
 An OMG® UPOS RCSD Publication

Unified POS Retail Peripheral
Architecture

Version 1.16.1 (change bar version)

This specification adds to and extends the UPOS 1.16 specification.

OMG Document Number: formal/25-03-05
Normative reference: https://www.omg.org/spec/UPOS/

Copyright © 2011-2023 Object Management Group

Use of Specification - Terms, Conditions & Notices

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this International
Standard in any company’s products. The information contained in this document is subject to change without notice.

Licenses

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this International Standard hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
International Standard to create and distribute software and special purpose specifications that are based upon this
International Standard, and to use, copy, and distribute this International Standard as provided under the Copyright Act;
provided that: (1) both the copyright notice identified above and this permission notice appear on any copies of this
International Standard; (2) the use of the specifications is for informational purposes and will not be copied or posted on any
network computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this International Standard. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the specifications
in your possession or control.

Patents

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require
use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

General Use Restrictions

Any unauthorized use of this International Standard may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of
this work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission of
the copyright owner.

Disclaimer Of Warranty

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this International Standard is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted to you to use this International Standard.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii)
of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and
(2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.
227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 9C Medway Road, PMB 274, Milford, MA 01757, U.S.A.

Trademarks

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG
Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®,
and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

Compliance

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this International Standard
if and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this International Standard, but may not claim compliance or conformance with this International
Standard. In the event that testing suites are implemented or approved by Object Management Group, Inc., software
developed using this International Standard may claim compliance or conformance with the specification only if the
software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page https://www.omg.org, under Specifications - Issues.

Document Submitter

VINX Corp.

Document Publishing Supporters

OPOS-J
SorimachiGiken Co. Ltd.

Microsoft Japan Ltd.
SEIKO EPSON Corp.

Toshiba TEC Corp.
Star Micronics Corp.
Fujitsu Frontec Corp.

NCR Corporation
Sharp Corporation

Omron Social Solutions Corp.
NEC Platforms Corp.

Transaction Media Networks Inc.

UPOS Table of Contents

1 Introduction and Architecture ... 1
1.1 What is Unified POS? ... 1

1.1.1 About This Documentation ...1
1.1.2 Goals ..3
1.1.3 Dependencies...3
1.1.4 UnifiedPOS Relationship to Conforming Platform Mappings....................4

1.1.5 Who Should Read This Document ...4

1.2 Conformance.. 5
1.2.1 Unified POS ...5

1.3 Architectural Overview ... 6
1.3.1 General ..6
1.3.2 Architectural Components ...6
1.3.3 Use of UML ..7
1.3.4 Data Types ...9
1.3.5 Device Behavior Models .. 10
1.3.6 Device Sharing Model ...14

2 Common Properties, Methods, and Events 35
2.1 General .. 35

2.2 Summary... 35

2.3 General Information .. 37
2.3.1 Common PME Class Diagram Updated in Release 1.10 38

2.4 Properties (UML attributes) .. 39
2.4.1 AutoDisable Property ... 39
2.4.2 CapCompareFirmwareVersion Property Revised in Release 1.14 .39
2.4.3 CapPowerReporting Property Updated in Release 1.11 39
2.4.4 CapStatisticsReporting Property Added in Release 1.8 40
2.4.5 CapUpdateFirmware Property Updated in Release 1.14 40
2.4.6 CapUpdateStatistics Property Added in Release 1.8 40
2.4.7 CheckHealthText Property ..40
2.4.8 Claimed Property ...41
2.4.9 DataCount Property ... 41
2.4.10 DataEventEnabled Property ..41
2.4.11 DeviceControlDescription Property ...42
2.4.12 DeviceControlVersion Property ...43
2.4.13 DeviceEnabled Property .. 43
Unified POS, v1.16.1 i

2.4.14 DeviceServiceDescription Property ...44
2.4.15 DeviceServiceVersion Property ...44
2.4.16 FreezeEvents Property Updated in Release 1.12 .45
2.4.17 OutputID Property ..45
2.4.18 PowerNotify Property ...45
2.4.19 PowerState Property Updated in Release 1.11 .46
2.4.20 PhysicalDeviceDescription Property ..46
2.4.21 PhysicalDeviceName Property ..47
2.4.22 State Property ..47

2.5 Methods (UML operations) ...48
2.5.1 checkHealth Method ..48
2.5.2 claim Method Updated in Release 1.11 48
2.5.3 clearInput Method ..49
2.5.4 clearInputProperties Method Added in Release 1.10 .49
2.5.5 clearOutput Method Updated in Release 1.7 49
2.5.6 close Method ...49
2.5.7 compareFirmwareVersion Method Added in Release 1.9 ...50
2.5.8 directIO Method ...51
2.5.9 open Method Updated in Release 1.7 51
2.5.10 release Method ..53
2.5.11 resetStatistics Method Updated in Release 1.10 53
2.5.12 retrieveStatistics Method Added in Release 1.8 54
2.5.13 updateFirmware Method Added in Release 1.9 55
2.5.14 updateStatistics Method Updated in Release 1.10 56

2.6 Events (UML interfaces) ...58
2.6.1 DataEvent ..60
2.6.2 DirectIOEvent Updated in Release 1.7 60
2.6.3 ErrorEvent Updated in Release 1.13 61
2.6.4 OutputCompleteEvent Updated in Release 1.13 .62
2.6.5 StatusUpdateEvent Updated in Release 1.9 63

3 Belt ... 65
3.1 General ...65

3.2 Summary ...65

3.3 General Information...68
3.3.1 Capabilities ...68

3.4 Belt Class Diagram ...69

3.5 Belt Sequence Diagram ...70
3.5.1 Model ...72
ii Unified POS, v1.16.1

3.5.2 Device Sharing ...72
3.5.3 Belt State Diagram ..73

3.6 Properties (UML attributes) .. 74
3.6.1 AutoStopBackward Property ... 74
3.6.2 AutoStopBackwardDelayTime Property ..74
3.6.3 AutoStopBackwardItemCount Property ... 74
3.6.4 AutoStopForward Property ..75
3.6.5 AutoStopForwardDelayTime Property ... 75
3.6.6 AutoStopForwardItemCount Property ... 75
3.6.7 CapAutoStopBackward Property ...76
3.6.8 CapAutoStopBackwardItemCount Property .. 76
3.6.9 CapAutoStopForward Property ...76
3.6.10 CapAutoStopForwardItemCount Property ...76
3.6.11 CapLightBarrierBackward Property ...77
3.6.12 CapLightBarrierForward Property .. 77
3.6.13 CapMoveBackward Property ... 77
3.6.14 CapSecurityFlapBackward Property ..77
3.6.15 CapSecurityFlapForward Property .. 78
3.6.16 CapSpeedStepsBackward Property ..78
3.6.17 CapSpeedStepsForward Property ...78
3.6.18 LightBarrierBackwardInterrupted Property .. 78
3.6.19 LightBarrierForwardInterrupted Property ...79
3.6.20 MotionStatus Property ...79
3.6.21 SecurityFlapBackwardOpened Property ...79
3.6.22 SecurityFlapForwardOpened Property ..80

3.7 Methods (UML operations) ... 81
3.7.1 adjustItemCount Method ...81
3.7.2 moveBackward Method ...81
3.7.3 moveForward Method ..82
3.7.4 resetBelt Method ...82
3.7.5 resetItemCount Method ...82
3.7.6 stopBelt Method ...83

3.8 Events (UML interfaces) ... 84
3.8.1 DirectIOEvent .. 84
3.8.2 StatusUpdateEvent ..84

4 Bill Acceptor ... 87
4.1 General .. 87

4.2 Summary ... 87

4.3 General Information .. 90
4.3.1 Capabilities ..90

4.4 Bill Acceptor Class Diagram ... 91
Unified POS, v1.16.1 iii

4.4.1 Model ...92
4.4.2 Bill Acceptor Sequence Diagram ...93
4.4.3 Bill Acceptor State Diagram ...94
4.4.4 Device Sharing ..94

4.5 Properties (UML attributes) ..95
4.5.1 CapDiscrepancy Property ..95
4.5.2 CapFullSensor Property ..95
4.5.3 CapJamSensor Property ...95
4.5.4 CapNearFullSensor Property ...95
4.5.5 CapPauseDeposit Property ...96
4.5.6 CapRealTimeData Property ...96
4.5.7 CurrencyCode Property ...96
4.5.8 DepositAmount Property ..96
4.5.9 DepositCashList Property ..97
4.5.10 DepositCodeList Property ..97
4.5.11 DepositCounts Property Updated in Release 1.12 98
4.5.12 DepositStatus Property ..98
4.5.13 FullStatus Property ..99
4.5.14 RealTimeDataEnabled Property ..99

4.6 Method (UML operations) ... 100
4.6.1 adjustCashCounts Method Updated in Release 1.12......100
4.6.2 beginDeposit Method ...100
4.6.3 endDeposit Method ..101
4.6.4 endDeposit Method ..102
4.6.5 fixDeposit Method ..103
4.6.6 pauseDeposit Method ..103
4.6.7 readCashCounts Method Updated in Release 1.12 104

4.7 Events (UML interfaces) ... 105
4.7.1 DataEvent ..105
4.7.2 DirectIOEvent ..105
4.7.3 StatusUpdateEvent ..106

5 Bill Dispenser ... 107
5.1 General ... 107

5.2 Summary .. 107

5.3 General Information .. 110
5.3.1 Capabilities ..110
5.3.2 Bill Dispenser Class Diagram ..111
5.3.3 Model ...111
5.3.4 Bill Dispenser Sequence Diagram ...113
iv Unified POS, v1.16.1

5.3.5 Bill Dispenser State Diagram ... 114
5.3.6 Device Sharing .. 114

5.4 Properties (UML attributes) .. 115
5.4.1 AsyncMode Property ... 115
5.4.2 AsyncResultCode Property ... 115
5.4.3 AsyncResultCodeExtended Property ..115
5.4.4 CapDiscrepancy Property .. 116
5.4.5 CapEmptySensor Property ..116
5.4.6 CapJamSensor Property ...116
5.4.7 CapNearEmptySensor Property .. 116
5.4.8 CurrencyCashList Property ... 117
5.4.9 CurrencyCode Property ...117
5.4.10 CurrencyCodeList Property ... 117
5.4.11 CurrentExit Property ..118
5.4.12 DeviceExits Property ..118
5.4.13 DeviceStatus Property ...119
5.4.14 ExitCashList Property ..119

5.5 Methods (UML operations) ... 120
5.5.1 adjustCashCounts Method Updated in Release 1.12 .120
5.5.2 dispenseCash Method ...120
5.5.3 readCashCounts Method Updated in Release 1.12 121

5.6 Events (UML interfaces) ... 122
5.6.1 DirectIOEvent .. 122
5.6.2 StatusUpdateEvent ..122

6 Biometrics .. 125
6.1 General .. 125

6.2 Summary .. 125

6.3 General Information .. 129
6.3.1 Capabilities ..129
6.3.2 Biometrics Class Diagram ...131
6.3.3 Model ...132
6.3.4 Device Sharing .. 133
6.3.5 Biometrics Sequence Diagrams .. 134
6.3.6 Biometrics State Diagram .. 137

6.4 Properties (UML Attributes) .. 138
6.4.1 Algorithm Property ... 138
6.4.2 AlgorithmList Property ...138
6.4.3 BIR Property ...138
6.4.4 CapPrematchData Property Updated in Release 1.11 139
6.4.5 CapRawSensorData Property Updated in Release 1.12 .140
6.4.6 CapRealTimeData Property Updated in Release 1.12 .140
Unified POS, v1.16.1 v

6.4.7 CapSensorColor Property ..140
6.4.8 CapSensorOrientation Property ...141
6.4.9 CapSensorType Property Updated in Release 1.11 .141
6.4.10 CapTemplateAdaptation Property ...142
6.4.11 RawSensorData Property Updated in Release 1.12 142
6.4.12 RealTimeDataEnabled Property Updated in Release 1.12 142
6.4.13 SensorBPP Property ..143
6.4.14 SensorColor Property Updated in Release 1.11 .143
6.4.15 SensorHeight Property ..144
6.4.16 SensorOrientation Property Updated in Release 1.11 .144
6.4.17 SensorType Property Updated in Release 1.11 145
6.4.18 SensorWidth Property ..145

6.5 Methods (UML operations) ... 146
6.5.1 beginEnrollCapture Method Updated in Release 1.11 146
6.5.2 beginVerifyCapture Method Updated in Release 1.11 .146
6.5.3 endCapture Method ...147
6.5.4 identify Method Updated in Release 1.12 .147
6.5.5 identifyMatch Method Updated in Release 1.12 .148
6.5.6 processPrematchData Method Updated in Release 1.11 ..149
6.5.7 verify Method Updated in Release 1.12 150
6.5.8 verifyMatch Method Updated in Release 1.12 .151

6.6 Events (UML Interfaces) ... 152
6.6.1 DataEvent ..152
6.6.2 DirectIOEvent ..152
6.6.3 ErrorEvent Updated in Release 1.11 ...153
6.6.4 StatusUpdateEvent Updated in Release 1.13 154

7 Bump Bar ... 155
7.1 General ... 155

7.2 Summary .. 155

7.3 General Information .. 158
7.3.1 Capabilities ..158
7.3.2 Bump Bar Class Diagram ..159
7.3.3 Model ...160
7.3.4 Input – Bump Bar ...160
7.3.5 Output – Tone Updated in Release 1.7 161
7.3.6 Device Sharing ..161
7.3.7 Bump Bar State Diagram ...162

7.4 Properties (UML attributes) .. 163
7.4.1 AsyncMode Property ...163
vi Unified POS, v1.16.1

7.4.2 AutoToneDuration Property ... 163
7.4.3 AutoToneFrequency Property ... 163
7.4.4 BumpBarDataCount Property ..164
7.4.5 CapTone Property ... 164
7.4.6 CurrentUnitID Property .. 164
7.4.7 ErrorString Property ... 165
7.4.8 ErrorUnits Property ..165
7.4.9 EventString Property ... 166
7.4.10 EventUnitID Property ... 166
7.4.11 EventUnits Property ... 166
7.4.12 Keys Property .. 166
7.4.13 Timeout Property ...167
7.4.14 UnitsOnline Property ... 167

7.5 Methods (UML operations) ... 168
7.5.1 bumpBarSound Method ...168
7.5.2 checkHealth Method (Common) .. 169
7.5.3 clearInput Method (Common) ..169
7.5.4 clearOutput Method (Common) Updated in Release 1.7 .170
7.5.5 setKeyTranslation Method ...170

7.6 Events (UML interfaces) ... 171
7.6.1 DataEvent ..171
7.6.2 DirectIOEvent .. 172
7.6.3 ErrorEvent Updated in Release 1.10......172
7.6.4 OutputCompleteEvent ...174
7.6.5 StatusUpdateEvent ..174

8 Cash Changer ... 175
8.1 General .. 175

8.2 Summary .. 175

8.3 General Information... 179
8.3.1 Capabilities Updated in Release 1.11 179
8.3.2 Cash Changer Class Diagram Updated in Release 1.11 180
8.3.3 Model Updated in Release 1.11 .181
8.3.4 Cash Changer Sequence Diagram Added in Release 1.7 ...185
8.3.5 Cash Changer State Diagram Updated in Release 1.8 ..186
8.3.6 Device Sharing .. 186

8.4 Properties (UML attributes) .. 187
8.4.1 AsyncMode Property ... 187
8.4.2 AsyncResultCode Property ... 187
8.4.3 AsyncResultCodeExtended Property ..187
8.4.4 CapDeposit Property Added in Release 1.5 188
8.4.5 CapDepositDataEvent Property Added in Release 1.5 188
Unified POS, v1.16.1 vii

8.4.6 CapDiscrepancy Property ..188
8.4.7 CapEmptySensor Property ..189
8.4.8 CapFullSensor Property ..189
8.4.9 CapJamSensor Property Added in Release 1.11 .189
8.4.10 CapNearEmptySensor Property ..189
8.4.11 CapNearFullSensor Property ...190
8.4.12 CapPauseDeposit Property Added in Release 1.5 190
8.4.13 CapRealTimeData Property Added in Release 1.11 190
8.4.14 CapRepayDeposit Property Added in Release 1.5 ...191
8.4.15 CurrencyCashList Property ..191
8.4.16 CurrencyCode Property ...192
8.4.17 CurrencyCodeList Property ...192
8.4.18 CurrentExit Property ..192
8.4.19 CurrentService Property Added in Release 1.11 ..194
8.4.20 DepositAmount Property ..195
8.4.21 DepositCashList Property Added in Release 1.5 ..195
8.4.22 DepositCodeList Property Added in Release 1.5 .196
8.4.23 DepositCounts Property Added in Release 1.5 ..196
8.4.24 DepositStatus Property Added in Release 1.5 197
8.4.25 DeviceExits Property ...197
8.4.26 DeviceStatus Property ...197
8.4.27 ExitCashList Property ..198
8.4.28 FullStatus Property Updated in Release 1.14 .198
8.4.29 RealTimeDataEnabled Property Added in Release 1.11 .199
8.4.30 ServiceCount Property Updated in Release 1.14 .199

8.5 Methods (UML operations)... 200
8.5.1 adjustCashCounts Method Added in Release 1.11 ..200
8.5.2 beginDeposit Method Added in Release 1.5 ..201
8.5.3 dispenseCash Method ...201
8.5.4 dispenseChange Method ...202
8.5.5 endDeposit Method Added in Release 1.5 ...203
8.5.6 fixDeposit Method Added in Release 1.5 ..204
8.5.7 pauseDeposit Method Added in Release 1.5 204
8.5.8 readCashCounts Method ...205

8.6 Events (UML interfaces)... 206
8.6.1 DataEvent Updated in Release 1.11 206
8.6.2 DirectIOEvent ..206
8.6.3 StatusUpdateEvent ..207

9 Cash Drawer .. 209
9.1 General ... 209
viii Unified POS, v1.16.1

9.2 Summary.. 209

9.3 General Information .. 212
9.3.1 Capabilities ..212
9.3.2 Cash Drawer Class Diagram Updated in Release 1.8 .212
9.3.3 Cash Drawer Sequence Diagram Updated in Release 1.12 213
9.3.4 Device Sharing .. 214

9.4 Properties (UML attributes) .. 215
9.4.1 CapStatus Property ... 215
9.4.2 CapStatusMultiDrawerDetect Property Added in Release 1.5 215
9.4.3 DrawerOpened Property Updated in Release 1.14 216

9.5 Methods (UML operations) ... 217
9.5.1 openDrawer Method ..217
9.5.2 waitForDrawerClose Method ... 217

9.6 Events (UML interfaces) ... 218
9.6.1 DirectIOEvent .. 218
9.6.2 StatusUpdateEvent Updated in Release 1.13 ...219

10 CAT - Credit Authorization Terminal 221
10.1 General .. 221

10.2 Summary .. 221

10.3 General Information .. 226
10.3.1 Description of terms ... 226
10.3.2 Capabilities ..227
10.3.3 CAT Class Diagram Updated in Release 1.9 229
10.3.4 Model ...230
10.3.5 Device Sharing .. 233
10.3.6 CAT Sequence Diagram Added in Release 1.7 .234
10.3.7 CAT State Diagram ... 235

10.4 Properties (UML attributes) .. 236
10.4.1 AccountNumber Property Updated in Release 1.9 .236
10.4.2 AdditionalSecurityInformation Property Updated in Release 1.7 .236
10.4.3 ApprovalCode Property Updated in Release 1.9 .236
10.4.4 AsyncMode Property ... 237
10.4.5 Balance Property Added in Release 1.9 ..237
10.4.6 CapAdditionalSecurityInformation Property ...237
10.4.7 CapAuthorizeCompletion Property .. 237
10.4.8 CapAuthorizePreSales Property .. 237
10.4.9 CapAuthorizeRefund Property ... 238
10.4.10 CapAuthorizeVoid Property ... 238
10.4.11 CapAuthorizeVoidPreSales Property ..238
10.4.12 CapCashDeposit Property Added in Release 1.9 239
Unified POS, v1.16.1 ix

10.4.13 CapCenterResultCode Property ..239
10.4.14 CapCheckCard Property ..239
10.4.15 CapDailyLog Property ..239
10.4.16 CapInstallments Property ..240
10.4.17 CapLockTerminal Property Added in Release 1.9 ...240
10.4.18 CapLogStatus Property Added in Release 1.9 ..240
10.4.19 CapPaymentDetail Property ..240
10.4.20 CapTaxOthers Property ...241
10.4.21 CapTransactionNumber Property ..241
10.4.22 CapTrainingMode Property ..241
10.4.23 CapUnlockTerminal Property Added in Release 1.9 241
10.4.24 CardCompanyID Property ...242
10.4.25 CenterResultCode Property ...242
10.4.26 DailyLog Property ..243
10.4.27 LogStatus Property Added in Release 1.9 .245
10.4.28 PaymentCondition Property Updated in Release 1.9 245
10.4.29 PaymentDetail Property Updated in Release 1.9 246
10.4.30 PaymentMedia Property Updated in Release 1.9 ..252
10.4.31 SequenceNumber Property ...252
10.4.32 SettledAmount Property Added in Release 1.9 ..252
10.4.33 SlipNumber Property Updated in Release 1.7 .252
10.4.34 TrainingMode Property ..253
10.4.35 TransactionNumber Property ...253
10.4.36 TransactionType Property Updated in Release 1.10 .253

10.5 Methods (UML operations) ... 254
10.5.1 accessDailyLog Method Updated in Release 1.9 .254
10.5.2 authorizeCompletion Method ...255
10.5.3 authorizePreSales Method ..256
10.5.4 authorizeRefund Method ...257
10.5.5 authorizeSales Method ..258
10.5.6 authorizeVoid Method ..259
10.5.7 authorizeVoidPreSales Method ...260
10.5.8 cashDeposit Method Added in Release 1.9 .261
10.5.9 checkCard Method Updated in Release 1.9 .262
10.5.10 lockTerminal Method Added in Release 1.9 ...263
10.5.11 unlockTerminal Method Added in Release 1.9 ..263

10.6 Events (UML interfaces)... 264
10.6.1 DirectIOEvent ..264
10.6.2 ErrorEvent Updated in Release 1.9 .264
10.6.3 OutputCompleteEvent ...266
10.6.4 StatusUpdateEvent Updated in Release 1.9 .266
x Unified POS, v1.16.1

11 Check Scanner .. 267
11.1 General .. 267

11.2 Summary .. 267

11.3 General Information .. 271
11.3.1 Capabilities ..271
11.3.2 Check Scanner Class Diagram Updated in Release 1.9 .272
11.3.3 Model Updated in Release 1.11 273
11.3.4 Device Sharing .. 275
11.3.5 Check Scanner Sequence Diagram ..276
11.3.6 Check Scanner State Diagram ..277

11.4 Properties (UML attributes) .. 278
11.4.1 CapAutoContrast Property Added in Release 1.9 .278
11.4.2 CapAutoGenerateFileID Property .. 278
11.4.3 CapAutoGenerateImageTagData Property ...278
11.4.4 CapAutoSize Property ...279
11.4.5 CapColor Property ... 279
11.4.6 CapConcurrentMICR Property ..280
11.4.7 CapContrast Property Added in Release 1.9 280
11.4.8 CapDefineCropArea Property ..280
11.4.9 CapImageFormat Property ..281
11.4.10 CapImageTagData Property Updated in Release 1.11 281
11.4.11 CapMICRDevice Property ...282
11.4.12 CapStoreImageFiles Property ... 282
11.4.13 CapValidationDevice Property ... 283
11.4.14 Color Property ...283
11.4.15 ConcurrentMICR Property ...284
11.4.16 Contrast Property Added in Release 1.9 284
11.4.17 CropAreaCount Property ...285
11.4.18 DocumentHeight Property ...285
11.4.19 DocumentWidth Property .. 285
11.4.20 FileID Property ...286
11.4.21 FileIndex Property Updated in Release 1.13 .286
11.4.22 ImageData Property ..287
11.4.23 ImageFormat Property ...287
11.4.24 ImageMemoryStatus Property ... 288
11.4.25 ImageTagData Property Updated in Release 1.13 ..288
11.4.26 MapMode Property Updated in Release 1.13 289
11.4.27 MaxCropAreas Property .. 290
11.4.28 Quality Property ...290
11.4.29 QualityList Property ... 290
11.4.30 RemainingImagesEstimate Property ... 291

11.5 Methods (UML operations) ... 292
11.5.1 beginInsertion Method ...292
Unified POS, v1.16.1 xi

11.5.2 beginRemoval Method ...293
11.5.3 clearImage Method ..294
11.5.4 defineCropArea Method ...295
11.5.5 endInsertion Method ..296
11.5.6 endRemoval Method ..297
11.5.7 retrieveImage Method Updated in Release 1.11 298
11.5.8 retrieveMemory Method Updated in Release 1.11 299
11.5.9 storeImage Method Updated in Release 1.13 .300

11.6 Events (UML interfaces) ... 301
11.6.1 DataEvent ..301
11.6.2 DirectIOEvent ..301
11.6.3 ErrorEvent ..302
11.6.4 StatusUpdateEvent ..303

12 Coin Acceptor .. 305
12.1 General ... 305

12.2 Summary .. 305

12.3 General Information.. 309
12.3.1 Capabilities ..309
12.3.2 Coin Acceptor Class Diagram ..310
12.3.3 Model ...311
12.3.4 Coin Acceptor Sequence Diagram ..312
12.3.5 Coin Acceptor State Diagram ..313
12.3.6 Device Sharing ..313

12.4 Properties (UML attributes) .. 314
12.4.1 CapDiscrepancy Property ..314
12.4.2 CapFullSensor Property ..314
12.4.3 CapJamSensor Property ...314
12.4.4 CapNearFullSensor Property ...314
12.4.5 CapPauseDeposit Property ...315
12.4.6 CapRealTimeData Property ...315
12.4.7 CurrencyCode Property ...315
12.4.8 DepositAmount Property ..316
12.4.9 DepositCashList Property ..316
12.4.10 DepositCodeList Property ..316
12.4.11 DepositCounts Property ...317
12.4.12 DepositStatus Property ..317
12.4.13 FullStatus Property ..318
12.4.14 RealTimeDataEnabled Property ..318

12.5 Methods (UML operations) ... 319
xii Unified POS, v1.16.1

12.5.1 adjustCashCounts Method ..319
12.5.2 beginDeposit Method ... 320
12.5.3 endDeposit Method ... 320
12.5.4 fixDeposit Method ..321
12.5.5 pauseDeposit Method ..321
12.5.6 readCashCounts Method ...322

12.6 Events (UML interfaces) ... 323
12.6.1 DataEvent ..323
12.6.2 DirectIOEvent .. 323
12.6.3 StatusUpdateEvent ..324

13 Coin Dispenser .. 325
13.1 General .. 325

13.2 Summary .. 325

13.3 General Information.. 328
13.3.1 Capabilities Updated in Release 1.11 .328
13.3.2 Coin Dispenser Class Diagram Updated in Release 1.11 .329
13.3.3 Coin Dispenser Sequence Diagram Added in Release 1.7 .330
13.3.4 Coin Dispenser State Diagram Updated in Release 1.11 .331
13.3.5 Model Updated in Release 1.11 332
13.3.6 Device Sharing .. 332

13.4 Properties (UML attributes) .. 333
13.4.1 CapEmptySensor Property ..333
13.4.2 CapJamSensor Property ...333
13.4.3 CapNearEmptySensor Property .. 333
13.4.4 DispenserStatus Property .. 333

13.5 Methods (UML operations)... 334
13.5.1 adjustCashCounts Method Added in Release 1.11 .334
13.5.2 dispenseChange Method ...334
13.5.3 readCashCounts Method Added in Release 1.11 335

13.6 Events (UML interfaces)... 336
13.6.1 DirectIOEvent .. 336
13.6.2 StatusUpdateEvent ..337

14 Electronic Journal .. 339
14.1 General .. 339

14.2 Summary .. 339

14.3 General Information .. 343
14.3.1 Capabilities ..343
14.3.2 Electronic Journal Class Diagram ...344
Unified POS, v1.16.1 xiii

14.3.3 Model ...345
14.3.4 Device Sharing ..346
14.3.5 Electronic Journal Sequence Diagrams ...347
14.3.6 Electronic Journal State Diagram ..349

14.4 Properties (UML Attributes) .. 350
14.4.1 AsyncMode Property ...350
14.4.2 CapAddMarker Property ..350
14.4.3 CapErasableMedium Property ...350
14.4.4 CapInitializeMedium Property ..350
14.4.5 CapMediumIsAvailable Property Updated in Release 1.11 .350
14.4.6 CapPrintContent Property Updated in Release 1.11 ..351
14.4.7 CapPrintContentFile Property Updated in Release 1.11 .351
14.4.8 CapRetrieveCurrentMarker Property ...351
14.4.9 CapRetrieveMarker Property ...351
14.4.10 CapRetrieveMarkerByDateTime Property ...352
14.4.11 CapRetrieveMarkersDateTime Property ..352
14.4.12 CapStation Property ..352
14.4.13 CapStorageEnabled Property ..352
14.4.14 CapSuspendPrintContent Property ...353
14.4.15 CapSuspendQueryContent Property ...353
14.4.16 CapWaterMark Property ..353
14.4.17 FlagWhenIdle Property ..353
14.4.18 MediumFreeSpace Property ..354
14.4.19 MediumID Property ..354
14.4.20 MediumIsAvailable Property Updated in Release 1.11 ..354
14.4.21 MediumSize Property ..354
14.4.22 Station Property ...355
14.4.23 StorageEnabled Property Updated in Release 1.11 ..355
14.4.24 Suspended Property ..355
14.4.25 WaterMark Property ...356

14.5 Methods (UML operations) ... 357
14.5.1 addMarker Method ...357
14.5.2 cancelPrintContent Method ...357
14.5.3 cancelQueryContent Method ...357
14.5.4 eraseMedium Method ..358
14.5.5 initializeMedium Method ..358
14.5.6 printContent Method Updated in Release 1.11 ..359
14.5.7 printContentFile Method Updated in Release 1.11 ..359
14.5.8 queryContent Method Updated in Release 1.11 ..360
14.5.9 resumePrintContent Method ..360
14.5.10 resumeQueryContent Method ...361
14.5.11 retrieveCurrentMarker Method ...361
xiv Unified POS, v1.16.1

14.5.12 retrieveMarker Method .. 362
14.5.13 retrieveMarkerByDateTime Method ...363
14.5.14 retrieveMarkersDateTime Method ...364
14.5.15 suspendPrintContent Method ..364
14.5.16 suspendQueryContent Method ..365

14.6 Events (UML interfaces) ... 366
14.6.1 DataEvent ..366
14.6.2 DirectIOEvent .. 366
14.6.3 ErrorEvent ... 367
14.6.4 OutputCompleteEvent ...368
14.6.5 StatusUpdateEvent Updated in Release 1.12 ..369

15 Electronic Value Reader/Writer 371
15.1 General .. 371

15.2 Summary .. 371

15.3 General Information .. 375
15.3.1 Capabilities ..375
15.3.2 Added in Release 1.14 .. 376
15.3.3 Added in Release 1.14.1 ...377
15.3.4 Added in Release 1.15 .. 377
15.3.5 EVRW Class Diagram ...380
15.3.6 Model ...382
15.3.7 Life Cycle of Sub-Service Added in Release 1.14.1 ..389
15.3.8 The Service with Variations Added in Release 1.14.1 .390
15.3.9 The Connection Model of EVR/W Devices and Payment Center

 Added in Release 1.14.1 391
15.3.10 Transaction Mode Support ..392
15.3.11 Device Sharing .. 392
15.3.12 EVRW Sequence Diagram ..393
15.3.13 EVRW State Diagram ..397
15.3.14 Error Model　　　　　　　　　　Updated in Release 1.14.1　 398

15.4 Properties (UML attributes) .. 401
15.4.1 AccountNumber Property Updated in Release 1.14..401
15.4.2 AdditionalSecurityInformation Property ... 401
15.4.3 Amount Property　　　　　　　　 Updated in Release 1.14 ..401
15.4.4 ApprovalCode Property ...402
15.4.5 AsyncMode Property ... 402
15.4.6 Balance Property　　　 Updated in Release 1.14..402
15.4.7 BalanceOfPoint Property　　　　 Updated in Release 1.14 ..403
15.4.8 CapActivateService Property ..403
15.4.9 CapAdditionalSecurityInformation Property　Added in Release 1.15 .403
15.4.10 CapAddValue Property ...403
15.4.11 CapAuthorizeCompletion Property　　　　Added in Release 1.15 ...404
Unified POS, v1.16.1 xv

15.4.12 CapAuthorizePreSales Property　　　　　Added in Release 1.15 ...404
15.4.13 CapAuthorizeRefund Property　　　　　 Added in Release 1.15 ..404
15.4.14 CapAuthorizeVoid Property　　　　　　　 Added in Release 1.15 ...404
15.4.15 CapAuthorizeVoidPreSales Property　 Added in Release 1.15 ...405
15.4.16 CapCancelValue Property ...405
15.4.17 CapCrdSensor Property ..405
15.4.18 CapCashDeposit Property Added in Release 1.15 .406
15.4.19 CapCenterResultCode Property Added in Release 1.15 .406
15.4.20 CapCheckCard Property Added in Release 1.15 406
15.4.21 CapDailyLog Property Added in Release 1.15 407
15.4.22 CapDetectionControl Property ...407
15.4.23 CapElectronicMoney Property ...407
15.4.24 CapEnumerateCardServices Property ..408
15.4.25 CapIndirectTransactionLog Property ..408
15.4.26 CapInstallments Property Added in Release 1.15 .408
15.4.27 CapLockTerminal Property ...408
15.4.28 CapLogStatus Property ...409
15.4.29 CapMediumID Property ..409
15.4.30 CapMembershipCertificate Property Added in Release 1.14.1 .409
15.4.31 CapPaymentDetail Property Added in Release 1.15 .409
15.4.32 CapPINDevice Property Added in Release 1.15 .410
15.4.33 CapPoint Property ...410
15.4.34 CapSubtractValue Property ..410
15.4.35 CapTaxOthers Property Added in Release 1.15 .410
15.4.36 CapTrainingMode Property Added in Release 1.14 .411
15.4.37 CapTransaction Property ..411
15.4.38 CapTransactionLog Property ..411
15.4.39 CapTransactionNumber Property Added in Release 1.15 ..411
15.4.40 CapUnlockTerminal Property ..412
15.4.41 CapUpdateKey Property ...412
15.4.42 CapVoucher Property ...412
15.4.43 CapWriteValue Property ...412
15.4.44 CardCompanyID Property Added in Release 1.15 ..413
15.4.45 CardServiceList Property Updated in Release 1.14.1 .413
15.4.46 CenterResultCode Property Added in Release 1.15 .414
15.4.47 CurrentService Property Updated in Release 1.14.1 ..414
15.4.48 DailyLog Property Added in Release 1.15 ..415
15.4.49 DetectionControl Property ...417
15.4.50 DetectionStatus Property ...418
15.4.51 ExpirationDate Property Updated in Release 1.14 ..418
15.4.52 LastUsedDate Property Updated in Release 1.14 ..418
15.4.53 LogStatus Property ..419
15.4.54 MediumID Property Updated in Release 1.14 .419
xvi Unified POS, v1.16.1

15.4.55 PaymentCondition Property Updated in Release 1.15 ..420
15.4.56 PaymentDetail Property Added in Release 1.15 ..421
15.4.57 PaymentMedia Property Added in Release 1.15 ..427
15.4.58 PINEntry Property Added in Release 1.14 .428
15.4.59 Point Property Updated in Release 1.14 .428
15.4.60 ReaderWriterServiceList Property Updated in Release 1.14.1 ..429
15.4.61 SequenceNumber Property ... 429
15.4.62 ServiceType Property Added in Release 1.14.1 ..430
15.4.63 SettledAmount Property Updated in Release 1.14 ..430
15.4.64 SettledPoint Property ... 431
15.4.65 SlipNumber Property Added in Release 1.15 ..431
15.4.66 TrainingModeState Property Added in Release 1.14 ..431
15.4.67 TransactionLog Property ...432
15.4.68 TransactionNumber Property Added in Release 1.15 ..432
15.4.69 TransactionType Property Added in Release 1.15 ..432
15.4.70 VoucherID Property Updated in Release 1.14 ..433
15.4.71 VoucherIDList Property Updated in Release 1.14 ..433

15.5 Methods (UML operations)... 434
15.5.1 accessDailyLog Method Added in Release 1.15 ..434
15.5.2 accessData Method Added in Release 1.14.1 ..435
15.5.3 accessLog Method Updated in Release 1.14.1 ..436
15.5.4 activateEVService Method Added in Release 1.14.1 ..437
15.5.5 activateService Method ...438
15.5.6 addValue Method ..438
15.5.7 authorizeCompletion Method Added in Release 1.15 ..439
15.5.8 authorizePreSales Method Added in Release 1.15 ..440
15.5.9 authorizeRefund Method Added in Release 1.15 ..441
15.5.10 authorizeSales Method Added in Release 1.15 ..442
15.5.11 authorizeVoid Method Added in Release 1.15 ..443
15.5.12 authorizeVoidPreSales Method Added in Release 1.15 ..444
15.5.13 beginDetection Method .. 445
15.5.14 beginRemoval Method ...446
15.5.15 cancelValue Method ... 447
15.5.16 captureCard Method ..447
15.5.17 cashDeposit Method Added in Release 1.15 ..448
15.5.18 checkCard Method Added in Release 1.15 ..449
15.5.19 checkServiceRegistrationToMedium Method Added in Release 1.14.1 ..450
15.5.20 clearParameterInformation Method Added in Release 1.14 ..450
15.5.21 closeDailyEVService Method Added in Release 1.14.1 ..451
15.5.22 deactivateEVService Method　 Added in Release 1.14.1 ..452
15.5.23 endDetection Method ..453
15.5.24 endRemoval Method ... 453
15.5.25 enumerateCardServices Method ...454
15.5.26 lockTerminal Method　　　 Updated in Release 1.14.1 ...454
15.5.27 openDailyEVService Method　　　 Added in Release 1.14.1 ...455
Unified POS, v1.16.1 xvii

15.5.28 queryLastSuccessfulTransactionResult Method Added in Release 1.14 ..455
15.5.29 readValue Method ...456
15.5.30 registerServiceToMedium Method　　　 Added in Release 1.14 ...456
15.5.31 retrieveResultInformation Method　　　　　Added in Release 1.15 .457
15.5.32 setParameterInformation Method　　　　　Added in Release 1.14 ..466
15.5.33 subtractValue Method ...467
15.5.34 transactionAccess Method ...468
15.5.35 unlockTerminal Method Updated in Release 1.14.1 ..469
15.5.36 unregisterServiceToMedium Method Added in Release 1.14.1 .469
15.5.37 updateData Method Added in Release 1.14.1 ..470
15.5.38 updateKey Method Updated in Version 1.14.1 ..471
15.5.39 writeValue Method ..471

15.6 Events (UML interfaces) ... 472
15.6.1 DataEvent ..472
15.6.2 DirectIOEvent ..472
15.6.3 ErrorEvent ..473
15.6.4 OutputCompleteEvent ...475
15.6.5 StatusUpdateEvent ..475
15.6.6 TransitionEvent Updated in Release 1.14 ..476

16 Fiscal Printer .. 481
16.1 General ... 481

16.2 Summary .. 481

16.3 General Information .. 485
16.3.1 Fiscal Printer Class Diagram ...486
16.3.2 General Requirements ...487
16.3.3 Fiscal Printer Modes ..487
16.3.4 Model Updated in Release 1.12 .488
16.3.5 Error Model Updated in Release 1.13 489
16.3.6 Release 1.8 Additional Model Clarifications ..491
16.3.7 Fiscal Printer States Updated in Release 1.8 ..492
16.3.8 Fiscal Printer State Diagram Added in Release 1.12 .495
16.3.9 Document Printing ...496
16.3.10 Ordering of Fiscal Receipt Print Requests Updated in Release 1.13 .496
16.3.11 Fiscal Receipt Layouts Updated in Release 1.8 ..499
16.3.12 Example of a Fiscal Receipt ..500
16.3.13 Totalizers and Fiscal Memory ..501
16.3.14 Counters ..501
16.3.15 VAT Tables ..501
16.3.16 Receipt Duplication ..501
16.3.17 Currency Amounts, Percentage Amounts, VAT Rates, and Quantity 
xviii Unified POS, v1.16.1

 Amounts ..502
16.3.18 Currency Change ..502
16.3.19 Device Sharing .. 502

16.4 Properties (UML attributes) ... 503
16.4.1 ActualCurrency Property Updated in Release 1.12 ..503
16.4.2 AdditionalHeader Property　　　　　 Added in Release 1.6 ..504
16.4.3 AdditionalTrailer Property Added in Release 1.6 ...504
16.4.4 AmountDecimalPlaces Property .. 505
16.4.5 AsyncMode Property ... 505
16.4.6 CapAdditionalHeader Property Added in Release 1.6 .505
16.4.7 CapAdditionalLines Property Updated in Release 1.13 ..505
16.4.8 CapAdditionalTrailer Property Added in Release 1.6 ..506
16.4.9 CapAmountAdjustment Property ...506
16.4.10 CapAmountNotPaid Property Deprecated in Release 1.11 ..506
16.4.11 CapChangeDue Property Added in Release 1.6 ..506
16.4.12 CapCheckTotal Property Updated in Release 1.11 ..507
16.4.13 CapCoverSensor Property ..507
16.4.14 CapDoubleWidth Property ...507
16.4.15 CapDuplicateReceipt Property ..507
16.4.16 CapEmptyReceiptIsVoidable Property Added in Release 1.6 ...508
16.4.17 CapFiscalReceiptStation Property Added in Release 1.6 508
16.4.18 CapFiscalReceiptType Property Added in Release 1.6 ..508
16.4.19 CapFixedOutput Property .. 508
16.4.20 CapHasVatTable Property ...508
16.4.21 CapIndependentHeader Property .. 509
16.4.22 CapItemList Property ... 509
16.4.23 CapJrnEmptySensor Property ... 509
16.4.24 CapJrnNearEndSensor Property ...509
16.4.25 CapJrnPresent Property .. 510
16.4.26 CapMultiContractor Property Added in Release 1.6 ...510
16.4.27 CapNonFiscalMode Property ..510
16.4.28 CapOnlyVoidLastItem Property Added in Release 1.6 ..510
16.4.29 CapOrderAdjustmentFirst Property ...510
16.4.30 CapPackageAdjustment Property Added in Release 1.6 .511
16.4.31 CapPercentAdjustment Property ...511
16.4.32 CapPositiveAdjustment Property ...511
16.4.33 CapPositiveSubtotalAdjustment Property Added in Release 1.11 511
16.4.34 CapPostPreLine Property Added in Release 1.6 .512
16.4.35 CapPowerLossReport Property ...512
16.4.36 CapPredefinedPaymentLines Property ... 512
16.4.37 CapReceiptNotPaid Property ..512
16.4.38 CapRecEmptySensor Property ...513
16.4.39 CapRecNearEndSensor Property ...513
16.4.40 CapRecPresent Property ...513
16.4.41 CapRemainingFiscalMemory Property ..513
Unified POS, v1.16.1 xix

16.4.42 CapReservedWord Property ..513
16.4.43 CapSetCurrency Property Added in Release 1.6 514
16.4.44 CapSetHeader Property ..514
16.4.45 CapSetPOSID Property ...514
16.4.46 CapSetStoreFiscalID Property ...514
16.4.47 CapSetTrailer Property ..515
16.4.48 CapSetVatTable Property ..515
16.4.49 CapSlpEmptySensor Property ...515
16.4.50 CapSlpFiscalDocument Property ...515
16.4.51 CapSlpFullSlip Property ...515
16.4.52 CapSlpNearEndSensor Property ...516
16.4.53 CapSlpPresent Property ..516
16.4.54 CapSlpValidation Property ...516
16.4.55 CapSubAmountAdjustment Property ...516
16.4.56 CapSubPercentAdjustment Property ...516
16.4.57 CapSubtotal Property ..517
16.4.58 CapTotalizerType Property Added in Release 1.6517
16.4.59 CapTrainingMode Property ..517
16.4.60 CapValidateJournal Property ...517
16.4.61 CapXReport Property ..517
16.4.62 ChangeDue Property Added in Release 1.6 518
16.4.63 CheckTotal Property Updated in Release 1.11 518
16.4.64 ContractorId Property Added in Release 1.6 519
16.4.65 CountryCode Property Updated in Release 1.12 .520
16.4.66 CoverOpen Property ..520
16.4.67 DateType Property Updated in Release 1.11 ..521
16.4.68 DayOpened Property Updated in Release 1.6 .522
16.4.69 DescriptionLength Property Updated in Release 1.6 .522
16.4.70 DuplicateReceipt Property ...523
16.4.71 ErrorLevel Property ..523
16.4.72 ErrorOutID Property Updated in Release 1.6 524
16.4.73 ErrorState Property ..524
16.4.74 ErrorStation Property ...524
16.4.75 ErrorString Property ...525
16.4.76 FiscalReceiptStation Property Added in Release 1.6 ..525
16.4.77 FiscalReceiptType Property Updated in Release 1.11 ..526
16.4.78 FlagWhenIdle Property ..527
16.4.79 JrnEmpty Property ...527
16.4.80 JrnNearEnd Property ...527
16.4.81 MessageLength Property ...528
16.4.82 MessageType Property Added in Release 1.6 .528
16.4.83 NumHeaderLines Property ..530
16.4.84 NumTrailerLines Property ..530
xx Unified POS, v1.16.1

16.4.85 NumVatRates Property .. 530
16.4.86 PostLine Property Added in Release 1.6 ...531
16.4.87 PredefinedPaymentLines Property .. 531
16.4.88 PreLine Property Added in Release 1.6 .532
16.4.89 PrinterState Property Updated in Release 1.13 .533
16.4.90 QuantityDecimalPlaces Property Updated in Release 1.6 .534
16.4.91 QuantityLength Property Updated in Release 1.6 .534
16.4.92 RecEmpty Property ... 535
16.4.93 RecNearEnd Property ...535
16.4.94 RemainingFiscalMemory Property ...535
16.4.95 ReservedWord Property .. 536
16.4.96 SlpEmpty Property ... 536
16.4.97 SlpNearEnd Property ... 536
16.4.98 SlipSelection Property ...537
16.4.99 TotalizerType Property Added in Release 1.6 537
16.4.100TrainingModeActive Property ... 538

16.5 Methods (UML operations) ... 539
16.5.1 beginFiscalDocument Method Updated in Release 1.11 .539
16.5.2 beginFiscalReceipt Method Updated in Release 1.11 ..541
16.5.3 beginFixedOutput Method ...542
16.5.4 beginInsertion Method ...543
16.5.5 beginItemList Method ..544
16.5.6 beginNonFiscal Method ...545
16.5.7 beginRemoval Method ...546
16.5.8 beginTraining Method ..547
16.5.9 clearError Method ..547
16.5.10 endFiscalDocument Method ..548
16.5.11 endFiscalReceipt Method Updated in Release 1.6 549
16.5.12 endFixedOutput Method .. 550
16.5.13 endInsertion Method ..550
16.5.14 endItemList Method Updated in Release 1.13 .551
16.5.15 endNonFiscal Method ..551
16.5.16 endRemoval Method ... 552
16.5.17 endTraining Method ... 552
16.5.18 getData Method Updated in Release 1.12 .553
16.5.19 getDate Method Updated in Release 1.6 556
16.5.20 getTotalizer Method Updated in Release 1.6 557
16.5.21 getVatEntry Method Updated in Release 1.11 .558
16.5.22 printDuplicateReceipt Method ... 559
16.5.23 printFiscalDocumentLine Method .. 560
16.5.24 printFixedOutput Method ...561
16.5.25 printNormal Method Updated in Release 1.7 562
16.5.26 printPeriodicTotalsReport Method ...564
16.5.27 printPowerLossReport Method ..565
16.5.28 printRecCash Method Added in Release 1.6 566
Unified POS, v1.16.1 xxi

16.5.29 printRecItem Method Updated in Release 1.6 ..567
16.5.30 printRecItemAdjustment Method Updated in Release 1.11 569
16.5.31 printRecItemAdjustmentVoid Method Added in Release 1.11 571
16.5.32 printRecItemFuel Method Added in Release 1.6 573
16.5.33 printRecItemFuelVoid Method Added in Release 1.6 575
16.5.34 printRecItemRefund Method Added in Release 1.12 .577
16.5.35 printRecItemRefundVoid Method Added in Release 1.12 .579
16.5.36 printRecItemVoid Method　　　　　 Added in Release 1.11 ..581
16.5.37 printRecMessage Method Updated in Release 1.13 583
16.5.38 printRecNotPaid Method Updated in Release 1.11 584
16.5.39 printRecPackageAdjustment Method Added in Release 1.6 585
16.5.40 printRecPackageAdjustVoid Method Added in Release 1.6 587
16.5.41 printRecRefund Method Updated in Release 1.12 .589
16.5.42 printRecRefundVoid Method　　　 Updated in Release 1.12 .591
16.5.43 printRecSubtotal Method Updated in Release 1.6 593
16.5.44 printRecSubtotalAdjustment Method . Updated in Release 1.11 594
16.5.45 printRecSubtotalAdjustVoid Method Added in Release 1.6 597
16.5.46 printRecTaxID Method Added in Release 1.6 599
16.5.47 printRecTotal Method Updated in Release 1.14 600
16.5.48 printRecVoid Method Updated in Release 1.6 602
16.5.49 printRecVoidItem Method Deprecated in Release 1.11 604
16.5.50 printReport Method Updated in Release 1.11 607
16.5.51 printXReport Method ..608
16.5.52 printZReport Method Updated in Release 1.6 609
16.5.53 resetPrinter Method ...610
16.5.54 setCurrency Method Added in Release 1.6 611
16.5.55 setDate Method ...612
16.5.56 setHeaderLine Method Updated in Release 1.6 613
16.5.57 setPOSID Method ..614
16.5.58 setStoreFiscalID Method ...615
16.5.59 setTrailerLine Method ..616
16.5.60 setVatTable Method ...617
16.5.61 setVatValue Method Updated in Release 1.11 .618
16.5.62 verifyItem Method Updated in Release 1.13 ..619

16.6 Events (UML Interfaces).. 620
16.6.1 DirectIOEvent ..620
16.6.2 ErrorEvent Updated in Release 1.13 ..621
16.6.3 OutputCompleteEvent ...623
16.6.4 StatusUpdateEvent Updated in Release 1.8 623

17 Gate ... 625
17.1 General ... 625
xxii Unified POS, v1.16.1

17.2 Summary .. 625

17.3 General Information .. 628
17.3.1 Capabilities ..628
17.3.2 Gate Class Diagram ..629
17.3.3 Gate Sequence Diagram ...630
17.3.4 Device Sharing .. 631

17.4 Properties (UML attributes) .. 632
17.4.1 CapGateStatus Property ...632
17.4.2 GateStatus Property ..632

17.5 Methods (UML operations) ... 633
17.5.1 openGate Method ..633
17.5.2 waitForGateClose Method ...633

17.6 Events (UML interfaces) ... 634
17.6.1 DirectIOEvent .. 634
17.6.2 StatusUpdateEvent ..635

18 Hard Totals .. 637
18.1 General .. 637

18.2 Summary .. 637

18.3 General Information .. 641
18.3.1 Capabilities ..641
18.3.2 Hard Totals Class Diagram ... 642
18.3.3 Hard Totals Sequence Diagram Added in Release 1.7 ..643
18.3.4 Model ...644
18.3.5 Device Sharing .. 645

18.4 Properties (UML attributes) .. 646
18.4.1 CapErrorDetection Property ..646
18.4.2 CapSingleFile Property .. 646
18.4.3 CapTransactions Property ...646
18.4.4 FreeData Property ... 646
18.4.5 NumberOfFiles Property .. 647
18.4.6 TotalsSize Property ... 647
18.4.7 TransactionInProgress Property .. 647

18.5 Methods (UML operations)... 648
18.5.1 beginTrans Method ..648
18.5.2 claim Method (Common) ...648
18.5.3 claimFile Method Updated in Release 1.8 .649
18.5.4 commitTrans Method ... 649
18.5.5 create Method .. 650
18.5.6 delete Method .. 651
Unified POS, v1.16.1 xxiii

18.5.7 find Method ..651
18.5.8 findByIndex Method ...652
18.5.9 read Method Updated in Release 1.7 ..653
18.5.10 recalculateValidationData Method ...654
18.5.11 release Method (Common) ..654
18.5.12 releaseFile Method ..655
18.5.13 rename Method ..655
18.5.14 rollback Method ...656
18.5.15 setAll Method Updated in Release 1.7 656
18.5.16 validateData Method ..657
18.5.17 write Method Updated in Release 1.7 ..657

18.6 Events (UML interfaces) ... 658
18.6.1 DirectIOEvent ..658
18.6.2 StatusUpdateEvent ..658

19 Image Scanner .. 659
19.1 General ... 659

19.2 Summary .. 659

19.3 General Information .. 663
19.3.1 Capabilities ..663
19.3.2 Image Scanner Class Diagram ..664
19.3.3 Image Scanner Sequence Diagram 1 ..665
19.3.4 Image Scanner Sequence Diagram 2 ..666
19.3.5 Image Scanner Sequence Diagram 3 ..667
19.3.6 Image Scanner Sequence Diagram 4 ..668
19.3.7 Model ...669
19.3.8 Device Sharing ..669
19.3.9 Image Scanner State Diagram ..670

19.4 Properties (UML attributes) .. 671
19.4.1 AimMode Property ...671
19.4.2 BitsPerPixel Property ...671
19.4.3 CapAim Property ...671
19.4.4 CapDecodeData Property ..671
19.4.5 CapHostTriggered Property ...672
19.4.6 CapIlluminate Property ..672
19.4.7 CapImageData Property ..672
19.4.8 CapImageQuality Property ..672
19.4.9 CapVideoData Property ...673
19.4.10 FrameData Property ..673
19.4.11 FrameType Property ..674
xxiv Unified POS, v1.16.1

19.4.12 IlluminateMode Property .. 674
19.4.13 ImageHeight Property ..674
19.4.14 ImageLength Property ...675
19.4.15 ImageMode Property ... 676
19.4.16 ImageQuality Property ...677
19.4.17 Imageries Property ..677
19.4.18 ImageWidth Property ... 678
19.4.19 VideoCount Property ... 678
19.4.20 VideoRate Property ... 679

19.5 Methods (UML operations)... 680
19.5.1 startSession Method ..680
19.5.2 stopSession Method ..680

19.6 Events (UML interfaces) ... 681
19.6.1 DataEvent ..681
19.6.2 DirectIO Event ...681
19.6.3 ErrorEvent ... 682
19.6.4 StatusUpdateEvent ..683

20 Item Dispenser .. 685
20.1 General .. 685

20.2 Summary .. 685

20.3 General Information .. 688
20.3.1 Capabilities ..688
20.3.2 Item Dispenser Class Diagram ..689
20.3.3 Item Dispenser Sequence Diagram ...690
20.3.4 Model ...691
20.3.5 Device Sharing .. 691
20.3.6 Item Dispenser State Diagram ..691

20.4 Properties (UML attributes) .. 692
20.4.1 CapEmptySensor Property ..692
20.4.2 CapIndividualSlotStatus Property .. 692
20.4.3 CapJamSensor Property ...692
20.4.4 CapNearEmptySensor Property .. 692
20.4.5 DispenserStatus Property .. 693
20.4.6 MaxSlots Property ... 693

20.5 Methods (UML operations)... 694
20.5.1 adjustItemCount Method ...694
20.5.2 dispenseItem Method ..694
20.5.3 readItemCount Method .. 695

20.6 Events (UML interfaces)... 696
20.6.1 DirectIOEvent .. 696
Unified POS, v1.16.1 xxv

20.6.2 StatusUpdateEvent ..697

21 Keylock .. 699
21.1 General ... 699

21.2 Summary .. 699

21.3 General Information .. 702
21.3.1 Capabilities Updated in Release 1.11 .702
21.3.2 Keylock Class Diagram Updated in Release 1.11 .702
21.3.3 Keylock Sequence Diagram Updated in Release 1.12 .703
21.3.4 Model Updated in Release 1.11 704
21.3.5 Device Sharing ..704

21.4 Properties (UML attributes) .. 705
21.4.1 CapKeylockType Property Added in Release 1.11 .705
21.4.2 ElectronicKeyValue Property Added in Release 1.11 ..705
21.4.3 KeyPosition Property Updated in Release 1.11 .706
21.4.4 PositionCount Property Updated in Release 1.11 706

21.5 Methods (UML operations) ... 707
21.5.1 waitForKeylockChange Method Updated in Release 1.11 707

21.6 Events (UML interfaces) ... 708
21.6.1 DirectIOEvent ..708
21.6.2 StatusUpdateEvent Updated in Release 1.11 ..709

22 Lights ... 711
22.1 General ... 711

22.2 Summary .. 711

22.3 General Information .. 714
22.3.1 Capabilities ..714
22.3.2 Device Sharing ..714
22.3.3 Lights Class Diagram ...714
22.3.4 Lights Sequence Diagram ...716

22.4 Properties (UML attributes) .. 718
22.4.1 CapAlarm Property ..718
22.4.2 CapBlink Property ..718
22.4.3 CapColor Property ...718
22.4.4 CapPatternProperty Added in Release 1.16 .719
22.4.5 MaxLights Property ..719

22.5 Methods (UML operations) ... 720
xxvi Unified POS, v1.16.1

22.5.1 switchOff Method ...720
22.5.2 switchOffPattern Method ...720
22.5.3 switchOn Method ...721
22.5.4 switchOnMultiple Method Added in Release 1.16 722
22.5.5 switchOnPattern Method Added in Release 1.16 723

22.6 Events (UML interfaces) ... 723
22.6.1 DirectIOEvent .. 723
22.6.2 StatusUpdateEvent ..724

23 Line Display ... 725
23.1 General .. 725

23.2 Summary ... 725

23.3 General Information .. 730
23.3.1 Capabilities Updated in Version 1.7 .730
23.3.2 Line Display Class Diagram Updated in Release 1.7 .731
23.3.3 Line Display Sequence Diagram Added in Release 1.7 .732
23.3.4 Model Updated in Release 1.7 733
23.3.5 Display Modes ...734
23.3.6 Data Characters and Escape Sequences Added in Release 1.7 735
23.3.7 Device Sharing .. 735

23.4 Properties (UML attributes) .. 736
23.4.1 BlinkRate Property Added in Release 1.6 736
23.4.2 CapBitmap Property Added in Release 1.7 ..736
23.4.3 CapBlink Property ..736
23.4.4 CapBlinkRate Property Added in Release 1.6 .737
23.4.5 CapBrightness Property .. 737
23.4.6 CapCharacterSet Property Updated in Release 1.5 ..737
23.4.7 CapCursorType Property Updated in Release 1.8 .738
23.4.8 CapCustomGlyph Property Added in Release 1.6 .738
23.4.9 CapDescriptions Property .. 738
23.4.10 CapHMarquee Property ...739
23.4.11 CapICharWait Property ...739
23.4.12 CapMapCharacterSet Property Added in Release 1.7 ..739
23.4.13 CapReadBack Property Added in Release 1.6 ..739
23.4.14 CapReverse Property Added in Release 1.6 ...740
23.4.15 CapScreenMode Property Added in Release 1.7 ...740
23.4.16 CapVMarquee Property ...740
23.4.17 CharacterSet Property Updated in Release 1.10 ..741
23.4.18 CharacterSetList Property ...741
23.4.19 Columns Property ..742
23.4.20 CurrentWindow Property Updated in Release 1.6 ..742
23.4.21 u8CursorColumn Property ...743
23.4.22 CursorRow Property ..743
Unified POS, v1.16.1 xxvii

23.4.23 CursorType Property Updated in Release 1.8 ...744
23.4.24 CusorUpdate Property ...744
23.4.25 CustomGlyphList Property Added in Release 1.6 .745
23.4.26 DeviceBrightness Property ..745
23.4.27 DeviceColumns Property Updated in Release 1.7 .746
23.4.28 DeviceDescriptors Property ...746
23.4.29 DeviceRows Property Updated in Release 1.7 ...746
23.4.30 DeviceWindows Property ...746
23.4.31 GlyphHeight Property Added in Release 1.6 ..747
23.4.32 GlyphWidth Property Added in Release 1.6 ..747
23.4.33 InterCharacterWait Property ..747
23.4.34 MapCharacterSet Property Added in Release 1.7 ..748
23.4.35 MarqueeFormat Property ...749
23.4.36 MarqueeRepeatWait Property ...753
23.4.37 MarqueeType Property ..754
23.4.38 MarqueeUnitWait Property ..755
23.4.39 MaximumX Property Added in Release 1.7 ..755
23.4.40 MaximumY Property Added in Release 1.7 ..755
23.4.41 Rows Property ...756
23.4.42 ScreenMode Property Added in Release 1.7 ..756
23.4.43 ScreenModeList Property Added in Release 1.7 ..757

23.5 Methods (UML operations) ... 758
23.5.1 clearDescriptors Method ..758
23.5.2 clearText Method Updated in Release 1.7 .758
23.5.3 createWindow Method Updated in Release 1.6 ..759
23.5.4 defineGlyph Method Updated in Release 1.7 ..760
23.5.5 destroyWindow Method ...762
23.5.6 displayBitmap Method Added in Release 1.7 ..763
23.5.7 displayText Method Updated in Release 1.7 ..765
23.5.8 displayTextAt Method Updated in Release 1.7 ..767
23.5.9 readCharacterAtCursor Method Added in Release 1.6 ..767
23.5.10 refreshWindow Method ..768
23.5.11 scrollText Method Updated in Release 1.7 ...769
23.5.12 setBitmap Method Added in Release 1.7 ..772
23.5.13 setDescriptor Method ...774

23.6 Events (UML interfaces) ... 775
23.6.1 DirectIOEvent ..775
23.6.2 StatusUpdateEvent ..775

24 MICR - Magnetic Ink Character Recognition Reader 777
24.1 General ... 777
xxviii Unified POS, v1.16.1

24.2 Summary .. 777

24.3 General Information .. 780
24.3.1 Capabilities ..780
24.3.2 MICR Class Diagram ... 781
24.3.3 MICR Sequence Diagram Updated in Release 1.8 .782
24.3.4 Model ...783
24.3.5 Device Sharing .. 784
24.3.6 MICR - Character Substitution Updated in Release 1.13 .785

24.4 Properties (UML attributes) .. 787
24.4.1 AccountNumber Property .. 787
24.4.2 Amount Property .. 787
24.4.3 BankNumber Property ...787
24.4.4 CapValidationDevice Property ... 788
24.4.5 CheckType Property ..788
24.4.6 CountryCode Property Updated in Release 1.13 ..789
24.4.7 EPC Property ...789
24.4.8 RawData Property Updated in Release 1.13 ..790
24.4.9 SerialNumber Property .. 790
24.4.10 TransitNumber Property .. 790

24.5 Methods (UML operations).. 791
24.5.1 beginInsertion Method ...791
24.5.2 beginRemoval Method ...792
24.5.3 endInsertion Method ..793
24.5.4 endRemoval Method ... 794

24.6 Events (UML interfaces) ... 795
24.6.1 DataEvent ..795
24.6.2 DirectIOEvent .. 795
24.6.3 ErrorEvent Updated in Release 1.10 ..796
24.6.4 StatusUpdateEvent ..797

25 Motion Sensor ... 799
25.1 General .. 799

25.2 Summary .. 799

25.3 General Information .. 802
25.3.1 Capabilities ..802
25.3.2 Motion Sensor Class Diagram ... 802
25.3.3 Model ...803
25.3.4 Device Sharing .. 803
25.3.5 Motion Sensor Sequence Diagram .. 804
25.3.6 Motion Sensor State Diagram ... 805

25.4 Properties (UML attributes) .. 806
Unified POS, v1.16.1 xxix

25.4.1 Motion Property ...806
25.4.2 Timeout Property ...806

25.5 Methods (UML operations) ... 807
25.5.1 waitForMotion Method ...807

25.6 Events (UML interfaces)... 808
25.6.1 DirectIOEvent ..808
25.6.2 StatusUpdateEvent ..809

26 MSR - Magnetic Stripe Reader 811
26.1 General ... 811

26.2 Summary .. 811

26.3 General Information.. 815
26.3.1 Capabilities Updated in Release 1.12 ..815
26.3.2 MSR Class Diagram Updated in Release 1.12 ..817
26.3.3 Device Behavior Model Updated in Release 1.12 .818
26.3.4 MSR Encryption and Authentication Updated in Release 1.14 820
26.3.5 Device Sharing ..822
26.3.6 MSR Sequence Diagram Updated in Release 1.8 ..823
26.3.7 MSR Device Authentication Sequence Diagram Added in Release 1.12 .824
26.3.8 MSR State Diagrams ...825

26.4 Properties (UML attributes) .. 827
26.4.1 AccountNumber Property Updated in Release 1.13 ..827
26.4.2 AdditionalSecurityInformation Property Added in Release 1.12 ..827
26.4.3 CapCardAuthentication Property Added in Release 1.12 ...828
26.4.4 CapDataEncryption Property Added in Release 1.12 ..828
26.4.5 CapDeviceAuthentication Property Added in Release 1.12 ..829
26.4.6 CapISO Property ...829
26.4.7 CapJISOne Property ..829
26.4.8 CapJISTwo Property ..830
26.4.9 CapTrackDataMasking Property Updated in Release 1.13 ..830
26.4.10 CapTransmitSentinels Property Added in Release 1.5 ..830
26.4.11 CapWritableTracks Property Added in Release 1.10 .831
26.4.12 CardAuthenticationData Property Added in Release 1.12 ...831
26.4.13 CardAuthenticationDataLength Property Updated in Release 1.13 ..832
26.4.14 CardPropertyList Property Added in Release 1.12 ...832
26.4.15 CardType Property Added in Release 1.12 ...832
26.4.16 CardTypeList Property Added in Release 1.12 ..833
26.4.17 DataEncryptionAlgorithm Property Added in Release 1.12 ...834
26.4.18 DecodeData Property Updated in Release 1.13 ..835
26.4.19 DeviceAuthenticated Property Added in Release 1.12 ..836
xxx Unified POS, v1.16.1

26.4.20 DeviceAuthenticationProtocol Property Added in Release 1.12 ...836
26.4.21 EncodingMaxLength Property Updated in Release 1.10 ...836
26.4.22 ErrorReportingType Property Updated in Release 1.13 ..837
26.4.23 ExpirationDate Property　　　 Updated in Release 1.12 ..838
26.4.24 FirstName Property Updated in Release 1.12 ..839
26.4.25 MiddleInitial Property Updated in Release 1.12 ..839
26.4.26 ParseDecodeData Property Updated in Release 1.12 ..840
26.4.27 ServiceCode Property Updated in Release 1.12 ..841
26.4.28 Suffix Property Updated in Release 1.12 ..841
26.4.29 Surname Property Updated in Release 1.12 ...842
26.4.30 Title Property Updated in Release 1.12 ...842
26.4.31 Track1Data Property Updated in Release 1.12 ..843
26.4.32 Track1DiscretionaryData Property Updated in Release 1.12 ..843
26.4.33 Track1EncryptedData Property Added in Release 1.12 ...844
26.4.34 Track1EncryptedDataLenght Property Updated in Release 1.13 ..844
26.4.35 Track2Data Property Updated in Release 1.12 ..845
26.4.36 Track2DiscretionaryData Property Added in Release 1.12 ..845
26.4.37 Track2EncryptedData Property Added in Release 1.12 ..846
26.4.38 Track2EncryptedDataLength Property Updated in Release 1.13 ..846
26.4.39 Track3Data Property Updated in Release 1.12 ..847
26.4.40 Track3EncryptedData Property Added in Release 1.12 ...847
26.4.41 Track3EncryptedDataLength Property Updated in Release 1.13 ...848
26.4.42 Track4Data Property Updated in Release 1.12 ...848
26.4.43 Track4EncryptedData Property Added in Release 1.12 ...849
26.4.44 Track4EncryptedDataLength Property Updated in Release 1.13 ...849
26.4.45 TracksToRead Property Updated in Release 1.5 ...850
26.4.46 TracksToWrite Property Added in Release 1.10 ..851
26.4.47 TransmitSentinels Property Added in Release 1.5 ..851
26.4.48 WriteCardType Property Added in Release 1.12 ..852

26.5 Methods (UML operations) ... 853
26.5.1 authenticateDevice Method Added in Release 1.12 ...853
26.5.2 deauthenticateDevice Method Added in Release 1.12 ...854
26.5.3 retrieveCardProperty Method Updated in Release 1.13 .855
26.5.4 retrieveDeviceAuthenticationData Method Added in Release 1.12 ..856
26.5.5 updateKey Method Added in Release 1.12 857
26.5.6 writeTracks Method Updated in Release 1.12 .858

26.6 Events (UML interfaces) ... 859
26.6.1 DataEvent Updated in Release 1.12 ..859
26.6.2 DirectIOEvent .. 860
26.6.3 ErrorEvent Updated in Release 1.10 ..861
26.6.4 StatusUpdateEvent Updated in Release 1.12 .863

27 Pin Pad .. 865
27.1 General .. 865
Unified POS, v1.16.1 xxxi

27.2 Summary .. 865

27.3 General Information .. 869
27.3.1 Capabilities ..869
27.3.2 Pin Pad Class Diagram ..870
27.3.3 Pin Pad Sequence Diagram Added in Release 1.7 ..871
27.3.4 Feature Not Supported ..872
27.3.5 Note on Terminology ...872
27.3.6 Model ...873
27.3.7 Device Sharing ..873
27.3.8 Pin Pad State Diagram ..874

27.4 Properties (UML attributes) .. 875
27.4.1 AccountNumber Property ..875
27.4.2 AdditionalSecurityInformation Property ...875
27.4.3 Amount Property Corrected in Release 1.8 ..875
27.4.4 AvailableLanguagesList Property ..876
27.4.5 AvailablePromptsList Property ...876
27.4.6 CapDisplay Property ..878
27.4.7 CapKeyboard Property ..878
27.4.8 CapLanguage Property Updated in Release 1.9 .879
27.4.9 CapMACCalculation Property ..879
27.4.10 CapTone Property ...880
27.4.11 EncryptedPIN Property ..880
27.4.12 MaximumPINLength Property ..880
27.4.13 MerchantID Property ..881
27.4.14 MinimumPINLength Property ...881
27.4.15 PINEntryEnabled Property Updated in Release 1.12 ..881
27.4.16 Prompt Property ...882
27.4.17 PromptLanguage Property ...883
27.4.18 TerminalID Property ...883
27.4.19 Track1Data Property ..884
27.4.20 Track2Data Property ..884
27.4.21 Track3Data Property ..884
27.4.22 Track4Data Property Added in Release 1.5 ...885
27.4.23 TransactionType Property ...885

27.5 Methods (UML operations) ... 886
27.5.1 beginEFTTransaction Method Updated in Release 1.14 ..886
27.5.2 computeMAC Method Updated in Release 1.7 .887
27.5.3 enablePINEntry Method ...887
27.5.4 endEFTTransaction Method ..888
27.5.5 updateKey Method ...888
27.5.6 verifyMAC Method Updated in Release 1.9 ..889
xxxii Unified POS, v1.16.1

27.6 Events (UML interfaces)... 890
27.6.1 DataEvent ..890
27.6.2 DirectIOEvent .. 891
27.6.3 ErrorEvent ... 892
27.6.4 StatusUpdateEvent ..893

28 Point Card Reader/Writer .. 895
28.1 General .. 895

28.2 Summary .. 895

28.3 General Information .. 900
28.3.1 Capabilities ..900
28.3.2 Point Card Reader/Writer Class Diagram .. 901
28.3.3 Model ...902
28.3.4 Card Insertion Diagram ...904
28.3.5 Printing Capability ..905
28.3.6 Cleaning Capability ..906
28.3.7 Initialization of Magnetic Stripe Data ... 906
28.3.8 Device Sharing .. 906
28.3.9 Data Characters and Escape Sequences Updated in Release 1.7 .. 907
28.3.10 Point Card Reader Writer Sequence Diagram Added in Release 1.7 909
28.3.11 Point Card Reader Writer State Diagram .. 910

28.4 Properties (UML attributes) .. 911
28.4.1 CapBold Property ..911
28.4.2 CapCardEntranceSensor Property .. 911
28.4.3 CapCleanCard Property .. 912
28.4.4 CapClearPrint Property ...912
28.4.5 CapDhigh Property ..912
28.4.6 CapDwide Property ... 912
28.4.7 CapDwideDhigh Property .. 913
28.4.8 CapItalic Property ..913
28.4.9 CapLeft90 Property ... 913
28.4.10 CapMapCharacterSet Property Added in Release 1.7 ..913
28.4.11 CapPrint Property ..914
28.4.12 CapPrintMode Property ...914
28.4.13 CapRight90 Property ... 914
28.4.14 CapRotate180 Property ...914
28.4.15 CapTracksToRead Property ..915
28.4.16 CapTracksToWrite Property ..915
28.4.17 CardState Property ..916
28.4.18 CharacterSet Property Updated in Release 1.10 ...916
28.4.19 CharacterSetList Property ...917
28.4.20 FontTypefaceList Property ..917
28.4.21 LineChars Property ..917
Unified POS, v1.16.1 xxxiii

28.4.22 LineCharsList Property ..918
28.4.23 LineHeight Property ...918
28.4.24 LineSpacing Property ..919
28.4.25 LineWidth Property ..919
28.4.26 MapCharacterSet Property Added in Release 1.7 ..919
28.4.27 MapMode Property Updated in Release 1.13 .920
28.4.28 MaxLine Property ...920
28.4.29 PrintHeight Property ..921
28.4.30 ReadState1 Property ...921
28.4.31 ReadState2 Property ...922
28.4.32 RecvLength1 Property ...923
28.4.33 RecvLength2 Property ...923
28.4.34 SidewaysMaxChars Property ..924
28.4.35 SidewaysMaxLines Property ...924
28.4.36 TracksToRead Property ...925
28.4.37 TracksToWrite Property ...925
28.4.38 Track1Data Property ..926
28.4.39 Track2Data Property ..926
28.4.40 Track3Data Property ..926
28.4.41 Track4Data Property ..926
28.4.42 Track5Data Property ..927
28.4.43 Track6Data Property ..927
28.4.44 WriteState1 Property ...927
28.4.45 WriteState2 Property ...928
28.4.46 Write1Data Property ..929
28.4.47 Write2Data Property ..929
28.4.48 Write3Data Property ..929
28.4.49 Write4Data Property ..929
28.4.50 Write5Data Property ..930
28.4.51 Write6Data Property ..930

28.5 Methods (UML operations) ... 931
28.5.1 beginInsertion Method ...931
28.5.2 beginRemoval Method ...932
28.5.3 cleanCard Method ...933
28.5.4 clearPrintWrite Method ..933
28.5.5 endInsertion Method ..934
28.5.6 endRemoval Method ..934
28.5.7 printWrite Method Updated in Release 1.7 ..935
28.5.8 rotatePrint Method ...936
28.5.9 validateData Method Updated in Release 1.7 ..937

28.6 Events (UML Interfaces) ... 938
28.6.1 DataEvent ..938
xxxiv Unified POS, v1.16.1

28.6.2 DirectIOEvent .. 938
28.6.3 ErrorEvent Updated in Release 1.10 .939
28.6.4 OutputCompleteEvent ...940
28.6.5 StatusUpdateEvent ..941

29 POS Keyboard ... 943
29.1 General .. 943

29.2 Summary .. 943

29.3 General Information .. 946
29.3.1 Capabilities ..946
29.3.2 POS Keyboard Class Diagram ..946
29.3.3 POS Keyboard Sequence Diagram Updated in Release 1.8 ..947
29.3.4 Model ...948
29.3.5 Device Sharing .. 948

29.4 Properties (UML attributes) .. 949
29.4.1 CapKeyUp Property ... 949
29.4.2 EventTypes Property ... 949
29.4.3 POSKeyData Property ...949
29.4.4 POSKeyEventType Property ... 950

29.5 Events (UML interfaces) ... 951
29.5.1 DataEvent ..951
29.5.2 DirectIOEvent .. 951
29.5.3 ErrorEvent Updated in Release 1.10 ..952
29.5.4 StatusUpdateEvent ..953

30 POS Power .. 955
30.1 General .. 955

30.2 Summary.. 955

30.3 General Information .. 959
30.3.1 Capabilities ..959
30.3.2 Device Sharing .. 959
30.3.3 Model ...960
30.3.4 POSPower Class Diagram Updated in Release 1.16 ...961
30.3.5 POSPower Sequence Diagram ...962
30.3.6 POSPower Standby Sequence Diagram ...963
30.3.7 POSPower State Diagram ...964
30.3.8 POSPower PowerState Diagram - Part 1 .. 965
30.3.9 POSPower PowerState Diagram - Part 2 .. 966
30.3.10 POSPower PowerState Diagram - Part 3 .. 967
30.3.11 POSPower State Chart Diagram for Fan and Temperature 968
30.3.12 POSPower Battery State Diagram .. 969
Unified POS, v1.16.1 xxxv

30.3.13 POSPower Transitions State Diagram ..970

30.4 Properties (UML attributes) .. 971
30.4.1 BatteryCapacityRemaining Property ..971
30.4.2 BatteryCapacityRemainingInSeconds Property. Added in Release 1.16 971
30.4.3 BatteryCriticallyLowThreshold Property ...971
30.4.4 BatteryCriticallyLowThresholdInSeconds Property 
 Added in Release 1.16 ..971
30.4.5 BatteryLowThreshold Property Added in Release 1.9 ..972
30.4.6 BatteryLowThresholdInSeconds Property Added in Release 1.16 972
30.4.7 CapBatteryCapacityRemaining Property ...973
30.4.8 CapBatteryCapacityRemainingInSeconds Property 
 Added in Release 1.16 .973
30.4.9 CapChargeTime Property Added in Release 1.16 .973
30.4.10 CapFanAlarm Property ..973
30.4.11 CapHeatAlarm Property ...974
30.4.12 CapQuickCharge Property ...974
30.4.13 CapRestartPOS Property ..975
30.4.14 CapShutdownPOS Property ..975
30.4.15 CapStandbyPOS Property ...975
30.4.16 CapSuspendPOS Property ..975
30.4.17 CapUPSChargeState Property ..976
30.4.18 CapVariableBatteryCriticallyLowThreshold Property976
30.4.19 CapVariableBatteryCriticallyLowThresholdInSeconds Property 　　　　
　　　　　　　　　　　 Added in Release 1.16976
30.4.20 CapVariableBatteryLowThreshold Property ..977
30.4.21 CapVariableBatteryLowThresholdInSeconds Property

 Added in Release 1.16 ..977
30.4.22 ChargeTime Property 　　 Added in Release 1.16 977
30.4.23 EnforcedShutdownDelayTime Property ...978
30.4.24 PowerFailDelayTime Property ...978
30.4.25 PowerSource Property Added in Release 1.9 ..979
30.4.26 QuickChargeMode Property ..979
30.4.27 QuickChargeTime Property ...980
30.4.28 UPSChargeState Property ...980

30.5 Methods (UML operations) ... 981
30.5.1 restartPOS Method ..981
30.5.2 shutdownPOS Method ...982
30.5.3 standbyPOS Method ..983
30.5.4 suspendPOS Method ...984

30.6 Events (UML interfaces)... 985
30.6.1 DirectIOEvent ..985
30.6.2 StatusUpdateEvent ..986
xxxvi Unified POS, v1.16.1

31 POS Printer ... 989
31.1 General .. 989

31.2 Summary .. 989

31.3 General Information.. 997
31.3.1 Capabilities Updated in Release 1.8 .997
31.3.2 POS Printer Class Diagram ... 998
31.3.3 POS Printer Class Diagram Updates Updated in Release 1.10 .999
31.3.4 Model Updated in Release 1.13 1000
31.3.5 Device Sharing .. 1005
31.3.6 POS Printer State Diagram ... 1006
31.3.7 Page Mode Printing State Diagram Added in Release 1.9 ... 1007
31.3.8 “Both sides printing” sequence Diagram ...1008
31.3.9 Page Mode printing sequence Diagram Added in Release 1.9 ... 1009
31.3.10 Data Characters and Escape Sequences Updated in Release 1.13 1010
31.3.11 POS Printer State Diagrams (Low Level) .. 1016

31.4 Properties (UML attributes) .. 1021
31.4.1 AsyncMode Property ... 1021
31.4.2 CapCharacterSet Property Updated in Release 1.5 ..1021
31.4.3 CapConcurrentJrnRec Property .. 1022
31.4.4 CapConcurrentJrnSlp Property ...1022
31.4.5 CapConcurrentPageMode Property Added in Release 1.9 ..1022
31.4.6 CapConcurrentRecSlp Property .. 1023
31.4.7 CapCoverSensor Property ..1023
31.4.8 CapJrn2Color Property .. 1023
31.4.9 CapJrnBold Property ... 1024
31.4.10 CapJrnCartridgeSensor Property Added in Release 1.5 ..1024
31.4.11 CapJrnColor Property Added in Release 1.5 .1025
31.4.12 CapJrnDhigh Property ...1025
31.4.13 CapJrnDwide Property .. 1025
31.4.14 CapJrnDwideDhigh Property ... 1026
31.4.15 CapJrnEmptySensor Property ... 1026
31.4.16 CapJrnItalic Property ... 1026
31.4.17 CapJrnNearEndSensor Property ...1026
31.4.18 CapJrnPresent Property .. 1027
31.4.19 CapJrnUnderline Property ...1027
31.4.20 CapMapCharacterSet Property Added in Release 1.7 .1027
31.4.21 CapRec2Color Property .. 1027
31.4.22 CapRecBarCode Property ...1028
31.4.23 CapRecBitmap Property .. 1028
31.4.24 CapRecBold Property ..1028
31.4.25 CapRecCartridgeSensor Property Added in Release 1.5 ..1028
31.4.26 CapRecColor Property Added in Release 1.5 ... 1029
31.4.27 CapRecDhigh Property .. 1029
Unified POS, v1.16.1 xxxvii

31.4.28 CapRecDwide Property ...1029
31.4.29 CapRecDwideDhigh Property ..1030
31.4.30 CapRecEmptySensor Property ..1030
31.4.31 CapRecItalic Property ..1030
31.4.32 CapRecLeft90 Property ...1030
31.4.33 CapRecMarkFeed Property Added in Release 1.5 ..1031
31.4.34 CapRecNearEndSensor Property ..1031
31.4.35 CapRecPageMode Property Added in Release 1.9 1031
31.4.36 CapRecPapercut Property ...1032
31.4.37 CapRecPresent Property ...1032
31.4.38 CapRecRight90 Property ...1032
31.4.39 CapRecRotate180 Property ...1032
31.4.40 CapRecRuledLine Property Added in Release 1.13 ..1033
31.4.41 CapRecStamp Property ...1033
31.4.42 CapRecUnderline Property ..1033
31.4.43 CapSlp2Color Property ..1034
31.4.44 CapSlpBarCode Property ..1034
31.4.45 CapSlpBitmap Property ...1034
31.4.46 CapSlpBold Property ...1034
31.4.47 CapSlpBothSidesPrint Property Added in Release 1.5 .1035
31.4.48 CapSlpCartridgeSensor Property Added in Release 1.5 ..1035
31.4.49 CapSlpColor Property Added in Release 1.5 ..1036
31.4.50 CapSlpDhigh Property ...1036
31.4.51 CapSlpDwide Property ..1036
31.4.52 CapSlpDwideDhigh Property ...1037
31.4.53 CapSlpEmptySensor Property ...1037
31.4.54 CapSlpFullslip Property ...1037
31.4.55 CapSlpItalic Property ...1037
31.4.56 CapSlpLeft90 Property ..1038
31.4.57 CapSlpNearEndSensor Property ...1038
31.4.58 CapSlpPageMode Property Added in Release 1.9 ...1038
31.4.59 CapSlpPresent Property ..1038
31.4.60 CapSlpRight90 Property ..1039
31.4.61 CapSlpRotate180 Property ..1039
31.4.62 CapSlpRuledLine Property Added in Release 1.13 ...1039
31.4.63 CapSlpUnderline Property ...1040
31.4.64 CapTransaction Property ...1040
31.4.65 CartridgeNotify Property Added in Release 1.5 ...1041
31.4.66 CharacterSet Property Updated in Release 1.10 ..1042
31.4.67 CharacterSetList Property ...1042
31.4.68 CoverOpen Property ..1043
31.4.69 ErrorLevel Property ..1043
31.4.70 ErrorStation Property ...1044
xxxviii Unified POS, v1.16.1

31.4.71 ErrorString Property ... 1044
31.4.72 FlagWhenIdle Property .. 1045
31.4.73 FontTypefaceList Property ..1045
31.4.74 JrnCartridgeState Property Added in Release 1.5 ..1046
31.4.75 JrnCurrentCartridge Property Updated in Release 1.9 ... 1047
31.4.76 JrnEmpty Property ... 1047
31.4.77 JrnLetterQuality Property ...1048
31.4.78 JrnLineChars Property ...1048
31.4.79 JrnLineCharsList Property ...1049
31.4.80 JrnLineHeight Property .. 1049
31.4.81 JrnLineSpacing Property ...1050
31.4.82 JrnLineWidth Property ...1050
31.4.83 JrnNearEnd Property ... 1050
31.4.84 MapCharacterSet Property Added in Release 1.7 ... 1051
31.4.85 MapMode Property Updated in Release 1.13 ..1051
31.4.86 PageModeArea Property Added in Release 1.9 ..1052
31.4.87 PageModeDescriptor Property Added in Release 1.9 ..1052
31.4.88 PageModeHorizontalPosition Property Added in Release 1.9 .1053
31.4.89 PageModePrintArea Property Added in Release 1.9 .1055
31.4.90 PageModePrintDirection Property Added in Release 1.9 ..1055
31.4.91 PageModeStation Property Added in Release 1.9 ..1057
31.4.92 PageModeVerticalPosition Property Added in Release 1.9 ..1057
31.4.93 RecBarCodeRotationList Property Updated in Release 1.7 ... 1058
31.4.94 RecBitmapRotationList Property Added in Release 1.7 ..1058
31.4.95 RecCartridgeState Property Added in Release 1.5 ..1059
31.4.96 RecCurrentCartridge Property Updated in Release 1.9 ..1060
31.4.97 RecEmpty Property ... 1060
31.4.98 RecLetterQuality Property ...1061
31.4.99 RecLineChars Property ...1061
31.4.100RecLineCharsList Property ... 1062
31.4.101RecLineHeight Property ...1062
31.4.102RecLineSpacing Property ...1062
31.4.103RecLinesToPaperCut Property ...1063
31.4.104RecLineWidth Property ...1063
31.4.105RecNearEnd Property .. 1063
31.4.106RecSidewaysMaxChars Property ...1064
31.4.107RecSidewaysMaxLines Property .. 1064
31.4.108RotateSpecial Property ...1064
31.4.109SlpBarCodeRotationList Property Updated in Release 1.7 ..1065
31.4.110SlpBitmapRotationList Property Added in Release 1.7 ..1065
31.4.111SlpCartridgeState Property Added in Release 1.5 ..1066
31.4.112SlpCurrentCartridge Property Updated in Release 1.9 ..1067
31.4.113SlpEmpty Property ..1067
31.4.114SlpLetterQuality Propert ...1068
31.4.115SlpLineChars Property ...1068
31.4.116SlpLineCharsList Property ..1069
Unified POS, v1.16.1 xxxix

31.4.117SlpLineHeight Property ...1069
31.4.118SlpLinesNearEndToEnd Property ...1070
31.4.119SlpLineSpacing Property ..1070
31.4.120SlpLineWidth Property ..1071
31.4.121SlpMaxLines Property ...1071
31.4.122SlpNearEnd Property ..1072
31.4.123SlpPrintSide Property Added in Release 1.5 ...1073
31.4.124SlpSidewaysMaxChars Property ..1073
31.4.125SlpSidewaysMaxLines Property ...1074

31.5 Methods (UML operations) ... 1075
31.5.1 beginInsertion Method ...1075
31.5.2 beginRemoval Method ...1076
31.5.3 changePrintSide Method Updated in Release 1.9 ...1077
31.5.4 clearPrintArea Method Added in Release 1.9 ..1078
31.5.5 cutPaper Method Updated in Release 1.9 1079
31.5.6 drawRuledLine Method Added in Release 1.13 ..1080
31.5.7 endInsertion Method ..1083
31.5.8 endRemoval Method ..1084
31.5.9 markFeed Method Added in Release 1.5 ..1085
31.5.10 pageModePrint Method Updated in Release 1.11 ...1087
31.5.11 printBarCode Method Updated in Release 1.131089
31.5.12 printBitmap Method Updated in Release 1.7 ..1094
31.5.13 printImmediate Method Updated in Release 1.13 .1097
31.5.14 printMemoryBitmap Method Added in Release 1.12 .1099
31.5.15 printNormal Method Updated in Release 1.7 ...1101
31.5.16 printTwoNormal Method Updated in Release 1.9 ..1103
31.5.17 rotatePrint Method Updated in Version 1.11 ..1105
31.5.18 setBitmap Method Updated in Release 1.7 ..1107
31.5.19 setLogo Method Updated in Release 1.10 .1108
31.5.20 transactionPrint Method ...1109
31.5.21 validateData Method Updated in Release 1.9 ..1111

31.6 Events (UML interfaces) ... 1113
31.6.1 DirectIOEvent ..1113
31.6.2 ErrorEvent Updated in Release 1.9 ..1114
31.6.3 OutputCompleteEvent ...1115
31.6.4 StatusUpdateEvent Updated in Release 1.8 ..1116

32 Remote Order Display ... 1119
32.1 General ... 1119

32.2 Summary .. 1119
xl Unified POS, v1.16.1

32.3 General Information .. 1124
32.3.1 Capabilities ..1124
32.3.2 Remote Order Display Class Diagram ... 1125
32.3.3 Model Updated in Release 1.7 ... 1126
32.3.4 Device Sharing .. 1129

32.4 Properties (UML attributes) .. 1130
32.4.1 AsyncMode Property Updated in Release 1.11 ... 1130
32.4.2 AutoToneDuration Property Updated in Release 1.11 ..1130
32.4.3 AutoToneFrequency Property ... 1130
32.4.4 CapMapCharacterSet Property Added in Release 1.7 ... 1131
32.4.5 CapSelectCharacterSet Property .. 1131
32.4.6 CapTone Property ... 1131
32.4.7 CapTouch Property ... 1132
32.4.8 CapTransaction Property ...1132
32.4.9 CharacterSet Property Updated in Release 1.10 .1133
32.4.10 CharacterSetList Property ...1133
32.4.11 Clocks Property ...1134
32.4.12 Current UnitID Property ...1134
32.4.13 DataCount Property (Common) ...1135
32.4.14 ErrorString Property ... 1135
32.4.15 ErrorUnits Property ..1135
32.4.16 EventString Property ... 1136
32.4.17 EventType Property ... 1136
32.4.18 EventUnitID Property ... 1136
32.4.19 EventUnits Property ... 1137
32.4.20 MapCharacterSet Property Added in Release 1.7 ..1137
32.4.21 SystemClocks Property ...1137
32.4.22 SystemVideoSaveBuffers Property ...1138
32.4.23 Timeout Property ...1138
32.4.24 UnitsOnline Property ... 1138
32.4.25 VideoDataCount Property .. 1139
32.4.26 VideoMode Property ..1139
32.4.27 VideoModesList Property .. 1140
32.4.28 VideoSaveBuffers Property ... 1140

32.5 Methods (UML operations) ... 1141
32.5.1 checkHealth Method (Common) .. 1141
32.5.2 clearInput Method (Common) ..1142
32.5.3 clearOutput Method (Common) Updated in Release 1.7 ... 1142
32.5.4 clearVideo Method ... 1143
32.5.5 clearVideoRegion Method ...1143
32.5.6 controlClock Method ..1144
32.5.7 controlCursor Method ..1146
32.5.8 copyVideoRegion Method ...1147
32.5.9 displayData Method Updated in Release 1.7 1148
32.5.10 drawBox Method .. 1149
Unified POS, v1.16.1 xli

32.5.11 freeVideoRegion Method ...1150
32.5.12 resetVideo Method ...1150
32.5.13 restoreVideoRegion Method ..1151
32.5.14 saveVideoRegion Method ..1152
32.5.15 selectCharacterSet Method ...1153
32.5.16 setCursor Method ..1153
32.5.17 transactionDisplay Method ..1154
32.5.18 updateVideoRegionAttribute Method ...1155
32.5.19 videoSound Method ...1156

32.6 Events (UML interfaces) ... 1157
32.6.1 DataEvent ..1157
32.6.2 DirectIOEvent ..1158
32.6.3 ErrorEvent Updated in Release 1.10 1159
32.6.4 OutputCompleteEvent ...1160
32.6.5 StatusUpdateEvent ..1160

33 RFID Scanner .. 1161
33.1 General ... 1161

33.2 Summary .. 1161

33.3 General Information .. 1165
33.3.1 Capabilities ..1165
33.3.2 RFID Scanner Class Diagram ...1166
33.3.3 Model ...1167
33.3.4 RFID Scanner Sequence Diagrams ..1169
33.3.5 RFID Scanner State Diagram ..1172
33.3.6 Device Sharing ..1172

33.4 Properties (UML Attributes) .. 1173
33.4.1 CapContinuousRead Property ...1173
33.4.2 CapDisableTag Property ...1173
33.4.3 CapLockTag Property ..1173
33.4.4 CapMultipleProtocols Property ..1174
33.4.5 CapReadTimer Property ..1174
33.4.6 CapWriteTag Property ...1175
33.4.7 ContinuousReadMode Property ..1175
33.4.8 CurrentTagID Property ..1175
33.4.9 CurrentTagProtocol Property ...1176
33.4.10 CurrentTagUserData Property ...1176
33.4.11 ProtocolMask Property ..1177
33.4.12 ReadTimerInterval Property ...1177
33.4.13 TagCount Property ..1177
xlii Unified POS, v1.16.1

33.5 Methods (UML operations) ... 1178
33.5.1 disableTag Method ..1178
33.5.2 firstTag Method .. 1178
33.5.3 lockTag Method ...1179
33.5.4 nextTag Method ...1179
33.5.5 previousTag Method ..1180
33.5.6 readTags Method ..1181
33.5.7 startReadTags Method .. 1182
33.5.8 stopReadTags Method .. 1183
33.5.9 writeTagData Method ..1184
33.5.10 writeTagID Method ..1184

33.6 Events (UML Interfaces)... 1185
33.6.1 DataEvent ..1185
33.6.2 DirectIOEvent .. 1185
33.6.3 ErrorEvent ... 1186
33.6.4 OutputCompleteEvent ...1187
33.6.5 StatusUpdateEvent ..1187

34 Scale .. 1189
34.1 General .. 1189

34.2 Summary .. 1189

34.3 General Information .. 1193
34.3.1 Capabilities ..1193

34.4 Scale Class Diagram Updated in Release 1.14 1195

34.5 Scale Sequence Diagram Added in Release 1.7 1196
34.5.1 Model ...1197
34.5.2 Device Sharing .. 1197

34.6 Properties (UML attributes) .. 1198
34.6.1 AsyncMode Property Added in Release 1.3 1198
34.6.2 CapDisplay Property ..1198
34.6.3 CapDisplayText Property Added in Release 1.3 1198
34.6.4 CapFreezeValue Property Added in Release 1.14 1199
34.6.5 CapPriceCalcuating Property Added in Release 1.3 1199
34.6.6 CapReadLiveWeightWithTare Property Added in Release 1.14 1199
34.6.7 CapSetPriceCalculationMode Property Added in Release 1.14 1200
34.6.8 CapSetUnitPriceWithWeightUnit Property Added in Release 1.14 1200
34.6.9 CapSpecialTare Property Added in Release 1.14 1200
34.6.10 CapStatusUpdate Property Added in Release 1.9 1201
34.6.11 CapTarePriority Property Added in Release 1.14 1201
34.6.12 CapTareWeight Property Added in Release 1.3 1201
34.6.13 CapZeroScale Property Added in Release 1.3 1202
Unified POS, v1.16.1 xliii

