authorization operation. Payment details vary
depending on the value of PaymentCondition. The data will be stored as comma separated ASCII
code. An empty string means that no data is stored and represents a string with zero length data.

PaymentCondition PaymentDetail

CAT PAYMENT LUMP An empty string

CAT PAYMENT BONUS 1 An empty string

CAT PAYMENT BONUS 2 Number of bonus payments

CAT PAYMENT BONUS 3 15t bonus month

CAT PAYMENT BONUS 4* Number of bonus payments, 1 bonus month, 2" bo-
nus month, 3" bonus month, 4% ponus month, 5th bo-
nus month, 6 bonus month

CAT PAYMENT BONUS 5% Number of bonus payments, 15 bonus month, 1% bo-

nus amount, 2™ bonus month, 2™ bonus amount, 3™

bonus month, 3" bonus amount, 4" bonus month, 4th
bonus amount, 5t bonus month, 5t bonus amount, oth
bonus month, 6™ bonus amount

CAT PAYMENT INSTALLMENT 1 15 billing month, Number of payments

CAT PAYMENT_INSTALLMENT 2* 1% billing month, Number of payments, 15" amount,
2" amount, 3™ amount, 4™ amount, 5™ amount, 6
amount

CAT PAYMENT INSTALLMENT 3 15t billing month, Number of payments, 15 amount

CAT PAYMENT BONUS_COMBINATION 1 13 billing month, Number of payments
CAT PAYMENT BONUS COMBINATION 2 15 billing month, Number of payments, bonus amount

CAT PAYMENT BONUS COMBINATION 3* | 1%billing month, Number of payments, number of bo-
nus payments, 1% bonus month, 2" bonus month, 3™
bonus month, 4™ bonus month, 5™ bonus month, 6™
bonus month

CAT PAYMENT BONUS COMBINATION 4* | 1%billing month, Number of payments, number of bo-
nus payments, 1% bonus month, 1% bonus amount, 2"
bonus month, 2" bonus amount, 3™ bonus month, 3"
bonus amount, 4 ponus month, 4™ honus amount, sth
bonus month, 5t bonus amount, 6 bonus month, 6th
bonus amount

CAT PAYMENT_REVOLVING An empty string
CAT PAYMENT DEBIT An empty string
CAT_PAYMENT_ELECTRONIC_MONEY An empty string

*Maximum 6 installments

246 Unified POS, V1.16.1

The payment types and names vary depending on the CAT device. The following are the payment types and

terms available for CAT devices. Note that there are some differences between UnifiedPOS terms and those used
by the CAT devices. The goal of this table is to synchronize these terms.

o o CAT CAT G-CAT JET-S SG-CAT Master-T
S E Name (Old CAT)
Q <
S i Credit Not Not JCB VISA MASTER
g ;g Card specified specified
£ E
7 S .
= g 2 UnifiedPOS Card Company Terms
s 55 5 Term
© M v
Lump- | (None) 10 Lump-sum |Lump-sum |Lump-sum |Lump-sum |Lump-sum |Lump-sum
sum
Bonus | (None) 21 Bonus 1 Bonus 1 Bonus 1 Bonus 1 Bonus 1 Bonus 1
Numberof | 22 Bonus 2 Bonus 2 Bonus 2 Bonus 2 Bonus 2 Bonus 2
bonus
payments
Bonus 23 Bonus 3 Bonus 3 Does not ex- | Does not ex- | Bonus 3 Bonus 3
month(s) ist. ist.
Numberof | 24 Bonus 4 Bonus 4 Bonus 3 Bonus 3 Bonus 4 Bonus 4
bonus (Up to two
payments entries for
Bonus bonus
month (1) month)
Bonus
month (2)
Bonus
month (3)
Bonus
month (4)
Bonus
month (5)
Bonus
month (6)

Unified POS, v1.16.1

247

248

Number of
bonus
payments

Bonus
month (1)

Bonus
amount

(M

Bonus
month (2)

Bonus
amount(2)

Bonus
month (3)

Bonus
amount(3)

Bonus
month (4)

Bonus
amount(4)

Bonus
month (5)

Bonus
amount(5)

Bonus
month (6)

Bonus
amount(6)

25

Bonus 5

Bonus 5

Does not
exist.

Does not
exist.

Does not
exist.

Bonus 5

Installm
ent

Payment
start
month

Number of
payments

61

Installment 1

Installment 1

Installment 1

Installment 1

Installment 1

Installment 1

Unified POS, V1.16.1

Payment
start
month

Number of
payments

Install-
ment
amount(1)

Install-
ment
amount(2)

Install-
ment
amount(3)

Install-
ment
amount(4)

Install-
ment
amount(5)

Install-
ment
amount(6)

62

Installment 2

Installment 2

Does not
exist.

Does not
exist.

Does not
exist.

Does not
exist.

Payment
start
month

Number of
payments

Initial
amount

63

Installment 3

Installment 3

Installment 2

Installment 2

Does not
exist.

Installment 2

Combi-
nation

Payment
start
month

Number of
payments

31

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Payment
start
month

Number of
payments

Bonus
amount

32

Bonus Com-
bination 2

Bonus Com-
bination 2

Does not
exist.

Does not
exist.

Bonus Com-
bination 2

Bonus Com-
bination 2

Unified POS, v1.16.1

249

250

Payment
start
month

Number of
payments

Number of
bonus
payments

Bonus
month (1)

Bonus
month (2)

Bonus
month (3)

Bonus
month (4)

Bonus
month (5)

Bonus
month (6)

33

Bonus Com-
bination 3

Bonus Com-
bination 3

Does not
exist.

Does not
exist.

Bonus Com-
bination 3
(Up to two
entries for
bonus
month)

Bonus Com-
bination 3

Unified POS, V1.16.1

Payment
start
month

Number of
payments

Numberof
bonus
payments

Bonus
month (1)

Bonus
amount(1)

Bonus
month (2)

Bonus
amount(2)

Bonus
month (3)

Bonus
amount(3)

Bonus
month (4)

Bonus
amount(4)

Bonus
month (5)

Bonus
amount(5)

Bonus
month (6)

Bonus
amount(6)

34

Bonus Com-
bination 4

Bonus Com-
bination 4

Bonus Com-
bination 2

Bonus Com-
bination 2

Bonus Com-
bination 4

(Up to two
entries for
bonus month
and amount)

Bonus Com-
bination 4

Revolvi
ng

(None)

80

Revolving

Revolving

Revolving

Revolving

Revolving

Revolving

Debit

(None)

110

Debit

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

Errors

See Also

A UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

CapPaymentDetail Property.

Unified POS, v1.16.1

251

10.4.30 PaymentMedia Property Updated in Release 1.9

Syntax
Remarks

Errors

PaymentMedia: int32 { read-write, access after open }
Holds the payment media type that the approval method should approve.

The application sets this property to one of the following values before issuing an approval method call.
“None specified” means that payment media will be determined by the CAT device, not by the POS
application.

Value Meaning

CAT MEDIA UNSPECIFIED None specified.
CAT MEDIA CREDIT Credit card.
CAT MEDIA DEBIT Debit card.

CAT _MEDIA ELECTRONIC MONEY
Electronic Money.

This property is initialized to CAT MEDIA UNSPECIFIED by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

10.4.31 SequenceNumber Property

Syntax SequenceNumber: int32 { read-only, access after open }

Remarks Stores a “sequence number” as the result of each method call. This number needs to be checked by an
application to see if it matches with the argument sequenceNumber of the originating method.
Ifthe “sequence number” returned from the CAT device is not numeric, the CAT control set this property
to zero. This property is initialized to zero by the open method and is updated when an authorization
operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

10.4.32 SettledAmount Property Added in Release 1.9

Syntax Settled Amount: currency { read-only, access after open }

Remarks Electronic Money Device: Setting real amount of the settlement.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also authorizeSales Method, cashDeposit Method.

10.4.33 SlipNumber Property Updated in Release 1.7

Syntax SlipNumber: string { read-only, access after open }

Remarks Stores a “slip number” as the result of each authorization operation.
This property is initialized to an empty string by the open method and is updated when an authorization
operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further information, see

252

“Errors” on page 16.

Unified POS, V1.16.1

10.4.34 TrainingMode Property

Syntax

Remarks

Errors

TrainingMode: boolean { read-write, access after open }
If true, each operation will be run in training mode; otherwise each operation will be run in normal mode.

TrainingMode needs to be explicitly set to false by an application to exit from training mode, because
it will not automatically be set to false after the completion of an operation.

This property will be initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL CapTrainingMode is false.

10.4.35 TransactionNumber Property

Syntax TransactionNumber: string { read-only, access after open }
Remarks Stores a “transaction number” as the result of each authorization operation.
This property is initialized to an empty string by the open method and is updated when an authorization
operation successfully completes.
Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.
10.4.36 TransactionType Property Updated in Release 1.10
Syntax TransactionType: int32 { read-only, access after open }
Remarks Stores a “transaction type” as the result of each authorization operation.
This property is initialized to zero by the open method and is updated when an authorization operation
successfully completes.
This property will be set to one of the following values.
Value Meaning
CAT TRANSACTION_SALES Sales
CAT_TRANSACTION_ VOID Cancellation
CAT _TRANSACTION REFUND Refund purchase
CAT _TRANSACTION COMPLETION Purchase after approval
CAT TRANSACTION PRESALES Pre-authorization
CAT _TRANSACTION CHECKCARD Card Check
CAT TRANSACTION VOIDPRESALES Cancel pre-authorization approval
CAT_TRANSACTION CASHDEPOSIT Charge
Errors A UposException may be thrown when this property is accessed. For further information, see

Unified POS, v1.16.1

“Errors” on page 16.

253

10.5 Methods (UML operations)

10.5.1 accessDailyLog Method Updated in Release 1.9
Syntax accessDailyLog (sequenceNumber: int32, type: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }
Parameter Description
sequenceNumber The sequence number to get daily log.
type Specify whether the daily log is intermediate total or final total and erase.
timeout The maximum waiting time (in milliseconds) until the response is received

from the CAT device. FOREVER (-1), 0 and positive values can be specified.

Remarks Gets daily log from CAT.
Daily log will be retrieved and stored in DailyLog as specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives response
from the CAT.

Application must specify one of the following values for #ype for daily log type (either intermediate total
or adjustment). Legal values depend upon the CapDailyLog value.

Electronic Money Device: Gets the DealingLog from the Electronic Money Device to send to the
Center. If the Electronic Money Device has communication capabilities, the DealingLog will be sent
from the Electronic Money Device to the Center and nothing is stored in the DailyLog. Otherwise, the
DealingLog is stored in the DailyLog Property.

Value Meaning

CAT DL REPORTING Intermediate total.

CAT DL SETTLEMENT Final total and erase.
Electronic Money Device: Closing DealingLog of the Electronic
Money device.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid or unsupported #ype or timeout parameter was specified, or
CapDailyLog is false.

E TIMEOUT No response was received from CAT during the specified timeout time in
milliseconds.

E EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

See Also CapDailyLog Property, DailyLog Property.

254 Unified POS, V1.16.1

10.5.2 authorizeCompletion Method

Syntax authorizeCompletion (sequenceNumber: int32, amount: currency, taxOthers: currency, timeout:

int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the response is received

from the CAT device. FOREVER (-1), 0 and positive values can be specified.
Remarks Purchase after approval is intended.
Sales after approval for amount and taxOthers is intended as the approval specified by sequenceNumber .

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives response
from the CAT.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified, or
CapAuthorizeCompletion is false.

E TIMEOUT No response was received from CAT during the specified timeout time in
milliseconds.

E EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

See Also CapAuthorizeCompletion Property.

Unified POS, v1.16.1 255

10.5.3 authorizePreSales Method

Syntax authorizePreSales (sequenceNumber: int32, amount: currency,
taxQOthers: currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the response is received

from the CAT device. FOREVER (-1), 0 and positive values can be specified.
Remarks Makes a pre-authorization.
Pre-authorization for amount and taxOthers is made as the approval specified by sequenceNumber-.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives response
from the CAT.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified, or CapAuthorizePreSales is
false.

E TIMEOUT No response was received from CAT during the specified timeout time in
milliseconds.

E _EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

See Also CapAuthorizePreSales Property.

256 Unified POS, V1.16.1

10.5.4 authorizeRefund Method

Syntax authorizeRefund (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the response is received

from the CAT device. FOREVER (-1), 0 and positive values can be specified.
Remarks Refund purchase approval is intended.

Refund purchase approval for amount and taxOthers is intended as the approval specified by
sequenceNumber .

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives response
from the CAT.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

YValue Meaning

E ILLEGAL Invalid timeout parameter was specified, or CapAuthorizeRefund is false.

E TIMEOUT No response was received from CAT during the specified timeout time in
milliseconds.

E EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

See Also CapAuthorizeRefund Property.

Unified POS, v1.16.1 257

10.5.5 authorizeSales Method

258

Syntax

Remarks

Errors

authorizeSales (sequenceNumber: int32, amount: currency, taxOthers:

currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the response is received

from the CAT device. FOREVER (-1), 0 and positive values can be specified.

Normal purchase approval is intended.

Normal purchase approval for amount and taxOthers is intended as the approval specified by

sequenceNumber .

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives response

from the CAT.

A UposException may be thrown when this method is invoked. For further information, see

“Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified.

E TIMEOUT No response was received from CAT during the specified timeout time in
milliseconds.

E EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

Unified POS, V1.16.1

10.5.6 authorizeVoid Method

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

authorizeVoid (sequenceNumber: int32, amount: currency, taxOthers:

currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the response is received

from the CAT device. FOREVER (-1), 0 and positive values can be specified.

Purchase cancellation approval is intended.

Cancellation approval for amount and taxOthers is intended as the approval specified by

sequenceNumber .

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives response

from the CAT.

A UposException may be thrown when this method is invoked. For further information, see

“Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified, or CapAuthorizeVoid is false.

E TIMEOUT No response was received from CAT during the specified timeout time in
milliseconds.

E EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

CapAuthorizeVoid Property.

259

10.5.7 authorizeVoidPreSales Method

Syntax authorizeVoidPreSales (sequenceNumber: int32, amount: currency,
taxOthers: currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the response is received

from the CAT device. FOREVER (-1), 0 and positive values can be specified.
Remarks Pre-authorization cancellation approval is intended.

Pre-authorization cancellation approval for amount and taxOthers is intended as the approval specified
by sequenceNumber-.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives response
from the CAT.

Normal cancellation could be used for CAT control and CAT devices which have not implemented the
pre-authorization approval cancellation. Refer to the documentation supplied with CAT device and / or
CAT control.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified, or CapAuthorizeVoidPreSales
is false.

E TIMEOUT No response was received from CAT during the specified timeout time in
milliseconds.

E EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

See Also CapAuthorizeVoidPreSales Property.

260 Unified POS, V1.16.1

10.5.8 cashDeposit Method

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

Added in Release 1.9

cashDeposit (sequenceNumber: int32, amount: currency, timeout: int32):

void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for charge.

amount Amount of money for charge.

timeout The maximum waiting time (in milliseconds) until the response is received
from the CAT device. FOREVER (-1), 0 and positive values can be specified.

Chargings.

The amount is stored on the Electronic Money Device.

If timeout is FOREVER(-1), a timeout will not occur and the process will wait forever until the Electronic

Money Device responds.

A UposException may be thrown when this method is invoked. For further information, see

“Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

YValue Meaning

E ILLEGAL Invalid timeout parameter was specified, or CapCashDeposit is false.

E TIMEOUT No response was received from CAT during the specified timeout time in
milliseconds.

E EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

CapCashDeposit Property.

261

10.5.9 checkCard Method Updated in Release 1.9

262

Syntax

Remarks

Errors

See Also

checkCard (sequenceNumber: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number for approval.
timeout The maximum waiting time (in milliseconds) until the response is received

from the CAT device. FOREVER (-1), 0 and positive values can be specified.
Card Check is intended.
Card Check will be made as specified by sequenceNumber.

Electronic Money Device:
The check of the Balance will be done by the specified sequenceNumber. The Balance will be stored in
the Balance

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives response
from the CAT.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified, or CapCheckCard is false.

E TIMEOUT No response was received from CAT during the specified timeout time in
milliseconds.

E EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

Balance Property, CapCheckCard Property.

Unified POS, V1.16.1

10.5.10 lockTerminal Method Added in Release 1.9

Syntax

Remarks

Errors

See Also

lockTerminal ():
void { raises-exception, use after open-claim-enable }

Sets the security lock. When locked, the Electronic Money Device cannot accept any commands.

AdditionalSecurityInformation property is used when key information is required.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E ILLEGAL The Electronic Money Device does not have a security lock function.

E EXTENDED The detail code has been stored in ErrorCodeExtended.
E BUSY The CAT device cannot accept any commands now.

CapLockTerminal Property.

10.5.11 unlockTerminal Method Added in Release 1.9

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

unlockTerminal ():
void { raises-exception, use after open-claim-enable }

Releases the security lock.
AdditionalSecurityInformation property is used when key information is required.

A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

YValue Meaning
E ILLEGAL The Electronic Money Device does not have a security lock function.

E EXTENDED The detail code has been stored in ErrorCodeExtended.
E BUSY The CAT device cannot accept any commands now.

CapUnlockTerminal Property.

263

10.6 Events (UML interfaces)

10.6.1 DirectlOEvent

<< event >> upos::events::DirectlOEvent

EventNumber: int32 {read-only }
Data: int32 { read-write }
Obj: object {read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific CAT Service to provide events to the application that are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attribute Type Description

EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and the
Service. This attribute is settable.

Obj object Additional data whose usage varies by the EventNumber and the Service.

This attribute is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s CAT devices
which may not have any knowledge of the Service’s need for this event.

See Also ”Events” on page 15 directlO Method

10.6.2 ErrorEvent

264

<< event >> upos::events::ErrorEvent

Updated in Release 1.9

ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a CAT error has been detected and suitable response by the application is
necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type Description

ErrorCode int32 The code which caused the error event. See ErrorCode for the
values.

ErrorCodeExtended int32 The extended code which caused the error event. See
ErrorCodeExtended below for values.

ErrorLocus int32 EL_OUTPUT is specified. An error occurred during asynchronous
action.

ErrorResponse int32 Pointer to the error event response. See ErrorResponse below for

values.

Unified POS, V1.16.1

Remarks

See Also

Unified POS, v1.16.1

If ErrorCode is E_ EXTENDED, ErrorCodeExtended will be set to one of the following values:

Value Meaning

ECAT _CENTERERROR
An error was returned from the approval agency. The detail error code is
defined in CenterResultCode.

ECAT _COMMANDERROR
The command sent to CAT is wrong. This error is never returned so long as
CAT control is working correctly.

ECAT RESET CAT was stopped during processing by CAT reset key (stop key) and so on.

ECAT_COMMUNICATIONERROR
Communication error has occurred between the approval agency and CAT.
ECAT DAILYLOGOVERFLOW
Daily log was too big to be stored. Keeping daily log has been stopped and
the value of DailyLog property is uncertain.
Electronic Money Device:
A failure will occur if the DealingLog on the device is full and the device is
attempting to be closed.

ECAT DEFICIENT Electronic Money Device:
Because the balance is insufficient, it cannot close settlement.

ECAT _OVERDEPOSIT
Electronic Money Device:
A failure will occur if a settlement amount is attempted that is over the
chargeable amount of the charge account.

The content of the position specified by ErrorResponse will be preset to the default value of ER_ RETRY.
An application may set one of the following values.

Value Meaning
ER RETRY Retries the asynchronous processing. The error state is exited.
ER CLEAR Clear the asynchronous processing. The error state is exited.

Fired when an error is detected while processing an asynchronous authorize group method or the
accessDailyLog method. The control's State transitions into the error state.

“Device Output Model” on page 20, “Device Information Reporting Model Added in Release 1.8” on
page 25.

265

10.6.3 OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the QuiputID attribute has
completed successfully.

Attribute This event contains the following attribute:

Attribute Type Description
OutputID int32 The ID number of the asynchronous output request that is complete.
Remarks This event is enqueued after the request’s data has been both sent

and the Service has confirmation that is was processed by the
device successfully.

See Also “Device Output Model” on page 20
10.6.4 StatusUpdateEvent Updated in Release 1.9

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the CAT device.

Electronic Money Device:
Notifies the application that there is a change in the DealingLog status of the Electronic Money Device.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Indicates a change in the power status of the unit.

Note that Release 1.3 added Power State Reporting with additional Power
reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description In Chapter 2.
Electronic Money Device:
The Status parameter contains the DealingLog status condition.

Value Meaning
CAT LOGSTATUS OK DealingLog is enough capacity.

CAT_LOGSTATUS NEARFULL
DealingLog is nearly full.
CAT_LOGSTATUS_FULL DealingLog is full.
Remarks Enqueued when the CAT device detects a power state change.

See Also “Events” on page 15

266 Unified POS, V1.16.1

11

Check Scanner

11.1 General

11.2 Summary

Properties (UML attributes)

Common
AutoDisable:

CapCompareFirmwareVersion:

CapPowerReporting:
CapStatisticsReporting:
CapUpdateFirmware:
CapUpdateStatistics:
CheckHealthText:
Claimed:

DataCount:
DataEventEnabled:
DeviceEnabled:
FreezeEvents:
OutputID:
PowerNotify:
PowerState:

State:

DeviceControlDescription:

DeviceControlVersion:
DeviceServiceDescription:

DeviceServiceVersion:

PhysicalDeviceDescription:

PhysicalDeviceName:

Unified POS, v1.16.1

This Chapter defines the Check Scanner device category.

Type
boolean
boolean
int32
boolean
boolean
boolean
string
boolean
int32
boolean
boolean
boolean
int32
int32
int32
int32
string
int32
string
int32
string

string

Mutability
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-write }
{ read-write }
{ read-write }
{ read-only }
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

Version
1.7
1.9
1.3
1.8
1.9
1.8
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7

May Use After
open
open
open
open
open
open
open
open
open
open

open & claim
open

Not supported
open

open

open
open
open

open

267

268

Properties (Continued)

Specific
CapAutoContrast:

CapAutoGenerateFilelD:
CapAutoGenerateImageTagData:

CapAutoSize:
CapColor:
CapConcurrentMICR:
CapContrast:
CapDefineCropArea:
CapImageFormat:
CapIlmageTagData:
CapMICRDevice:
CapStorelmageFiles:
CapValidationDevice:
Color:
ConcurrentMICR:
Contrast:
CropAreaCount:
DocumentHeight:
DocumentWidth:
FileID:

FileIndex:
ImageData:
ImageFormat:
ImageMemoryStatus:
ImageTagData
MapMode:
MaxCropAreas:
Quality:

QualityList:

RemaininglmagesEstimate:

Type
boolean
boolean
boolean
boolean
int32
boolean
boolean
boolean
int32
boolean
boolean
boolean
boolean
int32
boolean
int32
int32
int32
int32
string
int32
binary
int32
int32
string
int32
int32
int32
string
int32

Mutability
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-write }
{ read-write }
{ read-write }
{ read-only }
{ read-write }
{ read-write }
{ read-write }
{ read-write }
{ read-only }
{ read-write }
{ read-only }
{ read-write }
{ read-write }
{ read-only }
{ read-write }
{ read-only }
{ read-only }

Version
1.9
1.7
1.7
1.7
1.7
1.7
1.9
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.9
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7

May Use After
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open

open & enable
open
open
open
open
open
open
open

open & claim
open
open
open
open
open

open

Unified POS, V1.16.1

Methods (UML operations)

Common
Name Version
open (logicalDeviceName: string): 1.7
void { raises-exception }
close (): 1.7
void { raises-exception, use after open }
claim (timeout: int32): 1.7
void { raises-exception, use after open }
release (): 1.7
void { raises-exception, use after open, claim }
checkHealth (level: int32): 1.7
void { raises-exception, use after open, claim, enable }
clearInput (): 1.7
void { raises-exception, use after open, claim, enable }
clearInputProperties (): 1.10
void { raises-exception, use after open, claim }
clearOutput (): Not supported
void { }
directlO (command: int32, inout data: int32, inout obj: object): 1.7
void { raises-exception, use after open }
compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.9
void { raises-exception, use after open, claim, enable }
resetStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }
retrieveStatistics (inout statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }
updateFirmware (firmwareFileName: string): 1.9
void { raises-exception, use after open, claim, enable }
updateStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }
Specific
beginlnsertion (timeout: int32): 1.7
void { raises-exception, use after open, claim, enable }
beginRemoval (timeout: int32): 1.7
void { raises-exception, use after open, claim, enable }
clearImage (by: int32): 1.7
void { raises-exception, use after open, claim, enable }
defineCropArea (cropArealD: int32, x: int32,y: int32, cx: int32, cy: int32): 1.7
void { raises-exception, use after open, claim, enable }
endInsertion (): 1.7
void { raises-exception, use after open, claim, enable }
endRemoval (): 1.7

void { raises-exception, use after open, claim, enable }

Unified POS, v1.16.1 269

270

retrievelmage (cropArealD: int32):

void { raises-exception, use after open, claim, enable }

retrieveMemory(by: int32):

void { raises-exception, use after open, claim, enable }

storelmage (cropArealD: int32):

void { raises-exception, use after open, claim, enable }

Events (UML. interfaces)

Name

upos::events::DataEvent
Status:

upos::events::DirectlIOEvent
EventNumber:
Data:
Obj:

upos::events::ErrorEvent
ErrorCode:
ErrorCodeExtended:
ErrorLocus:
ErrorResponse:

upos::events::OutputCompleteEvent

upos::events::StatusUpdateEvent
Status:

Type

int32

int32
int32
object

int32
int32
int32
int32

int32

Mutability

{ read-only }

{ read-only }
{ read-write }
{ read-write }

{ read-only }
{ read-only }
{ read-only }
{ read-write }

Not supported

{ read-only }

1.7

1.7

1.7

Version

1.7

1.7

1.7

1.7

Unified POS, V1.16.1

11.3 General Information

The Check Scanner programmatic name is “CheckScanner.”
11.3.1 Capabilities

The primary purpose of this device is to capture the image of a personal or business check for Electronic Check
Conversion. However, other documents (vouchers, signature receipts, etc.) may be scanned if they fall within the
capture size parameters of the Check Scanner. Therefore, in the description used in this standard the overall term
“document” may be used to indicate the multiplicity of uses of which the device may be capable. When the term
“check” is used, it should be viewed as a special form of a “document” as an example.

The Check Scanner Control has the following minimal set of capabilities:
 Reads image data from a Check Scanner device.

 Has programmatic control of check insertion, reading, and removal. For some Check Scanner devices, this will
require no processing in the Control since the device may automate many of these functions.

The Check Scanner Control may have the following additional capabilities:
« The Check Scanner may store successive check images in its hardware memory.

« Cropping of areas of interest within the check image may be supported by the Check Scanner to aid in the
reduction of the memory needed to transmit or store the check image data.

 The retrievelmage data is deposited in the ImageData property in binary form.

 The Check Scanner may allow for retrieval of images stored in its hardware memory.

 The Check Scanner may support Image tag data information to identify the check image.

« The application reads the contents of ImageData property when it wants to further process the check image.

 The Check Scanner device may be physically attached to or incorporated into a check validation print device
and/or a MICR device. If this is the case, once a check is inserted via Check Scanner Control methods, the
check can still be used by the Printer and MICR Control prior to check removal.

Unified POS, v1.16.1 271

11.3.2 Check Scanner Class Diagram Updated in Release 1.9

The following diagram shows the relationships between the Check Scanner classes.

<<sends>> i
<<exception>> <<Interface>> <<uses>> <<utility>> <<utility>>
UposException BaseControl | UposConst CheckScannerConst

(from upos) (fromupos) > (from upos) (from upos)
<<ysgs>>
<<sends>>
<<ewent>> <<Interface>>
DataEvent CheckScannerControl
(from events) (from upos)
[G<<prop>> Status : int32 8 < <capability>> CapAutoContrast : boolean
‘ <<capability>> CapAutoGenerateFilelD : boolean
S <<capability>> CapAutoGeneratelmageTagData : boolean
<<fires>> 5% < <capability>> CapAutoSize : boolean
<<capability>> CapColor : int32
<<capabi|ity>> CapConcurrentMICR : boolean
<<capabi|ity>> CapContrast : boolean
<<ewent>> 8% < <capability>> CapDefineCropArea : boolean
DirectlOEvent <<capability>> CaplmageFormat : int32
(from events) <<capability>> CaplmageTagData : boolean
[5<<prop>> EventNumber : int32 <<fires>> & < <capability>> CapMICRDevice : boolean

[iG<<prop>> Data : int32 <<capability>> CapStorelmageFiles : boolean
[g<<prop>> Obj : object <<capabi|ity>> CapValidationDevice : boolean
=< <prop>> Color : int32

<<prop>> ConcurrentMICR : boolean
<<prop>> Contrast : int32

<<prop>> CropAreaCount : int32
<<prop>> DocumentHeight : int32

<<prop>> DocumentWidth : int32

<<fires>> <<prop>> FilelD : string
<<ewent>> 5% <<prop>> Filelndex : int32
ErrorEvent <<prop>> ImageData : binary
(from events) <<prop>> ImageFormat : int32
[<<prop>> ErrorCode : int32 <<prop>> ImageMemoryStatus : int32
[<<prop>> EmorCodeExtended : int32 <<prop>> ImageTagData : string
[<<prop>> ErrorLocus : int32 <<prop>> MapMode : int32
[<<prop>> ErorResponse : int32 <<prop>> MaxCropAreas : int32
= <<prop>> Quality : int32
%) <<prop>> QualityList : string
<<fires>> &l <<prop>> Remaining ImagesEstimate : int32
.beginlnsertion(timeout 1 int32) : void
®beginRemoval(timeout : int32) : void
.clearlmage(by 1 int32) : void
defineCropArea(cropArealD : int32, x : int32,y : int32, cx : int32, cy : int32) : void
<<ewnt>> ®endinsertion(: void
StatusUpdateEvent .endRemovaI() > el
ffrom even(s.) .retrievelmage(cropAreaID :int32) : void
[B<<prop>> Status : int32 BretrieveMemory(by : int32) : void
storelmage(cropArealD : int32) : void

272 Unified POS, V1.16.1

11.3.3 Model Updated in Release 1.11

The Check Scanner Control follows the general “Input Model.” One point of difference is that the Check Scanner
Control requires the execution of methods to insert and remove the check for processing. Therefore, this Control
requires more than simply setting the DataEventEnabled property to true in order to receive data. The basic
model is as follows:

The Check Scanner Control is opened, claimed, and enabled.

Starting with Version 1.9, the application has the ability to adjust the darkness of the scanned image for
devices that have the ability to adjust the scan mechanism so that it can darken or lighten the image. The
CapContrast property controls whether the device supports this feature.

When the beginInsertion method is called, the Check Scanner is ready to read the check within the specified
time as indicated by the time-out value. If the check is not inserted before the time-out value expires, a
UposException is raised.

In the event of a time-out, the Check Scanner device will remain in a state that allows a check to be inserted.
The application may provide an operator prompt which requests that a check be inserted. Following this
prompt, the application would then reissue the beginInsertion method and wait for the check to be inserted.

Once a check is inserted, the beginInsertion method returns and the application calls the endInsertion
method, which results in the Check Scanner device exiting the check insertion mode and causes the check
image to be captured.

* Following the endInsertion method, the scan image data is stored in a working buffer memory area and a
StatusUpdateEvent will occur to indicate that a successful scan image process has taken place. No
DataEvent is enqueued since data has not been transferred to the ImageData property at this point.

* The application must use the retrievelmage method to retrieve the current scan image data. However, if the
check image was not successfully captured by the device, the Control enqueues a ErrorEvent to indicate the
capture was not successful.

« If the AutoDisable property is true, then the device is automatically disabled when the image is successfully
captured.

* An enqueued DataEvent can be delivered to the application when the DataEventEnabled property is true
and other event delivery requirements are met. Just before delivering this event, the Control copies data into
specific properties, and disables further data events by setting the DataEventEnabled property to false. This
causes subsequent input data to be enqueued by the Control while the application processes the current input
and associated properties. When the application has finished the current input and is ready for more data, it
reenables events by setting DataEventEnabled to true.

« If the CapAutoSize property is true, when the DataEvent is delivered, the height and width of the of entire
captured image are automatically stored in the corresponding DocumentHeight and DocumentWidth
properties. If the CapAutoSize property is false, the application must manually set the DocumentHeight and
the DocumentWidth property values prior to the beginInsertion method being invoked.

« If the application needs to retrieve the entire or a cropped portion of the captured image, the retrievelmage
method is called. The image data is sent from the device to the service and stored in the ImageData property.
When the corresponding DataEvent is delivered, the current image or cropped image may be accessed by the
application reading the image file contained in the ImageData property.

« If the CapStorelmageFiles property is true, then the current image, or cropped image, can be stored in the
memory by using the storelmage method.

Unified POS, v1.16.1 273

274

* Any previously stored image may be retrieved by using the retrieveMemory method. The stored image may
be identified using the “by” parameter and requesting that the image be located by FileID, FileIndex, or
ImageTagData.

« If CapDefineCropArea is true, then the application can use the defineCropArea method to define crop
areas in the captured image.

* An ErrorEvent (or events) is (are) enqueued if the Control encounters an error while reading the check, and
is delivered to the application when the DataEventEnabled property is true and other event delivery
requirements are met.

* All input data enqueued by the Control may be deleted by calling the clearInput method.

* All data properties that are populated as a result of firing a DataEvent or ErrorEvent can be set back to their
default values by calling the clearInputProperties method.

After processing the endInsertion DataEvent, the application may query the CapMICRDevice property to
determine if the device supports Magnetic Ink Character Recognition. If CapMICRDevice property is true,
then a MICR read function may be performed in a “single pass” or “multiple pass” cycle but prior to the check
being removed from the device. If CapConcurrentMICR property is true, then the device is capable of
supporting a “single pass” MICR read during an image scan. If CapConcurrentMICR property is true and
ConcurrentMICR property is true, then the MICR data would be read and calling the MICR's beginInsertion
and endInsertion methods would not be needed to reposition the check for MICR reading.

Additionally, after processing a DataEvent, the application should query the CapValidationDevice property
to determine if validation printing can be performed on the check prior to check removal. If this property is
true, the application may call the Printer Control's beginInsertion and endInsertion methods. This positions
the check for validation printing. The Printer Control's validation printing methods can then be used to perform
validation printing.

If the CapImageTagData property is true, then an identifying name, for example the transaction number, date
and time, or some other naming element, could be used to identify the image data. The format of the data must
be conformant to ARTS XML and reside in ImageTagData property.

Once the check is no longer needed in the device, the application must call beginRemoval of the Check
Scanner, the MICR (if CapMICRDevice is true), or the POS Printer (if CapValidationDevice is true), also
specifying a timeout value. This method will raise a UposException if the check is not removed within the
timeout period. In this case, the application may perform any additional prompting prior to calling the method
again. Once the check is removed, the application should call the same device’s endRemoval method to take
the device out of removal mode.

In order to accommodate many different Check Scanning devices, the application should follow the above
sequence of method calls even though the device may not physically require one or more of the methods. An
example may be a Check Scanner that is “auto armed” and is capable of detecting a check present and
initiating a Check Scan and MICR read cycle automatically. In this case the beginInsertion, endInsertion,
beginRemoval, and endRemoval method calls may actually do no more than return from the Service.

The model assumes that the device has a work area that can be used in the following ways:

* When a document is scanned its image will be loaded as raw data into this work area. When the
retrievelmage method is invoked the data from the work area may be modified by a previously defined crop
area, as specified by the cropArealD parameter, and loaded into the ImageData property. The work area will
still contain the original scanned image data. Additional retrievelmage method calls using different crop
area criteria can then be accomplished to load the ImageData property.

» The work area contains image data either from a recently scanned image or as a result of a retrieveMemory
method. Prior to invoking the storelmage method, the FileIndex property is set to the correct index number

Unified POS, V1.16.1

(as maintained by the service) and if used, the FileID and/or ImageTagData properties are set. When the
storeImage method is invoked the data from the work area may be modified by a previously defined crop
area, as specified by the cropArealD parameter, and stored in the device memory. The work area will still
contain the original scanned image data. Additional storeImage method calls using different crop area
criteria can then be accomplished to store the image data in the device’s memory. The
RemainingImagesEstimate property is adjusted to reflect the approximate number additional images that
may be stored in the device memory based upon the file size history of previously stored images.

* When the retrieveMemory method is invoked, the work area is loaded with an image data file that was
previously stored in the device memory. Either the FileIndex, FileID, or ImageTagData may be used to
locate the previously stored image. The ImageData property is also loaded with the retrieved image data.

« In order to accommodate the various storage and retrieval architectures that are in use for the Check Scanner
device class, the model has been designed to allow for three different addressing ways to locate previously
stored image data: FileIndex, FileID, and ImageTagData.

* The FileIndex is an addressing scheme that is automatically provided by the service to physically store and
retrieve the file data. The definition of file data in this case includes any and/or all of the following: image
data, tag data information (that is appended and included with the image data file), and a file identification (a
file name
associated with the image data file). The FileIndex is only used by the service to save and retrieve the scan
data and its associated data elements.

* The FilelD is a “file name” that may be provided automatically by the hardware device or the service. It also
may be populated by the application prior to a storeImage method being called. Once created it remains with
the ImageData and can be used to randomly locate a specific file for uploading to the POS system and post
processing applications.

* The ImageTagData property contains a set of information about the image that has been scanned. It is
required that the format of the data be XML and compliant to the ARTS Data Dictionary and ARTS XML
standards to ensure interoperability. Typically, it contains information about when the image was captured,
e.g., Date and Time, Store number, Lane Number, Clerk identification, etc. This data may be pre- or post-
appended to the ImageData and remains a part of the combined data file as a record of the origin of the data.

11.3.4 Device Sharing

The Check Scanner is an exclusive-use device, and adheres to the following constraints:
« The application must claim the device before enabling it.

« The application must claim and enable the device before the device begins reading input, or before calling
methods that manipulate the device.

« See the “Summary” table for precise usage prerequisites.

Unified POS, v1.16.1 275

11.3.5 Check Scanner Sequence Diagram

The following sequence diagram shows the typical usage of the Check Scanner device.