34.6.14 MaxDisplayTextChars Property Added in Release 1.3 1202
34.6.15 MaximumWeight Property ...1202
34.6.16 MinimumWeight Property Added in Release 1.14 ...1203
34.6.17 SalesPrice Property Updated in Release 1.6 .1203
34.6.18 ScaleLiveWeight Property Updated in Release 1.14 ..1204
34.6.19 StatusNotify Property Updated in Release 1.10 1205
34.6.20 TareWeight Property Updated in Release 1.14 1206
34.6.21 UnitPrice Property Updated in Release 1.14 1206
34.6.22 WeightUnit Property ...1207
34.6.23 ZeroValid Property ... Added in Release 1.13 1207

34.7 Methods (UML operations) ... 1208
34.7.1 displayText Method Updated in Release 1.7 1208
34.7.2 doPriceCalculating Method Added in Release 1.14 1208
34.7.3 freezeValue Method Added in Release 1.14 .1211
34.7.4 readLiveWeightWithTare Method Added in Release 1.14 1212
34.7.5 readWeight Method ...1214
34.7.6 setPriceCalculationMode Method Added in Release 1.14 ...1216
34.7.7 setSpecialTare Method Added in Release 1.14 ..1217
34.7.8 setTarePriority Method Added in Release 1.14 ..1218
34.7.9 setUnitPriceWithWeightUnit Method Added in Release 1.14 .1219
34.7.10 zeroScale Method Updated in Release 1.10 1220

34.8 Events (UML interfaces) ... 1221
34.8.1 DataEvent Added in Release 1.3 1221
34.8.2 DirectIOEvent ..1221
34.8.3 ErrorEvent Updated in Release 1.10 1222
34.8.4 StatusUpdateEvent Updated in Release 1.10 1223

35 Scanner (Bar Code Reader) .. 1225
35.1 General ... 1225

35.2 Summary .. 1225

35.3 General Information .. 1228
35.3.1 Capabilities ..1228
35.3.2 Scanner Class Diagram ...1228
35.3.3 Scanner Sequence Diagram Updated in Release 1.8 ..1229
35.3.4 Model ...1231
35.3.5 Device Sharing ..1231

35.4 Properties (UML attributes) .. 1232
35.4.1 DecodeData Property ..1232
35.4.2 ScanData Property Updated in Release 1.7 1233
35.4.3 ScanDataLabel Property Updated in Release 1.10 1234
xliv Unified POS, v1.16.1

35.4.4 ScanDataType Property Updated in Release 1.14 ..1235

35.5 Events (UML interfaces) ... 1239
35.5.1 DataEvent ..1239
35.5.2 DirectIOEvent .. 1239
35.5.3 ErrorEvent Updated in Release 1.10 .1240
35.5.4 StatusUpdateEvent ..1241

36 Signature Capture ... 1243
36.1 General .. 1243

36.2 Summary .. 1243

36.3 General Information... 1246
36.3.1 Capabilities ..1246
36.3.2 Signature Capture Class Diagram ...1247
36.3.3 Signature Capture Sequence Diagram Updated in Release 1.8 1248
36.3.4 Model ...1249
36.3.5 Device Sharing .. 1250

36.4 Properties (UML attributes) .. 1251
36.4.1 CapDisplay Property ..1251
36.4.2 CapRealTimeData Property ..1251
36.4.3 CapUserTerminated Property ..1251
36.4.4 DeviceEnabled Property (Common) ..1251
36.4.5 MaximumX Property ..1252
36.4.6 MaximumY Property ..1252
36.4.7 PointArray Property Updated in Release 1.7 1253
36.4.8 RawData Property Updated in Release 1.7 1254
36.4.9 RealTimeDataEnabled Property .. 1254

36.5 Methods (UML operations) ... 1255
36.5.1 beginCapture Method ..1255
36.5.2 endCapture Method ... 1256

36.6 Events (UML interfaces) ... 1257
36.6.1 DataEvent ..1257
36.6.2 DirectIOEvent .. 1257
36.6.3 ErrorEvent Updated in Release 1.11 1258
36.6.4 StatusUpdateEvent ..1259

37 Smart Card Reader/Writer ... 1261
37.1 General .. 1261

37.2 Summary .. 1261

37.3 General Information .. 1264
37.3.1 Capabilities ..1264
Unified POS, v1.16.1 xlv

37.4 Smart Card Reader / Writer Class Diagram 1265

37.5 Model .. 1266

37.6 Card Insertion Diagram .. 1268

37.7 Device Sharing ... 1269

37.8 Data Transfer Modes .. 1270

37.9 Smart Card Reader / Writer Sequence Diagram 1271

37.10 Smart Card Reader / Writer State Diagram 1272

37.11 Properties (UML Attributes) .. 1273
37.11.1 CapCardErrorDetection Property ...1273
37.11.2 CapInterfaceMode Property ...1273
37.11.3 CapIsoEmvMode Property ...1274
37.11.4 CapSCPresentSensor Property ...1274
37.11.5 CapSCSlots Property ...1275
37.11.6 CapTransmissionProtocol Property ...1275
37.11.7 InterfaceMode Property ...1276
37.11.8 IsoEmvMode Property ...1277
37.11.9 SCPresentSensor Property ...1278
37.11.10SCSlot Property ..1278
37.11.11TransactionInProgress Property ...1279
37.11.12TransmissionProtocol Property ...1279

37.12 Methods (UML operations) ... 1280
37.12.1 beginInsertion Method ...1280
37.12.2 beginRemoval Method ...1281
37.12.3 endInsertion Method ..1282
37.12.4 endRemoval Method ..1282
37.12.5 readData Method Updated in Release 1.10 1284
37.12.6 writeData Method ...1285

37.13 Events (UML Interfaces) ... 1286
37.13.1 DataEvent Updated in Release 1.10 1286
37.13.2 DirectIOEvent ..1286
37.13.3 ErrorEvent Updated in Release 1.10 .1287
37.13.4 OutputCompleteEvent ...1288
37.13.5 StatusUpdateEvent ..1289

38 Tone Indicator .. 1291
38.1 General ... 1291

38.2 Summary .. 1291
xlvi Unified POS, v1.16.1

38.3 General Information... 1294
38.3.1 Capabilities ..1294
38.3.2 Tone Indicator Class Diagram ... 1294
38.3.3 Tone Indicator Sequence Diagram Added in Release 1.7 1295
38.3.4 Model Updated in Release 1.13 1296
38.3.5 Device Sharing .. 1297

38.4 Properties (UML attributes) .. 1298
38.4.1 AsyncMode Property Updated in Release 1.6 1298
38.4.2 CapMelody Property Added in Release 1.13 1298
38.4.3 CapPitch Property ... 1298
38.4.4 CapVolume Property ... 1298
38.4.5 InterToneWait Property Updated in Release 1.6 1299
38.4.6 MelodyType Property Added in Release 1.13 1299
38.4.7 MelodyVolume Property Added in Release 1.13 1300
38.4.8 Tone1Duration Property Updated in Release 1.6 1300
38.4.9 Tone1Pitch Property Updated in Release 1.6 1300
38.4.10 Tone1Volume Property Updated in Release 1.6 1301
38.4.11 Tone2Duration Property Updated in Release 1.6 1301
38.4.12 Tone2Pitch Property Updated in Release 1.6 1301
38.4.13 Tone2Volume Property Updated in Release 1.6 1302

38.5 Methods (UML operations) ... 1303
38.5.1 sound Method Updated in Release 1.13 1303
38.5.2 soundImmediate Method ...1304

38.6 Events (UML operations) .. 1305
38.6.1 DirectIOEvent .. 1305
38.6.2 ErrorEvent Updated in Release 1.9 1305
38.6.3 OutputCompleteEvent ...1306
38.6.4 StatusUpdateEvent ..1307

39 Video Capture .. 1309
39.1 General .. 1309

39.2 Summary .. 1309

39.3 General Information... 1313
39.3.1 Capabilities ..1313
39.3.2 Video Capture Class Diagram ... 1313

39.4 Model ... 1315
39.4.1 Modes .. 1315
39.4.2 Device behaviors ...1315
39.4.3 Photo Mode ... 1315
39.4.4 Video Mode ... 1316
39.4.5 Device Sharing .. 1317
Unified POS, v1.16.1 xlvii

39.5 Properties (UML attributes) .. 1318
39.5.1 AutoExposure Property ..1318
39.5.2 AutoFocus Property ...1318
39.5.3 AutoGain Property ...1318
39.5.4 AutoWhiteBalance Property ...1319
39.5.5 Brightness property ..1319
39.5.6 CapAssociatedHardTotalsDevice Property1320
39.5.7 CapAutoExposure Property ...1320
39.5.8 CapAutoFocus Property ..1320
39.5.9 CapAutoGain Propert ..1320
39.5.10 CapAutoWhiteBalance Property ..1321
39.5.11 CapBrightness Property ...1321
39.5.12 CapContrast Property ..1321
39.5.13 CapExposure Property ..1321
39.5.14 CapGain Property ..1322
39.5.15 CapHorizontalFlip Property ..1322
39.5.16 CapHue Property ...1322
39.5.17 CapPhoto Property ...1322
39.5.18 CapPhotoColorSpace Property ...1323
39.5.19 CapPhotoFrameRate Property ..1323
39.5.20 CapPhotoResolution Property ...1323
39.5.21 CapPhotoType Property ..1323
39.5.22 CapSaturation Property ...1323
39.5.23 CapStorage Property ...1324
39.5.24 CapVerticalFlip Property ..1324
39.5.25 CapVideo Property ..1324
39.5.26 CapVideoColorSpace Property ..1324
39.5.27 CapVideoFrameRate Property ..1325
39.5.28 CapVideoResolution Property ...1325
39.5.29 CapVideoType Property ..1325
39.5.30 Contrast Property ...1325
39.5.31 Exposure Property ...1326
39.5.32 Gain Property ...1326
39.5.33 HorizontalFlip Property ..1326
39.5.34 Hue Property ..1327
39.5.35 PhotoColorSpace Property ..1327
39.5.36 PhotoColorSpaceList Property ..1328
39.5.37 PhotoFrameRate Property ...1328
39.5.38 PhotoMaxFrameRate Property ..1328
39.5.39 PhotoResolution Property ..1329
39.5.40 PhotoResolutionList Property ...1329
39.5.41 PhotoType Property ...1329
39.5.42 PhotoTypeList Property ...1329
xlviii Unified POS, v1.16.1

39.5.43 RemainingRecordingTimeInSec Property ...1330
39.5.44 Saturation Property ..1330
39.5.45 Storage Property ...1330
39.5.46 VerticalFlip Property ..1332
39.5.47 VideoCaptureMode Property ... 1332
39.5.48 VideoColorSpace Property ..1333
39.5.49 VideoColorSpaceList Property ..1333
39.5.50 VideoFrameRate Property ...1334
39.5.51 VideoMaxFrameRate Property ..1334
39.5.52 VideoResolution Property .. 1334
39.5.53 VideoResolutionList Property ..1335
39.5.54 VideoType Property ... 1335
39.5.55 VideoTypeList Property ...1335

39.6 Note: Video Capture Device Property Value Relationship 1336

39.7 Methods (UML operations) ... 1336
39.7.1 startVideo Method ... 1336
39.7.2 stopVideo Method ..1337
39.7.3 takePhoto Method ... 1337

39.8 Events (UML interfaces) ... 1339
39.8.1 DirectIOEvent .. 1339
39.8.2 ErrorEvent ... 1340
39.8.3 StatusUpdateEvent ..1341

40 Individual Recognition ... 1343
40.1 General .. 1343

40.2 Summary .. 1343

40.3 General Information... 1346
40.3.1 Capabilities ..1346
40.3.2 Individual Recognition Class Diagram ... 1346
40.3.3 Model ...1347
40.3.4 IndividualRecognitionFilter ..1347
40.3.5 IndividualRecognitionFilter Property Example Format 1348
40.3.6 IndividualRecognition Information Property Example Format 1352

40.4 Properties (UML attributes) .. 1353
40.4.1 CapIndividualList Property ...1353
40.4.2 IndividualIDs Property ...1353
40.4.3 IndividualRecognitionFilter Property ..1353

40.5 Events (UML interfaces) ... 1354
40.5.1 DataEvent ..1354
40.5.2 DirectIOEvent .. 1354
40.5.3 ErrorEvent ... 1355
Unified POS, v1.16.1 xlix

40.5.4 StatusUpdateEvent ..1356

41 Sound Recorder ... 1357
41.1 General ... 1357

41.2 Summary .. 1357

41.3 General Information... 1361
41.3.1 Capabilities ..1361
41.3.2 Sound Recorder Class Diagram ..1361
41.3.3 Model ...1363
41.3.4 Device Sharing ..1364

41.4 Properties (UML attributes) .. 1365
41.4.1 CapAssociatedHardTotalsDevice Property1365
41.4.2 CapChannel Property ..1365
41.4.3 CapSamplingRate Property ...1365
41.4.4 CapSoundType Property ...1365
41.4.5 CapVolume Property ...1366
41.4.6 CapStorage Property ...1366
41.4.7 CapRecordingLevel Property ...1366
41.4.8 Channel Property ...1367
41.4.9 ChannelList Property ...1367
41.4.10 RecordingLevel Property ...1367
41.4.11 RemainingRecordingTimeInSec Property ...1368
41.4.12 SamplingRate Property ..1368
41.4.13 SamplingRateList Property ..1368
41.4.14 SoundData Property ..1369
41.4.15 SoundType Property ..1369
41.4.16 SoundTypeList Property ..1369
41.4.17 Storage Property ..1370

41.5 Methods (UML operations) ... 1371
41.5.1 startRecording Method ..1371
41.5.2 stopRecording Method ...1372

41.6 Events (UML interfaces) ... 1373
41.6.1 DataEvent ..1373
41.6.2 DirectIOEvent ..1373
41.6.3 ErrorEvent ..1374
41.6.4 StatusUpdateEvent ..1375

42 Voice Recognition .. 1377
42.1 General ... 1377
l Unified POS, v1.16.1

42.2 Summary.. 1377

42.3 General Information... 1380
42.3.1 Capabilities ..1380
42.3.2 Voice Recognition Class Diagram ...1380

42.4 Model ... 1380

42.5 Device Sharing ... 1382

42.6 Properties (UML attributes) .. 1382
42.6.1 CapLanguage Property ...1382
42.6.2 HearingDataPattern Property ..1382
42.6.3 HearingDataWordList Property ..1383
42.6.4 HearingDataWordList Property ..1384
42.6.5 HearingResult Property ...1385
42.6.6 HearingStatus Property ...1386
42.6.7 LanguageList Property .. 1386

42.7 Methods (UML operations) ... 1387
42.7.1 startHearingFree Method ...1387
42.7.2 startHearingSentence Method ... 1388
42.7.3 startHearingWord Method ...1390
42.7.4 StartHearingYesNo Method ... 1391
42.7.5 stopHearing Method ..1391

42.8 Events (UML interfaces) ... 1392
42.8.1 DataEvent ..1392
42.8.2 DirectIOEvent .. 1392
42.8.3 ErrorEvent ... 1393
42.8.4 StatusUpdateEvent ..1394

43 Sound Player ... 1395
43.1 General .. 1395

43.2 Summary.. 1395

43.3 General Information... 1399
43.3.1 Capabilities ..1399
43.3.2 Sound Player Class Diagram ..1399
43.3.3 Model ...1400

43.4 Properties (UML attributes) .. 1401
43.4.1 CapAssociatedHardTotalsDevice Property1401
43.4.2 CapMultiPlay Property ...1401
43.4.3 CapSoundTypeList Property ... 1402
43.4.4 CapStorage Property ... 1402
43.4.5 CapVolume Property ... 1402
43.4.6 DeviceSoundList Property ...1403
Unified POS, v1.16.1 li

43.4.7 OutputIDList Property ..1403
43.4.8 Storage Property ..1403
43.4.9 Volume Property ..1404

43.5 Methods (UML operations) ... 1405
43.5.1 playSound Method ...1405
43.5.2 stopSound Method ...1405

43.6 Events (UML interfaces) ... 1406
43.6.1 DirectIOEvent ..1406
43.6.2 ErrorEvent ..1407
43.6.3 OutputCompleteEvent ...1408
43.6.4 StatusUpdateEvent ..1408

44 Speech Synthesis .. 1409
44.1 General ... 1409

44.2 Summary .. 1409

44.3 General Information... 1413
44.3.1 Capabilities ..1413
44.3.2 Speech Synthesis Class Diagram ...1413
44.3.3 Model ...1414
44.3.4 Device Sharing ..1415

44.4 Properties (UML attributes) .. 1415
44.4.1 CapLanguage Property ..1415
44.4.2 CapPitch Property ..1415
44.4.3 CapSpeed Property ...1415
44.4.4 CapVoice Property ...1416
44.4.5 CapVolume Property ...1416
44.4.6 Language Property ..1416
44.4.7 LanguageList Property ...1417
44.4.8 OutputIDList Property ..1417
44.4.9 Pitch Property ..1417
44.4.10 Speed Property ..1418
44.4.11 Voice Property ...1418
44.4.12 VoiceList Property ..1418
44.4.13 Volume Property ..1419

44.5 Methods (UML operations) ... 1420
44.5.1 speak Method ..1420
44.5.2 speakimmediate Method ..1422
44.5.3 stopCurrentSpeaking Method ..1422
44.5.4 stopSpeaking Method ..1423
lii Unified POS, v1.16.1

44.6 Events (UML interfaces) ... 1424
44.6.1 DirectIOEvent .. 1424
44.6.2 ErrorEvent ... 1425
44.6.3 OutputComplete Event .. 1426
44.6.4 StatusUpdateEvent ..1426

45 Gesture Control ... 1427
45.1 General .. 1427

45.2 Summary .. 1427

45.3 General Information... 1431
45.3.1 Capabilities ..1431
45.3.2 Gesture Control Class Diagram ...1431
45.3.3 Model ...1432
45.3.4 Automatic control ...1432
45.3.5 Pose/Motion ... 1432
45.3.6 Device Sharing .. 1433

45.4 Properties (UML attributes) .. 1434
45.4.1 AutoMode Property ..1434
45.4.2 AutoModeList Property .. 1434
45.4.3 CapAssociatedHardTotalsDevice Property1435
45.4.4 CapMotion Property ... 1435
45.4.5 CapMotionCreation Property ... 1435
45.4.6 CapPose Property ... 1435
45.4.7 CapPoseCreation Property ..1436
45.4.8 CapStorage Property ... 1436
45.4.9 JointList Property ...1437
45.4.10 MotionList Property ..1437
45.4.11 PoseCreationMode Property ... 1438
45.4.12 PoseList Property ..1438
45.4.13 Storage Property ...1439
45.4.14 Table of Gesture Control Device Listed Items in Property 1440

45.5 Methods (UML operations) ... 1441
45.5.1 createMotion Method ... 1441
45.5.2 createPose Method ... 1441
45.5.3 getPosition Method ..1442
45.5.4 setPosition Method ..1442
45.5.5 setSpeed Method ..1444
45.5.6 startMotion Method ..1445
45.5.7 startPose Method ..1446
45.5.8 stopControl Method ... 1446

45.6 Events (UML interfaces) .. 1447
45.6.1 DirectIOEvent .. 1447
Unified POS, v1.16.1 liii

45.6.2 ErrorEvent ..1448
45.6.3 OutputCompleteEvent ...1448
45.6.4 StatusUpdateEvent ..1449

46 Device Monitor ... 1451
46.1 General ... 1451

46.2 Summary .. 1451

46.3 General Information... 1454
46.3.1 Capabilities ..1454
46.3.2 Device Monitor Class Diagram ..1454
46.3.3 Model ...1455
46.3.4 Device Sharing ..1455

46.4 Properties (UML attributes) .. 1456
46.4.1 DeviceData Property ..1456
46.4.2 DeviceList Property ..1456
46.4.3 MonitoringDeviceList Property ...1457

46.5 Methods (UML operations) ... 1458
46.5.1 addMonitoringDevice Method ..1458
46.5.2 clearMonitoringDevices Method ..1459
46.5.3 deleteMonitoringDevice Method ..1460
46.5.4 getDeviceValue method ...1460

46.6 Events (UML interfaces) ... 1461
46.6.1 DataEvent ..1461
46.6.2 DirectIOEvent ..1461
46.6.3 ErrorEvent ..1462
46.6.4 StatusUpdateEvent ..1463

47 Graphic Display ... 1465
47.1 General ... 1465

47.2 Summary .. 1465

47.3 General Information... 1469
47.3.1 Capabilities ..1469
47.3.2 Graphics Display Class Diagram ...1469
47.3.3 Model ...1470
47.3.4 Device Sharing ..1472

47.4 Properties (UML Attributes) .. 1473
liv Unified POS, v1.16.1

47.4.1 Brightness Property ... 1473
47.4.2 CapAssociatedHardTotalsDevice Property 1473
47.4.3 CapBrightness Property .. 1473
47.4.4 CapImageType Property ...1473
47.4.5 CapStorage Property ... 1474
47.4.6 CapURLBack Property .. 1474
47.4.7 CapURLForward Property ...1474
47.4.8 CapVideoType Property .. 1475
47.4.9 CapVolume Property ... 1475
47.4.10 DisplayMode Property ...1475
47.4.11 ImageType Property ..1476
47.4.12 ImageTypeList Property .. 1476
47.4.13 LoadStatus Property ..1477
47.4.14 Storage Property ...1477
47.4.15 URL Property ...1478
47.4.16 VideoType Property ... 1478
47.4.17 VideoTypeList Property ... 1478
47.4.18 Volume Property .. 1479

47.5 Methods (UML operations) ... 1480
47.5.1 cancelURLLoading Method ... 1480
47.5.2 goURLBack Method ..1480
47.5.3 goURLForward Method ...1481
47.5.4 loadImage Method ... 1481
47.5.5 loadURL Method .. 1482
47.5.6 playVideo Method ..1482
47.5.7 stopVideo Method ..1483
47.5.8 updateURLPage Method ...1483

47.6 Events (UML interfaces) ... 1484
47.6.1 DirectIOEvent .. 1484
47.6.2 ErrorEvent ... 1485
47.6.3 OutputCompleteEvent ...1486
47.6.4 StatusUpdateEvent ..1486

Annex A - OLE for Retail POS-OPOS Implementation
Reference ... 1487
A.1 What is OLE for Retail POS?... 1487
A.2 Who Should Read This Section ... 1488
A.3 General OLE for Retail POS Control Model... 1488
A.4 OPOS Definitions... 1489
A.5 How an Application Uses an OPOS Control .. 1490
A.6 When Methods and Properties May Be Accessed................................... 1491
A.7 Status, Result Code, and State Model Updated in Release 1.11.. 1493
Unified POS, v1.16.1 lv

A.8 Device Sharing Model .. 1496
A.9 Events Updated in Release 1.12 .. 1497
A.10 OPOS Event Registration Sequence Diagram Added in Release 1.7 . 1499
A.11 Input Model Updated in Release 1.12 . 1500
A.12 Output Model.. 1502
A.13 Device Power Reporting Model Added in OPOS Release 1.3, Updated in Release 1.8 1503
A.14 Device Information Reporting Model Added in Release 1.8 . 1506
A.15 Update Firmware Device Model Added in Release 1.9 .. 1507
A.16 OPOS Component Descriptions .. 1508
A.17 Section 1: OPOS Data Types Updated in Release 1.12 .. 1509
A.18 Section 2: OPOS Interface Descriptions .. 1511
A.19 OPOS Common Properties, Methods, and Events 1511
A.20 Common Properties Updated in Release 1.9 .. 1511
A.21 Common Methods Updated in Release 1.10. 1512
A.22 OPOS Programmatic Names Updated in Release 1.12.. 1513
A.23 Properties... 1514
A.24 Methods ... 1529
A.25 Events .. 1540
A.26 Peripheral Interfaces .. 1543
A.27 OPOS: Cash Drawer.. 1544
A.28 OPOS: MICR.. 1548
A.29 Section 3: OPOS Registry Usage Updated in Release 1.12 ... 1554
A.30 Section 4: OPOS Application Header Files Updated in Release 1.12... 1558
A.31 Section 5: Technical Details... 1559
A.32 Section 6: Release 1.5 API Change: ClaimDevice and ReleaseDevice 1562
A.33 Section 7: OPOS APG Change History Release 1.01 1563
A.34 Section 8: OPOS Control Programmer’s Guide 1574

Annex B - Java for Retail POS-JavaPOS Implementation
Reference ... 1609
B.1 What is Java for Retail POS?... 1609
B.2 Benefits .. 1609
B.3 Dependencies .. 1610
B.4 Relationship to OPOS.. 1610
B.5 Who Should Read This Section ... 1610
lvi Unified POS, v1.16.1

B.6 Appendix Overview .. 1611
B.7 Architectural Overview ... 1611
B.8 Architectural Components.. 1612
B.9 Device Behavior Models .. 1614
B.10 Introduction to Properties, Methods, and Events 1614
B.11 Device Initialization and Finalization .. 1615
B.12 Device Sharing Model .. 1616
B.13 Data Types Updated in Release 1.11 . 1618
B.14 Exceptions.. 1618
B.15 Events Updated in Release 1.12 .. 1621
B.16 JavaPOS Event Registration Sequence Diagram Added in Release 1.7 .. 1624
B.17 Device Input Model .. 1625
B.18 Device Output Models.. 1628
B.19 Device Power Reporting Model Added in JavaPOS Release 1.3 

 Updated in Release 1.8. .. 1630
B.20 Device Information Reporting Model Added in Release 1.8. .. 1633
B.21 Update Firmware Device Model Added in Release 1.9 . 1634
B.22 Device States ... 1634
B.23 Threads .. 1635
B.24 Version Handling.. 1635
B.25 Classes and Interfaces... 1636
B.26 Synopsis... 1636
B.27 Sample Class and Interface Hierarchies.. 1639
B.28 Sample Application Code... 1642
B.29 Package Structure Updated in Release 1.13 .. 1643
B.30 Device Controls.. 1652
B.31 Device Control Responsibilities.. 1652
B.32 Device Service Management ... 1653
B.33 Property and Method Forwarding... 1656
B.34 Event Handling... 1657
B.35 Device Control Version Handling ... 1659
B.36 Device Services ... 1661
B.37 Device Service Responsibilities ... 1661
B.38 Property and Method Processing... 1661
B.39 Event Generation ... 1662
B.40 Physical Device Access ... 1662
B.41 API Mapping Rules .. 1662
B.42 JavaPOS Component Descriptions.. 1663
Unified POS, v1.16.1 lvii

B.43 Section 1: JavaPOS Data Types.. 1664
B.44 Section 2: JavaPOS Interface Descriptions ... 1665
B.45 JavaPOS Common Properties, Methods, and Events 1666
B.46 Properties... 1669
B.47 Methods ... 1678
B.48 Events .. 1688
B.49 Peripheral Interfaces .. 1692
B.50 Section 3: Technical Details - OPOS and JavaPOS 1698
B.51 OPOS to JavaPOS - API Mapping Rules... 1698
B.52 API Deviations.. 1699
B.53 Mapping of CharacterSet Updated in Release 1.10 .. 1700
B.54 Handling Binary Data inside Strings Added in Release 1.12.. 1701
B.55 Section 4: JavaPOS Change History ... 1702

Annex C - POS for .NET Implementation Reference.......... 1707
C.1 What is POS for .NET? Updated in Release 1.15. 1707
C.2 Who Should Read This Section Updated in Release 1.15. 1708
C.3 Overview of POS for .NET ... 1708
C.4 POS for .NET Definitions ... 1709
C.5 Key POS for .NET Features... 1710
C.6 Key Programming Construct Differences from OPOS 1712
C.7 Key Parameter Differences.. 1735
C.8 Key Property Signature Differences... 1736
C.9 PosExplorer API... 1737
C.10 Service Object Registry ... 1738
C.11 Consuming Service Objects... 1740
C.12 Writing Service Objects.. 1741
C.13 Status, State Model, and Exceptions ... 1742
C.14 Device Sharing Model.. 1743
C.15 Events Updated in Release 1.12.. 1744
C.16 Input Model Updated in Release 1.12 .. 1745
C.17 Output Model ... 1747
C.18 Device Power Reporting Model ... 1748
C.19 Power Reporting Properties... 1749
C.20 Device Information Reporting Model.. 1750
C.21 POS for .NET Component Descriptions... 1751
lviii Unified POS, v1.16.1

C.22 Common Properties ... 1755
C.23 Common Methods.. 1761
C.24 Common Events .. 1774
C.25 POS for .NET vs. UnifiedPOS Members.. 1775
C.26 Interim Procedure Available For Legacy OPOS Services
 Shim Code Usage Updated in Release 1.11 .. 1776
C.27 Architecture Structures Added in Release 1.11... 1777
C.28 Method of Implementation ... 1778
C.29 Method of Administration ... 1780

Annex D - XMLPOS -XML POS Mapping Reference 1785
D.1 Overview.. 1785
D.2 Referenced Documents ... 1786
D.3 Taxonomy for Conversion from UnifiedPOS to XML Updated in Version 1.14.1 1786
D.4 Changes to XMLPOS Updated in Version 1.13 . 1786
D.5 XMLPOS Architecture Overview Updated in Release 1.14 1787
D.6 UnifiedPOS XML Errors ... 1792
D.7 XMLPOS Common Events .. 1797
D.8 XMLPOS Common Properties ... 1799
D.9 XMLPOS Common Data.. 1800
D.10 ARTS Common Data ... 1801
D.11 UnifiedPOS Devices .. 1802
D.12 NAFEM Protocol .. 2001
D.13 Distributed Files ... 2011
D.14 Glossary... 2012

Annex E - Change History .. 2013
E.1 Release Version 1.4... 2013
E.2 Release Version 1.5... 2013
E.3 Release Version 1.6... 2014
E.4 Release Version 1.7... 2016
E.5 Release Version 1.8... 2021
E.6 Release Version 1.9... 2023
E.7 Release Version 1.10... 2024
E.8 Release Version 1.11... 2026
E.9 Release Version 1.12... 2029
E.10 Release Version 1.13... 2032
Unified POS, v1.16.1 lix

E.11 Release Version 1.14... 2036
E.12 Release Version 1.14.1.. 2039
E.13 Release Version 1.15... 2041
E.14 Updated items in release 1.16 ... 2043

Annex F - Additional Software References......................... 2045
Annex G - Additional Hardware References....................... 2047
Annex H - Deprecation History ... 2051
Annex I - Systems Management Information...................... 2053
I.1 What is Systems Management? .. 2053
I.2 How is UnifiedPOS involved in Systems Management?.......................... 2053
I.3 Who Should Read This Section ... 2053
I.4 UnifiedPOS Device Information Reporting Model 2054
I.5 Architectural Overview ... 2057
I.6 Utilized CIM Data Types Updated in Release 1.13 . 2059
I.7 Common Properties, Methods, and Events Updated in Release 1.14 . 2060
I.8 Common Methods.. 2061
I.9 Properties Updated in Release 1.13 . 2061
I.10 Peripheral Interfaces ... 2061
I.11 Technical Details ... 2168

Annex J - Device Statistics ... 2169
J.1 General .. 2169
J.2 Device Category Names .. 2169

Annex K - Relationship to OMG Specifications 2179
K.1 Activities in Robotics Domain Task Force... 2179
K.2 RoIS Specification.. 2179
K.3 Robot Service Ontology [Roso] RFP.. 2180
K.4 Interoprability between UPOS RCSD and Rois 2181
K.5 Document History/Version History ... 2184
K.6 Glossary ... 2184
lx Unified POS, v1.16.1

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at https://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from this URL:

https://www.omg.org/spec


All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PDF format, may be obtained
from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
9C Medway Road, PMB 274
Milford, MA 01757
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification. Go to the OMG main
page and select Specifications - Issues.
Unified POS, v1.16.1 lxi

Document Submitter

VINX Corp.

Document Publishing Supporters

OPOS-J
SorimachiGiken Co. Ltd.

Microsoft Japan Ltd.
SEIKO EPSON Corp.

Toshiba TEC Corp.
Star Micronics Corp.
Fujitsu Frontec Corp.

NCR Corporation
Sharp Corporation

Omron Social Solutions Corp.
NEC Platforms Corp.

Transaction Media Networks Inc.
lxii Unified POS, v1.16.1

1 Introduction and Architecture

1.1 What is Unified POS?

UnifiedPOS is the acronym for Unified Point of Service. It is an architectural specification for application
interfaces to point-of-service devices that are used in the retail environment. This standard is both operating
system independent and language neutral and defines:

• An architecture for application interface to retail devices.

• A set of retail device behaviors sufficient to support a range of POS solutions.

• The UnifiedPOS standard will include:

• The UnifiedPOS Retail Peripheral Architecture overview.

• Text descriptions of the interface to the functions of the device.

• UML terminology and diagrams for each device category, to describe:

• Relationships between classes/interfaces and objects in the system.

• Basis for creating C++, Java, IDL, or other OO technology to implement the UML design.

• Operational characteristics and details for implementations which are compliant to the UnifiedPOS
architecture. These were added in the Appendices for UnifiedPOS starting in Version 1.6. As new
Implementations become available, additional Appendices will be added in future versions of the standard.

• The UnifiedPOS standard will not include:

• Specific language API specifications.

• Complete software components. Hardware providers, software providers, or third-party providers develop and
distribute these components.

• Certification mechanism; this must be handled by individual language standard committees (such as the OLE
for Retail POS (OPOS), POS for .NET, and Java for Retail POS (JavaPOS) committees).

1.1.1 About This Documentation Updated in Release 1.12

Since the release of UnifiedPOS Version 1.4, the Retail Standards’ committees had been maintaining three
separate standard documents, OPOS, JavaPOS and UnifiedPOS. The architecture and device characteristics are
identical in each of these documents. The addition of new device categories and/or enhancements to existing
chapters required consultation and agreement on the technical content for the each of the separate standards.
However, in addition to that technical work, there is a heavy administrative burden in generating the correct
documentation for three different versions of the standard’s specification. That process was inherently error
prone in that the same changes had to be maintained in multiple documents. Confusion has resulted in cases
where differences have inadvertently appeared in the documentation.

In order to simplify the process and bring a higher quality of review to ongoing modifications of the
documentation, the UnifiedPOS standard committee made a change in the process for documenting its
requirements. Beginning with UnifiedPOS Version 1.6, only the UnifiedPOS document was updated and the
structure of the documentation was changed. The main body of the documentation includes the abstracted generic
description of all device categories plus additional general design and utilization guidelines. Specific reference
platform requirements are now found in the included annexes that outline the implementation information for
Unified POS, v1.16.1 1

each of the specific existing implementations, such as OPOS, JavaPOS and POS For Dot Net. (Note: OPOS-J,
the POS Standards body from Japan, has and plans to continue to maintain a translated Japanese version of the
OPOS documentation for their developer community.)

The documentation is arranged in such a fashion that allows the new user to gather a general education about the
UnifiedPOS Standard by reading the “Introduction and Architecture” section. This section is designed to give an
overview of the material covered in the entire standard and provide an outline of the design features that must be
adhered to for a developer to implement the standard. For a first time reader, this section should be read and
understood, as it will make the remaining chapters and appendices more beneficial. For a familiar user, this
section may serve as a “fall-back” reference for clarification of the requirements when developing a Device
Service or usage of the Device Services by an Application.

Chapter 2 outlines the Properties, Methods, and Events that are Common to all peripheral devices. It is important
to understand this section and make reference to it when questions arise on the common functionality that apply
to all device classes.

The following chapters define each of the POS peripheral devices that are covered in the standard. The specific
Properties, Methods, and Events that are peculiar to the peripheral are defined. Any additional helpful
information relevant to the POS peripheral are also included. As new POS peripherals are added a new chapter
will be added to describe the devices unique requirements.

Following the chapters describing the POS peripheral devices, annexes are included that outline specific details
on implementation dependencies for each of the supported Operating Systems and/or language specific
development platforms.

“Annex A” includes the definition, goals, and deliverables for OPOS. There are explanations for the input/output
and device sharing for Microsoft’s COM model for the operation of the interface. Event and error handling
unique to this implementation is described. It concludes with a version change history that guides the user in
understanding the evolution of the OPOS implementation of the standard.

“Annex B” includes the definition, goals, and deliverables for JavaPOS. There are explanations for the input/
output and device sharing for the Java model for the operation of the interface. Event and error handling unique
to this implementation is included. It also concludes with a version change history that is helpful to the user to
understand the evolution of the JavaPOS implementation requirements.

“Annex C” includes the definition, goals, and deliverables for POS for .NET. There are explanations for the
input/output and device sharing for Microsoft’s .NET model for the operation of the interface and the differences
from the OPOS COM architecture that affect implementation. Event and error handling unique to this
implementation are described. It also includes a version change history section and brief clarifications of the
design philosophy.

“Annex D” is included to provide information on the usage of XML for peripheral message mapping. Future
versions of the UnifiedPOS standard will evolve to a greater dependence upon XML as the command and
interoperability infrastructure of choice. There is increasing interest and focus on using XML for communicating
with peripheral devices. It opens up many new possibilities for creating Device Services that, when coupled with
Universal Plug and Play hardware connection technologies such as USB, will provide for true language and
operating system independence.

“Annex E” incorporates an overall Change History for the documentation. It is highly recommended that the
experienced user refer to this section as an aide for understanding the version to version documentation changes
as a resource to help in the updating of the device support and/or implementation changes necessary to the
software for efficient usage.
2 Unified POS, V1.16.1

“Annex F” provides some additional software reference material that may prove helpful to the understanding of
the principals and documentation constructs that the UnifiedPOS standard incorporates. The developer is
encouraged to check this section as additional resource material will be added as the standard evolves from
version to version.

“Annex G” includes additional hardware reference material that is pertinent to the hardware design for
compliance to the UnifiedPOS standard. The USB Plus Power connector recommendations are outlined in this
section as well.

“Annex H” provides information on functionality and changes that are documented in the UnifiedPOS standard
in a version that will cause a previously defined function to be deprecated. While every attempt is made to
minimize the use of Deprecation, the reader is highly encouraged to review this section to ensure a firm
understanding of direction the standard is evolving.

“Annex I” includes the definition, goals, and deliverables for Systems Management. Appendix I is targeted at a
systems management solution developer who requires access to POS-specific device information. It is also
targeted to the system developer who will provide device information from within the Services he provided.

“Annex J” includes the definitions and deliverables for UnifiedPOS Device Statistics. This information was
previously issued in a separate document, but starting with v1.12, the device statistics appendix was added as an
appendix to the specification.

“Annex K” describes the relationship to other OMG specifications and activities.

1.1.2 Goals

The goals of UnifiedPOS are to provide:

• Common device architecture that is international and extends across vendors, platforms, and retail format.

• Standards for application to device interfaces in an operating system independent and language neutral manner.

• Reduced implementation costs for vendors to support multiple (for example, Windows/COM, Windows/.NET,
and Java) platforms because they share the same architecture. This should produce speed to market for
innovation.

• An environment avoiding competition between standards while encouraging competition among
implementations.

1.1.3 Dependencies

Success of the goals of UnifiedPOS depends upon platform specific standard committees (such as JavaPOS and
OLE for Retail POS (OPOS) technical committees) to advance the architecture into platform specific
documentation, API definitions and implementations.

The specific technical implementations require:

• Platform specific implementation references. (See Annexes A, B, C, & D.)

• Source files, including:

• Definition files. Various interface and class files described in the standard.

• Example files. These will include a set of sample Control classes, to illustrate the interface presented to an
application.
Unified POS, v1.16.1 3

1.1.4 UnifiedPOS Relationship to Conforming Platform Mappings

The UnifiedPOS specification formalizes and documents the underlying retail device architecture, shared by the
JavaPOS, OPOS, and POS for .NET standards, in an operating system independent and language neutral manner.
The first release of the UnifiedPOS Specification was Version 1.4.

The JavaPOS, OPOS, and POS for .NET standards have been established as conformant platform mappings of
the UnifiedPOS specification. In UnifiedPOS Version 1.6, appendices were added in order to document specific
implementation details for each of these platforms. JavaPOS will be recognized as the only UnifiedPOS
conformant, operating system neutral, Java language mapping (See Annex B). OPOS will be recognized as the
only UnifiedPOS conformant language neutral COM mapping (See Annex A). POS for .NET will be recognized
as the only UnifiedPOS conformant language neutral .NET mapping (See Annex C). Future UnifiedPOS
mappings to platforms other than Java, COM, and .NET will be included as appendices to the UnifiedPOS
specification as they become available.

This acceptance of the existing standards is based on their close conformance to a common design model.
Historically, the OPOS standards provided device interfaces for Win32-based terminals using ActiveX
technologies. The OPOS standard was used as the starting point for JavaPOS, due to:

• Similar purposes. Both standards involved developing device interfaces for a segment of the software
community.

• Reuse of device models. The majority of the OPOS documentation specifies the properties, methods, events,
and constants used to model device behavior. These behaviors are in large part independent of programming
language.

• Reduced learning curve. Many application and hardware vendors are already familiar with using and
implementing the OPOS APIs.

Therefore, retail application developers and Service writers can continue to write their code in conformance with
one or both of the JavaPOS or OPOS standards. The content of the UnifiedPOS specification, however, along
with the appropriate annex, will constitute the definition of how an application can be developed to meet the
UnifiedPOS standard. The standards committees do not intend to release future versions of the specific OPOS
and JavaPOS documents after the Version 1.6 specification.

The UnifiedPOS specification is also the basis for the POS for .NET implementation, which similarly adheres to
this common approach for the access and control of POS peripherals.

1.1.5 Who Should Read This Document

The UnifiedPOS Architecture is targeted to the standard committees that will provide the language specific
mapping and Programmer’s Guides. However, the application developer who will use POS devices, the system
developer who will write POS device code, and the suppliers of POS devices for retail may be interested in the
device characteristics as portrayed in this document.

This guide assumes that the standard committee member is familiar with the following:

• General characteristics of POS peripheral devices.

• UnifiedPOS terminology and architecture.

• UML for reading the design.
4 Unified POS, V1.16.1

1.2 Conformance

1.2.1 Unified POS

The UnifiedPOS specification formalizes and documents the underlying retail device architecture, shared by
JavaPOS, OPOS, and POS for .NET, which provide standard platform specific mappings of the UnifiedPOS
specification. JavaPOS, OPOS and POS for .NET also provide base classes and/or interfaces to be used for
implementations of UnifiedPOS conformant device interfaces. To be UnifiedPOS conformant POS applications
and device vendors have to provide implementation using an appropriate platform-specific mapping.

1.2.1.1 ARTS IP Policy

This specification was originally created under the ARTS IP Policy which can be found

here: https://www.omg.org/cgi-bin/doc?retail/2017-12-01

Summary Points

1. The Policy is applicable to all members of ARTS and acceptance of this Policy will be a condition of ARTS
membership. Non-members wishing to attend technical meetings must agree in writing to accept the Policy.

2. The Policy is applicable to the Data Model, ARTS XML, UnifiedPOS and future technical committees
established by the ARTS Board to develop specifications.

3. The Policy permits members that disclose intellectual property to reserve rights on how they will license its
use.

4. The Policy encourages members to immediately disclose upon discovery of intellectual property that maybe
embedded in ARTS specifications.

5. No member is required to conduct patent searches to search for intellectual property within ARTS
specification(s.)

6. Members who participate in the development of ARTS specifications must assign representatives with
reasonable knowledge in the field of work.

7. The Policy establishes defined periods for review of developing draft specifications for both technical
accuracy and intellectual property. A public review period is also provided.

8. Members who do not disclose intellectual property within an ARTS specification before that specification is
approved by the ARTS Board, must provide a 12-month royalty-free license to all implementers, during which
time ARTS may modify the specification to remove the infringing IP and each implementer may make
appropriate resolution.

9. There is a default reasonable and non-discriminatory (“RAND”) licensing obligation for members of Work
teams and Technical Committees with only limited exceptions.UnifiedPOS specification formalizes and
documents the underlying retail device.
Unified POS, v1.16.1 5

1.3 Architectural Overview

1.3.1 General

UnifiedPOS defines a multi-layered architecture in which a POS Application interacts with the Physical or
Logical Device through the UnifiedPOS Control layer.

1.3.2 Architectural Components

The POS Application (or Application) is an Application that uses one or more UnifiedPOS devices.

UnifiedPOS Devices are divided into categories called Device Categories, such as Cash Drawer and POS
Printer.

Each UnifiedPOS Device is a combination of these components:

• Control for a device category. The Control class provides the interface between the Application and the device
category. It contains no graphical component and is therefore invisible at runtime.

The Control has been designed so that all implementations of a device category’s control will be compatible.
Therefore, the Control can be developed independently of the Service for the same device category (they can
even be developed by different companies).

 POS Application

 UnifiedPOS Control

 UnifiedPOS Service

 Physical (or logical) Device

UnifiedPOS Device
6 Unified POS, V1.16.1

• Service, which is a component called by the Control through the Service Interface. The Service is used by the
Control to implement UnifiedPOS-prescribed functionality for a Physical Device. It can also call special event
methods provided by the Control to deliver events to the Application.

A set of Service classes can be implemented to support Physical Devices with multiple Device Categories.

The Application manipulates the Physical Device (the hardware unit or peripheral) by calling the platform
specific APIs which conform to the UnifiedPOS standard. Some Physical Devices support more than one device
category. For example, some POS Printers include a Cash Drawer kickout, and some Bar Code Scanners include
an integrated Scale. However with UnifiedPOS, an application treats each of these device categories as if it were
an independent Physical Device. The UnifiedPOS Device standard developer is responsible for presenting the
peripheral in this way.

Note: Occasionally, a Device may be implemented in software with no user-exposed hardware, in which case it
is called a Logical Device.

1.3.3 Use of UML

The UnifiedPOS standard includes the use of UML terminology and diagrams to define device categories.
Following is a brief description of the extensions to UML to make it better fit the UnifiedPOS architecture (this
extension is expected and allowed by the UML, see Booch98 reference in the “UML References” in Annex D).

Should any discrepancies exist between the UML diagrams and the specification text, then the text takes
precedence.

Name
Applies to UML

Symbol
Meaning

<<capability>> Class attribute stereotype which flags the attribute as a UnifiedPOS capability

<<prop>> Class attribute stereotype which flags the attribute as a UnifiedPOS property

<<event>> Class
stereotype to indicate that the class/interface will be mapped to a UnifiedPOS
event which in turn is mapped to a JavaPOS event class or a COM event for
OPOS or a .NET event

exclusive-use Class
constraint that indicates this Device Service or Service Object follows the
exclusive-use behavior defined in the UnifiedPOS documentation in section
“Exclusive-Use Devices” in Chapter 1.

sharable Class
constraint that indicates this Device Service or Service Object follows the
sharable behavior defined in the UnifiedPOS documentation in section
“Sharable Devices” in Chapter 1.

read-only

read-write
Class attribute

constraint that indicates the mutability of the attribute. For example, in
JavaPOS, read-only attributes translate to having a getter method for the
attribute and read-write attributes have getter and setter methods for
attributes.
Unified POS, v1.16.1 7

1.3.3.1 Package Diagram

UnifiedPOS uses Static Structure Diagrams to define common interfaces.

Note: This package diagram is included to give some logical structure to the interfaces in the UnifiedPOS
interfaces UML diagrams. Some implementations may have a corresponding equivalence for the packages and
some may not. Also, note that the name ‘upos’ may be replaced by an implementation specific prefix (e.g.,
JavaPOS uses Java packages and maps the prefix ‘upos’ to ‘jpos’).

 access after

<open>|

<open-claim>|

<open-enable>|

<open-claim-
enable>

Class attribute

constraint that indicates this attribute is accessible when the service is in the
state indicated. For example {access after opened-claim-enable} indicates
that the attribute is accessible when the service has been opened, claimed and
enabled in the order indicated.

raises-exception Class operation

constraint that indicates this method can throw an exception if the
implementation language supports exception; otherwise, some mechanism is
used to notify the application that an invalid condition occurred. A value is
returned to indicate the error.

 use after

<open>|

<open-claim>|

<open-enable>|

<open-claim-
enable>

Class operation

constraint that indicates this operation is accessible when the service is in the
state indicated. For example {use after open-claim-enable} indicates that the
method is accessible when the service has been opened, claimed and enabled
in the order indicated.

Name
Applies to UML

Symbol
Meaning

upos events
(from upos)
8 Unified POS, V1.16.1

1.3.4 Data Types Updated in Release 1.13

UnifiedPOS uses textual references to data types which will be defined for specific language usage:

UnifiedPOS JavaPOS OPOS
POS for
.NET

 UML UnifiedPOS text Usage

boolean boolean BOOL bool in boolean Boolean true or false.

boolean by
reference

boolean[1] BOOL* Not used
**

inout boolean Mutable boolean.

binary byte[] BSTR byte[] in binary Immutable array of bytes.

binary by
reference

byte[1][] BSTR* Not used
**

inout binary Mutable array of bytes. (Both its size
and contents may be modified.)

array of
binary

byte[][] SAFEARRAY
of BSTR

Not used
**

in binary[] Immutable array of array of bytes.

byte byte LONG byte in byte 8-bit integer. (See HardTotals, setAll
method.)

int32 int LONG int or
enum

in int32 32-bit integer.

int32 array int[] SAFEARRAY
of LONG

int[] in int32 array Immutable array of 32-bit integers.

int32 array
by reference

int[1][] SAFEARRAY
*
of LONG

Not used
**

inout int32
array

Mutable array of 32-bit integers.
(Both its size and contents may be
modified.)

int32 by
reference

int[1] LONG* Not used
**

inout int32 Mutable 32-bit integer.

currency long CURRENCY
or CY

decimal in currency 64-bit integer. Sometimes used for
currency values where 4 decimal
places are implied. E.g., if the integer
is “1234567”, then the currency value
is “123.4567”. See footnotea

currency by
reference

long[1] CURRENCY*
or CY*

Not used
**

inout
currency

Mutable 64-bit integer.

string String BSTR string in string Text character string. See footnoteb

string by
reference

String[1] BSTR* Not used
**

inout string Mutable text character string. (Both its
size and contents may be modified.)

array of
points

Point[] BSTR Point[] inout point[] Immutable array of points. Used by
Signature Capture.

object Object BSTR* object inout object An object. This will usually be
subclassed to provide a Service-
specific parameter.

nls String LONG CultureI
nfo

in nls Operating System National Language
Support data type.
Unified POS, v1.16.1 9

For Java:
The convention of type[1] (an array of size 1) is used to pass a mutable basic type. This is required since Java’s primitive types, such as
int and boolean, are passed by value, and its primitive wrapper types, such as Integer and Boolean, do not support modification. For
strings and arrays, do not use a null value to report no information. Instead use an empty string (“”) or an empty array (zero length). In
some chapters, an integer may contain a “bit-wise mask.” That is, the integer data may be interpreted one or more bits at a time. The
individual bits are numbered beginning with Bit 0 as the least significant bit.
** POS for .NET does not use “out” parameters, return values are used instead.

1.3.5 Device Behavior Models

1.3.5.1 Introduction to Properties, Methods, and Events

An application accesses a POS Device via platform specific APIs.

The three elements of UnifiedPOS standard for APIs are:

• Properties. Properties are device characteristics or settings. A type is associated with each property, such as
boolean or string. An application may retrieve a property’s value, and it may set a writable property’s value.

• Methods. An application calls a method to perform or initiate some activity at a device. Some methods require
parameters of specified types for sending and/or returning additional information.

• Events. A Device implementation may call back into the application via events. The application may need to
register for events. The mechanism to do this is implementation specific.

Properties (UML Attributes)

Note: For each interface a UML listing of the properties and methods of the interface will be included in a table.
The properties are indicated as attributes. The generic UML naming pattern for attributes is the following:

visibility Name: type-expression = default-value { property-string }

where:

visibility in this document is always public for application visible interfaces but is not explicitly
shown.

Name is the name of the attribute

type-expression is the type of the attribute, which is one of UnifiedPOS types defined in Intro-8.

default-value1 the default value of the attributes in UML, (optional)

property-string property value to apply to the element. For attributes, we define two such strings:
read-only and read-write, which indicates the mutability of the attribute.

a. Six decimal place precision is required for all computations in conversion between currencies but is not required for the
representation of the solution.

b. For data elements within comma delimited string data, no leading or trailing whitespace is permitted, unless that whitespace is
part of the data element. Comma delimited string data is typically used for a series of numbers, in which no whitespace should
be included in the string.

1. Not used by UnifiedPOS standard
10 Unified POS, V1.16.1

An example of a property attribute is as follows:

DeviceEnabled: boolean { read-write }

Methods (UML Operations)

The generic UML pattern for methods is the following:

visibility name (parameter-list): return-type-expr { property string }

where:

parameter - list is a comma separated list of formal parameters using the following generic UML
naming pattern:

kind name: type-expression (= default-value)1

where:

kind is either: ‘in,’ ‘out,’ or ‘inout’ with the default set to ‘in’ if absent

property-string is a property string to apply to the element. For methods an additional property
string called ‘raises-exception’ is defined which means that this method can throw the exception if
the implementation language supports exception; otherwise, some mechanism is used to notify the
application that an invalid condition occurred.

An example of a method operation is as follows:

open (logicalDeviceName: string): void { raises-exception }

Events (UML Interfaces)

Events are being modeled as UML classes which will possibly contain attributes stereotyped with the event
stereotype. The generic UML pattern for events is a UML box with the stereotype <<event>> (class diagram)
with the event name and a list of the properties. This representation is different from Properties and Methods.

where:

XxxEvent stands for the UnifiedPOS event name and the second compartment of the box would contain a list of
attributes for the event.

1.default-value is not used by the UnifiedPOS standard

<<event>>
 xxEvent
Unified POS, v1.16.1 11

1.3.5.2 Device Initialization and Finalization Updated in Release 1.11

Initialization

The first actions that an application must take to use a Device are:

• Obtain a reference to a Control,

• Prepare Control for the events that the application needs to receive, if necessary.

To initiate activity with the Physical Device, an application calls the Control’s open method:

The logicalDeviceName parameter specifies a logical device to associate with the Device. The open method
performs the following steps:

• Creates and initializes an instance of the proper Service class for the specified name.

• Initializes many of the properties, including the descriptions and version numbers of the Device.

More than one instance of a Control may have a Physical Device open at the same time. Therefore, after the
Device is opened, an application might need to call the claim method to gain exclusive access to it. Claiming the
Device ensures that other Control instances do not interfere with the use of the Device. An application can
release the Device to share it with another Control instance– for example, at the end of a transaction.

Before using the Device, an application must set the DeviceEnabled property to true. This value brings the
Physical Device to an operational state, while false disables it. For example, if a Scanner Device is disabled, the
Physical Device will be put into its non-operational state (when possible). Whether physically operational or not,
any input is discarded until the Device is enabled.

Initialization and Error Reporting Added in Release 1.11

Error conditions may require that a Service fail during one or more of the initialization APIs - open, claim, and/
or DeviceEnabled=true. The following are recommendations for initialization-time error handling by Service
implementers. These guidelines are not mandated, however, because of the wide variation in some hardware
devices and their initialization requirements, and due to variations in already released Services.

open Primary purpose: Initialize the software stack, including the creation of the Service and initialization
 of its supporting software components.

1. The Service must fail an open API call if software initialization fails.
Example: Supporting software components are not installed or available, so fail the API call.

2. If the Service must probe the device in order to correctly set open-time properties (such as capabilities), then
the Service should fail an open API call if it cannot access the device.
Example: A Service supports several line display models and sets the UnifiedPOS capabilities after
communicating with the device. If the device’s port is not available or the device does not respond, then the
Service cannot complete its open work and will need to fail the API call.

3. For other cases, the Service should succeed the open API call and report a failure (if needed) later.
Example: A Service cannot open an RS232 port during open. If the previous case (#2) above does not apply,
then the Service should succeed the open and report the port open failure during claim, if the port is still not
available.

claimPrimary purpose: Acquire exclusive access to the device, for exclusive-use devices.
12 Unified POS, V1.16.1

1. The Service must fail a claim API call if another process has claimed the device and the claim timeout expires.

2. If the device is not accessible, then the Service should fail a claim API call.
Examples: A required communications or I/O port cannot be opened or claimed. The Service determines that
the device is not present or is offline. For each of these cases, the Service should fail the API call.

For other cases, the Service should succeed the claim API call. This specifically includes cases where runtime
faults exist.
Examples: A POSPrinter receipt station is out-of-paper, or the POSPrinter receipt station detects a printer jam.
These are runtime faults that occur from time to time during operation, and are user correctable. The Service
should succeed the claim. POSPrinter runtime faults should be reported (after DeviceEnabled=true) by
StatusUpdateEvents and/or by exceptions from APIs such as printNormal.

DeviceEnabled = true Primary purpose: Final preparation for operation and application use.

3. If the device is not accessible, then the Service should fail a DeviceEnabled= true API call. (Note that the
device may have been accessible at claim but is now inaccessible.)
Example: The Service determines that the device is not present or is offline, so the Service should fail the API
call.

4. For other cases, the Service should succeed the DeviceEnabled=true API call. This specifically includes
cases where runtime faults exist.
Examples: See claim case (#3) above.

An application developer must be prepared for failures at any of the initialization points. With the variations in
hardware devices and in their Service implementations, a well-written application will respond predictably to the
widest range of error conditions and their reporting as possible.

Retail devices may communicate with a POS terminal using a wide variety of ports, including RS232, RS485,
Parallel, USB, Ethernet, and Wireless. In addition, devices may be powered directly by the terminal or by an
external power source. These guidelines may be applied to all of these devices. Two examples with typical
initialization follow.

Example 1: Hand-held scanner attached to a terminal's powered RS232 port.

• open: Succeed if software initialization is successful.

• claim: Succeed if open was successful and if an attempt to communicate with the device is successful.

• DeviceEnabled = true: Succeed if claim was successful and if an attempt to communicate with the device is
successful.

• While enabled: If the device is unplugged from the powered RS232 port, then detect the power state change
and report to the application. If the device is later plugged back in, then detect the power state change and report
to the application. For many devices, power state changes can be accomplished by monitoring the RS232 DSR
signal. (Note that hot unplugging and plugging in with this port type is probably not recommended by the
hardware vendor.)

Example 2: Deck scanner/scale attached to a terminal's USB port, powered by a “brick.”

• open: Succeed if software initialization is successful.

• claim: Succeed if open was successful and if an attempt to communicate with the device is successful.

• DeviceEnabled = true: Succeed if claim was successful and if an attempt to communicate with the device is
successful.
Unified POS, v1.16.1 13

• While enabled: If the device is unplugged from the USB port or from its power source, then detect the power
state change and report to the application. If the device is later plugged back in, then detect the power state
change and report to the application. An operating system-specific mechanism detects power state changes,
such as an open, write, or read failure with specific failure statuses.

Notice that the general initialization handling is very similar, even though the second example will typically
require somewhat more logic within the Service to monitor and re-initialize the device connection.

Finalization

After an application finishes using the Physical Device, it should call the close method. If the DeviceEnabled
property is true, close disables the Device. If the Claimed property is true, close releases the claim on the device.

Before exiting, an application should close all open Devices to free device resources in a timely manner.

Summary

In general, an application follows this general sequence to open, use, and close a Device:

Obtain a Control reference.

Prepare for events if necessary.

Call the open method to instantiate a Service and link it to the Control.

Call the claim method to gain exclusive access to the Physical Device. Required for
exclusive-use Devices; optional for some sharable Devices. (See “Device Sharing Model”
on page 14 for more information).

Set the DeviceEnabled property to true to make the Physical Device operational. (For
sharable Devices, the Device may be enabled without first claiming it.)

Use the device.

Set the DeviceEnabled property to false to disable the Physical Device.

Call the release method to release exclusive access to the Physical Device.

Call the close method to unlink the Service from the Control.

Release events receipt if necessary

Remove the reference to the Control

1.3.6 Device Sharing Model

Devices fall into two sharing categories:

• Devices that are to be used exclusively by one Control instance.

• Devices that may be partially or fully shared by multiple Control instances.

Any Physical Device may be open by more than one Control instance at a time. However, activities that an
application can perform with a Control may be restricted to the Control instance that has claimed access to the
Physical Device.
14 Unified POS, V1.16.1

1.3.6.1 Exclusive-Use Devices

The most common device type is called an exclusive-use device. An example is the POS printer. Due to physical
or operational characteristics, an exclusive-use device can only be used by one Control at a time. An application
must call the Device’s claim method to gain exclusive access to the Physical Device before most methods,
properties, or events are legal. Until the Device is claimed and enabled, calling methods or accessing properties
may cause a failure condition to occur.

An application may in effect share an exclusive-use device by calling the Control’s claim method before a
sequence of operations, and then calling the release method when the device is no longer needed. While the
Physical Device is released, another Control instance can claim it.

When an application calls the claim method again (assuming it did not perform the sequence of close method
followed by open method on the device), some settable device characteristics are restored to their condition at
the release. Examples of restored characteristics are the line display’s brightness, the MSR’s tracks to read, and
the printer’s characters per line. However, state characteristics are not restored, such as the printer’s sensor
properties. Instead, these are updated to their current values.

1.3.6.2 Sharable Devices

Some devices are sharable devices. An example is the keylock. A sharable device allows multiple Control
instances to call its methods and access its properties. Also, it may deliver its events to multiple Controls. A
sharable device may still limit access to some methods or properties to the Control that has claimed it, or it may
deliver some events only to the Control that has claimed it.

1.3.6.3 Events Updated in Release 1.12

UnifiedPOS architecture uses events to inform the application of various activities or changes with the Device.
The five event types follow.

Event Class Description
Supported When A Device

Category Supports...

DataEvent Input data has been placed into device class-
category properties.

Event-driven input

ErrorEvent An error has occurred during event-driven input or
asynchronous output.

Event-driven input
-or-

Asynchronous output

OutputCompleteEvent An asynchronous output has successfully
completed.

Asynchronous output

StatusUpdateEvent A change in the Physical Device’s status has
occurred.
Devices may be able to report device power state.
See “Device Power Reporting Model,” page 22.

Status change notification

DirectIOEvent This event may be defined by a Service provider
for purposes not covered by the specification.

Always, for Service-specific use
Unified POS, v1.16.1 15

The Service must enqueue these events on an internally created and managed queue. All events are delivered in
a first-in, first-out manner. (The only exception is that a special input error event is delivered early if some data
events are also enqueued. See “Device Input Model,” page 18.) Events are delivered by an internally created and
managed Service thread. The Service causes event delivery by calling an event firing callback method in the
Control, which then delivers the event to the application.

The following conditions cause event delivery to be delayed until the condition is corrected:

• The application has set the property FreezeEvents to true.

• The event type is a DataEvent or an input ErrorEvent, but the property DataEventEnabled is false. (See
“Device Input Model,” page 18.)

Unless specified otherwise, properties that convey device state information (e.g., JrnEmpty and
DrawerOpened) are kept current while the device is enabled, regardless of the setting of the FreezeEvents
property.

Rules for event queue management are:

• The Device may only enqueue new events while the Device is enabled.

• The Device delivers enqueued events until the application calls the release method (for exclusive-use devices)
or the close method (for any device), at which time any remaining events are deleted.

• For input devices, the clearInput method clears data and input error events.

• For output devices, the clearOutput method clears data and output error events.

1.3.6.4 Errors

UnifiedPOS architecture deals with two kinds of errors as discussed in “Methods (UML Operations)” on page 11
and explanation of exceptions:

• Errors that are “invalid or bad invocations” which are recognized by the Service validation of the request.
Method invocations and property accesses may be valid or invalid. If the action is invalid, an invalid condition
is set and the application is notified in a fashion appropriate to the platform. For specific implementations,
OPOS would produce a ResultCode other than OPOS_SUCCESS and JavaPOS would produce an exception.

• Errors that are caused by errant device behavior and produce error events.

1.3.6.5 Error Codes Updated in Release 1.11

This section lists the general meanings of the error code property when an invalid condition occurs. In general,
the property and method descriptions in later chapters list error codes only when specific details or information
are added to these general meanings. In UML each error code is:

E_xxx : int32 { frozen }

The error code is set to one of the following values:

Value Meaning
E_CLOSED An attempt was made to access a closed Device.
16 Unified POS, V1.16.1

E_CLAIMED An attempt was made to access a Physical Device that is claimed by
another Control instance. The other Control must release the Physical
Device before this access may be made. For exclusive-use devices, the
application will also need to claim the Physical Device before the access
is legal.

E_NOTCLAIMED An attempt was made to access an exclusive-use device that must be
claimed before the method or property set action can be used.
If the Physical Device is already claimed by another Control instance,
then the status E_CLAIMED is returned instead.

E_NOSERVICE The Control cannot communicate with the Service, normally because of
a setup or configuration error.

E_DISABLED Cannot perform this operation while the Device is disabled.

E_ILLEGAL An attempt was made to perform an illegal or unsupported operation
with the Device, or an invalid parameter value was used.

E_NOHARDWARE The Physical Device is not connected to the system or is not powered on.

E_OFFLINE The Physical Device is off-line.

E_NOEXIST The file name (or other specified value) does not exist.

E_EXISTS The file name (or other specified value) already exists.

E_FAILURE The Device cannot perform the requested procedure, even though the
Physical Device is connected to the system, powered on, and on-line.

E_TIMEOUT The Service timed out waiting for a response from the Physical Device,
or the Control timed out waiting for a response from the Service.

E_BUSY The current Service state does not allow this request. For example, if
asynchronous output is in progress, certain methods may not be allowed.

E_EXTENDED A device category-specific error condition occurred. The error condition
code is held in an extended error code.

E_DEPRECATED The requested operation can not be performed since it has been
deprecated.

When more than one error code is valid, the most descriptive code
should be selected. For example, the closed, claimed, not claimed, and
disabled errors must follow this order of error reporting precedence,
from higher to lower:

E_CLOSED The device must be opened.

E_CLAIMED The device is opened but not claimed. Another application has the device
claimed, so it cannot be claimed at this time.

E_NOTCLAIMED The device is opened but not claimed. No other application has the device
claimed, so it can and must be claimed.

E_DISABLED The device is opened and claimed (if this is an exclusive-use device), but not
enabled.
Unified POS, v1.16.1 17

Extended Error Code

The extended error code is set as follows:

• When the error code is E_EXTENDED, the extended error code is set to a device category-specific value, and
must match one of the values given in this document under the appropriate device category chapter.

• When the error code is any other value, the extended error code may be set by the Service to any Service-
specific value. These values are only meaningful if an application adds Service-specific code to handle them.

1.3.6.6 Device Input Model Updated in Release 1.13

The standard UnifiedPOS input model for exclusive-use devices is event-driven input. Event-driven input allows
input data to be received after DeviceEnabled is set to true. Received data is enqueued as a DataEvent, which
is delivered to an application.

If the AutoDisable property is true when data is received, then the Device will automatically disable itself,
setting DeviceEnabled to false. This will inhibit the Device from enqueuing further input and, when possible,
physically disable the device.

When the application is ready to receive input from the Device, it sets the DataEventEnabled property to true.
Then, when input is received (usually as a result of a hardware interrupt), the Device delivers a DataEvent. (If
input has already been enqueued, the DataEvent will be delivered immediately after DataEventEnabled is set
to true.) The DataEvent may include input status information through its Status property. The Device places the
input data plus other information as needed into device category-specific properties just before the event is
delivered.

Just before delivering this event, the Device disables further data events by setting the DataEventEnabled
property to false. This causes subsequent input data to be enqueued by the Device while an application processes
the current input and associated properties. When an application has finished the current input and is ready for
more data, it enables data events by setting DataEventEnabled to true.

(Added in 1.13) If an application causes disabling of the device (by setting DeviceEnabled=false, or by setting
AutoDisable=true and a subsequent input event is enqueued), then it may need logic to ignore additional data
until it reenables the device. In particular, input that is already received and enqueued will continue to be
delivered (unless the clearInput, release or close API is called, at which time undelivered input is discarded).
As stated in the Events section, the application may control the input delivery by using the DataEventEnabled
or FreezeEvents properties.

Error Handling Updated in Release 1.12

If the Device encounters an error while gathering or processing event-driven input, then the Device:

• Changes its State to S_ERROR.

• Enqueues an ErrorEvent with locus EL_INPUT to alert an application of the error condition. This event is
added to the end of the queue

• If one or more DataEvents are already enqueued for delivery, an additional ErrorEvent with locus
EL_INPUT_DATA is enqueued before the DataEvents, as a pre-alert.

This event (or events) is not delivered until the DataEventEnabled property is true, so that orderly
application sequencing occurs.
18 Unified POS, V1.16.1

Unlike a DataEvent, the Device does not disable further DataEvents or input ErrorEvents; it leaves
the DataEventEnabled property value at true. Note that the application may set DataEventEnabled to
false within its event handler if subsequent input events need to be disabled for a period of time.

The application can cause the ErrorResponse property to be set one of the following:

ErrorLocus Description

EL_INPUT_DATA Only delivered if the error occurred when one or more DataEvents are already enqueued.

This event gives the application the ability to immediately clear the input, or to optionally
alert the user to the error before processing the buffered input. This error event is enqueued
before the oldest DataEvent, so that an application is alerted of the error condition
quickly.

This locus was created especially for the Scanner: When this error event is received from
a Scanner Device, the operator can be immediately alerted to the error so that no further
items are scanned until the error is resolved. Then, the application can process any backlog
of previously scanned items before error recovery is performed.

EL_INPUT Delivered when an error has occurred and there is no data available.

If some input data was buffered when the error occurred, then an ErrorEvent with the
locus EL_INPUT_DATA was delivered first, and then this error event is delivered after
all DataEvents have been delivered.

If the Service has partial data that can be delivered with an ErrorEvent, the related data
properties should be filled in prior to delivery of the event with this ErrorLocus. If there
is no partial data to be delivered with the ErrorEvent, the data properties should be
cleared prior to delivery of this event.

Note: This EL_INPUT event is not delivered if: an EL_INPUT_DATA event was
delivered and the application event handler responded with an ER_CLEAR error response.

ErrorResponse Description

ER_CLEAR Clear the buffered DataEvents and ErrorEvents and exit the error state, changing
State to S_IDLE.
This is the default response for locus EL_INPUT.

ER_CONTINUEINPUT This response acknowledges the error and directs the Device to continue processing.
The Device remains in the error state, and will deliver additional data events as
directed by the DataEventEnabled property. When all input has been delivered and
the DataEventEnabled property is again set to true, another ErrorEvent is
delivered with locus EL_INPUT.
This is the default response when the locus is EL_INPUT_DATA, and is legal only
with this locus.

ER_RETRY This response directs the Device to retry the input. The error state is exited, and State
is changed to S_IDLE.
This response may only be selected when the device chapter specifically allows it and
when the locus is EL_INPUT. An example is the scale.
Unified POS, v1.16.1 19

The Device exits the Error state when one of the following occurs:

• The application returns from the EL_INPUT ErrorEvent.

• The application calls the clearInput method.

• The application returns from the EL_INPUT_DATA ErrorEvent with ErrorResponse set to ER_CLEAR.

Miscellaneous Updated in Release 1.10

For some Devices, the Application must call a method to begin event driven input. After the input is received by
the Device, then typically no additional input will be received until the method is called again to reinitiate input.
Examples are the MICR and Signature Capture devices. This variation of event driven input is sometimes called
“asynchronous input.”

The DataCount property contains the number of DataEvents enqueued by the Device.

Calling the clearInput method deletes all input enqueued by a Device. clearInput may be called after open for
sharable devices and after claim for exclusive-use devices.

Calling the clearInputProperties method sets all data properties, that were populated as a result of firing a
DataEvent or ErrorEvent, back to their default values. This call does not reset the DataCount or State
properties.

The general event-driven input model does not specifically rule out the definition of device categories containing
methods or properties that return input data directly. Some device categories define such methods and properties
in order to operate in a more intuitive or flexible manner. An example is the Keylock device. This type of input
is sometimes called “synchronous input.”

1.3.6.7 Device Output Models

The UnifiedPOS output model consists of two output types: synchronous and asynchronous. A device category
may support one or both types, or neither type.

Synchronous Output

The application calls a category-specific method to perform output. The Device does not return until the output
is completed; this means the physical device has performed the intended operation. For example the printer has
successfully transferred all the output data as ink on the paper.

This type of output is preferred when device output can be performed relatively quickly. Its merit is simplicity.

Asynchronous Output Updated in Release 1.13

The application calls a category-specific method to start the output. The Device validates the method parameters
and produces an error condition immediately if necessary. If the validation is successful, the Device does the
following:

1. Buffers the request in program memory, for delivery to the Physical Device as soon as the Physical Device can
receive and process it.



20 Unified POS, V1.16.1

2. Sets the OutputID property to a unique integer identifier for this request. (For more information about the
OutputID property, see Chapter 2.)

3. Returns as soon as possible.

When the Device successfully completes a request, an OutputCompleteEvent is enqueued for delivery to the
application. A property of this event contains the output ID of the completed request. The application should
compare the returned OutputCompleteEvent property OutputID value with the OutputID value set by the
asynchronous process method call used to send the data in order to track what data has been successfully sent to
the device. If the request is terminated before completion, due to reasons such as the application calling the
clearOutput method or responding to an ErrorEvent with a ER_CLEAR response, then no
OutputCompleteEvent is delivered.

If an error occurs while processing a request, an ErrorEvent is enqueued which will be delivered to the
application after the events already enqueued, including OutputCompleteEvents (according to the normal Event
delivery rules on page 15). No further asynchronous output will occur until the event has been delivered to the
application. If the response is ER_CLEAR, then outstanding asynchronous output is cleared. If the response is
ER_RETRY, then output is retried; note that if several outputs were simultaneously in progress at the time that
the error was detected, then the Service may need to retry all of these outputs.

This type of output is preferred when device output requires slow hardware interactions. Its merit is perceived
responsiveness, since the application can perform other work while the device is performing the output.

Note: Asynchronous output is always performed on a first-in first-out basis.

1.3.6.8 Device Power Reporting Model Updated in Release 1.8

Applications frequently need to know the power state of the devices they use. Note: This model is not intended
to report Workstation or POS Terminal power conditions (such as “on battery” and “battery low”). Reporting of
these conditions is now managed by the POSPower device category.

Model

UnifiedPOS architecture segments device power into three states:

• ONLINE. The device is powered on and ready for use. This is the “operational” state.

• OFF. The device is powered off or detached from the terminal. This is a “non-operational” state.

• OFFLINE. The device is powered on but is either not ready or not able to respond to requests. It may need to
be placed online by pressing a button, or it may not be responding to terminal requests. This is a “non-
operational” state.

In addition, one combination state is defined:

• OFF_OFFLINE. The device is either off or offline, and the Service cannot distinguish these states.

Power reporting only occurs while the device is open, claimed (if the device is exclusive-use), and enabled.
Unified POS, v1.16.1 21

Note - Enabled/Disabled vs. Power States

These states are different and usually independent. UnifiedPOS defines “disabled” /
“enabled” as a logical state, whereas the power state is a physical state. A device may
be logically “enabled” but physically “offline.” It may also be logically “disabled” but
physically “online.” Regardless of the physical power state, UnifiedPOS only reports
the state while the device is enabled. (This restriction is necessary because a Service
typically can only communicate with the device while enabled.)
If a device is “offline,” then a Service may choose to fail an attempt to “enable” the
device. However, once enabled, the Service may not disable a device based on its power
state.
22 Unified POS, V1.16.1

1.3.6.9 Power State Diagram

1.3.6.10 Power Properties

The UnifiedPOS device power reporting model adds the following common elements across all device classes.

• CapPowerReporting property. Identifies the reporting capabilities of the device.
 The UML pattern for the property is:

PR_xxx : int32 { frozen }

This property may be one of:

• PR_NONE. The Service cannot determine the state of the device. Therefore, no power reporting is possible.

• PR_STANDARD. The Service can determine and report two of the power states - OFF_OFFLINE (that is,
off or offline) and ONLINE.

• PR_ADVANCED. The Service can determine and report all three power states - ONLINE, OFFLINE, and
OFF.

PowerState Unknown
PS_UNKNOWN

Known PowerStates

PowerState Online
PS_ONLINE

Off/Offline States

PowerState Standard Off/Offline
PS_OFF_OFFLINE

Advanced Off/Offline States

 PowerState Advanced Offline
PS_OFFLINE

PowerState Advanced Off
PS_OFF

PowerState Online
PS_ONLINE

Off/Offline States

PowerState Standard Off/Offline
PS_OFF_OFFLINE

Advanced Off/Offline States

 PowerState Advanced Offline
PS_OFFLINE

PowerState Advanced Off
PS_OFF

PowerState Standard Off/Offline
PS_OFF_OFFLINE

[Device is Online]

[Device is Off or Offline]

Advanced Off/Offline States

 PowerState Advanced Offline
PS_OFFLINE

PowerState Advanced Off
PS_OFF

 PowerState Advanced Offline
PS_OFFLINE

PowerState Advanced Off
PS_OFF

[Device is Offline]

[CapPowerReporting == PR_ADVANCED]

[D evice is closed]

[Device is closed]

[Device is Off]
Unified POS, v1.16.1 23

• PowerState property. Maintained by the Service at the current power condition, if it can be determined. The
 UML pattern for the property is:

PS_xxx : int32 { frozen }

 This property may be one of:

• PS_UNKNOWN

• PS_ONLINE

• PS_OFF

• PS_OFFLINE

• PS_OFF_OFFLINE

• PowerNotify property. The application may set this property to enable power reporting via
StatusUpdateEvents and the PowerState property. This property may only be changed while the device is
disabled (that is, before DeviceEnabled is set to true). This restriction allows simpler implementation of power
notification with no adverse effects on the application. The application is either prepared to receive
notifications or doesn't want them, and has no need to switch between these cases. The UML pattern for the
property is:

PN_xxx : int32 { frozen }

 This property may be one of:

• PN_DISABLED

• PN_ENABLED

1.3.6.11 Power Reporting Requirements for DeviceEnabled

The following semantics are added to DeviceEnabled when

CapPowerReporting is not PR_NONE, and
PowerNotify is PN_ENABLED:

• When the Control changes from DeviceEnabled false to true, then begin monitoring the power state:

• If the Physical Device is ONLINE, then PowerState is set to PS_ONLINE. A StatusUpdateEvent is
enqueued with its Status property set to SUE_POWER_ONLINE.

• If the Physical Device’s power state is OFF, OFFLINE, or OFF_OFFLINE, then the Service may choose to fail
the enable by notifying the application with error code E_NOHARDWARE or E_OFFLINE. 

However, if there are no other conditions that cause the enable to fail, and the Service chooses to return success
for the enable, then PowerState is set to PS_OFF, PS_OFFLINE, or PS_OFF_OFFLINE. 

A StatusUpdateEvent is enqueued with its Status property set to SUE_POWER_OFF,
SUE_POWER_OFFLINE, or SUE_POWER_OFF_OFFLINE.

• When the Device changes from DeviceEnabled true to false, UnifiedPOS assumes that the Device is no longer
monitoring the power state and sets the value of PowerState to PS_UNKNOWN.
24 Unified POS, V1.16.1

1.3.6.12 Device Information Reporting Model Added in Release 1.8

POS Applications, as well as System Management agents, frequently need to monitor the current configuration
and usage metrics of the various POS devices that are attached to the POS terminal.

Examples of configuration data are the device’s Serial Number, Firmware Version, and Connection Type.
Examples of usage data for the POSPrinter device are the Number of Lines Printed, Number of Hours Running,
Number of paper cuts, etc. Examples of usage data for the Scanner device are the Number of scans, Number of
Hours Running, etc. Examples of usage data for the MSR device are the Number of successful swipes, Number of
swipes resulting in errors, Number of Hours Running, etc. See below for examples of XML definitions of the
device statistics accumulated per POS device category.

In some cases, the data may be accumulated and stored within the device itself. In other cases, the data may be
accumulated by the Service and stored, possibly on the POS terminal or store controller.

In order for multiple applications (for example a POS application and a System Management application) to
obtain statistics from the same device, proper care must be taken by both applications so that the device can be
made accessible when required. This is done by using the claim method and by setting DeviceEnabled to true
when access to a device is required and then setting DeviceEnabled to false and using the release method when
access to the device is no longer needed. Coordination of device access via this mechanism is the responsibility
of the applications themselves.

Statistics Reporting Properties and Methods

The UnifiedPOS device information reporting model adds the following common properties and methods across
all device classes.

• CapStatisticsReporting property. Identifies the reporting capabilities of the device. When
CapStatisticsReporting is false, then no statistical data regarding the device is available. This is equivalent to
Services compatible with prior versions of the specification. When CapStatisticsReporting is true, then some
statistical data for the device is available.

• CapUpdateStatistics property. Defines whether gathered statistics (or some of them) can be reset/updated by
the application. This property is only valid if CapStatisticsReporting is true. When CapUpdateStatistics is
false, then none of the statistical data can be reset/updated by the application. Otherwise, when
CapUpdateStatistics is true, then (some of) the statistical data can be reset/updated by the application.

• resetStatistics method. Can only be called if both CapStatisticsReporting and CapUpdateStatistics are true.
This method resets one, some, or all of the resettable device statistics to zero.

• retrieveStatistics method. Can only be called if CapStatisticsReporting is true. This method retrieves one,
some, or all of the accumulated statistics for the device.

• updateStatistics method. Can only be called if both CapStatisticsReporting and CapUpdateStatistics are
true. This method updates one, some, or all of the resettable device statistics to the supplied values.

XML Definitions for POS Device Statistics

The XML files containing the UnifiedPOS defined statistics for each device category are provided as downloads
from the web sites that also host this specification. These statistics can be referenced individually by name or as
a group using the “U_” string as (part of) the parameter to the statistics methods.
Unified POS, v1.16.1 25

Manufacturers/Service providers can add their specific statistics in the provided “ManufacturerSpecific” section.
These statistics can be referenced individually by name or as a group using the “M_” string as (part of) the
parameter to the statistics methods.

The following table contains the definitions of the information contained in the UnifiedPOS defined
DeviceInformation section covering all device categories.

The following is an example of the XML file that describes the “UnifiedPOS” defined statistics for the
CashDrawer device category.

<?xml version=’1.0’ ?>
<UPOSStat version=”1.13.0” xmlns:xsi=”http://www.w3.org/2001/XMLSchema-
instance” xmlns=”http://www.omg.org/UnifiedPOS/namespace/”
xsi:schemaLocation=”http://www.omg.org/UnifiedPOS/namespace/UPOSStat.xsd”>

<Event>
<Parameter>

<Name>DrawerGoodOpenCount</Name>
<Value>1353</Value>

</Parameter>
<Parameter>

<Name>DrawerFailedOpenCount</Name>
<Value>2</Value>

</Parameter>
<ManufacturerSpecific>

<Name>MyPersonalStat</Name>
<Value>14.32</Value>
<unitofmeasure>meters</unitofmeasure>

</ManufacturerSpecific>
</Event>

<DeviceInformation>

XML Definition Name
Definition description

UnifiedPOSVersion Version of the UnifiedPOS specification supported

DeviceCategory Device category (e.g., POSPrinter)

ManufacturerName Device manufacturer’s name

ModelName Device model name

SerialNumber Device serial number

ManufactureDate Device manufacture date

MechanicalRevision Device hardware revision

FirmwareRevision Device firmware revision

Interface Device hardware interface (e.g., serial, USB)

InstallationDate Device installation date
26 Unified POS, V1.16.1

<Equipment>
<UnifiedPOSVersion>1.13</UnifiedPOSVersion>
<DeviceCategory UPOS=”CashDrawer”/>
<ManufacturerName>Cashdrawers R Us</ManufacturerName>
<ModelName>CD-123</ModelName>
<SerialNumber>12345</SerialNumber>
<ManufactureDate>1999-12-31</ManufactureDate>
<MechanicalRevision>1A</MechanicalRevision>
<FirmwareRevision>1.0 Rev. B</FirmwareRevision>
<Interface>RS232</Interface>
<InstallationDate>2000-03-01</InstallationDate>

</Equipment>
</UPOSStat>

1.3.6.13 Update Firmware Device Model Added in Release 1.9

POS Applications frequently require the ability to update the firmware in the various POS devices that are
attached to the POS terminal. This model defines a consistent application interface for updating the firmware in
a device controlled by a UnifiedPOS control.

This model has the following capabilities:

• A property, CapUpdateFirmware, that indicates whether a device supports firmware updating.

• A property, CapCompareFirmwareVersion, that indicates whether a firmware file’s version can be compared
against the firmware version of the device.

• A method, updateFirmware, to perform an asynchronous update of the firmware in a device.

• A method, compareFirmwareVersion, to compare the firmware file’s version against the firmware version of
the device.

• Additional StatusUpdateEvent Status values to report the progress of an asynchronous update firmware
process.

The update firmware process is an asynchronous operation that reports its progress via StatusUpdateEvents.
This update firmware process applies to all device categories defined in UnifiedPOS.

The means by which a Service actually updates the firmware in the device is not covered by this document, only
the means by which the update firmware process is started and progress is reported.

1.3.6.14 Device States

UnifiedPOS defines a property State with the following values:

The most up-to-date files defining the XML tag names that conform to the ARTS Data
Dictionary and example schemas for the statistics for all device categories can be
downloaded from the ARTS web site at http://retail.omg.org
Unified POS, v1.16.1 27

http://www.nrf-arts.org
http://www.nrf-arts.org

S_CLOSED
S_IDLE
S_BUSY
S_ERROR

The State property is set as follows:

• State is initially S_CLOSED.

• State is changed to S_IDLE when the open method is successfully called.

• State is set to S_BUSY when the Service is processing output. The State is restored to S_IDLE when the
output has completed.

• The State is changed to S_ERROR when an asynchronous output encounters an error condition, or when an
error is encountered during the gathering or processing of event-driven input.

After the Service changes the State property to S_ERROR, it notifies the application of this error. The
properties of this event are the error code and extended error code, the locus of the error, and a mutable
response to the error.

1.3.6.15 Device State Diagram

Opened

Idle
State == S_IDLE

Busy
State == S_BUSY

Error
State == S_ERROR

Closed
State == S_CLOSED

Idle
State == S_IDLE

Busy
State == S_BUSY

Error
State == S_ERROR

/open

/close

[input event error]

[async output in progress]

[error event done and no async output]

[error event done and async output]

[async output done]

[async output error or input event error]
28 Unified POS, V1.16.1

1.3.6.16 Version Handling

As UnifiedPOS evolves, additional releases will introduce enhanced versions of some Devices. UnifiedPOS
imposes the following requirements on Control and Service versions:

• Control requirements. A Control for a device category must operate with any Service for that category, as
long as its major version number matches the Service's major version number. If they match, but the Control's
minor version number is greater than the Service’s minor version number, then the Control may support some
new methods or properties that are not supported by the Service’s release. If an application calls one of these
methods or accesses one of these properties, the application will be notified of an error condition
(E_NO_SERVICE).

• Service requirements. A Service for a device category must operate with any Control for that category, as
long as its major version number matches the Control's major version number. If they match, but the Service's
minor version number is greater than the Control's minor version number, then the Service may support some
methods or properties that cannot be accessed from the Control.

When an application wishes to take advantage of the enhancements of a version, it must first determine that the
Control and Service are at the proper major version and at or greater than the proper minor version. The versions
are reported by the properties DeviceControlVersion and DeviceServiceVersion.

1.3.6.17 Deprecation Handling Added in Release 1.11

In order to be able to rectify misunderstandings and/or ambiguities in the specification, a method of deprecation
is required in order to eliminate these items over time.

Deprecation can be applied to Properties and Methods, as well as parameters, constants, and enumerations.

When an element is marked as deprecated, then Service providers are required to support the element’s
functionality for the following two minor releases of the standard. Starting with the third release of the standard
after an element has been marked as deprecated, usage of the element will result in an E_DEPRECATED status.

When an element is marked as deprecated, then support for the element will be removed from the standard in the
next major release of the standard after it is marked as deprecated.

All deprecated elements and the related versions when they were first marked as deprecated are listed in Annex
H, Deprecation History on page H-1.

1.3.6.18 Hydra Device Considerations Updated in Release 1.12

Initial Connectivity Model

When the development of the POS peripheral standard began, it was decided that the most flexible methodology
would be to have an application be able to communicate to a peripheral through a two-layer process. Since the
Microsoft’s COM platform was the first supported architecture, Control Object and Service Object names were
chosen. Later when Java was defined and the technology used precluded the use of “objects” as defined in the
Windows world, the names were closely linked using the terminology Device Control and Device Service.
Functionality however at the higher, abstracted level, remained the same.
Unified POS, v1.16.1 29

Control Object or Device Control (Control)

A thin layer of software was defined that would allow for what is commonly called “connecting the pipes”
wherein a communication port would be opened and a device name would be assigned so that the application is
able to communicate to the peripheral using that device name.

Service Object or Device Service (Service)

This incorporates usually vendor-specific code that interfaces with the peripheral device to allow for accessing,
monitoring, processing, all the functionality of the peripheral device and exposing it to a common set of
properties, methods, and events that an application needs to interact with the peripheral.

For mono-function peripheral devices, the process is very straightforward. In the most simplistic system one
instance of a Control is instantiated to connect to the Service. As example for a simple POSPrinter:

Note: only one physical connection port (RS-232 for example) is used in this example.

Keeping things simple but adding another level of complexity is the case when more than one application needs
to use the device. In this case, another Control is instantiated to the peripheral Service and all applications need
to recognize that the peripheral is capable of being shared (for this example, assuming a shareable device) and
utilize the claim and release methodology that the standard provides. In the POSPrinter example, this would look
like…

Note: only one physical connection port (RS-232 for example) is used in this example.

Application

Control

Service
Service for Functionality of Peripheral

Device and supports Physical
Connection to the Peripheral Device

POS Receipt
Printer
30 Unified POS, V1.16.1

Note, that as far as each application is concerned, it is connected to the peripheral device and only one physical
connection to the device is required... via the RS-232 serial connection in this example. This served the needs of
device sharing where cooperating applications were utilized.

1.3.6.19 Multi-Function (Hydra) Peripheral Devices

The model needed to be expanded to cover the peripherals that include multiple device class
functionality in a single unit. An example of such a device is a POS printer that may have additional
functionality of being able to control a Customer Line Display, Cash Drawer, MICR, or other
devices. These peripherals are referred to as “Hydra” peripherals alluding to the Greek mythology of
a multi-headed animal that was connected to a single body interface.

In the interaction of POS peripherals, the interface to the Application needs to be agnostic in its
knowledge in either of the following cases…one where multiple physical peripheral devices are used
or the other where one physical peripheral device incorporates the functionality of multiple physical
peripheral devices.

Where multiple physical peripheral devices are present, multiple “pipes” (RS-232 serial ports for instance) are
required…one for each of the physical peripheral devices.

In a Hydra peripheral only one “pipe” is required and it is used to communicate with all the various Device
peripheral functionality of the connected peripheral device.

For example, consider the cases where in one instance a separate POSPrinter device and a separate MICR device
is present; in another instance, a Hydra POSPrinter that has an incorporated MICR reader. The “look” to the
Application(s) has to be agnostic…it should not care nor should it have to know which type of hardware
device(s) are physically present. Ideally it should be able to use the same Application code to interact with either
of the two implementations. For example:

Application One

Control One

Service
Service for Functionality of Peripheral Device and

supports Physical Connection to the Peripheral
Device

Application Two

Control Two

POS Receipt
Printer
Unified POS, v1.16.1 31

Note: Application interfacing with two distinct peripherals.

Note that in this case the application running the MICR and the POSPrinter consumes two separate ports but as
far as the Application is concerned it interfaces to the MICR and POSPrinter functionality without regard to the
fact that the two ports are used.

Note: Application interfacing with a Hydra peripheral.

Note that in this case the application running the MICR and POSPrinter consumes only one port but as far as the
application is concerned it interfaces to the MICR and POSPrinter functionality without regard to the fact that
only one port is used. It is up to the Hydra Service to control the port and route the functionality to and from the
proper interface.

Application That Needs Functionality for
MICR POSPrinter

MICR
Control

POSPrinter
Control

MICR Service
Separate Physical

Device
RS-232 Port 1

POSPrinter Service
Separate Physical

Device
RS-232 Port 2

Application That Needs Functionality for
MICR POSPrinter

MICR
Control

POSPrinter
Control

Service For Hydra Device
Has Functionality for both MICR and POSPrinter In One

Physical Package

RS-232 Port 1

MICR Device Function POSPrinter Device Function
32 Unified POS, V1.16.1

Considerations

While the desire is to have both interconnection techniques work the same with regards to the Application
interface, problems do arise. In the Hydra case, an error state in one of the specific device functions may block
the usage of the other function. This would not happen in the non-Hydra case since each peripheral is truly
separate.

In our Printer and MICR Hydra case, the printer running out of paper might present a condition that would
prevent reading a MICR code for instance. An error condition of “Out of Paper” would be reported through the
POSPrinter interface but would not have any meaning to a route through the MICR interface. The Application
requesting a MICR read in the Hydra case would be presented with an error or status condition that it would not
get in the discrete MICR peripheral case. This presents a potential “hang up” condition or unresolved error
situation.

Obviously an error condition needs to be reported to the application that is using the MICR functionality to alert
it of a problem and allow for resolution. Rather than reporting a meaningless error of “Out of Paper” to the
MICR application, a general E_FAILURE error would be sent back to the MICR application to alert it of the
problem. The MICR application would then be responsible to go through an error recovery procedure to rectify
the situation. It would go through an error recover operation that would present a console message informing the
operator of an impending problem with usage of the MICR device.

Operator knowledge of the specific device would then be used to correct the problem. In this case knowing that
the MICR is part of the printer would focus the attention of the Operator to the “Paper Out” status indicator. The
resolution would be to replace the paper which would then clear the error condition for the MICR as well as the
Printer.

Notice that every attempt is made to make the interaction with the peripheral device or Hydra peripheral device
“look the same” to the application. Careful Service design needs to be used to make sure this is accomplished.
Device vendors should define any limitations and unusual error conditions that may exist when accessing such
hydra devices in their user documentation. Application developers should be aware of the possibility of discrete
and Hydra POS devices when crafting their software and plan their error resolution accordingly.
Unified POS, v1.16.1 33

34 Unified POS, V1.16.1

2 Common Properties, Methods, and Events

2.1 General

The following Properties, Methods, and Events are used for all device categories unless noted otherwise in the
Usage Notes table entry. For an overview of the general rules and guidelines, see “Device Behavior Models” on
page 10.

2.2 Summary Updated in Release 1.10

The following property list is a summary of the JavaPOS Common Properties. This list is used throughout the
main UnifiedPOS chapters. Further details may be found in Annex B.

The OPOS implementation adds the following Common Properties:

BinaryConversion, OpenResult, ResultCode, and ResultCodeExtended.

Also, the last six properties are replaced by:

ControlObjectDescription, ControlObjectVersion, ServiceObjectDescription, ServiceObjectVersion,
DeviceDescription, and DeviceName.

Further details may be found in Annex A.

Properties (UML attributes)

Name Type Mutability Version
Usage
Notes

AutoDisable: boolean { read-write } 1.2 1

CapCompareFirmwareVersion: boolean { read-only } 1.9

CapPowerReporting: int32 { read-only } 1.3

CapStatisticsReporting: boolean { read-only } 1.8

CapUpdateFirmware: boolean { read-only } 1.9

CapUpdateStatistics: boolean { read-only } 1.8

CheckHealthText: string { read-only } 1.0

Claimed: boolean { read-only } 1.0

DataCount: int32 { read-only } 1.2 1

DataEventEnabled: boolean { read-write } 1.0 1

DeviceEnabled: boolean { read-write } 1.0

FreezeEvents: boolean { read-write } 1.0

OutputID: int32 { read-only } 1.0 2

PowerNotify: int32 { read-write } 1.3

PowerState: int32 { read-only } 1.3

State: int32 { read-only } 1.0

DeviceControlDescription: string { read-only } 1.0
Unified POS, v1.16.1 35

Usage Notes:

1. Used only with Devices that have Event Driven Input.

2. Used only with Asynchronous Output Devices.

DeviceControlVersion: int32 { read-only } 1.0

DeviceServiceDescription: string { read-only } 1.0

DeviceServiceVersion: int32 { read-only } 1.0

PhysicalDeviceDescription: string { read-only } 1.0

PhysicalDeviceName: string { read-only } 1.0

Methods (UML operations)

Name Version

open (logicalDeviceName: string):
 void { raises-exception }

1.0

close ():
void { raises-exception }

1.0

claima (timeout: int32):
void { raises-exception }

1.0

releasea ():
void { raises-exception }

1.0

checkHealth (level: int32):
void { raises-exception }

1.0

clearInput ():
void { raises-exception }

1.0

clearInputProperties ():
void { raises-exception }

1.10

clearOutput ():
void { raises-exception }

1.0

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception }

1.0

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception }

1.8
36 Unified POS, V1.16.1

Usage Notes:

1. Used only with Devices that have Event Driven Input.

2. Used only with Asynchronous Output Devices.

2.3 General Information

This section lists properties, methods, and events that are common to many of the peripheral devices covered in
this standard.

The summary section of each device category marks those common properties, methods, and events that do not
apply to that category as “Not Supported.” Items identified in this fashion are not present in the Control’s class.

A good understanding of the features of the UnifiedPOS architecture model is required. Please see “Device
Behavior Models” on page 10 for additional information.

a. Note: In the OPOS environment starting with Release 1.5, the Claim and Release
methods are also defined as ClaimDevice and ReleaseDevice respectively due to
Release being a reserved method used by Microsoft’s Component Object Model
(COM).

Events (UML interfaces)

Name Type Mutability Version
Usage
Notes

upos::events::DataEvent
Status:


int32 { read-only }

1.0 1

upos::events::DirectIOEvent 
EventNumber:
Data:
Obj:


int32
int32
object

{ read-only }
{ read-write }
{ read-write }

1.0

upos::events::ErrorEvent 
ErrorCode:
ErrorCodeExtended:
ErrorLocus:
ErrorResponse:


int32
int32
int32
int32

{ read-only }
{ read-only }
{ read-only }
{ read-write }

1.0

upos::events::OutputCompleteEvent 
OutputID:


int32 { read-only }

1.0 2

upos::events::StatusUpdateEvent
Status:


int32 { read-only }

1.0
Unified POS, v1.16.1 37

2.3.1 Common PME Class Diagram Updated in Release 1.10

The following diagram shows the relationships between the Common classes.

NOTE: AutoDisable, DataCount, and DataEventEnabled are used only with Devices that have Event Driven Input.
OutputID is used only with Asynchronous Output Devices.

UposEvent
(from events)

<<event>>

BaseControl

<<capability>> CapCompareFirmwareVersion : boolean
<<capability>> CapPowerReporting : int32
<<capability>> CapStatisticsReporting : boolean
<<capability>> CapUpdateFirmware : boolean
<<capability>> CapUpdateStatistics : boolean
<<prop>> AutoDisable : boolean
<<prop>> CheckHealthText : string
<<prop>> Claimed : boolean
<<prop>> DataCount : int32
<<prop>> DataEventEnabled : boolean
<<prop>> DeviceEnabled : boolean
<<prop>> FreezeEvents : boolean
<<prop>> OutputID : int32
<<prop>> PowerNotify : int32
<<prop>> PowerState : int32
<<prop>> State : int32
<<prop>> DeviceControlDescription : string
<<prop>> DeviceControlVersion : int32
<<prop>> DeviceServiceDescription : string
<<prop>> DeviceServiceVersion : int32
<<prop>> PhysicalDeviceDescription : string
<<prop>> PhysicalDeviceName : string

open(logicalDeviceName : string) : void
close() : void
claim(timeout : int32) : void
compareFirmwareVersion(firmwareFileName : string, out result : int32) : void
release() : void
resetStatistics(statisticsBuffer : string) : void
checkHealth(level : int32) : void
clearInput() : void
clearInputProperties() : void
clearOutput() : void
directIO(command : int32, inout data : int32, inout obj : Object) : void
retrieveStatistics(inout statisticsBuffer : string) : void
updateFirmware(firmwareFileName : string) : void
updateStatistics(statisticsBuffer : string) : void

(from upos)

<<Interface>>

fires

<DevCat> == all UnifiedPOS device
category names e.g. CashDrawer,
POSPrinter, MICR, ...

BumpBarControl
(from upos)

<<Interface>>
MSRControl

(from upos)

<<Interface>>
POSPrinterControl

(from upos)

<<Interface>>

UposException
(from upos)

<<exception>>

<<sends>>
<<sends>>

<<sends>> <<sends>>

UposConst
(from upos)

<<utility>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<DevCat>Control
(from upos)

<<interface>>

<<sends>>

<<uses>>
38 Unified POS, V1.16.1

2.4 Properties (UML attributes)

2.4.1 AutoDisable Property

Syntax AutoDisable: boolean { read-write }

Remarks If true, the UnifiedPOS Service will set DeviceEnabled to false after it receives and enqueues data as a
DataEvent. Before any additional input can be received, the application must set DeviceEnabled to true.

If false, the UnifiedPOS Service does not automatically disable the device when data is received.

This property provides the application with an additional option for controlling the receipt of input data.
If an application wants to receive and process only one input, or only one input at a time, then this
property should be set to true. This property applies only to event-driven input devices.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also “Device Input Model” on page 18.

2.4.2 CapCompareFirmwareVersion Property Revised in Release 1.14

Syntax CapCompareFirmwareVersion: boolean { read-only, access after open }

Remarks If true, then the Service/device supports comparing the version of the firmware in the physical device
against that of a firmware file; initialized by open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16

See Also compareFirmwareVersion Method.

2.4.3 CapPowerReporting Property Updated in Release 1.11

Syntax CapPowerReporting: int32 { read-only }

Remarks Identifies the reporting capabilities of the Device. It has one of the following values:

Value Meaning
PR_NONE The UnifiedPOS Service cannot determine the state of the device. Therefore,

no power reporting is possible.
PR_STANDARD The UnifiedPOS Service can determine and report two of the power states -

OFF_OFFLINE (that is, off or offline) and ONLINE.
PR_ADVANCED The UnifiedPOS Service can determine and report all three power states -

OFF, OFFLINE, and ONLINE.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16

See Also “Device Power Reporting Model” on page 22, PowerState Property, PowerNotify Property.
Unified POS, v1.16.1 39

2.4.4 CapStatisticsReporting Property Added in Release 1.8

Syntax CapStatisticsReporting: boolean { read-only }

Remarks If true, the device accumulates and can provide various statistics regarding usage; otherwise no usage
statistics are accumulated. The information accumulated and reported is device specific, and is retrieved
using the retrieveStatistics method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16

See Also retrieveStatistics Method.

2.4.5 CapUpdateFirmware Property Updated in Release 1.14

Syntax CapUpdateFirmware: boolean { read-only, access after open }

Remarks If true, then the device’s firmware can be updated via the updateFirmware method; initialized by open
method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also updateFirmware Method.

2.4.6 CapUpdateStatistics Property Added in Release 1.8

Syntax CapUpdateStatistics: boolean { read-only }

Remarks If true, the device statistics, or some of the statistics, can be reset to zero using the resetStatistics method,
or updated using the updateStatistics method.

If CapStatisticsReporting is false, then CapUpdateStatistics is also false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CapStatisticsReporting Property, resetStatistics Method, updateStatistics Method.

2.4.7 CheckHealthText Property

Syntax CheckHealthText: string { read-only }

Remarks Holds the results of the most recent call to the checkHealth method. The following examples illustrate
some possible diagnoses:

• “Internal HCheck: Successful”
• “External HCheck: Not Responding”
• “Interactive HCheck: Complete”
This property is empty (“”) before the first call to the checkHealth method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also checkHealth Method.
40 Unified POS, V1.16.1

2.4.8 Claimed Property

Syntax Claimed: boolean { read-only }

Remarks If true, the device is claimed for exclusive access. If false, the device is released for sharing with other
applications.

Many devices must be claimed before the Control will allow access to many of its methods and
properties, and before it will deliver events to the application.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also “Device Initialization and Finalization” on page 12, “Device Sharing Model” on page 14, claim Method,
release Method.

2.4.9 DataCount Property

Syntax DataCount: int32 { read-only }

Remarks Holds the number of enqueued DataEvents.

The application may read this property to determine whether additional input is enqueued from a device,
but has not yet been delivered because of other application processing, freezing of events, or other causes.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also “Device Input Model” on page 18 DataEvent.

2.4.10 DataEventEnabled Property

Syntax DataEventEnabled: boolean { read-write }

Remarks If true, a DataEvent will be delivered as soon as input data is enqueued. If changed to true and some
input data is already queued, then a DataEvent is delivered immediately. (Note that other conditions may
delay “immediate” delivery: if FreezeEvents is true or another event is already being processed at the
application, the DataEvent will remain queued at the UnifiedPOS Service until the condition is
corrected.)

If false, input data is enqueued for later delivery to the application. Also, if an input error occurs, the
ErrorEvent is not delivered while this property is false.

This property is initialized to false by the open method.
Unified POS, v1.16.1 41

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also “Events (UML Interfaces)” on page 11 DataEvent.

2.4.11 DeviceControlDescription Property

Syntax DeviceControlDescription: string { read-only }

Remarks Holds an identifier for the UnifiedPOS Control and the company that produced it.

A sample returned string is:

“POS Printer UnifiedPOS Compatible Control, (C) 1998 Epson”

This property is always readable.

Errors None.

See Also DeviceControlVersion Property.

2.4.12 Device Control Version Property

Syntax DeviceControlVersion: int32 { read-only }

Remarks Holds the UnifiedPOS Control version number.

Three version levels are specified, as follows:

Version Level Description
Major The “millions” place.

A change to the UnifiedPOS major version level for a device class reflects
significant interface enhancements, and may remove support for obsolete
interfaces from previous major version levels.

Minor The “thousands” place.
A change to the UnifiedPOS minor version level for a device class reflects
minor interface enhancements, and must provide a superset of previous
interfaces at this major version level.

Build The “units” place.
Internal level provided by the UnifiedPOS Control developer. Updated when
corrections are made to the UnifiedPOS Control implementation.

A sample version number is: 1002038

This value may be displayed as version “1.2.38”, and interpreted as major version 1, minor version 2,
build 38 of the UnifiedPOS Control. This property is always readable.

Errors None.

See Also “Version Handling” on page 29 DeviceControlDescription Property.
42 Unified POS, V1.16.1

2.4.13 DeviceEnabled Property

Syntax DeviceEnabled: boolean { read-write }

Remarks If true, the device is in an operational state. If changed to true, then the device is brought to an operational
state.

If false, the device has been disabled. If changed to false, then the device is physically disabled when
possible, any subsequent input will be discarded, and output operations are disallowed.

Changing this property usually does not physically affect output devices. For consistency, however, the
application must set this property to true before using output devices.

The Device’s power state may be reported while DeviceEnabled is true; See “Device Power Reporting
Model” on page 22 for details.

This property is initialized to false by the open method. Note that an exclusive use device must be
claimed before the device may be enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also “Device Initialization and Finalization on page 12.

2.4.14 DeviceServiceDescription Property

Syntax DeviceServiceDescription: string { read-only }

Remarks Holds an identifier for the UnifiedPOS Service and the company that produced it.

A sample returned string is:

“TM-U950 Printer UnifiedPOS Compatible Service Driver, (C) 1998 Epson”

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

2.4.15 DeviceServiceVersion Property

Syntax DeviceServiceVersion: int32 { read-only }

Remarks Holds the UnifiedPOS Service version number.

Three version levels are specified, as follows:
Unified POS, v1.16.1 43

Version Level Description
Major The “millions” place.

A change to the UnifiedPOS major version level for a device class reflects
significant interface enhancements, and may remove support for obsolete
interfaces from previous major version levels.

Minor The “thousands” place.
A change to the UnifiedPOS minor version level for a device class reflects
minor interface enhancements, and must provide a superset of previous
interfaces at this major version level.

Build The “units” place.
Internal level provided by the UnifiedPOS Service developer. Updated when
corrections are made to the UnifiedPOS Service implementation.

A sample version number is:

1002038

This value may be displayed as version “1.2.38”, and interpreted as major version 1, minor version 2,
build 38 of the UnifiedPOS Service.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, 
see “Errors” on page 16.

See Also “Version Handling” on page 29 DeviceServiceDescription Property.

2.4.16 FreezeEvents Property Updated in Release 1.12

Syntax FreezeEvents: boolean { read-write }

Remarks If true, the UnifiedPOS Control will not deliver events. Events will be enqueued until this property is set
to false.

If false, the application allows events to be delivered. If some events have been held while events were
frozen and all other conditions are correct for delivering the events, then changing this property to false
will allow these events to be delivered. An application may choose to freeze events for a specific
sequence of code where interruption by an event is not desirable.

Unless specified otherwise, properties that convey device state information (e.g., JrnEmpty and
DrawerOpened) are kept current while the device is enabled, regardless of the setting of this property.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

2.4.17 OutputID Property

Syntax OutputID: int32 { read-only }

Remarks Holds the identifier of the most recently started asynchronous output.

When a method successfully initiates an asynchronous output, the Device assigns an identifier to the
request. When the output completes, an OutputCompleteEvent will be enqueued with this output ID as
a parameter.

The output ID numbers are assigned by the UnifiedPOS Service and are guaranteed to be unique among
the set of outstanding asynchronous outputs. No other facts about the ID should be assumed.
44 Unified POS, V1.16.1

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also “Device Output Models on page 20 OutputCompleteEvent.

2.4.18 PowerNotify Property

Syntax PowerNotify: int32 { read-write }

Remarks Contains the type of power notification selection made by the Application. It has one of the following
values:

Value Meaning
PN_DISABLED The UnifiedPOS Service will not provide any power notifications to the

application. No power notification StatusUpdateEvents will be fired, and
PowerState may not be set.

PN_ENABLED The UnifiedPOS Service will fire power notification StatusUpdateEvents
and update PowerState, beginning when DeviceEnabled is set to true. The
level of functionality depends upon CapPowerReporting.

PowerNotify may only be set while the device is disabled; that is, while DeviceEnabled is false.

This property is initialized to PN_DISABLED by the open method. This value provides compatibility
with earlier releases.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following occurred:

• The device is already enabled.

• PowerNotify = PN_ENABLED but CapPowerReporting = PR_NONE.

See Also “Device Power Reporting Model Updated in Release 1.8” on page 21, CapPowerReporting Property,
PowerState Property.
Unified POS, v1.16.1 45

2.4.19 PowerState Property Updated in Release 1.11

Syntax PowerState: int32 { read-only }

Remarks Identifies the current power condition of the device, if it can be determined.
It has one of the following values:

Value Meaning
PS_UNKNOWN Cannot determine the device’s power state for one of the following reasons:


CapPowerReporting = PR_NONE; the device does not support power
reporting.

PowerNotify = PN_DISABLED; power notifications are disabled.

DeviceEnabled = false; Power state monitoring does not occur until the
device is enabled.

PS_ONLINE The device is powered on and ready for use. Can be returned if
CapPowerReporting = PR_STANDARD or PR_ADVANCED.

PS_OFF The device is powered off or detached from the POS terminal. Can only be
returned if CapPowerReporting = PR_ADVANCED.

PS_OFFLINE The device is powered on but is either not ready or not able to respond to
requests. Can only be returned if CapPowerReporting = PR_ADVANCED.

PS_OFF_OFFLINE The device is either off or off-line. Can only be returned if
CapPowerReporting = PR_STANDARD.

This property is initialized to PS_UNKNOWN by the open method. When PowerNotify is set to enabled
and DeviceEnabled is true, then this property is updated as the UnifiedPOS Service detects power
condition changes.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also “Device Power Reporting Model Updated in Release 1.8” on page 21, CapPowerReporting Property,
PowerNotify Property.

2.4.20 PhysicalDeviceDescription Property

Syntax PhysicalDeviceDescription: string { read-only }

Remarks Holds an identifier for the physical device.

A sample returned string is:

“NCR 7192-0184 Printer, Japanese Version”

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also PhysicalDeviceName Property.
46 Unified POS, V1.16.1

2.4.21 PhysicalDeviceName Property

Syntax PhysicalDeviceName: string { read-only }

Remarks Holds a short name identifying the physical device. This is a short version of
PhysicalDeviceDescription and should be limited to 30 characters.

This property will typically be used to identify the device in an application message box, where the full
description is too verbose. A sample returned string is:

“IBM Model II Printer, Japanese”

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also PhysicalDeviceDescription Property.

2.4.22 State Property

Syntax State: int32 { read-only }

Remarks Holds the current state of the Device. It has one of the following values:

Value Meaning
S_CLOSED The Device is closed.

S_IDLE The Device is in a good state and is not busy.

S_BUSY The Device is in a good state and is busy performing output.

S_ERROR An error has been reported, and the application must recover the Device to a
good state before normal I/O can resume.

This property is always readable.

Errors None.

See Also “Device Information Reporting Model Added in Release 1.8” on page 25.
Unified POS, v1.16.1 47

2.5 Methods (UML operations)

2.5.1 checkHealth Method

Syntax checkHealth (level: int32): void { raises-exception }

The level parameter indicates the type of health check to be performed on the device. The following
values may be specified:

Value Meaning
CH_INTERNAL Perform a health check that does not physically change the device. The device

is tested by internal tests to the extent possible.
CH_EXTERNAL Perform a more thorough test that may change the device. For example, a

pattern may be printed on the printer.
CH_INTERACTIVE Perform an interactive test of the device. The supporting UnifiedPOS Service

will typically display a modal dialog box to present test options and results.

Remarks Tests the state of a device.

A text description of the results of this method is placed in the CheckHealthText property. The health
of many devices can only be determined by a visual inspection of these test results.

This method is always synchronous.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The specified health check level is not supported by the UnifiedPOS Service.

See Also CheckHealthText Property.

2.5.2 claim Method Updated in Release 1.11

Syntax claim (timeout: int32): void { raises-exception }

The timeout parameter gives the maximum number of milliseconds to wait for exclusive access to be
satisfied. If zero, then immediately either returns (if successful) or throws an appropriate exception. If
FOREVER (-1), the method waits as long as needed until exclusive access is satisfied.

Remarks Requests exclusive access to the device. Many devices require an application to claim them before they
can be used.

When successful, the Claimed property is changed to true.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:
48 Unified POS, V1.16.1

Value Meaning
E_ILLEGAL This device cannot be claimed for exclusive access, or an invalid timeout

parameter was specified.
E_TIMEOUT Another application has exclusive access to the device, and did not relinquish

control before timeout milliseconds expired.

See Also “Device Initialization and Finalization” on page 12, “Device Sharing Model” on page 14, release
Method.

2.5.3 clearInput Method

Syntax clearInput (): void { raises-exception }

Remarks Clears all device input that has been buffered.

Any data events or input error events that are enqueued – usually waiting for DataEventEnabled to be
set to true and FreezeEvents to be set to false – are also cleared.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also “Device Input Model” on page 18.

2.5.4 clearInputProperties Method Added in Release 1.10

Syntax clearInputProperties (): void { raises-exception }

Remarks Sets all data properties that were populated as a result of firing a DataEvent or ErrorEvent back to their
default values. This does not reset the DataCount or State properties.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

See Also “Device Input Model” on page 18.

2.5.5 clearOutput Method Updated in Release 1.7

Syntax clearOutput (): void { raises-exception }

Remarks Clears all buffered output data, including all asynchronous output. Also, when possible, halts outputs that
are in progress. Any output error events that are enqueued – usually waiting for FreezeEvents to be set
to false – are also cleared.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

See Also “Device Output Model on page 20.

2.5.6 close Method

Syntax close ():void { raises-exception }

Remarks Releases the device and its resources.

If the DeviceEnabled property is true, then the device is disabled.

If the Claimed property is true, then exclusive access to the device is released.
Unified POS, v1.16.1 49

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

See Also “Device Initialization and Finalization on page 12 open Method.

2.5.7 compareFirmwareVersion Method Added in Release 1.9

Syntax compareFirmwareVersion (firmwareFileName: string, out result: int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
firmwareFileName Specifies either the name of the file containing the firmware or a file
 containing a set of firmware files whose versions are to be compared
 against those of the device.

result Location in which to return the result of the comparison.

Remarks This method determines whether the version of the firmware contained in the specified file is newer than,
older than, or the same as the version of the firmware in the physical device.

The Service should check that the specified firmware file exists and that its contents are valid for this
device before attempting to perform the comparison operation.

The result of the comparison is returned in the result parameter and will be one of the following values:

Value Meaning 
CFV_FIRMWARE_OLDER Indicates that the version of one or more of the firmware files is
 older than the firmware in the device and that none of the 
 firmware files is newer than the firmware in the device.
CFV_FIRMWARE_SAME Indicates that the versions of all of the firmware files are the same as

the firmware in the device.
CFV_FIRMWARE_NEWER Indicates that the version of one or more of the firmware files is

newer than the firmware in the device and that none of the firmware
files is older than the firmware in the device.

CFV_FIRMWARE_DIFFERENT
Indicates that the version of one or more of the firmware files is
different than the firmware in the device, but either:
• The chronological relationship cannot be determined, or
• The relationship is inconsistent -- one or more are older while one

or more are newer.

CFV_FIRMWARE_UNKNOWN
Indicates that a relationship between the two firmware versions
could not be determined. A possible reason for this result could be
an attempt to compare Japanese and US versions of firmware.

If the firmwareFileName parameter specifies a file list, all of the component firmware files should reside
in the same directory as the firmware list file. This will allow for distribution of the updated firmware
without requiring a modification to the firmware list file.

Errors A UposException may be thrown when this method is invoked. For further information, 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL CapCompareFirmwareVersion is false.
E_NOEXIST The file specified by firmwareFileName does not exist or, if

firmwareFileName specifies a file list, one or more of the component
firmware files are missing.
50 Unified POS, V1.16.1

E_EXTENDED ErrorCodeExtended = EFIRMWARE_BAD_FILE:
The specified firmware file or files exist, but one or more are either not in
the correct format or are corrupt.

See Also CapCompareFirmwareVersion Property.

2.5.8 directIO Method

Syntax directIO (command: int32, inout data: int32, inout obj: object):
 void { raises-exception }

Parameter Description
command Command number whose specific values are assigned by the UnifiedPOS

Service.
data An array of one mutable integer whose specific values or usage vary by

command and UnifiedPOS Service.
obj Additional data whose usage varies by command and UnifiedPOS Service.

Remarks Communicates directly with the UnifiedPOS Service.

This method provides a means for a UnifiedPOS Service to provide functionality to the application that
is not otherwise supported by the standard UnifiedPOS Control for its device category. Depending upon
the UnifiedPOS Service’s definition of the command, this method may be asynchronous or synchronous.

Use of this method will make an application non-portable. The application may, however, maintain
portability by performing directIO calls within conditional code. This code may be based upon the value
of the DeviceServiceDescription, PhysicalDeviceDescription, or PhysicalDeviceName property.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

See Also DirectIOEvent.

2.5.9 open Method Updated in Release 1.7

Syntax open (logicalDeviceName: string):
void { raises-exception }

The logicalDeviceName parameter specifies the device name to open.

Remarks Opens a device for subsequent I/O.

The device name specifies which of one or more devices supported by this UnifiedPOS Control should
be used. The logicalDeviceName must exist in the operating system’s reference locater system (such as
the JavaPOS Configurator/Loader (JCL) or the Window’s Registry) for this device category so that its
relationship to the physical device can be determined. Entries in the reference locator’s system are
created by a setup or configuration utility.

The following sequence diagram shows the details of what needs to happen during the open method call
processing to allow the creation of the Service and its binding to the Control.
Unified POS, v1.16.1 51

When this method is successful, it initializes the properties Claimed, DeviceEnabled, DataEventEnabled, and
FreezeEvents, as well as descriptions and version numbers of the UnifiedPOS software layers. Additional
category-specific properties may also be initialized.

Errors A UposException may be thrown when this method is invoked. For further information, 
 see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The UnifiedPOS Control is already open.
E_NOEXIST The specified logicalDeviceName was not found.
E_NOSERVICE Could not establish a connection to the corresponding UnifiedPOS Service.

See Also “Device Initialization and Finalization on page 12 
 “Device Output Model” on page 20 close Method.

NOTE: shows the details of what should happen at open() time. This diagram tries to be generic w/o reference to particular
platform. Note also, that some platform binding might have "easier" or "harder" API to accomplish the same task.

:<DevCat> :Config
(registry of service properties)

:Loader :<DevCat>
Service

:ClientApp

NOTE1: we are assuming that the :Config object has or can obtain at runtime the configuration information for the
services that will be used. In particular the <DevCat> device is configured with logical name named "logicalName"
NOTE2: <DevCat> is a moniker for a generic control and DevCat == POSPrinter, Keylock, CashDrawer, ... all the
UnifiedPOS device categories

1: open(logicalName) 2: find properties of service with logicalName

3: pass loader properties and ask to create service

4: loader parses properties and loads the <DevCat>Service

5: create and/or bind to service

6: return service instance to control

The details of these steps might vary per platform and the
Config and Loader could be done by the same entity.
However, logically the actions above are happening on the
system.
52 Unified POS, V1.16.1

2.5.10 release Method

Syntax release ():
void { raises-exception }

Remarks Releases exclusive access to the device.

If the DeviceEnabled property is true, and the device is an exclusive-use device, then the device is also
disabled (this method does not change the device enabled state of sharable devices).

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 

E_ILLEGAL The application does not have exclusive access to the device.

See Also “Device Sharing Model” on page 14, claim Method.

2.5.11 resetStatistics Method Updated in Release 1.10

Syntax resetStatistics (statisticsBuffer: string):void { raises-exception }

Parameter Description
statisticsBuffer The data buffer defining the statistics that are to be reset.

This is a comma-separated list of name(s), where an empty string (“”) means ALL resettable statistics
are to be reset, “U_” means all UnifiedPOS defined resettable statistics are to be reset, “M_” means all
manufacturer defined resettable statistics are to be reset, and “actual_name1, actual_name2” (from the
XML file definitions) means that the specifically defined resettable statistic(s) are to be reset.

Remarks Resets the defined resettable statistics in a device to zero. All the requested statistics must be successfully
reset in order for this method to complete successfully, otherwise an ErrorCode of E_EXTENDED is
returned.

Both CapStatisticsReporting and CapUpdateStatistics must be true in order to successfully use this
method.

This method is always executed synchronously.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL CapStatisticsReporting or CapUpdateStatistics is false, or the named

statistic is not defined/resettable.
E_EXTENDED ErrorCodeExtended = ESTATS_ERROR:

At least one of the specified statistics could not be reset.
ErrorCodeExtended = ESTATS_DEPENDENCY:
At least one other statistic is required to be reset in addition to a requested
statistic.

See Also CapStatisticsReporting Property, CapUpdateStatistics Property.
Unified POS, v1.16.1 53

2.5.12 retrieveStatistics Method Added in Release 1.8

Syntax retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception }

Parameter Description
statisticsBuffer The data buffer defining the statistics to be retrieved and in which the
 retrieved statistics are placed.

This is a comma-separated list of name(s), where an empty string (“”) means ALL statistics are to be
retrieved, “U_” means all UnifiedPOS defined statistics are to be retrieved, “M_” means all manufacturer
defined statistics are to be retrieved, and “actual_name1, actual_name2” (from the XML file definitions)
means that the specifically defined statistic(s) are to be retrieved.

Remarks Retrieves the requested statistics from a device.
CapStatisticsReporting must be true in order to successfully use this method.

This method is always executed synchronously.

All calls to retrieveStatistics will return the following XML as a minimum:
<?xml version=’1.0’ ?>
<UPOSStat version=”1.13.0” xmlns:xsi=”http://www.w3.org/2001/XMLSchema-
instance” xmlns=”http://www.omg.org/UnifiedPOS/namespace/”
xsi:schemaLocation=”http://www.omg.org/UnifiedPOS/namespace/UPOSStat.xsd”>

 <Event>

 <Parameter>

 <Name>RequestedStatistic</Name>

 <Value>1234</Value>

 </Parameter>

 </Event>

 <Equipment>

<UnifiedPOSVersion>1.13</UnifiedPOSVersion>
<DeviceCategory UPOS=”CashDrawer”/>
<ManufacturerName>Cashdrawers R Us</ManufacturerName>
<ModelName>CD-123</ModelName>
<SerialNumber>12345</SerialNumber>
<FirmwareRevision>1.0 Rev. B</FirmwareRevision>
<Interface>RS232</Interface>
<InstallationDate>2000-03-01</InstallationDate>

 </Equipment>
</UPOSStat>

If the application requests a statistic name that the device does not support, the <Parameter> entry will
be returned with an empty <Value>. e.g.,

<Parameter>

 <Name>RequestedStatistic</Name>

 <Value></Value>

</Parameter>

All statistics that the device collects that are manufacturer specific (not defined in the schema) will be
returned in a <ManufacturerSpecific> tag instead of a <Parameter> tag. e.g.,

<ManufacturerSpecific>
54 Unified POS, V1.16.1

 <Name>TheAnswer</Name>

 <Value>42</Value>

</ManufacturerSpecific>

When an application requests all statistics from the device, the device will return a <Parameter> entry
for every defined statistic for the device category as defined by the XML schema version specified by
the version attribute in the <UPOSStat> tag. If the device does not record any of the statistics, the
<Value> tag will be empty.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL CapStatisticsReporting is false or the named statistic is not defined.

See Also CapStatisticsReporting Property.

2.5.13 updateFirmware Method Added in Release 1.9

Syntax updateFirmware (firmwareFileName: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
firmwareFileName Specifies either the name of the file containing the firmware or a file
 containing a set of firmware files that are to be downloaded into the 
 device.

Remarks This method updates the firmware of a device with the version of the firmware contained or defined in
the file specified by the firmwareFileName parameter regardless of whether that firmware’s version is
newer than, older than, or the same as the version of the firmware already in the device. If the
firmwareFileName parameter specifies a file list, all of the component firmware files should reside in the
same directory as the firmware list file. This will allow for distribution of the updated firmware without
requiring a modification to the firmware list file.
When this method is invoked, the Service should check that the specified firmware file exists and that its
contents are valid for this device. If so, this method should return immediately and the remainder of the
update firmware process should continue asynchronously.

The Service should notify the application of the status of the update firmware process by firing
StatusUpdateEvents with values of SUE_UF_PROGRESS + an integer between 1 and 100 indicating
the completion percentage of the update firmware process. For application convenience, the
StatusUpdateEvent value SUE_UF_COMPLETE is defined to be the same value as
SUE_UF_PROGRESS + 100.

For consistency, the update firmware process is complete after the new firmware has been downloaded
into the physical device, any necessary physical device reset has completed, and the Service and the
physical device have been returned to the state they were in before the update firmware process began.

The most up-to-date files defining the XML tag names and example schemas for the
statistics for all device categories can be downloaded from the ARTS web site at http://
retail.omg.org.
Unified POS, v1.16.1 55

http://retail.omg.org
http://retail.omg.org
http://retail.omg.org
http://retail.omg.org

For consistency, a Service must always fire at least one StatusUpdateEvent with an incomplete progress
completion percentage (i.e., a percentage between 1 and 99), even if the device cannot physically report
the progress of the update firmware process. If the update firmware process completes successfully, the
Service must fire a StatusUpdateEvent with a progress of 100 or use the special constant
SUE_UF_COMPLETE, which has the same value. These Service requirements allow applications using
this method to be designed to always expect some level of progress notification.

If an error is detected during the asynchronous portion of a update firmware process, one of the following
StatusUpdateEvents will be fired:

Value Meaning
SUE_UF_FAILED_DEV_OK The update firmware process failed but the device is still

operational.
SUE_UF_FAILED_DEV_UNRECOVERABLE

The update firmware process failed and the device is neither usable
nor recoverable through software. The device requires service to be
returned to an operational state.

SUE_UF_FAILED_DEV_NEEDS_FIRMWARE
The update firmware process failed and the device will not be
operational until another attempt to update the firmware is
successful.

SUE_UF_FAILED_DEV_UNKNOWN
The update firmware process failed and the device is in an
indeterminate state.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL CapUpdateFirmware is false.
E_NOEXIST The file specified by firmwareFileName does not exist or, if

firmwareFileName specifies a file list, one or more of the component
firmware files are missing.

E_EXTENDED ErrorCodeExtended = EFIRMWARE_BAD_FILE:
The specified firmware file or files exist, but one or more are either not in
the correct format or are corrupt.

See Also CapUpdateFirmware Property.

2.5.14 updateStatistics Method Updated in Release 1.10

Syntax updateStatistics (statisticsBuffer: string):
void { raises-exception }

Parameter Description
statisticsBuffer The data buffer defining the statistics with values that are to be updated.

This is a comma-separated list of name-value pair(s), where an empty string name (““”=value1”) means
ALL resettable statistics are to be set to the value “value1,” “U_=value2” means all UnifiedPOS defined
resettable statistics are to be set to the value “value2,” “M_=value3” means all manufacturer defined
resettable statistics are to be set to the value “value3,” and “actual_name1=value4,
actual_name2=value5” (from the XML file definitions) means that the specifically defined resettable
statistic(s) are to be set to the specified value(s).

Remarks Updates the defined resettable statistics in a device. All the requested statistics must be successfully
updated in order for this method to complete successfully, otherwise an ErrorCode of E_EXTENDED
is returned.

Both CapStatisticsReporting and CapUpdateStatistics must be true in order to successfully use this
method.
56 Unified POS, V1.16.1

This method is always executed synchronously.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL CapStatisticsReporting or CapUpdateStatistics is false, or the named

statistic is not defined/updatable.
E_EXTENDED ErrorCodeExtended = ESTATS_ERROR:

At least one of the specified statistics could not be updated.
ErrorCodeExtended = ESTATS_DEPENDENCY:
At least one other statistic is required to be updated in addition to a requested
statistic.

See Also CapStatisticsReporting Property, CapUpdateStatistics Property.
Unified POS, v1.16.1 57

2.6 Events (UML interfaces)

The UnifiedPOS standard utilizes a common UML base control structure to derive a specific implementation
case. The UML event base control model and interfaces are shown below for the events.

upos::BaseControl

UposConst
(from upos)

<<utility>>

UposException
(from upos)

<<exception>>

BaseControl
(from upos)

<<Interface>>
UposEvent
(from events)

<<event>> fires

<<uses>>

<<sends>>
58 Unified POS, V1.16.1

upos::events interfaces

UposEvent
(from events)

<<event>>

DataEvent

<<prop>> Status : int32
(from events)

<<event>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

ErrorEvent

<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : int32
<<prop>> ErrorLocus : int32
<<prop>> ErrorResponse : int32

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32
(from events)

<<event>>

OutputCompleteEvent

<<prop>> OutputID : int32
(from events)

<<event>>
Unified POS, v1.16.1 59

2.6.1 DataEvent

<<event>> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application that input data is available from the device.

Attribute This event contains the following attribute:

Attribute Type Description 
Status int32 The input status with its value dependent upon the device category; it may
 describe the type or qualities of the input data.

Remarks When this event is delivered to the application, the DataEventEnabled property is changed to false, so
that no further data events will be delivered until the application sets DataEventEnabled back to true.
The actual byte array input data is placed in one or more device-specific properties.

If DataEventEnabled is false at the time that data is received, then the data is enqueued in an internal
buffer, the device-specific input data properties are not updated, and the event is not delivered. When
DataEventEnabled is subsequently changed back to true, the event will be delivered immediately if
input data is enqueued and FreezeEvents is false.

See Also “Errors” on page 16, DataEventEnabled Property, FreezeEvents Property.

2.6.2 DirectIOEvent Updated in Release 1.7

<<event>> upos::events::DirectIOEvent 
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

Description Provides UnifiedPOS Service information directly to the application. This event provides a means for a
vendor-specific UnifiedPOS Service to provide events to the application that are not otherwise supported
by the UnifiedPOS Control.

Attributes This event contains the following attributes:

Attribute Type Description

EventNumber int32 Event number whose specific values are assigned by the Unified
POS Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and the
UnifiedPOS Service. This attribute is settable.

Obj object Additional data whose usage varies by the EventNumber and the UnifiedPOS
Service. This attribute is settable.1

1. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion property. See BinaryConver-
sion property in Annex A.
60 Unified POS, V1.16.1

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described
as part of the UnifiedPOS standard. Use of this event may restrict the application program from being
used with other vendor’s devices which may not have any knowledge of the UnifiedPOS Service’s need
for this event.

See Also “Events” on page 15 directIO Method.

2.6.3 ErrorEvent Updated in Release 1.13

<<event>> upos::events::ErrorEvent 
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an error has been detected and a suitable response is necessary to process
the error condition.

Attributes This event contains the following attributes:

Attribute Type Description
ErrorCode int32 Error Code causing the error event. See the list of ErrorCodes under 

“Errors” on page 16.

ErrorCodeExtended
int32 Extended Error Code causing the error event. These values are device

category specific.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden by the application
(i.e., this attribute is settable). See values below.

The ErrorLocus attribute has one of the following values:

Value Meaning
EL_OUTPUT Error occurred while processing asynchronous output.

EL_INPUT Error occurred while gathering or processing event-driven input. No
previously buffered input data is available.

EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and some
previously buffered data is available.

The application’s error event handler can set the ErrorResponse attribute to one of the following values:
(Updated in 1.13)
Unified POS, v1.16.1 61

Value Meaning
ER_RETRY Retry sending the data. The error state is exited.

May be valid for some input devices when the locus is EL_INPUT, in which
case the input is retried and the error state is exited. Typically valid for
asynchronous output devices when the locus is EL_OUTPUT, in which case
the asynchronous output is retried and the error state is exited. This is the
default response when the locus is EL_OUTPUT.

ER_CLEAR Valid for all loci: EL_INPUT, EL_INPUT_DATA, and EL_OUTPUT. Clear
all buffered input or output data (including all asynchronous output). The
error state is exited. This is the default response when the locus is EL_INPUT.

ER_CONTINUEINPUT 
Only valid when the locus is EL_INPUT_DATA.
Acknowledges that a data error has occurred and directs the Device to
continue input processing. The Device remains in the error state and will
deliver additional DataEvents as directed by the DataEventEnabled
property. When all input has been delivered and DataEventEnabled is again
set to true, then another ErrorEvent is delivered with locus EL_INPUT.
This is the default response when the locus is EL_INPUT_DATA.

Remarks This event is enqueued when an error is detected and the Device’s State transitions into the error state.
Input error events are not delivered until DataEventEnabled is true, so that proper application
sequencing occurs.

Unlike a DataEvent, the Device does not disable further DataEvents or input ErrorEvents; it leaves
the DataEventEnabled property value at true. Note that the application may set DataEventEnabled to
false within its event handler if subsequent input events need to be disabled for a period of time.

See Also “Device Input Model” on page 18, “Error Handling” on page 18, “Device Output Model” on page 20.

2.6.4 OutputCompleteEvent Updated in Release 1.13

<<event>> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the OutputID attribute has
completed successfully.

Attribute This event contains the following attribute:

Attribute Type Description
OutputID int32 The ID number of the asynchronous output request that is complete.

 Remarks This event is enqueued after the requested data has been both sent and the UnifiedPOS Service has
confirmation that is was processed by the device successfully.

See Also “Device Output Model” on page 20 OutputID Property.
62 Unified POS, V1.16.1

2.6.5 StatusUpdateEvent Updated in Release 1.9

<<event>> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application when a device has detected an operation status change.

Attribute This event contains the following attribute:

Attribute Type Description
Status int32 Device category-specific status, describing the type of status change.

Release 1.3 and later – Power State Reporting

Power State Reporting, added in Release 1.3, adds additional Status values of:

Value Meaning
SUE_POWER_ONLINE

The device is powered on and ready for use. Can be returned if
CapPowerReporting =PR_STANDARD or PR_ADVANCED.

SUE_POWER_OFF The device is off or detached from the terminal. Can only be returned if
CapPowerReporting =PR_ADVANCED.

SUE_POWER_OFFLINE
The device is powered on but is either not ready or not able to respond to
requests. Can only be returned if 
CapPowerReporting = PR_ADVANCED.

SUE_POWER_OFF_OFFLINE
The device is either off or off-line. Can only be returned 
if CapPowerReporting = PR_STANDARD.

The common property PowerState is also maintained at the current power state of the device.
Unified POS, v1.16.1 63

Release 1.9 and later – Update Firmware Reporting

The Update Firmware capability, added in Release 1.9, adds the following Status values for
communicating the status/progress of an asynchronous update firmware process:

Value Meaning
SUE_UF_PROGRESS + 1 to 100

The update firmware process has successfully completed 1 to 100 percent of
the total operation.

SUE_UF_COMPLETE The update firmware process has completed successfully. The value of this
constant is identical to SUE_UF_PROGRESS + 100.

SUE_UF_COMPLETE_DEV_NOT_RESTORED
The update firmware process succeeded, however the Service and/or the
physical device cannot be returned to the state they were in before the update
firmware process started. The Service has restored all properties to their
default initialization values.
To ensure consistent Service and physical device states, the application needs
to close the Service, then open, claim, and enable again, and also restore all
custom application settings.

SUE_UF_FAILED_DEV_OK
The update firmware process failed but the device is still operational.

SUE_UF_FAILED_DEV_UNRECOVERABLE
The update firmware process failed and the device is neither usable nor
recoverable through software. The device requires service to be returned to an
operational state.

SUE_UF_FAILED_DEV_NEEDS_FIRMWARE
The update firmware process failed and the device will not be operational
until another attempt to update the firmware is successful.

SUE_UF_FAILED_DEV_UNKNOWN
The update firmware process failed and the device is in an indeterminate
state.

Remarks This event is enqueued when a Device needs to alert the application of a device status change. Examples
are a change in the cash drawer position (open vs. closed) or a change in a POS printer sensor (form
present vs. absent).

When a device is enabled, the Control may deliver this event to inform the application of the device state.
This behavior, however, is not required.

See Also “Device Input Model on page 18, CapPowerReporting Property, CapUpdateFirmware Property,
PowerNotify Property.
64 Unified POS, V1.16.1

3 Belt

3.1 General

This Chapter defines the Belt device category.

3.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.12 Not supported

CapCompareFirmwareVersion: boolean { read-only } 1.12 open

CapPowerReporting: int32 { read-only } 1.12 open

CapStatisticsReporting: boolean { read-only } 1.12 open

CapUpdateFirmware: boolean { read-only } 1.12 open

CapUpdateStatistics: boolean { read-only } 1.12 open

CheckHealthText: string { read-only } 1.12 open

Claimed: boolean { read-only } 1.12 open

DataCount: int32 { read-only } 1.12 Not supported

DataEventEnabled: boolean { read-write } 1.12 Not supported

DeviceEnabled: boolean { read-write } 1.12 open & claim

FreezeEvents: boolean { read-write } 1.12 open

OutputID: int32 { read-only } 1.12 Not supported

PowerNotify: int32 { read-write } 1.12 open

PowerState: int32 { read-only } 1.12 open

State: int32 { read-only } 1.12 --

DeviceControlDescription: string { read-only } 1.12 --

DeviceControlVersion: int32 { read-only } 1.12 --

DeviceServiceDescription: string { read-only } 1.12 open
Unified POS, v1.16.1 65

Properties (Continued)

Specific Type Mutability Version May Use After

CapAutoStopBackward: boolean { read-only } 1.12 open

CapAutoStopBackwardItemCount: boolean { read-only } 1.12 open

CapAutoStopForward: boolean { read-only } 1.12 open

CapAutoStopForwardItemCount: boolean { read-only } 1.12 open

CapLightBarrierBackward: boolean { read-only } 1.12 open

CapLightBarrierForward: boolean { read-only } 1.12 open

CapMoveBackward: boolean { read-only } 1.12 open

CapSecurityFlapBackward: boolean { read-only } 1.12 open

CapSecurityFlapForward: boolean { read-only } 1.12 open

CapSpeedStepsBackward: int32 { read-only } 1.12 open

CapSpeedStepsForward: int32 { read-only } 1.12 open

AutoStopBackward: boolean { read-write } 1.12 open

AutoStopBackwardDelayTime: int32 { read-write } 1.12 open

AutoStopBackwardItemCount: int32 { read-only } 1.12 open

AutoStopForward: boolean { read-write } 1.12 open

AutoStopForwardDelayTime: int32 { read-write } 1.12 open

AutoStopForwardItemCount: int32 { read-only } 1.12 open

LightBarrierBackwardInterrupted: boolean { read-only } 1.12 open, claim, & enable

LightBarrierForwardInterrupted: boolean { read-only } 1.12 open, claim, & enable

MotionStatus: int32 { read-only } 1.12 open, claim, & enable

SecurityFlapBackwardOpened: boolean { read-only } 1.12 open, claim, & enable

SecurityFlapForwardOpened: boolean { read-only } 1.12 open, claim, & enable

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.12

close ():
void { raises-exception, use after open }

1.12

claim (timeout: int32):
void { raises-exception, use after open }

1.12
66 Unified POS, v1.16.1

release ():
void { raises-exception, use after open, claim }

1.12

checkHealth (level: int32):
void { raises-exception, use after open, enable }

1.12

clearInput ():
void { }

Not supported

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.12

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, enable }

1.12

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, enable }

1.12

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, enable }

1.12

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, enable }

1.12

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, enable }

1.12

Specific

Name

adjustItemCount (direction: int32, count: int32): 
void { raises-exception, use after open, claim, enable }

1.12

moveBackward (speed: int32): 
void { raises-exception, use after open, claim, enable }

1.12

moveForward (speed: int32): 
void { raises-exception, use after open, claim, enable }

1.12

resetBelt (): 
void { raises-exception, use after open, claim, enable }

1.12

resetItemCount (direction: int32): 
void { raises-exception, use after open, claim, enable }

1.12

stopBelt (): 
void { raises-exception, use after open, claim, enable }

1.12
Unified POS, v1.16.1 67

3.3 General Information

The Belt programmatic name is “Belt.” This device category was added to Version 1.12 of the specification.

3.3.1 Capabilities

The Belt Control has the following capability:

• Supports a command to move the belt in forward direction.

• Supports commands to stop and reset the belt.

The Belt may have several additional capabilities, these are moving in backward direction, moving with different
speeds, light barriers, security flap, controlling an automatic stop and emergency stop. See 3.5.1 Model and the
capabilities properties for specific information.

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.12

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.12

 Status: int32 { read-only }
68 Unified POS, v1.16.1

3.4 Belt Class Diagram

The following diagram shows the relationships between the Belt classes.

+adjustItemCount(direction : int32, count : int32) : void
+moveBackward(speed : int32) : void
+moveForward(speed : int32) : void
+resetBelt() : void
+resetItemCount(direction : int32) : void
+stopBelt() : void

+CapAutoStopBackward : boolean
+CapAutoStopBackwardItemCount : boolean
+CapAutoStopForward : boolean
+CapAutoStopForwardItemCount : boolean
+CapLightBarrierBackward : boolean
+CapLightBarrierForward : boolean
+CapMoveBackward : boolean
+CapSecurityFlapBackward : boolean
+CapSecurityFlapForward : boolean
+CapSpeedStepsBackward : int32
+CapSpeedStepsForward : int32
+AutoStopBackward : boolean
+AutoStopBackwardDelayTime : int32
+AutoStopBackwardItemCount : int32
+AutoStopForward : boolean
+AutoStopForwardDelayTime : int32
+AutoStopForwardItemCount : int32
+LightBarrierBackwardInterrupted : boolean
+LightBarrierForwardInterrupted : boolean
+MotionStatus : int32
+SecurityFlapBackwardOpened : boolean
+SecurityFlapForwardOpened : boolean

«interface»
BeltControl

+EventNumber : int32
+Data : int32
+Obj : object

«event»
DirectIOEvent

«fires»

+Status : int32

«event»
StatusUpdateEvent

«fires»

«exception»
UposException

«sends»

«sends»
«utility»

BeltConst
«utility»

UposConst

«uses»

«uses»
«interface»

BaseControl
Unified POS, v1.16.1 69

3.5 Belt Sequence Diagram

The following sequence diagram shows the typical usage of the Belt device during an automatic stop scenario.

Application Belt Control Belt Service Belt

NOTE: We are assuming that the Application has already successfully opened and claimed the Belt Device
and is registered to receive events from the control. The belt should automatically stop after five items passing
the light barrier, that means CapAutoStopForward and CapAutoStopForwardItemCount are true.

1: setDeviceEnabled(true)

2: setDeviceEnabled(true)

8: moveForward(speed1)

9: moveForward(speed1)

10: moves the belt forward

11: update MotionStatus to BELT_MT_STOPPED
and deliver SUE

11: notify client of new event

3: connect or somehow have
access to the hardware

4: adjustItemCount
(BELT_AIC_FORWARD, 5)

5: adjustItemCount
(BELT_AIC_FORWARD, 5)

Assume that five items passed the light barrier
and another one is detected. The belt stops.

Application event handling
code takes appropriate action

6: setAutoStopForward(true)

7: setAutoStopForward(true)
70 Unified POS, v1.16.1

The following sequence diagram shows the typical usage of the Belt device during an emergency stop scenario
caused by an open security flap.

Application Belt Control Belt Service Belt

NOTE: We are assuming that the Application has already successfully opened and claimed the Belt Device
and is registered to receive events from the control. Emergency stop caused by an open security flap, that
means CapSecurityFlapForward is true.

1: setDeviceEnabled(true)

2: setDeviceEnabled(true)

4: moveForward(speed1)

5: moveForward(speed1)

6: moves the belt forward

12: update MotionStatus to BELT_MT_STOPPED
and deliver SUE

8: notify client of new event

3: connect or somehow have
access to the hardware

Assume that an item opens the security flap.
The belt stops due to an emergency condition.

Application event handling code takes
appropriate action, calls for assistance
and the problem is finally fixed.

9: resetBelt()

10: resetBelt()

11: resets the belt

Application goes on with
normal operation.

14: moveForward(speed1)

15: moveForward(speed1)

16: moves the belt forward

7: update MotionStatus to BELT_MT_EMERGENCY
and deliver SUE

13: notify client of new event
Unified POS, v1.16.1 71

3.5.1 Model

The general model of a Belt is:

• After the belt is enabled an application can call moveForward and stopBelt in order to control the motion.

• If CapMoveBackward is true, the application may also call moveBackward.

• Moving forward and backward may be available in different speeds defined by CapSpeedStepsBackward and
CapSpeedStepsForward.

• Due to safety regulations a belt is usually equipped with security flaps at the end of the belt, at both ends if it
can move backwards. CapSecurityFlapBackward and CapSecurityFlapForward are defining the
availability of them.

• CapAutoStopBackward and CapAutoStopForward tell an application if the belt supports an automatic stop.
Whether the application wants to use this feature can be controlled by setting AutoStopBackward and
AutoStopForward properties. The belt is stopped if an automatic stop condition becomes true. Usually such a
condition is controlled by light barriers, but it can also correspond to an internal state of the device which is not
exposed. The condition is device specific and has to be explained in the device documentation.

• Light barriers may be available for handling an automatic stop feature. CapLightBarrierBackward and
CapLightBarrierForward define the availability of such barriers.

• If CapAutoStopForwardItemCount is true the application may control the automatic stop feature depending
on a number of items passing the light barrier or any other item counting mechanism in forward direction by
calling adjustItemCount and resetItemCount. In this case the belt is automatically stopped if
AutoStopForwardItemCount is zero and an additional item is detected. This feature may be also available
for backward direction.

• If CapAutoStopForward is true, an application may also delay automatic stop in forward direction by setting
AutoStopForwardDelayTime. The delay time starts when an automatic stop condition becomes true. The belt
is stopped when the delay time has expired. During delay time automatic stop is cancelled if the automatic stop
condition becomes false. This feature may be also available for backward direction.

• The application will be informed about any status change with a StatusUpdateEvent, also all corresponding
status properties will be updated before event delivery.

• An emergency stop will occur if one of the security flaps is open or the operator presses an emergency button.
In this case technical assistance is needed and the application has to reset the belt by calling resetBelt. A
security stop will occur if the belt has been stopped due to safety requirement regulations but no technical
assistance is needed.

3.5.2 Device Sharing

Belt is an exclusive-use device. Its device sharing rules are:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing some of the properties and methods, or
 receiving events.

• See the “Summary” table for precise usage prerequisites.
72 Unified POS, v1.16.1

3.5.3 Belt State Diagram

The following diagram illustrates the various state transitions within the Belt device category.

Closed Opened Claimed

open claim

close release

Enabled

close release

se
tD

ev
ice

En
ab

led
(fa

lse
)

se
tD

ev
ice

En
ab

led
(tr

ue
)

Forward
moveForward

Stopped
stopBelt

Backward
moveBackward

Fire Events

Motor Fault

Emergency
Stop

fire event

done

au
to

m
at

ic
 s

to
p

au
to

m
at

ic
 s

to
p

done

fire
event

fire
event

done

motor fault

emergency stop

emergency stop

motor fault

fire
eventdone

fire
event

done

m
oveForw

ard
m

oveBackw
ard

Unified POS, v1.16.1 73

3.6 Properties (UML attributes)

3.6.1 AutoStopBackward Property

Syntax AutoStopBackward: boolean { read-write, access after open }

Remarks If true, the automatic stop feature in backward direction is enabled. If false, it is disabled. The belt will
automatically stop if an automatic stop condition becomes true.

If CapAutoStopBackward is false, then this property is always false.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CapAutoStopBackward Property.

3.6.2 AutoStopBackwardDelayTime Property

Syntax AutoStopBackwardDelayTime: int32 { read-write, access after open }

Remarks Specifies a delay time in milliseconds for an automatic stop in backward direction. The delay time starts
when an automatic stop condition becomes true. The delay time counting stops and automatic stop is
cancelled if the condition becomes false.

If CapAutoStopBackward is false, then this property has no meaning, setting this property will be
ignored.

This property is initialized to zero (0) by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CapAutoStopBackward Property.

3.6.3 AutoStopBackwardItemCount Property

Syntax AutoStopBackwardItemCount: int32 { read-only, access after open }

Remarks Holds the actual item counter for an automatic stop in backward direction. If an item is detected this
property will be decreased. The automatic stop condition becomes true if the item counter mechanism
detects an additional item and the counter is already zero.

This property can be increased or decreased by calling the adjustItemCount method and can be reset to
zero by calling the resetItemCount method.

If CapAutoStopBackward or CapAutoStopBackwardItemCount is false, then this property has no
meaning.

This property is initialized to zero (0) by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CapAutoStopBackward Property, CapAutoStopBackwardItemCount Property, adjustItemCount
Method, resetItemCount Method.
74 Unified POS, v1.16.1

3.6.4 AutoStopForward Property

Syntax AutoStopForward: boolean { read-write, access after open }

Remarks If true, the automatic stop feature in forward direction is enabled. If false, it is disabled. The belt will
automatically stop if an automatic stop condition becomes true.

If CapAutoStopForward is false, then this property is always false.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CapAutoStopForward Property.

3.6.5 AutoStopForwardDelayTime Property

Syntax AutoStopForwardDelayTime: int32 { read-write, access after open }

Remarks Specifies a delay time in milliseconds for an automatic stop in forward direction. The delay time starts
when an automatic stop condition becomes true. The delay time counting stops and automatic stop is
cancelled if the condition becomes false.

If CapAutoStopForward is false, then this property has no meaning, setting this property will be
ignored.

This property is initialized to zero (0) by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CapAutoStopForward Property.

3.6.6 AutoStopForwardItemCount Property

Syntax AutoStopForwardItemCount: int32 { read-only, access after open }

Remarks Holds the actual item counter for an automatic stop in forward direction. If an item is detected this
property will be decreased. The automatic stop condition becomes true if the item counter mechanism
detects an additional item and the counter is already zero.

This property can be increased or decreased by calling the adjustItemCount method and can be reset to
zero by calling the resetItemCount method.

If CapAutoStopForward or CapAutoStopForwardItemCount is false, then this property has no
meaning.

This property is initialized to zero (0) by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapAutoStopForward Property, CapAutoStopForwardItemCount Property, adjustItemCount
Method, resetItemCount Method.
Unified POS, v1.16.1 75

3.6.7 CapAutoStopBackward Property

Syntax CapAutoStopBackward: boolean { read-only, access after open }

Remarks If true, the device supports an automatic motor stop when moving backward, based on an automatic stop
condition.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

3.6.8 CapAutoStopBackwardItemCount Property

Syntax CapAutoStopBackwardItemCount: boolean { read-only, access after open }

Remarks If true, the device supports an automatic motor stop when moving backward depending on the number
of items specified by AutoStopBackwardItemCount.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also AutoStopBackwardItemCount Property.

3.6.9 CapAutoStopForward Property

Syntax CapAutoStopForward: boolean { read-only, access after open }

Remarks If true, the device supports an automatic motor stop when moving forward, based on an automatic stop
condition.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

3.6.10 CapAutoStopForwardItemCount Property

Syntax CapAutoStopForwardItemCount: boolean { read-only, access after open }

Remarks If true, the device supports an automatic motor stop when moving forward depending on the number of
items specified by AutoStopForwardItemCount.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16

See Also AutoStopForwardItemCount Property.
76 Unified POS, v1.16.1

3.6.11 CapLightBarrierBackward Property

Syntax CapLightBarrierBackward: boolean { read-only, access after open }

Remarks If true, the device has a backward light barrier and LightBarrierBackwardInterrupted holds the actual
state of the light barrier.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also LightBarrierBackwardInterrupted Property.

3.6.12 CapLightBarrierForward Property

Syntax CapLightBarrierForward: boolean { read-only, access after open }

Remarks If true, the device has a forward light barrier and LightBarrierForwardInterrupted holds the actual
state of the light barrier.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also LightBarrierForwardInterrupted Property.

3.6.13 CapMoveBackward Property

Syntax CapMoveBackward: boolean { read-only, access after open }

Remarks If true, the belt can move backward.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

3.6.14 CapSecurityFlapBackward Property

Syntax CapSecurityFlapBackward: boolean { read-only, access after open }

Remarks If true, the device has a backward security flap and SecurityFlapBackwardOpened holds the actual
state of the flap.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also SecurityFlapBackwardOpened Property.
Unified POS, v1.16.1 77

3.6.15 CapSecurityFlapForward Property

Syntax CapSecurityFlapForward: boolean { read-only, access after open }

Remarks If true, the device has a forward security flap and SecurityFlapForwardOpened holds the actual state
of the flap.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also SecurityFlapForwardOpened Property.

3.6.16 CapSpeedStepsBackward Property

Syntax CapSpeedStepsBackward: int32 { read-only, access after open }

Remarks Defines how many speed steps the belt motor supports in backward direction, minimum is one (1). This
property is only valid if CapMoveBackward is true. If CapMoveBackward is false this property is
initialized to zero (0).

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CapMoveBackward Property.

3.6.17 CapSpeedStepsForward Property

Syntax CapSpeedStepsForward: int32 { read-only, access after open }

Remarks Defines how many speed steps the belt motor supports in forward direction, minimum is one (1).

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

3.6.18 LightBarrierBackwardInterrupted Property

Syntax LightBarrierBackwardInterrupted: boolean { read-only, access after open-claim-enable }

Remarks If true, the light barrier in backward direction is interrupted, otherwise it is false. An appropriate
StatusUpdateEvent indicating a status change will be enqueued.

If CapLightBarrierBackward is false, then this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CapLightBarrierBackward Property.
78 Unified POS, v1.16.1

3.6.19 LightBarrierForwardInterrupted Property

Syntax LightBarrierForwardInterrupted: boolean { read-only, access after open-claim-enable }

Remarks If true, the light barrier in forward direction is interrupted, otherwise it is false. An appropriate
StatusUpdateEvent indicating a status change will be enqueued.

If CapLightBarrierForward is false, then this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CapLightBarrierForward Property.

3.6.20 MotionStatus Property

Syntax MotionStatus: int32 { read-only, access after open-claim-enable }

Remarks Holds the current motion state of the device. It has one of the following values:

Value Meaning
BELT_MT_FORWARD The device is moving forward.

BELT_MT_BACKWARD
The device is moving backward.

BELT_MT_STOPPED The device has stopped due to an automatic stop, security stop or motor
timeout stop.

BELT_MT_EMERGENCY 
Emergency stop, either a security flap is open or the emergency button was
pressed. Technical assistance is needed in order to reactivate the belt device.

BELT_MT_MOTOR_FAULT
The device has stopped due to a motor failure like overheating or a defective
fuse. Technical assistance may be needed in order to reactivate the motor.

This property is initialized and kept current while the device is enabled.

An appropriate StatusUpdateEvent indicating a status change will be enqueued.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

3.6.21 SecurityFlapBackwardOpened Property

Syntax SecurityFlapBackwardOpened: boolean { read-only, access after open-claim-enable }

Remarks If true, the security flap in backward direction is open, otherwise it is closed. An appropriate
StatusUpdateEvent indicating a status change will be enqueued. If CapSecurityFlapBackward is
false, then this property is always false. This property is initialized and kept current while the device is
enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CapSecurityFlapBackward Property.
Unified POS, v1.16.1 79

3.6.22 SecurityFlapForwardOpened Property

Syntax SecurityFlapForwardOpened: boolean { read-only, access after open-claim-enable }

Remarks If true, the security flap in forward direction is open, otherwise it is closed. An appropriate
StatusUpdateEvent indicating a status change will be enqueued.

If CapSecurityFlapForward is false, then this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CapSecurityFlapForward Property.
80 Unified POS, v1.16.1

3.7 Methods (UML operations)

3.7.1 adjustItemCount Method

Syntax adjustItemCount (direction: int32, count: int32): 
 void { raises-exception, use after open-claim-enable }

Parameter Description
direction Specifies the auto stop item count property to be adjusted. May be either

BELT_AIC_BACKWARD or BELT_AIC_FORWARD.

count The count parameter contains the number of items to be adjusted.

Remarks Depending on direction either AutoStopBackwardItemCount or AutoStopForwardItemCount will
be adjusted by count. It can be an increment or decrement depending on whether count is positive or
negative.

This method is only valid if at least one of the corresponding capabilities
CapAutoStopBackwardItemCount or CapAutoStopForwardItemCount is true.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

A possible value of the exception’s ErrorCode property is:

Value Meaning
E_ILLEGAL adjustItemCount is not supported or an invalid direction was specified.

See Also CapAutoStopBackwardItemCount Property, AutoStopBackwardItemCount Property,
CapAutoStopForwardItemCount Property, AutoStopForwardItemCount Property,
resetItemCount Method.

3.7.2 moveBackward Method

Syntax moveBackward (speed: int32): 
 void { raises-exception, use after open-claim-enable }

Parameter Description
speed Specifies the speed step. Valid speed steps are 1 through

CapSpeedStepsBackward.

Remarks Starts the belt motor to move backward with the specified speed.

This method is only valid if CapMoveBackward is true.

Subsequent calls to moveBackward will change the speed.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

A possible value of the exception’s ErrorCode property is:

Value Meaning
E_ILLEGAL moveBackward is not supported or an invalid speed step was specified.

See Also CapMoveBackward Property, CapSpeedStepsBackward Property.
Unified POS, v1.16.1 81

3.7.3 moveForward Method

Syntax moveForward (speed: int32): 
 void { raises-exception, use after open-claim-enable }

Parameter Description
speed Specifies the speed step. Valid speed steps are 1 through

CapSpeedStepsForward.

Remarks Starts the belt motor to move forward with the specified speed.

Subsequent calls to moveForward will change the speed.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

See Also CapSpeedStepsForward Property.

3.7.4 resetBelt Method

Syntax resetBelt (): 
 void { raises-exception, use after open-claim-enable }

Remarks Resets the belt after an emergency stop caused by an open security flap or a pressed emergency button.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

3.7.5 resetItemCount Method

Syntax resetItemCount (direction: int32): 
 void { raises-exception, use after open-claim-enable }

Parameter Description
direction Specifies the auto stop item count property to be reset. May be either

BELT_RIC_BACKWARD or BELT_RIC_FORWARD.

Remarks Depending on direction either AutoStopBackwardItemCount or AutoStopForwardItemCount will
be reset to zero (0).

This method is only valid if at least one of the corresponding capabilities
CapAutoStopBackwardItemCount or CapAutoStopForwardItemCount is true.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

A possible value of the exception’s ErrorCode property is:

Value Meaning
E_ILLEGAL resetItemCount is not supported or an invalid direction was specified.

See Also CapAutoStopBackwardItemCount Property, AutoStopBackwardItemCount Property,
CapAutoStopForwardItemCount Property, AutoStopForwardItemCount Property,
adjustItemCount Method.
82 Unified POS, v1.16.1

3.7.6 stopBelt Method

Syntax stopBelt (): 
 void { raises-exception, use after open-claim-enable }

Remarks Stops the belt motor.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.
Unified POS, v1.16.1 83

3.8 Events (UML interfaces)

3.8.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
 EventNumber: int32 { read-only }
 Data: int32 { read-write }
 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Belt Service to provide events to the application that are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
 the Service. This property is settable.

Obj Object Additional data whose usage varies by the EventNumber and Service.
 This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Belt devices
which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15 directIO Method.

3.8.2 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application when the status of the Belt changes.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 The status reported from the Belt.

The Status attribute has one of the following values:

Value Description
BELT_SUE_AUTO_STOP

The belt has automatically stopped.

BELT_SUE_EMERGENCY_STOP
The belt has stopped caused by an emergency condition, either a security flap
is open or an emergency button has been pressed. Technical assistance is
needed.

BELT_SUE_SAFETY_STOP
The belt has stopped for safety reasons. Technical assistance is not needed.
84 Unified POS, v1.16.1

BELT_SUE_TIMEOUT_STOP
The belt has stopped due to a hardware timeout protecting the motor against
overheating.

BELT_SUE_MOTOR_OVERHEATING
The belt has stopped due to a motor overheating.

BELT_SUE_MOTOR_FUSE_DEFECT
The belt has stopped due to a defective fuse.

BELT_SUE_LIGHT_BARRIER_BACKWARD_INTERRUPTED
The light barrier in backward direction is interrupted.

BELT_SUE_LIGHT_BARRIER_BACKWARD_OK
The light barrier in backward direction is no longer interrupted.

BELT_SUE_LIGHT_BARRIER_FORWARD_INTERRUPTED
The light barrier in forward direction is interrupted.

BELT_SUE_LIGHT_BARRIER_FORWARD_OK
The light barrier in forward direction is no longer interrupted.

BELT_SUE_SECURITY_FLAP_BACKWARD_OPENED
The security flap in backward direction is open.

BELT_SUE_SECURITY_FLAP_BACKWARD_CLOSED
The security flap in backward direction is closed.

BELT_SUE_SECURITY_FLAP_FORWARD_OPENED
The security flap in forward direction is open.

BELT_SUE_SECURITY_FLAP_FORWARD_CLOSED
The security flap in forward direction is closed.

Note that Release 1.3 added Power State Reporting with additional Power
reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 1.

Remarks This event applies for status changes of the belt. It depends on the capabilities of the device which status
changes can be reported.

See Also “Events on page 15
Unified POS, v1.16.1 85

86 Unified POS, v1.16.1

4 Bill Acceptor

4.1 General

This Chapter defines the Bill Acceptor device category.

4.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean {read-write} 1.11 Not supported

CapCompareFirmwareVersion: boolean { read-only } 1.11 open

CapPowerReporting: int32 { read-only } 1.11 open

CapStatisticsReporting: boolean { read-only } 1.11 open

CapUpdateFirmware: boolean { read-only } 1.11 open

CapUpdateStatistics: boolean { read-only } 1.11 open

CheckHealthText: string {read-only} 1.11 open

Claimed: boolean {read-only} 1.11 open

DataCount: int32 {read-only} 1.11 open

DataEventEnabled: boolean {read-write} 1.11 open

DeviceEnabled: boolean {read-write} 1.11 open & claim

FreezeEvents: boolean {read-write} 1.11 open

OutputID: int32 {read-only} 1.11 Not supported

PowerNotify: int32 {read-write} 1.11 open

PowerState: int32 {read-only} 1.11 open

State: int32 {read-only} 1.11 --

DeviceControlDescription: string {read-only} 1.11 --

DeviceControlVersion: int32 {read-only} 1.11 --

DeviceServiceDescription: string {read-only} 1.11 open

DeviceServiceVersion: int32 {read-only} 1.11 open

PhysicalDeviceDescription: string {read-only} 1.11 open

PhysicalDeviceName: string {read-only} 1.11 open
Unified POS, v1.16.1 87

Properties (Continued)

Specific Type Mutability Version May Use After

CapDiscrepancy: boolean {read-only} 1.11 open

CapFullSensor: boolean {read-only} 1.11 open

CapJamSensor: boolean {read-only} 1.11 open

CapNearFullSensor: boolean {read-only} 1.11 open

CapPauseDeposit: boolean {read-only} 1.11 open

CapRealTimeData: boolean {read-only} 1.11 open

CurrencyCode: string {read-write} 1.11 open

DepositAmount: int32 {read-only} 1.11 open

DepositCashList: string {read-only} 1.11 open

DepositCodeList: string {read-only} 1.11 open

DepositCounts: string {read-only} 1.11 open

DepositStatus: int32 {read-only} 1.11 open, claim, & enable

FullStatus: int32 {read-only} 1.11 open, claim, & enable

RealTimeDataEnabled: boolean {read-write} 1.11 open, claim & enable

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.11

close ():
void { raises-exception, use after open }

1.11

claim (timeout: int32):
void { raises-exception, use after open }

1.11

release ():
void { raises-exception, use after open, claim }

1.11

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.11

clearInput ():
void { raises-exception, use after open, claim }

1.11

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.11

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.11
88 Unified POS, v1.16.1

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.11

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.11

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.11

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.11

Specific

Name

adjustCashCounts (cashCounts: string):
void { raises-exception, use after open, claim, enable }

1.11

beginDeposit ():
void { raises-exception, use after open, claim, enable }

1.11

endDeposit (success: int32):
void { raises-exception, use after open, claim, enable }

1.11

fixDeposit ():
void { raises-exception, use after open, claim, enable }

1.11

pauseDeposit (control: int32):
void { raises-exception, use after open, claim, enable }

1.11

readCashCounts (inout cashCounts: string, inout discrepancy:
boolean):
void { raises-exception, use after open, claim, enable }

1.11

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent 1.11

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.11

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }
Unified POS, v1.16.1 89

4.3 General Information

The Bill Acceptor programmatic name is “BillAcceptor.” This device category was added to Version 1.11 of the
specification.

4.3.1 Capabilities

The Bill Acceptor has the following capabilities:

• Reports the cash units and corresponding unit counts available in the Bill Acceptor.

• Reports jam conditions within the device.

• Supports more than one currency.

The Bill Acceptor may also have the following additional capabilities:

• Reporting the levels of the Bill Acceptor’s cash units. Conditions which may be indicated include full, and
near full states.

• Reporting of a possible (or probable) cash count discrepancy in the data reported by the readCashCounts
method.

• The money (bills) which are deposited into the device between the start and end of cash acceptance is reported
to the application. The contents of the report are cash units and cash counts.

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.11

 Status: int32 { read-only }

Events (UML interfaces)

Name Type Mutability Version
90 Unified POS, v1.16.1

4.4 Bill Acceptor Class Diagram

The following diagram shows the relationships between the Bill Acceptor classes.

UposConst
(from upos)

<<utility>>

DataEvent
(from events)

<<event>>

DirectIOEvent
(from events)

<<event>>

StatusUpdateEvent
(from events)

<<event>>

UposException
(from upos)

<<exception>>

BillAcceptorConst
(from upos)

<<utility>>

BillAcceptorControl

<<capability>> CapDiscrepancy : boolean
<<capability>> CapFullSensor : boolean
<<capability>> CapJamSensor : Boolean
<<capability>> CapNearFullSensor : boolean
<<capability>> CapPauseDeposit : boolean
<<capability>> CapRealTimeData : Boolean
<<prop>> CurrencyCode : string
<<prop>> DepositAmount : int32
<<prop>> DepositCashList : string
<<prop>> DepositCodeList : string
<<prop>> DepositCounts : string
<<prop>> DepositStatus : int32
<<prop>> FullStatus : int32
<<prop>> RealTimeDataEnabled : boolean

adjustCashCounts(cashCounts : string)
beginDeposit()
endDeposit(amount : int32)
fixDeposit()
pauseDeposit(control : int32)
readCashCounts(cashCounts : string, discrepancy : boolean)

(from upos)

<<Interface>>
<<uses>>

<<sends>>

<<fires>>

<<fires>>

<<fires>>
Unified POS, v1.16.1 91

4.4.1 Model

The general model of a Bill Acceptor is:

• Supports several bill denominations. The supported cash type for a particular currency is noted by the list of
cash units in the DepositCashList property.

• Consists of any combination of features to aid in the cash processing functions such as a cash entry holding
bin, a number of slots or bins which can hold the cash, and cash exits.

• The removal of cash from the device (for example, to empty deposited cash) is controlled by the
adjustCashCounts method, unless the device can determine the amount of cash on its own. The application
can call readCashCounts to retrieve the current unit count for each cash unit.

• Sets the cash slot (or cash bin) conditions in the FullStatus property to show full and near full status. If there
are one or more full cash slots, then FullStatus is BACC_STATUS_FULL.

• Cash acceptance into the “cash acceptance mechanism” is started by invoking the beginDeposit method. The
previous values of the properties DepositCounts and DepositAmount are initialized to zero.

• The total amount of cash placed into the device continues to be accumulated until either the fixDeposit method
or the pauseDeposit method is executed. When the fixDeposit method is executed, the total amount of
accumulated cash is stored in the DepositCounts and DepositAmount properties. If the pauseDeposit method
is executed with a parameter value of BACC_DEPOSIT_PAUSE, then the counting of the deposited cash is
suspended and the current amount of accumulated cash is also updated to the DepositCounts and
DepositAmount properties. When pauseDeposit method is executed with a parameter value of
BACC_DEPOSIT_RESTART, counting of deposited cash is resumed and added to the accumulated totals.

• When the fixDeposit method is executed, the current amount of accumulated cash is updated in the
DepositCounts and DepositAmount properties, and the process remains static until the endDeposit method is
invoked with a BACC_DEPOSIT_COMPLETE parameter to complete the deposit.

• When the clearInput method is executed, the queued DataEvent associated with the receipt of cash is cleared.
The DepositCounts and DepositAmount properties remain set and are not cleared.
92 Unified POS, v1.16.1

4.4.2 Bill Acceptor Sequence Diagram

:ClientApp : BillAcceptorControl BillAcceptorService : DataEvent Human Actor

NOTE: we are assuming that the :ClientApp already successfully open, Claimed and enabled the
Bill Acceptor device. This means that the Claimed, DeviceEnabled properties are == true

3: beginDeposit()

4: beginDeposit()

5: initial ize DepositAmount and DepositCounts

1: setRealTimeDataEvents(true)

2: setRealTimeDataEvents(true) Set so DepositAmount and
DepositCounts are updated for
each Data Event

6: accept Cash

9: update DepositAmount and DepositCounts

7: create Data Event

8: enqueue Data Event for delivery

10: deliver Data Event

11: notify ClientApp of event

12: fixDeposit()

13: fixDeposit

14: updateDepositAmount and DepositCounts

15: endDeposit(int32)

16: endDeposit(int32)
Unified POS, v1.16.1 93

4.4.3 Bill Acceptor State Diagram

4.4.4 Device Sharing

The Bill Acceptor is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing some of the properties, dispensing or
collecting, or receiving events.

• See the “Summary” table for precise usage prerequisites.

Closed Opened Claimed

Enabled

open

releaseclose

claim

setDeviceEnabled(true)

setDeviceEnabled(false)

release
close

ClearInput processing

entry/ empty data queue

clearInput

clearInput

readCashCounts

adjustCashCounts

Cash Acceptance

entry/ DepositAmount = 0
entry/ DepositCount = 0

has room
for cash

near full

ful l

jammed

Fix Mode

entry/ sync DepostAmount and DepositCount

Pause Mode

entry/ sync DepostAmount and DepositCount

beginDeposit

endDeposit clearInput

fixDeposit

pauseDeposit(BACC_DEPOSIT_PAUSE)

pauseDeposit(BACC_DEPOSIT_RESTART)

fixDeposit

has room
for cash

near full

ful l

jammed

fire events

adjustCashCounts / remove cash

adjustCashCounts / remove cash
94 Unified POS, v1.16.1

4.5 Properties (UML attributes)

4.5.1 CapDiscrepancy Property

Syntax CapDiscrepancy: boolean { read-only, access after open }

Remarks If true, the readCashCounts method can report effective discrepancy values.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also readCashCounts Method.

4.5.2 CapFullSensor Property

Syntax CapFullSensor: boolean { read-only, access after open }

Remarks If true, the Bill Acceptor can report the condition that some cash slots are full.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also FullStatus Property, StatusUpdateEvent.

4.5.3 CapJamSensor Property

Syntax CapJamSensor: boolean { read-only, access after open }

Remarks If true, the bill acceptor can report a mechanical jam or failure condition.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also StatusUpdateEvent.

4.5.4 CapNearFullSensor Property

Syntax CapNearFullSensor: boolean { read-only, access after open }

Remarks If true, the Bill Acceptor can report the condition that some cash slots are nearly full.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also FullStatus Property, StatusUpdateEvent.
Unified POS, v1.16.1 95

4.5.5 CapPauseDeposit Property

Syntax CapPauseDeposit: boolean { read-only, access after open }

Remarks If true, the Bill Acceptor has the capability to suspend cash acceptance processing temporarily.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16

See Also pauseDeposit Method.

4.5.6 CapRealTimeData Property

Syntax CapRealTimeData: boolean { read-only, access after open }

Remarks If true, the device is able to supply data as the money is being accepted (“real time”).

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also RealTimeDataEnabled Property.

4.5.7 CurrencyCode Property

Syntax CurrencyCode: string { read-write, access after open }

Remarks Contains the active currency code to be used by Bill Acceptor operations.

This property is initialized to an appropriate value by the open method. This value is guaranteed to be
one of the set of currencies specified by the DepositCodeList property.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGALA value was specified that is not within DepositCodeList.

See Also DepositCodeList Property.

4.5.8 DepositAmount Property

Syntax DepositAmount: int32 { read-only, access after open }

Remarks The total amount of deposited cash.

For example, if the currency is Japanese yen and DepositAmount is set to 18057,
after the call to the beginDeposit method, there would be 18,057 yen in the Bill Acceptor.

This property is initialized to zero by the open method.
96 Unified POS, v1.16.1

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CurrencyCode Property.

4.5.9 DepositCashList Property

Syntax DepositCashList: string { read-only, access after open }

Remarks Holds the cash units supported in the Bill Acceptor for the currency represented by the CurrencyCode
property.

It consists of ASCII numeric comma delimited values which denote the ASCII semicolon character (“;”)
followed by ASCII numeric comma delimited values for the bills that can be used with the Bill Acceptor.
The semicolon (“;”) is present to denote the start of bills when integrated within the bill dispenser

Below are sample DepositCashList values in Japan.

• “;1000,5000,10000” ---
1000, 5000, 10000 yen bill.

• This property is initialized by the open method, and is updated when CurrencyCode is set.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CurrencyCode Property, DepositCodeList Property.

4.5.10 DepositCodeList Property

Syntax DepositCodeList: string { read-only, access after open }

Remarks Holds the currency code indicators for cash accepted.

It is a list of ASCII three-character ISO 4217 currency codes separated by commas. For example, if the
string is “JPY,USD,” then the Bill Acceptor supports both Japanese and U.S. monetary units.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CurrencyCode Property, DepositCashList Property.
Unified POS, v1.16.1 97

4.5.11 DepositCounts Property Updated in Release 1.12

Syntax DepositCounts: string { read-only, access after open }

Remarks Holds the total of the cash accepted by the bill acceptor. Cash units inside the string are the same as the
DepositCashList property, and are in the same order.

For example if the currency is Japanese yen and string of the DepositCounts property is set to:


“;1000:80,5000:77,10000:0”

After the call to the beginDeposit method, there would be 80 one thousand yen bills and 77 five thou-
sand yen bills in the Bill Acceptor.

This property is initialized to zero by the open method

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CurrencyCode Property.

4.5.12 DepositStatus Property

Syntax DepositStatus: int32 { read-only, access after open-claim-enable }

Remarks Holds the current status of the cash acceptance operation. It may be one of the following values:

Value Meaning
BACC_STATUS_DEPOSIT_START

Cash acceptance started.
BACC_STATUS_DEPOSIT_END

Cash acceptance stopped.
BACC_STATUS_DEPOSIT_COUNT

Counting or repaying the deposited money.
BACC_STATUS_DEPOSIT_JAM

A mechanical fault has occurred.
 This property is initialized and kept current while the device is enabled.

This property is set to BACC_STATUS_DEPOSIT_END after initialization.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.
98 Unified POS, v1.16.1

4.5.13 FullStatus Property

Syntax FullStatus: int32 { read-only, access after open }

Remarks Holds the current full status of the cash slots. It may be one of the following:

 Value Meaning
BACC_STATUS_OK All cash slots are neither nearly full nor full.
BACC_STATUS_FULL Some cash slots are full.
BACC_STATUS_NEARFULL

Some cash slots are nearly full.
 This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

4.5.14 RealTimeDataEnabled Property

Syntax RealTimeDataEnabled: boolean {read-write, access after open-claim-enable}

Remarks If true and CapRealTimeData is true, each data event fired will update the DepositAmount and
DepositCounts properties. Otherwise, DepositAmount and DepositCounts are updated with the value
of the money collected when fixDeposit is called. Setting RealTimeDataEnabled will not cause any
change in system behavior until a subsequent beginDeposit method is performed. This prevents
confusion regarding what would happen if it were modified between a beginDeposit - endDeposit
pairing. This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGAL Cannot be set true if CapRealTimeData is false.

See Also CapRealTimeData Property, DepositAmount Property, DepositCounts Property, beginDeposit
Method, endDeposit Method, fixDeposit Method.
Unified POS, v1.16.1 99

4.6 Method (UML operations)

4.6.1 adjustCashCounts Method Updated in Release 1.12

Syntax adjustCashCounts (cashCounts: string);
 void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cashCounts parameter contains cash types and amounts to be

 initialized. 

Remarks This method is called to set the initial amounts in the Bill Acceptor after initial setup, or to adjust cash
counts after replenishment or removal, such as a paid in or paid out operation. This method is called when
needed for devices which cannot determine the exact amount of cash in them automatically. If the device
can determine the exact amount, then this method call is ignored. The application would first call
readCashCounts to get the current counts, and adjust them to the amount being replenished. Then the
application will call this method to set the amount currently in the acceptor.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and string returned in cashCounts is set to:

“;1000:80,5000:77,10000:0”

as a result of calling the adjustCashCounts method, then there would be 80 one thousand yen bills and
77 five thousand yen bills in the Bill Acceptor.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

See Also readCashCounts Method.

4.6.2 beginDeposit Method

Syntax beginDeposit ():
void { raises-exception, use after open-claim-enable }

Remarks Cash acceptance is started.

The following property values are initialized by the call to this method:
• The value of each cash unit of the DepositCounts property is set to zero.

• The DepositAmount property is set to zero.

After calling this method, cash acceptance is reported by DataEvents until fixDeposit is called while
the deposit process is not paused.
100 Unified POS, v1.16.1

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The call sequence is not correct.

See Also DepositAmount Property, DepositCounts Property, endDeposit Method, fixDeposit Method, pau-
seDeposit Method.

4.6.3 endDeposit Method

Syntax endDeposit (success: int32):

void { raises-exception, use after open-claim-enable }

The success parameter holds the value of how to deal with the cash that was deposited. Contains one of
the following values:

Parameter Description
BACC_DEPOSIT_COMPLETE The deposit is accepted and the mode is complete.

Remarks Cash acceptance is completed.

Before calling this method, the application must calculate the difference between the amount of the
deposit and the amount required. 

The application must call the fixDeposit method before calling this method.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• The call sequence is invalid. beginDeposit and fixDeposit must be
called in sequence before calling this method.

See Also DepositAmount Property, DepositCounts Property, beginDeposit Method, fixDeposit Method,
pauseDeposit Method.
Unified POS, v1.16.1 101

4.6.4 endDeposit Method

Syntax endDeposit (success: int32):

 void { raises-exception, use after open-claim-enable }

 The success parameter holds the value of how to deal with the cash that was deposited. Contains one of the
 following values:

Parameter Description
BACC_DEPOSIT_COMPLETE The deposit is accepted and the mode is complete.

Remarks Cash acceptance is completed.

Before calling this method, the application must calculate the difference between the amount of the
deposit and the amount required. 

The application must call the fixDeposit method before calling this method.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• The call sequence is invalid. beginDeposit and fixDeposit must be
called in sequence before calling this method.

See Also DepositAmount Property, DepositCounts Property, beginDeposit Method, fixDeposit Method,
pauseDeposit Method.
102 Unified POS, v1.16.1

4.6.5 fixDeposit Method

Syntax fixDeposit ():

 void { raises-exception, use after open-claim-enable }

Remarks When this method is called, all property values are updated to reflect the current values in the Bill
Acceptor.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• The call sequence is invalid. beginDeposit must be called before calling
this method.

See Also DepositAmount Property, DepositCounts Property, beginDeposit Method, endDeposit Method,
pauseDeposit Method.

4.6.6 pauseDeposit Method

Syntax pauseDeposit (control: int32):

void { raises-exception, use after open-claim-enable }

The control parameter contains one of the following values:

Parameter Description
BACC_DEPOSIT_PAUSE Cash acceptance is paused.
BACC_DEPOSIT_RESTART Cash acceptance is resumed.

Remarks Called to suspend or resume the process of depositing cash.

If control is BACC_DEPOSIT_PAUSE, the cash acceptance operation is paused. The deposit process
will remain paused until this method is called with control set to BACC_DEPOSIT_RESTART. It is
valid to call fixDeposit then endDeposit while the deposit process is paused.

When the deposit process is paused, the DepositCounts and DepositAmount properties are updated to
reflect the current state of the Bill Acceptor. The property values are not changed again until the deposit
process is resumed.

If control is BACC_DEPOSIT_RESTART, the deposit process is resumed.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.
Unified POS, v1.16.1 103

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• The call sequence is invalid. beginDeposit must be called before calling
this method.

• The deposit process is already paused and control is set to
BACC_DEPOSIT_PAUSE, or the deposit process is not paused and
control is set to BACC_DEPOSIT_RESTART.

See Also DepositAmount Property, DepositCounts Property, beginDeposit Method, endDeposit Method,
fixDeposit Method.

4.6.7 readCashCounts Method Updated in Release 1.12

Syntax readCashCounts (inout cashCounts: string, inout discrepancy: boolean):

void { raises-exception, use after open-claim-enable }

Parameter Description 
cashCounts The cash count data is placed into the string cashCounts.

discrepancy If discrepancy is set to true by this method, then there is some cash which was
not able to be included in the counts reported in cashCounts; otherwise it is
set false.

Remarks Each unit in cashCounts matches a unit in the DepositCashList property, and is in the same order.

For example if the currency is Japanese yen and string returned in cashCounts is set to:

“;1000:80,5000:77,10000:0”

as a result of calling the readCashCounts method, then there would be 80 one thousand yen bills and 77
five thousand yen bills in the Bill Acceptor.

Usually, the cash total calculated by cashCounts parameter is equal to the cash total in a Bill Acceptor.
There are some cases where a discrepancy may occur because of existing uncountable cash in a Bill
Acceptor. An example would be when a cash slot is “overflowing” such that the device has lost its ability
to accurately detect and monitor the cash.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

See Also DepositCashList Property.
104 Unified POS, v1.16.1

4.7 Events (UML interfaces)

4.7.1 DataEvent

<< event >> upos::events::DataEvent 
Status: int32 { read-only }

Description Notifies the application when the Bill Acceptor has accepted a bill.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 The Status parameter contains zero.

4.7.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Bill Acceptor Service to provide events to the application that are not otherwise supported by
the Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the

 EventNumber and the Service. This property is settable.
Obj object Additional data whose usage varies by the EventNumber and

 Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Bill Acceptor
devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15 directIO Method.
Unified POS, v1.16.1 105

4.7.3 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the Bill Acceptor device.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Indicates a change in the status of the unit. See values below.

Note that Release 1.3 added Power State Reporting with additional Power
reporting StatusUpdateEvent values.
The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.
See “StatusUpdateEvent” description in Chapter 2.

The Status parameter contains the Bill Acceptor status condition:

Value Meaning
BACC_STATUS_FULL Some cash slots are full.
BACC_STATUS_NEARFULL Some cash slots are nearly full.
BACC_STATUS_FULLOK No cash slots are either full or nearly full.
BACC_STATUS_JAM A mechanical fault has occurred.
BACC_STATUS_JAMOK A mechanical fault has recovered.

Remarks Fired when the Bill Acceptor detects a status change.

For changes in the fullness levels, the Bill Acceptor is only able to fire StatusUpdateEvents when the
device has a sensor capable of detecting the full or near full states and the corresponding capability
properties for these states are set.

Jam conditions may be reported whenever this condition occurs.

See Also “Events” on page 15
106 Unified POS, v1.16.1

5 Bill Dispenser

5.1 General

This Chapter defines the Bill Dispenser device category.

5.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean {read-write} 1.11 Not supported

CapCompareFirmwareVersion: boolean { read-only } 1.11 open

CapPowerReporting: int32 { read-only } 1.11 open

CapStatisticsReporting: boolean { read-only } 1.11 open

CapUpdateFirmware: boolean { read-only } 1.11 open

CapUpdateStatistics: boolean { read-only } 1.11 open

CheckHealthText: string {read-only} 1.11 open

Claimed: boolean {read-only} 1.11 open

DataCount: int32 {read-only} 1.11 Not supported

DataEventEnabled: boolean {read-write} 1.11 Not supported

DeviceEnabled: boolean {read-write} 1.11 open & claim

FreezeEvents: boolean {read-write} 1.11 open

OutputID: int32 {read-only} 1.11 Not supported

PowerNotify: int32 {read-write} 1.11 open

PowerState: int32 {read-only} 1.11 open

State: int32 {read-only} 1.11 --

DeviceControlDescription: string {read-only} 1.11 --

DeviceControlVersion: int32 {read-only} 1.11 --

DeviceServiceDescription: string {read-only} 1.11 open

DeviceServiceVersion: int32 {read-only} 1.11 open

PhysicalDeviceDescription: string {read-only} 1.11 open

PhysicalDeviceName: string {read-only} 1.11 open
Unified POS, v1.16.1 107

Properties (Continued)

Specific Type Mutability Version May Use After

CapDiscrepancy: boolean {read-only} 1.11 open

CapEmptySensor: boolean {read-only} 1.11 open

CapJamSensor: boolean {read-only} 1.11 open

CapNearEmptySensor: boolean {read-only} 1.11 open

AsyncMode: boolean {read-write} 1.11 open

AsyncResultCode: int32 {read-only} 1.11 open, claim, & enable

AsyncResultCodeExtended: int32 {read-only} 1.11 open, claim, & enable

CurrencyCashList: string {read-only} 1.11 open

CurrencyCode: string {read-write} 1.11 open

CurrencyCodeList: string {read-only} 1.11 open

CurrentExit: int32 {read-write} 1.11 open

DeviceExits: int32 {read-only} 1.11 open

DeviceStatus: int32 {read-only} 1.11 open, claim, & enable

ExitCashList: string {read-only} 1.11 open

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.11

close ():
void { raises-exception, use after open }

1.11

claim (timeout: int32):
void { raises-exception, use after open }

1.11

release ():
void { raises-exception, use after open, claim }

1.11

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.11

clearInput ():
void { raises-exception, use after open, claim }

Not supported

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.11
108 Unified POS, V1.16.1

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.11

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.11

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.11

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.11

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.11

Specific

Name

adjustCashCounts (cashCounts: string):
void { raises-exception, use after open, claim, enable }

1.11

dispenseCash (cashCounts: string):
void { raises-exception, use after open, claim, enable }

1.11

readCashCounts (inout cashCounts: string, inout discrepancy:
boolean):
void { raises-exception, use after open, claim, enable }

1.11

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.11

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.11

 Status: int32 { read-only }
Unified POS, v1.16.1 109

5.3 General Information

The Bill Dispenser programmatic name is “BillDispenser.” This device category was added in Version 1.11 of the
specification.

5.3.1 Capabilities

The Bill Dispenser has the following capabilities:

• Reports the cash units and corresponding unit counts available in the Bill Dispenser.

• Dispenses a specified number of cash units from the device in bills into a user-specified exit.

• Reports jam conditions within the device.

• Supports more than one currency.

The Bill Dispenser may also have the following additional capabilities:

• Reporting the fullness levels of the Bill Dispenser’s cash units. Conditions which may be indicated include
empty and near empty states.

• Reporting of a possible (or probable) cash count discrepancy in the data reported by the readCashCounts
method.
110 Unified POS, V1.16.1

5.3.2 Bill Dispenser Class Diagram

The following diagram shows the relationships between the Bill Dispenser classes.

5.3.3 Model

The general model of a Bill Dispenser is:

• Supports several bill denominations. The supported bill denomination for a particular currency is noted by the
list of cash units in the CurrencyCashList property.

• Consists of any combination of features to aid in the cash processing functions such as a number of slots or
bins which can hold the cash, and cash exits.

• This specification provides programmatic control only for the dispensing of cash. The accepting of cash by the
device (for example, to replenish cash) is controlled by the adjustCashCounts method, unless the device can
determine the amount of cash on its own. The application can call readCashCounts to retrieve the current unit
count for each cash unit, but cannot control when or how cash is added to the device.

• May have multiple exits. The number of exits is specified in the DeviceExits property. The application chooses
a dispensing exit by setting the CurrentExit property. The cash units which may be dispensed to the current
exit are indicated by the ExitCashList property. When CurrentExit is 1, the exit is considered the “primary
exit” which is typically used during normal processing for dispensing cash to a customer following a retail
transaction. When CurrentExit is greater than 1, the exit is considered an “auxiliary exit.” An “auxiliary exit”
typically is used for special purposes such as dispensing quantities or types of cash not targeted for the

UposConst
(f rom upos)

<<utility>>

DirectIOEvent
(f rom events)

<<event>>

StatusUpdateEvent
(f rom ev ents)

<<event>>

UposException
(f rom upos)

<<exception>>

BillDispenserConst
(f rom upos)

<<utility>>BillDispenserControl

<<capabil ity>> CapDiscrepancy : boolean
<<capabil ity>> CapEmptySensor : boolean
<<capabil ity>> CapJamSensor : Boolean
<<capabil ity>> CapNearEmptySensor : boolean
<<prop>> AsyncMode : boolean
<<prop>> AsyncRes ultCode : int32
<<prop>> AsyncRes ultCodeExtended : int32
<<prop>> CurrencyCashList : string
<<prop>> CurrencyCode : s tring
<<prop>> CurrencyCodeList : string
<<prop>> CurrentExit : int32
<<prop>> DeviceExits : int32
<<prop>> DeviceStatus : int32
<<prop>> ExitCashList : string

adjustCashCounts(cashCounts : string)
beginDeposit()
dispenseCas h(cashCounts : string)
dispenseChange(amount : int32)
endDeposit(amount : int32)
fixDeposit()
pauseDeposit(control : int32)
readCashCounts(cashCounts : string, discrepancy : boolean)

(f rom upos)

<<Interface>>

<<uses>>

<<sends>>

<<fires>>

<<fires>>
Unified POS, v1.16.1 111

“primary exit.”

• Dispenses cash into the exit specified by CurrentExit when dispenseCash is called. With dispenseCash, the
application specifies a count of each cash unit to be dispensed.