Note: we are assuming that the :ClientApp already successfully opened, claimed and enabled the device. Thisl
means that the platform specific loading/configuration/creation code executed successfully. We also assume

that the application already registered some event handlers with the controls.
CheckScanner
Service

:ClientApp ‘ ‘M ‘ :DataEvent ‘ ‘StatusUQdateEvent

L] L]

2: sptDataEventEnabled(true)

1:|setDataEventEnabled(true

=

3: sptMapMode(CHK_MM_ENGL.ISH) 4: setMapMode(CHK_MM_ENGLISH)
:

=

5: defineCropArea(1,0,0,1500,1000) 6: defineCropArea(1,0,0,1500,1000)

1

7: defineCropArea(1,0,2000,CHK_CROP_AREA_BOTTOM,CHK_CROP_AREA_RIGHT)

8: defingCropArea(1,0,2000,CIHK_CROP_AREA_BOTTOM,CHK_CROP_AREA_RIGHT)

1

9: begininsertion(timeout)

-

Q: begininsertion(timeout

U

Detect check
insertion and
scan check

[—

137 new

11: endInsertion()

12: endlnw()/

14: set status update event|status

15: enqueue StatusUpdateEvent to servigels internal queue
=1

16: deliver StatusUpdateEvent [FreezeEyents == false]

17:|deliver event to all redistered handlers
18:|notify client of new event =1
=

retrieve the
image within the
lsecond crop
area defined

T 19: retrievelmage(2) 20: retriev’el/mége/(;)/.—

21: ne

[r‘ 22: copy data to new DataEvent

LT=

23: enqueue DataEvent to|service's internal queue

. . <

24: set Check $canner properties and deliver DataEvent
[DataEventEnabled == true && FrepzeEvents == falsie]

25: deliver event to all registered handlers
26: notify client of new eveptle 1

T 27: storelmage(1) —‘7 28: storelmage(1)
|

TZS: beginRemoval(timeout 30: beginRemoval(timeout

:Fdicate user to start removing check

32: endRemoval() 33: endRemoval()

276 Unified POS, V1.16.1

11.3.6 Check Scanner State Diagram

The following diagram depicts the Check Scanner control device model.

[Opened && [Closed ||
Claimed && Released || Begin
T Enabled] @ @ Disabled] Removal
@rﬁon \\ /beginRemoval
/begininsertion /
! [Success]
‘ R | /endRemoval
‘ Insertion Idle SIS
[Succges] /endRemuyal ’
/endInsertion
End _ Enﬁd
Insertion /defineCrop. Image Reme

age /retrieyeimage
IretrieveMem

Define
Retrieve
CropArea ‘ Store Image |
mage

Retrieve Memory

Clear Image
/

Unified POS, v1.16.1

277

11.4 Properties (UML attributes)

11.4.1 CapAutoContrast Property Added in Release 1.9

Syntax CapAutoContrast: boolean { read-only, access after open }

Remarks This capability indicates that the device has the ability to automatically adjust the darkness of the image
to provide the best contrast for the image.
If true, then when Contrast is set to CHK_ AUTOMATIC CONTRAST, the device attempts to auto-
matically adjust the contrast.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also CapContrast Property, Contrast Property.

11.4.2 CapAutoGenerateFilelD Property

Syntax

Remarks

Errors

See Also

CapAutoGenerateFileID: boolean { read-only, access after open }

This capability indicates the ability of the device to automatically generate a file name that can be used
to reference the file containing the captured image.

If CapAutoGenerateFilelD is true, then the device can automatically create a file name for the captured
image file.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

FileID Property.

11.4.3 CapAutoGeneratelmageTagData Property

278

Syntax

Remarks

Errors

See Also

CapAutoGeneratelmageTagData: boolean { read-only, access after open }

This capability indicates the ability of the device to automatically generate tag data used in reference to
the image file for the captured image.

If CapAutoGeneratelmageTagData is true, then the device can automatically create image tag data
which can be appended to the image file to provide information about the captured image.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

ImageTagData Property.

Unified POS, V1.16.1

11.4.4 CapAutoSize Property

Syntax

Remarks

Errors

See Also

CapAutoSize: boolean { read-only, access after open }

This capability indicates the ability of the device to determine the height and width of the document
automatically.

If CapAutoSize is true, then the height and width of the scanned document will be automatically placed
in the DocumentHeight and DocumentWidth properties when the image is captured.

If CapAutoSize is false, the height and width of the document can be manually set in the
DocumentHeight and DocumentWidth properties by the application prior to scanning an image.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

DocumentHeight Property, DocumentWidth Property.

11.4.5 CapColor Property

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

CapColor: int32 { read-only, access after open }
This capability indicates if this device supports image formats other than bi-tonal.

CapColor is a logical OR combination of any of the following values:

Value Meaning
CHK_CCL_MONO Bi-tonal (B/W)
CHK CCL GRAYSCALE Gray scale

CHK CCL 16 16 Colors
CHK_CCL 256 256 Colors
CHK CCL _FULL Full colors

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

Color Property.

279

11.4.6 CapConcurrentMICR Property

Syntax

Remarks

Errors

See Also

CapConcurrentMICR: boolean { read-only, access after open }

This capability indicates if this device supports a Magnetic Ink Character Recognition read during the
image scanning process.

If CapConcurrentMICR is true, a check's MICR data can be captured during a check scanning cycle
(single pass scanning). For devices that are both a Check Scanner device and a MICR reader device,
following a check scan the device will automatically pass the MICR data to the MICR Service. The check
will not need to be re-read during the MICR beginInsertion and endInsertion methods.

If CapConcurrentMICR is false, then it would be necessary to read the MICR data (if the device
supports MICR reading) by using the MICR beginInsertion and endInsertion methods. Usually the
MICR read is performed prior to the Check Scanning process.

This property has no meaning if the CapMICRDevice property is false.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CapMICRDevice Property, ConcurrentMICR Property.

11.4.7 CapContrast Property Added in Release 1.9

Syntax

Remarks

Errors

See Also

CapContrast: boolean { read-only, access after open }

This capability indicates the ability of the device to lighten or darken the scanned image. This affects the
image regardless of the value of the CapColor property. If true then the darkness of the image can be
adjusted using the Contrast property. If false then the application cannot adjust the darkness of the
image.

A UposException may be thrown when this property is accessed. For further information see

“Errors” on page 16.

CapAutoContrast Property, Contrast Property.

11.4.8 CapDefineCropArea Property

280

Syntax

Remarks

Errors

See Also

CapDefineCropArea: boolean { read-only, access after open }

This capability indicates if this device supports a feature that allows cropping of areas of interest within
the scan image area defined by the DocumentHeight and DocumentWidth properties.

If CapDefineCropArea is true, one or more cropping areas are allowed; otherwise it is set to be false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CropAreaCount Property, MaxCropAreas Property, defineCropArea Method.

Unified POS, V1.16.1

11.4.9 CaplmageFormat Property

Syntax

Remarks

Errors

See Also

CaplmageFormat: inf32 { read-only, access after open }

This capability indicates the image file formats that this device supports. The image data is stored in the
ImageData property using one of the following formats supported by the CapImageFormat Property:

CaplmageFormat is a logical OR combination of any of the following values:

Value Meaning
CHK_CIF_NATIVE Hardware native format
CHK_CIF_TIFF TIFF format

CHK _CIF_BMP BMP format

CHK CIF JPEG JPEG format

CHK CIF GIF GIF format

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

ImageFormat Property

11.4.10 CaplmageTagData Property Updated in Release 1.11

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

CaplmageTagData: boolean { read-only, access after open }

This capability indicates if this device has the ability to utilize ARTS XML compliant tag names to
identify its scanned images.

If CapImageTagData is true, then the device can set tag data, as defined by the ImageTagData
property, to the image data file stored in the ImageData property.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

ImageTagData Property, retrievelmage Method, storelmage Method.

281

11.4.11 CapMICRDevice Property

Syntax

Remarks

Errors

See Also

CapMICRDevice: boolean { read-only, access after open }
This capability indicates if this device supports a check MICR read function.

If CapMICRDevice is true, then the device supports a MICR read function in addition to check
scanning.

If CapConcurrentMICR is true, a check's MICR data can be captured during a check scanning cycle
(single pass scanning). For devices that are both a Check Scanner device and a MICR reader device,
following a check scan the device will automatically pass the MICR data to the MICR service. The check
will not need to be re-read during the MICR beginInsertion and endInsertion methods.

If CapConcurrentMICR property is false, then it would be necessary to read the MICR data by using
the MICR beginInsertion and endInsertion methods. In this case the MICR read is usually performed
prior to the Check Scanning process. This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CapConcurrentMICR Property, ConcurrentMICR Property.

11.4.12 CapStorelmageFiles Property

282

Syntax

Remarks

Errors

See Also

CapStorelmageFiles: boolean { read-only, access after open }
This capability indicates if this device has the ability to store check images in its hardware memory.

If CapStorelmageFiles is true, one or more images can be stored in the memory provided by the device
by using the storeImage method. This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

retrievelmage Method, storelmage Method.

Unified POS, V1.16.1

11.4.13 CapValidationDevice Property

Syntax CapValidationDevice: boolean { read-only, access after open }

Remarks This capability indicates if this device has the ability to perform a validation print function on the check
using a print station.
If CapValidationDevice is true, a check does not have to be removed from the Check Scanner device
prior to performing validation printing. For devices that are both a Check Scanner device as well as a
POS Printer, the device will automatically position the check for validation printing after successfully
performing a Check Scanner read. Either the Check Scanner Control’s or the POS Printer Control’s
beginRemoval and endRemoval methods may be called to remove the check once the process is
complete.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

11.4.14 Color Property

Syntax Color: int32 { read-write, access after open }

Remarks This property is used to select the image scan mode for subsequent document scan operations. The
available options may be affected by the current file type as specified by the ImageFormat property.
Certain file types may not work with all the “colors” that the device may support. It is up to the
application to insure that the proper Color and ImageFormat properties are compatible. Changing the
Color property will not affect any previously stored data currently residing in the ImageData property.
It may contain one of the following values:
YValue Meaning
CHK_CL_MONO Bi-tonal (B/W)
CHK _CL_GRAYSCALE Gray scale
CHK CL 16 16 Colors
CHK _CL 256 256 Colors
CHK CL_FULL Full color
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also CapColor Property, ImageFormat Property.

Unified POS, v1.16.1

283

11.4.15 ConcurrentMICR Property

Syntax

Remarks

Errors

See Also

ConcurrentMICR: boolean { read-write, access after open }

This property indicates whether a MICR read should be performed at the same time the check image is
captured (single pass operation).
This property has no meaning if the CapMICRDevice is false.

If ConcurrentMICR is true, a check's MICR data is captured during a check scanning cycle (single pass
scanning). For devices that are both a Check Scanner device and a MICR reader device, following a
check scan the device will automatically pass the MICR data to the MICR Service. The check will not
need to be re-read during the MICR beginInsertion and endInsertion methods.

If ConcurrentMICR is false and MICR data is required, then it is necessary to read MICR data by using
the MICR beginInsertion and endInsertion method calls. In this case the MICR read is usually
performed prior to the Check Scanning process.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

CapConcurrentMICR Property, CapMICRDevice Property.

11.4.16 Contrast Property Added in Release 1.9

Syntax

Remarks

Errors

See Also

284

Contrast: int32 { read-write, access after enable }

This property allows the application to adjust the darkness of the image. The property is valid only if the
CapContrast property is true.

A value of 0 sets or indicates that the device will generate the lightest image possible. A value of 100
sets or indicates that the device will generate the darkest image possible. All values between 0 and 100
produce images with varying degrees of darkness. A value of 50 should produce an image that is the
optimal brightness for the best image under normal circumstances.

If the CapAutoContrast property is true then this property can be set to
CHK_AUTOMATIC_CONTRAST to allow the device to automatically adjust the darkness of the
image based on sensing of the paper to produce the optimal brightness for the best image under normal
circumstances.

If CapAutoContrast is false, then attempting to set this property to CHK_ AUTOMATIC CONTRAST
is illegal.

If CapAutoContrast is true, then this property is initialized to CHK_ AUTOMATIC_CONTRAST
when the device is enabled. If CapAutoContrast is false, this property is initialized either to 50 or to a
user configured value when the device is enabled.

A UposException may be thrown when this property is accessed. For further information see
“Errors” on page 16.

CapAutoContrast Property, CapContrast Property.

Unified POS, V1.16.1

11.4.17 CropAreaCount Property

Syntax CropAreaCount: int32 { read-only, access after open }

Remarks This property indicates the number of Crop areas that have been defined which may be applied to the
captured image.

If CapDefineCropArea is false, then this property is always zero.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16

See Also CapDefineCropArea Property, MaxCropAreas Property, defineCropArea Method.

11.4.18 DocumentHeight Property

Syntax DocumentHeight: int32 { read-write, access after open}

Remarks This property is used to define the height of the document scanned or the height of a document to scan.
It is expressed in the unit of measure as defined by the MapMode property.

If CapAutoSize is true, then the height of the scanned document will be automatically placed in the
DocumentHeight property when the image is captured.

If CapAutoSize is false, the height of the document can be manually set in the DocumentHeight
property by the application prior to scanning a document.

This property is initialized to the maximum height supported by the device by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapAutoSize Property, MapMode Property.

11.4.19 DocumentWidth Property

Syntax DocumentWidth: int32 { read-write, access after open}

Remarks This property is used to define the width of the document scanned or the width of a document to scan. It
is expressed in the unit of measure as defined by the MapMode property.

If CapAutoSize is true, then the width of the scanned document will be automatically placed in the
DocumentWidth property when the image is captured.

If CapAutoSize is false, the width of the document can be manually set in the DocumentWidth property
by the application prior to scanning an image.

This property is initialized to the maximum width supported by the device by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapAutoSize Property, MapMode Property.

Unified POS, v1.16.1 285

11.4.20 FilelD Property

Syntax FilelD: string { read-write, access after open }

Remarks This property is used to store a “file name” associated with the image data file. If the application chooses
to create the data for this property, it must set the FileID property prior to calling the storeImage method.

After a retrieveMemory method call the FileID property will be set to the image data file name if
available, otherwise it will be set to an empty string. Its value is set prior to a DataEvent being delivered
to the application.

If the CapAutoGenerateFilelD property is true then the FileID will automatically be generated by the
hardware device or the service when the image is scanned.

This property is initialized to an empty string by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapAutoGenerateFileID Property, retrievelmage Method, retrieveMemory Method, storelmage
Method.

11.4.21 FileIndex Property Updated in Release 1.13

Syntax FileIndex: int32 { read-write, access after open }

Remarks This property is used to store a file location reference to the image data file when either the storelmage
or retrieveMemory methods are called. Its value is set prior to a DataEvent being delivered to the
application.

The FileIndex property is used only by the service in conjunction with the device to manage the storage
and retrieval of an image data file. The application may write a value into the FileIndex property.
However, it is normally the responsibility of the service to ensure that a unique integer value is used to
store or retrieve the image file.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also clearImage Method, retrievelmage Method, retrieveMemory Method storelmage Method.

286 Unified POS, V1.16.1

11.4.22 ImageData Property

Syntax

Remarks

Errors

See Also

ImageData: binary { read-only, access after open }1

This property is used to store the image data after the retrievelmage or retrieveMemory methods are
called. If no image data was available, the ImageData property will be set to zero length (or empty). Its
value is set prior to a DataEvent being delivered to the application.

This property is initialized to zero length by the open method.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

retrievelmage Method, DataEvent.

11.4.23 ImageFormat Property

Syntax

Remarks

Errors

See Also

ImageFormat: int32 { read-write, access after open }

This property is used to define the data format of the image file that the device will use when it captures
an image. The availability of acceptable file types is specified in the CapImageFormat property.

The ImageFormat property must be set before a document is scanned. Any previously stored data in the
ImageData property will not be affected by changing the value of the ImageFormat property.

If the device provides support, it may be one of the following values:

Value Meaning

CHK IF NATIVE Hardware native format
CHK IF_TIFF TIFF format

CHK _IF BMP BMP format

CHK IF JPEG JPEG format

CHK IF_GIF GIF format

The default value of this property is CHK _IF TIFF.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

CaplmageFormat Property, Color Property, DataEvent.

1. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion

Unified POS, v1.16.1

property. See BinaryConversion property in Annex A.

287

11.4.24 ImageMemoryStatus Property

Syntax ImageMemoryStatus: int32 { read-only, access after open-claim }

Remarks This property is used to indicate the current memory availability status if the device has the ability to
store multiple image files. The ImageMemoryStatus value is only valid if the CapStoreImageFiles is
true.

The following values are supported.

Value Meaning

CHK IMS EMPTY The image memory is empty.

CHK _IMS OK The image memory is has storage available.
CHK IMS FULL The image memory is full.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapStorelmageFiles Property, storeImage Method.

11.4.25 ImageTagData Property Updated in Release 1.13

Syntax ImageTagData: string { read-write, access after open }

Remarks This property is used to define a string that specifies the ARTS XML compliant tag name for the captured

288

image data. The recommended way is to use XML CDATA to transfer this data to the application to
prevent inadvertent parsing of the data.

An example of one possible data set would be:

<![CDATA[
<Transaction>192345782</Transaction>
<Operator>35467</Operator>
<SellingLocation>Store Number 762</SellingLocation>
<DateTime>2008-11-21T12:21:30.5Z</DateTime>
<CheckAccountNumber>0089543219</CheckAccountNumber>
<ImageData>12546a92b7c5........ 45d3</ImageData>

1>

Note: The example shown would pass the XML data for the image intact to the application. When
the CDATA constructs were removed, the resultant XML data could then be parsed by another
application process.

The tag name may be specified by the application or auto-generated by the Check Scanner device.
Information contained in the data may refer to the date, time, lane number, location, clerk, or other
information of interest associated with the image at the time of capture.

If the application chooses to create the data for this property, it must set the ImageTagData property
prior to calling the storelmage method. After a retrieveMemory method call, the ImageTagData
property will be set if available, otherwise it will be set to an empty string. Its value is set prior to a
DataEvent being delivered to the application.

If the CapAutoGeneratelmageTagData property is true, the ImageTagData will automatically be
generated by the hardware device or the service when the image is scanned.

Unified POS, V1.16.1

All ImageTagData information must be formatted using XML that is conformant to the ARTS Data
Model and XML Dictionary. It is the responsibility of the Application and/or Service to encode or parse
the XML data.

Some possible entries from the ARTS XML Dictionary are:
DateTime, SellingLocation, Operator, CheckAccountNumber and Transaction.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapAutoGeneratelmageTagData Property, retrievelmage Method, retrieveMemory Method,
storelmage Method.

11.4.26 MapMode Property Updated in Release 1.13

Syntax MapMode: int32 { read-write, access after open }

Remarks This property is used to specify the units of measure that are currently valid for the Check Scanner.
The mapping mode defines the unit of measure used by other properties, such as the DocumentHeight
and DocumentWidth properties.

The following units of measure may be selected for storing the image:

Value Meaning

CHK_MM _DOTS The scanner’s dot width.

CHK_MM TWIPS 1/1440 of an inch.

CHK MM ENGLISH 0.001 inch.

CHK MM METRIC 0.01 millimeter.