• Dispenses cash either synchronously or asynchronously, depending on the value of the AsyncMode property.
When AsyncMode is false, then the cash dispensing methods are performed synchronously and the dispense
method returns the completion status to the application.

When AsyncMode is true and no exception is thrown by dispenseCash, then the method is performed
asynchronously and its completion is indicated by a StatusUpdateEvent with its Data property set to
BDSP_STATUS_ASYNC. The request’s completion status is set in the AsyncResultCode and
AsyncResultCodeExtended properties. 

The values of AsyncResultCode and AsyncResultCodeExtended are the same as those for the ErrorCode
and ErrorCodeExtended properties of a UposException when an error occurs during synchronous dispensing.

Nesting of asynchronous Bill Dispenser operations is illegal; only one asynchronous method can be processed
at a time.

The readCashCounts method may not be called while an asynchronous method is being performed since
doing so could likely report incorrect cash counts.

• May support more than one currency. The CurrencyCode property may be set to the currency, selecting from
a currency in the list CurrencyCodeList. CurrencyCashList, ExitCashList, dispenseCash,
dispenseChange and readCashCounts all act upon the current currency only.

• Sets the cash slot (or cash bin) conditions in the DeviceStatus property to show empty and near empty status.
If there are one or more empty cash slots, then DeviceStatus is BDSP_STATUS_EMPTY.
112 Unified POS, V1.16.1

5.3.4 Bill Dispenser Sequence Diagram

: :ClientApp : BillDispenserControl ::BillDispenserService : StatusUpdateEvent

NOTE: We are assuming the clienApp has already successfully opened,
claimed and enabled the device

1: dispenseCash(string)

2: dispenseCash(string)
Assume Bill
Dispenser is
getting low

3: update deviceStatus to BDSP_STATUS_NEAREMPTY (CapNearEmptySensor = true)

4: create new SUE Event

5: deliver SUE to control

6: notify ClientApp of new event
Unified POS, v1.16.1 113

5.3.5 Bill Dispenser State Diagram

5.3.6 Device Sharing

The Bill Dispenser is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing some of the properties, dispensing or
collecting, or receiving events.

• See the “Summary” table for precise usage prerequisites.

Closed Opened
Claimed

Enabled

Empty

Jammed

Fire Events

Has Bills

Synchronous

Asynchronous

Near Empty

Synchronous

Asynchronous

open

close

claim

release

setDeviceEnabled(true)

adCashCounts

Empty

Jammed

Fire Events

Has Bills

Synchronous

Asynchronous

Near Empty

Synchronous

Asynchronous

Synchronous

Asynchronous

Synchronous

Asynchronous

setDeviceEnabled(false)release

close

fire events

jams

fire events
fire events

fires events

done

done
done

done

done

jams

fire events

dispenseCashdispenseCash

setAsyncMode(false)

setAsyncMode(true)

setAsyncMode(false)
setAsyncMode(true)
114 Unified POS, V1.16.1

5.4 Properties (UML attributes)

5.4.1 AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, the dispenseCash method will be performed asynchronously. If false, this method will be
performed synchronously.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also AsyncResultCode Property, AsyncResultCodeExtended Property, dispenseCash Method.

5.4.2 AsyncResultCode Property

Syntax AsyncResultCode: int32 { read-only, access after open-claim-enable }

Remarks Holds the completion status of the last asynchronous dispense request (i.e., when dispenseCash was
called with AsyncMode true).

This property is set before a StatusUpdateEvent is delivered with a Status value of
BDSP_STATUS_ASYNC.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also AsyncMode Property, dispenseCash Method.

5.4.3 AsyncResultCodeExtended Property

Syntax AsyncResultCodeExtended: int32 { read-only, access after open-claim-enable}

Remarks Holds the completion status of the last asynchronous dispense request (i.e., when dispenseCash was
called with AsyncMode true).

This property is set before a StatusUpdateEvent is delivered with a Status value of
BDSP_STATUS_ASYNC.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also AsyncMode Property, dispenseCash Method.
Unified POS, v1.16.1 115

5.4.4 CapDiscrepancy Property

Syntax CapDiscrepancy: boolean { read-only, access after open }

Remarks If true, the readCashCounts method can report effective discrepancy values.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also readCashCounts Method.

5.4.5 CapEmptySensor Property

Syntax CapEmptySensor: boolean { read-only, access after open }

Remarks If true, the Bill Dispenser can report the condition that some cash slots are empty.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also DeviceStatus Property, StatusUpdateEvent.

5.4.6 CapJamSensor Property

Syntax CapJamSensor: boolean { read-only, access after open }

Remarks If true, the Bill Dispenser can report the occurrence of a mechanical fault in the Bill Dispenser.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also DeviceStatus Property, StatusUpdateEvent.

5.4.7 CapNearEmptySensor Property

Syntax CapNearEmptySensor: boolean { read-only, access after open }

Remarks If true, the Bill Dispenser can report the condition that some cash slots are nearly empty.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also DeviceStatus Property, StatusUpdateEvent.
116 Unified POS, V1.16.1

5.4.8 CurrencyCashList Property

Syntax CurrencyCashList: string { read-only, access after open }

Remarks Holds the cash units supported in the Bill Dispenser for the currency represented by the CurrencyCode
property.

The string consists of an ASCII semicolon character (“;”) followed by ASCII numeric comma delimited
units of bills that can be used with the Bill Dispenser. The semicolon (“;”) is present to indicate the units
are bills. This is used for merging multiple device services into the Cash Changer.


Below are sample CurrencyCashList values in Japan.

• “;1000,5000,10000” ---
1000, 5000, 10000 yen bill.

This property is initialized by the open method, and is updated when CurrencyCode is set.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CurrencyCode Property.

5.4.9 CurrencyCode Property

Syntax CurrencyCode: string { read-write, access after open }

Remarks Contains the active currency code to be used by Bill Dispenser operations. This property is initialized to
an appropriate value by the open method. This value is guaranteed to be one of the set of currencies
specified by the CurrencyCodeList property.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL A value was specified that is not within CurrencyCodeList.

See Also CurrencyCodeList Property.

5.4.10 CurrencyCodeList Property

Syntax CurrencyCodeList: string { read-only, access after open }

Remarks Holds a list of ASCII three-character ISO 4217 currency codes separated by commas. For example, if the
string is “JPY,USD”, then the Bill Dispenser supports both Japanese and U.S. monetary units.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CurrencyCode Property.
Unified POS, v1.16.1 117

5.4.11 CurrentExit Property

Syntax CurrentExit: int32 { read-write, access after open }

Remarks Holds the current cash dispensing exit. The value 1 represents the primary exit (or normal exit), while
values greater than 1 are considered auxiliary exits. Legal values range from 1 to DeviceExits.

Below are examples of typical property value sets in Japan. CurrencyCode is “JPY” and
CurrencyCodeList is “JPY.”

• Bill Dispenser supports bills; an auxiliary exit is used for larger quantities of bills:
CurrencyCashList = “;1000,5000,10000”
DeviceExits = 2
When CurrentExit = 1 : ExitCashList = “;1000,5000”
When CurrentExit = 2 : ExitCashList = “;1000,5000,10000”

This property is initialized to 1 by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid CurrentExit value was specified.

See Also CurrencyCashList Property, DeviceExits Property, ExitCashList Property.

5.4.12 DeviceExits Property

Syntax DeviceExits: int32 { read-only, access after open }

Remarks The number of exits for dispensing cash.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CurrentExit Property.
118 Unified POS, V1.16.1

5.4.13 DeviceStatus Property

Syntax DeviceStatus: int32 { read-only, access after open-claim-enable }

Remarks Holds the current status of the Bill Dispenser. It may be one of the following:

Value Meaning
BDSP_STATUS_OK The current condition of the Bill Dispenser is satisfactory.
BDSP_STATUS_EMPTY

Some cash slots are empty.
BDSP_STATUS_NEAREMPTY

Some cash slots are nearly empty.
BDSP_STATUS_JAM A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. If more than one condition is
present, then the order of precedence starting at the highest is: fault, empty, and near empty.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

5.4.14 ExitCashList Property

Syntax ExitCashList: string { read-only, access after open }

Remarks Holds the cash units which may be dispensed to the exit which is denoted by CurrentExit property. The
supported cash units are either the same as CurrencyCashList, or a subset of it. The string format is
identical to that of CurrencyCashList.

This property is initialized by the open method, and is updated when CurrencyCode or CurrentExit is
set.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CurrencyCode Property, CurrencyCashList Property, CurrentExit Property.
Unified POS, v1.16.1 119

5.5 Methods (UML operations)

5.5.1 adjustCashCounts Method Updated in Release 1.12

Syntax adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cashCounts parameter contains cash types and amounts to be initialized.

Remarks This method is called to set the initial amounts in the Bill Dispenser after initial setup, or to adjust cash
counts after replenishment or removal, such as a paid in or paid out operation. This method is called when
needed for devices which cannot determine the exact amount of cash in them automatically. If the device
can determine the exact amount, then this method call is ignored. The application would first call
readCashCounts to get the current counts, and adjust them to the amount being replenished. Then the
application will call this method to set the amount currently in the changer.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and string returned in cashCounts is set to:

“;1000:80,5000:77,10000:0”

as a result of calling the readCashCounts method, then there would be 80 one thousand yen bills and 77
five thousand yen bills in the Bill Dispenser.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cash units and counts cannot be initialized because an asynchronous method

is outstanding.

See Also readCashCounts Method.

5.5.2 dispenseCash Method

Syntax dispenseCash (cashCounts: string):
void { raises-exception, use after open-claim-enable }

The cashCounts parameter contains the dispensing cash units and counts, represented by the format of
“;cash unit:cash counts,, cash unit:cash counts.” Units must be preceded by “;” to represent bills.

Remarks Dispenses the cash from the Bill Dispenser into the exit specified by CurrentExit. The cash dispensed
is specified by pairs of cash units and counts.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.
120 Unified POS, V1.16.1

Some cashCounts examples, using Japanese yen as the currency, are shown below.

• “;1000:10”
Dispense 10 one thousand yen bills.

• “;1000:10,10000:5”
Dispense 10 one thousand yen bills and 5 ten thousand yen bills.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cash cannot be dispensed because an asynchronous method is in progress.

E_ILLEGAL One of the following errors occurred:
The cashCounts parameter value was illegal for the current exit.

E_EXTENDED ErrorCodeExtended = EBDSP_OVERDISPENSE:
The specified cash cannot be dispensed because of a cash shortage.

See Also AsyncMode Property, CurrentExit Property.

5.5.3 readCashCounts Method Updated in Release 1.12

Syntax readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cash count data is placed into cashCounts.

discrepancy If discrepancy is set to true by this method, then there is some cash which was
not able to be included in the counts reported in cashCounts; otherwise it is
set false.

Remarks The format of the string cashCounts is the same as cashCounts in the dispenseCash method. Each unit
in cashCounts matches a unit in the CurrencyCashList property, and is in the same order.

For example if the currency is Japanese yen and string returned in cashCounts is set to:

“;1000:80,5000:77,10000:0”

as a result of calling the readCashCounts method, then there would be 80 one thousand yen bills and 77
five thousand yen bills in the Bill Dispenser.

If CapDiscrepancy property is false, then discrepancy is always false.

Usually, the cash total calculated by cashCounts parameter is equal to the cash total in a Bill Dispenser.
There are some cases where a discrepancy may occur because of existing uncountable cash in a Bill
Dispenser. An example would be when a bill dispenser has diverted unusable bill to a holding area.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cash units and counts cannot be read because an asynchronous method is in

process.

See Also CapDiscrepancy Property, CurrencyCashList Property, dispenseCash Method.
Unified POS, v1.16.1 121

5.6 Events (UML interfaces)

5.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Bill Dispenser Service to provide events to the application that are not otherwise supported by
the Control

Attributes This event contains the following attributes:

Attributes Type Description 
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and the
Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service. This
property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Bill Dispenser
devices which may not have any knowledge of the Service’s need for this event.

See Also “Events Updated in Release 1.12” on page 15, directIO Method.

5.6.2 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the Bill Dispenser device.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Indicates a change in the status of the unit. See values below.

Note that Release 1.3 added Power State Reporting with additional Power
reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 2.

The Status parameter contains the Bill Dispenser status condition:
122 Unified POS, V1.16.1

Value Meaning
BDSP_STATUS_EMPTY Some cash slots are empty.
BDSP_STATUS_NEAREMPTY Some cash slots are nearly empty.
BDSP_STATUS_EMPTYOK No cash slots are either empty or nearly empty.
BDSP_STATUS_JAM A mechanical fault has occurred.
BDSP_STATUS_JAMOK A mechanical fault has recovered.
BDSP_STATUS_ASYNC Asynchronously performed method has completed.

Remarks Fired when the Bill Dispenser detects a status change.

For changes in the fullness levels, the Bill Dispenser is only able to fire StatusUpdateEvents when the
device has a sensor capable of detecting the full, near full, empty, and/or near empty states and the
corresponding capability properties for these states are set.

Jam conditions may be reported whenever this condition occurs; likewise for asynchronous method
completion.

The completion statuses of asynchronously performed methods are placed in the AsyncResultCode and
AsyncResultCodeExtended properties.

See Also AsyncResultCode Property, AsyncResultCodeExtended Property, “Events Updated in Release 1.12”
on page 15.
Unified POS, v1.16.1 123

124 Unified POS, V1.16.1

6 Biometrics

6.1 General

This Chapter defines the Biometrics device category.

6.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.10 open

CapCompareFirmwareVersion: boolean { read-only } 1.10 open

CapPowerReporting: int32 { read-only } 1.10 open

CapStatisticsReporting: boolean { read-only } 1.10 open

CapUpdateFirmware: boolean { read-only } 1.10 open

CapUpdateStatistics: boolean { read-only } 1.10 open

CheckHealthText: string { read-only } 1.10 open

Claimed: boolean { read-only } 1.10 open

DataCount: int32 { read-only } 1.10 open

DataEventEnabled: boolean { read-write } 1.10 open

DeviceEnabled: boolean { read-write } 1.10 open & claim

FreezeEvents: boolean { read-write } 1.10 open

OutputID: int32 { read-only } 1.10 Not supported

PowerNotify: int32 { read-write } 1.10 open

PowerState: int32 { read-only } 1.10 open

State: int32 { read-only } 1.10 --

DeviceControlDescription: string { read-only } 1.10 --

DeviceControlVersion: int32 { read-only } 1.10 --

DeviceServiceDescription: string { read-only } 1.10 open

DeviceServiceVersion: int32 { read-only } 1.10 open

PhysicalDeviceDescription: string { read-only } 1.10 open

PhysicalDeviceName: string { read-only } 1.10 open
Unified POS, v1.16.1 125

Properties (Continued)

Specific: Type Mutability Version May Use After

Algorithm: int32 { read-write } 1.10 open & claim

AlgorithmList: string { read-only } 1.10 open

BIR: binary { read-only } 1.10 open & claim

CapPrematchData: boolean { read-only } 1.10 open

CapRawSensorData: boolean { read-only } 1.10 open

CapRealTimeData: boolean { read-only } 1.10 open

CapSensorColor: int32 { read-only } 1.10 open

CapSensorOrientation: int32 { read-only } 1.10 open

CapSensorType: int32 { read-only } 1.10 open

CapTemplateAdaptation: boolean { read-only } 1.10 open

RawSensorData: binary { read-only } 1.10 open & claim

RealTimeDataEnabled: boolean { read-write } 1.10 open

SensorBPP: int32 { read-only } 1.10 open

SensorColor: int32 { read-write } 1.10 open

SensorHeight: int32 { read-only } 1.10 open

SensorOrientation: int32 { read-write } 1.10 open, claim, & enable

SensorType: int32 { read-write } 1.10 open, claim, & enable

SensorWidth: int32 { read-only } 1.10 open

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.10

close ():
void { raises-exception, use after open }

1.10

claim (timeout: int32):
void { raises-exception, use after open }

1.10

release ():
void { raises-exception, use after open, claim }

1.10

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.10

clearInput ():
void { raises-exception, use after open, claim }

1.10
126 Unified POS, V1.16.1

clearInputProperties ():
void { raises-exception, use after open, claim }

1.10

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.10

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.10

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.10

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.10

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.10

updateStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.10

SpecificUpdated in Release 1.11

Name

beginEnrollCapture (referenceBIR: binary, payload: binary):
void { raises-exception, use after open, claim, enable }

1.10

beginVerifyCapture ():
void { raises-exception, use after open, claim, enable }

1.10

endCapture ():
void { raises-exception, use after open, claim, enable }

1.10

identify (maxFARRequested: int32, maxFRRRequested: int32,
FARPrecedence: boolean, referenceBIRPopulation: array of binary, inout
candidateRanking: int32 array, timeout: int32):

void { raises-exception, use after open, claim, enable }

1.11

identifyMatch (maxFARRequested: int32, maxFRRRequested: int32,
FARPrecedence: boolean, sampleBIR: binary, referenceBIRPopulation:
array of binary, inout candidateRanking: int32 array):

void { raises-exception, use after open, claim, enable }

1.11

processPrematchData (capturedBIR: binary, prematchDataBIR: binary,
inout processedBIR: binary):

void { raises-exception, use after open, claim, enable }

1.10

identifyMatch (maxFARRequested: int32, maxFRRRequested: int32,
FARPrecedence: boolean, sampleBIR: binary, referenceBIRPopulation:
array of binary, inout candidateRanking: int32 array):

void { raises-exception, use after open, claim, enable }

1.11

processPrematchData (capturedBIR: binary, prematchDataBIR: binary,
inout processedBIR: binary):

void { raises-exception, use after open, claim, enable }

1.10
Unified POS, v1.16.1 127

verify (maxFARRequested: int32, maxFRRRequested: int32,
FARPrecedence: boolean, referenceBIR: binary, inout adaptedBIR:
binary, inout result: boolean, inout FARAchieved: int32, inout
FRRAchieved: int32, inout payload: binary, timeout: int32):

void { raises-exception, use after open, claim, enable }

1.10

verifyMatch (maxFARRequested: int32, maxFRRRequested: int32,
FARPrecedence: boolean, sampleBIR: binary, referenceBIR: binary, inout
adaptedBIR: binary, inout result: boolean, inout FARAchieved: int32,
inout FRRAchieved: int32, inout payload: binary):

void { raises-exception, use after open, claim, enable }

1.10

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent 1.10

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.10

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.10

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.10

 Status: int32 { read-only }
128 Unified POS, V1.16.1

6.3 General Information

6.3.1 Capabilities

All Biometric devices have the following capabilities:

• The device captures biometrics data from a biometrics sensor. The biometrics data is in the form of a
Biometrics Information Record (BIR) containing one or more Biometrics Data Blocks (BDB) which in turn
contain one or more biometric data samples or biometric templates.
This standard uses the term template (as adapted from the BioAPI1) to refer to the biometric enrollment data
for a user. The term biometric information record (BIR) refers to any biometric data that is returned to the
application; including raw data, intermediate data, processed sample(s) ready for verification or identification,
as well as enrollment data. Typically, the only data stored persistently by the application is the BIR generated
for enrollment (i.e., the template). The format of the Opaque Biometric Data Block (BDB) is indicated by the
Format field of the Header. This may be a standard or proprietary format. The BDB may be encrypted. The
digital signature is optional, and may be used to ensure integrity of the data during transmission and storage.
When present, it is calculated on the Header + BDB. For standardized BIR formats, the signature will take a
standard form (to be determined when the format is standardized). For proprietary BIR formats (all that exists
at the present time), the signature can take any form that suits the Service. For this reason, there is no C
structure definition of the signature. The BIR Data Type indicates whether the BIR is signed and/or encrypted.

• The Device captures Biometric data for the purposes of enrollment. The notion of enrollment requires a higher
level of quality for the final BIR that is created. Generally, the BIR will be the aggregation of series of
biometric captures.

1. BioAPI is defined by the BioAPI consortium (www.bioapi.org).
Unified POS, v1.16.1 129

• The Device captures Biometric data for the purposes of verification. Verification does not require the same
level of quality as enrollment.

• The Device has the ability to determine if two BIRs match within the degree of error specified by the False
Accept Rate (FAR) and False Reject Rate (FRR). The FAR is the margin of percentage error acceptable that
two non-matching biometric samples will be falsely deemed to match. The FRR is the margin of percentage
error acceptable that two matching biometric samples will be falsely deemed not to match.

• The Device has the ability to compare a BIR against a sample population of BIRs and create a rank ordering of
the population for identification purposes.

Some Biometrics Device may have the following additional capabilities:

• The Device Returns the raw biometric data in “real time” as it is captured by the device. If this capability is
true and has been enabled by application by setting the RealTimeDataEnabled property to true, then a series
of StatusUpdateEvents are enqueued, each as a raw image defined by SensorBPP, SensorColor,
SensorHeight, and SensorWidth representing a partial biometrics image capture.
130 Unified POS, V1.16.1

6.3.2 Biometrics Class Diagram

The following diagram shows the relationships between the Biometrics classes.

+beginEnrollCapture() : void
+beginVerifyCapture() : void
+endCapture() : void
+identify() : void
+identifyMatch() : void
+processPrematchData() : void
+verify() : void
+verifyMatch() : void

+Algorithm : int32
+AlgorithmList : string
+BIR : binary
+CapPrematchData : boolean
+CapRawSensorData : boolean
+CapRealTimeData : boolean
+CapSensorColor : int32
+CapSensorOrientation : int32
+CapSensorType : int32
+CapTemplateAdaption : boolean
+RawSensorData : binary
+RealTimeDataEnabled : boolean
+SensorBPP : int32
+SensorColor : int32
+SensorHeight : int32
+SensorOrientation : int32
+SensorType : int32
+SensorWidth : int32

«interface»
BiometricsControl

+EventNumber : int32
+Data : int32
+Obj : object

«event»
DirectIOEvent

«fires»

+Status : int32

«event»
DataEvent

«fires»

+ErrorCode : int32
+ErrorCodeExtended : int32
+ErrorLocus : int32
+ErrorResponse : int32

«event»
ErrorEvent

+Status : int32

«event»
StatusUpdateEvent

«fires»

«fires»

«exception»
UposException

«sends»

«sends»

«utility»
BiometricsConst

«utility»
UposConst

«uses»

«uses»«interface»
BaseControl

Note: Method parameters are
not listed due to space
limitations - refer to the
Methods section for details.
Unified POS, v1.16.1 131

6.3.3 Model

The Biometrics device usage model is:

• Open and claim the device.

• Enable the device and set the property DataEventEnabled to true.

• Begin capturing biometrics data by calling on of the following asynchronous methods beginVerifyCapture or
beginEnrollCapture. These methods activate the biometrics sensor to begin acquiring the biometrics data in
the relevant manner for the particular biometrics device. The result biometric data is stored in the BIR
property. The BIR data can be provided to the identifyMatch method and verifyMatch method for
comparison and matching purposes. The archival process of the BIR for future verification is application
dependent.

• Perform synchronous biometric verifications through the verify method or synchronous biometric
identifications through the identify method.

• If the device is capable of supplying biometrics data in real time as the biometric sample is captured
(CapRealTimeData is true), and if RealTimeDataEnabled is true, the biometrics data is presented to the
application as a series of partial biometric data through the RawSensorData property and notified to the
application through StatusUpdateEvents until the biometric sample is fully acquired. RawSensorData is not
queued rather it is up to the application to capture the data upon receiving the StatusUpdateEvent.

The Biometrics Device follows the general “Device Input Model” for event-driven input:

• When input is received by the Service, it enqueues a DataEvent.

• If AutoDisable is true, then the Device automatically disables itself when a DataEvent is enqueued.

• A queued DataEvent can be delivered to the application when the property DataEventEnabled is true and
other event delivery requirements are met. Just before delivering this event, data is copied into properties, and
further data events are disabled by setting DataEventEnabled to false. This causes subsequent input data to be
enqueued while the application processes the current input and associated properties. When the application has
finished processing the current input and is ready for more data, it re-enables events by setting
DataEventEnabled to true.

• An ErrorEvent (or events) is enqueued if the an error occurs while gathering or processing input, and is
delivered to the application when DataEventEnabled is true and other event delivery requirements are met.

• The DataCount property may be read to obtain the number of queued DataEvents.

• All enqueued input may be deleted by calling clearInput. See the clearInput method description for more
details.

Deviations from the general “Device Input Model” for event-driven input are:

• The capture of biometrics data begins when beginEnrollCapture or beginVerifyCapture is called.

• If biometrics capture is terminated by calling endCapture, then no DataEvent or ErrorEvent will be
enqueued.
132 Unified POS, V1.16.1

6.3.4 Device Sharing

The Biometrics is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing many of the Biometrics specific properties.

• The application must claim and enable the device before calling methods that manipulate the device or before
changing some writable properties.

• See the “Summary” table for precise usage prerequisites.
Unified POS, v1.16.1 133

6.3.5 Biometrics Sequence Diagrams

The following diagram illustrates the enrollment sequence for the Biometrics device category.

Application Biometrics Control Biometrics Service Hardware

NOTE: Assumes that the Applciation has already successfully opened, claimed and enabled the control and is registered to receive events from the control.

1: setDataEventEnabled(true)

2: setDataEventEnabled(true)

3: beginEnrollCapture()

4: beginEnrollCapture()

5: Enable hardware capture

6: Data captured and delivered

7: Create and fire a Data Event

8: Data Event delivered

9: getBIR()

10: getBIR()

11: BIR data returned

12: BIR data returned

13: BIR data persisted
134 Unified POS, V1.16.1

The following diagram illustrates the verify sequence for the Biometrics device category.

Application Biometrics Control Biometrics Service Hardware

NOTE: Assumes that the Applciation has already successfully opened, claimed and enabled the control and is registered to receive events from the control.

1: setDataEventEnabled(true)

2: setDataEventEnabled(true)

3: beginVerifyCapture()

4: beginVerifyCapture()

5: Enable hardware capture

6: Data captured and delivered

7: Create and fire a Data Event

8: Data Event delivered

9: getBIR()

10: getBIR()

11: BIR data returned

12: BIR data returned

13: verify()

14: verify()

The application provides a set of enrollment BIRs from which a match is to be found.

15: Hardware compares each enrollment BIR against the verify BIR

16: Hardware returns match data

17: Return status and match data

18: Return status and match data
Unified POS, v1.16.1 135

The following diagram illustrates the verify - match sequence for the Biometrics device category.

Application Biometrics Control Biometrics Service Hardware

NOTE: Assumes that the Applciation has already successfully opened, claimed and enabled the control and is registered to receive events from the control.

1: setDataEventEnabled(true)

2: setDataEventEnabled(true)

3: beginVerifyCapture()

4: beginVerifyCapture()

5: Enable hardware capture

6: Data captured and delivered

7: Create and fire a Data Event

8: Data Event delivered

9: getBIR()

10: getBIR()

11: BIR data returned

12: BIR data returned

13: verifyMatch()

14: verifyMatch()

The application provides the enrollment BIR of the user to verify.

15: Hardware compares enrollment BIR against verify BIR

16: Hardware returns match data

17: Return status and match data

18: Return status and match data
136 Unified POS, V1.16.1

6.3.6 Biometrics State Diagram

The following diagram illustrates the various state transitions within the Biometrics device category.

Closed Opened Claimed

Enabled

Enroll Capture

Verify Capture

Identify

Identify Matching Preprocess Data Verify

Verify Matching

/ open()

/ close()

/ close()

/ close()

/ claim()

/ release()

/ release() / setDeviceEnabled(true)
/ setDeviceEnabled(false)

/ beginEnrollCapture()

/ endCapture()
/ endCapture()

/ beginVerifyCapture()

/ identify()

/ identifyMatch() / processPrematchData() / verify()

/ verifyMatch()

/ DataEvent fired
/ DataEvent fired
Unified POS, v1.16.1 137

6.4 Properties (UML Attributes)

6.4.1 Algorithm Property

Syntax Algorithm: int32 { read-write, access after open-claim }

Remarks Contains the biometric algorithm currently in use for generating the biometrics template. The values can
be set to index the values contained in AlgorithmList. For example:

Value Meaning
0 Default value
1 First algorithm in AlgorithmList
2 Second algorithm in AlgorithmList, etc.

This property can only be updated when the device is opened and claimed, but not enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also AlgorithmList Property.

6.4.2 AlgorithmList Property

Syntax AlgorithmList: string { read-only, access after open }

Remarks Contains the comma-delimited list of algorithms that are supported by the device.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16

See Also Algorithm Property.

6.4.3 BIR Property 2

Syntax BIR: binary { read-only, access after open-claim-enable }3

Remarks This standard uses the term template to refer to the biometric enrollment data for a user. The term
biometric information record (BIR) refers to any biometric data that is returned to the application;
including raw data, intermediate data, processed sample(s) ready for verification or identification, as well
as enrollment data. Typically, the only data stored persistently by the application is the BIR generated
for enrollment (i.e., the template). The format of the Opaque Biometric Data Block (BDB) is indicated
by the Format field of the Header. This may be a standard or proprietary format. The BDB may be
encrypted. The digital signature is optional, and may be used to ensure integrity of the data during
transmission and storage. When present, it is calculated on the Header + BDB.

2. Biometrics Information Record (BIR) was originally defined by the BioAPI consortium
(www.bioapi.org).

3. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.
138 Unified POS, V1.16.1

For standardized BIR formats, the signature will take a standard form (to be determined when the format
is standardized). For proprietary BIR formats (all that exists at the present time), the signature can take
any form that suits the Service. For this reason, there is no C structure definition of the signature. The
BIR Data Type indicates whether the BIR is signed and/or encrypted.

Processed biometric data obtained through the methods beginEnrollCapture, beginVerifyCapture,
and verify are stored in this property upon successful completion.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also beginEnrollCapture Method, beginVerifyCapture Method, verify Method.

6.4.4 CapPrematchData Property Updated in Release 1.11

Syntax CapPrematchData: boolean { read-only, access after open }

Remarks If true, the Service is capable of using MOC (Match-On-Card) SmartCard technology to generate a
processed BIR based on prematch data stored on a SmartCard.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also processPrematchData Method.
Unified POS, v1.16.1 139

6.4.5 CapRawSensorData Property Updated in Release 1.12

Syntax CapRawSensorData: boolean { read-only, access after open }

Remarks If true, the Service is able to return unprocessed raw data from the biometrics sensor.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also RawSensorData Property.

6.4.6 CapRealTimeData Property Updated in Release 1.12

Syntax CapRealTimeData: boolean { read-only, access after open }

Remarks If true, the device is able to supply raw biometrics data as the biometrics information is being captured
(“real time”). This property value will be false if CapRawSensorData is false, since real time data is
only delivered via the RawSensorData property which requires that CapRawSensorData is true.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also RawSensorData Property, SensorBPP Property, SensorColor Property, SensorHeight Property,
SensorWidth Property.

6.4.7 CapSensorColor Property

Syntax CapSensorColor: int32 { read-only, access after open }

Remarks This capability indicates if this device supports image formats other than bi-tonal. CapSensorColor is a
logical OR combination of any of the following values:

Value Meaning
BIO_CSC_MONO Bi-tonal (B/W)
BIO_CSC_GRAYSCALE Gray scale
BIO_CSC_16 16 Colors
BIO_CSC_256 256 Colors
BIO_CSC_FULL Full colors

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.
140 Unified POS, V1.16.1

6.4.8 CapSensorOrientation Property

Syntax CapSensorOrientation: int32 { read-only, access after open }

Remarks This capability indicates the ability of the sensor image to be rotated prior to processing.
CapSensorOrientation is a logical OR combination of any of the following values:

Value Meaning
BIO_CSO_NORMAL 0°
BIO_CSO_RIGHT 90°
BIO_CSO_INVERTED 180°
BIO_CSO_LEFT 270°

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

6.4.9 CapSensorType Property Updated in Release 1.11

Syntax CapSensorType: int32 { read-only, access after open-claim-enable }

Remarks This capability indicates the types of biometrics data that can be captured by the attached sensor.
CapSensorType is a logical OR combination of any of the following values:

Value Meaning
BIO_CST_FACIAL_FEATURES Facial Features/Topography
BIO_CST_VOICE Voice
BIO_CST_FINGERPRINT Fingerprint
BIO_CST_IRIS Iris
BIO_CST_RETINA Retina
BIO_CST_HAND_GEOMETRY Hand Geometry
BIO_CST_SIGNATURE_DYNAMICS Signature
BIO_CST_KEYSTROKE_DYNAMICS Keystrokes
BIO_CST_LIP_MOVEMENT Lip Movement
BIO_CST_THERMAL_FACE_IMAGE Face Image
BIO_CST_THERMAL_HAND_IMAGE Hand Image
BIO_CST_GAIT Gait/Stride
BIO_CST_PASSWORD Password

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also SensorType Property.
Unified POS, v1.16.1 141

6.4.10 CapTemplateAdaptation Property

Syntax CapTemplateAdaptation: boolean { read-only, access after open }

Remarks If true, the Service is able to return an adapted BIR that is the result of updating a reference BIR with
information taken from a sample BIR or capture BIR. The purpose of this adaptation is to keep the
reference BIR current as biometric data shifts over time.

This capability must be populated after open, claim, and enable because it is dependent on the selected
Algorithm.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also Algorithm Property, BIR Property, Verify Method, VerifyMatch Method.

6.4.11 RawSensorData Property Updated in Release 1.12

Syntax RawSensorData: binary { read-only, access after open-claim-enable }4

Remarks Holds the biometrics image data as raw pixel data scan lines from the top, left to the bottom, right.
SensorHeight and SensorWidth define the number of pixels. SensorBPP defines the number of bits per
pixel. SensorColor defines the interpretation of the pixel data. If CapRawSensorData is false, then this
property contains no meaningful value.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CapRawSensorData Property, CapRealTimeData Property, RealTimeDataEnabled Property,
SensorBPP Property, SensorColor Property, SensorHeight Property, SensorWidth Property.

6.4.12 RealTimeDataEnabled Property Updated in Release 1.12

Syntax RealTimeDataEnabled: boolean { read-write, access after open }

Remarks If true, then StatusUpdateEvents will be fired as updated partial biometric data is captured until
biometric capture is completed. Otherwise, the captured biometric data is enqueued as a single
DataEvent when biometric capture is completed.

Setting RealTimeDataEnabled will not cause any change in system behavior until a subsequent
beginEnrollCapture or beginVerifyCapture method is performed. This prevents confusion regarding
what would happen if it were modified between a beginEnrollCapture - endCapture or
beginVerifyCapture - endCapture pairing.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

4. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion property. See
BinaryConversion property in Annex A.
142 Unified POS, V1.16.1

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Cannot set to true because CapRealTimeData is false.

See Also CapRealTimeData Property, RawSensorData Property, SensorBPP Property, SensorColor Property,
SensorHeight Property, SensorWidth Property, beginEnrollCapture Method, beginVerifyCapture
Method, endCapture Method.

6.4.13 SensorBPP Property

Syntax SensorBPP: int32 { read-only, access after open }

Remarks Holds the Bit Per Pixel (BPP) encoding of the RawSensorData.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

6.4.14 SensorColor Property Updated in Release 1.11

Syntax SensorColor: int32 { read-write, access after open }

Remarks This property is used to select the image capture mode for subsequent biometric capture operations.
Certain SensorType devices may not work with all the “colors” or color image type may not make sense.
Changing the SensorColor property will not affect any previously stored data currently residing in the
RawSensorData property or BIR property.

It may contain one of the following values:

Value Meaning
BIO_SC_MONO Bi-tonal (B/W)
BIO_SC_GRAYSCALE Gray scale
BIO_SC_16 16 Colors
BIO_SC_256 256 Colors
BIO_SC_FULL Full color

This property can only be set to a value if the value is defined in CapSensorColor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid sensor color specified. See CapSensorColor.

See Also CapSensorColor Property, RawSensorData Property, SensorBPP Property, SensorHeight Property,
SensorWidth Property.
Unified POS, v1.16.1 143

6.4.15 SensorHeight Property

Syntax SensorHeight: int32 { read-only, access after open }

Remarks Holds the height of the RawSensorData in pixels.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

6.4.16 SensorOrientation Property Updated in Release 1.11

Syntax SensorOrientation: int32 { read-write, access after open-claim }

Remarks Holds the requested orientation adjustment to the received sensor data prior to BIR creation.

Value Meaning
BIO_SO_NORMAL 0°
BIO_SO_RIGHT 90°
BIO_SO_INVERTED 180°
BIO_SO_LEFT 270°

This property can only be updated when the device is opened and claimed, but not enabled.

This property can only be set to a value if the value is defined in CapSensorOrientation.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid sensor orientation specified. See CapSensorOrientation.

See Also CapSensorOrientation Property.
144 Unified POS, V1.16.1

6.4.17 SensorType Property Updated in Release 1.11

Syntax SensorType: int32 { read-write, access after open-claim-enable }

Remarks Holds the type of biometrics sensor being accessed.

Value Meaning
BIO_ST_FACIAL_FEATURES Facial Topography
BIO_ST_VOICE Voice
BIO_ST_FINGERPRINT Fingerprint
BIO_ST_IRIS Iris
BIO_ST_RETINA Retina
BIO_ST_HAND_GEOMETRY Hand Geometry
BIO_ST_SIGNATURE_DYNAMICS Signature
BIO_ST_KEYSTROKE_DYNAMICS Keystrokes
BIO_ST_LIP_MOVEMENT Lip Movement
BIO_ST_THERMAL_FACE_IMAGE Thermal Face Image
BIO_ST_THERMAL_HAND_IMAGE Thermal Hand Image
BIO_ST_GAIT Gait/Stride
BIO_ST_PASSWORD Password

This property can only be set to a value if the value is defined in CapSensorType.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid sensor type specified. See CapSensorType.

See Also CapSensorType Property.

6.4.18 SensorWidth Property

Syntax SensorWidth: int32 { read-only, access after open }

Remarks Holds the width of the RawSensorData in pixels.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also RawSensorData Property.
Unified POS, v1.16.1 145

6.5 Methods (UML operations)

6.5.1 beginEnrollCapture Method Updated in Release 1.11

Syntax beginEnrollCapture (referenceBIR: binary, payload: binary):
void { raises-exception, use after open-claim-enable }

Parameter Description
referenceBIR5 Optional BIR to be adapted (updated). This parameter is ignored, if EMPTY.
payload5 Data that will be stored by the BSP. This parameter is ignored, if EMPTY.

Remarks Starts capturing biometrics data for purposes of enrollment. Although not required, enrollment captures
customarily result in a series of biometrics data captures whose aggregation form the final BIR.
Optionally if CapTemplateAdaptation is true, a referenceBIR can be provided for adaptation with the
enrollment. If a payload is provided that data is added into the resulting BIR.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_FAILURE referenceBIR could not be adapted.
E_ILLEGAL Biometrics capture is already in progress.

See Also BIR Property, CapTemplateAdaptation Property, endCapture Method.

6.5.2 beginVerifyCapture Method Updated in Release 1.11

Syntax beginVerifyCapture ():

void { raises-exception, use after open-claim-enable }

Remarks Starts capturing biometrics data for the purposes of verification. The resulting processed data is stored in
the BIR.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Biometrics capture is already in progress.

See Also BIR Property, endCapture Method.

5. In the OPOS environment, the format of referenceBIR and payload depends upon the value of the
BinaryConversion property. See BinaryConversion property in Annex A.
146 Unified POS, V1.16.1

6.5.3 endCapture Method

Syntax endCapture():
void { raises-exception, use after open-claim-enable }

Remarks Stops (terminates) capturing biometrics data.

If RealTimeDataEnabled is false and biometrics data was captured, then it is placed in the properties
BIR and RawSensorData. If no biometrics data was captured, then BIR and RawSensorData are
EMPTY.

If RealTimeDataEnabled is true and there is biometric data remaining which have not been delivered
to the application by a StatusUpdateEvent, then the remaining biometric data is placed into the
properties BIR and RawSensorData. If no biometrics data was captured or all biometric data has been
delivered to the application, then BIR and RawSensorData are EMPTY.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Biometrics capture was not in progress.

See Also BIR Property, RawSensorData Property, RealTimeDataEnabled Property, beginEnrollCapture
Method, beginVerifyCapture Method, DataEvent.

6.5.4 identify Method Updated in Release 1.12

Syntax identify (maxFARRequested: int32, maxFRRRequested: int32, FARPrecedence: boolean,
referenceBIRPopulation: array of binary,

 inout candidateRanking: int32 array, timeout: int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
maxFARRequested The requested FAR criterion for successful verification, as defined in the

BioAPI specification.
maxFRRRequested The requested FRR criterion for successful verification, as defined in the

BioAPI specification. If zero, then this criterion is not provided.
FARPrecedence If both criteria are provided, this parameter indicates which takes precedence.

BIO_FAR_PRECEDENCE (TRUE) indicates that maxFARRequested takes
precedence, BIO_FRR_PRECEDENCE (FALSE) indicates that
maxFRRRequested takes precedence.

referenceBIRPopulation6

An array of BIRs against which the Identify match is performed.
candidateRanking Array of BIR indices from the referenceBIRPopulation listed in rank order.

The indices are zero-based.
timeout Maximum number of milliseconds to attempt a successful biometric capture

before failing.

6. In the OPOS environment, the format of referenceBIRPopulation depends upon the value of the
BinaryConversion property. See BinaryConversion property in Annex A.
Unified POS, v1.16.1 147

Remarks This function captures biometric data from the attached device within the allotted timeout, and compares
it against a set of referenceBIRPopulation. It then returns a rank ordered array of
referenceBIRPopulation indices in candidateRanking. If nothing matches, an array with zero elements
is returned.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL maxFARRequested, or maxFRRRequested, or referenceBIRPopulation was

not valid or Biometrics capture is in progress.

E_TIMEOUT The specified timeout has elapsed before biometric data was captured.

6.5.5 identifyMatch Method Updated in Release 1.12

Syntax identifyMatch (maxFARRequested: int32, maxFRRRequested: int32, FARPrecedence: boolean,
sampleBIR: binary, referenceBIRPopulation: array of binary, inout candidateRanking: int32 array
):

void { raises-exception, use after open-claim-enable }

Parameter Description
maxFARRequested The requested FAR criterion for successful verification, as defined in the

BioAPI specification.
maxFRRRequested The requested FRR criterion for successful verification, as defined in the

BioAPI specification. If zero, then this criterion is not provided.
FARPrecedence If both criteria are provided, this parameter indicates which takes precedence.

BIO_FAR_PRECEDENCE (TRUE) indicates that maxFARRequested takes
precedence, BIO_FRR_PRECEDENCE (FALSE) indicates that
maxFRRRequested takes precedence.

sampleBIR7 The BIR to be identified
referenceBIRPopulation 7

An array of BIRs against which the Identify match is performed.
candidateRanking Array of BIR indices from the referenceBIRPopulation listed in rank order.

The indices are zero-based.

Remarks This function accepts a sampleBIR, and compares it against a set of referenceBIRPopulation. It then
returns a rank ordered array of referenceBIRPopulation indices in candidateRanking. If nothing matches,
an array with zero elements is returned.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL maxFARRequested, or maxFRRRequested, or referenceBIRPopulation was

not valid or Biometrics capture is in progress.

7. In the OPOS environment, the format of sampleBIR and referenceBIRPopulation depends upon the value of the
BinaryConversion property. See BinaryConversion property in Annex A.
148 Unified POS, V1.16.1

6.5.6 processPrematchData Method Updated in Release 1.11

Syntax processPrematchData (sampleBIR: binary, prematchDataBIR: binary, inout processedBIR:
binary)

void { raises-exception, use after open-claim-enable}

Parameter Description
sampleBIR8 BIR to be processed
prematchDataBIR 8 BIR containing prematch data previously emitted by the associated MOC

Library.
processedBIR 8 The newly constructed processed BIR

Remarks This function creates processed biometric samples suitable for Match-on-Card (MOC). It enables MOC
implementations that require the retrieval of “prematch” data from the card prior to the subsequent
matching operation. Since smart cards generally do not have the capability to capture and process
biometric samples, the on-card MOC functionality needs a host to perform off-card operations such as
sample acquisition and feature extraction. In this case, the card needs the host to perform an operation
based on prematch data that is retrieved from the card.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL sampleBIR was not valid, Biometrics capture is in progress, or

CapPrematchData is false.

See Also CapPrematchData Property.

8. In the OPOS environment, the format of sampleBIR, prematchDataBIR, and processedBIR depends upon the
value of the BinaryConversion property. See BinaryConversion property in Annex A.
Unified POS, v1.16.1 149

6.5.7 verify Method Updated in Release 1.12

Syntax verify(maxFARRequested: int32, maxFRRRequested: int32, FARPrecedence: boolean,
referenceBIR: binary, inout adaptedBIR: binary, inout result: boolean, inout FARAchieved: int32,
inout FRRAchieved: int32, inout payload: binary, timeout: int32):

void { raises-exception, use after open, claim, enable }

Parameter Description
maxFARRequested The requested FAR criterion for successful verification, as defined in the

BioAPI specification.
maxFRRRequested The requested FRR criterion for successful verification, as defined in the

BioAPI specification. If zero, then this criterion is not provided.
FARPrecedence If both criteria are provided, this parameter indicates which takes precedence.

BIO_FAR_PRECEDENCE (TRUE) indicates that maxFARRequested takes
precedence, BIO_FRR_PRECEDENCE (FALSE) indicates that
maxFRRRequested takes precedence.

referenceBIR9 The BIR to be verified against.
adaptedBIR 9 A pointer to the handle of the adapted BIR. This parameter can be EMPTY

(0x00) if an adapted BIR is not desired.
result A boolean value of true for a successful match or false for a failed match.
FARAchieved FAR Value indicating the closeness of the match.
FRRAchieved FRR Value indicating the closeness of the match.
payload 9 If a payload is associated with the referenceBIR, it is returned in an allocated

binary if a successful match was made.
timeout Maximum number of milliseconds to attempt a successful biometric capture

before failing.

Remarks This function captures biometric data from the attached device within the allotted timeout, and compares
it against the referenceBIR. If the match is successful as indicated by a positive result and an adaptedBIR
handle was provided, the Service will attempt to adapt the referenceBIR from information take form the
captured BIR.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL maxFARRequested, or maxFRRRequested, or referenceBIR was not valid or

Biometrics capture is in progress.
E_TIMEOUT The specified timeout has elapsed before biometric data was captured.

See Also BIR Property, CapTemplateAdaptation Property.

9. In the OPOS environment, the format of referenceBIR, adaptedBIR, and payload depends upon the value of the
BinaryConversion property. See BinaryConversion property in Annex A.
150 Unified POS, V1.16.1

6.5.8 verifyMatch Method Updated in Release 1.12

Syntax verifyMatch (maxFARRequested: int32, maxFRRRequested: int32, FARPrecedence: boolean,
sampleBIR: binary, referenceBIR: binary, inout adaptedBIR: binary, inout result: boolean, inout
FARAchieved: int32, inout FRRAchieved: int32, inout payload: binary):

void { raises-exception, use after open, claim, enable }

Parameter Description
maxFARRequested The requested FAR criterion for successful verification, as defined in the

BioAPI specification.
maxFRRRequested The requested FRR criterion for successful verification, as defined in the

BioAPI specification. If zero, then this criterion is not provided.
FARPrecedence If both criteria are provided, this parameter indicates which takes precedence.

BIO_FAR_PRECEDENCE (TRUE) indicates that maxFARRequested takes
precedence, BIO_FRR_PRECEDENCE (FALSE) indicates that
maxFRRRequested takes precedence.

sampleBIR10 The BIR to be identified.
referenceBIR10 The BIR to be verified against.
adaptedBIR 10 A pointer to the handle of the adapted BIR. This parameter can be EMPTY

(0x00) if an adapted BIR is not desired.
result A boolean value of true for a successful match or false for a failed match.
FARAchieved FAR Value indicating the closeness of the match.
FRRAchieved FRR Value indicating the closeness of the match.
payload 10 If a payload is associated with the referenceBIR, it is returned in an allocated

binary if a successful match was made.

Remarks This function compares a sampleBIR against the referenceBIR. If the match is successful as indicated by
a positive result and an adaptedBIR handle was provided, the Service will attempt to adapt the
referenceBIR from information taken from the captured BIR.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL maxFARRequested, or maxFRRRequested, or referenceBIR was not valid or

Biometrics capture is in progress.

10.In the OPOS environment, the format of sampleBIR, referenceBIR, adaptedBIR, and payload depends upon the
value of the BinaryConversion property. See BinaryConversion property in Annex A.
Unified POS, v1.16.1 151

6.6 Events (UML Interfaces)

6.6.1 DataEvent

<< event >> upos::events::DataEvent 
Status: int32 { read-only }

Description Notifies the application that input data is available.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 BIO_DATA_ENROLL if enroll capture is completed.

BIO_DATA_VERIFY if verify capture is completed.

Remarks The properties BIR and RawSensorData are set to appropriate values prior to a DataEvent being
delivered to the application.

See Also “Events” on page 15, BIR Property, RawSensorData Property, beginEnrollCapture Method,
beginVerifyCapture Method, endCapture Method.

6.6.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Biometrics Capture Service to provide events to the application that are not otherwise supported
by the Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and the
Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service. This
property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendors’ Biometric
devices which may not have any knowledge of the Service’s need for this event.

See Also ”Events” on page 15, directIO Method.
152 Unified POS, V1.16.1

6.6.3 ErrorEvent Updated in Release 1.11

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a Biometrics device error has been detected and a suitable response by the
application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes on page 17.

ErrorCodeExtended
int32 Extended Error code causing the error event. It may contain a Service-

specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden by the application.
(i.e., this property is settable). See values below.

The ErrorLocus property may be one of the following:

Value Meaning
EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.
EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and some

previously buffered data is available. (Very unlikely - see Remarks.)

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus. The
application’s error processing may change ErrorResponse to one of the following values:

Value Meaning
ER_CLEAR Clear all buffered input data. The error state is exited. Default when locus is

EL_INPUT.
ER_CONTINUEINPUT

Used only when locus is EL_INPUT_DATA. Acknowledges the error and
directs the Service to continue processing. The Service remains in the error
state and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and
DataEventEnabled is again set to true, then another ErrorEvent is
delivered with locus EL_INPUT. Default when locus isEL_INPUT_DATA.

Remarks Enqueued when an error is detected while trying to read biometric capture data. This event is not
delivered until DataEventEnabled is set to true and other event delivery requirements are met, so that
proper application sequencing occurs.

With proper programming, an ErrorEvent with locus EL_INPUT_DATA will not occur. This is
because each biometrics capture requires an explicit beginXxxxxxCapture method, which can generate
at most one DataEvent. The application would need to defer the DataEvent by setting
DataEventEnabled to false and request another capture before an EL_INPUT_DATA would be
possible.

See Also “Device Input Model Updated in Release 1.13” on page 18, “Device Information Reporting Model
Added in Release 1.8” on page 25.
Unified POS, v1.16.1 153

6.6.4 StatusUpdateEvent Updated in Release 1.13

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the status of a Biometric Capture device.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Reports a change in the power state of a Biometrics device or reports a

requested user interaction with the Biometrics sensor to complete the capture.
In the case of the latter, the following directives can be issued:

Value Meaning
BIO_SUE_RAW_DATA Raw image data is available.
BIO_SUE_MOVE_LEFT The position was too far to the right.
BIO_SUE_MOVE_RIGHT The position was too far to the left.
BIO_SUE_MOVE_DOWN The position was too high.
BIO_SUE_MOVE_UP The position was too low.
BIO_SUE_MOVE_CLOSER The position was too far away.
BIO_SUE_MOVE_AWAY The position was too near (close).
BIO_SUE_MOVE_BACKWARD The position was too far forward.
BIO_SUE_MOVE_FORWARD The position was too far backward.
BIO_SUE_MOVE_SLOWER The motion was too fast, move slower.
BIO_SUE_MOVE_FASTER The motion was too slow, move faster.
BIO_SUE_SENSOR_DIRTY The sensor is dirty and requires cleaning.
BIO_SUE_FAILED_READ Unable to capture data from the sensor, please retry the

operation.

BIO_SUE_SENSOR_READY (Added in Release 1.13)
The sensor is ready to scan a Biometric object

BIO_SUE_SENSOR_COMPLETE (Added in Release 1.13)
The sensor reports that the scan of a Biometric object is
complete.

Remarks Enqueued when the Biometric Capture device detects a power state change or user interaction.

See Also “Events Updated in Release 1.12” on page 15
154 Unified POS, V1.16.1

7 Bump Bar

7.1 General

This Chapter defines the Bump Bar device category.

7.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.3 Not supported

CapCompareFirmwareVersion: boolean { read-only } 1.9 open

CapPowerReporting: int32 { read-only } 1.3 open

CapStatisticsReporting: boolean { read-only } 1.8 open

CapUpdateFirmware: boolean { read-only } 1.9 open

CapUpdateStatistics: boolean { read-only } 1.8 open

CheckHealthText: string { read-only } 1.3 open

Claimed: boolean { read-only } 1.3 open

DataCount: int32 { read-only } 1.3 open

DataEventEnabled: boolean { read-write } 1.3 open

DeviceEnabled: boolean { read-write } 1.3 open & claim

FreezeEvents: boolean { read-write } 1.3 open

OutputID: int32 { read-only } 1.3 open

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.3 --

DeviceControlDescription: string { read-only } 1.3 --

DeviceControlVersion: int32 { read-only } 1.3 --

DeviceServiceDescription: string { read-only } 1.3 open

DeviceServiceVersion: int32 { read-only } 1.3 open

PhysicalDeviceDescription: string { read-only } 1.3 open

PhysicalDeviceName: string { read-only } 1.3 open
Unified POS, v1.16.1 155

Properties (Continued)

Specific Type Mutability Version May Use After

AsyncMode: boolean { read-write } 1.3 open, claim, & enable

AutoToneDuration: int32 { read-write } 1.3 open, claim, & enable

AutoToneFrequency: int32 { read-write } 1.3 open, claim, & enable

BumpBarDataCount: int32 { read-only } 1.3 open, claim, & enable

CapTone: boolean { read-only } 1.3 open, claim, & enable

CurrentUnitID: int32 { read-write } 1.3 open, claim, & enable

ErrorString: string { read-only } 1.3 open

ErrorUnits: int32 { read-only } 1.3 open

EventString: string { read-only } 1.3 open & claim

EventUnitID: int32 { read-only } 1.3 open & claim

EventUnits: int32 { read-only } 1.3 open & claim

Keys: int32 { read-only } 1.3 open, claim, & enable

Timeout: int32 { read-write } 1.3 open

UnitsOnline: int32 { read-only } 1.3 open, claim, & enable

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.3

close ():
void { raises-exception, use after open }

1.3

claim (timeout: int32):
void { raises-exception, use after open }

1.3

release ():
void { raises-exception, use after open, claim }

1.3

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.3

clearInput ():
void { raises-exception, use after open, claim }

1.3

clearInputProperties ():
void { raises-exception, use after open, claim }

Not supporteda

clearOutput ():
void { raises-exception, use after open, claim }

1.3

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.3

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9
156 Unified POS, V1.16.1

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific

Name

bumpBarSound (units: int32, frequency: int32, duration: int32,
numberOfCycles: int32, interSoundWait: int32):

void { raises-exception, use after open, claim, enable }

1.3

setKeyTranslation (units: int32, scanCodes: int32, logicalKey: int32):
void { raises-exception, use after open, claim, enable }

1.3

a. No sensitive information is generated or stored.

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent 1.3

Status: int32 { read-only }

upos::events::DirectIOEvent 1.3

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }

upos::events::ErrorEvent 1.3

ErrorCode: int32 { read-only }

ErrorCodeExtended: int32 { read-only }

ErrorLocus: int32 { read-only }

ErrorResponse int32 { read-write }

upos::events::OutputCompleteEvent 1.3

OutputID: int32 { read-only }

upos::events::StatusUpdateEvent 1.3

Status: int32 { read-only }
Unified POS, v1.16.1 157

7.3 General Information

7.3.1 Capabilities

The Bump Bar Control has the following minimal set of capabilities:

• Supports broadcast methods that can communicate with one, a range, or all bump bar units online.

• Supports bump bar input (keys 0-255).

The Bump Bar Control may also have the following additional capabilities:

• Supports bump bar enunciator output with frequency and duration.

• Supports tactile feedback via an automatic tone when a bump bar key is pressed.
158 Unified POS, V1.16.1

7.3.2 Bump Bar Class Diagram

The following diagram shows the relationships between the Bump Bar classes.

UposConst
(from upos)

<<utility>>
BumpBarConst

(from upos)

<<utility>>
BaseControl

(from upos)

<<Interface>>

UposException
(from upos)

<<exception>>

<<uses>>

<<sends>>

DataEvent
(from events)

<<event>>

DirectIOEvent
(from events)

<<event>>

ErrorEvent
(from events)

<<event>>
StatusUpdateEvent

(from events)

<<event>>
OutputCompleteEvent

(from events)

<<event>>

BumpBarControl

<<capability>> CapTone : boolean
<<prop>> AsyncMode : boolean
<<prop>> Timeout : int32
<<prop>> UnitsOnline : int32
<<prop>> CurrentUnitID : int32
<<prop>> AutoToneDuration : int32
<<prop>> AutoToneFrequency : int32
<<prop>> BumpBarDataCount : int32
<<prop>> Keys : int32
<<prop>> ErrorUnits : int32
<<prop>> ErrorString : string
<<prop>> EventUnitID : int32
<<prop>> EventUnits : int32
<<prop>> EventString : string

bumpBarSound(units : int32, frequency : int32, duration : int32, numCycles : int32) : void
setKeyTranslation(units : int32, scanCodes : int32, logicalKey : int32) : void

(from upos)

<<Interface>>

fires

fires

fires fires

<<uses>>
<<uses>>

<<sends>>

fires
Unified POS, v1.16.1 159

7.3.3 Model

The general model of a bump bar is:

• The bump bar device class is a subsystem of bump bar units. The initial targeted environment is food service,
to control the display of order preparation and fulfillment information. Bump bars typically are used in
conjunction with remote order displays.

• The subsystem can support up to 32 bump bar units.
One application on one workstation or POS Terminal will typically manage and control the entire subsystem of
bump bars. If applications on the same or other workstations and POS Terminals will need to access the
subsystem, then this application must act as a subsystem server and expose interfaces to other applications.

• All specific methods are broadcast methods. This means that the method can apply to one unit, a selection of
units or all online units. The units parameter is an int32, with each bit identifying an individual bump bar unit.
(One or more of the constants BB_UID_1 through BB_UID_32 are bitwise ORed to form the bitmask.) The
Service will attempt to satisfy the method for all unit(s) indicated in the units parameter. If an error is received
from one or more units, the ErrorUnits property is updated with the appropriate units in error. The
ErrorString property is updated with a description of the error or errors received. The method will then notify
the application of the error condition. In the case where two or more units encounter different errors, the
Service should determine the most severe error to report.

• The common methods checkHealth, clearInput, and clearOutput are not broadcast methods and use the unit
ID indicated in the CurrentUnitID property. (One of the constants BB_UID_1 through BB_UID_32 are
selected.) See the description of these common methods to understand how the current unit ID property is
used.

• When the current unit ID property is set by the application, all the corresponding properties are updated to
reflect the settings for that unit.

If the CurrentUnitID property is set to a unit ID that is not online, the dependent properties will contain non-
initialized values.
The CurrentUnitID uniquely represents a single bump bar unit. The definitions range from BB_UID_1 to
BB_UID_32. These definitions are also used to create the bitwise parameter, units, used in the broadcast
methods.

7.3.4 Input – Bump Bar

The Bump Bar follows the general “Device Input Model” for event-driven input with some differences:

• When input is received, a DataEvent is enqueued.

• This device does not support the AutoDisable property, so the device will not automatically disable itself
when a DataEvent is enqueued.

• An enqueued DataEvent can be delivered to the application when the DataEventEnabled property is true and
other event delivery requirements are met. Just before delivering this event, data is copied into corresponding
properties, and further data events are disabled by setting the DataEventEnabled property to false. This
causes subsequent input data to be enqueued while the application processes the current input and associated
properties. When the application has finished the current input and is ready for more data, it reenables events
by setting DataEventEnabled to true.

• An ErrorEvent or events are enqueued if an error is encountered while gathering or processing input, and are
delivered to the application when the DataEventEnabled property is true and other event delivery
requirements are met.
160 Unified POS, V1.16.1

• The BumpBarDataCount property may be read to obtain the number of bump bar DataEvents for a specific
unit ID enqueued. The DataCount property can be read to obtain the total number of data events enqueued.

• Queued input may be deleted by calling the clearInput method. See clearInput method description for more
details.

The Bump Bar Service provider must supply a mechanism for translating its internal key scan codes into user-
defined codes which are returned by the data event. Note that this translation must be end-user configurable. The
default translated key value is the scan code value.

7.3.5 Output – Tone Updated in Release 1.7

The bump bar follows the general “Device Output Model,” with some enhancements:

• The bumpBarSound method is performed either synchronously or asynchronously, depending on the value of
the AsyncMode property.

• When AsyncMode is false, then this method operates synchronously and the Device returns to the application
after completion. When operating synchronously, the application is notified of an error if the method could not
complete successfully.

• When AsyncMode is true, then this method operates as follows:

• The Device buffers the request in program memory, for delivery to the Physical Device as soon as the
Physical Device can receive and process it, sets the OutputID property to an identifier for this request, and
returns as soon as possible. When the device completes the request successfully, the EventUnits property is
updated and an OutputCompleteEvent is enqueued. A property of this event contains the output ID of the
completed request.

If an error occurs while performing an asynchronous request, an ErrorEvent is enqueued. The EventUnits
property is set to the unit or units in error. The EventString property is also set.
Note: ErrorEvent updates EventUnits and EventString. If an error is reported by a broadcast method,
then ErrorUnits and ErrorString are set instead.

The event handler may call synchronous bump bar methods (but not asynchronous methods), then can either retry
the outstanding output or clear it.

• Asynchronous output is performed on a first-in first-out basis.

• All output buffered may be deleted by setting the CurrentUnitID property and calling the clearOutput
method. An OutputCompleteEvent will not be enqueued for cleared output. This method also stops any
output that may be in progress (when possible).

7.3.6 Device Sharing

The bump bar is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing many bump bar specific properties.

• The application must claim and enable the device before calling methods that manipulate the device.

• When a claim method is called again, settable device characteristics are restored to their condition at release.

• See the “Summary” table for precise usage prerequisites.
Unified POS, v1.16.1 161

7.3.7 Bump Bar State Diagram

Closed
Opened

Claimed

/claim

Enabled

Normal Busy

Error

/close

/open

/release/close

/setDeviceEnabled(false)

/release
/close

Normal Busy

Error

/setDeviceEnabled(true)

[error event done and no async requests]

[async request I/O error or bump bar input error]

[AsyncMode == true]/bumpBarSound

[bump bar input error]

[async requests done]

[error event done and async requests]
162 Unified POS, V1.16.1

7.4 Properties (UML attributes)

7.4.1 AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open-claim-enable }

Remarks If true, then the bumpBarSound method will be performed asynchronously.
If false, tones are generated synchronously.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also bumpBarSound Method, “Device Output Models” on page 21.

7.4.2 AutoToneDuration Property

Syntax AutoToneDuration: int32 { read-write, access after open-claim-enable }

Remarks Holds the duration (in milliseconds) of the automatic tone for the bump bar unit specified by the
CurrentUnitID property.

This property is initialized to the default value for each online bump bar unit when the device is first
enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CurrentUnitID Property.

7.4.3 AutoToneFrequency Property

Syntax AutoToneFrequency: int32 { read-write, access after open-claim-enable }

Remarks Holds the frequency (in Hertz) of the automatic tone for the bump bar unit specified by the
CurrentUnitID property.

This property is initialized to the default value for each online bump bar unit when the device is first
enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CurrentUnitID Property.
Unified POS, v1.16.1 163

7.4.4 BumpBarDataCount Property

Syntax BumpBarDataCount: int32 { read-only, access after open-claim-enable }

Remarks Holds the number of DataEvents enqueued for the bump bar unit specified by the CurrentUnitID
property.

The application may read this property to determine whether additional input is enqueued from a bump
bar unit, but has not yet been delivered because of other application processing, freezing of events, or
other causes.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CurrentUnitID Property, DataEvent.

7.4.5 CapTone Property

Syntax CapTone: boolean { read-only, access after open-claim-enable }

Remarks If true, the bump bar unit specified by the CurrentUnitID property supports an enunciator.

This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CurrentUnitID Property.

7.4.6 CurrentUnitID Property

Syntax CurrentUnitID: int32 { read-write, access after open-claim-enable }

Remarks Holds the current bump bar unit ID. Up to 32 units are allowed for one bump bar device. The unit ID
definitions range from BB_UID_1 to BB_UID_32.

Setting this property will update other properties to the current values that apply to the specified unit.The
following properties and methods apply only to the selected bump bar unit ID:

• Properties: AutoToneDuration, AutoToneFrequency, BumpBarDataCount, CapTone, and Keys.

• Methods: checkHealth, clearInput, clearOutput.

This property is initialized to BB_UID_1 when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16 DataCount Property

Syntax DataCount: int32 { read-only, access after open }

Remarks Holds the total number of DataEvents enqueued. All units online are included in this value. The number
of enqueued events for a specific unit ID is stored in the BumpBarDataCount property.

The application may read this property to determine whether additional input is enqueued, but has not
yet been delivered because of other application processing, freezing of events, or other causes.

This property is initialized to zero by the open method.
164 Unified POS, V1.16.1

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also BumpBarDataCount Property, DataEvent Event, “Device Input Model” on page 18

7.4.7 ErrorString Property

Syntax ErrorString: string { read-only, access after open }

Remarks Holds a description of the error which occurred on the unit(s) specified by the ErrorUnits property,
when an error occurs for any method that acts on a bitwise set of bump bar units.

If an error occurs during processing of an asynchronous request, the ErrorEvent updates the property
EventString instead.

This property is initialized to an empty string by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also ErrorUnits Property.

7.4.8 ErrorUnits Property

Syntax ErrorUnits: int32 { read-only, access after open }

Remarks Holds a bitwise mask of the unit(s) that encountered an error, when an error occurs for any method that
acts on a bitwise set of bump bar units.

If an error occurs during processing of an asynchronous request, the ErrorEvent updates the property
EventUnits instead.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also ErrorString Property.
Unified POS, v1.16.1 165

7.4.9 EventString Property

Syntax EventString: string { read-only, access after open-claim }

Remarks Holds a description of the error which occurred to the unit(s) specified by the EventUnits property, when
an ErrorEvent is delivered.

This property is initialized to an empty string by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also EventUnits Property, ErrorEvent.

7.4.10 EventUnitID Property

Syntax EventUnitID: int32 { read-only, access after open-claim }

Remarks Holds the bump bar unit ID causing a DataEvent. This property is set just before a DataEvent is
delivered. The unit ID definitions range from BB_UID_1 to BB_UID_32.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also DataEvent.

7.4.11 EventUnits Property

Syntax EventUnits: int32 { read-only, access after open-claim }

Remarks Holds a bitwise mask of the unit(s) when an OutputCompleteEvent, ErrorEvent, or
StatusUpdateEvent is delivered.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also OutputCompleteEvent, ErrorEvent, StatusUpdateEvent.

7.4.12 Keys Property

Syntax Keys: int32 { read-only, access after open-claim-enable }

Remarks Holds the number of keys on the bump bar unit specified by the CurrentUnitID property.

This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CurrentUnitID Property.
166 Unified POS, V1.16.1

7.4.13 Timeout Property

Syntax Timeout: int32 { read-write, access after open }

Remarks Holds the timeout value in milliseconds used by the bump bar device to complete all output methods
supported. If the device cannot successfully complete an output method within the timeout value, then
the method notifies the application of the error.

This property is initialized to a Service dependent timeout following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also AsyncMode Property, ErrorString Property, bumpBarSound Method.

7.4.14 UnitsOnline Property

Syntax UnitsOnline: int32 { read-only, access after open-claim-enable }

Remarks Bitwise mask indicating the bump bar units online, where zero or more of the unit constants BB_UID_1
(bit 0 on) through BB_UID_32 (bit 31 on) are bitwise ORed. 32 units are supported.

This property is initialized when the device is first enabled following the open method. This property is
updated as changes are detected, such as before a StatusUpdateEvent is enqueued and during the
checkHealth method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also checkHealth Method, StatusUpdateEvent.
Unified POS, v1.16.1 167

7.5 Methods (UML operations)

7.5.1 bumpBarSound Method

Syntax bumpBarSound (units: int32, frequency: int32, duration: int32,
numberOfCycles: int32, interSoundWait: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description 
units Bitwise mask indicating which bump bar unit(s) to operate on.

frequency Tone frequency in Hertz.

duration Tone duration in milliseconds.

numberOfCycles If FOREVER, then start bump bar sounding and, repeat continuously. Else
perform the specified number of cycles.

interSoundWait When numberOfCycles is not one, then pause for interSoundWait
milliseconds before repeating the tone cycle (before playing the tone again)

Remarks Sounds the bump bar enunciator for the bump bar(s) specified by the units parameter.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

The duration of a tone cycle is:

duration parameter + interSoundWait parameter (except on the last tone cycle)

After the bump bar has started an asynchronous sound, then the sound may be stopped by using the
clearOutput method. (When a numberOfCycles value of FOREVER was used to start the sound, then
the application must use clearOutput to stop the continuous sounding of tones.)

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGAL One of the following errors occurred:

numberOfCycles is neither a positive, non-zero value nor FOREVER.

numberOfCycles is FOREVER when AsyncMode is false.

A negative interSoundWait was specified.

units is zero or a non-existent unit was specified.

A unit in units does not support the CapTone capability.

The ErrorUnits and ErrorString properties may be updated before the
exception is thrown.

E_FAILURE An error occurred while communicating with one of the bump bar units
specified by the units parameter. The ErrorUnits and ErrorString
properties are updated before the exception is thrown. (Can only occur if
AsyncMode is false.)

See Also AsyncMode Property, ErrorUnits Property, ErrorString Property, CapTone Property, clearOutput
Method.
168 Unified POS, V1.16.1

7.5.2 checkHealth Method (Common)

Syntax checkHealth (level: int32):
void { raises-exception, use after open-claim-enable }

The level parameter indicates the type of health check to be performed on the device. The following val-
ues may be specified:

Value Meaning
CH_INTERNAL Perform a health check that does not physically change the device. The
 device is tested by internal tests to the extent possible.

CH_EXTERNAL Perform a more thorough test that may change the device.

CH_INTERACTIVE Perform an interactive test of the device. The Service will typically display a
modal dialog box to present test options and results.

Remarks When CH_INTERNAL or CH_EXTERNAL level is requested, the method will check the health of the
bump bar unit specified by the CurrentUnitID property. When the current unit ID property is set to a
unit that is not currently online, the device will attempt to check the health of the bump bar unit and report
a communication error if necessary. The CH_INTERACTIVE health check operation is up to the Service
designer.

A text description of the results of this method is placed in the CheckHealthText property.

The UnitsOnline property will be updated with any changes before returning to the application.

This method is always synchronous.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_FAILURE An error occurred while communicating with the bump bar unit specified

by the CurrentUnitID property.

See Also CurrentUnitID Property, UnitsOnline Property.

7.5.3 clearInput Method (Common)

Syntax clearInput ():
void { raises-exception, use after open-claim }

Remarks Clears the device input that has been buffered for the unit specified by the CurrentUnitID property.

Any data events that are enqueued – usually waiting for DataEventEnabled to be set to true and
FreezeEvents to be set to false – are also cleared.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

See Also CurrentUnitID Property, “Device Input Model” on page 18
Unified POS, v1.16.1 169

7.5.4 clearOutput Method (Common) Updated in Release 1.7

Syntax clearOutput ():
void { raises-exception, use after open-claim }

Remarks Clears the tone outputs that have been buffered, including all asynchronous output, for the unit specified
by the CurrentUnitID property.

Any output complete and output error events that are enqueued – usually waiting for DataEventEnabled
to be set to true and FreezeEvents to be set to false – are also cleared.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

See Also CurrentUnitID Property, “Device Output Model” on page 20

7.5.5 setKeyTranslation Method

Syntax setKeyTranslation (units: int32, scanCode: int32, logicalKey: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description 
units Bitwise mask indicating which bump bar unit(s) to set key translation for.

scanCode The bump bar generated key scan code. Valid values 0-255.

logicalKey The translated logical key value. Valid values 0-255.

Remarks Assigns a logical key value to a device-specific key scan code for the bump bar unit(s) specified by the
units parameter. The logical key value is used during translation during the DataEvent.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

scanCode or logicalKey are out of range.

units is zero or a non-existent unit was specified.

The ErrorUnits and ErrorString properties are updated prior to notifying
the application of the error.

See Also ErrorUnits Property, ErrorString Property, DataEvent.
170 Unified POS, V1.16.1

7.6 Events (UML interfaces)

7.6.1 DataEvent

<< event >> upos::events::DataEvent
Status: int32 {read-only }

Description Notifies the application when status from the bump bar is available.

Attributes This event contains the following attribute:

Attributes Type Description 
Status int32 See below.

The Status property is divided into four bytes. Depending on the Event Type, located in the low word,
the remaining 2 bytes will contain additional data. The diagram below indicates how the Status property
is divided:

Remarks Enqueued to present input data from a bump bar unit to the application. The low word contains the Event
Type. The high word contains additional data depending on the Event Type. When the Event Type is
BB_DE_KEY, the low byte of the high word contains the LogicalKeyCode for the key pressed on the
bump bar unit. The LogicalKeyCode value is device independent. It has been translated by the Service
from its original hardware specific value. Valid ranges are 0-255.

The EventUnitID property is updated before delivering the event.

See Also “Device Input Model” on page 18, EventUnitID Property, DataEventEnabled Property, FreezeEvents
Property.

High Word Low Word (Event Type)

High Byte Low Byte

Unused. Always zero. LogicalKeyCode BB_DE_KEY
Unified POS, v1.16.1 171

7.6.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Bump Bar Service to provide events to the application that are not otherwise supported by the
Control.

Attributes This event contains the following attributes:

Attributes Type Description 
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and the
Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service. This
property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Bump Bar
devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15 directIO Method.

7.6.3 ErrorEvent Updated in Release 1.10

<< event >>upos::events::ErrorEvent

ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a Bump Bar error has been detected and a suitable response by the
application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type Description 
ErrorCode int32 Error code causing the error event. See a list of Error Codes in Chapter 2.

ErrorCodeExtended
int32 Extended Error code causing the error event. If ErrorCode is

E_EXTENDED, then see values below. Otherwise, it may contain a Service-
specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden by the application
(i.e., this property is settable). See values below.
172 Unified POS, V1.16.1

The ErrorLocus property may be one of the following:

Value Meaning 
EL_OUTPUT Error occurred while processing asynchronous output.

 EL_INPUT Error occurred while gathering or processing event-driven input. No
previously buffered input data is available.

 EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and some
previously buffered data is available.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus. 
The application’s error event listener may change ErrorResponse to one of the following values:

Value Meaning 
ER_RETRY Use only when locus is EL_OUTPUT.
 Retry the asynchronous output. The error state is exited.
 Default when locus is EL_OUTPUT.

 ER_CLEAR Clear all buffered output data (including all asynchronous output) or buffered
input data. The error state is exited.
Default when locus is EL_INPUT.

 ER_CONTINUEINPUT
Use only when locus is EL_INPUT_DATA. Acknowledges the error and
directs the Device to continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and the
DataEventEnabled property is again set to true, then another ErrorEvent is
delivered with locus EL_INPUT. 
Default when locus is EL_INPUT_DATA.

Remarks Enqueued when an error is detected while gathering data from or processing asynchronous output for the
bump bar.

Input error events are not delivered until the DataEventEnabled property is true, so that proper
application sequencing occurs.

The EventUnits and EventString properties are updated before the event is delivered.

See Also “Device Output Model” on page 20 “Device Information Reporting Model Added in Release 1.8” on
page 25, DataEventEnabled Property, EventUnits Property, EventString Property.
Unified POS, v1.16.1 173

7.6.4 OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the OutputID attribute has
completed successfully.

Attributes This event contains the following attribute:

Attributes Type Description 
OutputID int32 The ID number of the asynchronous output request that is complete.
 The EventUnits property is updated before delivering.

Remarks Enqueued when a previously started asynchronous output request completes successfully.

See Also EventUnits Property,”Device Output Model” on page 20

7.6.5 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that the bump bar has had an operation status change.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Reports a change in the power state of a bump bar unit.

Note that Release 1.3 added Power State Reporting with additional Power
reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 1.

Remarks Enqueued when the bump bar device detects a power state change.

Deviation from the standard StatusUpdateEvent (See “StatusUpdateEvent” description in Chapter 2)
• Before delivering the event, the EventUnits property is set to the units for which the new power state

applies.

• When the bump bar device is enabled, then a StatusUpdateEvent is enqueued to specify the bitmask
of online units.

• While the bump bar device is enabled, a StatusUpdateEvent is enqueued when the power state of
one or more units change. If more than one unit changes state at the same time, the Service may
choose to either enqueue multiple events or to coalesce the information into a minimal number of
events applying to EventUnits.

See Also EventUnits Property.
174 Unified POS, V1.16.1

8 Cash Changer

8.1 General

This Chapter defines the Cash Changer device category.

8.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean {read-write} 1.2 Not supported

CapCompareFirmwareVersion: boolean { read-only } 1.9 open

CapPowerReporting: int32 { read-only } 1.3 open

CapStatisticsReporting: boolean { read-only } 1.8 open

CapUpdateFirmware: boolean { read-only } 1.9 open

CapUpdateStatistics: boolean { read-only } 1.8 open

CheckHealthText: string {read-only} 1.2 open

Claimed: boolean {read-only} 1.2 open

DataCount: int32 {read-only} 1.5 open

DataEventEnabled: boolean {read-write} 1.5 open

DeviceEnabled: boolean {read-write} 1.2 open & claim

FreezeEvents: boolean {read-write} 1.2 open

OutputID: int32 {read-only} 1.2 Not Supported

PowerNotify: int32 {read-write} 1.3 open

PowerState: int32 {read-only} 1.3 open

State: int32 {read-only} 1.2 --

DeviceControlDescription: string {read-only} 1.2 --

DeviceControlVersion: int32 {read-only} 1.2 --

DeviceServiceDescription: string {read-only} 1.2 open

DeviceServiceVersion: int32 {read-only} 1.2 open

PhysicalDeviceDescription: string {read-only} 1.2 open

PhysicalDeviceName: string {read-only} 1.2 open
Unified POS, v1.16.1 175

Properties (Continued)

Specific Type Mutability Version May Use After

CapDeposit: boolean {read-only} 1.5 open

CapDepositDataEvent: boolean {read-only} 1.5 open

CapDiscrepancy: boolean {read-only} 1.2 open

CapEmptySensor: boolean {read-only} 1.2 open

CapFullSensor: boolean {read-only} 1.2 open

CapJamSensor: boolean {read-only} 1.11 open

CapNearEmptySensor: boolean {read-only} 1.2 open

CapNearFullSensor: boolean {read-only} 1.2 open

CapPauseDeposit: boolean {read-only} 1.5 open

CapRealTimeData: boolean {read-only} 1.11 open

CapRepayDeposit: boolean {read-only} 1.5 open

AsyncMode: boolean {read-write} 1.2 open

AsyncResultCode: int32 {read-only} 1.2 open, claim, & enable

AsyncResultCodeExtended: int32 {read-only} 1.2 open, claim, & enable

CurrencyCashList: string {read-only} 1.2 open

CurrencyCode: string {read-write} 1.2 open

CurrencyCodeList: string {read-only} 1.2 open

CurrentExit: int32 {read-write} 1.2 open

CurrentService: int32 {read-write} 1.11 open

DepositAmount: int32 {read-only} 1.5 open

DepositCashList: string {read-only} 1.5 open

DepositCodeList: string {read-only} 1.5 open

DepositCounts: string {read-only} 1.5 open

DepositStatus: int32 {read-only} 1.5 open, claim, & enable

DeviceExits: int32 {read-only} 1.2 open

DeviceStatus: int32 {read-only} 1.2 open, claim, & enable

ExitCashList: string {read-only} 1.2 open

FullStatus: int32 {read-only} 1.2 open, claim, & enable

RealTimeDataEnabled: boolean {read-write} 1.11 open, claim & enable

ServiceCount: int32 {read-only} 1.11 open

ServiceIndex: int32 {read-only} 1.11 open
176 Unified POS, V1.16.1

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.2

close ():
void { raises-exception, use after open }

1.2

claim (timeout: int32):
void { raises-exception, use after open }

1.2

release ():
void { raises-exception, use after open, claim }

1.2

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.2

clearInput ():
void { raises-exception, use after open, claim }

1.5

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.2

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific

Name

adjustCashCounts (cashCounts: string):
void { raises-exception, use after open, claim, enable }

1.11

beginDeposit ():
void { raises-exception, use after open, claim, enable }

1.5

dispenseCash (cashCounts: string):
void { raises-exception, use after open, claim, enable }

1.2

dispenseChange (amount: int32):
void { raises-exception, use after open, claim, enable }

1.2
Unified POS, v1.16.1 177

endDeposit (success: int32):
void { raises-exception, use after open, claim, enable }

1.5

fixDeposit ():
void { raises-exception, use after open, claim, enable }

1.5

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent 1.5

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.2

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.2

 Status: int32 { read-only }
178 Unified POS, V1.16.1

8.3 General Information

The Cash Changer programmatic name is “CashChanger.”

8.3.1 Capabilities Updated in Release 1.11

The Cash Changer has the following capabilities:

• Reports the cash units and corresponding unit counts available in the Cash Changer.

• Dispenses a specified amount of cash from the device in either bills, coins, or both into a user-specified exit.

• Dispenses a specified number of cash units from the device in either bills, coins, or both into a user-specified
exit.

• Reports jam conditions within the device.

• Supports more than one currency.

The Cash Changer may also have the following additional capabilities:

• Reporting the fullness levels of the Cash Changer’s cash units. Conditions which may be indicated include
empty, near empty, full, and near full states.

• Reporting of a possible (or probable) cash count discrepancy in the data reported by the readCashCounts
method.

Release 1.5 and later – Support for the cash acceptance is added as an option.

• The money (bills and coins) which is deposited into the device between the start and end of cash acceptance is
reported to the application. The contents of the report are cash units and cash counts.

Release 1.11 and later – Support for the use of cash device sub-services

• The service can use sub-services for other cash devices to create a full-function cash changer service.
Properties are added for the extraction of information from the sub-services.
Unified POS, v1.16.1 179

8.3.2 Cash Changer Class Diagram Updated in Release 1.11

The following diagram shows the relationships between the CashChanger classes.

CashChangerConst
(from upos)

<<utility>>

UposConst
(from upos)

<<utility>>

DataEvent
(from events)

<<event>>

DirectIOEvent
(from events)

<<event>>

StatusUpdateEvent
(from events)

<<event>>

ErrorEvent
(from events)

<<event>>

CashChangerControl

<<capability>> CapDeposit : boolean
<<capability>> CapDepositDataEvent : boolean
<<capability>> CapDiscrepancy : boolean
<<capability>> CapEmptySensor : boolean
<<capability>> CapFullSensor : boolean
<<capability>> CapJamSensor : Boolean
<<capability>> CapNearEmptySensor : boolean
<<capability>> CapNearFullSensor : boolean
<<capability>> CapPauseDeposit : boolean
<<capability>> CapRealTimeData : Boolean
<<capability>> CapRepayDeposit : boolean
<<prop>> AsyncMode : boolean
<<prop>> AsyncResultCode : int32
<<prop>> AsyncResultCodeExtended : int32
<<prop>> CurrencyCashList : string
<<prop>> CurrencyCode : string
<<prop>> CurrencyCodeList : string
<<prop>> CurrentExit : int32
<<prop>> CurrentService : int32
<<prop>> DepositAmount : int32
<<prop>> DepositCashList : string
<<prop>> DepositCodeList : string
<<prop>> DepositCounts : string
<<prop>> DepositStatus : int32
<<prop>> DeviceExits : int32
<<prop>> DeviceStatus : int32
<<prop>> ExitCashList : string
<<prop>> FullStatus : int32
<<prop>> RealTimeDataEnabled : boolean
<<prop>> ServiceCount : int32
<<prop>> ServiceIndex : int32

adjustCashCounts(cashCounts : string)
beginDeposit()
dispenseCash(cashCounts : string)
dispenseChange(amount : int32)
endDeposit(amount : int32)
fixDeposit()
pauseDeposit(control : int32)
readCashCounts(cashCounts : string, discrepancy : boolean)

(from upos)

<<Interface>>

fires

fires

fires

fires

UposException
(from upos)

<<exception>>

<<uses>>

<<sends>>
180 Unified POS, V1.16.1

8.3.3 Model Updated in Release 1.11

The general model of a Cash Changer is:

• Supports several cash types such as coins, bills, and combinations of coins and bills. The supported cash type
for a particular currency is noted by the list of cash units in the CurrencyCashList property.

• Consists of any combination of features to aid in the cash processing functions such as a cash entry holding
bin, a number of slots or bins which can hold the cash, and cash exits.

• Prior to Release 1.5 this specification provides programmatic control only for the dispensing of cash. The
accepting or removing of cash by the device (for example, to replenish cash) is controlled by the
adjustCashCounts method, unless the device can determine the amount of cash on its own. The application
can call readCashCounts to retrieve the current unit count for each cash unit, but cannot control when or how
cash is added to the device.

• May have multiple exits. The number of exits is specified in the DeviceExits property. The application chooses
a dispensing exit by setting the CurrentExit property. The cash units which may be dispensed to the current
exit are indicated by the ExitCashList property. When CurrentExit is 1, the exit is considered the “primary
exit” which is typically used during normal processing for dispensing cash to a customer following a retail
transaction. When CurrentExit is greater than 1, the exit is considered an “auxiliary exit.” An “auxiliary exit”
typically is used for special purposes such as dispensing quantities or types of cash not targeted for the
“primary exit.”

• Dispenses cash into the exit specified by CurrentExit when either dispenseChange or dispenseCash is
called. With dispenseChange, the application specifies a total amount to be dispensed, and it is the
responsibility of the Cash Changer device or the Control to dispense the proper amount of cash from the
various slots or bins. With dispenseCash, the application specifies a count of each cash unit to be dispensed.

• Dispenses cash either synchronously or asynchronously, depending on the value of the AsyncMode property.
When AsyncMode is false, then the cash dispensing methods are performed synchronously and the dispense
method returns the completion status to the application.
When AsyncMode is true and no exception is thrown by either dispenseChange or dispenseCash, then the
method is performed asynchronously and its completion is indicated by a StatusUpdateEvent with its Data
property set to CHAN_STATUS_ASYNC. The request’s completion status is set in the AsyncResultCode and
AsyncResultCodeExtended properties. 
The values of AsyncResultCode and AsyncResultCodeExtended are the same as those for the ErrorCode
and ErrorCodeExtended properties of a UposException when an error occurs during synchronous dispensing.
Nesting of asynchronous Cash Changer operations is illegal; only one asynchronous method can be processed
at a time.
The readCashCounts method may not be called while an asynchronous method is being performed since
doing so could likely report incorrect cash counts.

• May support more than one currency. The CurrencyCode property may be set to the currency, selecting from
a currency in the list CurrencyCodeList. CurrencyCashList, ExitCashList, dispenseCash,
dispenseChange and readCashCounts all act upon the current currency only.

• Sets the cash slot (or cash bin) conditions in the DeviceStatus property to show empty and near empty status,
and in the FullStatus property to show full and near full status. If there are one or more empty cash slots, then
DeviceStatus is CHAN_STATUS_EMPTY, and if there are one or more full cash slots, then FullStatus is
CHAN_STATUS_FULL.

• After Release 1.5 — Support for cash acceptance is added as an option. 
The cash acceptance model is as follows:
Unified POS, v1.16.1 181

• Note that the AsyncMode property has no affect on methods that have been added for cash acceptance, since
these are treated as input methods.

• The dispensing of change function of this device is not dependent upon the availability of a “cash acceptance”
function option. Dispensing of change and collection of money are two independent functions.

• Receipt of cash (cash acceptance function) is an option that may be provided by the Cash Changer device.
Cash acceptance into the “cash acceptance mechanism” is started by invoking the beginDeposit method. The
previous values of the properties DepositCounts and DepositAmount are initialized to zero.

• The total amount of cash placed into the device continues to be accumulated until either the fixDeposit method
or the pauseDeposit method is executed. When the fixDeposit method is executed, the total amount of
accumulated cash is stored in the DepositCounts and DepositAmount properties. If the
CapDepositDataEvent capability was previously set to true, then a DataEvent is generated to inform the
application that cash has been collected.
If the pauseDeposit method is executed with a parameter value of CHAN_DEPOSIT_PAUSE, then the
counting of the deposited cash is suspended and the current amount of accumulated cash is also updated to the
DepositCounts and DepositAmount properties. When pauseDeposit method is executed with a parameter
value of CHAN_DEPOSIT_RESTART, counting of deposited cash is resumed and added to the accumulated
totals.
When the fixDeposit method is executed, the current amount of accumulated cash is updated in the
DepositCounts and DepositAmount properties, and the process remains static until an endDeposit method is
executed. At this point the “cash acceptance” mechanism is notified to stop accepting cash. If endDeposit
method receives a CHAN_DEPOSIT_CHANGE parameter, then the mechanism will dispense cash change
back to the user. If endDeposit is invoked with a CHAN_DEPOSIT_NOCHANGE parameter, then the
mechanism will not dispense cash change back to the user. Finally, if endDeposit is invoked with a
CHAN_DEPOSIT_REPAY parameter, then all collected cash is returned back to the user by the mechanism.

• Two types of Cash Changer mechanisms are covered by this standard. In one case where CapRepayDeposit is
true, the bins that are used for collecting the cash are the same bins that are used for dispensing the cash as
change. In the other case where CapRepayDeposit is false, the bins that are used for collecting the cash are
different from the bins that are used for dispensing the change. In the first case, if a transaction is aborted for
any reason, the same cash the user input to the mechanism will be returned to the user. In the second case, it is
up to the application to dispense an equivalent amount of cash (not the same physical cash collected) back to
the user for an aborted transaction.

• The Cash Changer mechanisms can only be used in one mode at a time. While the mechanism is collecting
deposited cash, it cannot dispense change at the same time. Therefore, while beginDeposit method is being
executed, no payment of change can occur. Only after an endDeposit method call can the proper amount of
change be determined (either by the application or by a “smart” Cash Changer) and dispensed to the user. Each
Cash Changer manufacturer must determine the amount of time it takes to process the received cash and place
in storage bins before it completes the endDeposit method.

• When the clearInput method is executed, the queued DataEvent associated with the receipt of cash is cleared.
The DepositCounts and DepositAmount properties remain set and are not cleared.

• After Release 1.11 — Support for the use of cash device sub-services. 
The cash device sub-service model is as follows:

• Cash Changer service can utilize other cash device sub-services, such as coin dispensers, coin acceptors, bill
dispenser, bill acceptors and other cash changers to access device hardware, creating a full function cash
changer service. Each call to the cash changer service will invoke the corresponding call to the sub-services.
Therefore, an open call will call the open method of all of the sub-services, claim will call claim, and so forth.
The same can be said for the cash changer properties. Some properties are available for dispensers, while
others are available only for acceptors. It is up to the aggregating cash changer service to analyze and interpret
182 Unified POS, V1.16.1

the results of its communications to the sub-services and report to the application. For example, if the open call
fails for one of the sub services, the exception should be passed up to the application. The mapping of the
properties and methods from service to sub-service is as follows:

Cash
Changer

Coin
Dispenser

Bill
Dispenser

Coin
Acceptor

Bill
Acceptor

CapDeposit

CapDepositDataEvent

CapDiscrepancy X X X X

CapEmptySensor X X

CapJamSensor X X X X

CapFullSensor X X

CapNearEmptySensor X X

CapNearFullSensor X X

CapPauseDeposit X X

CapRealTimeData X X

CapRepayDeposit

AsyncMode X

AsyncResultCode X

Cash
Changer

Coin
Dispenser

Bill
Dispenser

Coin
Acceptor

Bill
Acceptor

AsyncResultCodeExtended X

CurrencyCashList X

CurrencyCode X X X

CurrencyCodeList X

CurrentExit X

CurrentService

DepositAmount X X

DepositCashList X X

DepositCodeList X X

DepositCounts X X

DepositStatus X X

DeviceExits X

DeviceStatus
Dispenser

Status
X

ExitCashList X

FullStatus X X

ServiceCount

ServiceIndex

RealTimeDataEnabled X X
Unified POS, v1.16.1 183

• ServiceCount lists the number of sub-services used by the cash changer.

• ServiceIndex is a byte segmented property containing the index for each sub-service.

• If access to sub-service property and method information is desired, setting the CurrentService property to the
desired index will allow the application to request property information of the specified sub-service.

beginDeposit() X X

dispenseCash() X

dispenseChange() X

endDeposit() X X

fixDeposit() X X

pauseDeposit() X X

readCashCounts() X X X X

CashChangerControl
(from upos)

<<Interface>>
POS

Application

CashChangerService

Coin Cash Changer Service

Bill Acceptor
Service

Bill Dispenser
Service Example of a Cash Changer Service using a coin cash changer

 service, a bill acceptor service and a bill dispenser service.
184 Unified POS, V1.16.1

8.3.4 Cash Changer Sequence Diagram Added in Release 1.7

NOTE: we are assuming that the :ClientApp already successfully open, Claimed and enabled the
CashChanger device. This means that the Claimed, DeviceEnabled properties are == true

:ClientApp :Human Actor:CashChanger :CashChangerService

register to receive DataEvent with Control

setDataEventEnabled(true) setDataEventEnabled(true)

beginDeposit() beginDeposit() DepositCounts and DepositAmount
property values are initialized

accepting cash

DepositCounts and DepositAmount
property values are Updated

deliver DataEvent
deliver DataEvent

pauseDeposit(Pause) pauseDeposit(Pause)

while check amount accepted
is < amount of sale

setDataEventEnabled(true) setDataEventEnabled(true)

accepting cash

DepositCounts and DepositAmount
property values are Updated

deliver DataEventdeliver DataEvent

pauseDeposit(Restart) pauseDeposit(Restart)

end loop
fixDeposit() fixDeposit()

DepositCounts and DepositAmount
property values are finalized

endDeposit(Change/
Nochange/Repayment) endDeposit(Change/

Nochange/Repayment)

dispenseChange() or
dispenseCash() dispenseChange() or

dispenseCash()

if there is change

end if

change
Unified POS, v1.16.1 185

8.3.5 Cash Changer State Diagram Updated in Release 1.8

8.3.6 Device Sharing

The Cash Changer is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing some of the properties, dispensing or
collecting, or receiving events.

• See the “Summary” table for precise usage prerequisites.

FixMode

entry/ sync DepositCounts and DepositAmount

Closed Opened Claimedopen()

close()

claim()

ClearInput Processing

entry/ empty data queue

Enabled

setDeviceEnabled(false)

release()
close()

clearInput()

PauseMode

Pay Money

Synchronous Pay Async

Fire Events

entry/ enqueue StatusUpdateEvents

ReceiptMoney
Wait

clearInput()

pauseDeposit(CHAN_DEPOSIT_PAUSE)

pauseDeposit(CHAN_DEPOSIT_RESTART)

dispenseChange(), dispenseCash()

beginDeposit()

DepositCount == 0
DepositAmount == 0

Synchronous Pay Async

release()

close()

clearInput()

setDeviceEnabled(true)

endDeposit()

clearInput()

done

done

endDeposit()

fire event

[asyncMode == false] [asyncMode == true]
186 Unified POS, V1.16.1

8.4 Properties (UML attributes)

8.4.1 AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, the dispenseCash and dispenseChange methods will be performed asynchronously. If false,
these methods will be performed synchronously.
This property is initialized to false by the Open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also AsyncResultCode Property, AsyncResultCodeExtended Property, dispenseChange Method,
dispenseCash Method.