Note: The value of MapMode for the Check Scanner is initialized to CHK_MM_ENGLISH when the
device is first enabled following the open method. This default value may be different from other device
categories in the UnifiedPOS standard.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also DocumentHeight Property, DocumentWidth Property, defineCropArea Method.

Unified POS, v1.16.1

289

11.4.27 MaxCropAreas Property

Syntax

Remarks

Errors

See Also

MaxCropAreas: int32 { read-only, access after open }
This property is used to specify the maximum number of crop areas that the device can support.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

CapDefineCropArea Property, CropAreaCount Property, defineCropArea Method.

11.4.28 Quality Property

Syntax

Remarks

Errors

See Also

Quality: int32 { read-write, access after open }

This property is used to set the resolution of the device when a scan image is to take place. It is defined
as a dpi (dots per inch) value.

Any previously stored data in ImageData property will not be affected when the Quality property value
is changed.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

QualityList Property.

11.4.29 QualityList Property

Syntax

Remarks

Errors

See Also

290

QualityList: string { read-only, access after open }
This property is used to define the resolutions that the Check Scanner is capable of supporting.

The string data consists of comma separated values that indicate the available scanning resolutions that
the device supports measured in dots per inch (dpi). An empty string indicates that resolution is not
selectable.

An example might be “160,320”, which indicates that the device supports 160 dpi and 320 dpi.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Quality Property.

Unified POS, V1.16.1

11.4.30 RemaininglmagesEstimate Property

Syntax RemainingImagesEstimate: int32 { read-only, access after open }

Remarks This property is used to provide a “best guess” estimate of the remaining number of images that can be
stored. It is updated after every new image is stored or cleared from the device’s available memory. The
RemainingImagesEstimate along with the ImageMemoryStatus properties are intended to be used by
the application to monitor the amount of available image storage.

This property is initialized to a “best guess” estimate of the total number of image files that can be stored
in the device’s memory by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also ImageMemoryStatus Property.

Unified POS, v1.16.1 291

11.5 Methods (UML operations)

11.5.1 begininsertion Method

Syntax beginInsertion (timeout: int32):
void { raises exception, use after open-claim-enable }

The timeout parameter gives the number of milliseconds before failing the method.

If zero, the method tries to begin insertion mode, then returns immediately if successful. otherwise a
UposException is raised. f FOREVER (-1), the method tries to begin insertion mode, then waits as long
as needed until either the check is inserted or an error occurs.

Remarks Called to initiate the document insertion process.

When called, the Check Scanner is made ready to receive a check by opening the Check Scanner’s check
handling “jaws” or activating a Check Scanner’s check insertion mode. This method is paired with the
endInsertion method for controlling the check insertion. Although some Check Scanner devices do not
require this sort of processing, the application should still use these methods to ensure application
portability across different Check Scanner devices.

If the Check Scanner device cannot be placed into insertion mode, a UposException is raised. Otherwise,
check insertion is monitored until either:
* The check is successfully inserted.

* The check is not inserted before timeout milliseconds have elapsed, or an error is reported by the
Check Scanner device. In this case, a UposException is raised, The Check Scanner device remains
in check insertion mode. This allows an application to perform some user interaction and reissue the
beginInsertion method without altering the Check Scanner check handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E BUSY If the CheckScanneris acombination device, the peer device may be
busy.
E ILLEGAL An invalid timeout parameter was specified.
E TIMEOUT The specified time has elapsed without the check being properly inserted.

See Also beginRemoval Method, endInsertion Method, endRemoval Method.

292 Unified POS, V1.16.1

11.5.2 beginRemoval Method

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

beginRemoval (timeout: int32):
void { raises exception, use after open-claim-enable }

The timeout parameter gives the number of milliseconds before failing the method.

If zero, the method tries to begin removal mode, then returns immediately if successful. otherwise a
UposException is raised. If FOREVER (-1), the method tries to begin removal mode, then waits as long
as needed until either the check is removed or an error occurs.

Called to initiate the check removal processing.

When called, the Check Scanner is made ready to remove a check by opening the Check Scanner’s check
handling “jaws” or activating a Check Scanner’s check ejection mode. This method is paired with the
endRemoval method for controlling check removal. Although some Check Scanner devices do not
require this sort of processing, the application should still use these methods to ensure application
portability across different Check Scanner devices.

If the Check Scanner device cannot be placed into removal or ejection mode, a UposException is raised.
Otherwise, check removal is monitored until either:
* The check is successfully removed.

* The check is not removed before timeout milliseconds have elapsed, or an error is reported by the
Check Scanner device. In this case, a UposException is raised, The Check Scanner device remains
in check removal mode. This allows an application to perform some user interaction and reissue the
beginRemoval method without altering the Check Scanner check handling mechanism.

A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

YValue Meaning
E BUSY Ifthe CheckScannerisacombination device, the peerdevice may be
busy.
E ILLEGAL An invalid timeout parameter was specified.
E TIMEOUT The specified time has elapsed without the check being properly inserted.

beginInsertion Method, endInsertion Method, endRemoval Method.

293

11.5.3 clearimage Method

Syntax clearImage (by : int32):
void { raises exception, use after open-claim-enable }

Parameter Description
by Indicates how the image file is to be located so that it can be removed from
the storage.

Remarks Called to clear a specific image or all the images in the device memory.
The following values may be selected for by to initiate clearing of the memory:

Value Meaning
CHK CLR_ALL All images in the device are cleared

CHK _CLR_BY_FILEID
Locate file to be cleared using the FileID property.

CHK _CLR _BY_FILEINDEX
Locate file to be cleared using the FileIndex property.

CHK CLR BY IMAGETAGDATA
Locate file to be cleared using the ImageTagData

property.

Return A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E ILLEGAL One of the following errors occurred:
* Device does not support stored images
* Device does not support clearing one image

E NOEXIST Image was not found.

See Also CapStorelmageFiles Property, FileID Property, FileIndex Property, ImageTagData Property.

294 Unified POS, V1.16.1

11.5.4 defineCropArea Method

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

defineCropArea (cropArealD: int32, x: int32, y: int32, cx: int32, cy: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

cropArealD The numeric identifier for the defined crop area.

X The starting X-coordinate of the cropping area.

y The starting Y-coordinate of the cropping area.

cx The value added to the “X-coordinate” in order to determine the “X”

endpoint for the cropping area.

cy The value added to the “Y-coordinate” in order to determine the “Y”
endpoint for the cropping area.

If the cropArealD parameter is set to CHK_ CROP_AREA RESET ALL, then all the crop area
definitions allowed (as specified by the MaxCropAreas property) will reset their (x,y) and (cx,cy) values
to (0,0) and (DocumentWidth, DocumentHeight) respectively.

If the cropArealD parameter is set to CHK CROP_AREA ENTIRE IMAGE, then the crop area is
equal to the entire area of the scanned image.

If cx is set to the parameter CHK_CROP_AREA RIGHT, then the “X” endpoint value will be set to the
value of the DocumentWidth property.

If ¢y is set to the parameter CHK_CROP_AREA BOTTOM, then the “Y” endpoint value will be set to
the value of the DocumentHeight property.

This method is used to establish one or more cropping areas that may be applied to a scanned image. The
values are in MapMode units and use the top left corner of the scanned document as the origin (0,0). All
values are positive.

The defineCropArea method specifies an area of interest that is contained within a crop box and given
an index number for reference. Only the data defined by defineCropArea index number will be sent
when the retrievelmage method is called.

The crop areas should be set before the retrievelmage method is called and will be in effect until
changed.

A crop box cannot contain an area larger than that defined by the current DocumentHeight and
DocumentWidth properties. If the resultant value for the endpoint (x+cx) is greater than the
DocumentWidth value, then the “X” endpoint value will be set to DocumentWidth. If the resultant
value for endpoint (y+cy) is greater than the DocumentHeight value, then the “Y” endpoint value will
be set to DocumentHeight.

A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

CapDefineCropArea Property, CropAreaCount Property, DocumentHeight Property,
DocumentWidth Property, MapMode Property, MaxCropAreas Property.

295

11.5.5 endlnsertion Method

296

Syntax

Remarks

Errors

See Also

endInsertion ():
void { raises exception, use after open-claim-enable }

Ends the document insertion processing. If this method call is successful, the device will place the
captured image in a working buffer memory area. A StatusUpdateEvent will occur to indicate that a
successful scan image process has taken place. No DataEvent is enqueued since data has not been
transferred to the ImageData property at this point. The application must invoke retrievelmage in order
to populate the ImageData property with the scan image data.

When called, the Check Scanner is taken out of the check insertion mode. If a check is not detected in
the device, a UposException is raised with an extended error code of ECHK _NOCHECK. This allows
an application to prompt the user prior to calling this method to ensure that the form is correctly
positioned.

This method is paired with the beginInsertion method for controlling check insertion. Although some
Check Scanner devices do not require this sort of processing, the application should still use these
methods to ensure application portability across different Check Scanner devices.

A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL The device is not in check insertion mode.

E EXTENDED ErrorCodeExtended = ECHK NOCHECK:
The device was taken out of insertion mode without a check being
inserted.

beginInsertion Method, beginRemoval Method, endRemoval Method, retrievelmage Method.

Unified POS, V1.16.1

11.5.6 endRemoval Method

Syntax endRemoval ():
void { raises exception, use after open-claim-enable }

Remarks Ends the document removal processing.

When called, the Check Scanner is taken out of check removal or ejection mode. If a check is detected
in the device, a UposException is raised with an extended error code of ECHK CHECK .

This method is paired with the beginRemoval method for controlling check removal. Although some
Check Scanner devices do not require this sort of processing, the application should still use these
methods to ensure application portability across different Check Scanner devices.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E ILLEGAL The device is not in check removal mode.
E_EXTENDED ErrorCodeExtended = ECHK _CHECK:

The device was taken out of removal mode while a check is still present.

See Also beginInsertion Method, beginRemoval Method, endInsertion Method.

Unified POS, v1.16.1 297

11.5.7 retrievelmage Method Updated in Release 1.11

Syntax retrievelmage (cropArealD: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

cropArealD Identifier to specify the storage location of the crop area parameters to be
applied to the most recently scanned image held in the working area
memory of the device. If the value is
CHK _CROP_AREA ENTIRE IMAGE then the entire area of the most
recently scanned image is retrieved.

Remarks Called to retrieve the most recently scanned image which is resident in the work area memory to the
ImageData property. If this method call is successful, the device will deliver either a DataEvent or an
ErrorEvent at a later time.

If the CapImageTagData property is true, then the ImageTagData property is set to the ARTS XML
compliant tag data associated with the image data file.

If a file name has been created for the image data by the device, then the FileID property will be set to
the file name; if none is available then the FileID property will be set to an empty string.

Many models of Check Scanner devices do not require any check handling processing from the
application. Such devices may always be capable of receiving a check, scanning the image into their
working memory area, and require no commands to actually read and eject the check. For these type of
Check Scanner devices, the beginInsertion, endInsertion, beginRemoval and endRemoval methods
simply return, and the Control will enqueue the data until the DataEventEnabled property is set to true.
However, applications should still use these methods to ensure application portability across different
Check Scanner devices.

The retrievelmage method cannot be called after a retrieveMemory method has been called until a new
document has been scanned.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL The following error has occurred:
* Cropped area that is specified by cropArealD parameter is invalid.

See Also CaplmageTagData Property, FileID Property, ImageData Property, ImageTagData Property,
beginInsertion Method, beginRemoval Method, endInsertion Method, endRemoval Method.

298 Unified POS, V1.16.1

11.5.8 retrieveMemory Method Updated in Release 1.11

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

retrieveMemory (by: int32):
void { raises exception, use after open-claim-enable }

Parameter Description
by Indicates how the image file is to be located so that it can be retrieved from
the device memory storage.

Called to retrieve an image that was previously stored in memory to the work area and the ImageData
property. If this method call is successful, the device will deliver either a DataEvent or an ErrorEvent
at a later time.

The following values may be selected for by:

Value Meaning
CHK LOCATE BY_FILEID
Locate image file using the FileID property.

CHK LOCATE BY_FILEINDEX
Locate image file using the FileIndex property.

CHK _LOCATE BY IMAGETAGDATA
Locate image file using the ARTS XML compliant ImageTagData

property.

The FilelD, FileIndex, and ImageTagData properties will all be updated to reflect their respective
values associated with the image data file after this method is called. A value for FileIndex will always
be available. The FileID and ImageTagData properties will be set to empty strings if the image file does
not have respective data to be retrieved for these properties.

The retrievelmage method cannot be called after a retrieveMemory method has been called until a new
document has been scanned.

A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL One of the following errors occurred:

* by parameter is invalid.

* The image data file could not be located due to an invalid value stored
in either the FilelD, FileIndex, or ImageTagData properties that
was being used with the by value.

FileID Property, FileIndex Property, ImageData Property, ImageTagData Property.

299

11.5.9 storelmage Method Updated in Release 1.13

300

Syntax

Remarks

Return

See Also

storeImage (cropArealD: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

cropArealD Identifier to specify the storage location of the crop area parameters to be
applied to image data file currently in the buffer memory area of the device.
If the value is CHK_CROP_AREA ENTIRE IMAGE, then an exact image
of the buffer memory is stored in the device memory (no cropping is applied).

Called to store an image or a cropped area of the image in the memory of the device.

The RemaininglmagesEstimate property is adjusted to reflect the approximate number additional
images that may be stored in the device memory based upon the file size history of previously stored
images.

The ImageMemoryStatus property indicates whether or not the device memory is full and is adjusted
as a result of this method.

The FileID, FileIndex, and ImageTagData properties must all be updated to reflect their respective
values associated with the image data file before this method is called. A value for FileIndex will always
be available and is supplied by the service. The FileID and/or ImageTagData properties will be set to
empty strings if the device does not support the respective property.

A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E EXIST Image already exists in the store location specified by the FileIndex property.
E ILLEGAL One of the following errors occurred:

* Device does not support storing images
* Cropped area that is specified by cropArealD parameter is invalid.
E FAILURE Internal error storing image.

E EXTENDED ErrorCodeExtended = ECHK_NOROOM:
There is no more room for the image in memory.

CapStorelmageFiles Property, FileID Property, FileIndex Property, ImageMemoryStatus Property,
ImageTagData Property, RemainingImagesEstimate Property.

Unified POS, V1.16.1

11.6 Events (UML interfaces)

11.6.1 DataEvent

<< event >> upos::events::DataEvent

Description

Attributes

Remarks

See Also

Status: int32 { read-only }
Notifies the application when data from the Check Scanner device is available to be read.
This event contains the following attribute:

Attributes Type Description
Status int32 Setto 0.

Before this event is delivered, the scanned check image is placed into ImageData.

ImageData Property, endInsertion Method, retrievelmage Method, storeImage Method.

11.6.2 DirectlOEvent

<< event >> upos::events::DirectlOEvent

Description

Attributes

Remarks

See Also

Unified POS, v1.16.1

EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object {read-write }

Provides Service information directly to the application. This event provides a means for a vendor-
specific Check Scanner Service to provide events to the application that are not otherwise supported by
the Control.

This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and the

Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service. This
property is settable.

This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Check
Scanner devices which may not have any knowledge of the Service’s need for this event.

“Events” on page 15, directlO Method.

301

11.6.3 ErrorEvent

<<event> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an error has been detected at the Check Scanner device and a suitable
response by the application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes on page 16.
ErrorCodeExtended
int32 Extended Error code causing the error event. If ErrorCode is
E_EXTENDED, then see values below. Otherwise, it may contain a Service-
specific value.
ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32

Error response, whose default value may be overridden by the application.
(i.e., this property is settable). See values below.

The ErrorLocus property may be one of the following:

Value

Meaning

EL_INPUT

EL_INPUT DATA

Error occurred while gathering or processing event-driven input. No
previously buffered input data is available.

Error occurred while gathering or processing event-driven input, and some
previously buffered data is available.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus. The
application’s error processing may change ErrorResponse to one of the following values:

Value

Meaning

ER CLEAR

ER_CONTINUEINPUT

Clear the buffered input data. The error state is exited.

Default when locus is EL_INPUT.

Use only when locus is EL_ INPUT_DATA. Acknowledges the error and
directs the Device to continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and the
DataEventEnabled property is again set to true, then another ErrorEvent is
delivered with locus EL__INPUT.

Default when locus is EL_INPUT DATA.

Remarks This event is not delivered until DataEventEnabled is true and other event delivery requirements are
met, so that proper application sequencing occurs.

See Also “Device Input Model” on page 18, “Device States” on page 27.

302

Unified POS, V1.16.1

11.6.4 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent

Description
Attributes

Remarks

See Also

Unified POS, v1.16.1

Status: int32 { read-only }
Notifies the application that there is a change in the status of the Check Scanner device.
This event contains the following attribute:

Attributes Type _Description
Status int32 Indicates a change in the status of the Check Scanner device.

The Status parameter has one of the following values:

Value Meaning
CHK SUE SCANCOMPLETE
The process of scanning a document image has been successfully completed.

Note that Release 1.3 added Power State Reporting with additional Power
reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 2.

Enqueued after the endInsertion method has been called and the Check Scanner device has successfully
completed the process of scanning a new image into a working buffer memory area. Also enqueued when
the Check Scanner device detects a power state change.

“Events” on page 15.

303

304 Unified POS, V1.16.1

12 Coin Acceptor

12.1 General

This Chapter defines the Coin Acceptor device category.