8.4.2 AsyncResultCode Property

Syntax AsyncResultCode: int32 { read-only, access after open-claim-enable }

Remarks Holds the completion status of the last asynchronous dispense request (i.e., when dispenseCash or
dispenseChange was called with AsyncMode true).
This property is set before a StatusUpdateEvent event is delivered with a Status value of
CHAN_STATUS_ASYNC.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also AsyncMode Property, dispenseCash Method, dispenseChange Method.

8.4.3 AsyncResultCodeExtended Property

Syntax AsyncResultCodeExtended: int32 { read-only, access after open-claim-enable}

Remarks Holds the completion status of the last asynchronous dispense request (i.e., when dispenseCash or
dispenseChange was called with AsyncMode true).
This property is set before a StatusUpdateEvent event is delivered with a Status value of
CHAN_STATUS_ASYNC.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also AsyncMode Property, dispenseCash Method, dispenseChange Method.




Unified POS, v1.16.1 187

8.4.4 CapDeposit Property Added in Release 1.5

Syntax CapDeposit: boolean { read-only, access after open }

Remarks If true, the Cash Changer supports cash acceptance.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also beginDeposit Method, endDeposit Method, fixDeposit Method, pauseDeposit Method.

8.4.5 CapDepositDataEvent Property Added in Release 1.5

Syntax CapDepositDataEvent: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report a cash acceptance event.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also beginDeposit Method, endDeposit Method, fixDeposit Method, pauseDeposit Method.

8.4.6 CapDiscrepancy Property

Syntax CapDiscrepancy: boolean { read-only, access after open }

Remarks If true, the readCashCounts method can report effective discrepancy values.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also readCashCounts Method.
188 Unified POS, V1.16.1

8.4.7 CapEmptySensor Property

Syntax CapEmptySensor: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report the condition that some cash slots are empty.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also DeviceStatus Property, StatusUpdateEvent.

8.4.8 CapFullSensor Property

Syntax CapFullSensor: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report the condition that some cash slots are full.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also FullStatus Property, StatusUpdateEvent.

8.4.9 CapJamSensor Property Added in Release 1.11

Syntax CapJamSensor: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report a mechanical jam or failure condition.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also DeviceStatus Property, StatusUpdateEvent.

8.4.10 CapNearEmptySensor Property

Syntax CapNearEmptySensor: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report the condition that some cash slots are nearly empty.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also DeviceStatus Property, StatusUpdateEvent
Unified POS, v1.16.1 189

8.4.11 CapNearFullSensor Property

Syntax CapNearFullSensor: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report the condition that some cash slots are nearly full.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also FullStatus Property, StatusUpdateEvent.

8.4.12 CapPauseDeposit Property Added in Release 1.5

Syntax CapPauseDeposit: boolean { read-only, access after open }

Remarks If true, the Cash Changer has the capability to suspend cash acceptance processing temporarily.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also pauseDeposit Method.

8.4.13 CapRealTimeData Property Added in Release 1.11

Syntax CapRealTimeData: boolean { read-only, access after open }

Remarks If true, the device is able to supply data as the money is being accepted (“real time”).

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also RealTimeDataEnabled property.
190 Unified POS, V1.16.1

8.4.14 CapRepayDeposit Property Added in Release 1.5

Syntax CapRepayDeposit: boolean { read-only, access after open }

Remarks If true, the Cash Changer has the capability to return money that was deposited.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also endDeposit Method.

8.4.15 CurrencyCashList Property

Syntax CurrencyCashList: string { read-only, access after open }

Remarks Holds the cash dispensing units supported in the Cash Changer for the currency represented by the
CurrencyCode Property.

The string consists of ASCII numeric comma delimited values which denote the units of coins, then the
ASCII semicolon character (“;”) followed by ASCII numeric comma delimited units of bills that can be
used with the Cash Changer. If a semicolon (“;”) is absent, then all units represent coins.

Below are sample CurrencyCashList values in Japan.

• “1,5,10,50,100,500” ---
1, 5, 10, 50, 100, 500 yen coin.

• “1,5,10,50,100,500;1000,5000,10000” ---
1, 5, 10, 50, 100, 500 yen coin and 1000, 5000, 10000 yen bill.

• “;1000,5000,10000” ---
1000, 5000, 10000 yen bill.

This property is initialized by the open method, and is updated when CurrencyCode is set.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CurrencyCode Property.
Unified POS, v1.16.1 191

8.4.16 CurrencyCode Property

Syntax CurrencyCode: string { read-write, access after open }

Remarks Contains the active currency code to be used by Cash Changer operations. This property is initialized to
an appropriate value by the open method. This value is guaranteed to be one of the set of currencies
specified by the CurrencyCodeList property.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL A value was specified that is not within 

CurrencyCodeList.

See Also CurrencyCodeList Property.

8.4.17 CurrencyCodeList Property

Syntax CurrencyCodeList: string { read-only, access after open }

Remarks Holds a list of ASCII three-character ISO 4217 currency codes separated by commas. For example, if the
string is “JPY,USD,” then the Cash Changer supports both Japanese and U.S. monetary units.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CurrencyCode Property.

8.4.18 CurrentExit Property

Syntax CurrentExit: int32 { read-write, access after open }

Remarks Holds the current cash dispensing exit. The value 1 represents the primary exit (or normal exit), while
values greater then 1 are considered auxiliary exits. Legal values range from 1 to DeviceExits.

Below are examples of typical property value sets in Japan. CurrencyCode is “JPY” and
CurrencyCodeList is “JPY.”
192 Unified POS, V1.16.1

• Cash Changer supports coins; only one exit supported:
CurrencyCashList = “1,5,10,50,100,500”
DeviceExits = 1
CurrentExit = 1 : ExitCashList = “1,5,10,50,100,500”

• Cash Changer supports both coins and bills; an auxiliary exit is used for larger quantities of
bills:
CurrencyCashList = “1,5,10,50,100,500;1000,5000,10000”
DeviceExits = 2
When CurrentExit = 1 : ExitCashList = “1,5,10,50,100,500;1000,5000”
When CurrentExit = 2 : ExitCashList = “;1000,5000,10000”

• Cash Changer supports bills; an auxiliary exit is used for larger quantities of bills:
CurrencyCashList = “;1000,5000,10000”
DeviceExits = 2
When CurrentExit = 1 : ExitCashList = “;1000,5000”
When CurrentExit = 2 : ExitCashList = “;1000,5000,10000”

This property is initialized to 1 by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid CurrentExit value was specified.

See Also CurrencyCashList Property, DeviceExits Property, ExitCashList Property.
Unified POS, v1.16.1 193

8.4.19 CurrentService Property Added in Release 1.11

Syntax CurrentService: int32 { read-write, access after open }

Remarks Holds the current service. The value 0 represents the primary service, while values greater than 0 and less
than or equal to ServiceCount are used to request information from the integrated services. Legal values
range from 0 to ServiceCount. The readCashCounts method and all of the properties, common and
specific, are accessible when the CurrentService is greater than 0. CurrentService, ServiceCount and
ServiceIndex will always reflect the primary service.

Below are examples of a cash changer service using services for separate Coin Acceptor and Dispenser
and a bills only cash changer. A StatusUpdateEvent indicting a jam has been received by the
application. Only the bill changer and the coin dispenser can detect a jam.

• Checking the values of the primary service:
CurrentService = 0
ServiceCount = 3
ServiceIndex = 50528769 (X’03030201’)
DeviceStatus = CHAN_STATUS_JAM
DeviceServiceDescription = “Integrated Cash Changer Service 1.11.05”

• Changing the service to get information about the coin dispenser:
CurrentService = 2
ServiceCount = 3
ServiceIndex = 50528769 (X’03030201’)
DeviceStatus = CHAN_STATUS_OK
DeviceServiceDescription = “Pennybrite Coin Dispenser Service”

• The coin dispenser looks ok. Check the bill changer:
CurrentService = 3
ServiceCount = 3
ServiceIndex = 50528769 (X’03030201’)
DeviceStatus = CHAN_STATUS_JAM
DeviceServiceDescription = “Benjamin Bill Changer Service”

This property is initialized to 0 by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid CurrentService value was specified.

See Also ServiceCount Property, ServiceIndex Property.
194 Unified POS, V1.16.1

8.4.20 DepositAmount Property

Syntax DepositAmount: int32 { read-only, access after open }

Remarks The total amount of deposited cash.

 For example, if the currency is Japanese yen and DepositAmount is set to 18057,
 after the call to the beginDeposit method, there would be 18,057 yen in the Cash Changer.

 This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CurrencyCode Property.

8.4.21 DepositCashList Property Added in Release 1.5

Syntax DepositCashList: string { read-only, access after open }

Remarks Holds the cash units supported in the Cash Changer for the currency represented by the CurrencyCode
property. It is set to an empty string when the cash acceptance process is not supported.

It consists of ASCII numeric comma delimited values which denote the units of coins, then the ASCII
semicolon character (“;”) followed by ASCII numeric comma delimited values for the bills that can be
used with the Cash Changer. If the semicolon (“;”) is absent, then all units represent coins.

Below are sample DepositCashList values in Japan.

• “1,5,10,50,100,500” ---
1, 5, 10, 50, 100, 500 yen coin.

• “1,5,10,50,100,500;1000,5000,10000” ---
1, 5, 10, 50, 100, 500 yen coin and 1000, 5000, 10000 yen bill.

• “;1000,5000,10000” ---
1000, 5000, 10000 yen bill.

This property is initialized by the open method, and is updated when CurrencyCode is set.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CurrencyCode Property.
Unified POS, v1.16.1 195

8.4.22 DepositCodeList Property Added in Release 1.5

Syntax DepositCodeList: string { read-only, access after open }

Remarks Holds the currency code indicators for cash accepted. It is set to an empty string when the cash
acceptance process is not supported.

It is a list of ASCII three-character ISO 4217 currency codes separated by commas. For example, if the
string is “JPY,USD,” then the Cash Changer supports both Japanese and U.S. monetary units.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CurrencyCode Property.

8.4.23 DepositCounts Property Added in Release 1.5

Syntax DepositCounts: string { read-only, access after open }

Remarks Holds the total of the cash accepted by the cash units. The format of the string is the same as cashCounts
in the dispenseCash method. Cash units inside the string are the same as the DepositCashList property,
and are in the same order. It is set to an empty string when the cash acceptance function is not supported.

For example if the currency is Japanese yen and string of the DepositCounts property is set to 

1:80,5:77,10:0,50:54,100:0,500:87

After the call to the beginDeposit method, there would be 80 one yen coins, 77 five yen coins, 54 fifty
yen coins, and 87 five hundred yen coins in the Cash Changer.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CurrencyCode Property.
196 Unified POS, V1.16.1

8.4.24 DepositStatus Property Added in Release 1.5

Syntax DepositStatus: int32 { read-only, access after open-claim-enable }

Remarks Holds the current status of the cash acceptance operation. It may be one of the following values:

Value Meaning
CHAN_STATUS_DEPOSIT_START

Cash acceptance started.
CHAN_STATUS_DEPOSIT_END

Cash acceptance stopped.
CHAN_STATUS_DEPOSIT_NONE

Cash acceptance not supported.
CHAN_STATUS_DEPOSIT_COUNT

Counting or repaying the deposited money.
CHAN_STATUS_DEPOSIT_JAM

A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. This property is set to
CHAN_STATUS_DEPOSIT_END after initialization, or to CHAN_STATUS_DEPOSIT_NONE if the
device does not support cash acceptance.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

8.4.25 DeviceExits Property

Syntax DeviceExits: int32 { read-only, access after open }

Remarks The number of exits for dispensing cash.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CurrentExit Property.

8.4.26 DeviceStatus Property

Syntax DeviceStatus: int32 { read-only, access after open-claim-enable }

Remarks Holds the current status of the Cash Changer. It may be one of the following:

Value Meaning
CHAN_STATUS_OK The current condition of the Cash Changer is satisfactory.
CHAN_STATUS_EMPTY

Some cash slots are empty.
CHAN_STATUS_NEAREMPTY

Some cash slots are nearly empty.
CHAN_STATUS_JAM A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. If more than one condition is
present, then the order of precedence starting at the highest is: fault, empty, and near empty.
Unified POS, v1.16.1 197

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

8.4.27 ExitCashList Property

Syntax ExitCashList: string { read-only, access after open }

Remarks Holds the cash units which may be dispensed to the exit which is denoted by CurrentExit property. The
supported cash units are either the same as CurrencyCashList, or a subset of it. The string format is
identical to that of CurrencyCashList.
This property is initialized by the open method, and is updated when CurrencyCode or CurrentExit is
set.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CurrencyCode Property, CurrencyCashList Property, CurrentExit Property.

8.4.28 FullStatus Property Updated in Release 1.14

Syntax FullStatus: int32 { read-only, access after open, claim, enable }

Remarks Holds the current full status of the cash slots. It may be one of the following:

Value Meaning
CHAN_STATUS_OK All cash slots are neither nearly full nor full.
CHAN_STATUS_FULL Some cash slots are full.
CHAN_STATUS_NEARFULL

 Some cash slots are nearly full.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.
198 Unified POS, V1.16.1

8.4.29 RealTimeDataEnabled Property Added in Release 1.11

Syntax RealTimeDataEnabled: boolean {read-write, access after open-claim-enable}

Remarks If true and CapRealTimeData is true, each data event fired will update the DepositAmount and
DepositCounts properties. Otherwise, DepositAmount and DepositCounts are updated with the value
of the money collected when fixDeposit is called. Setting RealTimeDataEnabled will not cause any
change in system behavior until a subsequent beginDeposit method is performed. This prevents
confusion regarding what would happen if it were modified between a beginDeposit - endDeposit
pairing.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Cannot be set true if CapRealTimeData is false.

See Also CapRealTimeData property, DepositAmount property, DepositCounts property, beginDeposit
Method, endDeposit Method, fixDeposit Method.

8.4.30 ServiceCount Property Updated in Release 1.14

Syntax ServiceIndex: int32 { read-only, access after open }

Remarks The value is divided into four bytes indicating the service index for each of the integrated service
types.The diagram below indicates how the property is divided:

A value of zero means that no integrated services are utilized.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CurrentService Property, ServiceCount Property.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Bill Dispenser Bill Acceptor Coin Dispenser Coin Acceptor
Unified POS, v1.16.1 199

8.5 Methods (UML operations)

8.5.1 adjustCashCounts Method Added in Release 1.11

Syntax adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cashCounts parameter contains cash types and amounts to be initialized.

Remarks This method is called to set the initial amounts in the cash changer after initial setup, or to adjust cash
counts after replenishment or removal, such as a paid in or paid out operation. This method is called when
needed for devices which cannot determine the exact amount of cash in them automatically. If the device
can determine the exact amount, then this method call is ignored. The application would first call
readCashCounts to get the current counts, and adjust them to the amount being replenished. Then the
application will call this method to set the amount currently in the changer.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and the cashCounts parameter is set to
.1:80,5:77,50:54,100:0,500:87. as a result of calling the adjustCashCounts method, then there would be
eighty one yen coins, seventy-seven five yen coins, fifty-four fifty yen coins, zero one hundred yen coins,
and eighty-seven five-hundred yen coins in the Cash Changer.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cash units and counts cannot be read because an asynchronous method is in

process.

See Also readCashCounts Method.
200 Unified POS, V1.16.1

8.5.2 beginDeposit Method Added in Release 1.5

Syntax beginDeposit ():
void { raises-exception, use after open-claim-enable }

Remarks Cash acceptance is started.

The following property values are initialized by the call to this method:
• The value of each cash unit of the DepositCounts property is set to zero.
• The DepositAmount property is set to zero.

After calling this method, if CapDepositDataEvent is true, cash acceptance is reported by DataEvents
until fixDeposit is called while the deposit process is not paused.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Either the Cash Changer does not support cash acceptance, or the call

sequence is not correct.

See Also CapDepositDataEvent Property, DepositAmount Property, DepositCounts Property, endDeposit
Method, fixDeposit Method, pauseDeposit Method.

8.5.3 dispenseCash Method

Syntax dispenseCash (cashCounts: string):
void { raises-exception, use after open-claim-enable }

The cashCounts parameter contains the dispensing cash units and counts, represented by the format of
“cash unit:cash counts, ..;.., cash unit:cash counts”. Units before “;” represent coins, and units after “;”
represent bills. If “;” is absent, then all units represent coins.

Remarks Dispenses the cash from the Cash Changer into the exit specified by CurrentExit. The cash dispensed
is specified by pairs of cash units and counts.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Some cashCounts examples, using Japanese yen as the currency, are shown below.

• “10:5,50:1,100:3,500:1”
Dispense 5 ten yen coins, 1 fifty yen coins, 3 one hundred yen coins, 1 five hundred yen coins.

• “10:5,100:3;1000:10”
Dispense 5 ten yen coins, 3 one hundred yen coins, and 10 one thousand yen bills.

• “;1000:10,10000:5”
Dispense 10 one thousand yen bills and 5 ten thousand yen bills.
Unified POS, v1.16.1 201

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cash cannot be dispensed because an asynchronous method is in progress.

E_ILLEGAL One of the following errors occurred:
• The cashCounts parameter value was illegal for the current exit.
• Cash could not be dispensed because cash acceptance was in progress.

E_EXTENDED ErrorCodeExtended = ECHAN_OVERDISPENSE:
The specified cash cannot be dispensed because of a cash shortage.

See Also AsyncMode Property, CurrentExit Property.

8.5.4 dispenseChange Method

Syntax dispenseChange (amount: int32):
void { raises-exception, use after open-claim-enable }

The amount parameter contains the amount of change to be dispensed. It is up to the Cash Changer to
determine what combination of bills and coins will satisfy the tender requirements from its available
supply of cash.

Remarks Dispenses the specified amount of cash from the Cash Changer into the exit represented by CurrentExit.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY The specified change cannot be dispensed because an asynchronous method

is in progress.

E_ILLEGAL One of the following errors occurred:
• A negative or zero amount was specified.
• The amount could not be dispensed based on the values specified in

ExitCashList for the current exit.
• Change could not be dispensed because cash acceptance was in progress.

E_EXTENDED ErrorCodeExtended = ECHAN_OVERDISPENSE:
The specified change cannot be dispensed because of a cash shortage.

See Also AsyncMode Property, CurrentExit Property.
202 Unified POS, V1.16.1

8.5.5 endDeposit Method Added in Release 1.5

Syntax endDeposit (success: int32):
void { raises-exception, use after open-claim-enable }

The success parameter holds the value of how to deal with the cash that was deposited. Contains one of
the following values:

Parameter Description
CHAN_DEPOSIT_CHANGE The deposit is accepted and the deposited amount is greater than

the amount required.
CHAN_DEPOSIT_NOCHANGE The deposit is accepted and the deposited amount is equal to or

less than the amount required.
CHAN_DEPOSIT_REPAY The deposit is to be repaid through the cash deposit exit or the cash

payment exit.

Remarks Cash acceptance is completed.

Before calling this method, the application must calculate the difference between the amount of the
deposit and the amount required.

If the deposited amount is greater than the amount required then success is set to
CHAN_DEPOSIT_CHANGE. If the deposited amount is equal to or less than the amount required then
success is set to CHAN_DEPOSIT_NOCHANGE.

If success is set to CHAN_DEPOSIT_REPAY then the deposit is repaid through either the cash deposit
exit or the cash payment exit without storing the actual deposited cash.

When the deposit is repaid, it is repaid in the exact cash unit quantities that were deposited. Depending
on the actual device, the cash repaid may be the exact same bills and coins that were deposited, or it may
not.

The application must call the fixDeposit method before calling this method.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• Cash acceptance is not supported.
• The call sequence is invalid. beginDeposit and fixDeposit must be

called in sequence before calling this method.

See Also CapDepositDataEvent Property, DepositAmount Property, DepositCounts Property, beginDeposit
Method, fixDeposit Method, pauseDeposit Method.
Unified POS, v1.16.1 203

8.5.6 fixDeposit Method Added in Release 1.5

Syntax fixDeposit ():
void { raises-exception, use after open-claim-enable }

Remarks When this method is called, all property values are updated to reflect the current values in the Cash
Changer.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• Cash acceptance is not supported.
• The call sequence is invalid. beginDeposit must be called before calling

this method.

See Also DepositAmount Property, DepositCounts Property, beginDeposit Method, endDeposit Method,
pauseDeposit Method.

8.5.7 pauseDeposit Method Added in Release 1.5

Syntax pauseDeposit (control: int32):
void { raises-exception, use after open-claim-enable }

The control parameter contains one of the following values:

Parameter Description
CHAN_DEPOSIT_PAUSE Cash acceptance is paused.
CHAN_DEPOSIT_RESTART Cash acceptance is resumed.

Remarks Called to suspend or resume the process of depositing cash.

If control is CHAN_DEPOSIT_PAUSE, the cash acceptance operation is paused. The deposit process
will remain paused until this method is called with control set to CHAN_DEPOSIT_RESTART. It is
valid to call fixDeposit then endDeposit while the deposit process is paused.

When the deposit process is paused, the depositCounts and depositAmount properties are updated to
reflect the current state of the Cash Changer. The property values are not changed again until the deposit
process is resumed.

If control is CHAN_DEPOSIT_RESTART, the deposit process is resumed.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.
204 Unified POS, V1.16.1

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• Cash acceptance is not supported.
• The call sequence is invalid. beginDeposit must be called before calling

this method.
• The deposit process is already paused and control is set to

CHAN_DEPOSIT_PAUSE, or the deposit process is not paused and
control is set to CHAN_DEPOSIT_RESTART.

See Also CapDepositDataEvent Property, CapPauseDeposit Property, DepositAmount Property, Deposit-
Counts Property, beginDeposit Method, endDeposit Method, fixDeposit Method.

8.5.8 readCashCounts Method

Syntax readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cash count data is placed into the string cashCounts.
discrepancy If discrepancy is set to true by this method, then there is some cash which was

not able to be included in the counts reported in cashCounts; otherwise it is
set false.

Remarks The format of the string cashCounts is the same as cashCounts in the dispenseCash method. Each unit
in cashCounts matches a unit in the CurrencyCashList property, and is in the same order.

For example if the currency is Japanese yen and string returned in cashCounts is set to:
1:80,5:77,10:0,50:54,100:0,500:87

as a result of calling the readCashCounts method, then there would be 80 one yen coins, 77 five yen
coins, 54 fifty yen coins, and 87 five hundred yen coins in the Cash Changer.

If CapDiscrepancy property is false, then discrepancy is always false.

Usually, the cash total calculated by cashCounts parameter is equal to the cash total in a Cash Changer.
There are some cases where a discrepancy may occur because of existing uncountable cash in a Cash
Changer. An example would be when a cash slot is “overflowing” such that the device has lost its ability
to accurately detect and monitor the cash.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cash units and counts cannot be read because an asynchronous method is in

process.

See Also CapDiscrepancy Property, CurrencyCashList Property, dispenseCash Method.
Unified POS, v1.16.1 205

8.6 Events (UML interfaces)

8.6.1 DataEvent Updated in Release 1.11

<< event >> upos::events::DataEvent 
Status: int32 { read-only }

Description Notifies the application when the Cash Changer has accepted cash.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 The Status parameter contains zero.

8.6.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Cash Changer Service to provide events to the application that are not otherwise supported by
the Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and the
Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service. This
property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Cash Changer
devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15 directIO Method.
206 Unified POS, V1.16.1

8.6.3 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the Cash Changer device.

Attributes This event contains the following attribute:

Attributes Type Description 
Status int32 Indicates a change in the status of the unit. See values below.

Note that Release 1.3 added Power State Reporting with additional Power
reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 2.

The Status parameter contains the Cash Changer status condition:

Value Meaning
CHAN_STATUS_EMPTY Some cash slots are empty.
CHAN_STATUS_NEAREMPTY Some cash slots are nearly empty.
CHAN_STATUS_EMPTYOK No cash slots are either empty or nearly empty.
CHAN_STATUS_FULL Some cash slots are full.
CHAN_STATUS_NEARFULL Some cash slots are nearly full.
CHAN_STATUS_FULLOK No cash slots are either full or nearly full.
CHAN_STATUS_JAM A mechanical fault has occurred.
CHAN_STATUS_JAMOK A mechanical fault has recovered.
CHAN_STATUS_ASYNC Asynchronously performed method has completed.

Remarks Fired when the Cash Changer detects a status change.

For changes in the fullness levels, the Cash Changer is only able to fire StatusUpdateEvents when the
device has a sensor capable of detecting the full, near full, empty, and/or near empty states and the
corresponding capability properties for these states are set.

Jam conditions may be reported whenever this condition occurs; likewise for asynchronous method
completion.

The completion statuses of asynchronously performed methods are placed in the AsyncResultCode and
AsyncResultCodeExtended properties.

See Also AsyncResultCode Property, AsyncResultCodeExtended Property,
 “Events” on page 15
Unified POS, v1.16.1 207

208 Unified POS, V1.16.1

9 Cash Drawer

9.1 General

This Chapter defines the Cash Drawer device category.

9.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write
}

1.2 Not supported

CapCompareFirmwareVersion: boolean { read-only } 1.9 open

CapPowerReporting: int32 { read-only } 1.3 open

CapStatisticsReporting: boolean { read-only } 1.8 open

CapUpdateFirmware: boolean { read-only } 1.9 open

CapUpdateStatistics: boolean { read-only } 1.8 open

CheckHealthText: string { read-only } 1.0 open

Claimed: boolean { read-only } 1.0 open

DataCount: int32 { read-only } 1.2 Not supported

DataEventEnabled: boolean { read-write } 1.0 Not supported

DeviceEnabled: boolean { read-write } 1.0 open

FreezeEvents: boolean { read-write } 1.0 open

OutputID: int32 { read-only } 1.0 Not supported

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --

DeviceControlVersion: int32 { read-only } 1.0 --

DeviceServiceDescription: string { read-only } 1.0 open

DeviceServiceVersion: int32 { read-only } 1.0 open

PhysicalDeviceDescription: string { read-only } 1.0 open

PhysicalDeviceName: string { read-only } 1.0 open
Unified POS, v1.16.1 209

Properties (Continued)

Specific Type Mutability Versio
n

May Use After

CapStatus: boolean { read-only } 1.0 open

CapStatusMultiDrawerDetect: boolean { read-only } 1.5 open

DrawerOpened: boolean { read-only } 1.0 open & enable

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception } 1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open } 1.0

release ():
void { raises-exception, use after open, claim } 1.0

checkHealth (level: int32):
void { raises-exception, use after open, enable } Note 1.0

clearInput ():
void { } Not supported

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { } Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open } 1.0

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8
210 Unified POS, V1.16.1

Specific

Name

openDrawer ():
void { raises-exception, use after open, enable } Note 1.0

waitForDrawerClose (beepTimeout: int32, beepFrequency: int32,
beepDuration: int32, beepDelay: int32):

void { raises-exception, use after open, enable } Note
1.0

Note: Also requires that no other application has claimed the cash

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.0

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.0

 Status: int32 { read-only }
Unified POS, v1.16.1 211

9.3 General Information

The Cash Drawer programmatic name is “CashDrawer.”

9.3.1 Capabilities

The Cash Drawer Control has the following capability:

• Supports a command to “open” the cash drawer.

The cash drawer may have the following additional capability:

• Drawer status reporting of such a nature that the service can determine whether a particular drawer is open or
closed in environments where the drawer is the only drawer accessible via a hardware port.

• Drawer unique status reporting of such a nature that the service can determine whether a particular drawer is
open or closed in environments where more than one drawer is accessible via the same hardware port.

9.3.2 Cash Drawer Class Diagram Updated in Release 1.8

The following diagram shows the relationships between the Cash Drawer classes.

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

UposException

(from upos)

<<exception>>

CashDrawerConst

(from upos)

<<util ity>>
UposConst

(from upos)

<<utili ty>>

StatusUpdateEvent

<<prop>> Status : int32

(from events)

<<event>>

CashDrawerControl

<<capability>> CapStatus : boolean
<<capability>> CapStatusMultiDrawerDetect : boolean
<<prop>> DrawerOpened : boolean

openDrawer() : void
waitForDrawerClose(beepTimeout : int32, beepFrequency : int32, beepDuration : int32, beepDelay : int32) : void

(from upos)

<<Interface>>

<<sends>>

<<uses>>

fires fires

BaseControl

(from upos)

<<Interface>> <<uses>>

<<sends>>
212 Unified POS, V1.16.1

9.3.3 Cash Drawer Sequence Diagram Updated in Release 1.12

The following sequence diagram show the typical usage of a Cash Drawer open()  setDeviceEnabled(true) 
getDrawerOpened()  openDrawer(); as well as showing the unique sharing model of the Cash Drawer device
when used with multiple control instances open on the same physical device but by different applications.

:Cl ientApp0 :ClientApp1 cd0:CashDrawe
r

cd1:CashDrawer :StatusUpdateEvent :
StatusUpdateEvent

:CashDrawer
Service0

:CashDrawer
Service1

Physical CD
Device

7: setDeviceEnabled(true)

CashDrawer
device is
assumed open
successful ly and
DrawerOpened
property is now
true

10: openDrawer() CashDrawer is now
open by cal l to cd1.
Assume that some
human actor closes
after open

This call results in a
UposException since
the CashDrawer device
is claimed by the cd1
instance that is used by
:Cl ientApp1

This cal l is
successful and
CashDrawer device
is open since cd1
claimed the device
successfully

1: setDeviceEnabled(true) 2: setDeviceEnabled(true)
3: connect or somehow have access to the hardware

Service returns
current state of
cash drawer4: openDrawer() 5: openDrawer()

6: send command to open physical CD

NOTE: we are assuming that the :ClientApp(s) already successful ly opened the controls. This
means that the platform specific loading/configuration/creation code executed successfully.

Assume the CashDrawer
is successfully claimed
at this point by
:ClientApp113: claim(timeout)

18: openDrawer()

15: openDrawer()

If the command to open the physical CD
is successful then this wi ll result in
StatusUpdateEvent delivered to any
registered listeners. This is not shown in
this diagram for simplici ty.

Assume that both
:Cl ientApp0 and :ClientApp1
registered to receive events
-- not shown.

StatusUpdateEvent is del ivered
to al l registered handlers, even
though, in the situation above,
only :ClientApp1 is allowed to
call openDrawer() - since it
successful ly claimed the CD.

16: openDrawer()

8: setDeviceEnabled(true)

11: openDrawer()

9: might communicate with
device (e.g. get current drawer

state)

12: send command to open drawer

14: claim(timeout)

19: openDrawer()

21: send command to open CD

20: new

22: deliver SUE to control

23: del iver event to all registered handlers

24: notify cl ient of new event

26: del iver SUE to control

28: noti fy client of new event

27: deliver event to all registered handlers

17: throw UposException

25: new

Service0 also detects the cash drawer is
opened, either via a message from
Service1, a StatusUpdateEvent from
Service 1, or from a lower level interface
Unified POS, v1.16.1 213

9.3.4 Device Sharing

The cash drawer is a sharable device. Its device sharing rules are:

• After opening and enabling the device, the application may access all properties and methods and will receive
status update events.

• If more than one application has opened and enabled the device, each of these applications may access its
properties and methods. Status update events are delivered to all of these applications.

• If one application claims the cash drawer, then only that application may call openDrawer and
waitForDrawerClose. This feature provides a degree of security, such that these methods may effectively be
restricted to the main application if that application claims the device at startup.

• See the “Summary” table for precise usage prerequisites.
214 Unified POS, V1.16.1

9.4 Properties (UML attributes)

9.4.1 CapStatus Property

Syntax CapStatus: boolean { read-only, access after open }

Remarks If true, the drawer can report status. If false, the Service is not able to determine whether the cash drawer
is open or closed.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

9.4.2 CapStatusMultiDrawerDetect Property Added in Release 1.5

Syntax CapStatusMultiDrawerDetect: boolean { read-only, access after open }

Remarks If true, the status unique to each drawer in a multiple cash drawer configuration1 can be reported.

If false, the following possibilities exist:

DrawerOpened: value of false indicates that there are no drawers open.

DrawerOpened: value of true indicates that at least one drawer is open and it might be the particular
drawer in question. This case can occur in multiple cash drawer configurations where only one status is
reported indicating either a) all drawers are closed, or b) one or more drawers are open.

Note: A multiple cash drawer configuration is defined as one where a terminal or printer supports
opening more than one cash drawer independently via the same channel or hardware port. A typical
example is a configuration where a “Y” cable, connected to a single hardware printer port, has separate
drawer open signal lines but the drawer open status from each of the drawers is “wired-or” together. It is
not possible to determine which drawer is open.

This property is only meaningful if CapStatus is true.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CapStatus Property, DrawerOpened Property.

1. Multiple cash drawer configuration -- A hardware configuration where a printer or terminal controls more than one
cash drawer independently via the same channel or hardware port. A typical example is a configuration with a “Y”
cable connected to a single hardware port that controls two cash drawers.
Unified POS, v1.16.1 215

9.4.3 DrawerOpened Property Updated in Release 1.14

Syntax DrawerOpened: boolean { read-only, access after open-enable }

Remarks If true, the drawer is open. If false, the drawer is closed.

If the capability CapStatus is false, then the device does not support status reporting, and this property
is always false.

Note: If the capability CapStatusMultiDrawerDetect is false, then a DrawerOpened value of true
indicates at least one drawer is open, and it might be the particular drawer in question in a multiple cash
drawer configuration. See CapStatusMultiDrawerDetect for further clarification.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CapStatus Property, CapStatusMultiDrawerDetect Property.
216 Unified POS, V1.16.1

9.5 Methods (UML operations)

9.5.1 openDrawer Method

Syntax openDrawer ():
void { raises-exception, use after open-enable }

Remarks Opens the drawer.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

9.5.2 waitForDrawerClose Method

Syntax waitForDrawerClose (beepTimeout: int32, beepFrequency: int32, beepDuration: int32,
beepDelay: int32):

void { raises-exception, use after open-enable }

Parameter Description
beepTimeout Number of milliseconds to wait before starting an alert beeper.
beepFrequency Audio frequency of the alert beeper in hertz. 
beepDuration Number of milliseconds that the beep tone will be sounded. 
beepDelay Number of milliseconds between the sounding of beeper tones.

Remarks Waits until the cash drawer is closed. If the drawer is still open after beepTimeout milliseconds, then the
system alert beeper is started.

Not all POS implementations may support the typical PC speaker system alert beeper. However, by
setting these parameters the application will insure that the system alert beeper will be utilized if it is
present.

Unless a UposException is thrown, this method will not return to the application while the drawer is
open. In addition, in a multiple cash drawer configuration where the CapStatusMultiDrawerDetect
property is false, this method will not return to the application while any of the drawers are open. When
all drawers are closed, the beeper is turned off.

If CapStatus is false, then the device does not support status reporting, and this method will return
immediately.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

See Also CapStatus Property, CapStatusMultiDrawerDetect Property.
Unified POS, v1.16.1 217

9.6 Events (UML interfaces)

9.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Cash Drawer Service to provide events to the application that are not otherwise supported by the
Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber 
 and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service. 
 This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Cash Drawer
devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.
218 Unified POS, V1.16.1

9.6.2 StatusUpdateEvent Updated in Release 1.13

<< event >> upos::events::StatusUpdateEvent

 Status: int32 { read-only }

Description Notifies the application when the status of the Cash Drawer changes only while the device is enabled. A
StatusUpdateEvent may be enqueued when the device is enabled, to inform the application of the initial
or current state. However, this behavior is not required; the application must not depend upon it.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 The status reported from the Cash Drawer.

The Status property has one of the following values:

Value Meaning

CASH_SUE_DRAWERCLOSED

 The Cash Drawer has been closed.

CASH_SUE_DRAWEROPEN

 (Updated in Release 1.13) The Cash Drawer has been opened. Can only be
reported if the Cash Drawer is not locked (by Key or other locking means).

Note that Release 1.3 added Power State Reporting with additional Power
reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See description “StatusUpdateEvent" in Chapter 1.

Remarks If CapStatus is false, then the device does not support status reporting, and this event will never be
delivered to report status changes.

If CapStatusMultiDrawerDetect is false, then a CASH_SUE_DRAWEROPEN value indicates that at
least one cash drawer is open and it might be the particular drawer in question for multiple cash drawer
configurations.

See Also ”Events” on page 15, CapStatus Property, CapStatusMultiDrawerDetect Property.
Unified POS, v1.16.1 219

220 Unified POS, V1.16.1

10 CAT - Credit Authorization Terminal

10.1 General

This Chapter defines the Credit Authorization Terminal device category.

10.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write
}

1.4 Not supported

CapCompareFirmwareVersion: boolean { read-only } 1.9 open

CapPowerReporting: int32 { read-only } 1.3 open

CapStatisticsReporting: boolean { read-only } 1.8 open

CapUpdateFirmware: boolean { read-only } 1.9 open

CapUpdateStatistics: boolean { read-only } 1.8 open

CheckHealthText: string { read-only } 1.4 open

Claimed: boolean { read-only } 1.4 open

DataCount: int32 { read-only } 1.4 Not supported

DataEventEnabled: boolean { read-write } 1.4 Not supported

DeviceEnabled: boolean { read-write } 1.4 open & claim

FreezeEvents: boolean { read-write } 1.4 open

OutputID: int32 { read-only } 1.4 open

PowerNotify: int32 { read-write } 1.4 open

PowerState: int32 { read-only } 1.4 open

State: int32 { read-only } 1.4 --

DeviceControlDescription: string { read-only } 1.4 --

DeviceControlVersion: int32 { read-only } 1.4 --

DeviceServiceDescription: string { read-only } 1.4 open

DeviceServiceVersion: int32 { read-only } 1.4 open

PhysicalDeviceDescription: string { read-only } 1.4 open

PhysicalDeviceName: string { read-only } 1.4 open
Unified POS, v1.16.1 221

Properties (Continued)

Specific Type Mutability Version May Use After

AccountNumber: string { read-only } 1.4 open

AdditionalSecurityInformation: string { read-write
}

1.4 open

ApprovalCode: string { read-only } 1.4 open

AsyncMode: boolean { read-write
}

1.4 open

Balance: currency { read-only } 1.9 open

CapAdditionalSecurityInformation: boolean { read-only } 1.4 open

CapAuthorizeCompletion:

CapAuthorizePreSales:

CapAuthorizeRefund:

CapAuthorizeVoid:

CapAuthorizeVoidPreSales:

CapCashDeposit:

CapCenterResultCode:

CapCheckCard:

CapDailyLog:

CapInstallments:

CapLockTerminal:

CapLogStatus:

CapPaymentDetail:

CapTaxOthers:

CapTransactionNumber:

CapTrainingMode:

CapUnlockTerminal:

CardCompanyID:

CenterResultCode:

DailyLog:

LogStatus:

PaymentCondition:

PaymentDetail:

PaymentMedia:

SequenceNumber:

SettledAmount:

SlipNumber:

TrainingMode:

TransactionNumber:

TransactionType:

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

int32

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

string

string

string

int32

int32

string

int32

int32

currency

string

boolean

string

int32

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-write
}

{ read-only }

{ read-only }

{ read-only }

{ read-write
}

{ read-only }

{ read-only }

1.4

1.4

1.4

1.4

1.4

1.9

1.4

1.4

1.4

1.4

1.9

1.9

1.4

1.4

1.4

1.4

1.9

1.4

1.4

1.4

1.9

1.4

1.4

1.5

1.4

1.9

1.4

1.4

1.4

1.4

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open
222 Unified POS, V1.16.1

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.4

close ():
void { raises-exception, use after open }

1.4

claim (timeout: int32):
void { raises-exception, use after open }

1.4

release ():
void { raises-exception, use after open, claim }

1.4

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.4

clearInput ():
void { }

Not
supported

clearInputProperties ():
void { }

Not
supported

clearOutput ():
void { raises-exception, use after open, claim }

1.4

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.4

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific

Name

accessDailyLog (sequenceNumber: int32, type: int32, timeout: int32):
void { raises-exception, use after open, claim, enable }

1.4

authorizeCompletion (sequenceNumber: int32, amount: currency,
taxOthers: currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

1.4
Unified POS, v1.16.1 223

authorizePreSales (sequenceNumber: int32, amount: currency,
taxOthers: currency, timeout: int32):

void { raises-exception, use after open, claim, enable }

1.4

authorizeRefund (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):

 void { raises-exception, use after open, claim, enable }

1.4

authorizeSales (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

1.4

authorizeVoid (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

1.4

authorizeVoidPreSales (sequenceNumber: int32, amount: currency,
taxOthers: currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

1.4

cashDeposit (sequenceNumber: int32, amount: currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

1.9

checkCard (sequenceNumber: int32, timeout: int32):
void { raises-exception, use after open, claim, enable }

1.4

lockTerminal ():
void { raises-exception, use after open, claim, enable }

1.9

unlockTerminal ():
void { raises-exception, use after open, claim, enable }

1.9

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.4

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.4

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse int32 { read-write }

upos::events::OutputCompleteEvent 1.4

 OutputID: int32 { read-only }
224 Unified POS, V1.16.1

upos::events::StatusUpdateEvent 1.4

 Status: int32 { read-only }

Events (UML interfaces)

Name Type Mutability Version
Unified POS, v1.16.1 225

10.3 General Information

The CAT programmatic name is “CAT.”

10.3.1 Description of terms

• Authorization method 
Methods defined by this device class that have the Authorize prefix in their name. These methods require
communication with an approval agency.

• Authorization operation
The period from the invocation of an authorization method until the authorization is completed. This period
differs depending upon whether operating in synchronous or asynchronous mode.

• Credit Authorization Terminal (CAT) Device
A CAT device typically consists of a display, keyboard, magnetic stripe card reader, receipt printing device,
and a communications device. CAT devices are predominantly used in Japan where they are required by law.
Essentially a CAT device can be considered a device that shields the encryption, message formatting, and
communication functions of an electronic funds transfer (EFT) operation from an application.

• Purchase
The transaction that allows credit card or debit card payment at the POS. It is independent of payment methods
(for example, lump-sum payment, payment in installments, revolving payment, etc.).

• Cancel Purchase
The transaction to request voiding a purchase on the date of purchase.

• Refund Purchase
The transaction to request voiding a purchase after the date of purchase. This differs from cancel purchase in
that a cancel purchase operation can often be handled by updating the daily log at the CAT device, while the
refund purchase operation typically requires interaction with the approval agency.

• Authorization Completion
The state of a purchase when the response from the approval agency is “suspended”. The purchase is later
completed after a voice approval is received from the card company.

• Pre-Authorization
The transaction to reserve an estimated amount in advance of the actual purchase with customer's credit card
presentation and card entry at CAT.

• Cancel Pre-Authorization
The transaction to request canceling pre-authorization.

• Card Check
The transaction to perform a negative card file validation of the card presented by the customer. Typically
negative card files contain card numbers that are known to fail approval. Therefore the Card Check operation
removes the need for communication to the approval agency in some instances.

• Daily log
The daily log of card transactions that have been approved by the card companies.

• Payment condition
Condition of payment such as lump-sum payment, payment by bonus, payment in installments, revolving
payment, and the combination of those payments. Debit payment is also available. See the
PaymentCondition, PaymentMedia, and PaymentDetail properties for details.
226 Unified POS, V1.16.1

• Approval agency
The agency to decide whether or not to approve the purchase based on the card information, the amount of
purchase, and payment type. The approval agency is generally the card company.

10.3.2 Capabilities

The CAT control is capable of the following general mode of operation:

• This standard defines the application interface with the CAT control and does not depend on the CAT device
hardware implementation. Therefore, the hardware implementation of a CAT device may be as follows:

• Separate type (POS interlock)
The dedicated CAT device is externally connected to the POS (for instance, via an RS-232 connection).

• Built-in type
The hardware structure is the same as the separate type but is installed within the POS housing.

• The CAT device receives each authorization request containing a purchase amount and tax from CAT control.

• The CAT device generally requests the user to swipe a magnetic card when it receives an authorization request
from CAT control.

• Once a magnetic card is swiped at the CAT device, the device sends the purchase amount and tax to the
approval agency using the communications device.

• The CAT device returns the result from the approval agency to the CAT control. The returned data will be
stored in the authorization properties by the CAT control for access by applications.
Unified POS, v1.16.1 227

 Electronic Money Device: Added in Release 1.9

The CAT Device Category is extended to support an Electronic Money Device that has the following attributes.

• A CAT device typically consists of a display, keyboard, magnetic stripe reader, receipt printing device, and a
communications device. CAT devices are predominanly used in Japan where they are required by law.
Essentially, a CAT device can be considered a device that shields the encryption message formatting and
communications functions of an Electronic Funds Transfer (EFT) operation from an application.

• The Electronic Money Device receives the tendering information (amount of tender, tax, and other transaction
based information) from CAT control, and then starts the authorization processing.

• When the Electronic Money Device is required, a Credit Card swipe on the CAT device is generally required
for authorization.

• When a Card [Contact Type / Contactless Type] is input by the Electronic Money Device, it is formatted into
the authorization format with the transaction information and then communicated for authorization.

• When the authorization is completed, the Electronic Money Device sends the settlement result to CAT control.
The settlement result is stored by the CAT control and passed back to the calling application.

• The Electronic Money Device may save settlement result as DealingLog in the memory of the device. The
device may also send DealingLog to the Center by settlement processing.
228 Unified POS, V1.16.1

10.3.3 CAT Class Diagram Updated in Release 1.9

UposConst
(from upos)

<<utility>>

ErrorEvent
(from events)

<<event>>

OutputCompleteEvent
(from events)

<<event>>

StatusUpdateEvent
(from events)

<<event>>

DirectIOEvent
(from events)

<<event>>

CATControl

<<prop>> AccountNumber : string
<<prop>> AdditionalSecurityInformation : string
<<prop>> ApprovalCode : string
<<prop>> AsyncMode : boolean
<<prop>> Balance : currency
<<capability>> CapAdditionalSecurityInformation : boolean
<<capability>> CapAuthorizeCompletion : boolean
<<capability>> CapAuthorizePreSales : boolean
<<capability>> CapAuthorizeRefund : boolean
<<capability>> CapAuthorizeVoid : boolean
<<capability>> CapAuthorizeVoidPreSales : boolean
<<capability>> CapCashDeposit : boolean
<<capability>> CapCenterResultCode : boolean
<<capability>> CapCheckCard : boolean
<<capability>> CapDailyLog : int32
<<capability>> CapInstallments : boolean
<<capability>> CapLockTerminal : boolean
<<capability>> CapLogStatus : boolean
<<capability>> CapPaymentDetail : boolean
<<capability>> CapTaxOthers : boolean
<<capability>> CapTransactionNumber : boolean
<<capability>> CapTrainingMode : boolean
<<capability>> CapUnlockTerminal : boolean
<<prop>> CardCompanyID : string
<<prop>> CenterResultCode : string
<<prop>> DailyLog : string
<<prop>> LogStatus : int32
<<prop>> PaymentCondition : int32
<<prop>> PaymentDetail : string
<<prop>> PaymentMedia : int32
<<prop>> SequenceNumber : int32
<<prop>> SettledAmount : currency
<<prop>> SlipNumber : string
<<prop>> TrainingMode : boolean
<<prop>> TransactionNumber : string
<<prop>> TransactionType : int32

accessdailyLog()
authorizeCompletion()
authorizePreSales()
authorizeRefund()
authorizeSales()
authorizeVoid()
authorizeVoidPreSales()
cashDeposit()
checkCard()
lockTerminal()
unlockTerminal()

(from upos)

<<Interface>>
<<uses>>

fires

fires

fires

fires

UposException
(from upos)

<<exception>>

<<sends>>
Unified POS, v1.16.1 229

10.3.4 Model

The general models for the CAT control are shown below:

• The CAT control basically follows the output device model. However, multiple methods cannot be issued for
asynchronous output; only one outstanding asynchronous request is allowed.

• The CAT control issues requests to the CAT device for different types of authorization by invoking the
following methods.

• The CAT control issues requests to the CAT device for special processing local to the CAT device by invoking
the following methods.

• The CAT control stores the authorization results in the following properties when an authorization operation
successfully completes:

• The accessDailyLog method sets the following property

Function Method name Corresponding Cap property

Purchase authorizeSales None

Cancel Purchase authorizeVoid CapAuthorizeVoid

Refund Purchase authorizeRefund CapAuthorizeRefund

Authorization Completion authorizeCompletion CapAuthorizeCompletion

Pre-Authorization authorizePreSales CapAuthorizePreSales

Cancel Pre-Authorization authorizeVoidPreSales CapAuthorizeVoidPreSales

Function Method name Corresponding Cap property

Card Check checkCard CapCheckCard

Daily log accessDailyLog CapDailyLog

Description Property Name Corresponding Cap Property

Credit Account number AccountNumber None

Additional information AdditionalSecurityInformation CapAdditionalSecurityInformation

Approval code ApprovalCode None

Card company ID CardCompanyID None

Code from the approval
agency

CenterResultCode CapCenterResultCode

Payment condition PaymentCondition None

Payment detail PaymentDetail CapPaymentDetail

Sequence number SequenceNumber None

Slip number SlipNumber None

Center transaction number TransactionNumber CapTransactionNumber

Transaction type TransactionType None

Description Property Name Corresponding Cap Property

Daily log DailyLog CapDailyLog
230 Unified POS, V1.16.1

 Electronic Money Device: Added in Release 1.9

• The CAT Control requires the Electronic Money Device to track each settlement and closing in the
DealingLog.

• When the CAT Control receives the settlement results from the Electronic Money Device it stores these results
in the following properties:

• The accessDailyLog method sets the following property

• Sequence numbers are used to validate that the properties set at completion of a method are indeed associated
with the completed method. An incoming SequenceNumber argument for each method is compared with the
resulting SequenceNumber property after the operation associated with the method has completed. If the
numbers do not match, or if an application fails to identify the number, there is no guarantee that the values of
the properties listed in the two tables correspond to the completed method.

• The AsyncMode property determines if methods are run synchronously or asynchronously.

• When AsyncMode is false, methods will be executed synchronously and their corresponding properties will
contain data when the method returns.

• When AsyncMode is true, methods will return immediately to the application. When the operation associated
with the method completes, each corresponding property will be updated by the CAT control prior to an
OutputCompleteEvent. When AsyncMode is true, methods cannot be issued immediately after issuing a
prior method; only one outstanding asynchronous method is allowed at a time. However, clearOutput is an
exception because its purpose is to cancel an outstanding asynchronous method. The methods supported and
their corresponding properties vary depending on the CAT control implementation. Applications should verify

Function Method name Corresponding Cap property

Settlement authorizeSales None

Charge cashDeposit CapCashDeposit

Inquiry for the balances checkCard CapCheckCard

Closing DealingLog accessDailyLog CapDailyLog

Setting security lock lockTerminal CapLockTerminal

Releasing security lock unlockTerminal CapUnlockTerminal

Description Property Name Corresponding Cap Property

Card ID AccountNumber None

Additional information AdditionalSecurityInformation CapAdditionalSecurityInformation

Approval code ApprovalCode None

Settled amount SettledAmount None

Balance Balance None

Sequence number SequenceNumber None

Transaction type TransactionType None

Description Property Name Corresponding Cap Property

DealingLog DailyLog CapDailyLog
Unified POS, v1.16.1 231

that particular Cap properties are supported before utilizing the capability dependent methods and properties.

• Results of synchronous calls to methods and writable properties will be stored in ErrorCode. Results of
asynchronous processing will be indicated by an OutputCompleteEvent or returned in the Errorcode
argument of an ErrorEvent. If ErrorCode or the ErrorCode argument is E_EXTENDED, detailed device
specific information may be stored to ErrorCodeExtended in synchronous mode and stored to ErrorEvent
argument ErrorCodeExtended in asynchronous mode. The error code from the approval agency will be stored
in CenterResultCode in either mode.

• Training mode occurs continually when TrainingMode is true. To discontinue training mode, set
TrainingMode to false.

• An outstanding asynchronous method can be canceled via the clearOutput method.

• The Daily log can be collected by the accessDailyLog method. Collection will be run either synchronously or
asynchronously according to the value of AsyncMode.

• Following is the general usage sequence of the CAT control.
Synchronous Mode:

- open

- claim

- setDeviceEnabled (true)

- Definition of the argument SequenceNumber

- Set PaymentMedia Added in Version 1.5

- authorizeSales()

- Check UposException of the authorizeSales method

- Verify that the SequenceNumber property matches the value of the authorizeSales()
sequenceNumber argument

- Access the properties set by authorizeSales()

- setDeviceEnabled (false)

- release

- Close

Asynchronous Mode:

- open

- claim

- setDeviceEnabled (true)

- setAsyncMode (true)

- Definition of the argument SequenceNumber

- Set PaymentMedia Added in Version 1.5

- authorizeSales()
232 Unified POS, V1.16.1

- Check UposException of the authorizeSales method

- Wait for OutputCompleteEvent

- Check the argument ErrorCode

- Verify that the SequenceNumber property matches the value of the
authorizeSales() SequenceNumber argument

- Access the properties set by authorizeSales()

- setDeviceEnabled (false)

- release

- close

10.3.5 Device Sharing

The CAT is an exclusive-use device, as follows:

• After opening the device, properties are readable.

• The application must claim the device before enabling it.

• The application must claim and enable the device before calling methods that manipulate the device.

• See the “Summary” table for precise usage prerequisites.
Unified POS, v1.16.1 233

10.3.6 CAT Sequence Diagram Added in Release 1.7

This sequence diagram shows the typical synchronous usage of the AuthorizeSales process of the CAT device.

:CAT:Client App :CAT Service

setPaymentMedia(mediaType)

setPaymentMedia()
 Definition of the argument
 SequenceNumber

:CAT Hardware

AuthorizeSales(sequenceNumber, amount, tax, timeout)

open(logicalName)

open(logicalName)

claim(timeout)

claim(timeout)

setDeviceEnabled(true)

setDeviceEnabled(true)

send commands to
physical CAT

 After human actor swipes the card,
 the device sends the purchase amount
 and tax to approval agency using the
 communications device.

Set properties on
return from successful
authorization.Check properties

on successful return.

AuthorizeSales(sequenceNumber, amount, tax, timeout)
234 Unified POS, V1.16.1

10.3.7 CAT State Diagram

The following diagram depicts the CAT states.

open()

close()

claim()

release()

close()

clearOutput()/set DeviceEnabled (false)

/set DeviceEnabled (true)

accessDailyLog()

authorizeXyz(),
checkCard()Synchronous

Mode

authorizeXyz(),
checkCard()

release()

close()

Async Mode

Closed Opened Claimed

EnabledLogging
Processing

Clear Output
Processing

Done delivering event

Method processing

ErrorEvent
Processing

OutputCompleteEvent
Processing
Unified POS, v1.16.1 235

10.4 Properties (UML attributes)

10.4.1 AccountNumber Property Updated in Release 1.9

Syntax AccountNumber: string { read-only, access after open }

Remarks This property is initialized to an empty string by the open method and is updated when an authorization
operation successfully completes.

Electronic Money Device: Credit Card number of the settled account.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

10.4.2 AdditionalSecurityInformation Property Updated in Release 1.7

Syntax AdditionalSecurityInformation: string { read-write, access after open }1

Remarks An application can send data to the CAT device by setting this property before issuing an authorization
method. Also, data obtained from the CAT device and not stored in any other property as the result of an
authorization operation (for example, the account code for a loyalty program) can be provided to an
application by storing it in this property. Since the data stored here is device specific, this should not be
used for any development that requires portability.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CapAdditionalSecurityInformation Property.

10.4.3 ApprovalCode Property Updated in Release 1.9

Syntax ApprovalCode: string { read-only, access after open }

Remarks This property is initialized to an empty string by the open method and is updated when an authorization
operation successfully completes.

Electronic Money Device: Approval Code for the settled account.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

1. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion property. See
BinaryConversion property in Annex A.
236 Unified POS, V1.16.1

10.4.4 AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, the authorization methods will run asynchronously.

If false, the authorization methods will run synchronously.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also Authorization Methods.

10.4.5 Balance Property Added in Release 1.9

Syntax Balance: currency { read-only, access after open }

Remarks Electronic Money Device: The balance of Credit Card.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

10.4.6 CapAdditionalSecurityInformation Property

Syntax CapAdditionalSecurityInformation: boolean { read-only, access after open }

Remarks If true, the AdditionalSecurityInformation property may be utilized; otherwise it is false.

This property is initialized by open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also AdditionalSecurityInformation Property.

10.4.7 CapAuthorizeCompletion Property

Syntax CapAuthorizeCompletion: boolean { read-only, access after open }

Remarks If true, the authorizeCompletion method has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also authorizeCompletion Method.

10.4.8 CapAuthorizePreSales Property

Syntax CapAuthorizePreSales: boolean { read-only, access after open }

Remarks If true, the authorizePreSales method has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also authorizePreSales Method.
Unified POS, v1.16.1 237

10.4.9 CapAuthorizeRefund Property

Syntax CapAuthorizeRefund: boolean { read-only, access after open }

Remarks If true, the authorizeRefund method has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also authorizeRefund Method.

10.4.10 CapAuthorizeVoid Property

Syntax CapAuthorizeVoid: boolean { read-only, access after open }

Remarks If true, the authorizeVoid method has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also authorizeVoid Method.

10.4.11 CapAuthorizeVoidPreSales Property

Syntax CapAuthorizeVoidPreSales: boolean { read-only, access after open }

Remarks If true, the authorizeVoidPreSales method has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also authorizeVoidPreSales Method.
238 Unified POS, V1.16.1

10.4.12 CapCashDeposit Property Added in Release 1.9

Syntax CapCashDeposit: boolean { read-only, access after open }

Remarks Electronic Money Device: Show the device has charged method by cashDeposit method or not. If true,
the cashDeposit method is implemented, otherwise false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also cashDeposit Method.

10.4.13 CapCenterResultCode Property

Syntax CapCenterResultCode: boolean { read-only, access after open }

Remarks If true, the CenterResultCode property has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CenterResultCode Property.

10.4.14 CapCheckCard Property

Syntax CapCheckCard: boolean { read-only, access after open }

Remarks If true, the checkCard method has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also checkCard Method.

10.4.15 CapDailyLog Property

Syntax CapDailyLog: int32 { read-only, access after open }

Remarks Shows the daily log ability of the device.

Value Meaning
CAT_DL_NONE The CAT device does not have the daily log functions.
CAT_DL_REPORTING The CAT device only has an intermediate total function which reads

 the daily log but does not erase the log.
CAT_DL_SETTLEMENT The CAT device only has the “final total” and “erase daily log” functions.
CAT_DL_REPORTING_SETTLEMENT

 The CAT device has both the intermediate total function and the final
 total and erase daily log function.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also DailyLog Property, accessDailyLog Method.
Unified POS, v1.16.1 239

10.4.16 CapInstallments Property

Syntax CapInstallments: boolean { read-only, access after open }

Remarks If true, the item “Installments” which is stored in the DailyLog property as the result of accessDailyLog
will be provided; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also DailyLog Property.

10.4.17 CapLockTerminal Property Added in Release 1.9

Syntax CapLockTerminal: boolean { read-only, access after open }

Remarks Electronic Money Device: If true, the device has a security lock and the device can set the lock using
the lockTerminal method, otherwise false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also lockTerminal Method.

10.4.18 CapLogStatus Property Added in Release 1.9

Syntax CapLogStatus: boolean { read-only, access after open }

Remarks Electronic Money Device: If true, the device can notify the condition of the log by the LogStatus
property, otherwise false. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also LogStatus Property.

10.4.19 CapPaymentDetail Property

Syntax CapPaymentDetail: boolean { read-only, access after open }

Remarks If true, the device can notify the condition of the log by the LogStatus property, otherwise false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also PaymentDetail Property.
240 Unified POS, V1.16.1

10.4.20 CapTaxOthers Property

Syntax CapTaxOthers: boolean { read-only, access after open }

Remarks If true, the item “TaxOthers” which is stored in the DailyLog property as the result of access DailyLog
will be provided; otherwise it is false.

Note that this property is not related to the “TaxOthers” argument used with the authorization methods.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also DailyLog Property.

10.4.21 CapTransactionNumber Property

Syntax CapTransactionNumber: boolean { read-only, access after open }

Remarks If true, the TransactionNumber property has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also TransactionNumber Property.

10.4.22 CapTrainingMode Property

Syntax CapTrainingMode: boolean { read-only, access after open }

Remarks If true, the TrainingMode property has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also TrainingMode Property.

10.4.23 CapUnlockTerminal Property Added in Release 1.9

Syntax CapUnlockTerminal: boolean { read-only, access after open }

Remarks Electoric Money Device: If true, the device has a security lock and the device can release the lock using
the unlockTerminal method, otherwise false. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also unlockTerminal Method.
Unified POS, v1.16.1 241

10.4.24 CardCompanyID Property

Syntax CardCompanyID: string { read-only, access after open }

Remarks This property is updated when an authorization operation successfully completes. It shows credit card
company ID.

The length of the ID string varies depending upon the CAT device.

This property is initialized to an empty string by the open method

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

10.4.25 CenterResultCode Property

Syntax CenterResultCode: string { read-only, access after open }

Remarks Contains the code from the approval agency. Check the approval agency for the actual codes to be stored.

This property is initialized to an empty string by the open method and is updated when an authorization
operation successfully completes

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.
242 Unified POS, V1.16.1

10.4.26 DailyLog Property

Syntax DailyLog: string { read-only, access after open }

Remarks Stores the result of the accessDailyLog method. The data is delimited by CR(13 decimal)+LF(10
decimal) for each transaction and is stored in ASCII code. The detailed data of each transaction is comma
separated [i.e., delimited by “,” (44)]. The details
of one transaction are shown as follows:

 Notes from the previous table:
1) Format

Some CAT devices may not support seconds by the internal clock. In that case, the seconds field of
the transaction date is filled with “00.”

2) Additional data

The area where the CAT device stores the vendor specific data. This enables an application to
receive data other than that defined in this specification. The data stored here is vendor specific and
should not be used for development which places an importance on portability.

 No Item Property Corresponding Cap Property

1 Card company ID CardCompanyID None

2 Transaction type TransactionType None

3 Transaction date
Note 1)

None None

4 Transaction number
Note 3)

TransactionNumber CapTransactionNumber

5 Payment condition PaymentCondition None

6 Slip number SlipNumber None

7 Approval code ApprovalCode None

8 Purchase date
Note 5)

None None

9 Account number AccountNumber None

10 Amount
Note 4)

The argument Amount of the
authorization method or the amount
actually approved.

None

11 Tax/others
Note 3)

The argument TaxOthers of the
authorization method.

CapTaxOthers

12 Installments
Note 3)

None CapInstallments

13 Additional data
Note 2)

AdditionalSecurityInformation CapAdditionalSecurity
Information

Item Format

Transaction date YYYYMMDDHHMMSS

Purchase date MMDD
Unified POS, v1.16.1 243

3) If the corresponding Cap property is false

Cap property is set to false if the CAT device provides no corresponding data. In such instances, the
item cannot be displayed so the next comma delimiter immediately follows. For example, if
“Amount” is 1234 yen and “Tax/others” is missing and “Installments” is 2, the description will be
“1234,,2.” This makes the description independent of Cap property and makes the position of each
data item consistent.

4) Amount

Amount always includes “Tax/others” even if item 11 is present.

5) Purchase date

The date manually entered for the purchase transaction after approval.

Example An example of daily log content is shown below.

The actual data stored in DailyLog will be as follows:

Electronic Money Device: Setting DealingLog which is a result of the Electronic Money Device which
does not have the communication module for closing processing done closing processing. It may be the
device which is enciphered DealingLog to everything except for Center.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapDailyLog Property, accessDailyLog Method.

Item Description Meaning

Card company ID 102 JCB

Transaction type CAT_TRANSACTION_SALES Purchase

Transaction date 19980116134530 1/16/199813:45:30

Transaction number 123456 123456

Payment condition CAT_PAYMENT_INSTALLME
NT_1

Installment 1

Slip number 12345 12345

Approval code 0123456 0123456

Purchase date None None

Account number 1234123412341234 1234-1234-1234-1234

Amount 12345 12345JPY

Tax/others None None

Number of payments 2 2

Additional data 12345678 Specific information

102,10,19980116134530,123456,61,12345,0123456,,12341234123
41234,12345,,2,12345678[CR][LF]
244 Unified POS, V1.16.1

10.4.27 LogStatus Property Added in Release 1.9

Syntax LogStatus: int32 { read-only, access after open }
Remarks Electronic Money Device: This property shows the status of the DealingLog of the device.

Value Meaning
CAT_LOGSTATUS_OK DealingLog has enough capacity.
CAT_LOGSTATUS_NEARFULL DealingLog is nearly full.
CAT_LOGSTATUS_FULL DealingLog is full.
This property is initialized by the open method and kept current while the device is enabled.
If DealingLog becomes full, depending on the device, the settlement processing may not be able to
operate.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also StatusUpdateEvent Event.

10.4.28 PaymentCondition Property Updated in Release 1.9

Syntax PaymentCondition: int32 { read-only, access after open }
Remarks Holds the payment condition of the most recent successful authorization operation.

This property will be set to one of the following values. See PaymentDetail for the detailed payment
string that correlates to the following PaymentCondition values.
Value Meaning
CAT_PAYMENT_LUMP Lump-sum
CAT_PAYMENT_BONUS_1 Bonus 1
CAT_PAYMENT_BONUS_2 Bonus 2
CAT_PAYMENT_BONUS_3 Bonus 3
CAT_PAYMENT_BONUS_4 Bonus 4
CAT_PAYMENT_BONUS_5 Bonus 5
CAT_PAYMENT_INSTALLMENT_1 Installment 1
CAT_PAYMENT_INSTALLMENT_2 Installment 2
CAT_PAYMENT_INSTALLMENT_3 Installment 3
CAT_PAYMENT_BONUS_COMBINATION_1

Bonus combination payments 1
CAT_PAYMENT_BONUS_COMBINATION_2

Bonus combination payments 2
CAT_PAYMENT_BONUS_COMBINATION_3

Bonus combination payments 3
CAT_PAYMENT_BONUS_COMBINATION_4

Bonus combination payments 4
CAT_PAYMENT_ REVOLVING Revolving
CAT_PAYMENT_DEBIT Debit card
CAT_PAYMENT_ELECTRONIC_MONEY Electronic Money

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also PaymentDetail Property.
Unified POS, v1.16.1 245

10.4.29 PaymentDetail Property Updated in Release 1.9

Syntax PaymentDetail: string { read-only, access after open }

Remarks Contains payment condition details as the result of an authorization operation. Payment details vary
depending on the value of PaymentCondition. The data will be stored as comma separated ASCII
code. An empty string means that no data is stored and represents a string with zero length data.

*Maximum 6 installments

PaymentCondition PaymentDetail

CAT_PAYMENT_LUMP An empty string

CAT_PAYMENT_BONUS_1 An empty string

CAT_PAYMENT_BONUS_2 Number of bonus payments

CAT_PAYMENT_BONUS_3 1st bonus month

CAT_PAYMENT_BONUS_4* Number of bonus payments, 1st bonus month, 2nd bo-
nus month, 3rd bonus month, 4th bonus month, 5th bo-
nus month, 6th bonus month

CAT_PAYMENT_BONUS_5* Number of bonus payments, 1st bonus month, 1st bo-
nus amount, 2nd bonus month, 2nd bonus amount, 3rd
bonus month, 3rd bonus amount, 4th bonus month, 4th
bonus amount, 5th bonus month, 5th bonus amount, 6th
bonus month, 6th bonus amount

CAT_PAYMENT_INSTALLMENT_1 1st billing month, Number of payments

CAT_PAYMENT_INSTALLMENT_2* 1st billing month, Number of payments, 1st amount,
2nd amount, 3rd amount, 4th amount, 5th amount, 6th
amount

CAT_PAYMENT_INSTALLMENT_3 1st billing month, Number of payments, 1st amount

CAT_PAYMENT_BONUS_COMBINATION_1 1st billing month, Number of payments

CAT_PAYMENT_BONUS_COMBINATION_2 1st billing month, Number of payments, bonus amount

CAT_PAYMENT_BONUS_COMBINATION_3* 1st billing month, Number of payments, number of bo-
nus payments, 1st bonus month, 2nd bonus month, 3rd
bonus month, 4th bonus month, 5th bonus month, 6th
bonus month

CAT_PAYMENT_BONUS_COMBINATION_4* 1st billing month, Number of payments, number of bo-
nus payments, 1st bonus month, 1st bonus amount, 2nd
bonus month, 2nd bonus amount, 3rd bonus month, 3rd
bonus amount, 4th bonus month, 4th bonus amount, 5th
bonus month, 5th bonus amount, 6th bonus month, 6th
bonus amount

CAT_PAYMENT_REVOLVING An empty string

CAT_PAYMENT_DEBIT An empty string

CAT_PAYMENT_ELECTRONIC_MONEY An empty string
246 Unified POS, V1.16.1

The payment types and names vary depending on the CAT device. The following are the payment types and
terms available for CAT devices. Note that there are some differences between UnifiedPOS terms and those used
by the CAT devices. The goal of this table is to synchronize these terms.

G
en

er
al

 P
ay

m
en

t C
at

eg
or

y

E
nt

ry
 it

em

P
ay

m
en

tC
on

di
ti

on
 V

al
ue

CAT
Name

CAT
(Old CAT)

G-CAT JET-S SG-CAT Master-T

Credit
Card

Not
specified

Not
specified

JCB VISA MASTER

UnifiedPOS
Term

Card Company Terms

Lump-
sum

(None) 10 Lump-sum Lump-sum Lump-sum Lump-sum Lump-sum Lump-sum

Bonus (None) 21 Bonus 1 Bonus 1 Bonus 1 Bonus 1 Bonus 1 Bonus 1

Number of
bonus
payments

22 Bonus 2 Bonus 2 Bonus 2 Bonus 2 Bonus 2 Bonus 2

Bonus
month(s)

23 Bonus 3 Bonus 3 Does not ex-
ist.

Does not ex-
ist.

Bonus 3 Bonus 3

Number of
bonus
payments

Bonus
month (1)

Bonus
month (2)

Bonus
month (3)

Bonus
month (4)

Bonus
month (5)

Bonus
month (6)

24 Bonus 4 Bonus 4 Bonus 3 Bonus 3 Bonus 4
(Up to two
entries for
bonus
month)

Bonus 4
Unified POS, v1.16.1 247

Number of
bonus
payments

Bonus
month (1)

Bonus
amount
(1)

Bonus
month (2)

Bonus
amount(2)

Bonus
month (3)

Bonus
amount(3)

Bonus
month (4)

Bonus
amount(4)

Bonus
month (5)

Bonus
amount(5)

Bonus
month (6)

Bonus
amount(6)

25 Bonus 5 Bonus 5 Does not
 exist.

Does not
 exist.

Does not
 exist.

Bonus 5

Installm
ent

Payment
start
month

Number of
payments

61 Installment 1 Installment 1 Installment 1 Installment 1 Installment 1 Installment 1
248 Unified POS, V1.16.1

Payment
start
month

Number of
payments

Install-
ment
amount(1)

Install-
ment
amount(2)

Install-
ment
amount(3)

Install-
ment
amount(4)

Install-
ment
amount(5)

Install-
ment
amount(6)

62 Installment 2 Installment 2 Does not
 exist.

Does not
 exist.

Does not
 exist.

Does not
 exist.

Payment
start
month

Number of
payments

Initial
amount

63 Installment 3 Installment 3 Installment 2 Installment 2 Does not
 exist.

Installment 2

Combi-
nation

Payment
start
month

Number of
payments

31 Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Payment
start
month

Number of
payments

Bonus
amount

32 Bonus Com-
bination 2

Bonus Com-
bination 2

Does not
 exist.

Does not
 exist.

Bonus Com-
bination 2

Bonus Com-
bination 2
Unified POS, v1.16.1 249

Payment
start
month

Number of
payments

Number of
bonus
payments

Bonus
month (1)

Bonus
month (2)

Bonus
month (3)

Bonus
month (4)

Bonus
month (5)

Bonus
month (6)

33 Bonus Com-
bination 3

Bonus Com-
bination 3

Does not
 exist.

Does not
 exist.

Bonus Com-
bination 3
(Up to two
entries for
bonus
month)

Bonus Com-
bination 3
250 Unified POS, V1.16.1

Errors A UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

See Also CapPaymentDetail Property.

Payment
start
month

Number of
payments

Number of
bonus
payments

Bonus
month (1)

Bonus
amount(1)

Bonus
month (2)

Bonus
amount(2)

Bonus
month (3)

Bonus
amount(3)

Bonus
month (4)

Bonus
amount(4)

Bonus
month (5)

Bonus
amount(5)

Bonus
month (6)

Bonus
amount(6)

34 Bonus Com-
bination 4

Bonus Com-
bination 4

Bonus Com-
bination 2

Bonus Com-
bination 2

Bonus Com-
bination 4
(Up to two
entries for
bonus month
and amount)

Bonus Com-
bination 4

Revolvi
ng

(None) 80 Revolving Revolving Revolving Revolving Revolving Revolving

Debit (None) 110 Debit (Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)
Unified POS, v1.16.1 251

10.4.30 PaymentMedia Property Updated in Release 1.9

Syntax PaymentMedia: int32 { read-write, access after open }

Remarks Holds the payment media type that the approval method should approve.

The application sets this property to one of the following values before issuing an approval method call.
“None specified” means that payment media will be determined by the CAT device, not by the POS
application.

Value Meaning
CAT_MEDIA_UNSPECIFIED None specified.
CAT_MEDIA_CREDIT Credit card.
CAT_MEDIA_DEBIT Debit card.
CAT_MEDIA_ELECTRONIC_MONEY

Electronic Money.

This property is initialized to CAT_MEDIA_UNSPECIFIED by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

10.4.31 SequenceNumber Property

Syntax SequenceNumber: int32 { read-only, access after open }

Remarks Stores a “sequence number” as the result of each method call. This number needs to be checked by an
application to see if it matches with the argument sequenceNumber of the originating method.

If the “sequence number” returned from the CAT device is not numeric, the CAT control set this property
to zero. This property is initialized to zero by the open method and is updated when an authorization
operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

10.4.32 SettledAmount Property Added in Release 1.9

Syntax SettledAmount: currency { read-only, access after open }

Remarks Electronic Money Device: Setting real amount of the settlement.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also authorizeSales Method, cashDeposit Method.

10.4.33 SlipNumber Property Updated in Release 1.7

Syntax SlipNumber: string { read-only, access after open }

Remarks Stores a “slip number” as the result of each authorization operation.

This property is initialized to an empty string by the open method and is updated when an authorization
operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.
252 Unified POS, V1.16.1

10.4.34 TrainingMode Property

Syntax TrainingMode: boolean { read-write, access after open }

Remarks If true, each operation will be run in training mode; otherwise each operation will be run in normal mode.

TrainingMode needs to be explicitly set to false by an application to exit from training mode, because
it will not automatically be set to false after the completion of an operation.

This property will be initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL CapTrainingMode is false.

10.4.35 TransactionNumber Property

Syntax TransactionNumber: string { read-only, access after open }

Remarks Stores a “transaction number” as the result of each authorization operation.

This property is initialized to an empty string by the open method and is updated when an authorization
operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

10.4.36 TransactionType Property Updated in Release 1.10

Syntax TransactionType: int32 { read-only, access after open }

Remarks Stores a “transaction type” as the result of each authorization operation.

This property is initialized to zero by the open method and is updated when an authorization operation
successfully completes.

This property will be set to one of the following values.

Value Meaning
CAT_TRANSACTION_SALES Sales
CAT_TRANSACTION_VOID Cancellation
CAT_TRANSACTION_REFUND Refund purchase
CAT_TRANSACTION_COMPLETION Purchase after approval
CAT_TRANSACTION_PRESALES Pre-authorization
CAT_TRANSACTION_CHECKCARD Card Check
CAT_TRANSACTION_VOIDPRESALES Cancel pre-authorization approval
CAT_TRANSACTION_CASHDEPOSIT Charge

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.
Unified POS, v1.16.1 253

10.5 Methods (UML operations)

10.5.1 accessDailyLog Method Updated in Release 1.9

Syntax accessDailyLog (sequenceNumber: int32, type: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber The sequence number to get daily log.

type Specify whether the daily log is intermediate total or final total and erase.

timeout The maximum waiting time (in milliseconds) until the response is received
from the CAT device. FOREVER (-1), 0 and positive values can be specified.

Remarks Gets daily log from CAT.

Daily log will be retrieved and stored in DailyLog as specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives response
from the CAT.

Application must specify one of the following values for type for daily log type (either intermediate total
or adjustment). Legal values depend upon the CapDailyLog value.

Electronic Money Device: Gets the DealingLog from the Electronic Money Device to send to the
Center. If the Electronic Money Device has communication capabilities, the DealingLog will be sent
from the Electronic Money Device to the Center and nothing is stored in the DailyLog. Otherwise, the
DealingLog is stored in the DailyLog Property.

Value Meaning
CAT_DL_REPORTING Intermediate total.
CAT_DL_SETTLEMENT Final total and erase.

Electronic Money Device: Closing DealingLog of the Electronic
Money device.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid or unsupported type or timeout parameter was specified, or

CapDailyLog is false.
E_TIMEOUT No response was received from CAT during the specified timeout time in

milliseconds.
E_EXTENDED The detail code has been stored in ErrorCodeExtended.
E_BUSY The CAT device cannot accept any commands now.

See Also CapDailyLog Property, DailyLog Property.
254 Unified POS, V1.16.1

10.5.2 authorizeCompletion Method

Syntax authorizeCompletion (sequenceNumber: int32, amount: currency, taxOthers: currency, timeout:
int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the response is received
from the CAT device. FOREVER (-1), 0 and positive values can be specified.

Remarks Purchase after approval is intended.

Sales after approval for amount and taxOthers is intended as the approval specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives response
from the CAT.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid timeout parameter was specified, or
 CapAuthorizeCompletion is false.

E_TIMEOUT No response was received from CAT during the specified timeout time in
milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.

See Also CapAuthorizeCompletion Property.
Unified POS, v1.16.1 255

10.5.3 authorizePreSales Method

Syntax authorizePreSales (sequenceNumber: int32, amount: currency,
taxOthers: currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the response is received
from the CAT device. FOREVER (-1), 0 and positive values can be specified.

Remarks Makes a pre-authorization.

Pre-authorization for amount and taxOthers is made as the approval specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives response
from the CAT.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning 
E_ILLEGAL Invalid timeout parameter was specified, or CapAuthorizePreSales is
　　　　　 false.

E_TIMEOUT No response was received from CAT during the specified timeout time in 
 milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.

See Also CapAuthorizePreSales Property.

　　　　　　
256 Unified POS, V1.16.1

10.5.4 authorizeRefund Method

Syntax authorizeRefund (sequenceNumber: int32, amount: currency, taxOthers: 　　　　
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description 　　　　　　　
sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the response is received
from the CAT device. FOREVER (-1), 0 and positive values can be specified.

Remarks Refund purchase approval is intended.

Refund purchase approval for amount and taxOthers is intended as the approval specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives response
from the CAT.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid timeout parameter was specified, or CapAuthorizeRefund is false.

E_TIMEOUT No response was received from CAT during the specified timeout time in
milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.

See Also CapAuthorizeRefund Property.
Unified POS, v1.16.1 257

10.5.5 authorizeSales Method

Syntax authorizeSales (sequenceNumber: int32, amount: currency, taxOthers: 　　　　　　　　
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description 　　
sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the response is received
from the CAT device. FOREVER (-1), 0 and positive values can be specified.

Remarks Normal purchase approval is intended.

Normal purchase approval for amount and taxOthers is intended as the approval specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives response
from the CAT.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

 Some possible values of the exception's ErrorCode property are:

Value Meaning 
E_ILLEGAL　 Invalid timeout parameter was specified.

E_TIMEOUT No response was received from CAT during the specified timeout time in
milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.
258 Unified POS, V1.16.1

10.5.6 authorizeVoid Method

Syntax authorizeVoid (sequenceNumber: int32, amount: currency, taxOthers: 　　　　　　　
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the response is received
from the CAT device. FOREVER (-1), 0 and positive values can be specified.

Remarks Purchase cancellation approval is intended.

Cancellation approval for amount and taxOthers is intended as the approval specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives response
from the CAT.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid timeout parameter was specified, or CapAuthorizeVoid is false.

E_TIMEOUT No response was received from CAT during the specified timeout time in
milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.

See Also CapAuthorizeVoid Property.
Unified POS, v1.16.1 259

10.5.7 authorizeVoidPreSales Method

Syntax authorizeVoidPreSales (sequenceNumber: int32, amount: currency, 　　　　　　　　　　
taxOthers: currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the response is received
from the CAT device. FOREVER (-1), 0 and positive values can be specified.

Remarks Pre-authorization cancellation approval is intended.

Pre-authorization cancellation approval for amount and taxOthers is intended as the approval specified
by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives response
from the CAT.

Normal cancellation could be used for CAT control and CAT devices which have not implemented the
pre-authorization approval cancellation. Refer to the documentation supplied with CAT device and / or
CAT control.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid timeout parameter was specified, or CapAuthorizeVoidPreSales 
 is false.

E_TIMEOUT No response was received from CAT during the specified timeout time in
milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.

See Also CapAuthorizeVoidPreSales Property.
260 Unified POS, V1.16.1

10.5.8 cashDeposit Method Added in Release 1.9

Syntax cashDeposit (sequenceNumber: int32, amount: currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number for charge.
amount Amount of money for charge.
timeout The maximum waiting time (in milliseconds) until the response is received

from the CAT device. FOREVER (-1), 0 and positive values can be specified.

Remarks Chargings.

The amount is stored on the Electronic Money Device.

If timeout is FOREVER(-1), a timeout will not occur and the process will wait forever until the Electronic
Money Device responds.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid timeout parameter was specified, or CapCashDeposit is false.
E_TIMEOUT No response was received from CAT during the specified timeout time in

milliseconds.
E_EXTENDED The detail code has been stored in ErrorCodeExtended.
E_BUSY The CAT device cannot accept any commands now.

See Also CapCashDeposit Property.
Unified POS, v1.16.1 261

10.5.9 checkCard Method Updated in Release 1.9

Syntax checkCard (sequenceNumber: int32, timeout: int32): 
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number for approval.

timeout The maximum waiting time (in milliseconds) until the response is received
from the CAT device. FOREVER (-1), 0 and positive values can be specified.

Remarks Card Check is intended.

Card Check will be made as specified by sequenceNumber.

Electronic Money Device:
The check of the Balance will be done by the specified sequenceNumber. The Balance will be stored in
the Balance

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives response
from the CAT.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid timeout parameter was specified, or CapCheckCard is false.
E_TIMEOUT No response was received from CAT during the specified timeout time in

milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.

See Also Balance Property, CapCheckCard Property.
262 Unified POS, V1.16.1

10.5.10 lockTerminal Method Added in Release 1.9

Syntax lockTerminal (): 
void { raises-exception, use after open-claim-enable }

Remarks Sets the security lock. When locked, the Electronic Money Device cannot accept any commands.

AdditionalSecurityInformation property is used when key information is required.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL The Electronic Money Device does not have a security lock function.
E_EXTENDED The detail code has been stored in ErrorCodeExtended.
E_BUSY The CAT device cannot accept any commands now.

See Also CapLockTerminal Property.

10.5.11 unlockTerminal Method Added in Release 1.9

Syntax unlockTerminal (): 
void { raises-exception, use after open-claim-enable }

Remarks Releases the security lock.

AdditionalSecurityInformation property is used when key information is required.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL The Electronic Money Device does not have a security lock function.
E_EXTENDED The detail code has been stored in ErrorCodeExtended.
E_BUSY The CAT device cannot accept any commands now.

See Also CapUnlockTerminal Property.
Unified POS, v1.16.1 263

10.6 Events (UML interfaces)

10.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent 
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific CAT Service to provide events to the application that are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and the

Service. This attribute is settable.
Obj object Additional data whose usage varies by the EventNumber and the Service.

This attribute is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s CAT devices
which may not have any knowledge of the Service’s need for this event.

See Also ”Events” on page 15 directIO Method

10.6.2 ErrorEvent Updated in Release 1.9

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a CAT error has been detected and suitable response by the application is
necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 The code which caused the error event. See ErrorCode for the

values.
ErrorCodeExtended int32 The extended code which caused the error event. See

ErrorCodeExtended below for values.
ErrorLocus int32 EL_OUTPUT is specified. An error occurred during asynchronous

action.
ErrorResponse int32 Pointer to the error event response. See ErrorResponse below for

values.
264 Unified POS, V1.16.1

If ErrorCode is E_EXTENDED, ErrorCodeExtended will be set to one of the following values:

Value Meaning
ECAT_CENTERERROR

An error was returned from the approval agency. The detail error code is
defined in CenterResultCode.

ECAT_COMMANDERROR
The command sent to CAT is wrong. This error is never returned so long as
CAT control is working correctly.

ECAT_RESET CAT was stopped during processing by CAT reset key (stop key) and so on.

ECAT_COMMUNICATIONERROR
Communication error has occurred between the approval agency and CAT.

ECAT_DAILYLOGOVERFLOW
Daily log was too big to be stored. Keeping daily log has been stopped and
the value of DailyLog property is uncertain.
Electronic Money Device:
A failure will occur if the DealingLog on the device is full and the device is
attempting to be closed.

ECAT_DEFICIENT Electronic Money Device:
Because the balance is insufficient, it cannot close settlement.

ECAT_OVERDEPOSIT
Electronic Money Device:
A failure will occur if a settlement amount is attempted that is over the
chargeable amount of the charge account.

The content of the position specified by ErrorResponse will be preset to the default value of ER_RETRY.
An application may set one of the following values.

Value Meaning
ER_RETRY Retries the asynchronous processing. The error state is exited.

ER_CLEAR Clear the asynchronous processing. The error state is exited.

Remarks Fired when an error is detected while processing an asynchronous authorize group method or the
accessDailyLog method. The control's State transitions into the error state.

See Also “Device Output Model” on page 20, “Device Information Reporting Model Added in Release 1.8” on
page 25.
Unified POS, v1.16.1 265

10.6.3 OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent 
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the OutputID attribute has
completed successfully.

Attribute This event contains the following attribute:

Attribute Type Description 
OutputID int32 The ID number of the asynchronous output request that is complete.

Remarks This event is enqueued after the request’s data has been both sent 
 and the Service has confirmation that is was processed by the
 device successfully.

See Also “Device Output Model” on page 20

10.6.4 StatusUpdateEvent Updated in Release 1.9

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the CAT device.

Electronic Money Device:
Notifies the application that there is a change in the DealingLog status of the Electronic Money Device.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Indicates a change in the power status of the unit.

Note that Release 1.3 added Power State Reporting with additional Power
reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description In Chapter 2.

Electronic Money Device:

The Status parameter contains the DealingLog status condition.

Value Meaning
CAT_LOGSTATUS_OK DealingLog is enough capacity.
CAT_LOGSTATUS_NEARFULL

DealingLog is nearly full.
CAT_LOGSTATUS_FULL DealingLog is full.

Remarks Enqueued when the CAT device detects a power state change.

See Also “Events” on page 15
266 Unified POS, V1.16.1

11 Check Scanner

11.1 General

This Chapter defines the Check Scanner device category.

11.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.7 open

CapCompareFirmwareVersion: boolean { read-only } 1.9 open

CapPowerReporting: int32 { read-only } 1.3 open

CapStatisticsReporting: boolean { read-only } 1.8 open

CapUpdateFirmware: boolean { read-only } 1.9 open

CapUpdateStatistics: boolean { read-only } 1.8 open

CheckHealthText: string { read-only } 1.7 open

Claimed: boolean { read-only } 1.7 open

DataCount: int32 { read-only } 1.7 open

DataEventEnabled: boolean { read-write } 1.7 open

DeviceEnabled: boolean { read-write } 1.7 open & claim

FreezeEvents: boolean { read-write } 1.7 open

OutputID: int32 { read-only } 1.7 Not supported

PowerNotify: int32 { read-write } 1.7 open

PowerState: int32 { read-only } 1.7 open

State: int32 { read-only } 1.7 --

DeviceControlDescription: string { read-only } 1.7 --

DeviceControlVersion: int32 { read-only } 1.7 --

DeviceServiceDescription: string { read-only } 1.7 open

DeviceServiceVersion: int32 { read-only } 1.7 open

PhysicalDeviceDescription: string { read-only } 1.7 open

PhysicalDeviceName: string { read-only } 1.7 open
Unified POS, v1.16.1 267

Properties (Continued)

Specific Type Mutability Version May Use After

CapAutoContrast: boolean { read-only } 1.9 open

CapAutoGenerateFileID: boolean { read-only } 1.7 open

CapAutoGenerateImageTagData: boolean { read-only } 1.7 open

CapAutoSize: boolean { read-only } 1.7 open

CapColor: int32 { read-only } 1.7 open

CapConcurrentMICR: boolean { read-only } 1.7 open

CapContrast: boolean { read-only } 1.9 open

CapDefineCropArea: boolean { read-only } 1.7 open

CapImageFormat: int32 { read-only } 1.7 open

CapImageTagData: boolean { read-only } 1.7 open

CapMICRDevice: boolean { read-only } 1.7 open

CapStoreImageFiles: boolean { read-only } 1.7 open

CapValidationDevice: boolean { read-only } 1.7 open

Color: int32 { read-write } 1.7 open

ConcurrentMICR: boolean { read-write } 1.7 open

Contrast: int32 { read-write } 1.9 open & enable

CropAreaCount: int32 { read-only } 1.7 open

DocumentHeight: int32 { read-write } 1.7 open

DocumentWidth: int32 { read-write } 1.7 open

FileID: string { read-write } 1.7 open

FileIndex: int32 { read-write } 1.7 open

ImageData: binary { read-only } 1.7 open

ImageFormat: int32 { read-write } 1.7 open

ImageMemoryStatus: int32 { read-only } 1.7 open & claim

ImageTagData string { read-write } 1.7 open

MapMode: int32 { read-write } 1.7 open

MaxCropAreas: int32 { read-only } 1.7 open

Quality: int32 { read-write } 1.7 open

QualityList: string { read-only } 1.7 open

RemainingImagesEstimate: int32 { read-only } 1.7 open
268 Unified POS, V1.16.1

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.7

close ():
void { raises-exception, use after open }

1.7

claim (timeout: int32):
void { raises-exception, use after open }

1.7

release ():
void { raises-exception, use after open, claim }

1.7

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.7

clearInput ():
void { raises-exception, use after open, claim, enable }

1.7

clearInputProperties ():
void { raises-exception, use after open, claim }

1.10

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.7

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific

beginInsertion (timeout: int32):
 void { raises-exception, use after open, claim, enable }

1.7

beginRemoval (timeout: int32):
 void { raises-exception, use after open, claim, enable }

1.7

clearImage (by: int32):
 void { raises-exception, use after open, claim, enable }

1.7

defineCropArea (cropAreaID: int32, x: int32, y: int32, cx: int32, cy: int32):
 void { raises-exception, use after open, claim, enable }

1.7

endInsertion ():
 void { raises-exception, use after open, claim, enable }

1.7

endRemoval ():
 void { raises-exception, use after open, claim, enable }

1.7
Unified POS, v1.16.1 269

retrieveImage (cropAreaID: int32):
 void { raises-exception, use after open, claim, enable }

1.7

retrieveMemory(by: int32):
 void { raises-exception, use after open, claim, enable }

1.7

storeImage (cropAreaID: int32):
 void { raises-exception, use after open, claim, enable }

1.7

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent
 Status: int32 { read-only }

1.7

upos::events::DirectIOEvent
 EventNumber:
 Data:
 Obj:

int32

int32

object

{ read-only }

{ read-write }

{ read-write }

1.7

upos::events::ErrorEvent
 ErrorCode:
 ErrorCodeExtended:
 ErrorLocus:
 ErrorResponse:

int32

int32

int32

int32

{ read-only }

{ read-only }

{ read-only }

{ read-write }

1.7

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent
 Status: int32 { read-only }

1.7
270 Unified POS, V1.16.1

11.3 General Information

The Check Scanner programmatic name is “CheckScanner.”

11.3.1 Capabilities

The primary purpose of this device is to capture the image of a personal or business check for Electronic Check
Conversion. However, other documents (vouchers, signature receipts, etc.) may be scanned if they fall within the
capture size parameters of the Check Scanner. Therefore, in the description used in this standard the overall term
“document” may be used to indicate the multiplicity of uses of which the device may be capable. When the term
“check” is used, it should be viewed as a special form of a “document” as an example.

The Check Scanner Control has the following minimal set of capabilities:

• Reads image data from a Check Scanner device.

• Has programmatic control of check insertion, reading, and removal. For some Check Scanner devices, this will
require no processing in the Control since the device may automate many of these functions.

The Check Scanner Control may have the following additional capabilities:

• The Check Scanner may store successive check images in its hardware memory.

• Cropping of areas of interest within the check image may be supported by the Check Scanner to aid in the
reduction of the memory needed to transmit or store the check image data.

• The retrieveImage data is deposited in the ImageData property in binary form.

• The Check Scanner may allow for retrieval of images stored in its hardware memory.

• The Check Scanner may support Image tag data information to identify the check image.

• The application reads the contents of ImageData property when it wants to further process the check image.

• The Check Scanner device may be physically attached to or incorporated into a check validation print device
and/or a MICR device. If this is the case, once a check is inserted via Check Scanner Control methods, the
check can still be used by the Printer and MICR Control prior to check removal.
Unified POS, v1.16.1 271

11.3.2 Check Scanner Class Diagram Updated in Release 1.9

The following diagram shows the relationships between the Check Scanner classes.

UposConst
(from upos)

<<utility>>
BaseControl

(from upos)

<<Interface>> <<uses>>

DataEvent

<<prop>> Status : int32
(from events)

<<event>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

ErrorEvent

<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : int32
<<prop>> ErrorLocus : int32
<<prop>> ErrorResponse : int32

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32
(from events)

<<event>>

UposException
(from upos)

<<exception>>
<<sends>>

CheckScannerConst
(from upos)

<<utility>>

CheckScannerControl

<<capability>> CapAutoContrast : boolean
<<capability>> CapAutoGenerateFileID : boolean
<<capability>> CapAutoGenerateImageTagData : boolean
<<capability>> CapAutoSize : boolean
<<capability>> CapColor : int32
<<capability>> CapConcurrentMICR : boolean
<<capability>> CapContrast : boolean
<<capability>> CapDefineCropArea : boolean
<<capability>> CapImageFormat : int32
<<capability>> CapImageTagData : boolean
<<capability>> CapMICRDevice : boolean
<<capability>> CapStoreImageFiles : boolean
<<capability>> CapValidationDevice : boolean
<<prop>> Color : int32
<<prop>> ConcurrentMICR : boolean
<<prop>> Contrast : int32
<<prop>> CropAreaCount : int32
<<prop>> DocumentHeight : int32
<<prop>> DocumentWidth : int32
<<prop>> FileID : string
<<prop>> FileIndex : int32
<<prop>> ImageData : binary
<<prop>> ImageFormat : int32
<<prop>> ImageMemoryStatus : int32
<<prop>> ImageTagData : string
<<prop>> MapMode : int32
<<prop>> MaxCropAreas : int32
<<prop>> Quality : int32
<<prop>> QualityList : string
<<prop>> Remaining ImagesEstimate : int32

beginInsertion(timeout : int32) : void
beginRemoval(timeout : int32) : void
clearImage(by : int32) : void
defineCropArea(cropAreaID : int32, x : int32, y : int32, cx : int32, cy : int32) : void
endInsertion() : void
endRemoval() : void
retrieveImage(cropAreaID : int32) : void
retrieveMemory(by : int32) : void
storeImage(cropAreaID : int32) : void

(from upos)

<<Interface>>

<<fires>>

<<fires>>

<<fires>>

<<fires>>

<<sends>>

<<uses>>
272 Unified POS, V1.16.1

11.3.3 Model Updated in Release 1.11

The Check Scanner Control follows the general “Input Model.” One point of difference is that the Check Scanner
Control requires the execution of methods to insert and remove the check for processing. Therefore, this Control
requires more than simply setting the DataEventEnabled property to true in order to receive data. The basic
model is as follows:

• The Check Scanner Control is opened, claimed, and enabled.