12.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean {read-write} 1.11 Not supported
CapCompareFirmwareVersion: boolean { read-only } 1.11 open
CapPowerReporting: int32 { read-only } 1.11 open
CapStatisticsReporting: boolean { read-only } 1.11 open
CapUpdateFirmware: boolean { read-only } 1.11 open
CapUpdateStatistics: boolean { read-only } 1.11 open
CheckHealthText: string {read-only} 1.11 open
Claimed: boolean {read-only} 1.11 open
DataCount: int32 {read-only} 1.11 open
DataEventEnabled: boolean {read-write} 1.11 open
DeviceEnabled: boolean {read-write} 1.11 open & claim
FreezeEvents: boolean {read-write} 1.11 open
OutputID: int32 {read-only} 1.11 Not supported
PowerNotify: int32 {read-write} 1.11 open
PowerState: int32 {read-only} 1.11 open
State: int32 {read-only} 1.11 --
DeviceControlDescription: string {read-only} 1.11 --
DeviceControlVersion: int32 {read-only} 1.11 --
DeviceServiceDescription: string {read-only} 1.11 open
DeviceServiceVersion: int32 {read-only} 1.11 open
PhysicalDeviceDescription: string {read-only} 1.11 open
PhysicalDeviceName: string {read-only} 1.11 open

Unified POS, v1.16.1 305

306

Properties (Continued)

Specific Type Mutability Version
CapDiscrepancy: boolean {read-only} 1.11
CapFullSensor: boolean {read-only} 1.11
CapJamSensor: boolean {read-only} 1.11
CapNearFullSensor: boolean {read-only} 1.11
CapPauseDeposit: boolean {read-only} 1.11
CapRealTimeData: boolean {read-only} 1.11
CurrencyCode: string {read-write} 1.11
DepositAmount: int32 {read-only} 1.11
DepositCashList: string {read-only} 1.11
DepositCodeList: string {read-only} 1.11
DepositCounts: string {read-only} 1.11
DepositStatus: int32 {read-only} 1.11
FullStatus: int32 {read-only} 1.11
RealTimeDataEnabled: boolean {read-only} 1.11

Methods (UML operations)

Common
Name

open (logicalDeviceName: string):
void { raises-exception }
close ():
void { raises-exception, use after open }

claim (timeout: int32):
void { raises-exception, use after open }

release ():
void { raises-exception, use after open, claim }

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

clearInput ():
void { raises-exception, use after open, claim }

clearInputProperties ():
void {}

clearOutput ():
void { }

May Use After
open
open
open
open
open

open

open
open
open
open
open
open, claim, & enable
open, claim, & enable

open, claim & enable

Version
1.11

Not supported

Not supported

Unified POS, V1.16.1

Methods (Continued)

Common
Name Version
directlO (command: inz32, inout data: int32, inout obj: object): 1.11

void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.11
void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string): 1.11
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

Specific

Name

adjustCashCounts (cashCounts: string): 1.11
void { raises-exception, use after open, claim, enable }

beginDeposit (): 1.11
void { raises-exception, use after open, claim, enable }

endDeposit (success: int32): 1.11
void { raises-exception, use after open, claim, enable }

fixDeposit (): 1.11

void { raises-exception, use after open, claim, enable }

pauseDeposit (control: int32): 1.11
void { raises-exception, use after open, claim, enable }

readCashCounts (inout cashCounts: string, inout discrepancy: 1.11
boolean):
void { raises-exception, use after open, claim, enable }

Unified POS, v1.16.1 307

308

Events (UML interfaces)

Name

upos::events::DataEvent

Status:

upos::events::DirectlOEvent
EventNumber:
Data:
Obj:

upos::events::ErrorEvent

upos::events::OutputCompleteEvent

upos::events::StatusUpdateEvent

Status:

Type Mutability Version
1.11
int32 { read-only }
1.11
int32 { read-only }
int32 { read-write }
object { read-write }
Not supported
Not supported
1.11
int32 { read-only }

Unified POS, V1.16.1

12.3 General Information

The Coin Acceptor programmatic name is “CoinAcceptor.”

This device category was added to Version 1.11 of the specification.

12.3.1 Capabilities

The Coin Acceptor has the following capabilities:
« Reports the cash units and corresponding unit counts available in the Coin Acceptor.

« The coins which are deposited into the device between the start and end of cash acceptance are reported to the
application. The contents of the report are cash units and cash counts.

« Reports jam conditions within the device.

« Supports more than one currency.

The Coin Acceptor may also have the following additional capabilities:

« Reporting the fullness levels of the Coin Acceptor’s cash units. Conditions which may be indicated include full,
and near full states.

« Reporting of a possible (or probable) cash count discrepancy in the data reported by the readCashCounts
method.

Unified POS, v1.16.1 309

12.3.2 Coin Acceptor Class Diagram

310

The following diagram shows the relationships between the Coin Acceptor classes.

<<ufility>>
UposConst
(from upos)

\

LA

<USES>>

<<utility>>
CoinAcceptorConst
(from upos)

-7

<<exception>>
UposException
(from upog)
<<sends>>
<<Interface>>
S, CainAcceptorControl
DeteEvert o)
(romevents) (&} <<capability>> CapFullSensor : bodlean
— B <<capability>> CapJamSensor : Beolean
S~ [<<capability>> CapNearFullSenssor : bookean
T~ . |B<<capability>> CapPauseDeposit : bodean
" ~| B <<capetility>> CapRed TimeDeta: Badlean
<<fires>> & <<prop>> QurencyCade : string
(& <<prop>> DepositAmount : int32
<<aent>> &) <<prop>> DepositCashlist : sting
DrectiOBwent |~ _|B<<prop>> DepositCadelist : sting
(from events) (&} <<prop>> DepositCaunts : string
& <<prop>> DepositStatus : int®
<<fires>> & <<prop>> FulStatts : int32
) &) <<prop>> Real TimeDataEnabled : boolean
P ¥ adjustCashCounts(cashCourts : string)
<<event>> & SbeginDeposit()
StatusUpdateEvent <<fires>> | [®endDeposit(amount : int32)
(fomeverty RixDepasit()

S pauseDeposit(contrd : int32)

SireadCashCourts (cashCourts : string, discrepancy : bodlean)

Unified POS, V1.16.1

12.3.3 Model

The general model of a Coin Acceptor is:

« Supports several coin denominations. The supported cash type for a particular currency is noted by the list of
cash units in the DepositCashList property.

This specification provides programmatic control only for the accepting of cash. The removal of cash from the
device (for example, to remove deposited cash) is controlled by the adjustCashCounts method, unless the
device can determine the amount of cash on its own. The application can call readCashCounts to retrieve the
current unit count for each cash unit, but cannot control when or how cash is removed from the device.

May support more than one currency. The CurrencyCode property may be set to the currency, selecting from a
currency in the list DepositCodeList. DepositCashList and readCashCounts all act upon the current currency
only.

Sets the cash slot (or cash bin) conditions in the FullStatus property to show full and near full status. If there are
one or more full cash slots, then FullStatus is CACC_STATUS FULL.

Coin acceptance into the “coin acceptance mechanism” is started by invoking the beginDeposit method. The
previous values of the properties DepositCounts and DepositAmount are initialized to zero.

The total amount of cash placed into the device continues to be accumulated until either the fixDeposit method
or the pauseDeposit method is executed. When the fixDeposit method is executed, the total amount of
accumulated cash is stored in the DepositCounts and DepositAmount properties.

If the pauseDeposit method is executed with a parameter value of CACC_DEPOSIT PAUSE, then the counting
of the deposited cash is suspended and the current amount of accumulated cash is also updated to the
DepositCounts and DepositAmount propertics. When pauseDeposit method is executed with a parameter
value of CACC_DEPOSIT RESTART, counting of deposited cash is resumed and added to the accumulated
totals.

When the fixDeposit method is executed, the current amount of accumulated cash is updated in the
DepositCounts and DepositAmount properties, and the process remains static until the endDeposit method is
invoked with a CACC_DEPOSIT COMPLETE parameter to complete the deposit.

When the clearInput method is executed, the queued DataEvent associated with the receipt of cash is
cleared. The DepositCounts and DepositAmount properties remain set and are not cleared.

Unified POS, v1.16.1 3N

12.3.4 Coin Acceptor Sequence Diagram

NOTE: we are assuming that the :ClientApp already successfully open, Claimed and enabled the
Bill Acceptor device. This means that the Claimed, DeviceEnabled properties are == true
:ClientApp : CoinAcceptorControl CoinAcceptorSenice : DataEvent Human Actor
;| setRealTimeDataEvents(tru| D D D

| |
;| setRealTimeDataEvents (trué‘) Set so DepositAmount and
DepositCounts are updated for
each Data Event

3: beginDeposit()

U 4: beginDeposit()
5: initialize DepositAmount and DepositCouhts
=] :
|
n 6: accept bash

8: enqueue| Data Event for delivery M
|

|
9: update DepositAmount and Deposit Counts
|

p—

10: deliver Data Event

11: notify ClientApp of event|

I 12: fixDeposit() B

-
|
|
|
|
|
|
|
|

U 13: fixDeposit

p—

15: endDeposit(int32)

U 16: endDeposit(int32)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
‘ 1
7: create Data Event : u
L
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
l
14: updateDeposjtAmount and DepositCoudts
|
|
|
|
|
|
|
|
|
|
|
|
|

!

312 Unified POS, V1.16.1

12.3.5 Coin Acceptor State Diagram

Claimed

setDeviceghabled(trde)
sefDeviceEngbled(false)

release

clearinput ClearhputProcessing ‘

entry/ empty data queue

be inDeposit

Coin Acceptance endDeposi clearlnput

entry/ DepositAmount = 0
entry/ DepositCounts = 0

has room
for coins

Fix Mode }

fixDeposit { entry/ sync DepositAmount and DepositCounts

fixDepasit
adjustCas hCgunts / ¥move coins
! pauseDeposit(CACC_DEPOSIT_PAUSE)
ou e oW

adust(a

Pause Mode ‘

pauseDeposit(CACC_DEPOSI —ﬁﬁﬁ%'é}'/r)c DepositAmount and DepositCounts

‘

12.3.6 Device Sharing

The Coin Acceptor is an exclusive-use device, as follows:
« The application must claim the device before enabling it.

« The application must claim and enable the device before accessing some of the properties, dispensing or
collecting, or receiving events.

« See the “Summary” table for precise usage prerequisites.

Unified POS, v1.16.1 313

12.4 Properties (UML attributes)

12.4.1 CapDiscrepancy Property

Syntax CapDiscrepancy: boolean { read-only, access after open }
Remarks If true, the readCashCounts method can report effective discrepancy values.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also readCashCounts Method.

12.4.2 CapFullSensor Property

Syntax CapFullSensor: boolean { read-only, access after open }
Remarks If true, the Coin Acceptor can report the condition that some cash slots are full.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also FullStatus Property, StatusUpdateEvent.
12.4.3 CapJamSensor Property

Syntax CapJamSensor: boolean { read-only, access after open }
Remarks If true, the coin acceptor can report a mechanical jam or failure condition.
This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
12.4.4 CapNearFullSensor Property

Syntax CapNearFullSensor: boolean { read-only, access after open }
Remarks If true, the Coin Acceptor can report the condition that some cash slots are nearly full.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also FullStatus Property, StatusUpdateEvent.

314 Unified POS, V1.16.1

12.4.5 CapPauseDeposit Property

Syntax

Remarks

Errors

See Also

CapPauseDeposit: boolean { read-only, access after open }

If true, the Coin Acceptor has the capability to suspend cash acceptance processing temporarily. This
property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

pauseDeposit Method.

12.4.6 CapRealTimeData Property

Syntax

Remarks

Errors

See Also

CapRealTimeData: boolean { read-only, access after open }

Iftrue, the device is able to supply data as the money is being accepted (“real time”).
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

RealTimeDataEnabled property.

12.4.7 CurrencyCode Property

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

CurrencyCode: string { read-write, access after open }

Contains the active currency code to be used by Coin Acceptor operations.
This property is initialized to an appropriate value by the open method.
This value is guaranteed to be one of the set of currencies specified by the DepositCodeList property.

>

A UposException may be thrown when this property is accessed. For further information, see “Errors’
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL A value was specified that is not within
DepositCodeList.

DepositCodeList Property.

315

12.4.8 DepositAmount Property

Syntax

Remarks

Errors

See Also

DepositAmount: int32 { read-only, access after open }

The total amount of deposited cash.

For example, if the currency is Japanese yen and DepositAmount is set to 18057,
after the call to the beginDeposit method, there would be 18,057 yen in the Coin Acceptor.

This property is initialized to zero by the open method.
A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

CurrencyCode Property.

12.4.9 DepositCashList Property

Syntax

Remarks

Errors

See Also

DepositCashList: string { read-only, access after open }

Holds the cash units supported in the Coin Acceptor for the currency represented by the CurrencyCode
property.

It consists of ASCII numeric comma delimited values which denote the units of the coins.

Below are sample DepositCashList values in Japanese yen.

e “1,5,10,50,100,500” ---
1, 5, 10, 50, 100, and 500 yen coin.

This property is initialized by the open method, and is updated when CurrencyCode is set.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

CurrencyCode Property.

12.4.10 DepositCodeList Property

Syntax

Remarks

Errors

See Also

316

DepositCodeList: string { read-only, access after open }
Holds the currency code indicators for cash accepted.

It is a list of ASCII three-character ISO 4217 currency codes separated by commas. For example, if the
string is “JPY,USD”, then the Coin Acceptor supports both Japanese and U.S. monetary units.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

CurrencyCode Property.

Unified POS, V1.16.1

12.4.11 DepositCounts Property

Syntax DepositCounts: string { read-only, access after open }

Remarks Holds the total of the cash accepted by the cash units. Cash units inside the string are the same as the
DepositCashList property, and are in the same order.

For example if the currency is Japanese yen and string of the DepositCounts property is set to:
1:80,5:77,10:0,50:54,100:0,500:87

After the call to the beginDeposit method, there would be 80 one yen coins, 77 five yen coins, 54 fifty
yen coins, and 87 five hundred yen coins in the Coin Acceptor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CurrencyCode Property.

12.4.12 DepositStatus Property

Syntax DepositStatus: int32 { read-only, access after open-claim-enable }
Remarks Holds the current status of the coin acceptance operation. It may be one of the following values:
Value Meaning

CACC _STATUS DEPOSIT START

Cash acceptance started.
CACC STATUS DEPOSIT END

Cash acceptance stopped.
CACC_STATUS_DEPOSIT _COUNT

Counting or repaying the deposited money.
CACC_STATUS _DEPOSIT JAM

A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. This property is set to
CACC _STATUS DEPOSIT_END after initialization.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Unified POS, v1.16.1 317

12.4.13 FullStatus Property

Syntax

Remarks

Errors

FullStatus: int32 { read-only, access after open }

Holds the current full status of the cash slots. It may be one of the following:

Value Meaning
CACC_STATUS OK All cash slots are neither nearly full nor full.
CACC_STATUS FULL Some cash slots are full.

CACC_STATUS NEARFULL
Some cash slots are nearly full.

This property is initialized and kept current while the device is enabled.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

12.4.14 RealTimeDataEnabled Property

318

Syntax

Remarks

Errors

See Also

RealTimeDataEnabled: boolean {read-write, access after open-claim-enable}

Iftrue, each data event fired will update the DepositAmount and DepositCounts properties. Otherwise,
DepositAmount and DepositCounts are updated with the value of the money collected when fixDeposit
is called. Setting RealTimeDataEnabled will not cause any change in system behavior until a
subsequent beginDeposit method is performed. This prevents confusion regarding what would happen
if it were modified between a beginDeposit - endDeposit pairing.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL Cannot be set true if CapRealTimeData is false.

CapRealTimeData Property, DepositAmount Property, DepositCounts Property, beginDeposit
Method, endDeposit Method, fixDeposit Method.

Unified POS, V1.16.1

12.5 Methods (UML operations)

12.5.1 adjustCashCounts Method

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cashCounts parameter contains cash types and amounts to be initialized.

This method is called to set the initial amounts in the Coin Acceptor after initial setup, or to adjust cash
counts after replenishment or removal, such as a paid in or paid out operation. This method is called when
needed for devices which cannot determine the exact amount of cash in them automatically. If the device
can determine the exact amount, then this method call is ignored. The application would first call
readCashCounts to get the current counts, and adjust them to the amount being replenished. Then the
application will call this method to set the amount currently in the acceptor.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and the cashCounts parameter is set to
.1:80,5:77,50:54,100:0,500:87. as a result of calling the adjustCashCounts method, then there would be
eighty one yen coins, seventy-seven five yen coins, fifty-four fifty yen coins, zero one hundred yen coins,
and eighty-seven five-hundred yen coins in the Coin Acceptor.

A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

readCashCounts Method.

319

12.5.2 beginDeposit Method

Syntax

Remarks

Errors

See Also

beginDeposit ():
void { raises-exception, use after open-claim-enable }

Cash acceptance is started.

The following property values are initialized by the call to this method:
e The value of each cash unit of the DepositCounts property is set to zero.
* The DepositAmount property is set to zero.

After calling this method, cash acceptance is reported by DataEvents until fixDeposit is called while
the deposit process is not paused.

A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

YValue Meaning
E ILLEGAL The call sequence is not correct.

DepositAmount Property, DepositCounts Property, endDeposit Method, fixDeposit Method,
pauseDeposit Method.

12.5.3 endDeposit Method

320

Syntax

Remarks

Errors

See Also

endDeposit (success: int32):
void { raises-exception, use after open-claim-enable }

The success parameter holds the value of how to deal with the cash that was deposited. Contains one of
the following values:

Parameter Description
CACC DEPOSIT COMPLETE The deposit is accepted and the deposited amount is equal to or
less than the amount required.

Cash acceptance is completed.

Before calling this method, the application must calculate the difference between the amount of the
deposit and the amount required.

The application must call the fixDeposit method before calling this method.

A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

YValue Meaning
E ILLEGAL One of the following errors occurred:
* The call sequence is invalid. beginDeposit and fixDeposit must be
called in sequence before calling this method.

DepositAmount Property, DepositCounts Property, beginDeposit Method, fixDeposit Method,
pauseDeposit Method.

Unified POS, V1.16.1

12.5.4 fixDeposit Method

Syntax

Remarks

Errors

See Also

fixDeposit ():
void { raises-exception, use after open-claim-enable }

When this method is called, all property values are updated to reflect the current values in the Coin
Acceptor.

A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL One of the following errors occurred:
* The call sequence is invalid. beginDeposit must be called before calling
this method.

DepositAmount Property, DepositCounts Property, beginDeposit Method, endDeposit Method,
pauseDeposit Method.

12.5.5 pauseDeposit Method

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

pauseDeposit (control: int32):
void { raises-exception, use after open-claim-enable }

The control parameter contains one of the following values:

Parameter Description
CACC_DEPOSIT PAUSE Cash acceptance is paused.
CACC _DEPOSIT RESTART Cash acceptance is resumed.

Called to suspend or resume the process of depositing cash.

If control is CACC_DEPOSIT PAUSE, the cash acceptance operation is paused. The deposit process
will remain paused until this method is called with control set to CACC_DEPOSIT RESTART. It is
valid to call fixDeposit then endDeposit while the deposit process is paused.

When the deposit process is paused, the DepositCounts and DepositAmount properties are updated to
reflect the current state of the Coin Acceptor. The property values are not changed again until the deposit
process is resumed.

If control is CACC_DEPOSIT RESTART, the deposit process is resumed.

A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL One of the following errors occurred:
* The call sequence is invalid. beginDeposit must be called before calling
this method.

* The deposit process is already paused and control is set to
CACC_DEPOSIT PAUSE, or the deposit process is not paused and
control is set to CACC_DEPOSIT RESTART.

CapPauseDeposit Property, DepositAmount Property, DepositCounts Property, beginDeposit
Method, endDeposit Method, fixDeposit Method.

321

12.5.6 readCashCounts Method

322

Syntax

Remarks

Errors

See Also

readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description

cashCounts The cash count data is placed into the string cashCounts.

discrepancy If discrepancy is set to true by this method, then there is some cash which was
not able to be included in the counts reported in cashCounts; otherwise it is
set false.

Each unit in cashCounts matches a unit in the DepositCashList property, and is in the same order.

For example if the currency is Japanese yen and string returned in cashCounts is set to:
1:80,5:77,10:0,50:54,100:0,500:87

as a result of calling the readCashCounts method, then there would be 80 one yen coins, 77 five yen

coins, 54 fifty yen coins, and 87 five hundred yen coins in the Coin Acceptor.

Usually, the cash total calculated by cashCounts parameter is equal to the cash total in a Coin Acceptor.
There are some cases where a discrepancy may occur because of existing uncountable cash in a Coin
Acceptor. An example would be when a cash slot is “overflowing” such that the device has lost its ability
to accurately detect and monitor the cash.

A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

DepositCashList Property.

Unified POS, V1.16.1

12.6 Events (UML interfaces)

12.6.1 DataEvent
<< event >> upos::events::DataEvent
Status: int32 { read-only }
Description Notifies the application when one or more coins have been accepted.
Attributes This event contains the following attribute:

Attributes Type Description
Status int32 The Status parameter contains zero.