• Starting with Version 1.9, the application has the ability to adjust the darkness of the scanned image for
devices that have the ability to adjust the scan mechanism so that it can darken or lighten the image. The
CapContrast property controls whether the device supports this feature.

• When the beginInsertion method is called, the Check Scanner is ready to read the check within the specified
time as indicated by the time-out value. If the check is not inserted before the time-out value expires, a
UposException is raised.

• In the event of a time-out, the Check Scanner device will remain in a state that allows a check to be inserted.
The application may provide an operator prompt which requests that a check be inserted. Following this
prompt, the application would then reissue the beginInsertion method and wait for the check to be inserted.

• Once a check is inserted, the beginInsertion method returns and the application calls the endInsertion
method, which results in the Check Scanner device exiting the check insertion mode and causes the check
image to be captured.

• Following the endInsertion method, the scan image data is stored in a working buffer memory area and a
StatusUpdateEvent will occur to indicate that a successful scan image process has taken place. No
DataEvent is enqueued since data has not been transferred to the ImageData property at this point.

• The application must use the retrieveImage method to retrieve the current scan image data. However, if the
check image was not successfully captured by the device, the Control enqueues a ErrorEvent to indicate the
capture was not successful.

• If the AutoDisable property is true, then the device is automatically disabled when the image is successfully
captured.

• An enqueued DataEvent can be delivered to the application when the DataEventEnabled property is true
and other event delivery requirements are met. Just before delivering this event, the Control copies data into
specific properties, and disables further data events by setting the DataEventEnabled property to false. This
causes subsequent input data to be enqueued by the Control while the application processes the current input
and associated properties. When the application has finished the current input and is ready for more data, it
reenables events by setting DataEventEnabled to true.

• If the CapAutoSize property is true, when the DataEvent is delivered, the height and width of the of entire
captured image are automatically stored in the corresponding DocumentHeight and DocumentWidth
properties. If the CapAutoSize property is false, the application must manually set the DocumentHeight and
the DocumentWidth property values prior to the beginInsertion method being invoked.

• If the application needs to retrieve the entire or a cropped portion of the captured image, the retrieveImage
method is called. The image data is sent from the device to the service and stored in the ImageData property.
When the corresponding DataEvent is delivered, the current image or cropped image may be accessed by the
application reading the image file contained in the ImageData property.

• If the CapStoreImageFiles property is true, then the current image, or cropped image, can be stored in the
memory by using the storeImage method. 
Unified POS, v1.16.1 273

• Any previously stored image may be retrieved by using the retrieveMemory method. The stored image may
be identified using the “by” parameter and requesting that the image be located by FileID, FileIndex, or
ImageTagData.

• If CapDefineCropArea is true, then the application can use the defineCropArea method to define crop
areas in the captured image.

• An ErrorEvent (or events) is (are) enqueued if the Control encounters an error while reading the check, and
is delivered to the application when the DataEventEnabled property is true and other event delivery
requirements are met.

• All input data enqueued by the Control may be deleted by calling the clearInput method.

• All data properties that are populated as a result of firing a DataEvent or ErrorEvent can be set back to their
default values by calling the clearInputProperties method.

• After processing the endInsertion DataEvent, the application may query the CapMICRDevice property to
determine if the device supports Magnetic Ink Character Recognition. If CapMICRDevice property is true,
then a MICR read function may be performed in a “single pass” or “multiple pass” cycle but prior to the check
being removed from the device. If CapConcurrentMICR property is true, then the device is capable of
supporting a “single pass” MICR read during an image scan. If CapConcurrentMICR property is true and
ConcurrentMICR property is true, then the MICR data would be read and calling the MICR's beginInsertion
and endInsertion methods would not be needed to reposition the check for MICR reading.

• Additionally, after processing a DataEvent, the application should query the CapValidationDevice property
to determine if validation printing can be performed on the check prior to check removal. If this property is
true, the application may call the Printer Control's beginInsertion and endInsertion methods. This positions
the check for validation printing. The Printer Control's validation printing methods can then be used to perform
validation printing.

• If the CapImageTagData property is true, then an identifying name, for example the transaction number, date
and time, or some other naming element, could be used to identify the image data. The format of the data must
be conformant to ARTS XML and reside in ImageTagData property.

• Once the check is no longer needed in the device, the application must call beginRemoval of the Check
Scanner, the MICR (if CapMICRDevice is true), or the POS Printer (if CapValidationDevice is true), also
specifying a timeout value. This method will raise a UposException if the check is not removed within the
timeout period. In this case, the application may perform any additional prompting prior to calling the method
again. Once the check is removed, the application should call the same device’s endRemoval method to take
the device out of removal mode.

• In order to accommodate many different Check Scanning devices, the application should follow the above
sequence of method calls even though the device may not physically require one or more of the methods. An
example may be a Check Scanner that is “auto armed” and is capable of detecting a check present and
initiating a Check Scan and MICR read cycle automatically. In this case the beginInsertion, endInsertion,
beginRemoval, and endRemoval method calls may actually do no more than return from the Service.

• The model assumes that the device has a work area that can be used in the following ways:

• When a document is scanned its image will be loaded as raw data into this work area. When the
retrieveImage method is invoked the data from the work area may be modified by a previously defined crop
area, as specified by the cropAreaID parameter, and loaded into the ImageData property. The work area will
still contain the original scanned image data. Additional retrieveImage method calls using different crop
area criteria can then be accomplished to load the ImageData property.

• The work area contains image data either from a recently scanned image or as a result of a retrieveMemory
method. Prior to invoking the storeImage method, the FileIndex property is set to the correct index number
274 Unified POS, V1.16.1

(as maintained by the service) and if used, the FileID and/or ImageTagData properties are set. When the
storeImage method is invoked the data from the work area may be modified by a previously defined crop
area, as specified by the cropAreaID parameter, and stored in the device memory. The work area will still
contain the original scanned image data. Additional storeImage method calls using different crop area
criteria can then be accomplished to store the image data in the device’s memory. The
RemainingImagesEstimate property is adjusted to reflect the approximate number additional images that
may be stored in the device memory based upon the file size history of previously stored images.

• When the retrieveMemory method is invoked, the work area is loaded with an image data file that was
previously stored in the device memory. Either the FileIndex, FileID, or ImageTagData may be used to
locate the previously stored image. The ImageData property is also loaded with the retrieved image data.

• In order to accommodate the various storage and retrieval architectures that are in use for the Check Scanner
device class, the model has been designed to allow for three different addressing ways to locate previously
stored image data: FileIndex, FileID, and ImageTagData.

• The FileIndex is an addressing scheme that is automatically provided by the service to physically store and
retrieve the file data. The definition of file data in this case includes any and/or all of the following: image
data, tag data information (that is appended and included with the image data file), and a file identification (a
file name
associated with the image data file). The FileIndex is only used by the service to save and retrieve the scan
data and its associated data elements.

• The FileID is a “file name” that may be provided automatically by the hardware device or the service. It also
may be populated by the application prior to a storeImage method being called. Once created it remains with
the ImageData and can be used to randomly locate a specific file for uploading to the POS system and post
processing applications.

• The ImageTagData property contains a set of information about the image that has been scanned. It is
required that the format of the data be XML and compliant to the ARTS Data Dictionary and ARTS XML
standards to ensure interoperability. Typically, it contains information about when the image was captured,
e.g., Date and Time, Store number, Lane Number, Clerk identification, etc. This data may be pre- or post-
appended to the ImageData and remains a part of the combined data file as a record of the origin of the data.

11.3.4 Device Sharing

The Check Scanner is an exclusive-use device, and adheres to the following constraints:

• The application must claim the device before enabling it.

• The application must claim and enable the device before the device begins reading input, or before calling
methods that manipulate the device.

• See the “Summary” table for precise usage prerequisites.
Unified POS, v1.16.1 275

11.3.5 Check Scanner Sequence Diagram

The following sequence diagram shows the typical usage of the Check Scanner device.

:CheckScanner :DataEvent StatusUpdateEvent CheckScanner
Service

Note: we are assuming that the :ClientApp already successfully opened, claimed and enabled the device. This
means that the platform specific loading/configuration/creation code executed successfully. We also assume
that the application already registered some event handlers with the controls.

Detect check
insertion and
scan check

:ClientApp

1: setDataEventEnabled(true)
2: setDataEventEnabled(true)

12: endInsertion()
13: new

14: set status update event status

15: enqueue StatusUpdateEvent to service's internal queue

3: setMapMode(CHK_MM_ENGLISH) 4: setMapMode(CHK_MM_ENGLISH)

5: defineCropArea(1,0,0,1500,1000) 6: defineCropArea(1,0,0,1500,1000)

7: defineCropArea(1,0,2000,CHK_CROP_AREA_BOTTOM,CHK_CROP_AREA_RIGHT)

8: defineCropArea(1,0,2000,CHK_CROP_AREA_BOTTOM,CHK_CROP_AREA_RIGHT)

9: beginInsertion(timeout) 10: beginInsertion(timeout)

11: endInsertion()

16: deliver StatusUpdateEvent [FreezeEvents == false]

17: deliver event to all registered handlers

18: notify client of new event

19: retrieveImage(2) 20: retrieveImage(2)

retrieve the
image within the
second crop
area defined

21: new

22: copy data to new DataEvent

23: enqueue DataEvent to service's internal queue

24: set Check Scanner properties and deliver DataEvent
 [DataEventEnabled == true && FreezeEvents == false]

25: deliver event to all registered handlers
26: notify client of new event

27: storeImage(1) 28: storeImage(1)

29: beginRemoval(timeout) 30: beginRemoval(timeout)

31: indicate user to start removing check

32: endRemoval() 33: endRemoval()
276 Unified POS, V1.16.1

11.3.6 Check Scanner State Diagram

The following diagram depicts the Check Scanner control device model.
Unified POS, v1.16.1 277

11.4 Properties (UML attributes)

11.4.1 CapAutoContrast Property Added in Release 1.9

Syntax CapAutoContrast: boolean { read-only, access after open }

Remarks This capability indicates that the device has the ability to automatically adjust the darkness of the image
to provide the best contrast for the image.

If true, then when Contrast is set to CHK_AUTOMATIC_CONTRAST, the device attempts to auto-
matically adjust the contrast.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CapContrast Property, Contrast Property.

11.4.2 CapAutoGenerateFileID Property

Syntax CapAutoGenerateFileID: boolean { read-only, access after open }

Remarks This capability indicates the ability of the device to automatically generate a file name that can be used
to reference the file containing the captured image.

If CapAutoGenerateFileID is true, then the device can automatically create a file name for the captured
image file.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also FileID Property.

11.4.3 CapAutoGenerateImageTagData Property

Syntax CapAutoGenerateImageTagData: boolean { read-only, access after open }

Remarks This capability indicates the ability of the device to automatically generate tag data used in reference to
the image file for the captured image.

If CapAutoGenerateImageTagData is true, then the device can automatically create image tag data
which can be appended to the image file to provide information about the captured image.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also ImageTagData Property.
278 Unified POS, V1.16.1

11.4.4 CapAutoSize Property

Syntax CapAutoSize: boolean { read-only, access after open }

Remarks This capability indicates the ability of the device to determine the height and width of the document
automatically.

If CapAutoSize is true, then the height and width of the scanned document will be automatically placed
in the DocumentHeight and DocumentWidth properties when the image is captured.

If CapAutoSize is false, the height and width of the document can be manually set in the
DocumentHeight and DocumentWidth properties by the application prior to scanning an image.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also DocumentHeight Property, DocumentWidth Property.

11.4.5 CapColor Property

Syntax CapColor: int32 { read-only, access after open }

Remarks This capability indicates if this device supports image formats other than bi-tonal.

CapColor is a logical OR combination of any of the following values:

Value Meaning
CHK_CCL_MONO Bi-tonal (B/W)

CHK_CCL_GRAYSCALE Gray scale

CHK_CCL_16 16 Colors

CHK_CCL_256 256 Colors

CHK_CCL_FULL Full colors

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also Color Property.
Unified POS, v1.16.1 279

11.4.6 CapConcurrentMICR Property

Syntax CapConcurrentMICR: boolean { read-only, access after open }

Remarks This capability indicates if this device supports a Magnetic Ink Character Recognition read during the
image scanning process.

If CapConcurrentMICR is true, a check's MICR data can be captured during a check scanning cycle
(single pass scanning). For devices that are both a Check Scanner device and a MICR reader device,
following a check scan the device will automatically pass the MICR data to the MICR Service. The check
will not need to be re-read during the MICR beginInsertion and endInsertion methods.

If CapConcurrentMICR is false, then it would be necessary to read the MICR data (if the device
supports MICR reading) by using the MICR beginInsertion and endInsertion methods. Usually the
MICR read is performed prior to the Check Scanning process.

This property has no meaning if the CapMICRDevice property is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CapMICRDevice Property, ConcurrentMICR Property.

11.4.7 CapContrast Property Added in Release 1.9

Syntax CapContrast: boolean { read-only, access after open }

Remarks This capability indicates the ability of the device to lighten or darken the scanned image. This affects the
image regardless of the value of the CapColor property. If true then the darkness of the image can be
adjusted using the Contrast property. If false then the application cannot adjust the darkness of the
image.

Errors A UposException may be thrown when this property is accessed. For further information see 
“Errors” on page 16.

See Also CapAutoContrast Property, Contrast Property.

11.4.8 CapDefineCropArea Property

Syntax CapDefineCropArea: boolean { read-only, access after open }

Remarks This capability indicates if this device supports a feature that allows cropping of areas of interest within
the scan image area defined by the DocumentHeight and DocumentWidth properties.

If CapDefineCropArea is true, one or more cropping areas are allowed; otherwise it is set to be false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CropAreaCount Property, MaxCropAreas Property, defineCropArea Method.
280 Unified POS, V1.16.1

11.4.9 CapImageFormat Property

Syntax CapImageFormat: int32 { read-only, access after open }

Remarks This capability indicates the image file formats that this device supports. The image data is stored in the
ImageData property using one of the following formats supported by the CapImageFormat Property:

CapImageFormat is a logical OR combination of any of the following values:

Value Meaning
CHK_CIF_NATIVE Hardware native format 
CHK_CIF_TIFF TIFF format
CHK_CIF_BMP BMP format 
CHK_CIF_JPEG JPEG format 
CHK_CIF_GIF GIF format

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also ImageFormat Property

11.4.10 CapImageTagData Property Updated in Release 1.11

Syntax CapImageTagData: boolean { read-only, access after open }

Remarks This capability indicates if this device has the ability to utilize ARTS XML compliant tag names to
identify its scanned images.

If CapImageTagData is true, then the device can set tag data, as defined by the ImageTagData
property, to the image data file stored in the ImageData property.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also ImageTagData Property, retrieveImage Method, storeImage Method.
Unified POS, v1.16.1 281

11.4.11 CapMICRDevice Property

Syntax CapMICRDevice: boolean { read-only, access after open }

Remarks This capability indicates if this device supports a check MICR read function.

If CapMICRDevice is true, then the device supports a MICR read function in addition to check
scanning.

If CapConcurrentMICR is true, a check's MICR data can be captured during a check scanning cycle
(single pass scanning). For devices that are both a Check Scanner device and a MICR reader device,
following a check scan the device will automatically pass the MICR data to the MICR service. The check
will not need to be re-read during the MICR beginInsertion and endInsertion methods.

If CapConcurrentMICR property is false, then it would be necessary to read the MICR data by using
the MICR beginInsertion and endInsertion methods. In this case the MICR read is usually performed
prior to the Check Scanning process. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CapConcurrentMICR Property, ConcurrentMICR Property.

11.4.12 CapStoreImageFiles Property

Syntax CapStoreImageFiles: boolean { read-only, access after open }

Remarks This capability indicates if this device has the ability to store check images in its hardware memory.

If CapStoreImageFiles is true, one or more images can be stored in the memory provided by the device
by using the storeImage method. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also retrieveImage Method, storeImage Method.
282 Unified POS, V1.16.1

11.4.13 CapValidationDevice Property

Syntax CapValidationDevice: boolean { read-only, access after open }

Remarks This capability indicates if this device has the ability to perform a validation print function on the check
using a print station.

If CapValidationDevice is true, a check does not have to be removed from the Check Scanner device
prior to performing validation printing. For devices that are both a Check Scanner device as well as a
POS Printer, the device will automatically position the check for validation printing after successfully
performing a Check Scanner read. Either the Check Scanner Control’s or the POS Printer Control’s
beginRemoval and endRemoval methods may be called to remove the check once the process is
complete.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

11.4.14 Color Property

Syntax Color: int32 { read-write, access after open }

Remarks This property is used to select the image scan mode for subsequent document scan operations. The
available options may be affected by the current file type as specified by the ImageFormat property.
Certain file types may not work with all the “colors” that the device may support. It is up to the
application to insure that the proper Color and ImageFormat properties are compatible. Changing the
Color property will not affect any previously stored data currently residing in the ImageData property.

It may contain one of the following values:

Value Meaning
CHK_CL_MONO Bi-tonal (B/W)
CHK_CL_GRAYSCALE Gray scale
CHK_CL_16 16 Colors
CHK_CL_256 256 Colors
CHK_CL_FULL Full color

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CapColor Property, ImageFormat Property.
Unified POS, v1.16.1 283

11.4.15 ConcurrentMICR Property

Syntax ConcurrentMICR: boolean { read-write, access after open }

Remarks This property indicates whether a MICR read should be performed at the same time the check image is
captured (single pass operation).

This property has no meaning if the CapMICRDevice is false.

If ConcurrentMICR is true, a check's MICR data is captured during a check scanning cycle (single pass
scanning). For devices that are both a Check Scanner device and a MICR reader device, following a
check scan the device will automatically pass the MICR data to the MICR Service. The check will not
need to be re-read during the MICR beginInsertion and endInsertion methods.

If ConcurrentMICR is false and MICR data is required, then it is necessary to read MICR data by using
the MICR beginInsertion and endInsertion method calls. In this case the MICR read is usually
performed prior to the Check Scanning process.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16.

See Also CapConcurrentMICR Property, CapMICRDevice Property.

11.4.16 Contrast Property Added in Release 1.9

Syntax Contrast: int32 { read-write, access after enable }

Remarks This property allows the application to adjust the darkness of the image. The property is valid only if the
CapContrast property is true.

A value of 0 sets or indicates that the device will generate the lightest image possible. A value of 100
sets or indicates that the device will generate the darkest image possible. All values between 0 and 100
produce images with varying degrees of darkness. A value of 50 should produce an image that is the
optimal brightness for the best image under normal circumstances.

If the CapAutoContrast property is true then this property can be set to
CHK_AUTOMATIC_CONTRAST to allow the device to automatically adjust the darkness of the
image based on sensing of the paper to produce the optimal brightness for the best image under normal
circumstances.

If CapAutoContrast is false, then attempting to set this property to CHK_AUTOMATIC_CONTRAST
is illegal.

If CapAutoContrast is true, then this property is initialized to CHK_AUTOMATIC_CONTRAST
when the device is enabled. If CapAutoContrast is false, this property is initialized either to 50 or to a
user configured value when the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information see 
“Errors” on page 16.

See Also CapAutoContrast Property, CapContrast Property.
284 Unified POS, V1.16.1

11.4.17 CropAreaCount Property

Syntax CropAreaCount: int32 { read-only, access after open }

Remarks This property indicates the number of Crop areas that have been defined which may be applied to the
captured image.

If CapDefineCropArea is false, then this property is always zero.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
“Errors” on page 16

See Also CapDefineCropArea Property, MaxCropAreas Property, defineCropArea Method.

11.4.18 DocumentHeight Property

Syntax DocumentHeight: int32 { read-write, access after open}

Remarks This property is used to define the height of the document scanned or the height of a document to scan.
It is expressed in the unit of measure as defined by the MapMode property.

If CapAutoSize is true, then the height of the scanned document will be automatically placed in the
DocumentHeight property when the image is captured.

If CapAutoSize is false, the height of the document can be manually set in the DocumentHeight
property by the application prior to scanning a document.

This property is initialized to the maximum height supported by the device by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapAutoSize Property, MapMode Property.

11.4.19 DocumentWidth Property

Syntax DocumentWidth: int32 { read-write, access after open}

Remarks This property is used to define the width of the document scanned or the width of a document to scan. It
is expressed in the unit of measure as defined by the MapMode property.

If CapAutoSize is true, then the width of the scanned document will be automatically placed in the
DocumentWidth property when the image is captured.

If CapAutoSize is false, the width of the document can be manually set in the DocumentWidth property
by the application prior to scanning an image.

This property is initialized to the maximum width supported by the device by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”

on page 16.

See Also CapAutoSize Property, MapMode Property.
Unified POS, v1.16.1 285

11.4.20 FileID Property

Syntax FileID: string { read-write, access after open }

Remarks This property is used to store a “file name” associated with the image data file. If the application chooses
to create the data for this property, it must set the FileID property prior to calling the storeImage method.

After a retrieveMemory method call the FileID property will be set to the image data file name if
available, otherwise it will be set to an empty string. Its value is set prior to a DataEvent being delivered
to the application.

If the CapAutoGenerateFileID property is true then the FileID will automatically be generated by the
hardware device or the service when the image is scanned.

This property is initialized to an empty string by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapAutoGenerateFileID Property, retrieveImage Method, retrieveMemory Method, storeImage
Method.

11.4.21 FileIndex Property Updated in Release 1.13

Syntax FileIndex: int32 { read-write, access after open }

Remarks This property is used to store a file location reference to the image data file when either the storeImage
or retrieveMemory methods are called. Its value is set prior to a DataEvent being delivered to the
application.

The FileIndex property is used only by the service in conjunction with the device to manage the storage
and retrieval of an image data file. The application may write a value into the FileIndex property.
However, it is normally the responsibility of the service to ensure that a unique integer value is used to
store or retrieve the image file.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also clearImage Method, retrieveImage Method, retrieveMemory Method storeImage Method.
286 Unified POS, V1.16.1

11.4.22 ImageData Property

Syntax ImageData: binary { read-only, access after open }1

Remarks This property is used to store the image data after the retrieveImage or retrieveMemory methods are
called. If no image data was available, the ImageData property will be set to zero length (or empty). Its
value is set prior to a DataEvent being delivered to the application.

This property is initialized to zero length by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also retrieveImage Method, DataEvent.

11.4.23 ImageFormat Property

Syntax ImageFormat: int32 { read-write, access after open }

Remarks This property is used to define the data format of the image file that the device will use when it captures
an image. The availability of acceptable file types is specified in the CapImageFormat property.

The ImageFormat property must be set before a document is scanned. Any previously stored data in the
ImageData property will not be affected by changing the value of the ImageFormat property.

If the device provides support, it may be one of the following values:

Value Meaning
CHK_IF_NATIVE Hardware native format
CHK_IF_TIFF TIFF format
CHK_IF_BMP BMP format
CHK_IF_JPEG JPEG format
CHK_IF_GIF GIF format

The default value of this property is CHK_IF_TIFF.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapImageFormat Property, Color Property, DataEvent.

1. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.
Unified POS, v1.16.1 287

11.4.24 ImageMemoryStatus Property

Syntax ImageMemoryStatus: int32 { read-only, access after open-claim }

Remarks This property is used to indicate the current memory availability status if the device has the ability to
store multiple image files. The ImageMemoryStatus value is only valid if the CapStoreImageFiles is
true.

The following values are supported.

Value Meaning
CHK_IMS_EMPTY The image memory is empty.
CHK_IMS_OK The image memory is has storage available.
CHK_IMS_FULL The image memory is full.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapStoreImageFiles Property, storeImage Method.

11.4.25 ImageTagData Property Updated in Release 1.13

Syntax ImageTagData: string { read-write, access after open }

Remarks This property is used to define a string that specifies the ARTS XML compliant tag name for the captured
image data. The recommended way is to use XML CDATA to transfer this data to the application to
prevent inadvertent parsing of the data.

An example of one possible data set would be:

<![CDATA[
 <Transaction>192345782</Transaction>
 <Operator>35467</Operator>
 <SellingLocation>Store Number 762</SellingLocation>
 <DateTime>2008-11-21T12:21:30.5Z</DateTime>
 <CheckAccountNumber>0089543219</CheckAccountNumber>
 <ImageData>12546a92b7c5........45d3</ImageData>
]]>

Note: The example shown would pass the XML data for the image intact to the application. When
the CDATA constructs were removed, the resultant XML data could then be parsed by another
application process.

The tag name may be specified by the application or auto-generated by the Check Scanner device.
Information contained in the data may refer to the date, time, lane number, location, clerk, or other
information of interest associated with the image at the time of capture.

If the application chooses to create the data for this property, it must set the ImageTagData property
prior to calling the storeImage method. After a retrieveMemory method call, the ImageTagData
property will be set if available, otherwise it will be set to an empty string. Its value is set prior to a
DataEvent being delivered to the application.

If the CapAutoGenerateImageTagData property is true, the ImageTagData will automatically be
generated by the hardware device or the service when the image is scanned.
288 Unified POS, V1.16.1

All ImageTagData information must be formatted using XML that is conformant to the ARTS Data
Model and XML Dictionary. It is the responsibility of the Application and/or Service to encode or parse
the XML data.

 
Some possible entries from the ARTS XML Dictionary are:
DateTime, SellingLocation, Operator, CheckAccountNumber and Transaction.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapAutoGenerateImageTagData Property, retrieveImage Method, retrieveMemory Method,
storeImage Method.

11.4.26 MapMode Property Updated in Release 1.13

Syntax MapMode: int32 { read-write, access after open }

Remarks This property is used to specify the units of measure that are currently valid for the Check Scanner.

The mapping mode defines the unit of measure used by other properties, such as the DocumentHeight
and DocumentWidth properties.

The following units of measure may be selected for storing the image:

Value Meaning
CHK_MM_DOTS The scanner’s dot width.
CHK_MM_TWIPS 1/1440 of an inch.
CHK_MM_ENGLISH 0.001 inch.
CHK_MM_METRIC 0.01 millimeter.

Note: The value of MapMode for the Check Scanner is initialized to CHK_MM_ENGLISH when the
device is first enabled following the open method. This default value may be different from other device
categories in the UnifiedPOS standard.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also DocumentHeight Property, DocumentWidth Property, defineCropArea Method.
Unified POS, v1.16.1 289

11.4.27 MaxCropAreas Property

Syntax MaxCropAreas: int32 { read-only, access after open }

Remarks This property is used to specify the maximum number of crop areas that the device can support.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapDefineCropArea Property, CropAreaCount Property, defineCropArea Method.

11.4.28 Quality Property

Syntax Quality: int32 { read-write, access after open }

Remarks This property is used to set the resolution of the device when a scan image is to take place. It is defined
as a dpi (dots per inch) value.

Any previously stored data in ImageData property will not be affected when the Quality property value
is changed.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also QualityList Property.

11.4.29 QualityList Property

Syntax QualityList: string { read-only, access after open }

Remarks This property is used to define the resolutions that the Check Scanner is capable of supporting.

The string data consists of comma separated values that indicate the available scanning resolutions that
the device supports measured in dots per inch (dpi). An empty string indicates that resolution is not
selectable.

An example might be “160,320”, which indicates that the device supports 160 dpi and 320 dpi.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also Quality Property.
290 Unified POS, V1.16.1

11.4.30 RemainingImagesEstimate Property

Syntax RemainingImagesEstimate: int32 { read-only, access after open }

Remarks This property is used to provide a “best guess” estimate of the remaining number of images that can be
stored. It is updated after every new image is stored or cleared from the device’s available memory. The
RemainingImagesEstimate along with the ImageMemoryStatus properties are intended to be used by
the application to monitor the amount of available image storage.

This property is initialized to a “best guess” estimate of the total number of image files that can be stored
in the device’s memory by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also ImageMemoryStatus Property.
Unified POS, v1.16.1 291

11.5 Methods (UML operations)

11.5.1 beginInsertion Method

Syntax beginInsertion (timeout: int32): 
void { raises exception, use after open-claim-enable }

The timeout parameter gives the number of milliseconds before failing the method.

If zero, the method tries to begin insertion mode, then returns immediately if successful. otherwise a
UposException is raised. If FOREVER (-1), the method tries to begin insertion mode, then waits as long
as needed until either the check is inserted or an error occurs.

Remarks Called to initiate the document insertion process.

When called, the Check Scanner is made ready to receive a check by opening the Check Scanner’s check
handling “jaws” or activating a Check Scanner’s check insertion mode. This method is paired with the
endInsertion method for controlling the check insertion. Although some Check Scanner devices do not
require this sort of processing, the application should still use these methods to ensure application
portability across different Check Scanner devices.

If the Check Scanner device cannot be placed into insertion mode, a UposException is raised. Otherwise,
check insertion is monitored until either:

• The check is successfully inserted.

• The check is not inserted before timeout milliseconds have elapsed, or an error is reported by the
Check Scanner device. In this case, a UposException is raised, The Check Scanner device remains
in check insertion mode. This allows an application to perform some user interaction and reissue the
beginInsertion method without altering the Check Scanner check handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY If the CheckScanner is a combination device, the peer device may be

busy.
E_ILLEGAL An invalid timeout parameter was specified.
E_TIMEOUT The specified time has elapsed without the check being properly inserted.

See Also beginRemoval Method, endInsertion Method, endRemoval Method.
292 Unified POS, V1.16.1

11.5.2 beginRemoval Method

Syntax beginRemoval (timeout: int32): 
void { raises exception, use after open-claim-enable }

The timeout parameter gives the number of milliseconds before failing the method.

If zero, the method tries to begin removal mode, then returns immediately if successful. otherwise a
UposException is raised. If FOREVER (-1), the method tries to begin removal mode, then waits as long
as needed until either the check is removed or an error occurs.

Remarks Called to initiate the check removal processing.

When called, the Check Scanner is made ready to remove a check by opening the Check Scanner’s check
handling “jaws” or activating a Check Scanner’s check ejection mode. This method is paired with the
endRemoval method for controlling check removal. Although some Check Scanner devices do not
require this sort of processing, the application should still use these methods to ensure application
portability across different Check Scanner devices.

If the Check Scanner device cannot be placed into removal or ejection mode, a UposException is raised.
Otherwise, check removal is monitored until either:

• The check is successfully removed.

• The check is not removed before timeout milliseconds have elapsed, or an error is reported by the
Check Scanner device. In this case, a UposException is raised, The Check Scanner device remains
in check removal mode. This allows an application to perform some user interaction and reissue the
beginRemoval method without altering the Check Scanner check handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY If the CheckScanner is a combination device, the peer device may be

busy.
E_ILLEGAL An invalid timeout parameter was specified.
E_TIMEOUT The specified time has elapsed without the check being properly inserted.

See Also beginInsertion Method, endInsertion Method, endRemoval Method.
Unified POS, v1.16.1 293

11.5.3 clearImage Method

Syntax clearImage (by : int32):
void { raises exception, use after open-claim-enable }

Parameter Description
by Indicates how the image file is to be located so that it can be removed from

the storage.

Remarks Called to clear a specific image or all the images in the device memory.

The following values may be selected for by to initiate clearing of the memory:

Value Meaning
CHK_CLR_ALL All images in the device are cleared

CHK_CLR_BY_FILEID
Locate file to be cleared using the FileID property.

CHK_CLR_BY_FILEINDEX
Locate file to be cleared using the FileIndex property.

CHK_CLR_BY_IMAGETAGDATA
Locate file to be cleared using the ImageTagData
property.

Return A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• Device does not support stored images
• Device does not support clearing one image

E_NOEXIST Image was not found.

See Also CapStoreImageFiles Property, FileID Property, FileIndex Property, ImageTagData Property.
294 Unified POS, V1.16.1

11.5.4 defineCropArea Method

Syntax defineCropArea (cropAreaID: int32, x: int32, y: int32, cx: int32, cy: int32): 
void { raises exception, use after open-claim-enable }

Parameter Description
cropAreaID The numeric identifier for the defined crop area.

x The starting X-coordinate of the cropping area.

y The starting Y-coordinate of the cropping area.

cx The value added to the “X-coordinate” in order to determine the “X”
endpoint for the cropping area.

cy The value added to the “Y-coordinate” in order to determine the “Y”
endpoint for the cropping area.

If the cropAreaID parameter is set to CHK_CROP_AREA_RESET_ALL, then all the crop area
definitions allowed (as specified by the MaxCropAreas property) will reset their (x,y) and (cx,cy) values
to (0,0) and (DocumentWidth, DocumentHeight) respectively.

If the cropAreaID parameter is set to CHK_CROP_AREA_ENTIRE_IMAGE, then the crop area is
equal to the entire area of the scanned image.

If cx is set to the parameter CHK_CROP_AREA_RIGHT, then the “X” endpoint value will be set to the
value of the DocumentWidth property.

If cy is set to the parameter CHK_CROP_AREA_BOTTOM, then the “Y” endpoint value will be set to
the value of the DocumentHeight property.

Remarks This method is used to establish one or more cropping areas that may be applied to a scanned image. The
values are in MapMode units and use the top left corner of the scanned document as the origin (0,0). All
values are positive.

The defineCropArea method specifies an area of interest that is contained within a crop box and given
an index number for reference. Only the data defined by defineCropArea index number will be sent
when the retrieveImage method is called.

The crop areas should be set before the retrieveImage method is called and will be in effect until
changed.

A crop box cannot contain an area larger than that defined by the current DocumentHeight and
DocumentWidth properties. If the resultant value for the endpoint (x+cx) is greater than the
DocumentWidth value, then the “X” endpoint value will be set to DocumentWidth. If the resultant
value for endpoint (y+cy) is greater than the DocumentHeight value, then the “Y” endpoint value will
be set to DocumentHeight.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also CapDefineCropArea Property, CropAreaCount Property, DocumentHeight Property,
DocumentWidth Property, MapMode Property, MaxCropAreas Property.
Unified POS, v1.16.1 295

11.5.5 endInsertion Method

Syntax endInsertion (): 
void { raises exception, use after open-claim-enable }

Remarks Ends the document insertion processing. If this method call is successful, the device will place the
captured image in a working buffer memory area. A StatusUpdateEvent will occur to indicate that a
successful scan image process has taken place. No DataEvent is enqueued since data has not been
transferred to the ImageData property at this point. The application must invoke retrieveImage in order
to populate the ImageData property with the scan image data.

When called, the Check Scanner is taken out of the check insertion mode. If a check is not detected in
the device, a UposException is raised with an extended error code of ECHK_NOCHECK. This allows
an application to prompt the user prior to calling this method to ensure that the form is correctly
positioned.

This method is paired with the beginInsertion method for controlling check insertion. Although some
Check Scanner devices do not require this sort of processing, the application should still use these
methods to ensure application portability across different Check Scanner devices.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The device is not in check insertion mode.

E_EXTENDED ErrorCodeExtended = ECHK_NOCHECK:
The device was taken out of insertion mode without a check being
inserted.

See Also beginInsertion Method, beginRemoval Method, endRemoval Method, retrieveImage Method.
296 Unified POS, V1.16.1

11.5.6 endRemoval Method

Syntax endRemoval (): 
void { raises exception, use after open-claim-enable }

Remarks Ends the document removal processing.

When called, the Check Scanner is taken out of check removal or ejection mode. If a check is detected
in the device, a UposException is raised with an extended error code of ECHK_CHECK .

This method is paired with the beginRemoval method for controlling check removal. Although some
Check Scanner devices do not require this sort of processing, the application should still use these
methods to ensure application portability across different Check Scanner devices.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The device is not in check removal mode.

E_EXTENDED ErrorCodeExtended = ECHK_CHECK:
The device was taken out of removal mode while a check is still present.

See Also beginInsertion Method, beginRemoval Method, endInsertion Method.
Unified POS, v1.16.1 297

11.5.7 retrieveImage Method Updated in Release 1.11

Syntax retrieveImage (cropAreaID: int32): 
void { raises exception, use after open-claim-enable }

Parameter Description
cropAreaID Identifier to specify the storage location of the crop area parameters to be

applied to the most recently scanned image held in the working area
memory of the device. If the value is
CHK_CROP_AREA_ENTIRE_IMAGE then the entire area of the most
recently scanned image is retrieved.

 Remarks Called to retrieve the most recently scanned image which is resident in the work area memory to the
ImageData property. If this method call is successful, the device will deliver either a DataEvent or an
ErrorEvent at a later time.

If the CapImageTagData property is true, then the ImageTagData property is set to the ARTS XML
compliant tag data associated with the image data file.

If a file name has been created for the image data by the device, then the FileID property will be set to
the file name; if none is available then the FileID property will be set to an empty string.

Many models of Check Scanner devices do not require any check handling processing from the
application. Such devices may always be capable of receiving a check, scanning the image into their
working memory area, and require no commands to actually read and eject the check. For these type of
Check Scanner devices, the beginInsertion, endInsertion, beginRemoval and endRemoval methods
simply return, and the Control will enqueue the data until the DataEventEnabled property is set to true.
However, applications should still use these methods to ensure application portability across different
Check Scanner devices.

The retrieveImage method cannot be called after a retrieveMemory method has been called until a new
document has been scanned.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The following error has occurred:

• Cropped area that is specified by cropAreaID parameter is invalid.

See Also CapImageTagData Property, FileID Property, ImageData Property, ImageTagData Property,
beginInsertion Method, beginRemoval Method, endInsertion Method, endRemoval Method.
298 Unified POS, V1.16.1

11.5.8 retrieveMemory Method Updated in Release 1.11

Syntax retrieveMemory (by: int32): 
void { raises exception, use after open-claim-enable }

Parameter Description
by Indicates how the image file is to be located so that it can be retrieved from

the device memory storage.

Remarks Called to retrieve an image that was previously stored in memory to the work area and the ImageData
property. If this method call is successful, the device will deliver either a DataEvent or an ErrorEvent
at a later time.

The following values may be selected for by:

Value Meaning
CHK_LOCATE_BY_FILEID

Locate image file using the FileID property.

CHK_LOCATE_BY_FILEINDEX
Locate image file using the FileIndex property.

CHK_LOCATE_BY_IMAGETAGDATA
Locate image file using the ARTS XML compliant ImageTagData
property.

The FileID, FileIndex, and ImageTagData properties will all be updated to reflect their respective
values associated with the image data file after this method is called. A value for FileIndex will always
be available. The FileID and ImageTagData properties will be set to empty strings if the image file does
not have respective data to be retrieved for these properties.

The retrieveImage method cannot be called after a retrieveMemory method has been called until a new
document has been scanned.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• by parameter is invalid.
• The image data file could not be located due to an invalid value stored

in either the FileID, FileIndex, or ImageTagData properties that
was being used with the by value.

See Also FileID Property, FileIndex Property, ImageData Property, ImageTagData Property.
Unified POS, v1.16.1 299

11.5.9 storeImage Method Updated in Release 1.13

Syntax storeImage (cropAreaID: int32):
void { raises exception, use after open-claim-enable }

Parameter Description
cropAreaID Identifier to specify the storage location of the crop area parameters to be

applied to image data file currently in the buffer memory area of the device.
If the value is CHK_CROP_AREA_ENTIRE_IMAGE, then an exact image
of the buffer memory is stored in the device memory (no cropping is applied).

Remarks Called to store an image or a cropped area of the image in the memory of the device.

The RemainingImagesEstimate property is adjusted to reflect the approximate number additional
images that may be stored in the device memory based upon the file size history of previously stored
images.

The ImageMemoryStatus property indicates whether or not the device memory is full and is adjusted
as a result of this method.

The FileID, FileIndex, and ImageTagData properties must all be updated to reflect their respective
values associated with the image data file before this method is called. A value for FileIndex will always
be available and is supplied by the service. The FileID and/or ImageTagData properties will be set to
empty strings if the device does not support the respective property.

Return A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_EXIST Image already exists in the store location specified by the FileIndex property.

E_ILLEGAL One of the following errors occurred:
• Device does not support storing images

• Cropped area that is specified by cropAreaID parameter is invalid.

E_FAILURE Internal error storing image.

E_EXTENDED ErrorCodeExtended = ECHK_NOROOM:
There is no more room for the image in memory.

See Also CapStoreImageFiles Property, FileID Property, FileIndex Property, ImageMemoryStatus Property,
ImageTagData Property, RemainingImagesEstimate Property.
300 Unified POS, V1.16.1

11.6 Events (UML interfaces)

11.6.1 DataEvent

<< event >> upos::events::DataEvent 
Status: int32 { read-only }

Description Notifies the application when data from the Check Scanner device is available to be read.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Set to 0.

Remarks Before this event is delivered, the scanned check image is placed into ImageData.

See Also ImageData Property, endInsertion Method, retrieveImage Method, storeImage Method.

11.6.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Check Scanner Service to provide events to the application that are not otherwise supported by
the Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and the
Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service. This
property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Check
Scanner devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.
Unified POS, v1.16.1 301

11.6.3 ErrorEvent

<< event > upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an error has been detected at the Check Scanner device and a suitable
response by the application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes on page 16.

ErrorCodeExtended
int32 Extended Error code causing the error event. If ErrorCode is

E_EXTENDED, then see values below. Otherwise, it may contain a Service-
specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden by the application.
(i.e., this property is settable). See values below.

The ErrorLocus property may be one of the following:

Value Meaning
EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.
EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and some

previously buffered data is available.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus. The
application’s error processing may change ErrorResponse to one of the following values:

Value Meaning
ER_CLEAR Clear the buffered input data. The error state is exited.

Default when locus is EL_INPUT.
ER_CONTINUEINPUT Use only when locus is EL_INPUT_DATA. Acknowledges the error and

directs the Device to continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and the
DataEventEnabled property is again set to true, then another ErrorEvent is
delivered with locus EL_INPUT. 
Default when locus is EL_INPUT_DATA.

Remarks This event is not delivered until DataEventEnabled is true and other event delivery requirements are
met, so that proper application sequencing occurs.

See Also “Device Input Model” on page 18, “Device States” on page 27.
302 Unified POS, V1.16.1

11.6.4 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the status of the Check Scanner device.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Indicates a change in the status of the Check Scanner device.

The Status parameter has one of the following values:

Value Meaning
CHK_SUE_SCANCOMPLETE

The process of scanning a document image has been successfully completed.

Note that Release 1.3 added Power State Reporting with additional Power
reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 2.

Remarks Enqueued after the endInsertion method has been called and the Check Scanner device has successfully
completed the process of scanning a new image into a working buffer memory area. Also enqueued when
the Check Scanner device detects a power state change.

See Also “Events” on page 15.
Unified POS, v1.16.1 303

304 Unified POS, V1.16.1

12 Coin Acceptor

12.1 General

This Chapter defines the Coin Acceptor device category.

12.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean {read-write} 1.11 Not supported

CapCompareFirmwareVersion: boolean { read-only } 1.11 open

CapPowerReporting: int32 { read-only } 1.11 open

CapStatisticsReporting: boolean { read-only } 1.11 open

CapUpdateFirmware: boolean { read-only } 1.11 open

CapUpdateStatistics: boolean { read-only } 1.11 open

CheckHealthText: string {read-only} 1.11 open

Claimed: boolean {read-only} 1.11 open

DataCount: int32 {read-only} 1.11 open

DataEventEnabled: boolean {read-write} 1.11 open

DeviceEnabled: boolean {read-write} 1.11 open & claim

FreezeEvents: boolean {read-write} 1.11 open

OutputID: int32 {read-only} 1.11 Not supported

PowerNotify: int32 {read-write} 1.11 open

PowerState: int32 {read-only} 1.11 open

State: int32 {read-only} 1.11 --

DeviceControlDescription: string {read-only} 1.11 --

DeviceControlVersion: int32 {read-only} 1.11 --

DeviceServiceDescription: string {read-only} 1.11 open

DeviceServiceVersion: int32 {read-only} 1.11 open

PhysicalDeviceDescription: string {read-only} 1.11 open

PhysicalDeviceName: string {read-only} 1.11 open
Unified POS, v1.16.1 305

Properties (Continued)

Specific Type Mutability Version May Use After

CapDiscrepancy: boolean {read-only} 1.11 open

CapFullSensor: boolean {read-only} 1.11 open

CapJamSensor: boolean {read-only} 1.11 open

CapNearFullSensor: boolean {read-only} 1.11 open

CapPauseDeposit: boolean {read-only} 1.11 open

CapRealTimeData: boolean {read-only} 1.11 open

CurrencyCode: string {read-write} 1.11 open

DepositAmount: int32 {read-only} 1.11 open

DepositCashList: string {read-only} 1.11 open

DepositCodeList: string {read-only} 1.11 open

DepositCounts: string {read-only} 1.11 open

DepositStatus: int32 {read-only} 1.11 open, claim, & enable

FullStatus: int32 {read-only} 1.11 open, claim, & enable

RealTimeDataEnabled: boolean {read-only} 1.11 open, claim & enable

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.11

close ():
void { raises-exception, use after open }

1.11

claim (timeout: int32):
void { raises-exception, use after open }

1.11

release ():
void { raises-exception, use after open, claim }

1.11

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.11

clearInput ():
void { raises-exception, use after open, claim }

1.11

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { }

Not supported
306 Unified POS, V1.16.1

Methods (Continued)

Common

Name Version

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.11

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.11

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.11

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.11

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.11

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.11

Specific

Name

adjustCashCounts (cashCounts: string):
void { raises-exception, use after open, claim, enable }

1.11

beginDeposit ():
void { raises-exception, use after open, claim, enable }

1.11

endDeposit (success: int32):
void { raises-exception, use after open, claim, enable }

1.11

fixDeposit ():
void { raises-exception, use after open, claim, enable }

1.11

pauseDeposit (control: int32):
void { raises-exception, use after open, claim, enable }

1.11

readCashCounts (inout cashCounts: string, inout discrepancy:
boolean):
void { raises-exception, use after open, claim, enable }

1.11
Unified POS, v1.16.1 307

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent 1.11

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.11

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.11

 Status: int32 { read-only }
308 Unified POS, V1.16.1

12.3 General Information

The Coin Acceptor programmatic name is “CoinAcceptor.”

This device category was added to Version 1.11 of the specification.

12.3.1 Capabilities

The Coin Acceptor has the following capabilities:

• Reports the cash units and corresponding unit counts available in the Coin Acceptor.

• The coins which are deposited into the device between the start and end of cash acceptance are reported to the
application. The contents of the report are cash units and cash counts.

• Reports jam conditions within the device.

• Supports more than one currency.

The Coin Acceptor may also have the following additional capabilities:

• Reporting the fullness levels of the Coin Acceptor’s cash units. Conditions which may be indicated include full,
and near full states.

• Reporting of a possible (or probable) cash count discrepancy in the data reported by the readCashCounts
method.
Unified POS, v1.16.1 309

12.3.2 Coin Acceptor Class Diagram

The following diagram shows the relationships between the Coin Acceptor classes.

UposConst
(from upos)

<<utility>>

DataEvent
(from events)

<<event>>

DirectIOEvent
(from events)

<<event>>

StatusUpdateEvent
(from events)

<<event>>

UposException
(from upos)

<<exception>>

CoinAcceptorControl

<<capability>> CapFullSensor : boolean
<<capability>> CapJamSensor : Boolean
<<capability>> CapNearFullSensor : boolean
<<capability>> CapPauseDeposit : boolean
<<capability>> CapRealTimeData : Boolean
<<prop>> CurrencyCode : string
<<prop>> DepositAmount : int32
<<prop>> DepositCashList : string
<<prop>> DepositCodeList : string
<<prop>> DepositCounts : string
<<prop>> DepositStatus : int32
<<prop>> FullStatus : int32
<<prop>> RealTimeDataEnabled : boolean

adjustCashCounts(cashCounts : string)
beginDeposit()
endDeposit(amount : int32)
fixDeposit()
pauseDeposit(control : int32)
readCashCounts(cashCounts : string, discrepancy : boolean)

(from upos)

<<Interface>>

CoinAcceptorConst
(from upos)

<<utility>>

<<uses>>

<<sends>>

<<fires>>

<<fires>>

<<fires>>
310 Unified POS, V1.16.1

12.3.3 Model

The general model of a Coin Acceptor is:

• Supports several coin denominations. The supported cash type for a particular currency is noted by the list of
cash units in the DepositCashList property.

• This specification provides programmatic control only for the accepting of cash. The removal of cash from the
device (for example, to remove deposited cash) is controlled by the adjustCashCounts method, unless the
device can determine the amount of cash on its own. The application can call readCashCounts to retrieve the
current unit count for each cash unit, but cannot control when or how cash is removed from the device.

• May support more than one currency. The CurrencyCode property may be set to the currency, selecting from a
currency in the list DepositCodeList. DepositCashList and readCashCounts all act upon the current currency
only.

• Sets the cash slot (or cash bin) conditions in the FullStatus property to show full and near full status. If there are
one or more full cash slots, then FullStatus is CACC_STATUS_FULL.

• Coin acceptance into the “coin acceptance mechanism” is started by invoking the beginDeposit method. The
previous values of the properties DepositCounts and DepositAmount are initialized to zero.

• The total amount of cash placed into the device continues to be accumulated until either the fixDeposit method
or the pauseDeposit method is executed. When the fixDeposit method is executed, the total amount of
accumulated cash is stored in the DepositCounts and DepositAmount properties. 
If the pauseDeposit method is executed with a parameter value of CACC_DEPOSIT_PAUSE, then the counting
of the deposited cash is suspended and the current amount of accumulated cash is also updated to the
DepositCounts and DepositAmount properties. When pauseDeposit method is executed with a parameter
value of CACC_DEPOSIT_RESTART, counting of deposited cash is resumed and added to the accumulated
totals.
When the fixDeposit method is executed, the current amount of accumulated cash is updated in the
DepositCounts and DepositAmount properties, and the process remains static until the endDeposit method is
invoked with a CACC_DEPOSIT_COMPLETE parameter to complete the deposit.

• When the clearInput method is executed, the queued DataEvent associated with the receipt of cash is
cleared. The DepositCounts and DepositAmount properties remain set and are not cleared.
Unified POS, v1.16.1 311

12.3.4 Coin Acceptor Sequence Diagram

:ClientApp : CoinAcceptorControl CoinAcceptorService : DataEvent Human Actor

NOTE: we are assuming that the :ClientApp already successfully open, Claimed and enabled the
Coin Acceptor device. This means that the Claimed, DeviceEnabled properties are == true
NOTE: we are assuming that the :ClientApp already successfully open, Claimed and enabled the
Bill Acceptor device. This means that the Claimed, DeviceEnabled properties are == true

Set so DepositAmount and
DepositCounts are updated for
each Data Event

NOTE: we are assuming that the :ClientApp already successfully open, Claimed and enabled the
Bill Acceptor device. This means that the Claimed, DeviceEnabled properties are == true

1: setRealTimeDataEvents(true)

2: setRealTimeDataEvents(true)

3: beginDeposit()

4: beginDeposit()

5: initialize DepositAmount and DepositCounts

6: accept Cash

7: create Data Event

8: enqueue Data Event for delivery

9: update DepositAmount and DepositCounts

10: deliver Data Event

11: notify ClientApp of event

12: fixDeposit()

13: fixDeposit

14: updateDepositAmount and DepositCounts

15: endDeposit(int32)

16: endDeposit(int32)
312 Unified POS, V1.16.1

12.3.5 Coin Acceptor State Diagram

12.3.6 Device Sharing

The Coin Acceptor is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing some of the properties, dispensing or
collecting, or receiving events.

• See the “Summary” table for precise usage prerequisites.

Closed Opened Claimed

Enabled

open

close

claim

setDeviceEnabled(false)

release

setDeviceEnabled(true)release
close

ClearInputProcessing

entry/ empty data queue

clearInput
readCashCounts

Fix Mode

entry/ sync DepositAmount and DepositCounts

Pause Mode

entry/ sync DepositAmount and DepositCounts

clearInputCoin Acceptance

entry/ DepositAmount = 0
entry/ DepositCounts = 0

has room
for coins

near full

full

jammed

fixDeposit

pauseDeposit(CACC_DEPOSIT_PAUSE)

fixDeposit

pauseDeposit(CACC_DEPOSIT_RESTART)

has room
for coins

near full

full

jammed

fire Events

adustCashCounts / remove coins

adjustCashCounts / remove coins

beginDeposit

endDeposit
Unified POS, v1.16.1 313

12.4 Properties (UML attributes)

12.4.1 CapDiscrepancy Property

Syntax CapDiscrepancy: boolean { read-only, access after open }

Remarks If true, the readCashCounts method can report effective discrepancy values.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also readCashCounts Method.

12.4.2 CapFullSensor Property

Syntax CapFullSensor: boolean { read-only, access after open }

Remarks If true, the Coin Acceptor can report the condition that some cash slots are full.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also FullStatus Property, StatusUpdateEvent.

12.4.3 CapJamSensor Property

Syntax CapJamSensor: boolean { read-only, access after open }

Remarks If true, the coin acceptor can report a mechanical jam or failure condition.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

12.4.4 CapNearFullSensor Property

Syntax CapNearFullSensor: boolean { read-only, access after open }

Remarks If true, the Coin Acceptor can report the condition that some cash slots are nearly full.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also FullStatus Property, StatusUpdateEvent.
314 Unified POS, V1.16.1

12.4.5 CapPauseDeposit Property

Syntax CapPauseDeposit: boolean { read-only, access after open }

Remarks If true, the Coin Acceptor has the capability to suspend cash acceptance processing temporarily. This
property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also pauseDeposit Method.

12.4.6 CapRealTimeData Property

Syntax CapRealTimeData: boolean { read-only, access after open }

Remarks If true, the device is able to supply data as the money is being accepted (“real time”).
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also RealTimeDataEnabled property.

12.4.7 CurrencyCode Property

Syntax CurrencyCode: string { read-write, access after open }

Remarks Contains the active currency code to be used by Coin Acceptor operations. 
This property is initialized to an appropriate value by the open method. 
This value is guaranteed to be one of the set of currencies specified by the DepositCodeList property.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL A value was specified that is not within 

DepositCodeList.

See Also DepositCodeList Property.
Unified POS, v1.16.1 315

12.4.8 DepositAmount Property

Syntax DepositAmount: int32 { read-only, access after open }

Remarks The total amount of deposited cash.

For example, if the currency is Japanese yen and DepositAmount is set to 18057,
after the call to the beginDeposit method, there would be 18,057 yen in the Coin Acceptor.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CurrencyCode Property.

12.4.9 DepositCashList Property

Syntax DepositCashList: string { read-only, access after open }

Remarks Holds the cash units supported in the Coin Acceptor for the currency represented by the CurrencyCode
property.

It consists of ASCII numeric comma delimited values which denote the units of the coins.

Below are sample DepositCashList values in Japanese yen.

• “1,5,10,50,100,500” ---
1, 5, 10, 50, 100, and 500 yen coin.

This property is initialized by the open method, and is updated when CurrencyCode is set.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CurrencyCode Property.

12.4.10 DepositCodeList Property

Syntax DepositCodeList: string { read-only, access after open }

Remarks Holds the currency code indicators for cash accepted.

It is a list of ASCII three-character ISO 4217 currency codes separated by commas. For example, if the
string is “JPY,USD”, then the Coin Acceptor supports both Japanese and U.S. monetary units.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CurrencyCode Property.
316 Unified POS, V1.16.1

12.4.11 DepositCounts Property

Syntax DepositCounts: string { read-only, access after open }

Remarks Holds the total of the cash accepted by the cash units. Cash units inside the string are the same as the
DepositCashList property, and are in the same order.

For example if the currency is Japanese yen and string of the DepositCounts property is set to:


1:80,5:77,10:0,50:54,100:0,500:87

After the call to the beginDeposit method, there would be 80 one yen coins, 77 five yen coins, 54 fifty
yen coins, and 87 five hundred yen coins in the Coin Acceptor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CurrencyCode Property.

12.4.12 DepositStatus Property

Syntax DepositStatus: int32 { read-only, access after open-claim-enable }

Remarks Holds the current status of the coin acceptance operation. It may be one of the following values:

Value Meaning
CACC_STATUS_DEPOSIT_START

Cash acceptance started.
CACC_STATUS_DEPOSIT_END

Cash acceptance stopped.
CACC_STATUS_DEPOSIT_COUNT

Counting or repaying the deposited money.
CACC_STATUS_DEPOSIT_JAM

A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. This property is set to
CACC_STATUS_DEPOSIT_END after initialization.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 317

12.4.13 FullStatus Property

Syntax FullStatus: int32 { read-only, access after open }

Remarks Holds the current full status of the cash slots. It may be one of the following:

Value Meaning
CACC_STATUS_OK All cash slots are neither nearly full nor full.
CACC_STATUS_FULL Some cash slots are full.
CACC_STATUS_NEARFULL

 Some cash slots are nearly full.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

12.4.14 RealTimeDataEnabled Property

Syntax RealTimeDataEnabled: boolean {read-write, access after open-claim-enable}

Remarks If true, each data event fired will update the DepositAmount and DepositCounts properties. Otherwise,
DepositAmount and DepositCounts are updated with the value of the money collected when fixDeposit
is called. Setting RealTimeDataEnabled will not cause any change in system behavior until a
subsequent beginDeposit method is performed. This prevents confusion regarding what would happen
if it were modified between a beginDeposit - endDeposit pairing.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Cannot be set true if CapRealTimeData is false.

See Also CapRealTimeData Property, DepositAmount Property, DepositCounts Property, beginDeposit
Method, endDeposit Method, fixDeposit Method.
318 Unified POS, V1.16.1

12.5 Methods (UML operations)

12.5.1 adjustCashCounts Method

Syntax adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cashCounts parameter contains cash types and amounts to be initialized.

Remarks This method is called to set the initial amounts in the Coin Acceptor after initial setup, or to adjust cash
counts after replenishment or removal, such as a paid in or paid out operation. This method is called when
needed for devices which cannot determine the exact amount of cash in them automatically. If the device
can determine the exact amount, then this method call is ignored. The application would first call
readCashCounts to get the current counts, and adjust them to the amount being replenished. Then the
application will call this method to set the amount currently in the acceptor.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and the cashCounts parameter is set to
.1:80,5:77,50:54,100:0,500:87. as a result of calling the adjustCashCounts method, then there would be
eighty one yen coins, seventy-seven five yen coins, fifty-four fifty yen coins, zero one hundred yen coins,
and eighty-seven five-hundred yen coins in the Coin Acceptor.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also readCashCounts Method.
Unified POS, v1.16.1 319

12.5.2 beginDeposit Method

Syntax beginDeposit ():
void { raises-exception, use after open-claim-enable }

Remarks Cash acceptance is started.

The following property values are initialized by the call to this method:
• The value of each cash unit of the DepositCounts property is set to zero.
• The DepositAmount property is set to zero.

After calling this method, cash acceptance is reported by DataEvents until fixDeposit is called while
the deposit process is not paused.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The call sequence is not correct.

See Also DepositAmount Property, DepositCounts Property, endDeposit Method, fixDeposit Method,
pauseDeposit Method.

12.5.3 endDeposit Method

Syntax endDeposit (success: int32):
void { raises-exception, use after open-claim-enable }

The success parameter holds the value of how to deal with the cash that was deposited. Contains one of
the following values:

Parameter Description
CACC_DEPOSIT_COMPLETE The deposit is accepted and the deposited amount is equal to or

less than the amount required.

Remarks Cash acceptance is completed.

Before calling this method, the application must calculate the difference between the amount of the
deposit and the amount required.

The application must call the fixDeposit method before calling this method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• The call sequence is invalid. beginDeposit and fixDeposit must be
called in sequence before calling this method.

See Also DepositAmount Property, DepositCounts Property, beginDeposit Method, fixDeposit Method,
pauseDeposit Method.
320 Unified POS, V1.16.1

12.5.4 fixDeposit Method

Syntax fixDeposit ():
void { raises-exception, use after open-claim-enable }

Remarks When this method is called, all property values are updated to reflect the current values in the Coin
Acceptor.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• The call sequence is invalid. beginDeposit must be called before calling
this method.

See Also DepositAmount Property, DepositCounts Property, beginDeposit Method, endDeposit Method,
pauseDeposit Method.

12.5.5 pauseDeposit Method

Syntax pauseDeposit (control: int32):
void { raises-exception, use after open-claim-enable }

The control parameter contains one of the following values:

Parameter Description
CACC_DEPOSIT_PAUSE Cash acceptance is paused.
CACC_DEPOSIT_RESTART Cash acceptance is resumed.

Remarks Called to suspend or resume the process of depositing cash.

If control is CACC_DEPOSIT_PAUSE, the cash acceptance operation is paused. The deposit process
will remain paused until this method is called with control set to CACC_DEPOSIT_RESTART. It is
valid to call fixDeposit then endDeposit while the deposit process is paused.
When the deposit process is paused, the DepositCounts and DepositAmount properties are updated to
reflect the current state of the Coin Acceptor. The property values are not changed again until the deposit
process is resumed.
If control is CACC_DEPOSIT_RESTART, the deposit process is resumed.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL One of the following errors occurred:

• The call sequence is invalid. beginDeposit must be called before calling
this method.

• The deposit process is already paused and control is set to
CACC_DEPOSIT_PAUSE, or the deposit process is not paused and
control is set to CACC_DEPOSIT_RESTART.

See Also CapPauseDeposit Property, DepositAmount Property, DepositCounts Property, beginDeposit
Method, endDeposit Method, fixDeposit Method.
Unified POS, v1.16.1 321

12.5.6 readCashCounts Method

Syntax readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cash count data is placed into the string cashCounts.

discrepancy If discrepancy is set to true by this method, then there is some cash which was
not able to be included in the counts reported in cashCounts; otherwise it is
set false.

Remarks Each unit in cashCounts matches a unit in the DepositCashList property, and is in the same order.


For example if the currency is Japanese yen and string returned in cashCounts is set to:
1:80,5:77,10:0,50:54,100:0,500:87

as a result of calling the readCashCounts method, then there would be 80 one yen coins, 77 five yen
coins, 54 fifty yen coins, and 87 five hundred yen coins in the Coin Acceptor.

Usually, the cash total calculated by cashCounts parameter is equal to the cash total in a Coin Acceptor.
There are some cases where a discrepancy may occur because of existing uncountable cash in a Coin
Acceptor. An example would be when a cash slot is “overflowing” such that the device has lost its ability
to accurately detect and monitor the cash.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also DepositCashList Property.
322 Unified POS, V1.16.1

12.6 Events (UML interfaces)

12.6.1 DataEvent

<< event >> upos::events::DataEvent 
Status: int32 { read-only }

Description Notifies the application when one or more coins have been accepted.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 The Status parameter contains zero.

12.6.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Coin Acceptor Service to provide events to the application that are not otherwise supported by
the Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and the
Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service. This
property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Coin
Acceptor devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.
Unified POS, v1.16.1 323

12.6.3 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the status of the Coin Acceptor device.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Indicates a change in the status of the unit. See values below.

Note that Release 1.3 added Power State Reporting with additional Power
reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 2.

The Status parameter contains the Coin Acceptor status condition:

Value Meaning
CACC_STATUS_FULL Some cash slots are full.
CACC_STATUS_NEARFULL Some cash slots are nearly full.
CACC_STATUS_FULLOK No cash slots are either full or nearly full.
CACC_STATUS_JAM A mechanical fault has occurred.
CACC_STATUS_JAMOK A mechanical fault has recovered.

Remarks Fired when the Coin Acceptor detects a status change.

For changes in the fullness levels, the Coin Acceptor is only able to fire StatusUpdateEvents when the
device has a sensor capable of detecting the full or near full states and the corresponding capability
properties for these states are set.

Jam conditions may be reported whenever this condition occurs.

See Also “Events” on page 15.
324 Unified POS, V1.16.1

13 Coin Dispenser

13.1 General

This Chapter defines the Coin Dispenser device category.

13.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.2 Not supported

CapCompareFirmwareVersion: boolean { read-only } 1.9 open

CapPowerReporting: int32 { read-only } 1.3 open

CapStatisticsReporting: boolean { read-only } 1.8 open

CapUpdateFirmware: boolean { read-only } 1.9 open

CapUpdateStatistics: boolean { read-only } 1.8 open

CheckHealthText: string { read-only } 1.0 open

Claimed: boolean { read-only } 1.0 open

DataCount: int32 { read-only } 1.2 Not supported

DataEventEnabled: boolean { read-write } 1.0 Not supported

DeviceEnabled: boolean { read-write } 1.0 open & claim

FreezeEvents: boolean { read-write } 1.0 open

OutputID: int32 { read-only } 1.0 Not supported

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --

DeviceControlVersion: int32 { read-only } 1.0 --

DeviceServiceDescription: string { read-only } 1.0 open

DeviceServiceVersion: int32 { read-only } 1.0 open

PhysicalDeviceDescription: string { read-only } 1.0 open

PhysicalDeviceName: string { read-only } 1.0 open
Unified POS, v1.16.1 325

Properties (Continued)

Specific Type Mutability Version May Use After

CapEmptySensor: boolean { read-only } 1.0 open

CapJamSensor: boolean { read-only } 1.0 open

CapNearEmptySensor: boolean { read-only } 1.0 open

DispenserStatus: int32 { read-only } 1.0 open, claim, & enable

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open }

1.0

release ():
void { raises-exception, use after open, claim }

1.0

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.0

clearInput ():
void { }

Not supported

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.0

compareFirmwareVersion (firmwareFileName: string, out result: int32
):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8
326 Unified POS, V1.16.1

Methods (UML operations) - continued

Specific

Name Version

adjustCashCounts (cashCounts: string):
void { raises-exception, use after open, claim, enable }

1.11

dispenseChange (amount: int32): 
void { raises-exception, use after open, claim, enable }

1.0

readCashCounts (inout cashCounts: string, inout discrepancy: boolean
):
void { raises-exception, use after open, claim, enable }

1.11

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.0

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent

 Status: int32 { read-only } 1.0
Unified POS, v1.16.1 327

13.3 General Information

The Coin Dispenser programmatic name is “CoinDispenser.”

13.3.1 Capabilities Updated in Release 1.11

The coin dispenser has the following capability:

• Supports a method that allows a specified amount of change to be dispensed from the device.

The coin dispenser may have the following additional capabilities:

• Status reporting, which indicates empty coin slot conditions, near empty coin slot conditions, and coin slot
jamming conditions.

• Starting with Release 1.11, reporting of a possible (or probable) cash count discrepancy in the data reported by
the readCashCounts method.
328 Unified POS, V1.16.1

13.3.2 Coin Dispenser Class Diagram Updated in Release 1.11

The following diagram shows the relationships between the Coin Dispenser classes.

UposException
(from upos)

<<exception>>

UposConst
(from upos)

<<utility>>

CoinDispenserConst
(from upos)

<<utility>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32

(from events)

<<event>>

CoinDispenserControl

<<capability>> CapEmptySensor : boolean
<<capability>> CapJamSensor : boolean
<<capability>> CapNearEmptySensor : boolean
<<capability>> DispenserStatus : int32

adjustCashCounts(cashCounts : string) : void
dispenseChange(amount : int32) : void
readCashCounts(cashCounts : string, discrepancy : boolean) : void

(from upos)

<<Interface>>

fires

fires

BaseControl

open()
close()
claim()
compareFirmwareVersion()
release()
resetStatistics()
checkHealth()
clearInput()
clearInputProperties()
clearOutput()
directIO()
retrieveStatistics()
updateFirmware()
updateStatistics()

(from upos)

<<Interface>>

<<uses>>

<<sends>>

<<sends>>
<<uses>>
Unified POS, v1.16.1 329

13.3.3 Coin Dispenser Sequence Diagram Added in Release 1.7

The following sequence diagram shows the typical usage of the Coin Dispenser device, showing coin dispensing
and the firing of a StatusUpdateEvent due to coin status getting low.

NOTE: we are assuming that the :ClientApp already successfully registered handlers for events and opened, claimed
and enabled the CoinDispenser device. This means that the Claimed, DeviceEnabled properties are == true

:ClientApp :CoinDispenser :CoinDispenserService:StatusUpdateEvent

1: dispenseChange(amount1) 2: dispenseChange(amount1)

3: dispenseChange(amount2)

4: dispenseChange(amount2)

Assume that after this
point the CoinDispenser
change is getting low

5: update DispenserStatus to COIN_STATUS_NEAR_EMPTY [CapNearEmptyStatus == true]

6: create new SUE event

7: deliver SUE event to control

At this point the
:ClientApp event
handling code executes
and takes appropriate
action (like informing
user)

8: deliver StatusUpdateEvent to all registered handlers
9: notify client of new event
330 Unified POS, V1.16.1

13.3.4 Coin Dispenser State Diagram Updated in Release 1.11

The following diagram illustrates the various state transitions within the Coin Dispenser device category.

Closed Opened Claimed

Enabled

Has Coins

Fire Events

Near
Empty

Empty

Jammed

open

close

claim

release

setDeviceEnabled(true)

readCashCounts

Has Coins

Fire Events

Near
Empty

Empty

Jammed

setDeviceEnabled(false)

release
close

dispenseChange
dispenseChange

jams

fire event

fire eventjams

adjustCashCounts / add coins

done done

done

fire event

adjustCashCounts / coins added
Unified POS, v1.16.1 331

13.3.5 Model Updated in Release 1.11

The general model of a coin dispenser is:

• Consists of a number of coin slots which hold the coinage to be dispensed. The application using the Coin
Dispenser Service is not concerned with controlling the individual slots of coinage, but rather calls a method with
the amount of change to be dispensed. It is the responsibility of the coin dispenser device or the Service to
dispense the proper amount of change from the various slots.

Starting with Release 1.11:

• Sets cash in the device programatically by adding amount to counts when cash is added.

• Reads cash counts from device, either directly from the hardware, or from the service, by tracking what is
dispensed and what has been added to the device.

13.3.6 Device Sharing

The coin dispenser is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing some of the properties, dispensing change, or
receiving status update events.

• See the “Summary” table for precise usage prerequisites.
332 Unified POS, V1.16.1

13.4 Properties (UML attributes)

13.4.1 CapEmptySensor Property

Syntax CapEmptySensor: boolean { read-only, access after open }

Remarks If true, the coin dispenser can report an out-of-coinage condition. 
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

13.4.2 CapJamSensor Property

Syntax CapJamSensor: boolean { read-only, access after open }

Remarks If true, the coin dispenser can report a mechanical jam or failure condition. 
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

13.4.3 CapNearEmptySensor Property

Syntax CapNearEmptySensor: boolean { read-only, access after open }

Remarks If true, the coin dispenser can report when it is almost out of coinage. 
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

13.4.4 DispenserStatus Property

Syntax DispenserStatus: int32 { read-only, access after open-claim-enable }

Remarks Holds the current status of the dispenser. It has one of the following values:

Value Meaning
COIN_STATUS_OK Ready to dispense coinage. This value is also set when the dispenser is unable

to detect an error condition.
COIN_STATUS_EMPTY

Cannot dispense coinage because the dispenser is empty.
COIN_STATUS_NEAREMPTY

Can still dispense coinage, but the dispenser is nearly empty.
COIN_STATUS_JAM A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. This property is synonymous to
the DeviceStatus in the Cash Changer.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 333

13.5 Methods (UML operations)

13.5.1 adjustCashCounts Method Added in Release 1.11

Syntax adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cashCounts parameter contains cash types and amounts to be initialized.

Remarks This method is called to set the initial amounts in the Coin Dispenser after initial setup, or to adjust cash
counts after replenishment or removal, such as a paid in or paid out operation. This method is called when
needed for devices which cannot determine the exact amount of cash in them automatically. If the device
can determine the exact amount, then this method call is ignored. The application would first call
readCashCounts to get the current counts, and adjust them to the amount being replenished. Then the
application will call this method to set the amount currently in the dispenser.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and the cashCounts parameter is set to
.1:80,5:77,50:54,100:0,500:87. as a result of calling the adjustCashCounts method, then there would be
eighty one yen coins, seventy-seven five yen coins, fifty-four fifty yen coins, zero one hundred yen coins,
and eighty-seven five-hundred yen coins in the Coin Dispenser.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also readCashCounts Method.

13.5.2 dispenseChange Method

Syntax dispenseChange (amount: int32):
void { raises-exception, use after open-claim-enable }

The amount parameter contains the amount of change to be dispensed.

Remarks Dispenses change. The value represented by the amount parameter is a count of the currency units to
dispense (such as cents or yen).

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An amount parameter value of zero was specified, or the amount parameter

contained a negative value or a value greater than the device can dispense.
334 Unified POS, V1.16.1

13.5.3 readCashCounts Method Added in Release 1.11

Syntax readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cash count data is placed into cashCounts.

discrepancy If discrepancy is set to true by this method, then there is some cash which was
not able to be included in the counts reported in cashCounts; otherwise it is
set false.

Remarks The format of the string cashCounts is an ASCII string. The string has a set of comma separated units.
Each unit in cashCounts indicates a denomination of a unit as well as a count of those units, separated
by a colon (“:”).

For example if the currency is Japanese yen and string returned in cashCounts is set to:
1:80,5:77,10:0,50:54,100:0

as a result of calling the readCashCounts method, then there would be 80 one yen coins, 77 five yen
coins, and 54 fifty yen coins in the Coin Dispenser.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.
Unified POS, v1.16.1 335

13.6 Events (UML interfaces)

13.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Coin Dispenser Service to provide events to the application that are not otherwise supported by
the Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and the
Service. This property is settable.

Obj Object Additional data whose usage varies by the EventNumber and Service. This
property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Coin
Dispenser devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.
336 Unified POS, V1.16.1

13.6.2 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application of a sensor status change.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 The status reported from the Coin Dispenser.

The Status attribute has one of the following values:

Value Meaning
COIN_STATUS_OK Ready to dispense coinage. This value is also set when the dispenser is unable

to detect an error condition.

COIN_STATUS_EMPTY
Cannot dispense coinage because the dispenser is empty.

COIN_STATUS_NEAREMPTY
Can still dispense coinage, but the dispenser is nearly empty.

COIN_STATUS_JAM A mechanical fault has occurred.

Note that Release 1.3 added Power State Reporting with additional Power
reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 1.

Remarks This event applies for status changes of the sensor types supported, as indicated by the capability
properties. It also applies if Power State Reporting is enabled.

See Also “Events” on page 15.
Unified POS, v1.16.1 337

338 Unified POS, V1.16.1

14 Electronic Journal

14.1 General

This Chapter defines the Electronic Journal device category.

14.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.10 open

CapCompareFirmwareVersion: boolean { read-only } 1.10 open

CapPowerReporting: int32 { read-only } 1.10 open

CapStatisticsReporting: boolean { read-only } 1.10 open

CapUpdateFirmware: boolean { read-only } 1.10 open

CapUpdateStatistics: boolean { read-only } 1.10 open

CheckHealthText: string { read-only } 1.10 open

Claimed: boolean { read-only } 1.10 open

DataCount: int32 { read-only } 1.10 open

DataEventEnabled: boolean { read-write } 1.10 open

DeviceEnabled: boolean { read-write } 1.10 open & claim

FreezeEvents: boolean { read-write } 1.10 open

OutputID: int32 { read-only } 1.10 open

PowerNotify: int32 { read-write } 1.10 open

PowerState: int32 { read-only } 1.10 open

State: int32 { read-only } 1.10 --

DeviceControlDescription: string { read-only } 1.10 --

DeviceControlVersion: int32 { read-only } 1.10 --

DeviceServiceDescription: string { read-only } 1.10 open

DeviceServiceVersion: int32 { read-only } 1.10 open

PhysicalDeviceDescription: string { read-only } 1.10 open

PhysicalDeviceName: string { read-only } 1.10 open
Unified POS, v1.16.1 339

Properties (Continued)

Specific: Type Mutability Version May Use After

AsyncMode: boolean {read-write} 1.10 open

CapAddMarker: boolean {read-only} 1.10 open

CapErasableMedium: boolean {read-only} 1.10 open

CapInitializeMedium: boolean {read-only} 1.10 open

CapMediumIsAvailable: boolean {read-only} 1.10 open

CapPrintContent: boolean {read-only} 1.10 open

CapPrintContentFile: boolean {read-only} 1.10 open

CapRetrieveCurrentMarker: boolean {read-only} 1.10 open

CapRetrieveMarker: boolean {read-only} 1.10 open

CapRetrieveMarkerByDateTime: boolean {read-only} 1.10 open

CapRetrieveMarkersDateTime: boolean {read-only} 1.10 open

CapStation: int32 {read-only} 1.10 open

CapStorageEnabled: boolean {read-only} 1.10 open

CapSuspendPrintContent: boolean {read-only} 1.10 open

CapSuspendQueryContent: boolean {read-only} 1.10 open

CapWaterMark: boolean {read-only} 1.10 open

FlagWhenIdle: boolean {read-write} 1.10 open

MediumFreeSpace: currency {read-only} 1.10 open, claim & enable

MediumID: string {read-only} 1.10 open, claim & enable

MediumIsAvailable: boolean {read-only} 1.10 open, claim & enable

MediumSize: currency {read-only} 1.10 open, claim & enable

Station: int32 {read-write} 1.10 open

StorageEnabled: boolean {read-write} 1.10 open, claim & enable

Suspended: boolean {read-only} 1.10 open

WaterMark: boolean {read-write} 1.10 open
340 Unified POS, V1.16.1

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.10

close ():
void { raises-exception, use after open }

1.10

claim (timeout: int32):
void { raises-exception, use after open }

1.10

release ():
void { raises-exception, use after open, claim }

1.10

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.10

clearInput ():
void { raises-exception, use after open, claim }

1.10

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { raises-exception, use after open, claim }

1.10

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.10

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.10

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.10

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.10

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.10

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.10

Specific

Name

addMarker (marker: string):
 void { raises-exception, use after open, claim, enable }

1.10

cancelPrintContent ():
 void { raises-exception, use after open, claim, enable }

1.10

cancelQueryContent ():
 void { raises-exception, use after open, claim, enable }

1.10

eraseMedium ():
 void { raises-exception, use after open, claim, enable }

1.10

initializeMedium (mediumID: string):
 void { raises-exception, use after open, claim, enable }

1.10

printContent (fromMarker: string, toMarker: string):
 void { raises-exception, use after open, claim, enable }

1.10
Unified POS, v1.16.1 341

printContentFile (fileName: string):
 void { raises-exception, use after open, claim, enable }

1.10

queryContent (fileName: string, fromMarker: string, toMarker: string):
 void { raises-exception, use after open, claim, enable }

1.10

resumePrintContent ():
 void { raises-exception, use after open, claim, enable }

1.10

resumeQueryContent ():
 void { raises-exception, use after open, claim, enable }

1.10

retrieveCurrentMarker (markerType: int32, out marker: string):
 void { raises-exception, use after open, claim, enable }

1.10

retrieveMarker (markerType: int32, sessionNumber: int32, document-
Number: int32, out marker: string):
void { raises-exception, use after open, claim, enable }

1.10

retrieveMarkerByDateTime (markerType: int32, dateTime: string,
markerNumber: string, out marker: string):
void { raises-exception, use after open, claim, enable }

1.10

retrieveMarkersDateTime (marker: string, out dateTime: string):
 void { raises-exception, use after open, claim, enable }

1.10

suspendPrintContent ():
 void { raises-exception, use after open, claim, enable }

1.10

suspendQueryContent ():
 void { raises-exception, use after open, claim, enable }

1.10

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent 1.10

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.10

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.10

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent 1.10

 OutputID: int32 { read-only }

upos::events::StatusUpdateEvent 1.10

 Status: int32 { read-only }
342 Unified POS, V1.16.1

14.3 General Information

The Electronic Journal programmatic name is “ElectronicJournal.”

This device was introduced in Version 1.10 of this specification.

14.3.1 Capabilities

The Electronic Journal device stores records of transactions into digital media as electronic data. If the recording
function of the Electronic Journal device is enabled, then it starts storing all print data that is output to the
POSPrinter or FiscalPrinter device. In the case of the FiscalPrinter device, the Fiscal Printing output is stored at
all times.

The Electronic Journal has the following capabilities.

• Stores transaction data.

• Transfers stored data.

The Electronic Journal may also have the following additional capabilities.

• Prints stored data on the attached POSPrinter or FiscalPrinter.

• Erases stored data.

• Initializes recording medium.

The Electronic Journal may also have the following special capabilities in fiscal environments.

• Provides the ability to re-print entire fiscal documents and tickets specifying a range of ticket numbers or ticket
dates and times.
Unified POS, v1.16.1 343

14.3.2 Electronic Journal Class Diagram

The following diagram shows the relationships between the Electronic Journal device classes.

UposException
(from upos)

<<exception>>

BaseControl
(from upos)

<<Interface>> UposConst
(from upos)

<<utility>>

ElectronicJournalConst
(from upos)

<<utility>>

DataEvent

<<prop>> Status : int32
(from events)

<<event>>

ErrorEvent

<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : int32
<<prop>> ErrorLocus : int32
<<prop>> ErrorResponse : int32

(from events)

<<event>>

OutputCompleteEvent

<<prop>> OutputID : int32
(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32
(from events)

<<event>>

ElectronicJournalControl

<<prop>> AsyncMode : boolean
<<capability>> CapInitializeMedium : boolean
<<capability>> CapErasableMedium : boolean
<<capability>> CapPrintContent : boolean
<<capability>> CapPrintContentFile : boolean
<<capability>> CapStation : int32
<<capability>> CapSuspendPrintContent : boolean
<<capability>> CapSuspendQueryContent : boolean
<<capability>> CapWaterMark : boolean
<<capability>> CapMediumIsAvailable : boolean
<<capability>> CapRetrieveMarker : boolean
<<capability>> CapRetrieveMarkerByDateTime : boolean
<<capability>> CapRetrieveCurrentMarker : boolean
<<capability>> CapRetrieveMarkersDateTime : boolean
<<capability>> CapAddMarker : boolean
<<capability>> CapStorageEnabled : boolean
<<prop>> FlagWhenIdle : boolean
<<prop>> MediumID : string
<<prop>> MediumSize : currency
<<prop>> MediumFreeSpace : currency
<<prop>> MediumIsAvailable : boolean
<<prop>> StorageEnabled : boolean
<<prop>> Station : int32
<<prop>> Suspended : boolean
<<prop>> WaterMark : boolean

addMarker(marker : string) : void
cancelPrintContent () : void
cancelQueryContent () : void
initializeMedium (mediumID : string) : void
eraseMedium () : void
printContent (fromMarker : string, toMarker : string) : void
printContentFile (fileName : string) : void
queryContent (fileName : string, fromMarker : string, toMarker : string) : void
resumePrintContent () : void
resumeQueryContent () : void
suspendPrintContent () : void
suspendQueryContent () : void
retrieveMarker(markerType : int32, sessionNumber : int32, documentNumber : int32, out marker : string) : void
retrieveMarkerByDateTime(markerType : int32, dateTime : string, markerNumber : string, out marker : string) : void
retrieveCurrentMarker(markerType : int32, out marker : string) : void
retrieveMarkersDateTime(marker : string, out dateTime : string) : void

(from upos)

<<Interface>>

fires

fires

fires

fires

<<sends>>

<<sends>> <<uses>>

<<uses>>
344 Unified POS, V1.16.1

14.3.3 Model

The Electronic Journal writing process is started implicitly when a printing method for the POSPrinter or
FiscalPrinter is performed. All output is performed on a first-in first-out basis. Therefore, an ErrorEvent is
delivered if the writing process fails.

The writing process of the POSPrinter or FiscalPrinter may result in a failure, in this case an ErrorEvent is
delivered.

• The following methods are always performed synchronously: addMarker, retrieveCurrentMarker,
retrieveMarker, retrieveMarkerByDateTime, retrieveMarkersDateTime, and checkHealth. These methods
will fail if output to the POSPrinter or FiscalPrinter is outstanding.

• The suspendPrintContent and suspendQueryContent methods are also always performed synchronously.
These methods attempt to stop printing (that is, at the very next printer operation). They may be called when
asynchronous output is outstanding. These methods are primarily intended for use in exception conditions when
asynchronous output is outstanding.

• The following methods are performed either synchronously or asynchronously, depending on the value of the
AsyncMode property: eraseMedium, initializeMedium, printContent, printContentFile, and queryContent.
When AsyncMode is false, then these methods are performed synchronously.

A marker can be placed where to store data and it can be used as an index. It can be added at the beginning and
end of data to indicate the data range when getting or printing stored data.

During asynchronous data printing or transfer process, it can be suspended by interrupt methods.

In fiscal environments the markers are set implicitly by the FiscalPrinter device. The stored data is organized in
sessions that correspond to the fiscal days. These sessions contain documents that correspond to fiscal tickets.
Sessions and documents can be queried by the application indirectly using the retrieveMarker,
retrieveMarkerByDateTime, and retrieveCurrentMarker methods. The returned markers are intended to be
used with the printContent and queryContent methods. The content and format of the markers are
implementation specific and need not be known or analyzed by the application.

An Electronic Journal device combines both the properties of an input device (query) and an output device (store
and print).

The data stored on the electronic journal medium are the printing lines that have been issued to the attached
POSPrinter or FiscalPrinter device. The data format of the stored information depends upon the physical device
model. The data should be stored in nonvolatile storage; e.g., flash cards, memory cards, CD-RW, and HDD can
be used as the physical media. There is no need to distinguish the differences between the physical media.

If the recording medium can be removed from or inserted into the device, a StatusUpdateEvent is delivered
when the medium status is changed. Additionally, the medium status can be checked and it can be initialized if
necessary.

The primary responsibility is storing transaction data as it is, so there are no functions to convert or reprocess the
data.
Unified POS, v1.16.1 345

14.3.4 Device Sharing

The Electronic Journal is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing many of the Electronic Journal specific
properties.

• The application must claim and enable the device before calling methods that manipulate the device.

• See the “Summary” table for precise usage prerequisites.
346 Unified POS, V1.16.1

14.3.5 Electronic Journal Sequence Diagrams

Various sequence diagrams are used to illustrate how the Electronic Journal API can be used. These scenarios
are designed to show the rationale and key concepts behind the structure of the API.

 : Application : ElectronicJournalControl : POSPrinterControl

open()

claim()

setDeviceEnabled(true)

setDataEventEnabled(true)

setStorageEnabled(true)

addMarker(1)

printNormal(PTR_S_RECEIPT, "Receipt #1")

write data

addMarker(2)

printNormal(PTR_S_RECEIPT, "Receipt #2")

write data

queryContent("data.bin", 1, 2)

notify of DataEvent

close()
Unified POS, v1.16.1 347

The following sequence diagram shows how markers are intended to be used in the fiscal environment. The
querying of the FiscalPrinter device for the needed markers is processed implicitly and therefore not shown
below.

 : Application : ElectronicJournalConst

retrieveMarker(EJ_MT_SESSION_BEG, 1, 0, marker1)

maker1

retrieveMarker(EJ_MT_SESSION_END, 1, 0, marker2)

marker2

printContent(marker1, marker2)

queryContent("data.bin", marker1, marker2)
348 Unified POS, V1.16.1

14.3.6 Electronic Journal State Diagram

The following diagram illustrates the various state transitions within the Electronic Journal device.

NormalMode SuspendMode
suspendPrintContent(),
suspendQueryContent()

printContent(), printContentFile(), queryContent()

resumePrintContent(), cancelPrintContent(),
resumeQueryContent(), cancelQueryContent()
Unified POS, v1.16.1 349

14.4 Properties (UML Attributes)

14.4.1 AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, then the print methods will be performed asynchronously.

If false, they will be performed synchronously.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

14.4.2 CapAddMarker Property

Syntax CapAddMarker: boolean {read-only, access after open}

Remarks If true, the application can use the addMarker method. Usually this property is false for fiscal EJ
devices. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also addMarker Method.

14.4.3 CapErasableMedium Property

Syntax CapErasableMedium: boolean {read-only, access after open}

Remarks If true, the storage medium can be erased. If false, it is impossible.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

14.4.4 CapInitializeMedium Property

Syntax CapInitializeMedium: boolean { read-only, access after open }

Remarks If true, the application can initialize the medium. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

14.4.5 CapMediumIsAvailable Property Updated in Release 1.11

Syntax CapMediumIsAvailable: boolean { read-only, access after open }

Remarks If true, the application can check whether a recording medium is available or not.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also MediumIsAvailable Property.
350 Unified POS, V1.16.1

14.4.6 CapPrintContent Property Updated in Release 1.11

Syntax CapPrintContent: boolean { read-only, access after open }

Remarks If true, the device is able to reprint stored journal documents directly on a connected printing device.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also printContent Method.

14.4.7 CapPrintContentFile Property Updated in Release 1.11

Syntax CapPrintContentFile: boolean { read-only, access after open }

Remarks If true, the device is able to print journal documents extracted from the storage medium on a connected
printing device.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also printContentFile Method.

14.4.8 CapRetrieveCurrentMarker Property

Syntax CapRetrieveCurrentMarker: boolean {read-only, access after open}

Remarks If true, the application can use the retrieveCurrentMarker method. Usually this property is true for
fiscal EJ devices.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also retrieveCurrentMarker Method.

14.4.9 CapRetrieveMarker Property

Syntax CapRetrieveMarker: boolean {read-only, access after open}

Remarks If true, the application can use the retrieveMarker method. Usually this property is true for fiscal EJ
devices.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also retrieveMarker Method.
Unified POS, v1.16.1 351

14.4.10 CapRetrieveMarkerByDateTime Property

Syntax CapRetrieveMarkerByDateTime: boolean {read-only, access after open}

Remarks If true, the application can use the retrieveMarkerByDateTime method. Usually this property is
true for fiscal EJ devices. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also retrieveMarkerByDateTime Method.

14.4.11 CapRetrieveMarkersDateTime Property

Syntax CapRetrieveMarkersDateTime: boolean {read-only, access after open}

Remarks If true, the application can use the retrieveMarkersDateTime method. Usually this property is true for
fiscal EJ devices. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also retrieveMarkersDateTime Method.

14.4.12 CapStation Property

Syntax CapStation: int32 { read-only, access after open }

Remarks This capability indicates the availability of data capturing.

CapStation property is a logical OR combination of any of the following values:

Value Meaning
EJ_S_RECEIPT Captures data output into receipt station and stores it into the medium.
EJ_S_SLIP Captures data output into slip station and stores it into the medium.
EJ_S_JOURNAL Captures data output into journal station and stores it into the medium.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

14.4.13 CapStorageEnabled Property

Syntax CapStorageEnabled: boolean { read-only, access after open }

Remarks This property indicates whether the recording of print data can be controlled by the
StorageEnabled property, i.e., can be changed. If false, StorageEnabled is always set to true.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also StorageEnabled Property.
352 Unified POS, V1.16.1

14.4.14 CapSuspendPrintContent Property

Syntax CapSuspendPrintContent: boolean { read-only, access after open }

Remarks If true, the printing process can be suspended.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also Suspended Property.

14.4.15 CapSuspendQueryContent Property

Syntax CapSuspendQueryContent: boolean { read-only, access after open }

Remarks If true, the data acquiring process can be suspended.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also Suspended Property.

14.4.16 CapWaterMark Property

Syntax CapWaterMark: boolean { read-only, access after open }

Remarks If true, the device is able to print specific predefined background when reprinting journal documents.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

14.4.17 FlagWhenIdle Property

Syntax FlagWhenIdle: boolean { read-write, access after open }

Remarks If true, a StatusUpdateEvent will be enqueued when the device is in the idle state.

This property is automatically reset to false when the status event is delivered.

The main use of idle status event that is controlled by this property is to give the application control when
all outstanding asynchronous outputs have been processed. The event will be enqueued if the outputs
were completed successfully or if they were cleared by the clearOutput method or by an ErrorEvent
handler.

If the State is already set to S_IDLE when this property is set to true, then a StatusUpdateEvent is
enqueued immediately. The application can therefore depend upon the event, with no race condition
between the starting of its last asynchronous output and the setting of this flag.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also State Property, clearOutput Method.
Unified POS, v1.16.1 353

14.4.18 MediumFreeSpace Property

Syntax MediumFreeSpace: currency { read-only, access after open-claim-enable }

Remarks Holds the size of the remained free space on the storage medium in bytes. After each storing process
caused by printing with POSPrinter or FiscalPrinter device, this value is decreased. It notifies
StatusUpdateEvent when free space is near empty or empty.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

14.4.19 MediumID Property

Syntax MediumID: string { read-only, access after open-claim-enable }

Remarks This property indicates identification of the currently plugged medium. It holds a value from the physical
medium, so is initialized when enabled. If
it is not possible to obtain any information from the physical medium, then this property is initialized to
an empty string.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

14.4.20 MediumIsAvailable Property Updated in Release 1.11

Syntax MediumIsAvailable: boolean { read-only, access after open-claim-enable }

Remarks Indicates whether a recording medium is attached or not. This information is only available if
CapMediumIsAvailable is true.
If true, a recording medium is attached. If false, it is not attached.
If the storage medium is not exchangeable, this property is always set true.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapMediumIsAvailable Property.

14.4.21 MediumSize Property

Syntax MediumSize: currency { read-only, access after open-claim-enable }

Remarks Holds the size of the storage medium in bytes.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
354 Unified POS, V1.16.1

14.4.22 Station Property

Syntax Station: int32 { read-write, access after open }

Remarks Set the station for subsequent data storing into the medium. Station is a logical OR combination of
any of the following values.

Value Meaning
EJ_S_RECEIPT Captures data output into receipt station of POSPrinter or FiscalPrinter

and stores it into the medium.
EJ_S_SLIP Captures data output into slip station of POSPrinter or FiscalPrinter and

stores it into the medium.
EJ_S_JOURNAL Captures data output into journal station of POSPrinter or FiscalPrinter

and stores it into the medium.

This property is initialized to EJ_S_RECEIPT by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

14.4.23 StorageEnabled Property Updated in Release 1.11

Syntax StorageEnabled: boolean { read-write, access after open-claim-enable }

Remarks If true, the device is in a recordable state. Data output to the POSPrinter or FiscalPrinter is stored on the
medium as electronic information sequentially. The Station property must be specified in advance to
specify what station is available to record.

If false, the device has been disabled to record data.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_FAILURE The device cannot move to the recordable state.

See Also Station Property.

14.4.24 Suspended Property

Syntax Suspended: boolean { read-only, access after open }

Remarks If true, the printing or data acquiring process is being suspended.

When both CapSuspendPrintContent and CapSuspendQueryContent are false, there is no
application to suspend a process. Then this property is always set to false.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapSuspendPrintContent Property, CapSuspendQueryContent Property.
Unified POS, v1.16.1 355

14.4.25 WaterMark Property

Syntax WaterMark: boolean { read-write, access after open }

Remarks This property specifies whether a specific predefined background should be printed or not with journal
documents. If true, the background is printed and it is clear that the output is a reprint of the stored data.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
356 Unified POS, V1.16.1

14.5 Methods (UML operations)

14.5.1 addMarker Method

Syntax addMarker (marker: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
marker Marker identifier.

Remarks Adds a marker at the end of the data stored on the recording medium.

Specifies index numbers as arguments to specify the data range when acquiring data as a file or printing
data on the connected POSPrinter or FiscalPrinter system.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Characters that cannot be used as marker are included, or the character string

is too long to be used as the marker.
E_BUSY Request cannot be performed while output is in progress. (This includes when

the POSPrinter or FiscalPrinter is busy printing.)
E_EXTENDED ErrorCodeExtended = EEJ_EXISTING:

The marker name is already specified in current medium.
ErrorCodeExtended = EEJ_MEDIUM_FULL:
There is not enough free space to add a marker in current medium.

14.5.2 cancelPrintContent Method

Syntax cancelPrintContent ():
void { raises-exception, use after open-claim-enable }

Remarks Cancels the suspended data printing process.

If this method is performed successfully, remaining data is not printed.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

14.5.3 cancelQueryContent Method

Syntax cancelQueryContent ():
void { raises-exception, use after open-claim-enable }

Remarks Cancel the suspended data transfer process.