12.6.2 DirectlOEvent

<<event >> upos::events::DirectlOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object {read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Coin Acceptor Service to provide events to the application that are not otherwise supported by
the Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and the
Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service. This
property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Coin
Acceptor devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directlO Method.

Unified POS, v1.16.1 323

12.6.3 StatusUpdateEvent

<<event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the status of the Coin Acceptor device.
Attributes This event contains the following attribute:
Attributes Type Description

Status int32 Indicates a change in the status of the unit. See values below.

Note that Release 1.3 added Power State Reporting with additional Power
reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 2.
The Status parameter contains the Coin Acceptor status condition:

Value Meaning

CACC_STATUS FULL Some cash slots are full.
CACC_STATUS NEARFULL Some cash slots are nearly full.
CACC_STATUS_FULLOK No cash slots are either full or nearly full.
CACC_STATUS JAM A mechanical fault has occurred.
CACC_STATUS JAMOK A mechanical fault has recovered.

Remarks Fired when the Coin Acceptor detects a status change.

For changes in the fullness levels, the Coin Acceptor is only able to fire StatusUpdateEvents when the
device has a sensor capable of detecting the full or near full states and the corresponding capability
properties for these states are set.

Jam conditions may be reported whenever this condition occurs.

See Also “Events” on page 15.

324 Unified POS, V1.16.1

13 Coin Dispenser

13.1 General

This Chapter defines the Coin Dispenser device category.

13.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.2 Not supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.0 open
Claimed: boolean { read-only } 1.0 open
DataCount: int32 { read-only } 1.2 Not supported
DataEventEnabled: boolean { read-write } 1.0 Not supported
DeviceEnabled: boolean { read-write } 1.0 open & claim
FreezeEvents: boolean { read-write } 1.0 open
OutputID: int32 { read-only } 1.0 Not supported
PowerNotify: int32 { read-write } 1.3 open
PowerState: int32 { read-only } 1.3 open
State: int32 { read-only } 1.0 --
DeviceControlDescription: string { read-only } 1.0 --
DeviceControlVersion: int32 { read-only } 1.0 -
DeviceServiceDescription: string { read-only } 1.0 open
DeviceServiceVersion: int32 { read-only } 1.0 open
PhysicalDeviceDescription: string { read-only } 1.0 open
PhysicalDeviceName: string { read-only } 1.0 open

Unified POS, v1.16.1 325

326

Properties (Continued)

Specific Type Mutability Version
CapEmptySensor: boolean { read-only } 1.0
CapJamSensor: boolean { read-only } 1.0
CapNearEmptySensor: boolean { read-only } 1.0
DispenserStatus: int32 { read-only } 1.0

Methods (UML operations)

Common

Name

open (logicalDeviceName: string):
void { raises-exception }
close ():
void { raises-exception, use after open }

claim (timeout: int32):
void { raises-exception, use after open }

release ():
void { raises-exception, use after open, claim }

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

clearInput ():
void {}

clearInputProperties ():
void { }

clearOQutput ():
void {}

directlO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32
):

void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

May Use After
open
open
open

open, claim, & enable

Version

1.0

1.0

1.0

1.0

1.0
Not supported
Not supported
Not supported

1.0

1.9

1.8

1.8

1.9

1.8

Unified POS, V1.16.1

Methods (UML. operations) - continued
Specific

Name

adjustCashCounts (cashCounts: string):
void { raises-exception, use after open, claim, enable }

dispenseChange (amount: int32):
void { raises-exception, use after open, claim, enable }

readCashCounts (inout cashCounts: string, inout discrepancy: boolean

void { raises-exception, use after open, claim, enable }

Events (UML interfaces)
Name Type Mutability

upos::events::DataEvent Not supported

upos::events::DirectlOEvent

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent Not supported
upos::events::OQutputCompleteEvent Not supported

upos::events::StatusUpdateEvent

Status: int32 { read-only }

Unified POS, v1.16.1

Version

1.11

1.0

1.11

Version

1.0

1.0

327

13.3 General Information

The Coin Dispenser programmatic name is “CoinDispenser.”
13.3.1 Capabilities Updated in Release 1.11

The coin dispenser has the following capability:

« Supports a method that allows a specified amount of change to be dispensed from the device.

The coin dispenser may have the following additional capabilities:

- Status reporting, which indicates empty coin slot conditions, near empty coin slot conditions, and coin slot
jamming conditions.

- Starting with Release 1.11, reporting of a possible (or probable) cash count discrepancy in the data reported by
the readCashCounts method.

328 Unified POS, V1.16.1

13.3.2 Coin Dispenser Class Diagram

The following diagram shows the relationships between the Coin Dispenser classes.

Updated in Release 1.11

<<Interface>>
BaseControl
(fromupos)
Sopen()
Yclose()
Sclaim()
ScompareFimwareVersion() <<utility>>
Sreease() <<uses>> UposConst
<<sends>> ‘resetsmtiSticso |- T (from upos)
s -
<<exception>> =TT :Zgﬁ"pﬁ?;ﬂo
UposException &~~~
fromup 5:) :clearhmeropaties() /\
clearOutput ()
SdirectiO()
N SretieweStatistics()
N SupdateFirmware() "
N oy <<utility>>
N SupdateStatstics() Coinl]spen;lerConst
A N (from upos
N [l
<<sends>> -~ | - -
AN | uses>>
N : e
<<ewent>> <<Interface>>
DirectlOEvent CoinDispenserControl
(from events) i fomupog
&<<prop>> EventNumber : int32 es 8 <<capability>> CapEnptySensor : boolean
<<prop>> Data : int32 "~ |[&j<<capabiity>> CaplamSensor : boolean
&<<prop>> Obj : object %«capability» CapNeaEmptySensor : boolean
& <<capabiity>> DispenserStatus : int32
®adjustCashCounts(cashCourts : string) : woid
fires B dispenseChange(amount : int32) : void
$readCashCounts(cashCounts : string, discrepancy : boolean) : void
<<event>> /
StatusUpdateEvent
(from events)

G<<prop>> Status : int32

Unified POS, v1.16.1

329

13.3.3 Coin Dispenser Sequence Diagram Added in Release 1.7

The following sequence diagram shows the typical usage of the Coin Dispenser device, showing coin dispensing
and the firing of a StatusUpdateEvent due to coin status getting low.

NOTE: we are assuming that the :ClientApp already successfully registered handlers for events and opened, claimed
and enabled the CoinDispenser device. This means that the Claimed, DeviceEnabled properties are == true

‘ :ClientApp ‘ ‘ :CoinDispenser

J |

1: dispenseChange(amount1)

‘ :StatusUpdateE vent ‘ :CoinDispenserSenice

2: dispenseGhange(amount1)

3: dispenseChange(amaqunt2)

4: dispenseChange(amount2)

Assume that after this

point the CoinDispenser
T change is getting low

5: update DispenserStatus to COIN_STATUS_NEAR_EMPTY [CapNearEmptyStatus == true]
<

7: deliver SUE event to control

:ClientApp event 6: create new SUE event
handling code executes
and takes appropriate
action (like informing

user)

At this point the ‘
\

8: deliver StatusUpdateEvent to all registered handlers

: notify client of new event PR

330 Unified POS, V1.16.1

13.3.4 Coin Dispenser State Diagram Updated in Release 1.11

The following diagram illustrates the various state transitions within the Coin Dispenser device category.

release
setDeviceEnabled

Enabled

readCashC@

done
Jammed Fire Events
fire event

Unified POS, v1.16.1

331

13.3.5 Model Updated in Release 1.11

The general model of a coin dispenser is:

« Consists of a number of coin slots which hold the coinage to be dispensed. The application using the Coin
Dispenser Service is not concerned with controlling the individual slots of coinage, but rather calls a method with
the amount of change to be dispensed. It is the responsibility of the coin dispenser device or the Service to
dispense the proper amount of change from the various slots.

Starting with Release 1.11:
« Sets cash in the device programatically by adding amount to counts when cash is added.

« Reads cash counts from device, either directly from the hardware, or from the service, by tracking what is
dispensed and what has been added to the device.

13.3.6 Device Sharing

The coin dispenser is an exclusive-use device, as follows:
« The application must claim the device before enabling it.

« The application must claim and enable the device before accessing some of the properties, dispensing change, or
receiving status update events.

« See the “Summary” table for precise usage prerequisites.

332 Unified POS, V1.16.1

13.4 Properties (UML attributes)

13.4.1 CapEmptySensor Property

Syntax

Remarks

Errors

CapEmptySensor: boolean { read-only, access after open }

If true, the coin dispenser can report an out-of-coinage condition.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

13.4.2 CapJamSensor Property

Syntax

Remarks

Errors

CapJamSensor: boolean { read-only, access after open }

If true, the coin dispenser can report a mechanical jam or failure condition.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

13.4.3 CapNearEmptySensor Property

Syntax

Remarks

Errors

CapNearEmptySensor: boolean { read-only, access after open }

If true, the coin dispenser can report when it is almost out of coinage.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

13.4.4 DispenserStatus Property

Syntax

Remarks

Errors

Unified POS, v1.16.1

DispenserStatus: int32 { read-only, access after open-claim-enable }
Holds the current status of the dispenser. It has one of the following values:

Value Meaning
COIN_STATUS OK Ready to dispense coinage. This value is also set when the dispenser is unable
to detect an error condition.
COIN_STATUS_EMPTY
Cannot dispense coinage because the dispenser is empty.
COIN_STATUS NEAREMPTY
Can still dispense coinage, but the dispenser is nearly empty.
COIN_STATUS JAM A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. This property is synonymous to
the DeviceStatus in the Cash Changer.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

333

13.5 Methods (UML operations)

13.5.1 adjustCashCounts Method Added in Release 1.11
Syntax adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }
Parameter Description
cashCounts The cashCounts parameter contains cash types and amounts to be initialized.
Remarks This method is called to set the initial amounts in the Coin Dispenser after initial setup, or to adjust cash

counts after replenishment or removal, such as a paid in or paid out operation. This method is called when
needed for devices which cannot determine the exact amount of cash in them automatically. If the device
can determine the exact amount, then this method call is ignored. The application would first call
readCashCounts to get the current counts, and adjust them to the amount being replenished. Then the
application will call this method to set the amount currently in the dispenser.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and the cashCounts parameter is set to
.1:80,5:77,50:54,100:0,500:87. as a result of calling the adjustCashCounts method, then there would be
eighty one yen coins, seventy-seven five yen coins, fifty-four fifty yen coins, zero one hundred yen coins,
and eighty-seven five-hundred yen coins in the Coin Dispenser.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also readCashCounts Method.
13.5.2 dispenseChange Method

Syntax dispenseChange (amount: int32):
void { raises-exception, use after open-claim-enable }

The amount parameter contains the amount of change to be dispensed.

Remarks Dispenses change. The value represented by the amount parameter is a count of the currency units to
dispense (such as cents or yen).

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL An amount parameter value of zero was specified, or the amount parameter
contained a negative value or a value greater than the device can dispense.

334 Unified POS, V1.16.1

13.5.3 readCashCounts Method Added in Release 1.11

Syntax

Remarks

Errors

Unified POS, v1.16.1

readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description

cashCounts The cash count data is placed into cashCounts.

discrepancy If discrepancy is set to true by this method, then there is some cash which was
not able to be included in the counts reported in cashCounts; otherwise it is
set false.

The format of the string cashCounts is an ASCII string. The string has a set of comma separated units.
Each unit in cashCounts indicates a denomination of a unit as well as a count of those units, separated
by a colon ().

For example if the currency is Japanese yen and string returned in cashCounts is set to:
1:80,5:77,10:0,50:54,100:0

as a result of calling the readCashCounts method, then there would be 80 one yen coins, 77 five yen
coins, and 54 fifty yen coins in the Coin Dispenser.

A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

335

13.6 Events (UML interfaces)

13.6.1 DirectlOEvent

<< event >> upos::events::DirectlOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object {read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Coin Dispenser Service to provide events to the application that are not otherwise supported by
the Control.

Attributes This event contains the following attributes:

Attribute Type _ Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and the
Service. This property is settable.

Obj Object Additional data whose usage varies by the EventNumber and Service. This
property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Coin
Dispenser devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.

336 Unified POS, V1.16.1

13.6.2 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent

Description
Attributes

Remarks

See Also

Unified POS, v1.16.1

Status: int32 { read-only }
Notifies the application of a sensor status change.
This event contains the following attribute:

Attribute Type Description
Status int32 The status reported from the Coin Dispenser.

The Status attribute has one of the following values:

Value Meaning
COIN_STATUS OK Ready to dispense coinage. This value is also set when the dispenser is unable
to detect an error condition.

COIN_STATUS_EMPTY
Cannot dispense coinage because the dispenser is empty.

COIN_STATUS NEAREMPTY
Can still dispense coinage, but the dispenser is nearly empty.

COIN_STATUS JAM A mechanical fault has occurred.

Note that Release 1.3 added Power State Reporting with additional Power
reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 1.

This event applies for status changes of the sensor types supported, as indicated by the capability
properties. It also applies if Power State Reporting is enabled.

“Events” on page 15.

337

338 Unified POS, V1.16.1

14 Electronic Journal

14.1 General

This Chapter defines the Electronic Journal device category.

14.2 Summary

Properties (UML attributes)

Common

AutoDisable:

CapCompareFirmwareVersion:

CapPowerReporting:
CapStatisticsReporting:
CapUpdateFirmware:
CapUpdateStatistics:
CheckHealthText:
Claimed:

DataCount:
DataEventEnabled:
DeviceEnabled:
FreezeEvents:
OutputID:
PowerNotify:
PowerState:

State:

DeviceControlDescription:

DeviceControlVersion:
DeviceServiceDescription:

DeviceServiceVersion:

PhysicalDeviceDescription:

PhysicalDeviceName:

Unified POS, v1.16.1

Type
boolean
boolean
int32
boolean
boolean
boolean
string
boolean
int32
boolean
boolean
boolean
int32
int32
int32
int32
string
int32
string
int32
string

string

Mutability
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-write }
{ read-write }
{ read-write }
{ read-only }
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

Version
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10

May Use After
open
open
open
open
open
open
open
open
open
open

open & claim
open
open
open

open

open
open
open

open

339

Properties (Continued)

Specific: Type Mutability Version May Use After
AsyncMode: boolean {read-write} 1.10 open
CapAddMarker: boolean {read-only} 1.10 open
CapErasableMedium: boolean {read-only} 1.10 open
CaplnitializeMedium: boolean {read-only} 1.10 open
CapMediumlIsAvailable: boolean {read-only} 1.10 open
CapPrintContent: boolean {read-only} 1.10 open
CapPrintContentFile: boolean {read-only} 1.10 open
CapRetrieveCurrentMarker: boolean {read-only} 1.10 open
CapRetrieveMarker: boolean {read-only} 1.10 open
CapRetrieveMarkerByDateTime: boolean {read-only} 1.10 open
CapRetrieveMarkersDateTime: boolean {read-only} 1.10 open
CapStation: int32 {read-only} 1.10 open
CapStorageEnabled: boolean {read-only} 1.10 open
CapSuspendPrintContent: boolean {read-only} 1.10 open
CapSuspendQueryContent: boolean {read-only} 1.10 open
CapWaterMark: boolean {read-only} 1.10 open
FlagWhenldle: boolean {read-write} 1.10 open
MediumFreeSpace: currency {read-only} 1.10 open, claim & enable
MediumID: string {read-only} 1.10 open, claim & enable
MediumlIsAvailable: boolean {read-only} 1.10 open, claim & enable
MediumSize: currency {read-only} 1.10 open, claim & enable
Station: int32 {read-write} 1.10 open
StorageEnabled: boolean {read-write} 1.10 open, claim & enable
Suspended: boolean {read-only} 1.10 open
WaterMark: boolean {read-write} 1.10 open

340 Unified POS, V1.16.1

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string): 1.10
void { raises-exception }

close (): 1.10
void { raises-exception, use after open }

claim (timeout: int32): 1.10
void { raises-exception, use after open }

release (): 1.10
void { raises-exception, use after open, claim }

checkHealth (level: int32): 1.10
void { raises-exception, use after open, claim, enable }

clearInput (): 1.10
void { raises-exception, use after open, claim }

clearInputProperties (): Not supported
void { }

clearOQutput (): 1.10
void { raises-exception, use after open, claim }

directlO (command: int32, inout data: int32, inout obj: object): 1.10
void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.10
void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string): 1.10
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string): 1.10
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string): 1.10
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string): 1.10
void { raises-exception, use after open, claim, enable }

Specific

Name

addMarker (marker: string): 1.10
void { raises-exception, use after open, claim, enable }

cancelPrintContent (): 1.10
void { raises-exception, use after open, claim, enable }

cancelQueryContent (): 1.10
void { raises-exception, use after open, claim, enable }

eraseMedium (): 1.10

void { raises-exception, use after open, claim, enable }

initializeMedium (mediumlID: string): 1.10
void { raises-exception, use after open, claim, enable }

printContent (fromMarker: string, toMarker: string): 1.10
void { raises-exception, use after open, claim, enable }

Unified POS, v1.16.1 341

342

printContentFile (fileName: string):
void { raises-exception, use after open, claim, enable }

queryContent (fileName: string, fromMarker: string, toMarker: string):
void { raises-exception, use after open, claim, enable }

resumePrintContent ():
void { raises-exception, use after open, claim, enable }

resumeQueryContent ():
void { raises-exception, use after open, claim, enable }

retrieveCurrentMarker (markerType: int32, out marker: string):
void { raises-exception, use after open, claim, enable }

retrieveMarker (markerType: int32, sessionNumber: inf32, document-
Number: int32, out marker: string):
void { raises-exception, use after open, claim, enable }

retrieveMarkerByDateTime (markerType: int32, dateTime: string,
markerNumber: string, out marker: string):
void { raises-exception, use after open, claim, enable }

retrieveMarkersDateTime (marker: string, out dateTime: string):
void { raises-exception, use after open, claim, enable }

suspendPrintContent ():

void { raises-exception, use after open, claim, enable }

suspendQueryContent ():

void { raises-exception, use after open, claim, enable }

Events (UML interfaces)

{ read-only }

{ read-only }
{ read-write }

{ read-write }

{ read-only }
{ read-only }
{ read-only }

{ read-write }

{ read-only }

Name Type Mutability
upos::events::DataEvent

Status: int32
upos::events::DirectlOEvent

EventNumber: int32

Data: int32

Obj: object
upos::events::ErrorEvent

ErrorCode: int32

ErrorCodeExtended: int32

ErrorLocus: int32

ErrorResponse: int32
upos::events::OQutputCompleteEvent

OutputID: int32
upos::events::StatusUpdateEvent

Status: int32

{ read-only }

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

1.10

Version

1.10

1.10

1.10

1.10

1.10

Unified POS, V1.16.1

14.3 General Information

The Electronic Journal programmatic name is “ElectronicJournal.”

This device was introduced in Version 1.10 of this specification.

14.3.1 Capabilities

The Electronic Journal device stores records of transactions into digital media as electronic data. If the recording
function of the Electronic Journal device is enabled, then it starts storing all print data that is output to the
POSPrinter or FiscalPrinter device. In the case of the FiscalPrinter device, the Fiscal Printing output is stored at
all times.

The Electronic Journal has the following capabilities.
« Stores transaction data.
« Transfers stored data.
The Electronic Journal may also have the following additional capabilities.
« Prints stored data on the attached POSPrinter or FiscalPrinter.
« Erases stored data.
« Initializes recording medium.
The Electronic Journal may also have the following special capabilities in fiscal environments.

« Provides the ability to re-print entire fiscal documents and tickets specifying a range of ticket numbers or ticket
dates and times.

Unified POS, v1.16.1 343

14.3.2 Electronic Journal Class Diagram

The following diagram shows the relationships between the Electronic Journal device classes.

<<exception>> <<Interface>> <<utility>> <<utility>>
UposException BaseControl UpesEus] ElectronicJournalConst
(fromupos) < —— —— (fromupos) | > (from upos) <] (from upos)
<<sends>> <<uses>>
5 7
\ \ <<uses>>/
<<sends>
<<event>>
DataEvent

(from events)
<<prop>> Status : int32

<<Interface>>
ElectronicJournalControl
(from upos)

fires

<<event>>
ErrorEvent
(from events)
<<<prop>> ErrorCode : int32
<i<<prop>> ErrorCodeExtended : int32
<i<<prop>> ErrorLocus : int32 fires
<a<<prop>> ErrorResponse : int32 ~—|

<<event>>
OutputCompleteEvent
(from events)
<<<prop>> OutputID : int32

&<<prop>> AsyncMode : boolean

&@<<capability>> CaplnitializeMedium : boolean
i<<capability>> CapErasableMedium : boolean
«<<capability>> CapPrintContent : boolean
&<<capability>> CapPrintContentFile : boolean
@<<capability>> CapStation : int32

@<<capability>> CapSuspendPrintContent : boolean
&<<capability>> CapSuspendQueryContent : boolean
i<<capability>> CapWaterMark : boolean
w<<capability>> CapMediumisAvailable : boolean
i<<capability>> CapRetrieveMarker : boolean
@<<capability>> CapRetrieveMarkerByDateTime : boolean
@<<capability>> CapRetrieveCurrentMarker : boolean
&<<capability>> CapRetrieveMarkersDateTime : boolean
z<<capability>> CapAddMarker : boolean
z<<capability>> CapStorageEnabled : boolean
&<<prop>> FlagWhenldle : boolean

&<<prop>> MediumID : string

&<<prop>> MediumSize : currency

&<<prop>> MediumFreeSpace : currency

“<<prop>> MediumisAvailable : boolean

z<<prop>> StorageEnabled : boolean

&<<prop>> Station : int32

&<<prop>> Suspended : boolean

@<<prop>> WaterMark : boolean

fires
<<event>> /

StatusUpdateEvent -
(from events)
2<<prop>> Status : int32

SaddMarker(marker : string) : void

ScancelPrintContent () : void

®cancelQueryContent () : void

RinitializeMedium (mediumID : string) : void
®eraseMedium () : void

SprintContent (fromMarker : string, toMarker : string) : void
SprintContentFile (fileName : string) : void

SqueryContent (fileName : string, fromMarker : string, toMarker : string) : void

SresumePrintContent () : void
®resumeQueryContent () : void
®suspendPrintContent () : void
®suspendQueryContent () : void

SretrieveMarker(markerType : int32, sessionNumber : int32, documentNumber : int32, out marker : string) : void
SretrieveMarkerByDate Time(markerType : int32, dateTime : string, markerNumber : string, out marker : string) : void

SretrieveCurrentMarker(markerType : int32, out marker : string) : void

SretrieveMarkersDate Time(marker : string, out dateTime : string) : void

344

Unified POS, V1.16.1

14.3.3 Model

The Electronic Journal writing process is started implicitly when a printing method for the POSPrinter or
FiscalPrinter is performed. All output is performed on a first-in first-out basis. Therefore, an ErrorEvent is
delivered if the writing process fails.

The writing process of the POSPrinter or FiscalPrinter may result in a failure, in this case an ErrorEvent is
delivered.

+ The following methods are always performed synchronously: addMarker, retrieveCurrentMarker,
retrieveMarker, retrieveMarkerByDateTime, retrieveMarkersDateTime, and checkHealth. These methods
will fail if output to the POSPrinter or FiscalPrinter is outstanding.

 The suspendPrintContent and suspendQueryContent methods are also always performed synchronously.
These methods attempt to stop printing (that is, at the very next printer operation). They may be called when
asynchronous output is outstanding. These methods are primarily intended for use in exception conditions when
asynchronous output is outstanding.

« The following methods are performed either synchronously or asynchronously, depending on the value of the
AsyncMode property: eraseMedium, initializeMedium, printContent, printContentFile, and queryContent.
When AsyncMode is false, then these methods are performed synchronously.

A marker can be placed where to store data and it can be used as an index. It can be added at the beginning and
end of data to indicate the data range when getting or printing stored data.

During asynchronous data printing or transfer process, it can be suspended by interrupt methods.

In fiscal environments the markers are set implicitly by the FiscalPrinter device. The stored data is organized in
sessions that correspond to the fiscal days. These sessions contain documents that correspond to fiscal tickets.
Sessions and documents can be queried by the application indirectly using the retrieveMarker,
retrieveMarkerByDateTime, and retrieveCurrentMarker methods. The returned markers are intended to be
used with the printContent and queryContent methods. The content and format of the markers are
implementation specific and need not be known or analyzed by the application.

An Electronic Journal device combines both the properties of an input device (query) and an output device (store
and print).

The data stored on the electronic journal medium are the printing lines that have been issued to the attached
POSPrinter or FiscalPrinter device. The data format of the stored information depends upon the physical device
model. The data should be stored in nonvolatile storage; e.g., flash cards, memory cards, CD-RW, and HDD can
be used as the physical media. There is no need to distinguish the differences between the physical media.

If the recording medium can be removed from or inserted into the device, a StatusUpdateEvent is delivered
when the medium status is changed. Additionally, the medium status can be checked and it can be initialized if
necessary.

The primary responsibility is storing transaction data as it is, so there are no functions to convert or reprocess the
data.

Unified POS, v1.16.1 345

14.3.4 Device Sharing

The Electronic Journal is an exclusive-use device, as follows:
« The application must claim the device before enabling it.

« The application must claim and enable the device before accessing many of the Electronic Journal specific
properties.

« The application must claim and enable the device before calling methods that manipulate the device.

« See the “Summary” table for precise usage prerequisites.

346 Unified POS, V1.16.1

14.3.5 Electronic Journal Sequence Diagrams

Various sequence diagrams are used to illustrate how the Electronic Journal API can be used. These scenarios

are designed to show the rationale and key concepts behind the structure of the API.

Unified POS, v1.16.1

: Application

: ElectronicJournalControl

: POSPrinterControl

open()

claim()

k

setDeviceEnabled(true)

setDataEventEnabled(true) /I—ﬁ

setStorageEnabled(true) ‘

g

addMarker(1) ‘

pri ntNormaI(PTR_S_JRECEIPT, "Receipt#1")

addMarker(2)

write data

\
u‘
|
|

printNormal(PTR_S_|RECEIPT, "Receipt #2")

1

queryContent("data.bin", 1, 2)

write data

|
|

notify of DataEvent

)

— 1

close()

—]

|
i

J
J

347

348

The following sequence diagram shows how markers are intended to be used in the fiscal environment. The
querying of the FiscalPrinter device for the needed markers is processed implicitly and therefore not shown

below.

: Application

: ElectronicJournalConst

retrieveMarker(EJ_MT_SESSION_BEG, 1, 0, marker1)

maker1

retrieveMarker(EJ_MT_SESSION_END, 1, 0, marker2)

marker2

printContent(marker1, marker2)

queryContent("data.bin", marker1, marker2)

7

Unified POS, V1.16.1

14.3.6 Electronic Journal State Diagram

The following diagram illustrates the various state transitions within the Electronic Journal device.

. printContent(), printContentFile(), queryContent()

N IM W (
ormalMode suspendPrintContent() SuspendMode

suspendQueryContent()

resumePrintContént(), cancelPrintContent(),
resumeQueryContent(), cancelQueryContent()

Unified POS, v1.16.1 349

14.4 Properties (UML Attributes)

14.4.1 AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, then the print methods will be performed asynchronously.
If false, they will be performed synchronously.
This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

14.4.2 CapAddMarker Property

Syntax CapAddMarker: boolean {read-only, access after open}

Remarks If true, the application can use the addMarker method. Usually this property is false for fiscal EJ
devices. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also addMarker Method.
14.4.3 CapErasableMedium Property

Syntax CapErasableMedium: boolean {read-only, access after open}

Remarks If true, the storage medium can be erased. If false, it is impossible.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

14.4.4 CaplnitializeMedium Property

Syntax CaplnitializeMedium: boolean { read-only, access after open }

Remarks If true, the application can initialize the medium. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
14.4.5 CapMediumlisAvailable Property Updated in Release 1.11
Syntax CapMediumlIsAvailable: boolean { read-only, access after open }

Remarks If true, the application can check whether a recording medium is available or not.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also MediumlIsAvailable Property.

350 Unified POS, V1.16.1

14.4.6 CapPrintContent Property Updated in Release 1.11

Syntax CapPrintContent: boolean { read-only, access after open }

Remarks If true, the device is able to reprint stored journal documents directly on a connected printing device.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also printContent Method.
14.4.7 CapPrintContentFile Property Updated in Release 1.11

Syntax CapPrintContentFile: boolean { read-only, access after open }

Remarks If true, the device is able to print journal documents extracted from the storage medium on a connected
printing device.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also printContentFile Method.

14.4.8 CapRetrieveCurrentMarker Property

Syntax CapRetrieveCurrentMarker: boolean {read-only, access after open}

Remarks If true, the application can use the retrieveCurrentMarker method. Usually this property is true for
fiscal EJ devices.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also retrieveCurrentMarker Method.
14.4.9 CapRetrieveMarker Property

Syntax CapRetrieveMarker: boolean {read-only, access after open}

Remarks If true, the application can use the retrieveMarker method. Usually this property is true for fiscal EJ
devices.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also retrieveMarker Method.

Unified POS, v1.16.1 351

14.4.10 CapRetrieveMarkerByDateTime Property

Syntax CapRetrieveMarkerByDateTime: boolean {read-only, access after open}

Remarks If true, the application can use the retrieveMarkerByDateTime method. Usually this property is
true for fiscal EJ devices. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also retrieveMarkerByDateTime Method.
14.4.11 CapRetrieveMarkersDateTime Property

Syntax CapRetrieveMarkersDateTime: boolean {read-only, access after open}

Remarks If true, the application can use the retrieveMarkersDateTime method. Usually this property is true for
fiscal EJ devices. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
See Also retrieveMarkersDateTime Method.

14.4.12 CapStation Property

Syntax CapStation: int32 { read-only, access after open }

Remarks This capability indicates the availability of data capturing.
CapStation property is a logical OR combination of any of the following values:

Value Meaning
EJ S RECEIPT Captures data output into receipt station and stores it into the medium.
EJ S SLIP Captures data output into slip station and stores it into the medium.
EJ S JOURNAL Captures data output into journal station and stores it into the medium.
This property is initialized by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

14.4.13 CapStorageEnabled Property

Syntax CapStorageEnabled: boolean { read-only, access after open }

Remarks This property indicates whether the recording of print data can be controlled by the
StorageEnabled property, i.e., can be changed. If false, StorageEnabled is always set to true.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also StorageEnabled Property.

352 Unified POS, V1.16.1

14.4.14 CapSuspendPrintContent Property

Syntax CapSuspendPrintContent: boolean { read-only, access after open }

Remarks If true, the printing process can be suspended.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also Suspended Property.
14.4.15 CapSuspendQueryContent Property

Syntax CapSuspendQueryContent: boolean { read-only, access after open }

Remarks If true, the data acquiring process can be suspended.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also Suspended Property.
14.4.16 CapWaterMark Property

Syntax CapWaterMark: boolean { read-only, access after open }

Remarks If true, the device is able to print specific predefined background when reprinting journal documents.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

14.4.17 FlagWhenldle Property

Syntax FlagWhenldle: boolean { read-write, access after open }

Remarks If true, a StatusUpdateEvent will be enqueued when the device is in the idle state.
This property is automatically reset to false when the status event is delivered.

The main use of idle status event that is controlled by this property is to give the application control when
all outstanding asynchronous outputs have been processed. The event will be enqueued if the outputs
were completed successfully or if they were cleared by the clearQutput method or by an ErrorEvent
handler.

If the State is already set to S IDLE when this property is set to true, then a StatusUpdateEvent is
enqueued immediately. The application can therefore depend upon the event, with no race condition
between the starting of its last asynchronous output and the setting of this flag.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
See Also State Property, clearOutput Method.

Unified POS, v1.16.1 353

14.4.18 MediumFreeSpace Property

Syntax
Remarks

Errors

MediumFreeSpace: currency { read-only, access after open-claim-enable }

Holds the size of the remained free space on the storage medium in bytes. After each storing process
caused by printing with POSPrinter or FiscalPrinter device, this value is decreased. It notifies
StatusUpdateEvent when free space is near empty or empty.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

14.4.19 MediumID Property

Syntax MediumlD: string { read-only, access after open-claim-enable }

Remarks This property indicates identification of the currently plugged medium. It holds a value from the physical
medium, so is initialized when enabled. If
it is not possible to obtain any information from the physical medium, then this property is initialized to
an empty string.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

14.4.20 MediumlisAvailable Property Updated in Release 1.11

Syntax MediumlIsAvailable: boolean { read-only, access after open-claim-enable }

Remarks Indicates whether a recording medium is attached or not. This information is only available if
CapMediumlIsAvailable is true.

If true, a recording medium is attached. If false, it is not attached.
If the storage medium is not exchangeable, this property is always set true.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapMediumIsAvailable Property.

14.4.21 MediumSize Property

Syntax

Remarks
Errors

354

MediumSize: currency { read-only, access after open-claim-enable }

Holds the size of the storage medium in bytes.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Unified POS, V1.16.1

14.4.22 Station Property

Syntax

Remarks

Errors

Station: int32 { read-write, access after open }

Set the station for subsequent data storing into the medium. Station is a logical OR combination of
any of the following values.

Value Meaning

EJ S RECEIPT Captures data output into receipt station of POSPrinter or FiscalPrinter
and stores it into the medium.

EJ S SLIP Captures data output into slip station of POSPrinter or FiscalPrinter and
stores it into the medium.

EJ S JOURNAL Captures data output into journal station of POSPrinter or FiscalPrinter
and stores it into the medium.

This property is initialized to EJ S RECEIPT by the open method.

A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

14.4.23 StorageEnabled Property Updated in Release 1.11

Syntax
Remarks

Errors

See Also

StorageEnabled: boolean { read-write, access after open-claim-enable }

If true, the device is in a recordable state. Data output to the POSPrinter or FiscalPrinter is stored on the
medium as electronic information sequentially. The Station property must be specified in advance to
specify what station is available to record.

If false, the device has been disabled to record data.

This property is initialized to false by the open method.

A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E FAILURE The device cannot move to the recordable state.

Station Property.

14.4.24 Suspended Property

Syntax
Remarks

Errors

See Also

Unified POS, v1.16.1

Suspended: boolean { read-only, access after open }
If true, the printing or data acquiring process is being suspended.

When both CapSuspendPrintContent and CapSuspendQueryContent are false, there is no
application to suspend a process. Then this property is always set to false.

A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

CapSuspendPrintContent Property, CapSuspendQueryContent Property.

355

14.4.25 WaterMark Property

Syntax WaterMark: boolean { read-write, access after open }

Remarks This property specifies whether a specific predefined background should be printed or not with journal
documents. If true, the background is printed and it is clear that the output is a reprint of the stored data.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

356 Unified POS, V1.16.1

14.5 Methods (UML operations)

14.5.1 addMarker Method

Syntax addMarker (marker: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
marker Marker identifier.

Remarks Adds a marker at the end of the data stored on the recording medium.

Specifies index numbers as arguments to specify the data range when acquiring data as a file or printing
data on the connected POSPrinter or FiscalPrinter system.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on

page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Characters that cannot be used as marker are included, or the character string
is too long to be used as the marker.

E BUSY Request cannot be performed while output is in progress. (This includes when
the POSPrinter or FiscalPrinter is busy printing.)

E EXTENDED ErrorCodeExtended = EE] EXISTING:

The marker name is already specified in current medium.
ErrorCodeExtended = EE] MEDIUM_FULL:
There is not enough free space to add a marker in current medium.

14.5.2 cancelPrintContent Method

Syntax cancelPrintContent ():
void { raises-exception, use after open-claim-enable }

Remarks Cancels the suspended data printing process.
If this method is performed successfully, remaining data is not printed.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

14.5.3 cancelQueryContent Method

Syntax cancelQueryContent ():
void { raises-exception, use after open-claim-enable }

Remarks Cancel the suspended data transfer process.
If this method is performed, no file to store data is created.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Unified POS, v1.16.1 357

14.5.4 eraseMedium Method

Syntax eraseMedium ():
void { raises-exception, use after open-claim-enable }

Remarks All the data in this medium is erased. Marker information is erased too.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

When performed asynchronously, the results are notified with an event. If the method succeeds and
OutputCompleteEvent is delivered, otherwise an ErrorEvent will be delivered.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E FAILURE Failed to erase data.

See Also AsyncMode Property.
14.5.5 initializeMedium Method

Syntax initializeMedium (mediumlID: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
mediumlID medium identifier.

Remarks Initializes the recording medium. At this time the application can give the medium a name expressed as
character string.

If the medium is not namable, the MediumID property is set to an empty string.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

When performed asynchronously, the results are notified with an event. If the method succeeds and
OutputCompleteEvent is delivered, otherwise an ErrorEvent will be delivered.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E BUSY Cannot perform while output is in progress. (This includes when the
POSPrinter or FiscalPrinter is busy printing.)

See Also AsyncMode Property, MediumID Property.

358 Unified POS, V1.16.1

14.5.6 printContent Method Updated in Release 1.11

Syntax printContent (fromMarker: string, toMarker: string):
void { raises-exception, use after open-claim-enable }
Parameter Description
fromMarker Marker identifier that indicates start position of the data. Specifying an empty
string means specifying the data at the beginning of the recording medium.
toMarker Marker identifier that indicates end position of the data. Specifying an empty

string means specifying the data at the end of the recording medium.

Remarks Prints the current journal document stored in the recording medium onto the connected printer. This
method is only supported if CapPrintContent is true.
Specifying an empty string for the fromMarker means specifying the data at the beginning of the
recording medium. Specifying an empty string for the toMarker means specifying the data at the end of
the recording medium.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

When performed asynchronously, the results are notified with an event. If the method succeeds and
OutputCompleteEvent is delivered, otherwise an ErrorEvent will be delivered.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also AsyncMode Property, CapPrintContent Property.

14.5.7 printContentFile Method Updated in Release 1.11
Syntax printContentFile (fileName: string):
void { raises-exception, use after open-claim-enable }
Parameter Description
fileName Name of the file that contains printing data.

Remarks Prints the journal document included in the file acquired from the recording medium onto the connected
printer system. The whole data included in the file is printed. This method is only supported if
CapPrintContentFile is true.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

When performed asynchronously, the results are notified with an event. If the method succeeds and
OutputCompleteEvent is delivered, otherwise an ErrorEvent will be delivered.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E ILLEGAL fileName contains invalid characters.
E_NOEXIST fileName was not found.