If this method is performed, no file to store data is created.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.
Unified POS, v1.16.1 357

14.5.4 eraseMedium Method

Syntax eraseMedium ():
void { raises-exception, use after open-claim-enable }

Remarks All the data in this medium is erased. Marker information is erased too.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

When performed asynchronously, the results are notified with an event. If the method succeeds and
OutputCompleteEvent is delivered, otherwise an ErrorEvent will be delivered.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_FAILURE Failed to erase data.

See Also AsyncMode Property.

14.5.5 initializeMedium Method

Syntax initializeMedium (mediumID: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
mediumID medium identifier.

Remarks Initializes the recording medium. At this time the application can give the medium a name expressed as
character string.

If the medium is not namable, the MediumID property is set to an empty string.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

When performed asynchronously, the results are notified with an event. If the method succeeds and
OutputCompleteEvent is delivered, otherwise an ErrorEvent will be delivered.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. (This includes when the

POSPrinter or FiscalPrinter is busy printing.)

See Also AsyncMode Property, MediumID Property.
358 Unified POS, V1.16.1

14.5.6 printContent Method Updated in Release 1.11

Syntax printContent (fromMarker: string, toMarker: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
fromMarker Marker identifier that indicates start position of the data. Specifying an empty

string means specifying the data at the beginning of the recording medium.
toMarker Marker identifier that indicates end position of the data. Specifying an empty

string means specifying the data at the end of the recording medium.

Remarks Prints the current journal document stored in the recording medium onto the connected printer. This
method is only supported if CapPrintContent is true.

Specifying an empty string for the fromMarker means specifying the data at the beginning of the
recording medium. Specifying an empty string for the toMarker means specifying the data at the end of
the recording medium.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

When performed asynchronously, the results are notified with an event. If the method succeeds and
OutputCompleteEvent is delivered, otherwise an ErrorEvent will be delivered.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also AsyncMode Property, CapPrintContent Property.

14.5.7 printContentFile Method Updated in Release 1.11

Syntax printContentFile (fileName: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
fileName Name of the file that contains printing data.

Remarks Prints the journal document included in the file acquired from the recording medium onto the connected
printer system. The whole data included in the file is printed. This method is only supported if
CapPrintContentFile is true.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

When performed asynchronously, the results are notified with an event. If the method succeeds and
OutputCompleteEvent is delivered, otherwise an ErrorEvent will be delivered.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL fileName contains invalid characters.
E_NOEXIST fileName was not found.

See Also AsyncMode Property, CapPrintContentFile Property.
Unified POS, v1.16.1 359

14.5.8 queryContent Method Updated in Release 1.11

Syntax queryContent (fileName: string, fromMarker: string, toMarker: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
fileName Name of the file that stores acquired data.
fromMarker Marker identifier that indicates start position of the data. Specifying an empty

string means specifying the data at the beginning of the recording medium.
toMarker Marker identifier that indicates end position of the data. Specifying an empty

string means specifying the data at the end of the recording medium.

Remarks Retrieves the data that has been stored on the electronic journal medium and transfers it to the file
fileName.

If AsyncMode is false, then queryContent operates synchronously.

If AsyncMode is true, the content querying process is performed asynchronously. The method will
initiate the querying and then return immediately. Once the storing of the queried content data is
successfully completed, a DataEvent is delivered to the application. If the method fails, an ErrorEvent
is delivered.

Specifying an empty string for the fromMarker means specifying the data at the beginning of the
recording medium. Specifying an empty string for the toMarker means specifying the data at the end of
the recording medium.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Value Meaning
E_BUSY Cannot perform while output is in progress. (This includes when the

POSPrinter or FiscalPrinter is busy printing.)
E_EXISTS The file defined in fileName already exists.
E_ILLEGAL fileName contains invalid characters.

See Also AsyncMode Property.

14.5.9 resumePrintContent Method

Syntax resumePrintContent ():
void { raises-exception, use after open-claim-enable }

Remarks Resumes the suspended data printing process.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.
360 Unified POS, V1.16.1

14.5.10 resumeQueryContent Method

Syntax resumeQueryContent ():
void { raises-exception, use after open-claim-enable }

Remarks Resume the suspended data transfer process.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

14.5.11 retrieveCurrentMarker Method

Syntax retrieveCurrentMarker (markerType: int32, out marker: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
markerType specifies the type of the queried current marker, see values below.
marker contains the return value, the implementation specific marker.

The parameter markerType controls which type of stored marker is returned:

Value Meaning
EJ_MT_SESSION_BEG The marker for the last completed begin of a session is returned.
EJ_MT_SESSION_END The marker for the last completed end of a session is returned.
EJ_MT_DOCUMENT The marker for the last completed document or ticket is returned.
EJ_MT_HEAD The first implicitly stored marker on the EJ medium is returned.
EJ_MT_TAIL The last implicitly stored marker on the EJ medium is returned.

Remarks Returns the last implicitly stored marker. The queried marker is specified by the parameter markerType.
The marker is returned in the parameter marker. The format and content of the string representing a
marker is implementation specific and has not to be known or analyzed by the application. The returned
marker can be used as an input parameter for the printContent and queryContent methods.

The values EJ_MT_HEAD and EJ_MT_TAIL are intended to address the entire contents of the EJ
medium.

This method is only supported if CapRetrieveCurrentMarker is true.

This method is usually used for fiscal EJ devices.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The parameter markerType contains an invalid value.
E_NOEXIST A marker does not exist for the specified marker type.

See Also CapRetrieveCurrentMarker Property, printContent Method, queryContent Method.
Unified POS, v1.16.1 361

14.5.12 retrieveMarker Method

Syntax retrieveMarker (markerType: int32, sessionNumber: int32, documentNumber: int32, out marker:
string):

void { raises-exception, use after open-claim-enable }

Parameter Description
markerType specifies the type of the queried marker, see values below.
sessionNumber contains the number of the session the marker is queried for. If a session

concept is not supported by the device then this parameter has to be set to an
invalid value less than zero.

documentNumber contains the number of the document the marker is queried for. If markerType
is EJ_MT_SESSION_BEG or EJ_MT_SESSION_END, then this parameter
is ignored.

marker contains the return value, the implementation specific marker.

The parameter markerType controls which type of stored marker is returned:

Value Meaning
EJ_MT_SESSION_BEG A marker for begin of a session is queried.
EJ_MT_SESSION_END A marker for end of a session is queried.
EJ_MT_DOCUMENT A marker for a document or ticket is queried.

Remarks Returns a marker implicitly stored on the record medium. The queried marker is specified by the
parameters markerType, sessionNumber, and documentNumber. The marker is returned in the parameter
marker. The format and content of the string representing a marker is implementation specific and has
not to be known or analyzed by the application. The returned marker is intended to be used as an input
parameter for the printContent and queryContent methods.

In case of a fiscal EJ device, the sessionNumber corresponds to a fiscal day counter number returned by
the FiscalPrinter device (see the getData parameter value FPTR_GD_Z_REPORT). In the same way
the documentNumber corresponds to a fiscal ticket number.

This method is only supported if CapRetrieveMarker is true.

This method is usually used for fiscal EJ devices.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the parameters is invalid. Either the value in markerType does not

exist.
E_NOEXIST A marker does not exist for the specified parameter values.

See Also CapRetrieveMarker Property, printContent Method, queryContent Method, and the getData
Method of the FiscalPrinter device category.
362 Unified POS, V1.16.1

14.5.13 retrieveMarkerByDateTime Method

Syntax retrieveMarkerByDateTime (markerType: int32, dateTime: string, markerNumber: string, out
marker: string):

void { raises-exception, use after open-claim-enable }

Parameter Description
markerType specifies the type of the queried marker, see values below.
dateTime The date-time period the marker is queried for. The format of dateTime is

‘YYYYMMDDhhmmss’. If the application is not able to specify the hours,
minutes, and/or seconds, then these fields can be omitted.

markerNumber If more than one marker exists of the requested type for the time period given
by the dateTime parameter, then this parameter specifies the number of the
marker which has to be queried. Starts at 1 and is continuously incremented
by one for each marker.

marker contains the return value, the implementation specific marker.

The parameter markerType controls which type of stored marker is returned:

Value Meaning
EJ_MT_SESSION_BEG The marker for the begin of a session is queried.
EJ_MT_SESSION_END The marker for the end of a session is queried.
EJ_MT_DOCUMENT The marker for a document is queried.

Remarks Returns a marker implicitly stored on the record medium. The queried marker is specified by the
parameters markerType, dateTime, and markerNumber. The marker is returned in the parameter marker.
The format and content of the string representing a marker is implementation specific and has not to be
known or analyzed by the application. The returned marker can be used as an input parameter for the
printContent and queryContent methods.

This method is only supported if CapRetrieveMarkerByDateTime is true.

This method is usually used for fiscal EJ devices.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the parameters is invalid. The value in markerType does not exist,

dateTime is invalid, or the markerNumber does not exist for the specified time
period.

E_NOEXIST A marker does not exist for the specified time period.
E_EXTENDED ErrorCodeExtended = EEJ_MULTIPLE_MARKER:

More than one marker exists for the specified time period.

See Also CapRetrieveMarkerByDateTime Property, printContent Method, queryContent Method.
Unified POS, v1.16.1 363

14.5.14 retrieveMarkersDateTime Method

Syntax retrieveMarkersDateTime (marker: string, out dateTime: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
marker specifies the marker for which the time has to be determined.
dateTime contains the return value, the date and time string of the given marker.

Remarks Returns the date and time of the given marker. The marker has either to be instantiated by the application
using addMarker, or it has to be queried by the application using retrieveMarker or
retrieveCurrentMarker. The determined date-time is returned as a string in the marker parameter with
the format YYYYMMDDhhmmss. If the hours, minutes, and/or seconds can not be determined then they
are filled with question marks (?).

This method is only supported if CapRetrieveMarkersByDateTime is true.

This method is usually used for fiscal EJ devices.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The parameter marker contains an invalid marker.

See Also CapRetrieveMarkersByDateTime Property, addMarker Method, retrieveCurrentMarker Method,
retrieveMarker Method.

14.5.15 suspendPrintContent Method

Syntax suspendPrintContent ():
void { raises-exception, use after open-claim-enable }

Remarks This suspends data transfer from the device, then move to suspended state. It must be called when
asynchronous output is outstanding. This method is primarily intended for use in exception conditions
when asynchronous output is outstanding, such as within an error event handler.

After that, Suspended property changes into true, then a StatusUpdateEvent is delivered.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Value Meaning
E_ILLEGAL It’s not in the printing cycle.

See Also Suspended Property.
364 Unified POS, V1.16.1

14.5.16 suspendQueryContent Method

Remarks This method suspends data transfer from the device, then move to suspended state. This method is
primarily intended for use in exception conditions when asynchronous output is outstanding, such as
within an error event handler.

After that, Suspended property changes into true, then a StatusUpdateEvent is notified.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also Suspended Property.
Unified POS, v1.16.1 365

14.6 Events (UML interfaces)

14.6.1 DataEvent

<< event >> upos::events::DataEvent 
Status: int32 { read-only }

Description Notifies the application that the storing of the queried Electronic Journal content to a host file is
completed.

Attributes This event contains the following attribute:

Attributes Type Description 
Status int32 The Status parameter contains zero.

Remarks This event is delivered after an asynchronous queryContent method call, when DataEventEnabled is
set true.

14.6.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Electronic Journal Service to provide events to the application that are not otherwise supported
by the Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and the
Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service. This
property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendors’ Electronic
Journal devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.
366 Unified POS, V1.16.1

14.6.3 ErrorEvent

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an Electronic Journal device error has been detected and that a suitable
response by the application is necessary to process the error condition.

Concrete ErrorEvent notifications are delivered under the following conditions:
• When the POSPrinter or FiscalPrinter device asynchronously performs printing jobs which include

writing to the Electronic Journal media and this writing fails.
• When the queryContent method fails in asynchronous mode
• When one of the methods - initializeMedium, eraseMedium, printContent, printContentFile -

is performed in asynchronous mode and fails.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes on page 0-21.

ErrorCodeExtended
int32 Extended Error code causing the error event. If ErrorCode is

E_EXTENDED, then see values below. Otherwise it may contain a Service-
specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden by the application.
(i.e., this property is settable). See values below.

The ErrorLocus property may be one of the following:

Value Meaning
EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.
EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and some

previously buffered data is available.
EL_OUTPUT Error occurred while processing asynchronous output.

If ErrorCode is E_EXTENDED, then ErrorCodeExtended has one of the following values:

Value Meaning
EEJ_UNINITIALIZED_MEDIUM The medium is not initialized
EEJ_CORRUPTED_MEDIUM The medium or data on the media is corrupted and can not be

used.
EEJ_UNKNOWN_DATAFORMAT The medium has an unknown or unsupported format.
EEJ_NOT_ENOUGH_SPACE There is not enough free space in the medium to store data.
EEJ_MULTIPLE_MARKERS More than one marker has been requested, but only one can be

returned.
Unified POS, v1.16.1 367

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus. The
application’s error processing may change ErrorResponse to one of the following values:

Value Meaning
ER_CLEAR Clear all buffered output data including all asynchronous output. (The effect

is the same as calling clearInput.) The error state is exited. Default when
locus is EL_INPUT.

ER_CONTINUEINPUT
Used only when locus is EL_INPUT_DATA. Acknowledges the error and
directs the Control to continue processing. The Control remains in the error
state and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and the
DataEventEnabled
property is again set to true, then another ErrorEvent is delivered with locus
EL_INPUT. Default when locus isEL_INPUT_DATA.

ER_RETRY Typically valid only when locus is EL_OUTPUT.
Retry the asynchronous output. The error state is exited.
May be valid when locus is EL_INPUT.
Default when locus is EL_OUTPUT.

Remarks Input error events are generated when errors occur while reading the data from the Electronic Journal
device. Such events are not delivered until the DataEventEnabled property is set to true so as to allow
proper application sequencing. All error information is placed into the applicable properties before the
event is delivered.

Output error events are generated and delivered when an error occurs during asynchronous output
processing. All error information is placed into the applicable properties before the event is delivered.

See Also “Events” on page 15.

14.6.4 OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the OutputID attribute has
completed successfully.

Concrete OutputCompleteEvent notifications are delivered under the following conditions:
• When one of the methods - initializeMedium, eraseMedium, printContent,

printContentFile - is performed in asynchronous mode and succeeds.

Attributes This event contains the following attribute:

Attributes Type Description
OutputID int32 The ID number of the asynchronous output request that is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Service has confirmation that
it was processed by the device successfully.

See Also “Device Output Models” on page 20.
368 Unified POS, V1.16.1

14.6.5 StatusUpdateEvent Updated in Release 1.12

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the status of the Electronic Journal device.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Indicates a change in the status of the Electronic Journal device.

The Status attribute may be one of the following values:

Value Meaning
EJ_SUE_MEDIUM_NEAR_FULL The medium is nearly full (that is, its free space is low.
EJ_SUE_MEDIUM_FULL Storage medium is full.
EJ_SUE_MEDIUM_REMOVED Medium was removed from the device.
EJ_SUE_MEDIUM_INSERTED Medium was inserted into the device.
EJ_SUE_SUSPENDED Data printing or transfer was suspended.
EJ_SUE_IDLE All asynchronous output has finished, either successfully or

because output has been cleared. The Electric Journal State is
now S_IDLE. The FlagWhenIdle property must be true for this
event to be delivered, and is automatically reset to false just
before the event is delivered.

Remarks Fired when the status of an Electronic Journal changes.

See Also “Events” on page 15.
Unified POS, v1.16.1 369

370 Unified POS, V1.16.1

15 Electronic Value Reader/Writer

15.1 General

This Chapter defines the Electronic Value Reader / Writer device category.

15.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.12 open

CapCompareFirmwareVersion: boolean { read-only } 1.12 open

CapPowerReporting: int32 { read-only } 1.12 open

CapStatisticsReporting: boolean { read-only } 1.12 open

CapUpdateFirmware: boolean { read-only } 1.12 open

CapUpdateStatistics: boolean { read-only } 1.12 open

CheckHealthText: string { read-only } 1.12 open

Claimed: boolean { read-only } 1.12 open

DataCount: int32 { read-only } 1.12 open

DataEventEnabled: boolean { read-write } 1.12 open

DeviceEnabled: boolean { read-write } 1.12 open & claim

FreezeEvents: boolean { read-write } 1.12 open

OutputID: int32 { read-only } 1.12 open

PowerNotify: int32 { read-write } 1.12 open

PowerState: int32 { read-only } 1.12 open

State: int32 { read-only } 1.12 --

DeviceControlDescription: string { read-only } 1.12 --

DeviceControlVersion: int32 { read-only } 1.12 --

DeviceServiceDescription: string { read-only } 1.12 open

DeviceServiceVersion: int32 { read-only } 1.12 open

PhysicalDeviceDescription: string { read-only } 1.12 open

PhysicalDeviceName: string { read-only } 1.12 open
Unified POS, v1.16.1 371

Specific Type Mutability Version May Use After

CapActivateService: boolean { read-only } 1.12 open

CapAdditionalSecurityInformation: boolean { read-only } 1.15 open

CapAddValue: boolean { read-only } 1.12 open

CapAuthorizeCompletion: boolean { read-only } 1.15 open

CapAuthorizePreSales: boolean { read-only } 1.15 open

CapAuthorizeRefund: boolean { read-only } 1.15 open

CapAuthorizeVoid: boolean { read-only } 1.15 open

CapAuthorizePreSales: boolean { read-only } 1.15 open

CapCancelValue: boolean { read-only } 1.12 open

CapCardSensor: int32 { read-only } 1.12 open

CapCashDeposit: boolean { read-only } 1.15 open

CapCenterResultCode: boolean { read-only } 1.15 open

CapCheckCard: boolean { read-only } 1.15 open

CapDailyLog: int32 { read-only } 1.15 open

CapDetectionControl: int32 { read-only } 1.12 open

CapElectronicMoney: boolean { read-only } 1.12 open

CapEnumerateCardServices: boolean { read-only } 1.12 open

CapIndirectTransactionLog: boolean { read-only } 1.12 open

CapInstallments: boolean { read-only } 1.15 open

CapLockTerminal: boolean { read-only } 1.12 open

CapLogStatus: boolean { read-only } 1.12 open

CapMediumID: boolean { read-only } 1.12 open

 CapMembershipCertificate boolean { read-only } 1.14.1 open

CapPaymentDetail: boolean { read-only } 1.15 open

CapPINDevice: boolean { read-only } 1.14 open

CapPoint: boolean { read-only } 1.12 open

CapSubtractValue: boolean { read-only } 1.12 open

CapTaxOthers: boolean { read-only } 1.15 open

CapTrainingMode: boolean { read-only } 1.14 open

CapTransaction: boolean { read-only } 1.12 open

CapTransactionLog: boolean { read-only } 1.12 open

CapTransactionNumber: boolean { read-only } 1.15 open

CapUnlockTerminal: boolean { read-only } 1.12 open

CapUpdateKey: boolean { read-only } 1.12 open

CapVoucher: boolean { read-only } 1.12 open

CapWriteValue: boolean { read-only } 1.12 open
372 Unified POS, V1.16.1

AccountNumber: string { read-only } 1.12 open

AdditionalSecurityInformation: string { read-write } 1.12 open

Amount: currency { read-write } 1.12 open

ApprovalCode: string { read-write } 1.12 open

AsyncMode: boolean { read-write } 1.12 open

Balance: currency { read-only } 1.12 open

BalanceOfPoint: currency { read-only } 1.12 open

CardCompanyID: string { read-only } 1.15 open

CardServiceList: string { read-only } 1.12 open

CenterResultCode: string { read-only } 1.15 open

CurrentService: string { read-write } 1.12 open

DailyLog: string { read-write } 1.15 open

DetectionControl: boolean { read-write } 1.12 open

DetectionStatus: int32 { read-only } 1.12 open

ExpirationDate: string { read-only } 1.12 open

LastUsedDate: string { read-only } 1.12 open

LogStatus: int32 { read-only } 1.12 open

MediumID: string { read-write } 1.12 open

PaymentCondition: int32 { read-only } 1.15 open

PaymentDetail: string { read-only } 1.15 open

PaymentMedia: int32 { read-write } 1.15 open

PINEntry: int32 { read-write } 1.14 open

Point: currency { read-write } 1.12 open

ReaderWriterServiceList: string { read-only } 1.12 open

ServiceType int32 { read-only } 1.14.1 open

SequenceNumber: int32 { read-only } 1.12 open

SettledAmount: currency { read-only } 1.12 open

SettledPoint: currency { read-only } 1.12 open

SlipNumber: string { read-only } 1.15 open

TrainingModeState int32 { read-write } 1.14 open

TransactionLog: string { read-only } 1.12 open

TransactionNumber: string { read-only } 1.15 open

TransactionType: int32 { read-only } 1.15 open

VoucherID: string { read-write } 1.12 open

VoucherIDList: string { read-write } 1.12 open
Unified POS, v1.16.1 373

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.12

close ():
void { raises-exception, use after open }

1.12

claim (timeout: int32):
void { raises-exception, use after open }

1.12

release ():
void { raises-exception, use after open, claim }

1.12

checkHealth (level: int32):
void { raises-exception, use after open, enable }

1.12

clearInput ():
void { }

1.12

clearInputProperties ():
void { }

1.12

clearOutput ():
void { }

1.12

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.12

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.12

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.12

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.12

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.12

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.12

Specific

Name

accessDailyLog (sequenceNumber: int32, type: int32, timeout: int32):
void { raises-exception, use after open, claim, enable }

1.15

accessData (dataType: int32, inout data: int32, inout obj: object): 
void { raises-exception, use after open, claim, enable }

1.14.1

accessLog (sequenceNumber: int32, type: int32, timeout: int32): 
void { raises-exception, use after open, claim, enable }

1.12

activateEVService (inout data: int32, inout obj: object): 
void { raises-exception, use after open, claim, enable }

1.14.1

activateService (inout data: int32, inout obj: object): 
void { raises-exception, use after open, claim, enable }

1.12
374 Unified POS, V1.16.1

15.3 General Information

The Electronic Value Reader / Writer programmatic name is “ElectronicValueRW.”

This device was introduced in Version 1.12 of the specification.

Electronic value is defined as a collection of services such as electronic money, points, and voucher/ticket,
maintained on a contact-less or contact IC card (this is referred to as ‘card’ in the following sections). The
Electronic Value Reader / Writer device is a device that offers the capability to hold the settlement addition,
subtraction, setting, and reading electronically.

The electronic money service supports the post-paid type electronic money settlement, pre-paid type electronic
money settlement, the credit card settlement, and the debit card settlement.

The point service maintains (can add or subtract) points directly on the card. Alternatively, the points may be
stored in another location and only a reference is maintained on the card.

The voucher/ticket service maintains two or more identifiers that validate the card holder. The card holder can
receive and exchange the value at any time. The service provider can provide value to the card holder at its
discretion.

15.3.1 Capabilities

The Electronic Value Reader / Writer (EVR/W) has the following set of capabilities:

• Access the card for the settlement.

• Read/write the content of electronic value that can be used for the settlement from the card.

• Execute the settlement service using electronic value.

• Accumulate the result of the settlement in the device as a log.
Unified POS, v1.16.1 375

15.3.2 Added in Release 1.14

The following functionality was added for Release 1.14.

The EVR/W specification up to release 1.13 did not define the syntax and semantics of the settlement
information specified as a device or service. Each device has the ability to define the syntax of the settlement
information in the AdditionalSecurityInformation property. Release 1.14 adds the syntax and semantics
necessary to convey the settlement information which previously was available only through the DirectIO
method and event structures. This hindered compatibility and with the following properties, methods, and events
serves to rectify this shortcoming.

In addition to updates to the device category, the following Properties, Methods, and Events are added:

• A CapPINDevice property to indicated if the EVR/W is equipped with a PIN pad entry device.

• A CapTrainingMode property to indicated if the EVR/W supports an operator training function mode.

• A PINEntry property which defines the PIN functionality supported by the EVR/W device.

• A TrainingModeState property which provides information if the device is in training mode or run mode.

• A clearParameterInformation method to clear all device tag values.

• A queryLastSuccessfulTransactionResult method that is used to refresh the property values from the last
device function operation.

• A retrieveResultInformation method that associates a tag name with a data value that is read.

• A setParameterInformation method that is used to associate a tag name with additional data value parameters
for a card.

• A TransitionEvent which is a new event only for the EVR/W device in order to support communicating
asynchronous I/O operation status between the application and the EVR/W device.

In addition to updates to the device category, the following Properties were updated:

• The MediumID property which is used to specify unique information about the card.

• The SettledAmount property which contains the real amount of the settlement by the electronic money service.
376 Unified POS, V1.16.1

15.3.3 Added in Release 1.14.1

After the release of 1.14, additional changes were required based upon extensive testing of the updated
specification. These include the following:

• Updated the Model to include new services: Point, Voucher/Ticket, Membership Certificate, and Common along
with their service capabilities and corresponding methods dependability.

• Addition of a description of the Life cycle of a Sub-Service.

• Addition of description of the variations of the service dependent upon behavior of a store or a location.

• Addition of description of how the EVR/W device interacts with a payment center.

• Added an updated Error model that more completely describes the EVR/W error conditions and reporting
structure.

• Added the CapMembershipCertificate capability property.

• Updated the CardServiceList property variations description.

• Updated the CurrentService property variations description.

• Added the ServiceType property.

• Updated the ReaderWriterServiceList property variations description.

• Added the accessData method.

• Updated the accessLog method consistency information.

• Added the activateEVService method.

• Added the checkServiceRegistrationToMedium method.

• Added the closeDailyEVService method.

• Added the deactivateEVService method.

• Updated the lockTerminal method.

• Added the openDailyEVService method.

• Added the registerServiceToMedium method.

• Updated the retrieveResultInformation method by additional tags and values and enumeration tag values.

• Updated the unlockTerminal method with changes to the Remarks section.

• Added the unregisterServiceToMedium method.

• Added the updateData method.

• Updated the updateKey method.

• Updated the TransitionEvent by adding two new event type identifiers.

• Corrected formatting issues throughout the chapter.

15.3.4 Added in Release 1.15

In order to support devices supporting credit payment function, version 1.15 included the CAT specification in
the electronic value reader / writer specification.
Unified POS, v1.16.1 377

The following added properties and methods conform to the CAT specification, so please refer to the description
of the CAT device specification.

• Added the CapAdditionalSecurityInformation capability property.

• Added the CapAuthorizeCompletion capability property.

• Added the CapAuthorizePreSales capability property.

• Added the CapAuthorizeRefund capability property.

• Added the CapAuthorizeVoid capability property.

• Added the CapAuthorizeVoidPreSales capability property.

• Added the CapCashDeposit capability property.

• Added the CapCenterResultCode capability property.

• Added the CapCheckCard capability property.

• Added the CapDailyLog capability property.

• Added the CapInstallments capability property.

• Added the CapPaymentDetail capability property.

• Added the CapTaxOthers capability property.

• Added the CapTransactionNumber capability property.

• Added the CardCompanyID property.

• Added the CenterResultCode property.

• Added the DailyLog property.

• Added the LogStatus property.

• Added the PaymentCondition property.

• Added the PaymentDetail property.

• Added the PaymentMedia property.

• Added the SlipNumber property.

• Added the TransactionNumber property.

• Added the TransactionType property.

• Added the accessDailyLog method.

• Added the authorizeCompletion method.

• Added the authorizePreSales method.

• Added the authorizeRefund method.

• Added the authorizeSales method.

• Added the authorizeVoid method.

• Added the authorizeVoidPreSales method.

• Added the cashDeposit method.
378 Unified POS, V1.16.1

• Added the checkCard method.

The TrainingMode property of the CAT specification corresponds to the TrainingModeState property defined in
the electronic value reader / writer specification. To deal with credit processing, the following tag definitions and
TransitionEvent event definitions have been added.

• Updated the retrieveResultInformation method by adding additional tags, values and enumeration tag values.

• Updated the TransitionEvent by adding five new event type values.
Unified POS, v1.16.1 379

15.3.5 EVRW Class Diagram

The following diagram shows the relationships between the EVR/W classes. Updated in Release 1.15

380 Unified POS, V1.16.1

Unified POS, v1.16.1 381

15.3.6 Model

The EVR/W supports the following services and methods.

Services Service
Capabilities

Corresponding Methods

Common Deploy activateEVService method

Open openDailyEVService method

Maintenance accessData method
updateData method
accessLog method
updateKey method

Close closeDailyEVService method

Remove deactivateEVService method

Electronic Money Balance Inquiry readValue method
Balance property

Payment subtractValue method
Amount property
SettledAmount property

Deposit addValue method
Amount property
SettledAmount property

Cancel cancelValue method
ApprovalCode property

Membership
certificate

Registering service to
medium

registerServiceToMedium method

checkServiceRegistrationToMedium
method

Unregistering service
to medium

unregisterServiceToMedium method

Inquiry readValue method

Updating writeValue method
382 Unified POS, V1.16.1

Services Service
Capabilities

Corresponding Methods

Point Registering
service to medium

registerServiceToMedium method

checkServiceRegistrationToMedium
method

Point property

Unregistering
service to medium

unregisterServiceToMedium method

Inquiry readValue method

BalanceOfPoint property

Deposit addValue method

Point property

SettledPoint property

Redeem subtractValue method

Point property

SettledPoint property

Updating writeValue method

Point property

Cancel cancelValue method

ApprovalCode property

Voucher/Ticket Registering
service to medium

registerServiceToMedium method

checkServiceRegistrationToMedium
method

Unregistering
service to medium

unregisterServiceToMedium method

Inquiry/
Enumeration

readValue method

VoucherIDList property

Issue addValue method

VoucherID property

Redeem subtractValue method

VoucherID property
Unified POS, v1.16.1 383

The general model of the EVR/W is as follows:

Input Model

The readValue method follows the UnifiedPOS Input model.

When the application is ready to receive the data from the EVR/W, the readValue method is called. Then, when
input data is received, a DataEvent event is enqueued. When the application sets the DataEventEnabled
property to true, the DataEvent event will be delivered to the application.

If an error occurs while reading the data, an ErrorEvent is enqueued instead of the DataEvent. When the
application sets the DataEventEnabled property to true, the ErrorEvent event will be delivered to the
application.

The application can obtain the number of enqueued data events by reading the DataCount property.

If AutoDisable is true, then the device is automatically disabled when a DataEvent is enqueued.

All input data that is queued can be cleared by executing the clearInput method.

Output Model

The accessLog, addValue, cancelValue, subtractValue, transactionAccess, and writeValue methods can be
executed asynchronously or synchronously depending on the value of the AsyncMode property as defined by the
UnifiedPOS output model.

When AsyncMode is true, methods cannot be issued immediately after issuing a prior method; only one
outstanding asynchronous method is allowed at a time. However, clearOutput is an exception because its
purpose is to cancel an outstanding asynchronous method.

When asynchronous processing completes, an OutputCompleteEvent is delivered to the application.

Support of Sub-Service Use

When one EVR/W provides two or more electronic value services, and an 
EVR/W Service corresponding to each service provider exists, then they can be used as sub-service.

If the open method is executed, the open method of all sub-services is called, and the sub-service is enumerated
by the ReaderWriterServiceList property. The close, claim, and release methods operate in the same manner
on all the sub-services.

The application selects the sub-service to be used by setting the CurrentService property. All method and
property operations thereafter effect that sub-service.

CAT Device used for the EVR/W device: Added in Release 1.15

• The general model for the CAT control used for the EVR/W device is shown below:

• The CAT control used for the EVR/W device basically follows the output device model. However, multiple
methods cannot be issued for asynchronous output; only one outstanding asynchronous request is allowed.

• The CAT control used for the EVR/W device issues requests to the EVR/W device for different types of
authorization by invoking the following methods.
384 Unified POS, V1.16.1

• The CAT control used for the EVR/W device issues requests to the EVR/W device for special processing local
to the EVR/W device by invoking the following methods.

• The CAT control used for the EVR/W device stores the authorization results in the following properties when an
authorization operation successfully completes:

• The accessDailyLog method sets the following property

Function Method name Corresponding Cap property

Purchase authorizeSales None

Cancel Purchase authorizeVoid CapAuthorizeVoid

Refund Purchase authorizeRefund CapAuthorizeRefund

Authorization Completion authorizeCompletion CapAuthorizeCompletion

Pre-Authorization authorizePreSales CapAuthorizePreSales

Cancel Pre-Authorization authorizeVoidPreSales CapAuthorizeVoidPreSales

Function Method name Corresponding Cap property

Card Check checkCard CapCheckCard

Daily log accessDailyLog CapDailyLog

Description Property Name Corresponding Cap Property

Credit Account number AccountNumber None

Additional information AdditionalSecurityInformation CapAdditionalSecurityInformation

Approval code ApprovalCode None

Card company ID CardCompanyID None

Cod from the approval agency CenterResultCode CapCenterResultCode

Payment condition PaymentCondition None

Payment detail PaymentDetail CapPaymentDetail

Sequence number SequenceNumber None

Slip number SlipNumber None

Center transaction number TransactionNumber CapTransactionNumber

Transaction type TransactionType None

Description Property Name Corresponding Cap Property

Daily log DailyLog CapDailyLog
Unified POS, v1.16.1 385

Electronic Money Device: Added in Release 1.9

• The CAT Control used for the EVR/W device requires the Electronic Money Device to track each settlement and
closing in the DealingLog.

• When the CAT Control used for the EVR/W device receives the settlement results from the Electronic Money
Device it stores these results in the following properties:

• The accessDailyLog method sets the following property.

• Sequence numbers are used to validate that the properties set at completion of a method are indeed associated
with the completed method. An incoming SequenceNumber argument for each method is compared with the
resulting SequenceNumber property after the operation associated with the method has completed. If the
numbers do not match, or if an application fails to identify the number, there is no guarantee that the values of the
properties listed in the two tables correspond to the completed method.

• The AsyncMode property determines if methods are run synchronously or asynchronously.

• When AsyncMode is false, methods will be executed synchronously and their corresponding properties will
contain data when the method returns.

• When AsyncMode is true, methods will return immediately to the application. When the operation associated
with the method completes, each corresponding property will be updated by the CAT control used for the EVR/
W device prior to an OutputCompleteEvent. When AsyncMode is true, methods cannot be issued immediately
after issuing a prior method; only one outstanding asynchronous method is allowed at a time. However,

Function Method name Corresponding Cap property

Settlement authorizeSales None

Charge cashDeposit CapCashDeposit

Inquiry for the balances checkCard CapCheckCard

Closing DealingLog accessDailyLog CapDailyLog

Setting security lock lockTerminal CapLockTerminal

Releasing security lock unlockTerminal CapUnlockTerminal

Description Property Name Corresponding Cap Property

Card ID AccountNumber None

Additional information AdditionalSecurityInformation CapAdditionalSecurityInformation

Approval code ApprovalCode None

Settled amount SettledAmount None

Balance Balance None

Sequence number SequenceNumber None

Transaction type TransactionType None

Description Property Name Corresponding Cap Property

DealingLog DailyLog CapDailyLog
386 Unified POS, V1.16.1

clearOutput is an exception because its purpose is to cancel an outstanding asynchronous method.

The methods supported and their corresponding properties vary depending on the CAT control used for the EVR/
W device implementation. Applications should verify that particular Cap properties are supported before
utilizing the capability dependent methods and properties.

• Results of synchronous calls to methods and writable properties will be stored in ErrorCode. Results of
asynchronous processing will be indicated by an OutputCompleteEvent or returned in the Errorcode argument
of an ErrorEvent. If ErrorCode or the ErrorCode argument is E_EXTENDED, detailed device specific
information may be stored to
ErrorCodeExtended in synchronous mode and stored to ErrorEvent argument ErrorCodeExtended in
asynchronous mode. The error code from the approval agency will be stored in CenterResultCode in either
mode.

• An outstanding asynchronous method can be canceled via the clearOutput method.

• The Daily log can be collected by the accessDailyLog method. Collection will be run either synchronously or
asynchronously according to the value of AsyncMode.

• Following is the general usage sequence of the CAT control.

Synchronous Mode:

- open

- claim

- setDeviceEnabled (true)

- Definition of the argument SequenceNumber

- Set PaymentMedia Added in Version 1.5

- authorizeSales()

- Check UposException of the authorizeSales method

- Verify that the SequenceNumber property matches the value of the

 authorizeSales() sequenceNumber argument

- Access the properties set by authorizeSales()

- setDeviceEnabled (false)

- release

- Close

Asynchronous Mode:

- open

- claim

- setDeviceEnabled (true)

- setAsyncMode (true)
Unified POS, v1.16.1 387

- Definition of the argument SequenceNumber

- Set PaymentMedia Added in Version 1.5

- authorizeSales()

- Check UposException of the authorizeSales method

- Wait for OutputCompleteEvent

- Check the argument ErrorCode

- Verify that the SequenceNumber property matches the value of the

 authorizeSales() SequenceNumber argument

- Access the properties set by authorizeSales()

- setDeviceEnabled (false)

- release

- close
388 Unified POS, V1.16.1

15.3.7 Life Cycle of Sub-Service Added in Release 1.14.1

The life cycle of a Sub-Service is illustrated below.

• Installed-deactivated state:
It is in the state which is invoked by the updateFirmware method and is not activated by activateEVService
method.

• Activated-closed-unlocked state:
It is in the state where Sub-Service was activated by the activateEVService method. In order to use Sub-Service,
it is necessary to open by the openDailyEVService method.

• Activated-opened-unlocked state:
It is in the state where the Sub-Service was opened by the openDailyEVService method.

• Activated-closed-locked/activated-opened-locked state:
It is in the state where Sub-Service was locked by the lockTerminal method. In order to unlock Sub-Service, it is
necessary to use the unlockTerminal method.

 EVRW service state chart

installed-deactivated

activated-closed-unlocked activated-closed-locked

activated-opened-unlocked activated-opened-locked

updateFirmware

activateEVService deactivateEVService

openDailyEVService closeDailyEVService

lockTerminal

unlockTerminal

lockTerminal

unlockTerminal

Calling payment methods.

subtractValue

addValue

readValue

writeValue

Unified POS, v1.16.1 389

15.3.8 The Service with Variations Added in Release 1.14.1

The service can have variations depending upon the store or location which can alter the services required
behavior.

EVRW Device

Service-AMoney

Service-BPoint

 Variation-ABC Store

 Variation-DEF Shop

 Variation-XYZ Cafe

Service-CMoney

Service is chosen with

CurrentService property.
390 Unified POS, V1.16.1

15.3.9 The Connection Model of EVR/W Devices and Payment Center
 Added in Release 1.14.1

There are two ways of connecting an EVR/W device to a payment center.
Method Definition
Direct Connection The EVR/W device is directly connected to the Payment Center.

Indirect Connection The EVR/W device is connected through a POS system to the Payment
Center.

POS

EVRW device

Payment Center

Direct connection

POS

EVRW device

Payment Center

Indirect connection
Unified POS, v1.16.1 391

15.3.10 Transaction Mode Support

Transaction mode is comprised of multiple method calls and property accesses. Operations that can be included
in the batch processing is a invocation of the writeValue, addValue, subtractValue, and cancelValue methods and
all properties. When these methods are executed in transaction mode, their validation is confirmed first. If it is
valid, the operation is added to the transaction mode buffer prior to execution. No update has yet been performed
to the card.

Executing the transactionAccess method with a control value of EVRW_TA_NORMAL will cause all buffered
commands to be processed.

The AsyncMode property also influences the execution of the transaction mode.

If the transaction is processed synchronously and an exception is not raised, then the entire transaction process
was successful. If the transaction is processed asynchronously, then the asynchronous process rules listed above
are followed. If an error occurs and the Error Event handler causes a retry, the entire transaction is retried.

15.3.11 Device Sharing

The EVR/W is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before calling methods that manipulate the device.

See the “Summary” table for precise usage prerequisites.
392 Unified POS, V1.16.1

15.3.12 EVRW Sequence Diagram

The following sequence diagram shows the typical usage of the EVR/W device. Updated in Release 1.14.1

Unified POS, v1.16.1 393

The following sequence diagram shows the continuation of the typical usage of the EVR/W device.
 　　　　　Updated in Release 1.14.1

394 Unified POS, V1.16.1

The following sequence diagram shows the continuation of the typical usage of the EVR/W device.
　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　Updated in Release 1.14.1

Unified POS, v1.16.1 395

The following sequence diagram shows the CAT(EMV) usage that is used as EVR/W device. 　　　　

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　Updated in Release 1.15

396 Unified POS, V1.16.1

15.3.13 EVRW State Diagram

The following state diagram depicts the EVR/W device model. Updated in Release 1.15
Unified POS, v1.16.1 397

15.3.14 Error Model　　　　　　　　　　　　　　　　　　Updated in Release 1.14.1　

The EVR/W error reporting model is as follows:

Most of the EVR/W device error conditions are reported by setting the UposException’s (or ErrorEvent’s)
ErrorCode to E_EXTENDED and then setting ErrorCodeExtended as indicated in the following tables.　　
　　　　　　　　　　　　　　　　　　　　　　　　

Severity code indicates the severity condition and operation recovered from the error condition.

+3 +2 +1 +0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

Severity code Unified error code Vendor oriented error code

Bit assign Size Item Description

31 – 27 5 Undefined

26 – 24 3 Severity Code Severity of the error
condition.

23 – 16 8 Unified error code Error code which
defined by UPOS
specification

15-0 16 Vendor oriented
error code

Error code which
oriented by vendor

No. Value Description Remarks

0 NORMAL No need to recover

1 BLOCKED Need to recover by maintenance
engineer

May need to replace the
device

2 RECOVERABLE Recoverable state which can be
recovered by retrying with changing
condition.

Ex) Operation timeout

3 RECOVERABLE_ASK_CARDHOLDE
R

Recoverable state which can be
recovered by retrying with changing
condition which the card holder
determines.

Deficiency

Transaction incomplete

Over deposit

4 RECOVERABLE_ASK_OPERATOR Recoverable state which can be
recovered by retrying with changing
condition which the POS operator
determines.

Log full

Mode mismatch
398 Unified POS, V1.16.1

Unified error code indicates the type of error condition.

Value Item Description

EEVRW_ABORTED Canceling from POS. Transaction was aborted by the request
from POS.

EEVRW_DEFICIENT Amount is deficient. Transaction cannot perform because the
balance is insufficient.

EEVRW_DETECTION_
TIMEOUT

Medium detection timeout. Medium could not be detected within the
specified time.

EEVRW_HOST_
CANNOT_CLOSE

Payment center cannot
close.

Transaction cannot perform because the
payment center cannot close.

EEVRW_HOST_
CANNOT_OPEN

Payment center cannot
open.

Transaction cannot perform because the
payment center cannot open.

EEVRW_HOST_
CANNOT_OPERATE

The error occurred in
payment center.

Transaction cannot perform because the
error occurred in the payment center.

EEVRW_HOST_
REFUSAL

Transaction is refused by
the payment center.

Transaction cannot perform because the
request from transaction is refused by the
payment center.

EEVRW_IN_PROGRESS Transaction is in progress. Transaction was already progressing and
it was not able to perform the request.

EEVRW_INVALID_
MEDIUM

Invalid medium is
detected.

Transaction cannot perform because
invalid medium is detected.

EEVRW_INVALID_
MEDIUM_ABORTED

The error occurred in
medium.

Transaction cannot perform because the
error occurred in medium.

EEVRW_INVALID_
MEDIUM_ABORTED_
EXISTS

The error occurred in
medium.

Transaction cannot perform because the
service is already existing in medium.

EEVRW_INVALID_
MEDIUM_ABORTED_
NOSERVICE

The error occurred in
medium.

Transaction cannot perform because the
service is not present in medium.

EEVRW_INVALID_
MEDIUM_ABORTED_
NOSPACE

The error occurred in
medium.

Transaction cannot perform because there
is not enough memory space in medium.

EEVRW_INVALID_
MEDIUM_EXPIRED

Medium has expired. Transaction cannot perform because
medium has expired.

EEVRW_LOG_
OVERFLOW

Transaction log
overflowed.

Transaction cannot perform because
transaction log overflowed.

EEVRW_MEDIUM_
CANNOT_AUTHORIZE

Medium cannot authorize. Medium detected by EVR/W cannot
authorize.

EEVRW_MESSAGE_
FORMAT

Message format is invalid. Transaction cannot perform because the
message format is invalid.
Unified POS, v1.16.1 399

A vendor oriented error code is a code from which a definition differs by the device or a service and which
shows a detailed error condition.

The contents of a vendor oriented error code are dependent on vendors.

EEVRW_OVERDEPOSIT The balance after charging
is exceeding a amount
limit.

Transaction cannot perform because the
balance after charging is exceeding a
amount limit.

EEVRW_OVERDEPOSIT_T
O_POINT

The point balance after
adding is exceeding a
amount limit.

Transaction cannot perform because the
point balance after adding is exceeding a
amount limit.

EEVRW_PAYMENT_
RESTRICTION

Transaction is restricted. Transaction cannot perform because
transaction includes restricted item.

EEVRW_RW_LOCKED EVR/W device is locked. Transaction cannot perform because
EVR/W device is locked.

EEVRW_RW_OUT Permanent error on a
device.

Transaction cannot perform because of a
permanent error on a device.

EEVRW_RW_OUT_
TEMPORARY_OUT

Temporary recoverable
error on a device.

Transaction cannot perform because of a
temporary recoverable error on a device.

EEVRW_RW_OUT_
TEMPORARY_OUT_
NEED_TO_RESET

Reset request from EVR/
W.

EVR/W needs to be reset.

EEVRW_TRANSACTION_I
NCOMPLETE

Transaction incomplete. The problem occurred during
transaction and transaction was aborted
in the unknown state.

EEVRW_
UNREACHABLE_HOST

Payment center cannot be
reached.

Transaction cannot perform because the
payment center cannot be reached.

EEVRW_UPOS114_
COMPATIBLE

For compatibility with the
error code defined by
UPOS older version.

The error code defined by the
ResultCodeExtended property of
UPOS1.14 is set to a Vendor oriented
error code.
400 Unified POS, V1.16.1

15.4 Properties (UML attributes)

15.4.1 AccountNumber Property　　　　　　　　　　　　　　Updated in Release 1.14
Syntax　 　AccountNumber: string { read-only, access after open }

 Remarks Information for the service provider such as card number, member number, etc.; specifies the user
(owner) of the card from data set information on the card.

Note as of Release 1.14: The AccountNumber property may contain some of the same information found
in the tag values used by the setParameterInformation and retrieveResultInformation methods. The
tag values should be used instead of the AccountNumber property wherever possible.

This property is initialized to an empty string (“”) by the open method.

 Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

15.4.2 AdditionalSecurityInformation Property

Syntax AdditionalSecurityInformation: string { read-write, access after open }1

Remarks An application can send data to the EVR/W device by setting this property before issuing an
authorization method. Also, data obtained from the EVR/W device and not stored in any other property
as the result of an authorization operation can be provided to an application by storing it in this property.
Since the data stored here is device specific, this should not be used for any development that requires
portability.

This property is initialized to an empty string (“”) by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

15.4.3 Amount Property　　　　　　　　　　　　　　　　　Updated in Release 1.14
Syntax　　Amount: currency { read-write, access after open }

 Remarks Holds the payment amount on the electronic money service.

Note as of Release 1.14: The Amount property may contain some of the same information found in the
tag values used by the setParameterInformation and retrieveResultInformation methods. The tag
values should be used instead of the Amount property wherever possible.

This property is initialized to zero by the open method.

 Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

1. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.
Unified POS, v1.16.1 401

15.4.4 ApprovalCode Property

Syntax ApprovalCode: string { read-write, access after open }

Remarks Holds the payment approval code.

The content of the approval code depends on implementation the device. When a unique number is issued
to the processing done with the device, the information is set.

This property is set to specify the cancellation of the payment when the device supports cancellation of
the payment and the cancelValue method is executed.

This property is initialized to an empty string (“”) by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

15.4.5 AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, the writeValue, addValue, subtractValue, cancelValue, accessLog, and transactionAccess
methods will be performed asynchronously.

If false, these methods will be performed synchronously.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

15.4.6 Balance Property　　　　　　　　　　　　　　　　　Updated in Release 1.14
Syntax　　Balance: currency { read-only, access after open }

 Remarks Holds the balance on the electronic money service.

Note as of Release 1.14: The Balance property may contain some of the same information found in the
tag values used by the setParameterInformation and retrieveResultInformation methods. The tag
values should be used instead of the Balance property wherever possible.

This property is initialized to zero by the open method.

 Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
402 Unified POS, V1.16.1

15.4.7 BalanceOfPoint Property　　　　　　　　　　　　　　Updated in Release 1.14

Syntax BalanceOfPoint: currency { read-only, access after open }

Remarks Holds the point balance on the point service.

Note as of Release 1.14: The BalanceOfPoint property may contain some of the same information found
in the tag values used by the setParameterInformation and retrieveResultInformation methods. The
tag values should be used instead of the BalanceOfPoint property wherever possible.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

15.4.8 CapActivateService Property

Syntax CapActivateService: boolean { read-only, access after open }

Remarks If true, the activation processing is supported; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

15.4.9 CapAdditionalSecurityInformation Property　　　　　　Added in Release 1.15

Syntax CapAdditionalSecurityInformation: boolean { read-only, access after open }

Remarks If true, the AdditionalSecurityInformation property may be utilized; otherwise it is false.

This property is initialized by open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also AdditionalSecurityInformation property.

15.4.10 CapAddValue Property

Syntax CapAddValue: boolean { read-only, access after open }

Remarks If true, the addition of electronic value is supported; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 403

15.4.11 CapAuthorizeCompletion Property　　　　　　　　　Added in Release 1.15

Syntax CapAuthorizeCompletion: boolean { read-only, access after open }

Remarks If true, the authorizeCompletion method has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also authorizeCompletion method.

15.4.12 CapAuthorizePreSales Property　　　　　　　　　　Added in Release 1.15

Syntax CapAuthorizePreSales: boolean { read-only, access after open }

Remarks If true, the authorizePreSales method has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also authorizePreSales method.

15.4.13 CapAuthorizeRefund Property　　　　　　　　　　　Added in Release 1.15

Syntax CapAuthorizeRefund: boolean { read-only, access after open }

Remarks If true, the authorizeRefund method has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also authorizeRefund method.

15.4.14 CapAuthorizeVoid Property　　　　　　　　　　　　Added in Release 1.15

Syntax CapAuthorizeVoid: boolean { read-only, access after open }

Remarks If true, the authorizeVoid method has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also authorizeVoid Method.
404 Unified POS, V1.16.1

15.4.15 CapAuthorizeVoidPreSales Property　　　　　　　　Added in Release 1.15

Syntax CapAuthorizeVoidPreSales: boolean { read-only, access after open }

Remarks If true, the authorizeVoidPreSales method has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also authorizeVoidPreSales Method.

15.4.16 CapCancelValue Property

Syntax CapCancelValue: boolean { read-only, access after open }

Remarks If true, the cancellation of the operation to the electronic value is supported; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

15.4.17 CapCrdSensor Property

Syntax CapCardSensor: int32 { read-only, access after open }

Remarks Contains a bit mask indicating the types of card detection supported. When the sensor exists, the
detection is set to the DetectionStatus property and a StatusUpdateEvent is delivered.

This property is set to the logical OR of one or more of the following values:

Value Meaning
EVRW_CCS_ENTRY There is an insertion slot sensor.
EVRW_CCS_DETECT There is a card detection sensor.
EVRW_CCS_CAPTURE There is a stock space sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also DetectionStatus Property, StatusUpdateEvent.
Unified POS, v1.16.1 405

15.4.18 CapCashDeposit Property Added in Release 1.15

Syntax CapCashDeposit: boolean { read-only, access after open }

Remarks Show the device has charged method by cashDeposit method or not. If true, the cashDeposit method is
implemented, otherwise false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also cashDeposit method.

15.4.19 CapCenterResultCode Property Added in Release 1.15

Syntax CapCenterResultCode: boolean { read-only, access after open }

Remarks If true, the CenterResultCode property has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CenterResultCode property.

15.4.20 CapCheckCard Property Added in Release 1.15

Syntax CapCheckCard: boolean { read-only, access after open }

Remarks If true, the checkCard method has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also checkCard method.
406 Unified POS, V1.16.1

15.4.21 CapDailyLog Property Added in Release 1.15

Syntax CapDailyLog: int32 { read-only, access after open }

Remarks Shows the daily log ability of the device.

Value Meaning
EVRW_DL_NONE The EVRW device does not have the daily log functions.
EVRW_DL_REPORTING The EVRW device only has an intermediate total function 

 which reads the daily log but does not erase the log.
EVRW_DL_SETTLEMENT The EVRW device only has the “final total” and “erase daily 

 log” functions.
EVRW_DL_REPORTING_SETTLEMENT

 The EVRW device has both the intermediate total function and 
 the final total and erase daily log function.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also DailyLog property, accessDailyLog method.

15.4.22 CapDetectionControl Property

Syntax CapDetectionControl: int32 { read-only, access after open }

Remarks It is shown whether the detection processing of the card, the ejection processing of the card, the storing
processing of the card and these processing can be controlled from the application or the EVR/W.

This property is set to the logical OR of one or more of the following values:

Value Meaning
EVRW_CDC_RWCONTROL Control is possible by the EVR/W device.
EVRW_CDC_APPLICATIONCONTROL

Control is possible by the application.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See AlsoDetectionControl Property, DetectionStatus Property.

15.4.23 CapElectronicMoney Property

Syntax CapElectronicMoney: boolean { read-only, access after open }

Remarks If true, the electronic money service is supported; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
 “Errors” on page 16.
Unified POS, v1.16.1 407

15.4.24 CapEnumerateCardServices Property

Syntax CapEnumerateCardServices: boolean { read-only, access after open }

Remarks If true, the enumeration of service in the card is supported; otherwise it is false. This property is
initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
 “Errors” on page 16.

15.4.25 CapIndirectTransactionLog Property

Syntax CapIndirectTransactionLog: boolean { read-only, access after open }

Remarks If true, the transaction log is accessed as a file; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

15.4.26 CapInstallments Property Added in Release 1.15

Syntax CapInstallments: boolean { read-only, access after open }

Remarks If true, the item “Installments” which is stored in the DailyLog property as the result of accessDailyLog
will be provided; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also DailyLog property.

15.4.27 CapLockTerminal Property

Syntax CapLockTerminal: boolean { read-only, access after open }

Remarks If true, the security lock setting is supported; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also lockTerminal Method.
408 Unified POS, V1.16.1

15.4.28 CapLogStatus Property

Syntax CapLogStatus: boolean { read-only, access after open }

Remarks If true, the reporting of the status of the transaction log is supported; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also StatusUpdateEvent.

15.4.29 CapMediumID Property

Syntax CapMediumID: boolean { read-only, access after open }

Remarks If true, the specification of the medium identifier is supported; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

15.4.30 CapMembershipCertificate Property Added in Release 1.14.1

Syntax CapMembershipCertificate: boolean { read-only, access after open }

Remarks If true, the membership certificate service is supported otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

15.4.31 CapPaymentDetail Property Added in Release 1.15

Syntax CapPaymentDetail: boolean { read-only, access after open }

Remarks If true, the PaymentDetail property has been implemented; otherwise it is false.

This property is initialized by open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also PaymentDetail property.
Unified POS, v1.16.1 409

15.4.32 CapPINDevice Property Added in Release 1.15

Syntax CapPINDevice: boolean { read-only, access after open }

Remarks If true, the EVR/W is equipped with a PIN device.
If false, the EVR/W is not equipped with a PIN device. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

15.4.33 CapPoint Property

Syntax CapPoint: boolean { read-only, access after open }

Remarks If true, the point service is supported otherwise it is false. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

15.4.34 CapSubtractValue Property

Syntax CapSubtractValue: boolean { read-only, access after open }

Remarks If true, the subtraction of electronic value is supported; otherwise it is false. This property is initialized
by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

15.4.35 CapTaxOthers Property Added in Release 1.15

Syntax CapTaxOthers: boolean { read-only, access after open }

Remarks If true, the item “TaxOthers” which is stored in the DailyLog property as the result of access DailyLog
will be provided; otherwise it is false.

Note that this property is not related to the “TaxOthers” argument used with the authorization methods.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also DailyLog property.
410 Unified POS, V1.16.1

15.4.36 CapTrainingMode Property Added in Release 1.14

Syntax CapTrainingMode: boolean { read-only, access after open }

Remarks If true, the EVR/W supports a training mode.
If false, the EVR/W does not support a training mode. This property is initialized by the open
method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16

15.4.37 CapTransaction Property

Syntax CapTransaction: boolean { read-only, access after open }

Remarks If true, the transaction mode is supported; otherwise it is false. This property is initialized by the open
method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

15.4.38 CapTransactionLog Property

Syntax CapTransactionLog: boolean { read-only, access after open }

Remarks If true, the transaction log is supported; otherwise it is false. This property is initialized by the open
method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

15.4.39 CapTransactionNumber Property Added in Release 1.15

Syntax CapTransactionNumber: boolean { read-only, access after open }

Remarks If true, the TransactionNumber property has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also TransactionNumber property.
Unified POS, v1.16.1 411

15.4.40 CapUnlockTerminal Property

Syntax CapUnlockTerminal: boolean { read-only, access after open }

Remarks If true, releasing of the security lock is supported; otherwise it is false. This property is initialized by the
open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also unlockTerminal Method.

15.4.41 CapUpdateKey Property

Syntax CapUpdateKey: boolean { read-only, access after open }

Remarks If true, the update of key information is supported; otherwise it is false. This property is initialized by the
open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

15.4.42 CapVoucher Property

Syntax CapVoucher: boolean { read-only, access after open }

Remarks If true, the voucher/ticket service is supported; otherwise it is false. This property is initialized by the
open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
 “Errors” on page 16.

15.4.43 CapWriteValue Property

Syntax CapWriteValue: boolean { read-only, access after open }

Remarks If true, the writing of electronic value is supported; otherwise it is false. This property is initialized by
the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
412 Unified POS, V1.16.1

15.4.44 CardCompanyID Property Added in Release 1.15

Syntax CardCompanyID: string { read-only, access after open }

Remarks This property is updated when an authorization operation successfully completes. It shows credit card
company ID.

The length of the ID string varies depending upon the EVRW device.

This property is initialized to an empty string by the open method

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

15.4.45 CardServiceList Property Updated in Release 1.14.1

Syntax CardServiceList: string { read-only, access after open }

Remarks Holds the comma-separated (CSV) list of services supported by the card. This list is populated by the
enumerateCardServices method.

For example, when the character string that identifies A electronic money service is “MoneyA” and the
character string that identifies B electronic point service is “PointB,” the CardServiceList property
becomes “MoneyA,PointB.”

Note as of Release 1.14.1: In case service has variation

When a service has some variations, a string value of this property can be specified with the following
rules.

“service [:variation [:additional]]”

Service is required. Variation with separator “:” and Additional with separator “:” are optional.
Separator characters such as “,”, and “:” cannot be used for a Service, Variation, and Additional
identifier.

Example:
Service “XYZCustomerPoint” offers two variations, “ABCStore” and “DEFShop”, as a variation. In this
case, it will be set to a ReaderWriterServiceList property as “XYZCustomerPoint:ABCStore,
XYZCustomerPoint:DEFShop.”
This property is initialized to an empty string (“”) by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also enumerateCardServices Method.
Unified POS, v1.16.1 413

15.4.46 CenterResultCode Property Added in Release 1.15

Syntax CenterResultCode: string { read-only, access after open }

Remarks Contains the code from the approval agency. Check the approval agency for the actual codes to be
stored.

This property is initialized to an empty string by the open method and is updated when an authorization
operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

15.4.47 CurrentService Property Updated in Release 1.14.1

Syntax CurrentService: string { read-write, access after open }

Remarks Holds the character string that identifies the currently selected service. 
This value is guaranteed to be one of the set of services specified by the ReaderWriterServiceList
property.

The character string being enumerated by the ReaderWriterServiceList property can be set. 
 If an empty string (“”) is set, it enters the state that no service has been selected. 
In this state, depending on the device, an application can operate directly to the device. 
When a valid string is set, the service is selected and started.

If the service supports the sub-service, the execution of the method and the setting of property are done
to the sub-service of the service that property shows. And only the event fires from the sub-service which
is selected by this property.

Note as of Release 1.14.1: In case service has variation

When a service has some variations, a string value of this property can be specified with the following
rules.

“service [:variation [:additional]]”

Service is required. Variation with separator “:” and Additional with separator “:” are optional.
Separator characters such as “,”, and “:” cannot be used for a Service, Variation, and Additional
identifier.

Example:
Service “XYZCustomerPoint” offers two variations, “ABCStore” and “DEFShop”, as a variation. In this
case, it will be set to a ReaderWriterServiceList property as “XYZCustomerPoint:ABCStore,
XYZCustomerPoint:DEFShop”.

This property is initialized to an empty string (“”) by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also ReaderWriterServiceList Property.
414 Unified POS, V1.16.1

15.4.48 DailyLog Property Added in Release 1.15

Syntax DailyLog: string { read-only, access after open }

Remarks Stores the result of the accessDailyLog method. The data is delimited by CR(13 decimal)+LF(10
decimal) for each transaction and is stored in ASCII code. The detailed data of each transaction is
comma separated [i.e., delimited by “,” (44)].

The details of one transaction are shown as follows:

Notes from the previous table:

1) Format

No Item Property Corresponding Cap Property

1 Card company ID CardCompanyID None

2 Transaction type TransactionType None

3 Transaction date

Note 1)

None None

4 Transaction number

Note 3)

TransactionNumber CapTransactionNumber

5 Payment condition PaymentCondition None

6 Slip number SlipNumber None

7 Approval code ApprovalCode None

8 Purchase date

Note 5)

None None

9 Account number AccountNumber None

10 Amount

Note 4)

The argument Amount of the
authorization method or the amount
actually approved.

None

11 Tax/others

Note 3)

The argument TaxOthers of the
authorization method.

CapTaxOthers

12 Installments

Note 3)

None CapInstallments

13 Additional data

Note 2)

AdditionalSecurityInformation CapAdditionalSecurity
Information

Item Format

Transaction date YYYYMMDDHHMMSS

Purchase date MMDD
Unified POS, v1.16.1 415

Some EVRW devices may not support seconds by the internal clock. In that case, the second field of the
transaction date is filled with "00"

2) Additional data


The area where the EVRW device stores the vendor specific data. This enables an application to receive data
other than that defined in this specification. The data stored here is vendor specific and should not be used for
development which places an importance on portability.

3) If the corresponding Cap property is false

Cap property is set to false if the EVRW device provides no corresponding data. In such instances, the item
cannot be displayed so the next comma delimiter immediately follows. For example, if "Amount" is 1234 yen
and "Tax/others" is missing and "Installments" is 2, the description will be "1234,,2". This makes the description
independent of Cap property and makes the position of each data item consistent.

4) Amount

Amount always includes "Tax/others" even if item 11 is present.

5) Purchase date

The date manually entered for the purchase transaction after approval.

Example: An example of daily log content is shown below.

Item Description Meaning

Card company ID 102 JCB

Transaction type EVRW_TRANSACTION_SALES Purchase

Transaction date 19980116134530 1/16/199813:45:30

Transaction number 123456 123456

Payment condition EVRW_PAYMENT_INSTALLMENT_1 Installment 1

Slip number 12345 12345

Approval code 0123456 0123456

Purchase date None None

Account number 1234123412341234 1234-1234-1234-1234

Amount 12345 12345JPY

Tax/others None None

Number of payments 2 2

Additional data 12345678 Specific information
416 Unified POS, V1.16.1

 The actual data stored in DailyLog will be as follows:

 Electronic Money Device: Setting DealingLog which is a result of the Electronic Money Device
 which does not have the communication module for closing processing done closing processing. It
 may be the device which is enciphered DealingLog to everything except for Center.
Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”

on page 16.

See Also CapDailyLog Property, accessDailyLog Method.

15.4.49 DetectionControl Property

Syntax DetectionControl: boolean { read-write, access after open }

Remarks If true, the detection processing of the card by the beginDetection/endDetection methods and the card
ejection processing by the beginRemoval/endRemoval methods are controlled by the application.

This property can only be set true by the application when CapDetectionControl is set to
EVRW_CDC_APPLICATIONCONTROL.

If false, neither detection nor the ejection processing of the card are controlled from the application.
Invocation of the beginDetection/endDetection methods and the beginRemoval/endRemoval methods
from the application is invalid. When EVRW_CDC_RWCONTROL is specified for the
CapDetectionControl property, it is possible to set it.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapDetectionControl Property, beginDetection Method, beginRemoval Method, endDetection
Method, endRemoval Method.

102,10,19980116134530,123456,61,12345,0123456,,12341234123
41234,12345,,2,12345678[CR][LF]
Unified POS, v1.16.1 417

15.4.50 DetectionStatus Property

Syntax DetectionStatus: int32 { read-only, access after open }

Remarks Holds the state of card detection.

Value Meaning
EVRW_DS_NOCARD No card. The card detection sensor does not detect a card.
EVRW_DS_DETECTED There is a card in the device. The card detection sensor detects

the card.
EVRW_DS_ENTERED Card remaining at the insertion slot. The insertion slot sensor

detects the card.
EVRW_DS_CAPTURED The card is in the stock space. The stock space sensor detects

the card.

This property is initialized to EVRW_DS_NOCARD by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
 “Errors” on page 16.

15.4.51 ExpirationDate Property Updated in Release 1.14

Syntax ExpirationDate: string { read-only, access after open }

Remarks Holds the expiration date in the format “YYYYMMDD”.

Note as of Release 1.14: The ExpirationDate property may contain some of the same information found
in the tag values used by the setParameterInformation and retrieveResultInformation methods. The
tag values should be used instead of the ExpirationDate property wherever possible.

This property is initialized to an empty string (“”) by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

15.4.52 LastUsedDate Property Updated in Release 1.14

Syntax LastUsedDate: string { read-only, access after open }

Remarks Holds the last used date in the format “YYYYMMDDHHMMSS”.

Note as of Release 1.14: The LastUsedDate property may contain some of the same information found
in the tag values used by the setParameterInformation and retrieveResultInformation methods. The
tag values should be used instead of the LastUsedDate property wherever possible.

This property is initialized to an empty string (“”) by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
418 Unified POS, V1.16.1

15.4.53 LogStatus Property

Syntax LogStatus: int32 { read-only, access after open }

Remarks Holds the state of transaction log.

Value Meaning
EVRW_LS_OK Transaction Log has enough capacity.
EVRW_LS_NEARFULL Transaction Log is nearly full.
EVRW_LS_FULL Transaction Log is full.

If transaction log becomes full, depending on the device, the settlement processing may not be able to
operate.

After this property is initialized, it is kept current as long as the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

15.4.54 MediumID Property Updated in Release 1.14

Syntax MediumID: string { read-write, access after open }

Remarks Holds the medium identifier of the card.

The medium identifier is information (manufacturer’s serial number, etc.) to specify the card uniquely,
and its content depends on implementation for the card.
The following methods are processed to the card with the medium identifier specified by this property:

• addValue
• beginDetection
• cancelValue
• readValue
• subtractValue
• writeValue

The application can specify the card to be operated on by setting the medium identifier to this property
before the method call is issued. Setting an empty string (“”) for this property means the operation can
be performed with any card.
The medium identifier of the card is set when the method that have relation to the card succeeds.
Note as of Release 1.14: The MediumID property may contain some of the same information found in
the tag values used by the setParameterInformation and retrieveResultInformation methods. The tag
values should be used instead of the MediumID property wherever possible.

This property is initialized to an empty string (“”) by the open method.
Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”

on page 16.

See Also addValue Method, beginDetection Method, cancelValue Method, readValue Method, subtractValue
Method, writeValue Method.
Unified POS, v1.16.1 419

15.4.55 PaymentCondition Property Updated in Release 1.15

Syntax PaymentCondition: int32 { read-only, access after open }

Remarks Holds the payment condition of the most recent successful authorization operation.
This property will be set to one of the following values. See PaymentDetail for the detailed payment
string that correlates to the following PaymentCondition values.

Value Meaning
EVRW_PAYMENT_LUMP Lump-sum
EVRW_PAYMENT_BONUS_1 Bonus 1
EVRW_PAYMENT_BONUS_2 Bonus 2
EVRW_PAYMENT_BONUS_3 Bonus 3
EVRW_PAYMENT_BONUS_4 Bonus 4
EVRW_PAYMENT_BONUS_5 Bonus 5
EVRW_PAYMENT_INSTALLMENT_1 Installment 1
EVRW_PAYMENT_INSTALLMENT_2 Installment 2
EVRW_PAYMENT_INSTALLMENT_3 Installment 3
EVRW_PAYMENT_BONUS_COMBINATION_1
 Bonus combination payments 1
EVRW_PAYMENT_BONUS_COMBINATION_2
 Bonus combination payments 2
EVRW_PAYMENT_BONUS_COMBINATION_3
 Bonus combination payments 3
EVRW_PAYMENT_BONUS_COMBINATION_4
 　 Bonus combination payments 4
EVRW_PAYMENT_ REVOLVING Revolving
EVRW_PAYMENT_DEBIT Debit card
EVRW_PAYMENT_ELECTRONIC_MONEY
 Electronic Money

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also PaymentDetail property
420 Unified POS, V1.16.1

15.4.56 PaymentDetail Property Added in Release 1.15

Syntax PaymentDetail: string { read-only, access after open }

Remarks Contains payment condition details as the result of an authorization operation. Payment details vary
depending on the value of PaymentCondition. The data will be stored as comma separated ASCII code.
An empty string means that no data is stored and represents a string with zero length data.

PaymentCondition PaymentDetail

EVRW_PAYMENT_LUMP An empty string

EVRW_PAYMENT_BONUS_1 An empty string

EVRW_PAYMENT_BONUS_2 Number of bonus payments

EVRW_PAYMENT_BONUS_3 1st bonus month

EVRW_PAYMENT_BONUS_4* Number of bonus payments, 1st bonus month, 2nd

bonus month, 3rd bonus month, 4th bonus month, 5th

bonus month, 6th bonus month

EVRW_PAYMENT_BONUS_5* Number of bonus payments, 1st bonus month, 1st

bonus amount, 2nd bonus month, 2nd bonus amount,

3rd bonus month, 3rd bonus amount, 4th bonus month,

4th bonus amount, 5th bonus month, 5th bonus

amount, 6th bonus month, 6th bonus amount

EVRW_PAYMENT_INSTALLMENT_1 1st billing month, Number of payments

EVRW_PAYMENT_INSTALLMENT_2* 1st billing month, Number of payments, 1st amount,

2nd amount, 3rd amount, 4th amount, 5th amount, 6th
amount

EVRW_PAYMENT_INSTALLMENT_3 1st billing month, Number of payments, 1st amount

EVRW_PAYMENT_BONUS_COMBINATION_1 1st billing month, Number of payments

EVRWT_PAYMENT_BONUS_COMBINATION_2 1st billing month, Number of payments, bonus
amount

EVRW_PAYMENT_BONUS_COMBINATION_3* 1st billing month, Number of payments, number of

bonus payments, 1st bonus month, 2nd bonus month,

3rd bonus month, 4th bonus month, 5th bonus month,

6th bonus month
Unified POS, v1.16.1 421

*Maximum 6 installments

The payment types and names vary depending on the EVRW device. The following are the payment types and
terms available for EVRW devices. Note that there are some differences between UnifiedPOS terms and those
used by the EVRW devices. The goal of this table is to synchronize these terms.

EVRW_PAYMENT_BONUS_COMBINATION_4* 1st billing month, Number of payments, number of

bonus payments, 1st bonus month, 1st bonus amount,

2nd bonus month, 2nd bonus amount, 3rd bonus

month, 3rd bonus amount, 4th bonus month, 4th bonus

amount, 5th bonus month, 5th bonus amount, 6th

bonus month, 6th bonus amount

EVRW_PAYMENT_REVOLVING An empty string

EVRW_PAYMENT_DEBIT An empty string

EVRW_PAYMENT_ELECTRONIC_MONEY An empty string

G
en

er
al

 P
ay

m
en

t C
at

eg
or

y

E
nt

ry
 it

em

P
ay

m
en

tC
on

di
ti

on
 V

al
ue

CAT

Name

CAT

(Old CAT)

G-CAT JET-S SG-CAT Master-T

Credit

Card

Not

specified

Not

specified

JCB VISA MASTER

UnifiedPOS
Term

Card Company Terms

Lump-sum (None) 10 Lump-sum Lump-sum Lump-sum Lump-sum Lump-sum Lump-sum

Bonus (None) 21 Bonus 1 Bonus 1 Bonus 1 Bonus 1 Bonus 1 Bonus 1

Number of bonus
payments

22 Bonus 2 Bonus 2 Bonus 2 Bonus 2 Bonus 2 Bonus 2

Bonus month(s) 23 Bonus 3 Bonus 3 Does not
exist.

Does not
exist.

Bonus 3 Bonus 3
422 Unified POS, V1.16.1

Number of bonus
payments

Bonus month (1)

Bonus month (2)

Bonus month (3)

Bonus month (4)

Bonus month (5)

Bonus month (6)

24 Bonus 4 Bonus 4 Bonus 3 Bonus 3 Bonus 4

(Up to two
entries for
bonus
month)

Bonus 4

Number of bonus
payments

Bonus month (1)

Bonus amount (1)

Bonus month (2)

Bonus amount (2)

Bonus month (3)

Bonus amount (3)

Bonus month (4)

Bonus amount (4)

Bonus month (5)

Bonus amount (5)

Bonus month (6)

Bonus amount (6)

25 Bonus 5 Bonus 5 Does not
exist.

Does not
exist.

Does not
exist.

Bonus 5

Installment Payment start month

Number of payments

61 Installment 1 Installment 1 Installment 1 Installment 1 Installment 1 Installment 1
Unified POS, v1.16.1 423

Payment start
month

Number of
payments

Installment
amount(1)

Installment
amount(2)

Installment
amount(3)

Installment
amount(4)

Installment
amount(5)

Installment
amount(6)

62 Installment 2 Installment 2 Does not

 exist.

Does not

 exist.

Does not

 exist.

Does not

 exist.

Payment start
month

Number of
payments

Initial amount

63 Installment 3 Installment 3 Installment 2 Installment 2 Does not

 exist.

Installment 2

Combination Payment start
month

Number of

payments

31 Bonus
Combination
1

Bonus
Combination
1

Bonus
Combination
1

Bonus
Combination
1

Bonus
Combination
1

Bonus
Combination
1

424 Unified POS, V1.16.1

Payment
start
month

Number of
payments

Bonus
amount

32 Bonus
Combination
2

Bonus
Combination
2

Does not

 exist.

Does not

 exist.

Bonus
Combination
2

Bonus
Combination
2

Payment
start
month

Number of
payments

Number of
bonus
payments

Bonus
month (1)

Bonus
month (2)

Bonus
month (3)

Bonus
month (4)

Bonus
month (5)

Bonus
month (6)

33 Bonus
Combination
3

Bonus
Combination
3

Does not

 exist.

Does not

 exist.

Bonus
Combination
3

(Up to two
entries for
bonus
month)

Bonus
Combination
3

Unified POS, v1.16.1 425

Payment
start
month

Number of
payments

Number of
bonus
payments

Bonus
month (1)

Bonus
amount(1)

Bonus
month (2)

Bonus
amount(2)

Bonus
month (3)

Bonus
amount(3)

Bonus
month (4)

Bonus
amount(4)

Bonus
month (5)

Bonus

amount(5)

Bonus
month (6)

Bonus
amount(6)

34 Bonus
Combination
4

Bonus
Combination
4

Bonus
Combination
2

Bonus
Combination
2

Bonus
Combination
4

(Up to two
entries for
bonus month
and amount)

Bonus
Combination
4

426 Unified POS, V1.16.1

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapPaymentDetail property.

15.4.57 PaymentMedia Property Added in Release 1.15

Syntax PaymentMedia: int32 { read-write, access after open }

Remarks Holds the payment media type that the approval method should approve.

The application sets this property to one of the following values before issuing an approval method call.
“None specified” means that payment media will be determined by the EVRW device, not by the POS
application.

Value Meaning
EVRW_MEDIA_UNSPECIFIED None specified.
EVRW_MEDIA_CREDIT Credit card.
EVRW_MEDIA_DEBIT Debit card.
EVRW_MEDIA_ELECTRONIC_MONEY
 Electronic Money.

This property is initialized to EVRW_MEDIA_UNSPECIFIED by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Revolving (None) 80 Revolving Revolving Revolving Revolving Revolving Revolving

Debit (None) 110 Debit (Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)
Unified POS, v1.16.1 427

15.4.58 PINEntry Property Added in Release 1.14

Syntax PINEntry: int32 { read-write, access after open }

Remarks The PIN entry functionality that is supported by the EVR/W.

Value Meaning
EVRW_PIN_ENTRY_NONE

PIN input is not supported.

EVRW_PIN_ENTRY_EXTERNAL
The EVR/W is not equipped with the PIN input device. When PIN input is
required, it is necessary to use an external PIN pad device.

EVRW_PIN_ENTRY_INTERNAL
The EVR/W is equipped with an internal PIN input device for PIN number
entry.

EVRW_PIN_ENTRY_UNKNOWN
The PIN entry may be supported by the EVR/W device but the
CurrentService property is set to empty string (““) and the it is not clear
where the PIN entry is to occur.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

15.4.59 Point Property Updated in Release 1.14

Syntax Point: currency { read-write, access after open }

Remarks Holds the settlement point on the point service.

Note as of Release 1.14: The Point property may contain some of the same information found in the tag
values used by the setParameterInformation and retrieveResultInformation methods. The tag values
should be used instead of the Point property wherever possible.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
428 Unified POS, V1.16.1

15.4.60 ReaderWriterServiceList Property Updated in Release 1.14.1

Syntax ReaderWriterServiceList: string { read-only, access after open }

Remarks Holds the comma-separated list of services that are supported by the EVR/W device.

For example, when the character string that identifies ‘A’ electronic money service is “MoneyA” and the
character string that identifies ‘B’ electronic point service is “PointB,” the ReaderWriterServiceList
property becomes “MoneyA,PointB.”
If the service supports the sub-service, the open method succeeds, the service that all the sub-services
provides is enumerated.
If the EVR/W service does not support the sub-service and an EVR/W service supports many services,
those services are enumerated by this property.
This property is initialized by the open method. The initialization value depends on what services are
supported; e.g., if the EVR/W device supports “MoneyA” and “PointB” services, this property is
initialized to “MoneyA, PointB.”

Note as of Release 1.14.1:

When a service has some variations, a string value of this property can be specified using the following
rules.

“service [:variation [:additional]]”

Service is required. Variation with separator “:” and Additional with separator “:” are optional.
Separator characters such as “,”, and “:” cannot be used for a Service, Variation, and Additional
identifier.

Expamle:
Service “XYZCustomerPoint” offers two variations, “ABCStore” and “DEFShop” as a variation. In this
case, it will be set to a ReaderWriterServiceList property as “XYZCustomerPoint:ABCStore,
XYZCustomerPoint:DEFShop.”

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

15.4.61 SequenceNumber Property

Syntax SequenceNumber: int32 { read-only, access after open }

Remarks Holds a “sequence number” as the result of each method call. This number needs to be checked by an
application to see if it matches with the argument sequenceNumber of the originating method.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 429

15.4.62 ServiceType Property Added in Release 1.14.1

Syntax ServiceType: int32 { read-only, access after open }

Remarks This property is initialized by the open method and updated when the CurrentService property is
updated.

Value Meaning
EVRW_ST_ELECTRONIC_MONEY 

Electronic money service
EVRW_ST_POINT Point service
EVRW_ST_VOUCHER Voucher/Ticket service
EVRW_ST_MEMBERSHIP 

Membership certificate service
EVRW_ST_UNSPECIFIED 

Nothing is set to CurrentService

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see Syntax
SequenceNumber: int32 { read-only, access after open }

Remarks Holds a “sequence number” as the result of each method call. This number needs to be checked by an
application to see if it matches with the argument sequenceNumber of the originating method.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CurrentService Property.

15.4.63 SettledAmount Property Updated in Release 1.14

Syntax SettledAmount: currency { read-only, access after open }

Remarks Sets the real amount of the settlement on the electronic money service.

Note as of Release 1.14: The SettledAmount property may contain some of the same information found
in the tag values used by the setParameterInformation and retrieveResultInformation methods. The
tag values should be used instead of the SettledAmount property wherever possible.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see 
 “Errors” on page 16.
430 Unified POS, V1.16.1

15.4.64 SettledPoint Property

Syntax SettledPoint: currency { read-only, access after open }

Remarks Sets the settlement point on the point service.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

15.4.65 SlipNumber Property Added in Release 1.15

Syntax SlipNumber: string { read-only, access after open }

Remarks Stores a “slip number” as the result of each authorization operation.

This property is initialized to an empty string by the open method and is updated when an authorization
operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further information, see 
 “Errors” on page 16.

15.4.66 TrainingModeState Property Added in Release 1.14

Syntax TrainingModeState: int32 { read-write, access after open }

Remarks The current state of the EVR/W device to indicate if the device is in training mode or not.

Value Meaning
EVRW_TM_FALSE The training mode is not selected, therefore normal operation is the

current state.
EVRW_TM_TRUE The training mode is selected.

EVRW_TM_UNKNOWN 
The training mode may be supported by the EVR/W device but the
CurrentService property is set to empty string (““) and the it is not clear what
is the current state of the training mode.

This property is initialized to one of the these values by the open method.

Errors If TrainingModeState is set to EVRW_TM_TRUE but the device does not support training mode, a
UposException with E_ILLEGAL may be thrown. 
A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapTrainingMode Property.
Unified POS, v1.16.1 431

15.4.67 TransactionLog Property

Syntax TransactionLog: string { read-only, access after open }

Remarks Stores the result of the accessLog method.

If the CapIndirectTransactionLog property is true, the TransactionLog property shows URL that
shows the position such as files where the transaction log is stored. The content of the transaction log
depends on the device and service. This property is initialized to an empty string (“”) by the open
method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapIndirectTransactionLog Property, TransactionLog Property, accessLog Method.

15.4.68 TransactionNumber Property Added in Release 1.15

Syntax TransactionNumber: string { read-only, access after open }

Remarks Stores a “transaction number” as the result of each authorization operation. This property is initialized
to an empty string by the open method and is updated when an authorization operation successfully
completes.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

15.4.69 TransactionType Property Added in Release 1.15

Syntax TransactionType: int32 { read-only, access after open }

Remarks Stores a “transaction type” as the result of each authorization operation.

This property is initialized to zero by the open method and is updated when an authorization operation
successfully completes.This property will be set to one of the following values.

Value Meaning
EVRW_TRANSACTION_SALES Sales
EVRW_TRANSACTION_VOID　　　　 Cancellation
EVRW_TRANSACTION_REFUND Refund purchase
EVRW_TRANSACTION_COMPLETION Purchase after approval
EVRW_TRANSACTION_PRESALES Pre-authorization
EVRW_TRANSACTION_CHECKCARD Card Check
EVRW_TRANSACTION_VOIDPRESALES Cancel pre-authorization approval
EVRW_TRANSACTION_CASHDEPOSIT Charge

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
432 Unified POS, V1.16.1

15.4.70 VoucherID Property Updated in Release 1.14

Syntax VoucherID: string { read-write, access after open }

Remarks Sets the ID of voucher/ticket on the voucher/ticket service.

It consists of pairs of the identifier and the number which validate the card holder.

For example, six tickets of identifier “001” are shown by the character string “001:6”. The “:” is a
separator between the identifier and the number of sheets.

Note as of Release 1.14: The VoucherID property may contain some of the same information found in
the tag values used by the setParameterInformation and retrieveResultInformation methods. The tag
values should be used instead of the VoucherID property wherever possible.

This property is initialized to an empty string (“”) by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

15.4.71 VoucherIDList Property Updated in Release 1.14

Syntax VoucherIDList: string { read-write, access after open }

Remarks Sets the IDs of voucher/ticket are enumerated on the voucher/ticket service.

If six tickets of identifier “001,” one ticket of identifier “002,” two tickets of identifier “034” are
maintained, this is expressed by the CSV character string in the format “001:6,002:1,034:2.” The “,” is
a separator when two or more rights are maintained.

Note as of Release 1.14: The VoucherIDList property may contain some of the same information found
in the tag values used by the setParameterInformation and retrieveResultInformation methods. The
tag values should be used instead of the VoucherIDList property wherever possible.

This property is initialized to an empty string (“”) by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 433

15.5 Methods (UML operations)

15.5.1 accessDailyLog Method Added in Release 1.15

SyntaxaccessDailyLog (sequenceNumber: int32, type: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber The sequence number to get daily log.
type Specify whether the daily log is intermediate total or final total and erase.
timeout The maximum waiting time (in milliseconds) until the response is

received from the EVRW device. FOREVER (-1), 0 and positive values
 can be specified.

Remarks Gets daily log from EVRW.

Daily log will be retrieved and stored in DailyLog as specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives response
from the EVRW.

Application must specify one of the following values for type for daily log type (either intermediate
total or adjustment). Legal values depend upon the CapDailyLog value.

Electronic Money Device: Gets the DealingLog from the Electronic Money Device to send to the
Center. If the Electronic Money Device has communication capabilities, the DealingLog will be sent
from the Electronic Money Device to the Center and nothing is stored in the DailyLog. Otherwise, the
DealingLog is stored in the DailyLog Property.

Value Meaning
EVRW_DL_REPORTING Intermediate total.
EVRW_DL_SETTLEMENT Final total and erase.
 Electronic Money Device: Closing DealingLog of the 
 Electronic Money device.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

 Some possible values of the exception's ErrorCode property are:
Value Meaning
E_ILLEGAL Invalid or unsupported type or timeout parameter was specified, or
 CapDailyLog is false.
E_TIMEOUT No response was received from EVRW during the specified
 timeout time in milliseconds.
E_EXTENDED The detail code has been stored in ErrorCode Extended.
E_BUSY The EVRE device cannot accept any commands now. 

 See Also CapDailyLog property, DailyLog property.
434 Unified POS, V1.16.1

15.5.2 accessData Method Added in Release 1.14.1

Syntax accessData (dataType:int32, inout data: int32, inout obj: object): 
 void { raises-exception, use after open-claim-enable }

Parameter Description
dataType Type of the data which accesses

Value Meaning
EVRW_AD_KEY Key information.
EVRW_AD_NEGATIVE_LIST Negative list.
EVRW_AD_OTHERS Other information.
data An array of one mutable integers whose specific values or 

 usage vary by service.
obj Additional data whose usage varies by service.

Remarks Data other than a transaction log is accessed from an EVR/W. It is supported when an EVR/W has
accessible data besides a transaction log accessible by AccessLog method.

The contents of data are dependent on service.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.
For consistency, a Service must always fire at least one TransitionEvent with an incomplete progress
completion percentage (i.e., a percentage between 1 and 99), even if the device cannot physically report
the progress of the process. If the process completes successfully, the Service must fire a
TransitionEvent with a progress of 100. These Service requirements allow applications using this
method to be designed to always expect some level of progress notification.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The device does not have the activation.
E_BUSY The device cannot accept any commands now.

See Also accessLog Method, updateData Method, TransitionEvent.
Unified POS, v1.16.1 435

15.5.3 accessLog Method Updated in Release 1.14.1

Syntax accessLog (sequenceNumber: int32, type: int32, timeout: int32): 
 void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber The sequence number to get transaction log.
type Specifies whether the transaction log is intermediate total or the last total. (see

values below)
timeout The maximum waiting time (in milliseconds) until the response is received

from the device. FOREVER(-1), 0, and positive values can be specified.
Remarks Gets transaction log from device. Gets transaction log on demand by sequenceNumber, and it is stored

in the TransactionLog property.

When timeout is FOREVER(-1), a timeout never occurs and it waits indefinitely until it receives a
response from the device. If EVR/W device needs the last total processing of a transaction, it performs
this method. The last total processing might be cleared in the transaction log, this depends on the
implementation. However, the intermediate total must not be cleared in the transaction log.

It depends on the implementation if the transaction log will be passed to the service center directly and
not to the application. The application must specify one of the following values for type of transaction
(either intermediate total or the last total).
Value Meaning
EVRW_AL_REPORTING

Gets transaction log as an intermediate total.
EVRW_AL_SETTLEMENT

The transaction log for the device is fixed and erased. (Whether it is erased or
not depends on the implementation.)

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Added in Release 1.14.1: For consistency, a Service must always fire at least one TransitionEvent
with an incomplete progress completion percentage (i.e. a percentage between 1 and 99), even if the
device cannot physically report the progress of the process. If the process completes successfully, the
Service must fire a TransitionEvent with a progress of 100. These Service requirements allow
applications using this method to be designed to always expect some level of progress notification.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid type or timeout parameter was specified. Or transaction log function

is unsupported.
E_TIMEOUT No response was received from device during the specified timeout (in

milliseconds).
E_BUSY The device cannot accept any commands while asynchronously processing. 

See Also TransactionLog Property, accessData Method, TransitionEvent.
436 Unified POS, V1.16.1

15.5.4 activateEVService Method Added in Release 1.14.1

Syntax activateEVService (inout data: int32, inout obj: object): 
 void { raises-exception, use after open-claim-enable }

Parameter Description
data An array of one mutable integer whose specific values or usage vary by

service.
obj Additional data whose usage varies by service.

Remarks Executes the device activation process.

If the device has the activation process function, it is supported.

The activation process is the initial process performed when newly installing a device or service, or
when enabling the function disabled at the time of factory shipment.

The contents of processing and the contents of the parameter are dependent on service.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.
For consistency, a Service must always fire at least one TransitionEvent with an incomplete progress
completion percentage (i.e. a percentage between 1 and 99), even if the device cannot physically report
the progress of the process. If the process completes successfully, the Service must fire a
TransitionEvent with a progress of 100. These Service requirements allow applications using this
method to be designed to always expect some level of progress notification.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The device does not have the activation.
E_BUSY The device cannot accept any commands now.

See Also deactivateEVService Method, TransitionEvent.
Unified POS, v1.16.1 437

15.5.5 activateService Method

Syntax activateService (inout data: int32, inout obj: object): 
 void { raises-exception, use after open-claim-enable }

Remarks Executes the device activation process.

If the device has the activation process function, it is supported.

The activation process is initialization or installation of device. The details of process contents and
parameters depend on implementation.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The device does not have the activation.
E_BUSY The device cannot accept any commands now.

See Also CapActivateService Property.

15.5.6 addValue Method

Syntax addValue (sequenceNumber: int32, timeout: int32): 
 void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number
timeout The maximum waiting time (in milliseconds) until the response is received

from the device. FOREVER(-1), 0, and positive values can be specified.

Remarks Electronic value is added to the card as specified by sequenceNumber on demand.

When timeout is FOREVER(-1), timeout never occurs and it waits indefinitely until it receives a response
from the device.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid or unsupported parameter was specified.
E_TIMEOUT No response was received from device during the specified Timeout in

milliseconds.
E_BUSY The device cannot accept any commands now.

See Also CapAddValue Property, cancelValue Method, readValue Method, subtractValue Method,
writeValue Method.
438 Unified POS, V1.16.1

15.5.7 authorizeCompletion Method Added in Release 1.15

Syntax authorizeCompletion (sequenceNumber: int32, amount: currency, taxOthers: currency, timeout:
int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number for approval.
amount Purchase amount for approval.
taxOthers Tax and other amounts for approval.
timeout The maximum waiting time (in milliseconds) until the response is

received from the EVRW device. FOREVER (-1), 0 and positive values
can be specified.

Remarks Purchase after approval is intended.

Sales after approval for amount and taxOthers are intended as the approval specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives response
from the EVRW.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid timeout parameter was specified, or CapAuthorizeCompletion
 is false.
E_TIMEOUT No response was received from EVRW during the specified timeout time
 in milliseconds.
E_EXTENDED The detail code has been stored in ErrorCodeExtended.
E_BUSY The EVRW device cannot accept any commands now.

See Also CapAuthorizeCompletion property.
Unified POS, v1.16.1 439

15.5.8 authorizePreSales Method Added in Release 1.15

Syntax authorizePreSales (sequenceNumber: int32, amount: currency, taxOthers: currency,
timeout: int32):
 void { raises-exception, use after open-claim-enable }

Value Meaning
sequenceNumber Sequence number for approval.
amount Purchase amount for approval.
taxOthers Tax and other amounts for approval.
timeout The maximum waiting time (in milliseconds) until the response is

received from the EVRW device. FOREVER (-1), 0 and positive values
 can be specified.

Remarks Makes a pre-authorization.

Pre-authorization for amount and taxOthers is made as the approval specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives response
from the EVRW.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid timeout parameter was specified, or CapAuthorizePreSales is
 false. 
E_TIMEOUT No response was received from EVRW during the specified timeout time
 in milliseconds.
E_EXTENDED The detail code has been stored in ErrorCodeExtended.
E_BUSY The EVRW device cannot accept any commands now.

See Also CapAuthorizePreSales property.
440 Unified POS, V1.16.1

15.5.9 authorizeRefund Method Added in Release 1.15

Syntax authorizeRefund (sequenceNumber: int32, amount: currency, taxOthers: currency, timeout:
int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number for approval.
amount Purchase amount for approval.
taxOthers Tax and other amounts for approval.
timeout The maximum waiting time (in milliseconds) until the response is

received from the EVRW device. FOREVER (-1), 0 and positive values
can be specified.

Remarks Refund purchase approval is intended.

Refund purchase approval for amount and taxOthers is intended as the approval specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives response
from the EVRW.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception's ErrorCode property are:
Value Meaning
E_ILLEGAL Invalid timeout parameter was specified, or CapAuthorizeRefund is

false.
E_TIMEOUT No response was received from EVRW during the specified timeout time in

milliseconds.
E_EXTENDED The detail code has been stored in ErrorCodeExtended.
E_BUSY The EVRW device cannot accept any commands now.

See Also CapAuthorizeRefund property.
Unified POS, v1.16.1 441

15.5.10 authorizeSales Method Added in Release 1.15

Syntax authorizeSales (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

 Parameter Description
sequenceNumber Sequence number for approval. 
amount Purchase amount for approval. 
taxOthers Tax and other amounts for approval. 
timeout The maximum waiting time (in milliseconds) until the
 response is received from the EVRW device. FOREVER (-1), 0
 and positive values can be specified. 

Remarks Normal purchase approval is intended.

Normal purchase approval for amount and taxOthers is intended as the approval specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives response
from the EVRW.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

Some possible values of the exception's ErrorCode property are:
Value Meaning
E_ILLEGAL Invalid timeout parameter was specified.
E_TIMEOUT No response was received from EVRW during the specified timeout time
 in milliseconds.
E_EXTENDED The detail code has been stored in ErrorCodeExtended.
E_BUSY The EVRW device cannot accept any commands now.
442 Unified POS, V1.16.1

15.5.11 authorizeVoid Method Added in Release 1.15

Syntax authorizeVoid (sequenceNumber: int32, amount: currency, taxOthers: currency, timeout:
int32):
void { raises-exception, use after open-claim-enable }
Parameter Description
sequenceNumber Sequence number for approval.
amount Purchase amount for approval.
taxOthers Tax and other amounts for approval.
timeout The maximum waiting time (in milliseconds) until the response is

 received from the EVRW device. FOREVER (-1), 0 and positive values can
 be specified.

Remarks Purchase cancellation approval is intended.

Cancellation approval for amount and taxOthers is intended as the approval specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives response
from the EVRW.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid timeout parameter was specified, or CapAuthorizeVoid is false.
E_TIMEOUT No response was received from EVRW during the specified timeout time
 in milliseconds.
E_EXTENDED The detail code has been stored in ErrorCodeExtended.
E_BUSY The EVRW device cannot accept any commands now.

See Also CapAuthorizeVoid property.
Unified POS, v1.16.1 443

15.5.12 authorizeVoidPreSales Method Added in Release 1.15

Syntax authorizeVoidPreSales (sequenceNumber: int32, amount: currency, taxOthers: currency,
timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number for approval.
amount Purchase amount for approval.
taxOthers Tax and other amounts for approval.
timeout The maximum waiting time (in milliseconds) until the response is
 received from the EVRW device. FOREVER (-1), 0 and positive values
 can be specified.