See Also AsyncMode Property, CapPrintContentFile Property.

Unified POS, v1.16.1 359

14.5.8 queryContent Method Updated in Release 1.11

Syntax

Remarks

Errors

See Also

queryContent (fileName: string, fromMarker: string, toMarKker: string):
void { raises-exception, use after open-claim-enable }

Parameter Description

fileName Name of the file that stores acquired data.

fromMarker Marker identifier that indicates start position of the data. Specifying an empty
string means specifying the data at the beginning of the recording medium.

toMarker Marker identifier that indicates end position of the data. Specifying an empty

string means specifying the data at the end of the recording medium.

Retrieves the data that has been stored on the electronic journal medium and transfers it to the file
fileName.

If AsyncMode is false, then queryContent operates synchronously.

If AsyncMode is true, the content querying process is performed asynchronously. The method will
initiate the querying and then return immediately. Once the storing of the queried content data is
successfully completed, a DataEvent is delivered to the application. If the method fails, an ErrorEvent
is delivered.

Specifying an empty string for the fromMarker means specifying the data at the beginning of the
recording medium. Specifying an empty string for the foMarker means specifying the data at the end of
the recording medium.

A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

YValue Meaning

E BUSY Cannot perform while output is in progress. (This includes when the
POSPrinter or FiscalPrinter is busy printing.)

E_EXISTS The file defined in fileName already exists.

E ILLEGAL fileName contains invalid characters.

AsyncMode Property.

14.5.9 resumePrintContent Method

360

Syntax

Remarks
Errors

resumePrintContent ():
void { raises-exception, use after open-claim-enable }

Resumes the suspended data printing process.

A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Unified POS, V1.16.1

14.5.10 resumeQueryContent Method

Syntax resumeQueryContent ():
void { raises-exception, use after open-claim-enable }

Remarks Resume the suspended data transfer process.
Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on

page 16.
14.5.11 retrieveCurrentMarker Method

Syntax retrieveCurrentMarker (markerType: int32, out marker: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
markerType specifies the type of the queried current marker, see values below.
marker contains the return value, the implementation specific marker.

The parameter markerType controls which type of stored marker is returned:

Value Meaning

EJ MT SESSION BEG The marker for the last completed begin of a session is returned.
EJ MT _SESSION_END The marker for the last completed end of a session is returned.
EJ MT DOCUMENT The marker for the last completed document or ticket is returned.
EJ MT HEAD The first implicitly stored marker on the EJ medium is returned.
EJ MT TAIL The last implicitly stored marker on the EJ medium is returned.

Remarks Returns the last implicitly stored marker. The queried marker is specified by the parameter markerType.
The marker is returned in the parameter marker. The format and content of the string representing a
marker is implementation specific and has not to be known or analyzed by the application. The returned
marker can be used as an input parameter for the printContent and queryContent methods.

The values E] MT HEAD and E] MT TAIL are intended to address the entire contents of the EJ
medium.

This method is only supported if CapRetrieveCurrentMarker is true.
This method is usually used for fiscal EJ devices.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL The parameter markerType contains an invalid value.
E_NOEXIST A marker does not exist for the specified marker type.

See Also CapRetrieveCurrentMarker Property, printContent Method, queryContent Method.

Unified POS, v1.16.1 361

14.5.12 retrieveMarker Method

Syntax retrieveMarker (markerType: int32, sessionNumber: int32, documentNumber: int32, out marker:
string):
void { raises-exception, use after open-claim-enable }

Parameter Description

markerType specifies the type of the queried marker, see values below.

sessionNumber contains the number of the session the marker is queried for. If a session
concept is not supported by the device then this parameter has to be set to an
invalid value less than zero.

documentNumber contains the number of the document the marker is queried for. If markerType
is EJ. MT SESSION BEG or E] MT SESSION_END, then this parameter
is ignored.

marker contains the return value, the implementation specific marker.

The parameter markerType controls which type of stored marker is returned:

Value Meaning

EJ MT _SESSION BEG A marker for begin of a session is queried.
EJ MT SESSION _END A marker for end of a session is queried.

EJ MT DOCUMENT A marker for a document or ticket is queried.

Remarks Returns a marker implicitly stored on the record medium. The queried marker is specified by the
parameters markerType, sessionNumber, and documentNumber. The marker is returned in the parameter
marker. The format and content of the string representing a marker is implementation specific and has
not to be known or analyzed by the application. The returned marker is intended to be used as an input
parameter for the printContent and queryContent methods.

In case of a fiscal EJ device, the sessionNumber corresponds to a fiscal day counter number returned by
the FiscalPrinter device (see the getData parameter value FPTR_GD_Z REPORT). In the same way
the documentNumber corresponds to a fiscal ticket number.

This method is only supported if CapRetrieveMarker is true.
This method is usually used for fiscal EJ devices.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E ILLEGAL One of the parameters is invalid. Either the value in markerType does not
exist.
E_NOEXIST A marker does not exist for the specified parameter values.

See Also CapRetrieveMarker Property, printContent Method, queryContent Method, and the getData
Method of the FiscalPrinter device category.

362 Unified POS, V1.16.1

14.5.13 retrieveMarkerByDateTime Method

Syntax

Remarks

Errors

See Also

Unified POS, v1.16.1

retrieveMarkerByDateTime (markerType: int32, dateTime: string, markerNumber: string, out
marker: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
markerType specifies the type of the queried marker, see values below.
dateTime The date-time period the marker is queried for. The format of dateTime is

YYYYMMDDhhmmss’. If the application is not able to specify the hours,
minutes, and/or seconds, then these fields can be omitted.

markerNumber If more than one marker exists of the requested type for the time period given
by the dateTime parameter, then this parameter specifies the number of the
marker which has to be queried. Starts at 1 and is continuously incremented
by one for each marker.

marker contains the return value, the implementation specific marker.

The parameter markerType controls which type of stored marker is returned:

Value Meaning

EJ MT SESSION BEG The marker for the begin of a session is queried.
EJ MT SESSION END The marker for the end of a session is queried.
EJ MT DOCUMENT The marker for a document is queried.

Returns a marker implicitly stored on the record medium. The queried marker is specified by the
parameters markerType, dateTime, and markerNumber. The marker is returned in the parameter marker.
The format and content of the string representing a marker is implementation specific and has not to be
known or analyzed by the application. The returned marker can be used as an input parameter for the
printContent and queryContent methods.

This method is only supported if CapRetrieveMarkerByDateTime is true.

This method is usually used for fiscal EJ devices.

A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL One of the parameters is invalid. The value in markerType does not exist,
dateTime is invalid, or the markerNumber does not exist for the specified time
period.

E_NOEXIST A marker does not exist for the specified time period.

E_EXTENDED ErrorCodeExtended = EE]_ MULTIPLE_MARKER:

More than one marker exists for the specified time period.

CapRetrieveMarkerByDateTime Property, printContent Method, queryContent Method.

363

14.5.14 retrieveMarkersDateTime Method

Syntax retrieveMarkersDateTime (marker: string, out dateTime: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
marker specifies the marker for which the time has to be determined.
dateTime contains the return value, the date and time string of the given marker.

Remarks Returns the date and time of the given marker. The marker has either to be instantiated by the application
using addMarker, or it has to be queried by the application using retrieveMarker or
retrieveCurrentMarker. The determined date-time is returned as a string in the marker parameter with
the format YYYYMMDDhhmmss. If the hours, minutes, and/or seconds can not be determined then they
are filled with question marks (?).

This method is only supported if CapRetrieveMarkersByDateTime is true.
This method is usually used for fiscal EJ devices.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL The parameter marker contains an invalid marker.

See Also CapRetrieveMarkersByDateTime Property, addMarker Method, retrieveCurrentMarker Method,
retrieveMarker Method.

14.5.15 suspendPrintContent Method

Syntax suspendPrintContent ():
void { raises-exception, use after open-claim-enable }

Remarks This suspends data transfer from the device, then move to suspended state. It must be called when
asynchronous output is outstanding. This method is primarily intended for use in exception conditions
when asynchronous output is outstanding, such as within an error event handler.

After that, Suspended property changes into true, then a StatusUpdateEvent is delivered.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.
Value Meaning
E ILLEGAL It’s not in the printing cycle.

See Also Suspended Property.

364 Unified POS, V1.16.1

14.5.16 suspendQueryContent Method

Remarks This method suspends data transfer from the device, then move to suspended state. This method is
primarily intended for use in exception conditions when asynchronous output is outstanding, such as
within an error event handler.

After that, Suspended property changes into true, then a StatusUpdateEvent is notified.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also Suspended Property.

Unified POS, v1.16.1 365

14.6 Events (UML interfaces)

14.6.1 DataEvent

<< event >> upos::events::DataEvent

Status: int32 { read-only }

Description Notifies the application that the storing of the queried Electronic Journal content to a host file is

Attributes

Remarks

completed.
This event contains the following attribute:

Attributes Type Description
Status int32 The Status parameter contains zero.

This event is delivered after an asynchronous queryContent method call, when DataEventEnabled is
set true.

14.6.2 DirectlOEvent

366

<< event >> upos::events::DirectlOEvent

EventNumber: int32 { read-only }
Data: int32 {read-write }
Obj: object {read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-

Attributes

Remarks

See Also

specific Electronic Journal Service to provide events to the application that are not otherwise supported
by the Control.

This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and the

Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service. This
property is settable.

This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendors’ Electronic
Journal devices which may not have any knowledge of the Service’s need for this event.

“Events” on page 15, directlO Method.

Unified POS, V1.16.1

14.6.3 ErrorEvent

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an Electronic Journal device error has been detected and that a suitable
response by the application is necessary to process the error condition.

Concrete ErrorEvent notifications are delivered under the following conditions:

* When the POSPrinter or FiscalPrinter device asynchronously performs printing jobs which include
writing to the Electronic Journal media and this writing fails.

* When the queryContent method fails in asynchronous mode

* When one of the methods - initializeMedium, eraseMedium, printContent, printContentFile -
is performed in asynchronous mode and fails.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes on page 0-21.
ErrorCodeExtended
int32 Extended Error code causing the error event. If ErrorCode is
E_EXTENDED, then see values below. Otherwise it may contain a Service-
specific value.
ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32

Error response, whose default value may be overridden by the application.
(i.e., this property is settable). See values below.

The ErrorLocus property may be one of the following:

Value

Meaning

EL_INPUT
EL_INPUT DATA

Error occurred while gathering or processing event-driven input. No
previously buffered input data is available.

Error occurred while gathering or processing event-driven input, and some
previously buffered data is available.

EL_OUTPUT Error occurred while processing asynchronous output.

If ErrorCode is E_ EXTENDED, then ErrorCodeExtended has one of the following values:

Value Meaning

EEJ UNINITIALIZED MEDIUM The medium is not initialized

EEJ CORRUPTED MEDIUM The medium or data on the media is corrupted and can not be
used.

EEJ] UNKNOWN_ DATAFORMAT The medium has an unknown or unsupported format.

EEJ NOT _ENOUGH_SPACE There is not enough free space in the medium to store data.

EEJ MULTIPLE MARKERS More than one marker has been requested, but only one can be
returned.

Unified POS, v1.16.1 367

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus. The
application’s error processing may change ErrorResponse to one of the following values:

Value Meaning

ER CLEAR Clear all buffered output data including all asynchronous output. (The effect
is the same as calling clearInput.) The error state is exited. Default when
locus is EL_INPUT.

ER_CONTINUEINPUT
Used only when locus is EL_ INPUT DATA. Acknowledges the error and
directs the Control to continue processing. The Control remains in the error
state and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and the
DataEventEnabled
property is again set to true, then another ErrorEvent is delivered with locus
EL_INPUT. Default when locus isEL_INPUT DATA.

ER RETRY Typically valid only when locus is EL_ OUTPUT.
Retry the asynchronous output. The error state is exited.
May be valid when locus is EL_INPUT.
Default when locus is EL_OUTPUT.

Remarks Input error events are generated when errors occur while reading the data from the Electronic Journal
device. Such events are not delivered until the DataEventEnabled property is set to true so as to allow
proper application sequencing. All error information is placed into the applicable properties before the
event is delivered.

Output error events are generated and delivered when an error occurs during asynchronous output
processing. All error information is placed into the applicable properties before the event is delivered.

See Also “Events” on page 15.
14.6.4 OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputlID: int32 { read-only }

Description Notifies the application that the queued output request associated with the OutputID attribute has
completed successfully.

Concrete OutputCompleteEvent notifications are delivered under the following conditions:
* When one of the methods - initializeMedium, eraseMedium, printContent,

printContentFile - is performed in asynchronous mode and succeeds.

Attributes This event contains the following attribute:

Attributes Type Description
OutputID int32 The ID number of the asynchronous output request that is complete.
Remarks This event is enqueued after the request’s data has been both sent and the Service has confirmation that

it was processed by the device successfully.

See Also “Device Output Models” on page 20.

368 Unified POS, V1.16.1

14.6.5 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Updated in Release 1.12

Description Notifies the application that there is a change in the status of the Electronic Journal device.

Attributes

Remarks
See Also

Unified POS, v1.16.1

This event contains the following attribute:

Attributes Type Description

Status int32 Indicates a change in the status of the Electronic Journal device.

The Status attribute may be one of the following values:

Value

Meaning

EJ_SUE_MEDIUM NEAR FULL
EJ_SUE_MEDIUM_FULL
EJ_SUE_MEDIUM_REMOVED
EJ_SUE_MEDIUM_INSERTED
EJ_SUE_SUSPENDED
EJ_SUE_IDLE

The medium is nearly full (that is, its free space is low.
Storage medium is full.

Medium was removed from the device.

Medium was inserted into the device.

Data printing or transfer was suspended.

All asynchronous output has finished, either successfully or
because output has been cleared. The Electric Journal State is
now S_IDLE. The FlagWhenldle property must be true for this
event to be delivered, and is automatically reset to false just
before the event is delivered.

Fired when the status of an Electronic Journal changes.

“Events” on page 15.

369

370 Unified POS, V1.16.1

15 Electronic Value Reader/Writer

15.1 General

This Chapter defines the Electronic Value Reader / Writer device category.

15.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.12 open
CapCompareFirmwareVersion: boolean { read-only } 1.12 open
CapPowerReporting: int32 { read-only } 1.12 open
CapStatisticsReporting: boolean { read-only } 1.12 open
CapUpdateFirmware: boolean { read-only } 1.12 open
CapUpdateStatistics: boolean { read-only } 1.12 open
CheckHealthText: string { read-only } 1.12 open
Claimed: boolean { read-only } 1.12 open
DataCount: int32 { read-only } 1.12 open
DataEventEnabled: boolean { read-write } 1.12 open
DeviceEnabled: boolean { read-write } 1.12 open & claim
FreezeEvents: boolean { read-write } 1.12 open
OutputID: int32 { read-only } 1.12 open
PowerNotify: int32 { read-write } 1.12 open
PowerState: int32 { read-only } 1.12 open
State: int32 { read-only } 1.12 -
DeviceControlDescription: string { read-only } 1.12 --
DeviceControlVersion: int32 { read-only } 1.12 --
DeviceServiceDescription: string { read-only } 1.12 open
DeviceServiceVersion: int32 { read-only } 1.12 open
PhysicalDeviceDescription: string { read-only } 1.12 open
PhysicalDeviceName: string { read-only } 1.12 open

Unified POS, v1.16.1 371

372

Specific

CapActivateService:

CapAdditionalSecurityInformation:

CapAddValue:
CapAuthorizeCompletion:
CapAuthorizePreSales:
CapAuthorizeRefund:
CapAuthorizeVoid:
CapAuthorizePreSales:
CapCancelValue:
CapCardSensor:
CapCashDeposit:
CapCenterResultCode:
CapCheckCard:
CapDailyLog:
CapDetectionControl:
CapElectronicMoney:

CapEnumerateCardServices:

CaplndirectTransactionLog:

Caplnstallments:
CapLockTerminal:
CapLogStatus:
CapMediumlID:
CapMembershipCertificate
CapPaymentDetail:
CapPINDevice:
CapPoint:
CapSubtractValue:
CapTaxOthers:
CapTrainingMode:
CapTransaction:
CapTransactionLog:
CapTransactionNumber:
CapUnlockTerminal:
CapUpdateKey:
CapVoucher:
CapWriteValue:

Type

boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
int32

boolean
boolean
boolean
int32

int32

boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean

boolean

Mutability
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

Version
1.12
1.15
1.12
1.15
1.15
1.15
1.15
1.15
1.12
1.12
1.15
1.15
1.15
1.15
1.12
1.12
1.12
1.12
1.15
1.12
1.12
1.12
1.14.1
1.15
1.14
1.12
1.12
1.15
1.14
1.12
1.12
1.15
1.12
1.12
1.12
1.12

May Use After

open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open

open

Unified POS, V1.16.1

AccountNumber: string { read-only } 1.12 open

AdditionalSecurityInformation: string { read-write } 1.12 open
Amount: currency { read-write } 1.12 open
ApprovalCode: string { read-write } 1.12 open
AsyncMode: boolean { read-write } 1.12 open
Balance: currency { read-only } 1.12 open
BalanceOfPoint: currency { read-only } 1.12 open
CardCompanylD: string { read-only } 1.15 open
CardServiceList: string { read-only } 1.12 open
CenterResultCode: string { read-only } 1.15 open
CurrentService: string { read-write } 1.12 open
DailyLog: string { read-write } 1.15 open
DetectionControl: boolean { read-write } 1.12 open
DetectionStatus: int32 { read-only } 1.12 open
ExpirationDate: string { read-only } 1.12 open
LastUsedDate: string { read-only } 1.12 open
LogStatus: int32 { read-only } 1.12 open
MediumID: string { read-write } 1.12 open
PaymentCondition: int32 { read-only } 1.15 open
PaymentDetail: String { read-only } 1.15 open
PaymentMedia: int32 { read-write } 1.15 open
PINEntry: int32 { read-write } 1.14 open
Point: currency { read-write } 1.12 open
ReaderWriterServiceList: string { read-only } 1.12 open
ServiceType int32 { read-only } 1.14.1 open
SequenceNumber: int32 { read-only } 1.12 open
Settled Amount: currency { read-only } 1.12 open
SettledPoint: currency { read-only } 1.12 open
SlipNumber: string { read-only } 1.15 open
TrainingModeState int32 { read-write } 1.14 open
TransactionLog: string { read-only } 1.12 open
TransactionNumber: string { read-only } 1.15 open
TransactionType: int32 { read-only } 1.15 open
VoucherID: string { read-write } 1.12 open
VoucherIDList: string { read-write } 1.12 open

Unified POS, v1.16.1 373

374

Methods (UML operations)

Common

Name

open (logicalDeviceName: string):
void { raises-exception }

close ():
void { raises-exception, use after open }

claim (timeout: int32):
void { raises-exception, use after open }

release ():
void { raises-exception, use after open, claim }

checkHealth (level: int32):
void { raises-exception, use after open, enable }

clearInput ():
void {}

clearInputProperties ():
void {}

clearOutput ():
void { }

directlO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32):

void { raises-exception, use after open, claim, enable }

r