Remarks Pre-authorization cancellation approval is intended.

Pre-authorization cancellation approval for amount and taxOthers is intended as the approval specified
by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives response
from the EVRW.

Normal cancellation could be used for EVRW control and EVRW devices which have not implemented
the pre-authorization approval cancellation. Refer to the documentation supplied with EVRW device
and / or EVRW control.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid timeout parameter was specified, or

 CapAuthorizeVoidPreSales is false.
E_TIMEOUT No response was received from EVRW during the specified timeout time
 in milliseconds.
E_EXTENDED The detail code has been stored in ErrorCodeExtended.
E_BUSY The EVRW device cannot accept any commands now.

See Also CapAuthorizeVoidPreSales property.
444 Unified POS, V1.16.1

15.5.13 beginDetection Method

Syntax beginDetection (type: int32, timeout: int32): 
 void { raises-exception, use after open-claim-enable }

Executes the card detection process.

If the timeout parameter value is zero, the method initiates the detection mode immediately. If a value is
set (in milliseconds), the card detection process will wait for this time period if necessary. If a value of
FOREVER(-1) is specified, the method initiates the card detection process and then waits as long as
necessary until either the card is detected or an error occurs.

The type parameter specifies the type of the detected card. The value that can be specified is as follows:

Value Meaning
EVRW_BD_ANY The content of the detected card can be anything.
EVRW_BD_SPECIFIC When this method is called, only the card that corresponds to the identifier

in the MediumID property can be detected.

Remarks Starts the card detection process in the device slot.

Supports both the contactless and contact IC card devices.

When called, the device starts a card detection process, and initiates the card detection in the device. This
method is called together with the endDetection method that ends the card detection process.

If the device cannot be set to the detection process, an error exception will be fired such as E_TIMEOUT.
However, the device stays in the detection mode until the endDetection method is called.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot execute while asynchronous processing.
E_ILLEGAL An invalid timeout parameter was specified.
E_TIMEOUT The specified timeout has elapsed without the card being properly

detected.

See Also MediumID Property, endDetection Method.
Unified POS, v1.16.1 445

15.5.14 beginRemoval Method

Syntax beginRemoval (timeout: int32): 
 void { raises-exception, use after open-claim-enable }

Executes the removal process

If the timeout parameter value is zero, the method initiated the detection mode immediately. If its value
is set (milliseconds), the card detection process will be wait until time is due. If its value is FOREVER(-
1), the method initiates the card removal process and then waits as long as necessary until either the card
is removed or an error occurs.

Remarks Starts the card ejection process.

If the device is a contactless IC card device, when this method is called, device starts the card ejection
process and ejects the card and this method ends successfully at any time.

If the device is a contact IC card device with card detection sensor, this method completes when card
ejection was detected.

If the device is a contact IC card device without card detection sensor, this method completes when this
method is executed.

This method is called together with the endRemoval method that ends the card ejection process.

If the device cannot be set to the card ejection mode, an error exception will be fired, e.g., E_TIMEOUT.
However, the device will remain in card ejection mode until endRemoval method is called.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY cannot execute while asynchronous processing.
E_ILLEGAL An invalid timeout parameter was specified.
E_TIMEOUT The specified timeout has elapsed without the card being properly

removed.
See Also endRemoval Method.
446 Unified POS, V1.16.1

15.5.15 cancelValue Method

Syntax cancelValue (sequenceNumber: int32, timeout: int32): 
 void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number
timeout The maximum waiting time (in milliseconds) until the response is

received from the device. FOREVER(-1), 0, and positive values can be
specified.

Remarks Cancels the Electronic value related operation specified by sequenceNumber on demand. The targeted
cancellation operation is identified by the settlement number that is contained in the ApprovalCode
property. 

When timeout is FOREVER(-1), timeout never occurs and it waits indefinitely until it receives a response
from the device.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid or unsupported parameter was specified.
E_TIMEOUT No response was received from device during the specified timeout in

milliseconds.
E_BUSY The device cannot accept any commands now.

See Also ApprovalCode Property, CapCancelValue Property, addValue Method, readValue Method,
 subtractValue Method, writeValue Method.

15.5.16 captureCard Method

Syntax captureCard (): 
 void { raises-exception, use after open-claim-enable }

Remarks The card left in the slot is removed.

This method is effective, if the device is equipped with a card detection sensor. When the card insertion
slot sensor detects the card, since the card ejection process was executed, application may call this
method to keep and maintain the card.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_FAILURE The device cannot capture the card.

See Also DetectionStatus Property.
Unified POS, v1.16.1 447

15.5.17 cashDeposit Method Added in Release 1.15

Syntax cashDeposit (sequenceNumber: int32, amount: currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number for charge.
amount Amount of money for charge.
timeout The maximum waiting time (in milliseconds) until the response is
 received from the EVRW device. FOREVER (-1), 0 and positive values
 can be specified.

Remarks Charging amounts.

The amount is stored on the Electronic Money Device.

If timeout is FOREVER(-1), a timeout will not occur and the process will wait forever until the
Electronic Money Device responds.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid timeout parameter was specified, or CapCashDeposit is false.
E_TIMEOUT No response was received from EVRW during the specified timeout time in
 milliseconds.
E_EXTENDED 　 The detail code has been stored in ErrorCodeExtended.
E_BUSY The EVRW device cannot accept any commands now.

See Also CapCashDeposit property.
448 Unified POS, V1.16.1

15.5.18 checkCard Method Added in Release 1.15

Syntax checkCard (sequenceNumber: int32, timeout: int32): 
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number for approval.
timeout The maximum waiting time (in milliseconds) until the response is
 received from the EVRW device. FOREVER (-1), 0 and positive
 values can be specified.

Remarks Card Check is intended.

Card Check will be made as specified by sequenceNumber.

Electronic Money Device:
The check of the Balance will be done by the specified sequenceNumber. The Balance will be stored in
the Balance

When timeout is FOREVER (-1), timeout never occurs and the device waits until it receives response
from the EVRW.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid timeout parameter was specified, or CapCheckCard is false.
E_TIMEOUT No response was received from EVRW during the specified timeout time
 in milliseconds.
E_EXTENDED The detail code has been stored in ErrorCodeExtended.
E_BUSY The EVRW device cannot accept any commands now.

See Also Balance property, CapCheckCard property.
Unified POS, v1.16.1 449

15.5.19 checkServiceRegistrationToMedium Method Added in Release 1.14.1

Syntax checkServiceRegistrationToMedium
 (sequenceNumber: int32, timeout: int32): 
 void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number
timeout The maximum waiting time (in milliseconds) until the response is

received from the device. FOREVER(-1), 0, and positive values can be
specified.

Remarks To a medium, it is checked whether electronic value service can be registered.

An UposException with E_EXTENDED is thrown when service cannot register to medium.

When timeout is FOREVER(-1), timeout never occurs and it waits indefinitely until it receives a
response from the device.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL Invalid or unsupported parameter was specified.
E_TIMEOUT No response was received from device during the specified timeout in

milliseconds.
E_BUSY The device cannot accept any commands now.

See Also registerServiceToMedium Method.

15.5.20 clearParameterInformation Method Added in Release 1.14

Syntax clearParameterInformation (): 
 void { raises-exception, use after open-claim-enable }

Remarks Used to clear the all the tag values for the control set previously stored by the setParameterInformation
method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also setParameterInformation Method.
450 Unified POS, V1.16.1

15.5.21 closeDailyEVService Method Added in Release 1.14.1

Syntax closeDailyEVService (inout data: int32, inout obj: object): 
 void { raises-exception, use after open-claim-enable }

Parameter Description
data An array of one mutable integer whose specific values or usage vary

by service.
obj Additional data whose usage varies by service.

Remarks Executes the closing process of the service selected by CurrentService property..

If the device has the closing process function, it is supported.

The contents of processing are dependent on service.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.
For consistency, a Service must always fire at least one TransitionEvent with an incomplete progress
completion percentage (i.e. a percentage between 1 and 99), even if the device cannot physically report
the progress of the process. If the process completes successfully, the Service must fire a
TransitionEvent with a progress of 100. These Service requirements allow applications using this
method to be designed to always expect some level of progress notification.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The service does not have the closing process.
E_BUSY The device cannot accept any commands now.

See Also openDailyEVService Method, TransitionEvent
Unified POS, v1.16.1 451

15.5.22 deactivateEVService Method　　　　　　　　　　　Added in Release 1.14.1

Syntax deactivateEVService (inout data: int32, inout obj: object): 
 void { raises-exception, use after open-claim-enable }

Parameter Description
data An array of one mutable integer whose specific values or usage vary by

service.
obj Additional data whose usage varies by service.

Remarks Executes the device deactivation process.

If the device has the deactivation process function, it is supported.

The deactivation process is the terminate process performed when uninstalling a service or removing a
device.

The contents of processing and the contents of the parameter are dependent on service.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

For consistency, a Service must always fire at least one TransitionEvent with an incomplete progress
completion percentage (i.e. a percentage between 1 and 99), even if the device cannot physically report
the progress of the process. If the process completes successfully, the Service must fire a
TransitionEvent with a progress of 100. These Service requirements allow applications using this
method to be designed to always expect some level of progress notification.

These Service requirements allow applications using this method to be designed to always expect some
level of progress notification.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning 　　　　　　　
E_ILLEGAL The device does not have the deactivation.
E_BUSY The device cannot accept any commands now.

See Also activateEVService Method, TransitionEvent.
452 Unified POS, V1.16.1

15.5.23 endDetection Method

Syntax endDetection (): 
 void { raises-exception, use after open-claim-enable }

Remarks Ends the card detection process.

When called, the device ends card detection mode. If the card is correctly detected in the device control
is returned to the application. If the card cannot be detected an exception is delivered with its
ErrorCodeExtended property set to EVRW_NOCARD.
This method is called together with the beginDetection method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The device is not in card detection mode.
E_EXTENDED ErrorCodeExtended=EVRW_NOCARD:

No card has been detected.

See Also beginDetection Method.

15.5.24 endRemoval Method

Syntax endRemoval (): 
 void { raises-exception, use after open-claim-enable }

Remarks Ends the card removal process.

When called, the device ends the card removal mode. If the card is not detected in the device, control is
returned to the application. If the card remains in the device, an exception is delivered with its
ErrorCodeExtended property set to EVRW_RELEASE. If the device is contactless IC card, it is not
necessary to implement this and control is always returned to the application without any exceptions.

This method is called together with the beginRemoval method for the card removal processing.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The device is not in card removal mode.
E_EXTENDED ErrorCodeExtended=EVRW_RELEASE:

The card remains in the device.

See Also beginRemoval Method
Unified POS, v1.16.1 453

15.5.25 enumerateCardServices Method

Syntax enumerateCardServices (): 
 void { raises-exception, use after open-claim-enable }

Remarks Enumerates the services which are used in the card and sets the CardServiceList property.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also CardServiceList Property.

15.5.26 lockTerminal Method　　　　　　　　　　　　　Updated in Release 1.14.1

Syntax lockTerminal (): 
 void { raises-exception, use after open-claim-enable }

Remarks Sets the security lock on the device or the service. If the device or the service is locked, the device or the
service cannot accept any commands except for unlockTerminal method.

AdditionalSecurityInformation property is set if key information is required to lock for the
authentication.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The device does not have a security lock function. CapLockTerminal is

false.
E_BUSY The device cannot accept any commands now.

See Also AdditionalSecurityInformation Property, CapLockTerminal Property,
unlockTerminal Method.
454 Unified POS, V1.16.1

15.5.27 openDailyEVService Method　　　　　　　　　　　Added in Release 1.14.1

Syntax openDailyEVService (inout data: int32, inout obj: object): 
 void { raises-exception, use after open-claim-enable }

Parameter Description 　　　　　　
data An array of one mutable integer whose specific values or usage vary 　
　　　　　　　　　 by service.

obj Additional data whose usage varies by service.

Remarks Executes the opening process of the service selected by CurrentService property. If the device has the
opening process function, it is supported. The contents of processing are dependent on service.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

For consistency, a Service must always fire at least one TransitionEvent with an incomplete progress
completion percentage (i.e. a percentage between 1 and 99), even if the device cannot physically report
the progress of the process. If the process completes successfully, the Service must fire a
TransitionEvent with a progress of 100. These Service requirements allow applications using this
method to be designed to always expect some level of progress notification.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 　　　　　　　　　　
E_ILLEGAL The service does not have the opening process.

E_BUSY The device cannot accept any commands now

See Also closeDailyEVService Method, TransitionEvent.

15.5.28 queryLastSuccessfulTransactionResult Method　　　　Added in Release 1.14

Syntax queryLastSuccessfulTransactionResult (): 
 void { raises-exception, use after open-claim-enable }

Remarks This method is used to refresh the property values that resulted from last successful readValue,
writeValue, addValue, subtractValue, cancelValue, and accessLog methods calls.

When the readValue method was last successfully executed, the property values will indicate the status
at the time the DataEvent event or ErrorEvent event was sent. The tag name “TransactionType” will
be set to the value of last successful transaction method call.

The queryLast SuccessfulTransactionResult method is necessary because there may be situations
where a transaction result is unknown. This could be due to power failure or network communication
interruptions occurring just before the transaction result updated. Some EVR/W devices support a
function to provide the last transaction results from the device and this method utilizes this functionality.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.
Unified POS, v1.16.1 455

15.5.29 readValue Method

Syntax readValue (sequenceNumber: int32, timeout: int32): 
 void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number
timeout The maximum waiting time (in milliseconds) until the response is

received from the device. FOREVER(-1), 0, and positive values can be
specified.

Remarks Reads the electronic value from the card.

Electronic value is read from the card specified by sequenceNumber on demand.

When timeout is FOREVER(-1), a timeout never occurs and the Service waits indefinitely until it
receives a response from the device.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid or unsupported parameter was specified.
E_TIMEOUT No response was received from device during the specified Timeout in

milliseconds.
E_BUSY The device cannot accept any commands now.

See Also addValue Method, cancelValue Method, subtractValue Method, writeValue Method.

15.5.30 registerServiceToMedium Method　　　　　　　　　Added in Release 1.14

Syntax registerServiceToMedium
 (sequenceNumber: int32, timeout: int32): 
 void { raises-exception, use after open-claim-enable }

Parameter Description 　　　　　　　
sequenceNumber Sequence number
timeout The maximum waiting time (in milliseconds) until the response is

received from the device. FOREVER(-1), 0, and positive values can be
specified.

Remarks Electronic value service is registered to a medium.

When timeout is FOREVER(-1), timeout never occurs and it waits indefinitely until it receives a
response from the device.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.
456 Unified POS, V1.16.1

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 　　　　　　　
E_ILLEGAL Invalid or unsupported parameter was specified.

E_TIMEOUT No response was received from device during the specified timeout in
milliseconds.

E_BUSY The device cannot accept any commands now.

See Also checkServiceRegistrationToMedium Method, 
unregisterServiceToMedium Method.

15.5.31 retrieveResultInformation Method　　　　　　　　　Added in Release 1.15

Syntax retrieveResultInformation (name: string, inout value: string):
 void { raises-exception, use after open, claim }

Parameter Description 　　　　　　
name The tag name whose value is to be retrieved.
value The string value for the tag specified by the name parameter.

 If the name parameter is not recognized or not supported for the current 
 card type, the value returned will be an empty string (““).

Remarks The retrieveResultInformation method is used to associate a tag name with the data value that comes
from the card that is being read.

The following table defines the tag name and associated information on its value and usage.

Tag name Type** of String and Description

AccessLogLastDateTime The Datetime of obtaining the last
transaction log.

AccountNumber Account ID String for electronic value service. Although it has the same 
information in a property, it is recommended to use this tag name/value.

Amount Settlement Currency amount
requested to the EVR/W. 
Although it has the same information in a property, it is recommended to use
this tag name/value.

AmountForPoint The Currency amount targeted for 
calculating points. The amount will be specified when the EVR/W device cal-
culates the point values to be added at the same time as settlement, but there are
some products not targeted for points.

AuthenticationStatus The Enumerated number for the status of authentication.

AutoCharge Boolean for request to conduct an automatic charge at the time of issuing a
method, or the result of automatic charge at the time of completing the process.

Balance The Currency balance of electronic value service. Although it has the same in-
formation in a property, it is recommended to use this tag name/value.
Unified POS, v1.16.1 457

BalanceOfPoint The Currency balance of point service.Although it has the same information in
a property, it is recommended to use this tag name/value.

BusinessUnitID ID String for a store.

CardCompanyName The String name of a company issuing
electronic value media (card or mobile phone).

CardTransactionLogID The ID String for transaction details stored in electronic value service
media (card or mobile phone).

CardTransactionNumber The transaction Number assigned and controlled by electronic value
service media (card or mobile phone).

ChargeableAmount The Currency amount for which charging is possible

ChargeableCount The Number of times in which charging is possible.

ChargeMethod The Enumerated value for the method to charge an electronic value service:
1. Cash
2. Exchanging points

DateTime The Datetime of issuing a method, 
notifying an event, or completing a process.

EffectiveDaysOfKey The Number of days the Key value is effective.

EndAccountID The ending point specified by an account ID String when requesting closing or
summary to the EVR/W.

EndDateTime The ending point specified by the Datetime when requesting closing or summa-
ry to the EVR/W.

EndEVRWTransactionNumber The ending point Number specified by the EVR/W transaction
sequential number when requesting closing or summary to the EVR/W.

EndPOSTransactionNumber The ending point Number specified by a POS transaction number when
requesting closing or summary to the EVR/W.

EVRWApprovalCode The approval code String for processing assigned and controlled by the 
EVR/W.

EVRWDataUpdateDateTime The Datetime when the internal data of the EVR/W was updated.

EVRWDateTime The Datetime managed by the EVR/W.

EVRWID The ID Number of the EVR/W

EVRWTransactionLogID The ID String for transaction details stored in the EVR/W

EVRWTransactionNumber The transaction Number assigned and controlled by the EVR/W.

ExpirationDate The expiration DateTime of the medium. Although it has the same information
in a property, it is recommended to use this tag name/value.

ExpiredAccountID The String description provided when information is held for an account
already expired in the electronic value service media (card or mobile phone).

ForceOnlineCheck Boolean
Specifies request to force the center to check online/offline status at the time 
of settlement.

InsufficientAmount Insufficient Currency amount when the balance is found insufficient by the
EVR/W.

ItemCode The item code String for the product handled in the settled transaction.
458 Unified POS, V1.16.1

KeyExpirationDateTime The DateTime when the key expires.

KeyUpdateDateTime The DateTime when the key of the EVR/W was last updated.

LastTimeBalance Currency Balance before settlement

LastTimeCardTransaction-
LogID

The ID String for last time transaction details stored in electronic value service
media (card or mobile phone).

LastTimeEVRWTransaction-
LogID

The ID String for last time transaction details stored in the EVR/W.

LastUsedDateTime The most recent used DateTime of the medium. Although it has the same infor-
mation in a property, it is recommended to use this tag name/value.

LogCheck Boolean
The flag to specify whether to check the transaction log when voiding the set-
tlement.

MediaData Information String data for electronic value media (card or mobile phone) that
is not related to POS. The content can be freely set by service providers or ven-
dors.

MediumID The ID Number for electronic value service media (card or mobile phone).
Although it has the same information in a property, it is recommended to use
this tag name/value.

MediumIssuerInformation The String containing the information on the issuer of the medium.

MemberInformation The String containing the information of the membership certificate.

MerchantID The String containing the merchant identification information.

ModuleID The ID Number for individual settlement modules or applications that exist in
the EVR/W that provides multiple services.

NegativeInformationType The Enumerated value indicating the type of negative transaction 
information.

NegativeInformationUpdate-
DateTime

The DateTime when the negative information of the EVR/W was updated.

NumberOfAddition The Number of charge settlement transactions

NumberOfEVRWTransaction-
Log

The Number of transaction details stored in the EVR/W.

NumberOfFreeEVRWTransac-
tionLog

The Number value of free space for transaction details stored in the EVR/W

NumberOfRecord The Number of records

NumberOfSentEVRWTransac-
tionLog

The Number of transaction details that are stored in the EVR/W and have been
sent to the settlement center.

NumberOfSubtraction The Number of settlement transactions.

NumberOfTransaction The total Number of transactions

NumberOfUncompletedAddi-
tion

The Number of transactions uncompleted due to communication error between
the EVR/W and electronic value media (card or mobile phone) during the
charge settlement transaction.

NumberOfUncompletedSub-
traction

The Number of transactions uncompleted due to communication error between
the EVR/W and electronic value media (card or mobile phone) during the set-
tlement transaction.
Unified POS, v1.16.1 459

NumberOfUncompletedVoid The Number of transactions uncompleted due to communication error between
the EVR/W and electronic value media (card or mobile phone) during voiding
transaction.

NumberOfVoid The Number of voiding transactions

OtherAmount The Currency amount for extra payment when it is used for the transaction to-
gether with a regular settlement.

PaymentCondition The Enumerated number for the type of payment for the settlement amount in
case of post-pay type electronic value services.

PaymentDetail The String data of the type of payment for the settlement amount in case of
post-pay type electronic value services.

PaymentMethod The Enumerated number for the amount required by the EVR/W, it specifies
the type of settlement of transaction amount:
1. Full settlement
2. Settlement combined with another payment method.

PaymentMethodForPoint The Enumerated value that represents the settlement method that is targeted
for calculating points.

Point The point value Number requested to the EVR/W from POS. Although it has
the same information in a property, it is recommended to use this tag
name/value.

POSDateTime The Datetime of accounting managed by POS.

POSTransactionNumber The sequential Number that identifies the POS transaction.

RegistrableServiceCapacity The Number indicating the quantity of services that can be registered.

RequestedAutoChargeAmount The Currency amount requested for automatic charge.

ResponseCode1 The primary result code Number for processing.The content can be freely set
by service providers or vendors.

ResponseCode2 The secondary result code Number for detailed processing.The content can be
freely set by service providers or vendors.

ResultOnSettlement The Enumerated number for the result status of the settlement 
transaction between the EVR/W and electronic value media
(card or mobile phone)

RetryTimeout Timeout Number (in milliseconds) until the EVR/W is touched by electronic
value media (card or mobile phone) when it is necessary to retry processing be-
tween the EVR/W and electronic value media (card or mobile phone)

SettledAmount The Currency amount actually settled with the EVR/W. Although it has the
same information in a property, it is recommended to use this tag name/value.

SettledAutoChargeAmount The automatic charge Currency value actually settled by the EVR/W

SettledMemberInformation The String which contains the member information in the 
membership certificate after it has been updated.

SettledOther-Amount The actual Currency amount of extra payment when an electronic value
service is used with other settlement methods.

SettledPoint The point value Number actually settled by the EVR/W.

SetttledVoucherID The String which contains the updated voucher ID.

SettlementNumber The sequential Number for the clearing process.
460 Unified POS, V1.16.1

SignatureFlag Boolean
The flag to specify whether or not it is necessary to sign after settlement.

SoundAssistFlag Boolean
The flag specifying whether or not to activate voice navigation.

StartAccountID The starting point specified by a String account ID when requesting closing or
summary to the EVR/W.

StartDateTime The starting point specified by the Datetime when requesting closing or
summary to the EVR/W.

StartEVRWTransactionNum-
ber

The starting point Number specified by the EVR/W transaction
sequential number when requesting closing or summary to the EVR/W.

StartPOSTransactionNumber The starting point Number specified by a POS transaction number when
requesting closing or summary to the EVR/W.

SummaryTermType The Enumerated number that specifies the term for the summary process.

TargetService The String which contains the information about the target service.

TaxOthers Tax and other Currency amounts included in the settlement amount
required by the EVR/W.

TotalAmountOfAddition The total Currency amount of charge settlement transactions

TotalAmountOfSubtraction Total Currency amount of settlement transactions.

TotalAmountOfTransaction The total Currency amount of the transactions.

TotalAmountOfUncomplete-
dAddition

The total Currency amount of transactions not completed due to
communication errors between the EVR/W and electronic value media
(card or mobile phone) during the charge settlement transaction.

TotalAmountOfUncompleted-
Subtraction

The total Currency amount of transactions not completed due to
communication errors between the EVR/W and electronic value media
(card or mobile phone) during the transaction settlement.

TotalAmountOfUncompleted-
Void

The total Currency amount of transactions not completed due to
communication errors between the EVR/W and electronic value media
(card or mobile phone) during voiding transactions.

TotalAmountOfVoid The total Currency amount of voided transactions.

TouchTimeout Timeout Number (in milliseconds) until the EVR/W is touched by 
electronic value media (card or mobile phone).

TransactionType The Enumerated number for the type of transaction for the electronic value
service.

UILCDControl Boolean
Specifies whether or not a LCD is controlled if the EVR/W has a LCD.

UILEDControl Boolean
Specifies whether or not a LED is controlled if the EVR/W has a LCD.

UISOUNDControl Boolean
Specifies whether or not sound is controlled if EVR/W has sounds.

VOIDorRETURN The Enumerated value for how a transaction is voided:
1. Void
2. Return
Unified POS, v1.16.1 461

All the values for the tags are typed as character strings. The following table shows the format for the string
values.

VoidTransactionType The Enumerated value for the type of transaction to be voided:
1. Cash
2. Exchanging points

VoucherID The ID String of the voucher/ticket.

VoucherIDList The enumerated IDs String of the voucher/ticket.

WorkstationID ID String for POS.

WorkstationMaker The String which identifies the manufacturer’s code of the workstation
manufacturer.

WorkstationSerialNumber The String which contains the manufacturer’s serial number or the 
identification code of the POS workstation.

Type** Format

String Text character string.

Number 32 bit Integer value represented by text characters.

Currency 64 bit Integer value represented by text characters.The 4 fixed
numbers of digits define below a decimal point.
For example, if the integer is “1234567,” then the currency value is
“123.4567.”
462 Unified POS, V1.16.1

The following values are used for the Enumerated tags.

Datetime Datetime format is: yyyy '-' mm '-' dd 'T' hh ':' mm ':' ss '.' sss zzzzzz where '-
' is the character separator between the date elements.
yyyy is a 4-digits numeral representing the year.
mm is a 2-digits numeral representing the month (from 01 to 12) .
dd is a 2-digits numeral representing the day of the month
(from 01 to 31).
'T' is the character separator between the date and the time.
':' is the character separator between the time elements.
hh is a 2-digits numeral representing the hours (from 00 to 23).
mm (the second one) is a 2-digits numeral representing the minute (from 00
to 59).
ss is a 2-digits numeral representing the integer part of the seconds (from 00
to 59).
'.' is the character separator between the time and the fractional
seconds.
sss is a 1-digit to 3-digits numeral representing the fractional
seconds.
zzzzzz represent the time zone which is the character 'Z' for a GMT time, or
the delta from the GMT time, with a string of the form
(('+' | '-') hh ':' mm) where '+' represent a positive delta from the GMT time
'-' represent a negative delta from the GMT time hh is a 2-digits numeral rep-
resenting the delta hours (from 00 to 14) mm is a 2-digits numeral represent-
ing the delta minute (from 00 to 59)
Requesting a mandatory time zone resolves the problem of Daylight Saving
Time or Summer Time, because the time is absolute.
Examples 2008-04-12T23:20:50.275 represents the date of 12 April 2008 on
the local time of 20 minutes, 50 seconds and 275 milliseconds past 23 hours.
2008-04-12T22:20:50.275+01:00 represents the same date and time in Gene-
va. 2008-04-12T17:20:50.275-05:00 represents the same date and time in
New-York.

Boolean A logical type of string value “True” or “False.”

Enumerated One of the text character strings defined by each tag.

Tag Definition Remarks

Authentication
Status

EVRW_TAG_AS_AUTHENTICATED Authenticated

EVRW_TAG_AS_UNAUTHENTICATED Unauthenticated

Cancel
Transaction
Type

EVRW_TAG_CTT_CANCEL Canceling

EVRW_TAG_CTT_CHARGE Canceling charge

EVRW_TAG_CTT_RETURN Return

EVRW_TAG_CTT_SALES Canceling sales
Unified POS, v1.16.1 463

Charge
Method

EVRW_TAG_CM_CASH Charge by cash

EVRW_TAG_CM_CREDIT Charge by credit

EVRW_TAG_CM_POINT Charge by points

Negative
Information
Type

EVRW_TAG_NIT_ALL Full list of negative
settlement 
information.

EVRW_TAG_NIT_UPDATED Updated list of
negative 
settlement 
information

Payment
Condition

EVRW_TAG_PC_ INSTALLMENT_2 Installment 2

EVRW_TAG_PC_ INSTALLMENT_3 Installment 3

EVRW_TAG_PC_BONUS_1 Bonus 1

EVRW_TAG_PC_BONUS_2 Bonus 2

EVRW_TAG_PC_BONUS_3 Bonus 3

EVRW_TAG_PC_BONUS_4 Bonus 4

EVRW_TAG_PC_BONUS_5 Bonus 5

EVRW_TAG_PC_BONUS_COMBINATION_1 With extra 
payment by 
bonus 1

EVRW_TAG_PC_BONUS_COMBINATION_2 With extra 
payment by 
bonus 2

EVRW_TAG_PC_BONUS_COMBINATION_3 With extra 
payment by 
bonus 3

EVRW_TAG_PC_BONUS_COMBINATION_4 With extra 
payment by 
bonus 4

EVRW_TAG_PC_INSTALLMENT_1 Installment 1

EVRW_TAG_PC_LUMP Lump-sum

EVRW_TAG_PC_REVOLVING Revolving

Payment
Method

EVRW_TAG_PM_COMBINED Settlement 
combined with
other payment

EVRW_TAG_PM_FULL_SETTLEMENT Full settlement
464 Unified POS, V1.16.1

Errors A UposException may be thrown when this method is invoked. For further information, see
 “Errors” on page 16.

Payment
Method
ForPoint

EVRW_TAG_PMFP_CASH Cash

EVRW_TAG_PMFP_CREDIT Credit card

EVRW_TAG_PMFP_EM Electronic money

EVRW_TAG_PMFP_OTHER Other

ResultOnSet-
tlement

EVRW_TAG_ROS_NG Abnormal 
termination

EVRW_TAG_ROS_OK Normal 
termination

EVRW_TAG_ROS_UNKNOWN Unidentified

Summary
TermType

EVRW_TAG_STT_1 From the previous
type of summary
result to current.

EVRW_TAG_STT_2 From the summary
result before the
previous type of
result to the 
previous summary
result.

EVRW_TAG_STT_3 From the summary
result two times
before the previous
type of summary
result to the 
summary result 
before the previous
result.

Transaction-
Type

EVRW_TAG_TT_ADD Adding (Charge)

EVRW_TAG_TT_CANCEL_CHARGE Canceling charge

EVRW_TAG_TT_CANCEL_RETURN Canceling/Return

EVRW_TAG_TT_CANCEL_SALES Canceling sales

EVRW_TAG_TT_COMPLETION Authorizing com-
pletion

EVRW_TAG_TT_GET_LOG Acquiring a 
transaction log

EVRW_TAG_TT_PRE-SALES Authorizing pre-
sales

EVRW_TAG_TT_READ Reading
(Reference)

EVRW_TAG_TT_RETURN Return

EVRW_TAG_TT_SUBTRACT Subtracting (Sales)

EVRW_TAG_TT_WRITE Writing
Unified POS, v1.16.1 465

15.5.32 setParameterInformation Method　　　　　　　　　Added in Release 1.14

Syntax setParameterInformation (name: string, value: string):void 
{ raises-exception, use after open, claim }

Parameter Description 　　　　
name The tag used to identify the specific card data item.
value The string value associated with the tag name. 

If the name parameter is not recognized or not supported for the current
card type, the value returned will be an empty string (““).

Remarks The setParameterInformation method is used to associate a tag name with additional the data value
parameters that are associated with the card that is being read. Refer to explanation of a
retrieveResultInformation method for the tags and values that can be used.

The application can call a clearParameterInformation method which will set the value to the empty
string (““).

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also clearParameterInformation Method, retrieveResultInformation Method.
466 Unified POS, V1.16.1

15.5.33 subtractValue Method

Syntax subtractValue (sequenceNumber: int32, timeout: int32): 
 void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number
timeout The maximum waiting time (in milliseconds) until the response is

received from the device. FOREVER(-1), 0, and positive values can be
specified.

Remarks Subtracts the electronic value from the card.

Electronic value is subtracted from the card specified by sequenceNumber on demand.

When timeout is FOREVER(-1), timeout never occurs and the Service waits indefinitely until it receives
a response from the device.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid or unsupported parameter was specified.
E_TIMEOUT No response was received from device during the specified timeout in

milliseconds.
E_BUSY The device cannot accept any commands now.

See Also CapSubtractValue Property, addValue Method, cancelValue Method, readValue Method, 
writeValue Method.
Unified POS, v1.16.1 467

15.5.34 transactionAccess Method

Syntax transactionAccess (control: int32): 
 void { raises-exception, use after open-claim-enable }

Parameter Description
control The transaction control, can be set to one of the following values:

Value Meaning 　　　　　　　　
EVRW_TA_TRANSACTION　 Begin a transaction
EVRW_TA_NORMAL End the transaction mode by executing the buffer operation.

Remarks Enters or exits transaction mode.

If control is EVRW_TA_TRANSACTION, then transaction mode is entered. Subsequent calls to
readValue, writeValue, addValue, subtractValue, and cancelValue will buffer the data until
transactionAccess is called with the control parameter set to EVRW_TA_NORMAL. It depends on the
implementation if buffering is done in the EVR/W device or buffering is done within the Service.

If control is EVRW_TA_NORMAL, then transaction mode is exited. If some requests were buffered by
calls to the methods readValue, writeValue, addValue, subtractValue, and cancelValue, then the
buffered requests will be executed.

The entire transaction requests are treated as one message. This method is performed synchronously if
AsyncMode is false, and asynchronously if AsyncMode is true.

Calling the clearOutput method cancels transaction mode. Any buffered print lines are also cleared.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also AsyncMode Property, CapTransaction Property, addValue Method, cancelValue Method, readValue
Method, subtractValue Method, writeValue Method.
468 Unified POS, V1.16.1

15.5.35 unlockTerminal Method Updated in Release 1.14.1

Syntax unlockTerminal (): 
 void { raises-exception, use after open-claim-enable }

Remarks Releases the security lock on the device or the service. When the device has a security lock function, it
is supported. AdditionalSecurityInformation property is set when key information is required to
release the lock.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The device does not have a security lock function. CapUnlockTerminal is

false.
E_BUSY The device cannot accept any commands now.

See Also AdditionalSecurityInformation Property, CapUnlockTerminal Property 
lockTerminal Method.

15.5.36 unregisterServiceToMedium Method Added in Release 1.14.1

Syntax unregisterServiceToMedium
 (sequenceNumber: int32, timeout: int32): 
 void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number

timeout The maximum waiting time (in milliseconds) until the response is
received from the device. FOREVER(-1), 0, and positive values can be
specified.

Remarks Electronic value service is deleted from a medium.

When timeout is FOREVER(-1), timeout never occurs and it waits indefinitely until it receives a
response from the device. This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid or unsupported parameter was specified.

E_TIMEOUT No response was received from device during the specified timeout in
milliseconds.

E_BUSY The device cannot accept any commands now.

See Also registerService Method.
Unified POS, v1.16.1 469

15.5.37 updateData Method Added in Release 1.14.1

Syntax updateData (dataType:int32, inout data: int32, inout obj: object): 
 void { raises-exception, use after open-claim-enable }

Parameter Description
dataType Type of the data which accesses

Value Meaning
EVRW_AD_KEY Key information.
EVRW_AD_NEGATIVE_LIST Negative list.
EVRW_AD_OTHERS Other information.
data An array of one mutable integer whose specific values or

 usage vary by service.
obj Additional data whose usage varies by service.

Remarks The data of an EVR/W is updated.

The contents of data are dependent on service.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.
For consistency, a Service must always fire at least one TransitionEvent with an incomplete progress
completion percentage (i.e., a percentage between 1 and 99), even if the device cannot physically report
the progress of the process. If the process completes successfully, the Service must fire a
TransitionEvent with a progress of 100. These Service requirements allow applications using this
method to be designed to always expect some level of progress notification.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The device does not have the activation.
E_BUSY The device cannot accept any commands now.

See Also accessData Method, TransitionEvent.
470 Unified POS, V1.16.1

15.5.38 updateKey Method Updated in Version 1.14.1

Syntax updateKey (inout data: int32, inout obj: object): 
 void { raises-exception, use after open-claim-enable }

Remarks Updates the key information in the device. If the device has the function to the key information, it is
supported. The content of processing and the content of the parameter depend on the implementation.

Added in Release 1.14.1:For consistency, a Service must always fire at least one TransitionEvent with
an incomplete progress completion percentage (i.e., a percentage between 1 and 99), even if the device
cannot physically report the progress of the process.

If the process completes successfully, the Service must fire a TransitionEvent with a progress of 100.

These Service requirements allow applications using this method to be designed to always expect some
level of progress notification.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The device does not have the update function of key information.
E_BUSY The device cannot accept any commands now.

See Also TransitionEvent

15.5.39 writeValue Method

Syntax writeValue (sequenceNumber: int32, timeout: int32): 
 void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number
timeout The maximum waiting time (in milliseconds) until the response is

received from the device. FOREVER(-1), 0, and positive values can be
specified.

Remarks Writes the electronic value in the card. Electronic value is written in the card specified by
sequenceNumber on demand. When timeout is FOREVER(-1), timeout never occurs and it waits
indefinitely until it receives a response from the device. This method is performed synchronously if
AsyncMode is false, and asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Invalid or unsupported parameter was specified.
E_TIMEOUT No response was received from device during the specified timeout in

milliseconds.
E_BUSY The device cannot accept any commands now.

See Also CapWriteValue Property, addValue Method, cancelValue Method, readValue Method,
 subtractValue Method 

Unified POS, v1.16.1 471

15.6 Events (UML interfaces)

15.6.1 DataEvent

<< event >> upos::events::DataEvent 
Status: int32 { read-only }

Description Notifies the application about the available input data from the device.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 The Status parameter contains zero.

Remarks Before this event is delivered, the data is set into the appropriate property.

See Also “Events” on page 15.

15.6.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific EVR/W Service to provide events to the application that are not otherwise supported by the
Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and
 the Service. This property is settable.
Obj Object Additional data whose usage varies by the EventNumber and Service.

 This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s EVR/W
devices which may not have any knowledge of the Service’s need for this event.

 See Also “Events” on page 15, directIO Method.
472 Unified POS, V1.16.1

15.6.3 ErrorEvent

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an EVR/W error has been detected and a suitable response by the
application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event.

ErrorCodeExtended

int32 Extended Error code causing the error event. If ErrorCode is
　 E_EXTENDED, then see values below. Otherwise, it may contain a 　　

　 　　　 Service-specific value.
ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden by the application.
(i.e., this property is settable). See values below.

If ErrorCode is E_EXTENDED, then ErrorCodeExtended has one of the following values:

Value Meaning

EVRW_CENTERERROR

An error was returned from the approval agency.
EVRW_COMMANDERROR

The command sent to the device is wrong. This error is never returned so
long as device control is working correctly.

EVRW_RESET The device was stopped during processing by device reset key (stop key)
and so on.

EVRW_COMMUNICATIONERROR

Communication error has occurred between the approval agency (center)
and device.

EVRW_LOGOVERFLOW

Transaction log was too big to be stored. Getting transaction log has been
stopped and the value of TransactionLog is uncertain.

EVRW_DAILYLOGOVERFLOW

Try to processing, a failure will occur if the transaction log on the device
is full and cannot be settle.

EVRW_DEFICIENT Because the balance is insufficient, it cannot be subtracted.

EVRW_OVERDEPOSIT

Because the amount that was able to be charged was exceeded, it cannot
be added.
Unified POS, v1.16.1 473

The ErrorLocus property may be one of the following:

Value Meaning
EL_OUTPUT Error occurred while processing asynchronous output.
EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.
EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and

some previously buffered data is available.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error processing may change ErrorResponse to one of the following values:

Value Meaning
ER_RETRY Typically valid only when locus is EL_OUTPUT.

Retry the asynchronous output. The error state is exited.
May be valid when locus is EL_INPUT.
Default when locus is EL_OUTPUT.

ER_CLEAR Clear all buffered output data (including all asynchronous output) or
buffered input data. The error state is exited. Default when locus is
EL_INPUT.

ER_CONTINUEINPUT
Used only when locus is EL_INPUT_DATA. Acknowledges the error
and directs the Control to continue processing. The Control remains in the
error state and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and the
DataEventEnabled
property is again set to true, then another ErrorEvent is delivered with
locus EL_INPUT. Default when locus isEL_INPUT_DATA.

Remarks Notifies when the error is detected when a method is asynchronously executed, and the state of the
control moves to the error state.

Input error events are generated when errors occur while reading the data from a card, directed by
readValue method. These error events are not delivered until the DataEventEnabled property is
set to true so as to allow proper application sequencing. All error information is placed into the
applicable properties before this event is delivered.

Output error events are generated and delivered when errors occur during asynchronous output
processing. The errors are placed into the applicable properties before the events are delivered.

See Also “Events” on page 15.
474 Unified POS, V1.16.1

15.6.4 OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued asynchronous output request associated with the OutputID
attribute has completed successfully.

Attributes This event contains the following attribute:

Attributes Type Description
OutputID int32 The ID number of the asynchronous output request that is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Service has confirmation that
it was processed by the device successfully.

See Also “Device Output Models” on page 20.

15.6.5 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application when the device detects a status change.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 The status condition of the EVR/W.The Status attribute has one of the

following values:

Value Description
EVRW_SUE_LS_OK The transaction log has enough capacity.
EVRW_SUE_LS_NEARFULL

The transaction log is nearly full.
EVRW_SUE_LS_FULL The transaction log is full.
EVRW_SUE_DS_NOCARD

The card detection sensor does not detect the card.
EVRW_SUE_DS_DETECTED

The card detection sensor detected the card.
EVRW_SUE_DS_ENTERED

The insertion slot sensor detected the card.
EVRW_SUE_DS_CAPTURED

The stock space sensor detected the card.

Note that Release 1.3 added Power State Reporting with additional Power reporting
StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See description “StatusUpdateEvent" in Chapter 1.
Unified POS, v1.16.1 475

Remarks This event is enqueued when a EVR/W detection undergoes a change or if Power State Reporting is
enabled and a change in the power state is detected.

The state of the transaction log is reported only if CapLogStatus is true.

See Also CapLogStatus Property, LogStatus Property, “Events” on page 15.

15.6.6 TransitionEvent Updated in Release 1.14

<< event >> upos::events::TransitionEvent

EventNumber: int32 { read-only }

pData:int32{ read-write }

pString:string{ read-write }

Description Notifies the application that an important device process condition has occurred during an asynchronous
I/O operation and a suitable response is necessary by the application.

Note: In the OPOS environment, the format of this data depends upon the value of the
BinaryConversion property. See BinaryConversion property in Annex A.

Attributes This event contains the following attribute:

Attribute Type Description

EventNumber int32 The ID number of the asynchronous I/O device process condition that is
the cause for the event.

pData int32 Additional information about appropriate response which is dependent
upon the specific process condition.

pString string Information about the specific event that has occurred.

The EventNumber attribute has one of the following values:

Value Description

EVRW_TE_NOTIFY_TOUCH_RETRY
Update retry notification
Notification of retouching request (Retouching cannot be canceled until
a certain period of time passes)

EVRW_TE_NOTIFY_TOUCH_RETRY_CANCELABLE
Update retry notification (can be canceled)
Notification of retouching request (Retouching can be canceled at any
time)
476 Unified POS, V1.16.1

EVRW_TE_CONFIRM_TOUCH_RETRY
Confirmation of update retry (continued or canceled)
At the time of completing the event, it specifies in pData whether to
continue waiting for retouching (1), or to cancel (0).

EVRW_TE_CONFIRM_CANCEL
Confirmation of process cancellation
At the time of completing the event, it specifies in pData whether to
cancel the process (1), or to continue (0).

EVRW_TE_NOTIFY_INVALID_OPERATION
Notification of issuing an invalid operation
The event code is set in pData

EVRW_TE_CONFIRM_INVALID_OPERATION
Confirmation of invalid operation
The event code is set in pData. Specifies whether to continue the
process (1), or to terminate the process abnormally (0).

EVRW_TE_CONFIRM_REMAINDER_SUBTRACTION
Confirmation of insufficient funds and the deductible amount from the
balance. 
The balance is set in Balance property during notification. After
completing the event, specify in pData whether to deduct all the
balance (1), or to cancel (0).

EVRW_TE_CONFIRM_CENTER_CHECK
Confirmation of a center check
At the time of completing the event, specify in pData whether to
conduct a center check (1), or not (0).

EVRW_TE_CONFIRM_TOUCH_TIMEOUT
Confirmations of timeout to wait for touching 
At the time of completing the event, specify in pData whether to
continue touching (1) or not (0).

EVRW_TE_CONFIRM_AUTO_CHARGE
Confirmation of automatic charge
At the time of completing the event, specify in pData whether to
continue touching (1) or not (0).

EVRW_TE_NOTIFY_CAPTURE_CARD
Notification of card detection

EVRW_TE_NOTIFY_CENTER_CHECK
Notification of center checkis being conducted.

EVRW_TE_NOTIFY_COMPLETE
Notification of process completion. 
Used when it is necessary to provide this information before same
Unified POS, v1.16.1 477

information is available through an OutputCompleteEvent event.

EVRW_TE_NOTIFY_PIN Notification that PIN input data is available in the PIN input status

EVRW_TE_NOTIFY_TOUCH
Status Notification of waiting for touching.

EVRW_TE_NOTIFY_BUSY
Status Notification that a processis underway requires some time
before it is completed.

EVRW_TE_CONFIRM_CENTER_CHECK_COMPLETE
The confirmation that a center check has been completed.
After the check is completed, specify in pData whether to continue the
process after the completion (1) or cancel the process (0).

EVRW_TE_CONFIRM_SELECT
Confirmation of settlement option when there are options available for
settlement. Options are set in pString in CSV format. 
After completing the event, specify in pData the selected element
number, starting with number 1).

EVRW_TE_NOTIFY_LOCK
Notification that unlocking card or device is required.
Notifies that a user must unlock the card (mobile phone) which is
currently in a locked state.

EVRW_TE_NOTIFY_CENTER_CHECK_COMPLETE
Notifies that a center check has finished.

EVRW_TE_NOTIFY_PROGRESS_1_TO_100
Notification of process progress The process has successfully
completed 1 to 100 percent of the total operation.

EVRW_TE_CONFIRM_DEVICE_DATA
The required confirmation of a data event.
The confirmation of a data event occurs when an EVR/W device
requires the delivery of data during processing of a method call. The
data is delivered by using the AddditionalSecurityInformation
property.

EVRW_TE_CONFIRM_PIN_ENTRY_BY_OUTER_PINPAD
Requesting PIN input from an external device.Confirmation of PIN
input request from an external PIN input device. The pData is used to
specify whether to cancel the process at the time of event completion
(0), or to continue the process (1). 
To continue the process, specify in pString the PIN data acquired from
the PIN pad device. When the effective PIN is not obtained from a PIN
pad, (2) it is returned in pData.
478 Unified POS, V1.16.1

EVRW_TE_CONFIRM_SEARCH_TABLE
Confirmation of table search request.
The encrypted information block is passed through the
AdditionalSecurityInformation property. The content of the
information block and the method of encryption are implementation
dependent.

EVRW_TE_CONFIRM_PAYMENT_CONDITION
Confirmation of payment method selection request. At event
notification, pString lists selectable payment method strings in CSV
format. The character string indicating the payment method is the
value of the enumerator that can be specified in the
PaymentCondition tag. At the end of the event, specify both the
PaymentCondition tag enumerator that indicates the payment method
in the pData argument and the payment type details in the CSV
format as the pString argument. The CSV format that defines the
details of the payment type follows the specification of the
PaymentCondition property.

EVRW_TE_CONFIRM_AUTHORIZE
Confirmation of authorization communication request. The encrypted
information block is passed through the
AdditionalSecurityInformation property. The content of the

 information block and the method of encryption are implementation
dependent.

EVRW_TE_NOTIFY_CHECK_CARD
Notification of card check.

EVRW_TE_NOTIFY_SELECT_PAYMENT_CONDITION
Notification of payment method selection.
Unified POS, v1.16.1 479

The event codes specified in pData during the EventNumber(s)
EVRW_TE_NOTIFY_INVALID_OPERATION and
EVRW_TE_CONFIRM_INVALID_OPERATION have the following meanings.

PData Parameter Description
 1 Mismatch of a retouched card
 2 Card authentication error
 3 An uncompleted process occurs again when requesting re-touching.
 4 Failure of PIN input
 5 Requests processing after a detailed check.
 6 Mismatch of cards
 7 Detects multiple cards
 8 Detects a card with the balance at 0.

Remarks This event is enqueued when the EVR/W process requires notification of application or device
service of impending activity that requires immediate action or response.

See Also “Events” on page 15.
480 Unified POS, V1.16.1

16 Fiscal Printer

16.1 General

This chapter defines the Fiscal Printer device category.

16.2 Summary

Properties (UML attributes)

Common Type Mutability Versio
n

May Use After

AutoDisable: boolean { read-write } 1.3 Not supported

CapCompareFirmwareVersion: boolean { read-only } 1.9 open

CapPowerReporting: int32 { read-only } 1.3 open

CapStatisticsReporting: boolean { read-only } 1.8 open

CapUpdateFirmware: boolean { read-only } 1.9 open

CapUpdateStatistics: boolean { read-only } 1.8 open

CheckHealthText: string { read-only } 1.3 open

Claimed: boolean { read-only } 1.3 open

DataCount: int32 { read-only } 1.3 Not supported

DataEventEnabled: boolean { read-write } 1.3 Not supported

DeviceEnabled: boolean { read-write } 1.3 open & claim

FreezeEvents: boolean { read-write } 1.3 open

OutputID: int32 { read-only } 1.3 open

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.3 --

DeviceControlDescription: string { read-only } 1.3 --

DeviceControlVersion: int32 { read-only } 1.3 --

DeviceServiceDescription: string { read-only } 1.3 open

DeviceServiceVersion: int32 { read-only } 1.3 open

PhysicalDeviceDescription: string { read-only } 1.3 open

PhysicalDeviceName: string { read-only } 1.3 open
Unified POS, v1.16.1 481

Properties (Continued)

Specific Type Mutability Version May Use After

CapAdditionalHeader:

CapAdditionalLines:

CapAdditionalTrailer:

CapAmountAdjustment:

CapAmountNotPaid:

CapChangeDue:

CapCheckTotal:

CapCoverSensor: (1)

CapDoubleWidth:

CapDuplicateReceipt:

CapEmptyReceiptIsVoidable:

CapFiscalReceiptStation:

CapFiscalReceiptType:

CapFixedOutput:

CapHasVatTable:

CapIndependentHeader:

CapItemList:

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

1.6

1.3

1.6

1.3

1.3

1.6

1.3

1.3

1.3

1.3

1.6

1.6

1.6

1.3

1.3

1.3

1.3

open

open

open

open

Deprecated v1.11

open

open

open

open

open

open

open

open

open

open

open

open

CapJrnEmptySensor: (1)

CapJrnNearEndSensor: (1)

CapJrnPresent: (1)

boolean

boolean

boolean

{ read-only }

{ read-only }

{ read-only }

1.3

1.3

1.3

open

open

open

CapMultiContractor:

CapNonFiscalMode:

CapOnlyVoidLastItem:

CapOrderAdjustmentFirst:

CapPackageAdjustment:

CapPercentAdjustment:

CapPositiveAdjustment:

CapPositiveSubtotalAdjustment

CapPostPreLine:

CapPowerLossReport:

CapPredefinedPaymentLines:

CapReceiptNotPaid:

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

1.6

1.3

1.6

1.3

1.6

1.3

1.3

1.11

1.6

1.3

1.3

1.3

open

open

open

open

open

open

open

open

open

open

open

open

CapRecEmptySensor: (1)

CapRecNearEndSensor: (1)

CapRecPresent: (1)

boolean

boolean

boolean

{ read-only }

{ read-only }

{ read-only }

1.3

1.3

1.3

open

open

open
482 Unified POS, V1.16.1

Properties (Continued)

Specific (continued) Type Mutability Version May Use After

CapRemainingFiscalMemory:

CapReservedWord:

CapSetCurrency:

CapSetHeader:

CapSetPOSID:

CapSetStoreFiscalID:

CapSetTrailer:

CapSetVatTable:

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

1.3

1.3

1.6

1.3

1.3

1.3

1.3

1.3

open

open

open

open

open

open

open

open

CapSlpEmptySensor: (1)

CapSlpFiscalDocument:

 CapSlpFullSlip: (1)

CapSlpNearEndSensor: (1)

CapSlpPresent: (1)

CapSlpValidation:

CapSubAmountAdjustment:

CapSubPercentAdjustment:

CapSubtotal:

CapTotalizerType:

CapTrainingMode:

CapValidateJournal:

CapXReport:

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.6

1.3

1.3

1.3

open

open

open

open

open

open

open

open

open

open

open

open

open

ActualCurrency: int32 { read-only } 1.6 open, claim, & enable

AdditionalHeader: string { read-write } 1.6 open, claim, & enable

AdditionalTrailer: string { read-write } 1.6 open, claim, & enable

AmountDecimalPlaces: int32 { read-only } 1.3 open, claim, & enable

AsyncMode: boolean { read-write } 1.3 open

ChangeDue: string { read-write } 1.6 open

CheckTotal: boolean { read-write } 1.3 open

ContractorId: int32 { read-write } 1.6 open, claim, & enable

CountryCode: int32 { read-only } 1.3 open, claim, & enable

CoverOpen: (1) boolean { read-only } 1.3 open, claim, & enable

DateType: int32 { read-write } 1.6 open, claim, & enable

DayOpened: boolean { read-only } 1.3 open, claim, & enable

DescriptionLength: int32 { read-only } 1.3 open

DuplicateReceipt: boolean { read-write } 1.3 open

ErrorLevel: int32 { read-only } 1.3 open
Unified POS, v1.16.1 483

NOTE: Properties and methods marked with (1) are adapted from the POS Printer device.

Properties (Continued)

Specific (continued) Type Mutability Version May Use After

ErrorOutID: int32 { read-only } 1.3 open, claim, & enable

ErrorState: int32 { read-only } 1.3 open

ErrorStation: int32 { read-only } 1.3 open

ErrorString: string { read-only } 1.3 open

FiscalReceiptStation: int32 { read-write } 1.6 open, claim, & enable

FiscalReceiptType: int32 { read-write } 1.6 open, claim, & enable

FlagWhenIdle: (1) boolean { read-write } 1.3 open

JrnEmpty: boolean { read-only } 1.3 open, claim, & enable

JrnNearEnd: boolean { read-only } 1.3 open, claim, & enable

MessageLength:

MessageType:

int32

int32

{ read-only }

{ read-write }

1.3

1.6

open

open

NumHeaderLines: int32 { read-only } 1.3 open

NumTrailerLines: int32 { read-only } 1.3 open

NumVatRates: int32 { read-only } 1.3 open

PostLine: string { read-write } 1.6 open, claim, & enable

PredefinedPaymentLines: string { read-only } 1.3 open

PreLine: string { read-write } 1.6 open, claim, & enable

PrinterState: int32 { read-only } 1.3 open, claim, & enable

QuantityDecimalPlaces: int32 { read-only } 1.3 open, claim, & enable

QuantityLength: int32 { read-only } 1.3 open, claim, & enable

RecEmpty: (1) boolean { read-only } 1.3 open, claim, & enable

RecNearEnd: (1) boolean { read-only } 1.3 open, claim, & enable

RemainingFiscalMemory: int32 { read-only } 1.3 open, claim, & enable

ReservedWord: string { read-only } 1.3 open

SlpEmpty: (1) boolean { read-only } 1.3 open, claim, & enable

SlpNearEnd: (1) boolean { read-only } 1.3 open, claim, & enable

SlipSelection: int32 { read-write } 1.3 open, claim, & enable

TotalizerType: int32 { read-write } 1.6 open, claim, & enable

TrainingModeActive: boolean { read-only } 1.3 open, claim, & enable
484 Unified POS, V1.16.1

16.3 General Information

The Fiscal Printer programmatic name is “FiscalPrinter.” The Fiscal Printer Control does not attempt to
encapsulate a generic graphics printer. Rather, for performance and ease of use considerations, the interfaces are
defined to directly control the normal printer functions.

Since fiscal rules differ between countries, this interface tries to generalize the common requirements at the
maximum extent specifications. This interface is based upon the fiscal requirements of the following countries, but
it may fit the needs of other countries as well:

• Brazil

• Bulgaria

• Germany

• Greece

• Hungary

• Italy

• Poland

• Romania

• Russia

• Turkey

• Czech Republic

• Ukraine

• Sweden

The Fiscal Printer model defines three stations with the following general uses:

• Journal Used for simple text to log transaction and activity information. Kept by the store for audit and other
purposes.

• Receipt Used to print transaction information. It is mandatory to give a printed fiscal receipt to the customer.
Also often used for store reports. Contains either a knife to cut the paper between transactions, or a tear bar to
manually cut the paper.

• Slip Used to print information on a form. Usually given to the customer.
The Slip station is also used to print “validation” information on a form. The form type is typically a check or
credit card slip. 
It may also be used to print complete transaction information instead of printing it on the receipt station.

Sometimes, limited forms-handling capability is integrated with the receipt or journal station to permit validation
printing. Often this limits the number of print lines, due to the station’s forms-handling throat depth. The Fiscal
Printer Control nevertheless addresses this printer functionality as a slip station.

Configuration and initialization of the fiscal memory of the Fiscal Printer are not covered in this specification.
These low-level operations must be performed by authorized technical assistance personnel.
Unified POS, v1.16.1 485

16.3.1 Fiscal Printer Class Diagram

The following diagram shows the relationships between the Fiscal Printer classes.

<<uses>>

UposExcepti on

(from upos)

<<exception>>
UposConst

(from upos)

<<utility>>

Fisca lPrinte rConst

(from upos)

<<utility>>

DataEvent

<<prop>> Sta tus : int32

(from events)

<<event>>

Di rectIO Event

<<prop>> EventNum ber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

ErrorEvent

<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : i nt32
<<prop>> ErrorLocus : int32
<<prop>> ErrorResponse : i nt32

(from events)

<<event>>

O utputComp le teEvent

<<prop>> OutputID : int32

(from events)

<<e vent>>
Sta tusUpdateEvent

<<prop>> Sta tus : int32

(from events)

<<event>>

Fisca lPri nte rControl

(from upos)

<<Inte r face>>

<<sends>>
<<uses>>

fires

fires

fires

fires fires

BaseControl

(from upos)

<<Inte rface>>

<<sends>>
486 Unified POS, V1.16.1

16.3.2 General Requirements

Fiscal Printers do not simply print text similar to standard printers. They are used to monitor and memorize all
fiscal information about a sale transaction. A Fiscal Printer has to accumulate totals, discounts, number of
canceled receipts, taxes, etc. and has to store this information in different totalizers, counters and the fiscal
memory. In order to perform these functions, it is not sufficient to send unformatted strings of text to the Fiscal
Printer; there is a need to separate each individual field in a receipt line item, thus differentiating between
descriptions, prices and discounts. Moreover, it is necessary to define different printing commands for each
different sale functionality (such as refund, item or void).

Fiscal rules are different among countries. This interface tries to generalize these requirements by summarizing
the common requirements. Fiscal law requires that:

• Fiscal receipts must be printed and given to the customer.

• Fiscal Printers must be equipped with memory to store daily totals. Each receipt line item must increment
totals registers and, in most countries (Greece, Poland, Brazil, Hungary, Romania, Bulgaria, Russia and
Turkey) tax registers as well.

• Discounts, canceled items and canceled receipts must increment their associated registers on the Fiscal Printer.

• Fiscal Printer must include a clock to store date and time information relative to each single receipt.

• Each fiscal receipt line item is normally printed both on the receipt and on the journal (Italy, Greece, Poland),
but as an extension it can also be printed on the slip and journal.

• After a power failure (or a power off) the Fiscal Printer must be in the same state as it was before this event
occurred. This implies that care must be taken in managing the Fiscal Printer status and that power failure
events must be managed by the application. In some countries, a power failure must be logged and a report
must be printed.

16.3.3 Fiscal Printer Modes

According to fiscal rules, it is possible for a Fiscal Printer to also offer functionality beyond the required fiscal
printing mode. These additional modes are optional and may or may not be present on any particular Fiscal
Printer.

There are three possible Fiscal Printer modes:

• Fiscal: This is the only required mode for a Fiscal Printer. In this mode the application has access to all the
methods needed to manage a sale transaction and to print a fiscal receipt. It is assumed that any lines printed to
the receipt station while in fiscal mode are also printed on the journal station.

• Training: In this mode, the Fiscal Printer is used for training purposes (such as cashier training). In this mode,
the Fiscal Printer will accept fiscal commands but the Fiscal Printer will indicate on each receipt or document
that the transaction is not an actual fiscal transaction. The Fiscal Printer will not update any of its internal fiscal
registers while in training mode. Such printed receipts are usually marked as “training” receipts by Fiscal
Printers. CapTrainingMode will be true if the Fiscal Printer supports training mode, otherwise it is false.

• Non-Fiscal: In this mode the Fiscal Printer can be used to print simple text on the receipt station (echoed on
the journal station) or the slip station. The Fiscal Printer will print some additional lines along with the
application requested output to indicate that this output is not of a fiscal nature. Such printed receipts are
usually marked as “non-fiscal” receipts by Fiscal Printers. CapNonFiscalMode will be true if the Fiscal
Printer supports non-fiscal printing, otherwise it is false.
Unified POS, v1.16.1 487

16.3.4 Model Updated in Release 1.12

The Fiscal Printer follows the output model for devices, with some enhancements:

• Most methods are always performed synchronously. Synchronous methods will throw a UposException if
asynchronous output is outstanding.

• The following methods are performed either synchronously or asynchronously, depending on the value of the
AsyncMode property:

printFiscalDocumentLine
printFixedOutput
printNormal
printRecCash
printRecItem
printRecItemVoid
printRecItemAdjustment
printRecItemAdjustmentVoid
printRecItemFuel
printRecItemFuelVoid
printRecItemRefund
printRecItemRefundVoid
printRecMessage
printRecNotPaid
printRecPackageAdjustment
printRecPackageAdjustVoid
printRecRefund
printRecRefundVoid
printRecSubtotal
printRecSubtotalAdjustment
printRecSubtotalAdjustVoid
printRecTaxID
printRecTotal
printRecVoid

When AsyncMode is false, then these methods print synchronously.

When AsyncMode is true, then these methods operate as follows:

• The Device buffers the request in program memory, for delivery to the Physical Device as soon as the Physical
Device can receive and process it, sets the OutputID property to an identifier for this request, and returns as
soon as possible. When the device completes the request successfully, the OutputCompleteEvent is
enqueued. A parameter of this event contains the OutputID of the completed request.

Asynchronous Fiscal Printer methods will not throw a UposException due to a printing problem, such as out of
paper or Fiscal Printer fault. These errors will only be reported by an ErrorEvent. A UposException is thrown
only if the Fiscal Printer is not claimed and enabled, a parameter is invalid, or the request cannot be enqueued.
The first two error cases are due to an application error, while the last is a serious system resource exception.

• If an error occurs while performing an asynchronous request, an ErrorEvent is enqueued. The ErrorStation
property is set to the station or stations that were printing when the error occurred. The ErrorLevel,
ErrorString and ErrorState and ErrorOutID properties are also set.
488 Unified POS, V1.16.1

The event handler may call synchronous print methods (but not asynchronous methods), then can either retry the
outstanding output or clear it.

• Asynchronous output is performed on a first-in first-out basis.

• All buffered output data, including all asynchronous output, may be deleted by calling clearOutput.
OutputCompleteEvents will not be delivered for cleared output. This method also stops any output that may
be in progress (when possible).

• The property FlagWhenIdle may be set to cause a StatusUpdateEvent to be enqueued when all outstanding
outputs have finished, whether successfully or because they were cleared.

16.3.5 Error Model Updated in Release 1.13

The Fiscal Printer error reporting model is as follows:

• Most of the Fiscal Printer error conditions are reported by setting the UposException’s (or ErrorEvent’s)
ErrorCode to E_EXTENDED and then setting ErrorCodeExtended to one of the following: 

EFPTR_COVER_OPEN
The Fiscal Printer cover is open.
EFPTR_JRN_EMPTY
The journal station has run out of paper.
EFPTR_REC_EMPTY
The receipt station has run out of paper.
EFPTR_SLP_EMPTY
The slip station has run out of paper.
EFPTR_SLP_FORM
A form is still present in the document station even though it should have been removed by
the last action.
EFPTR_MISSING_DEVICES
Some of the other devices that according to the local fiscal legislation are to be connected
are missing. In some countries in order to use a Fiscal Printer a full set of peripheral devices
are to be connected to the POS (such as cash drawer and customer display). In case one of
these devices is not present, sales are not allowed.
EFPTR_WRONG_STATE
The requested method could not be executed in the Fiscal Printer’s current state.
EFPTR_TECHNICAL_ASSISTANCE
The Fiscal Printer has encountered a severe error condition. Calling for Fiscal Printer
technical assistance is required.
EFPTR_CLOCK_ERROR
The Fiscal Printer’s internal clock has failed.
EFPTR_FISCAL_MEMORY_FULL
The Fiscal Printer’s fiscal memory has been exhausted.
EFPTR_FISCAL_MEMORY_DISCONNECTED
The Fiscal Printer’s fiscal memory has been disconnected.
EFPTR_FISCAL_TOTALS_ERROR
The Grand Total in working memory does not match the one in the EPROM.
Unified POS, v1.16.1 489

EFPTR_BAD_ITEM_QUANTITY
The quantity parameter is invalid.
EFPTR_BAD_ITEM_AMOUNT
The amount parameter is invalid.
EFPTR_BAD_ITEM_DESCRIPTION
The description parameter is either too long, contains illegal characters or contains a
reserved word.
EFPTR_RECEIPT_TOTAL_OVERFLOW
The receipt total has overflowed.
EFPTR_BAD_VAT
The vat parameter is invalid.
EFPTR_BAD_PRICE
The price parameter is invalid.
EFPTR_BAD_DATE
The date parameter is invalid.
EFPTR_NEGATIVE_TOTAL
The Fiscal Printer’s computed total or subtotal is less than zero.
EFPTR_WORD_NOT_ALLOWED
The description contains the reserved word.
EFPTR_BAD_LENGTH
The length of the string to be printed as post or pre line is too long.
EFPTR_MISSING_SET_CURRENCY
The Fiscal Printer is expecting the activation of a new currency.
EFPTR_DAY_END_REQUIRED
The completion of the fiscal day is required.

Other Fiscal Printer errors are reported by setting the exception’s (or ErrorEvent’s) ErrorCode to E_FAILURE
or another error status. These failures are typically due to a Fiscal Printer fault or jam, or to a more serious error.
490 Unified POS, V1.16.1

16.3.6 Release 1.8 Additional Model Clarifications

While the Fiscal Printer is enabled, the printer state is monitored, and changes are reported to the application.
Most Fiscal Printer statuses are reported by both firing a StatusUpdateEvent and by updating a printer property.
Statuses, as defined in the later properties and events sections, are:

Prior to Release 1.8

StatusUpdateEvent Property
FPTR_SUE_COVER_OPEN CoverOpen = true
FPTR_SUE_COVER_OK CoverOpen = false
FPTR_SUE_JRN_EMPTY JrnEmpty = true
FPTR_SUE_JRN_NEAREMPTY JrnNearEnd = true
FPTR_SUE_JRN_PAPEROK JrnEmpty = JrnNearEnd = false
FPTR_SUE_REC_EMPTY RecEmpty = true
FPTR_SUE_REC_NEAREMPTY RecNearEnd = true
FPTR_SUE_REC_PAPEROK RecEmpty = RecNearEnd = false
FPTR_SUE_SLP_EMPTY SlpEmpty = true
FPTR_SUE_SLP_NEAREMPTY SlpNearEnd = true
FPTR_SUE_SLP_PAPEROK SlpEmpty = SlpNearEnd = false

Release 1.8 and later

FPTR_SUE_JRN_COVER_OPEN CoverOpen = true
FPTR_SUE_JRN_COVER_OK CoverOpen = false if all covers closed;

CoverOpen = true if any other cover is open
FPTR_SUE_REC_COVER_OPEN CoverOpen = true
FPTR_SUE_REC_COVER_OK CoverOpen = false if all covers closed;

CoverOpen = true if any other cover is open
FPTR_SUE_SLP_COVER_OPEN CoverOpen = true
FPTR_SUE_SLP_COVER_OK CoverOpen = false if all covers closed;

CoverOpen = true if any other cover is open

Release 1.8 – Clarification

The Fiscal Printer’s slip station statuses must be reported independently from the slip insertion and removal
methods – beginInsertion / endInsertion and beginRemoval / endRemoval. This is important because some
applications base logic decisions upon Fiscal Printer state changes. That is, the application will only perform slip
insertion after knowing that a slip has been placed at the entrance to the slip station. An example: After the Total
key is pressed, the application enters tendering mode. It begins to monitor peripherals and the keyboard to
determine the type of tender to perform. If a credit or debit card is swiped at an MSR, then its DataEvent causes
the application to begin credit/debit tender. But if a form is placed at the slip station, then its StatusUpdateEvent
or SlpEmpty property change causes the application to begin a check MICR read.

When a form is placed at the entrance to the slip station, the Fiscal Printer must fire a
PTR_SUE_SLP_PAPEROK StatusUpdateEvent and set the SlpEmpty and SlpNearEnd properties to false. The
application may then call the beginInsertion and endInsertion methods with reasonable confidence that they
will succeed. Note that it must not be assumed that the form is ready for printing after the
PTR_SUE_SLP_PAPEROK is received. Only after successful beginInsertion and endInsertion calls is the form
ready for printing.
Unified POS, v1.16.1 491

When a form is removed from the slip station, the Fiscal Printer must fire a PTR_SUE_SLP_EMPTY
StatusUpdateEvent and set the SlpEmpty property to true. If the beginInsertion and endInsertion method
sequence has not been called, then removing the form from the slip station entrance will cause this to occur. If
this method sequence has successfully completed, then the event and property change will typically occur after a
beginRemoval and endRemoval method sequence. But they would also occur if the slip prints beyond the end
of the form or if the form is forcibly removed.

Exception: The design of some Fiscal Printers makes it impossible for a service to determine the presence of a
form until the printer “jaws” are opened, which occurs when beginInsertion is called. This exception is largely
limited to cases where the CapSlpFullslip property is false, indicating a “validation” type of slip station.
Validation stations typically use the same Fiscal Printer mechanism as the receipt and/or journal stations. In these
cases, the slip status events must be fired as soon as possible, given the constraints of the device.

16.3.7 Fiscal Printer States Updated in Release 1.8

As previously described, a Fiscal Printer is characterized by different printing modes. Moreover, the set of
commands that can be executed at a particular 
moment depends upon the current state of the Fiscal Printer.

The current state of the Fiscal Printer is kept in the PrinterState property.

The Fiscal Printer has the following states:

• Monitor:
This is a neutral state. From this state, it is possible to move to most of the other Fiscal Printer states. After a
successful call to the claim method and successful setting of the DeviceEnabled property to true the Fiscal
Printer should be in this state unless there is a Fiscal Printer error.

• Fiscal Receipt:
The Fiscal Printer is processing a fiscal receipt. All printRec… methods except printRecNotPaid and
printRecTaxID are available for use while in this state. This state is entered from the Monitor state using the
beginFiscalReceipt method.

• Fiscal Receipt Total:
The Fiscal Printer has already accepted at least one payment method, but the receipt’s total amount has not yet
been tendered. This state is entered from the Fiscal Receipt state by use of the printRecTotal method. The
Fiscal Printer remains in this state while the total remains unpaid. This state can be left by using the
printRecTotal, printRecNotPaid or printRecVoid methods.

• Fiscal Receipt Ending:
The Fiscal Printer has completed the receipt up to the Total line. In this state, it may be possible to print tax
information using the printRecTaxID method if this is supported by the Fiscal Printer. This state is entered
from the Fiscal Receipt state via the printRecVoid method or from the Fiscal Receipt Total state using either
the printRecTotal, printRecNotPaid, or printRecVoid methods. This state is exited using the
endFiscalReceipt method at which time the Fiscal Printer returns to the Monitor state.

• Fiscal Document:
The Fiscal Printer is processing a fiscal document. The Fiscal Printer will accept the
printFiscalDocumentLine method while in this state. 
This state is entered from the Monitor state using the beginFiscalDocument method. This state is exited using
the endFiscalDocument method at which time the Fiscal Printer returns to the Monitor state.

• Monitor and TrainingModeActive are true:
The Fiscal Printer is being used for training purposes. All fiscal receipt and document commands are available.
492 Unified POS, V1.16.1

This state is entered from the Monitor state using the beginTraining method. This state is exited using the
endTraining method at which time the Fiscal Printer returns to the Monitor state.

• Fiscal Receipt and TrainingModeActive are true:
The Fiscal Printer is being used for training purposes and a receipt is currently opened. To each line of the
receipt, special text will be added in order to differentiate it from a fiscal receipt.

• Fiscal Total and TrainingModeActive are true:
The Fiscal Printer is in training mode and receipt total is being handled.

• Fiscal ReceiptEnding and TrainingModeActive are true:
The Fiscal Printer is being used for training is in the receipt ending phase.

• NonFiscal:
The Fiscal Printer is printing non-fiscal output on either the receipt (echoed on the journal) or the slip. In this
state the Fiscal Printer will accept the printNormal method. The Fiscal Printer prints a message that indicates
that this is non-fiscal output with all application text. This state is entered from the Monitor state using the
beginNonFiscal method. This state is exited using the endNonFiscal method at which time the Fiscal Printer
returns to the Monitor state.

• Fixed:
The Fiscal Printer is being used to print fixed, non-fiscal output to one of the Fiscal Printer’s stations. In this
state the Fiscal Printer will accept the printFixedOutput method. This state is entered from the Monitor state
using the beginFixedOutput method. This state is exited using the endFixedOutput method at which time
the Fiscal Printer returns to the Monitor state.

• ItemList:
The Fiscal Printer is currently printing a line item report. In this state the Fiscal Printer will accept the
verifyItem method. This state is entered from the Monitor state using the beginItemList method. This state is
exited using the endItemList method at which time the Fiscal Printer returns to the Monitor state.

• Report:
The Fiscal Printer is currently printing one of the supported types of reports. This state is entered from the
Monitor state using one of the printReport, printPeriodicTotalsReport, printPowerLossReport,
printXReport or printZReport methods. When the report print completes, the Fiscal Printer automatically
returns to Monitor state.

• FiscalSystemBlocked:
The Fiscal Printer is no longer operational due to one of the following reasons:

• The Fiscal Printer has been disconnected or has lost power.

• The Fiscal Printer’s fiscal memory has been exhausted.

• The Fiscal Printer’s internal data has become inconsistent.

In this state the Fiscal Printer will only accept methods to print reports and retrieve data. The Fiscal Printer
cannot exit this state without the assistance of an authorized technician.

When the application sets the property DeviceEnabled to true it also monitors its current state. In a standard
situation, the PrinterState property is set to FPTR_PS_MONITOR after a successfully setting DeviceEnabled to
true. This indicates that there was no interrupted operation remaining in the Fiscal Printer.

If the Fiscal Printer is not in the FPTR_PS_MONITOR state, the state reflects the Fiscal Printer's interrupted
operation and the PowerState property is set to PS_OFF. In this situation, it is necessary to force the Fiscal
Printer to a normal state by calling the resetPrinter method.
Unified POS, v1.16.1 493

This means that a power failure occurred or the last application that accessed the device left it in a not clear state.

Notice that even in this case the method returns successfully after setting DeviceEnabled to true. It is required
that the application checks the PowerState property and checks for a received StatusUpdateEvent with the
value SUE_POWER_OFF in the Status property after successfully setting the DeviceEnabled property.
494 Unified POS, V1.16.1

16.3.8 Fiscal Printer State Diagram Added in Release 1.12
Unified POS, v1.16.1 495

16.3.9 Document Printing

Using a Fiscal Printer’s slip station it may be possible (depending upon the Fiscal Printer’s capabilities and on
special fiscal rules) to print the following kinds of documents:

• Fiscal Documents:
In order to print fiscal documents an amount value must be sent to the Fiscal Printer and recorded by it.
CapSlpFiscalDocument will be true if the Fiscal Printer supports printing fiscal documents. If fiscal
documents are supported they may be either full length (if CapSlpFullSlip is true) or validation (if
CapSlpValidation is true). The actual selection is made using the SlipSelection property but only one totalizer
is assigned to all the fiscal documents.
A fiscal document is started using the beginFiscalDocument method and terminated by using the
endFiscalDocument method. A line is printed using the printFiscalDocumentLine method.

• Non-Fiscal Full Length Documents:
Full-length slip documents may be printed if CapSlpFullSlip is true and SlipSelection is set to
FPTR_SS_FULL_LENGTH.
This document is started using the beginNonFiscal method and terminated by using the endNonFiscal
method. A line is printed using the printNormal method.

• Non-Fiscal Validation Documents:
Validation documents may be printed if CapSlpValidation is true and SlipSelection is set to
FPTR_SS_VALIDATION. This document is started using the beginNonFiscal method and terminated by
using the endNonFiscal method. A line is printed using the printNormal method.

• Fixed Text Documents:
Fixed text documents may be printed if CapFixedOutput is true. If fixed text documents are supported they
may be either full length (if CapSlpFullSlip is true) or validation (if CapSlpValidation is true). The actual
selection is made using the SlipSelection property.

16.3.10 Ordering of Fiscal Receipt Print Requests Updated in Release 1.13

A fiscal receipt is started using the beginFiscalReceipt method.

Each fiscal receipt consists of a mandatory receipt header and a mandatory receipt trailer, normally with the
country specific logotype. If CapFiscalReceiptType is true the type of a fiscal receipt may be specified by the
FiscalReceiptType property.

The following receipt types are defined:

• Retail Sales Receipt:
The daily totalizers are updated, the printRec... methods must be used.

• Simplified Invoice Receipt:
The daily totalizers are updated, a special title is printed, the printRec... methods can be used, except the
printRecRefund, printRecRefundVoid printRecItemRefund, and printRecItemRefundVoid methods.

• Service Sales Receipt:
The daily totalizers are updated, but a special header line is printed to identify this type of receipt. The
printRec... methods must be used.

• Generic Receipt:
Free text can be printed using printNormal method, no totalizer is updated. A special header line is printed to
identify this type of receipt.
496 Unified POS, V1.16.1

• Cash-In Receipt:
This type of receipt helps to reconcile the cash amount. The cash-in amount is incremented by the amount
given as an argument to the printRecCash method. Free text can be printed using printNormal method, the
receipt can be cancelled.

• Cash-Out Receipt:
This type of receipt helps to reconcile the cash amount. The cash-in amount is decremented by the amount
given as an argument to the printRecCash method. Free text can be printed using printNormal method, the
receipt can be cancelled.

If CapIndependentHeader is true, then it is up to the application to decide if the fiscal receipt header lines are
to be printed at this time or not. Otherwise, the header lines are printed immediately prior to the first line item
inside a fiscal receipt. Printing the header lines at this time will decrease the amount of time required to process
the first fiscal receipt print method, but it may result in more receipt voids as well. The beginFiscalReceipt
method may only be called if the Fiscal Printer is currently in the Monitor state and this call will change the
Fiscal Printer’s current state to Fiscal Receipt.

Before selling the first line item, it is possible to exit from the Fiscal Receipt state by calling the
endFiscalReceipt method. If header lines have already been printed, this method will cause also receipt voiding.

Once when a Retail Sales Receipt is selected and the first line item has been printed, the Fiscal Printer remains
in the Fiscal Receipt state and the following fiscal print methods are available:

printRecItem
printRecItemVoid
printRecItemAdjustment
printRecItemAdjustmentVoid
printRecItemFuel
printRecItemFuelVoid
printRecItemRefund
printRecItemRefundVoid
printRecMessage
printRecPackageAdjustment
printRecPackageAdjustVoid
printRecRefund
printRecRefundVoid
printRecSubtotal
printRecSubtotalAdjustment
printRecSubtotalAdjustVoid
printRecTotal
printRecVoid

The printRecItem, printRecItemVoid, printRecItemAdjustment, printRecItemAdjustmentVoid,
printRecItemFuel, printRecItemFuelVoid, printRecItemRefund, printRecItemRefundVoid,
printRecPackageAdjustment, printRecPackageAdjustVoid, printRecRefund, printRecRefundVoid,
printRecSubtotal, printRecSubtotalAdjustment, printRecMessage (only available if
CapAdditionalLines is true), and printRecSubtotalAdjustVoid will leave the Fiscal Printer in the Fiscal
Receipt state. The printRecTotal methods will change the Fiscal Printer’s state to either Fiscal Receipt
Total or Fiscal Receipt Ending, depending upon whether the entire receipt total has been met. The
printRecVoid method will change the Fiscal Printer’s state to Fiscal Receipt Ending.
Unified POS, v1.16.1 497

While in the Fiscal Receipt Total state the following fiscal print methods are available:

printRecMessage 
printRecNotPaid
printRecTotal
printRecVoid

The printRecMessage (only available if CapAdditionalLines is true) method will leave the Fiscal
Printer in the Fiscal Receipt Total state. The printRecNotPaid (only available if CapReceiptNotPaid
is true) and printRecTotal methods will either leave the Fiscal Printer in the Fiscal Receipt Total state
or change the Fiscal Printer’s state to Fiscal Receipt Ending, depending upon whether the entire receipt
total has been met. The printRecVoid method will change the Fiscal Printer’s state to Fiscal Receipt
Ending.

While in the Fiscal Receipt Ending state the following fiscal methods are available:

printRecMessage
printRecTaxID
endFiscalReceipt

The printRecMessage (only available if CapAdditionalLines is true) and printRecTaxID methods
will leave the Fiscal Printer in the Fiscal Receipt Ending state. The endFiscalReceipt will cause receipt
closing and will then change the Fiscal Printer’s state to Monitor.

At no time can the Fiscal Printer’s total for the receipt be negative. If this occurs, the Fiscal Printer will
generate an ErrorEvent or throw an exception.
498 Unified POS, V1.16.1

16.3.11 Fiscal Receipt Layouts Updated in Release 1.8

The following is an example of a typical fiscal receipt layout:

• Header Lines:
Header lines contain all of the information about the store, such as telephone number, address and name of the
store. All of these lines are fixed and are defined before selling the first item (using the setHeaderLine
method).
If CapMultiContractor property is true, two sets of header lines can be defined, assigned to the value of the
ContractorId property. These lines may either be printed when the beginFiscalReceipt method is called or
when the first fiscal receipt method is called.

• Additional Header Lines:
Header lines defined by the AdditionalHeader property to be printed after the fixed header lines when the
beginFiscalReceipt method is called.

• Transaction Lines:
All of the lines of a fiscal transaction, such as line items, discounts and surcharges. Optionally they may be
assigned to a specific contractor.

• Total Line:
The line containing the transaction total, tender amounts and possibly change due.

• Message Lines:
These are lines printed using the printRecMessage method.

• Trailer Lines:
These are fixed promotional messages stored on the Fiscal Printer (using the setTrailerLine method). They are
automatically printed when the endFiscalReceipt method is called. In fact, depending upon fiscal legislation
and upon the Fiscal Printer vendor, the relative position of the trailer and the fiscal logotype lines can vary.

• Fiscal Lines:
These are lines containing information to be inserted in the receipt due to fiscal legislations such as
the fiscal logotype, date, time and serial number. They are also printed automatically when the
endFiscalReceipt method is called.

• Additional Trailer Lines:
These are receipt specific information defined in the AdditionalTrailer property to be printed after
the Fiscal Lines on the receipt before cutting it, when the endFiscalReceipt method is called.
Unified POS, v1.16.1 499

16.3.12 Example of a Fiscal Receipt

Fiscal receipt Definition of the
line

UPOS methods and
properties

name of the store fixed header lines beginFiscalReceipt
address data stored with

 ZIP code and place setHeaderLine and
fiscal identification of the store tax number line setFIscalID

Good Morning add. header line AdditionalHeader property

Milk 1.000 A transaction line printRecItem
Special offer pre item line PreLine property
Beer 4.000 B transaction line printRecItem
Discount Beer -500 B transaction line printRecItemAdjustment
Bread 3.500 A transaction line printRecItem
Storno Bread -3.500 A transaction line printRecItemVoid
Apples 2.000 A transaction line printRecItem

SUBTOTAL 6.500 subtotal line printRecSubtotal

Lamp 12.000 C transaction line printRecItem

VAT category A 3.000 VAT summary printRecTotal
VAT 7.50% 225 (… , 10000, “Check”)
VAT category B 3.500
VAT 12.00% 420
VAT category C 12.000
VAT 10.00% 1.200
sum of VAT 1.845

TOTALE 18.500 total line

Check 10.000 payment line
Cash 10.000 payment line printRecTotal

(… , 10000, “Cash”)
Return - 1.500 change line

Advertising messages a.s.o. message line printRecMessage
THANK YOU FOR BUYING AT trailer line endFiscalReceipt

SABERTINI trailer line data stored with
 setTrailerLine and

24/05/99 14:25 No 225 logo line at initialisation time
MF B5 012345678 logo line of the fiscal printer

Good Bye
CONGRATULATION Mrs. Smith!

You have won: 150 points of fidelity

additional trailer
lines

AdditionalTrailer property
500 Unified POS, V1.16.1

16.3.13 Totalizers and Fiscal Memory

The Fiscal Printer is able to select the fiscal relevant data and to accumulate and store them in the following
types of totalizers:

• Receipt Totalizers:
The different kind of amounts of the current receipt are accumulated in receipt totalizers.

• Day Totalizers:
At the end of a fiscal receipt, when calling the endFiscalReceipt method, the receipt totalizers are added to the
day totalizers where the totals of a fiscal period (day) are summarized. The contents of the current day
totalizers are printed when calling the printXReport method. At the end of a fiscal day or period totalizers are
printed when calling the printZReport method.

• Document Totalizers:
The different kind of amounts of the current document are accumulated in document totalizers.

• Grand Totalizers:
Some of the totalizers are stored in the fiscal memory at the end of a fiscal period when calling the
printZReport method. These are the grand totalizers. The application may print the contents of the fiscal
memory by calling printReport method.

The application may fetch the different totalizers using the getData method or the getTotalizer method, whereas
the type of totalizer can be specified by setting the TotalizerType property and the assignment to a contractor by
setting the ContractorId property.

16.3.14 Counters

The Fiscal Printer is able to count some features of fiscal receipt and documents. The application may fetch the
different counters using the getData method.

16.3.15 VAT Tables

Some Fiscal Printers support storing VAT (Value Added Tax) tables in the Fiscal Printer’s memory. Some of
these Fiscal Printers will allow the application to set and modify any of the table entries. Others allow only
adding new table entries but do not allow existing entries to be modified. Some Fiscal Printers allow the VAT
table to bet set only once.

If the Fiscal Printer supports VAT tables, CapHasVatTable is true. If the Fiscal Printer allows the VAT table
entries to be set or modified CapSetVatTable is true. The maximum number of different vat rate entries in the
VAT table is given by the NumVatRates property. VAT tables are set through a two step process. First the
application uses the setVatValue method to set each table entry to be sent to the Fiscal Printer.

Next, the setVatTable method is called to send the entire VAT table to the Fiscal Printer at one time.

16.3.16 Receipt Duplication

In some countries, fiscal legislation can allow printing more than one copy of the same receipt.
CapDuplicateReceipt will be true if the Fiscal Printer is capable of printing duplicate receipts. Then, setting
DuplicateReceipt true causes the buffering of all receipt printing commands. DuplicateReceipt is set false after
receipt closing. In order to print the receipt again the printDuplicateReceipt method has to be called.
Unified POS, v1.16.1 501

16.3.17 Currency Amounts, Percentage Amounts, VAT Rates, and Quantity Amounts

• Currency amounts (and also prices) are passed as values with the data type long. This is a 64 bit signed integer
value that implicitly assumes four digits as the fractional part. For example, an actual value of 12345
represents 1.2345. So, the range supported is from
 -922,337,203,685,477.5808
 to 
+922,337,203,685,477.5807
The fractional part used in the calculation unit of a Fiscal Printer may differ from the long data type. The
number of digits in the fractional part is stored in the AmountDecimalPlaces property and determined by the
Fiscal Printer. The application has to take care that calculations in the application use the same fractional part
for amounts.

• If CapHasVatTable is true, VAT rates are passed using the indexes that were sent to the setVatValue method.

• If CapHasVatTable is false, VAT rates are passed as amounts with the data type int32. The number of digits in
the fractional part is implicitly assumed to be four.

• Percentage amounts are used in methods which allow also surcharge and/or discount amounts. If the amounts
are specified to be a percentage value the value is also passed in a parameter of type long.

• The percentage value has (as given by the long data type) four digits in the fractional part. It is the percentage
(0.0001% to 99.9999%) multiplied by 10000.

• Quantity amounts are passed as values with the data type int32. The number of digits in the fractional part is
stored in the QuantityDecimalPlaces property and determined by the Fiscal Printer.

16.3.18 Currency Change

If CapSetCurrency is true the Fiscal Printer is able to change the currency, the application may set a new
currency (e.g., EURO) using the setCurrency method.

16.3.19 Device Sharing

The Fiscal Printer is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing many Fiscal Printer-specific properties.

• The application must claim and enable the device before calling methods that manipulate the device.

See the “Summary” table for precise usage prerequisites.
502 Unified POS, V1.16.1

16.4 Properties (UML attributes)

16.4.1 ActualCurrency Property Updated in Release 1.12

Syntax ActualCurrency: int32 { read-only, access after open-claim-enable }

Remarks Holds a value identifying which actual currency is used by the Fiscal Printer.

 This property is only valid if CapSetCurrency is true. 

Values are:

Value Meaning
FPTR_AC_BRC The actual currency is Brazilian cruceiro.
FPTR_AC_BGL The actual currency is Bulgarian lev.
FPTR_AC_EUR The actual currency is EURO.
FPTR_AC_GRD The actual currency is Greek drachma.　　　　　　　　　
FPTR_AC_HUF The actual currency is Hungarian forint.　　　　　　　　　　　　　
FPTR_AC_ITL The actual currency is Italian lira.　　　　　　　　　　　　　　　
FPTR_AC_PLZ The actual currency is Polish zloty.　　　　　　　　　
FPTR_AC_ROL The actual currency is Romanian leu.　　　　　　　　　　　　　
FPTR_AC_RUR The actual currency is Russian rouble.　　　　　　　　　　　　　　
FPTR_AC_TRL The actual currency is Turkish lira.　　　　　　　　　　　
FPTR_AC_CZK The actual currency is Czechian Koruna.　　　　　　　　　
FPTR_AC_UAH The actual currency is Ukrainian Hryvnia.　　　　　　　　　　
FPTR_AC_SEK The actual currency is Swedish Krona.　　　　　　　　　　
FPTR_AC_OTHER The actual currency is unknown. (May be used for a country that recently
 fiscalized.)

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also setCurrency Method, CapSetCurrency Property.
Unified POS, v1.16.1 503

16.4.2 AdditionalHeader Property　　　　　　　　　　　　Added in Release 1.6

Syntax AdditionalHeader: string { read-write, access after open-claim-enable }

Remarks Specifies a user specific text which will be printed on the receipt after the fixed header lines when calling
the beginFiscalReceipt method. This property is only valid if CapAdditionalHeader is true.

This property is initialized to an empty string and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support printing text after the fixed header 
 lines.

See Also beginFiscalReceipt Method, CapAdditionalHeader Property.

16.4.3 AdditionalTrailer Property Added in Release 1.6

Syntax AdditionalTrailer: string { read-write, access after open-claim-enable }

Remarks Specifies a user specific text which will be printed on the receipt after the fiscal trailer lines when calling
the endFiscalReceipt method.

This property is only valid if CapAdditionalTrailer is true.

This property is initialized to an empty string and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support printing text after the fiscal trailer 

 lines.

See Also endFiscalReceipt Method, CapAdditionalTrailer Property.
504 Unified POS, V1.16.1

16.4.4 AmountDecimalPlaces Property

Syntax AmountDecimalPlaces: int32 { read-only, access after open-claim-enable }

Remarks Holds the number of decimal digits that the fiscal device uses for calculations.

This property is initialized when the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.5 AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, then some print methods such as printRecItemAdjustment, printRecItem, printNormal, etc. will
be performed asynchronously.
If false, they will be performed synchronously.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also “Model” on page 22 for the output model description.

16.4.6 CapAdditionalHeader Property Added in Release 1.6

Syntax CapAdditionalHeader: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer is able to print application specific text defined in the AdditionalHeader
property after printing the fixed header lines.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.7 CapAdditionalLines Property Updated in Release 1.13

Syntax CapAdditionalLines: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports the printing of application defined lines on a fiscal receipt.

If true, then after all totals lines are printed it is possible to print application-defined strings, such as the
ones used for fidelity cards.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 505

16.4.8 CapAdditionalTrailer Property Added in Release 1.6

Syntax CapAdditionalTrailer: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer is able to print application specific text defined in the AdditionalTrailer
property after printing the fiscal trailer lines.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.9 CapAmountAdjustment Property

Syntax CapAmountAdjustment: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer handles fixed amount discounts or fixed amount surcharges on items.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.10 CapAmountNotPaid Property Deprecated in Release 1.11

Syntax CapAmountNotPaid: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer allows the recording of not paid amounts.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.11 CapChangeDue Property Added in Release 1.6

Syntax CapChangeDue: boolean { read-only, access after open }

Remarks If true, the text to be printed as the cash return description when using printRecTotal method can be
defined in the ChangeDue property.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
506 Unified POS, V1.16.1

16.4.12 CapCheckTotal Property Updated in Release 1.11

Syntax CapCheckTotal: boolean { read-only, access after open }

Remarks If true, then automatic comparison of the Fiscal Printer’s total and the application’s total can be enabled
and disabled. If false, then the automatic comparison cannot be enabled or disabled, meaning that the
property CheckTotal can not be changed and is read-only.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16

See Also CheckTotal Property.

16.4.13 CapCoverSensor Property

Syntax CapCoverSensor: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer has a “cover open” sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.14 CapDoubleWidth Property

Syntax CapDoubleWidth: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer can print double width characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.15 CapDuplicateReceipt Property

Syntax CapDuplicateReceipt: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer allows printing more than one copy of the same fiscal receipt.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 507

16.4.16 CapEmptyReceiptIsVoidable Property Added in Release 1.6

Syntax CapEmptyReceiptIsVoidable: boolean { read-only, access after open }

Remarks If true, then it is allowed to void an opened receipe without any items.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.17 CapFiscalReceiptStation Property Added in Release 1.6

Syntax CapFiscalReceiptStation: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports printing transactions on the station defined by the
FiscalReceiptStation property. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.18 CapFiscalReceiptType Property Added in Release 1.6

Syntax CapFiscalReceiptType: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports printing different types of fiscal receipts defined by the
FiscalReceiptType property. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.19 CapFixedOutput Property

Syntax CapFixedOutput: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports fixed format text printing through the beginFixedOutput,
printFixedOutput, and endFixedOutput methods. 
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.20 CapHasVatTable Property

Syntax CapHasVatTable: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer has a tax table.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.
508 Unified POS, V1.16.1

16.4.21 CapIndependentHeader Property

Syntax CapIndependentHeader: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports printing the fiscal receipt header lines before the first fiscal receipt
command is processed.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.22 CapItemList Property

Syntax CapItemList: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer can print a report of items of a specified VAT class.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.23 CapJrnEmptySensor Property

Syntax CapJrnEmptySensor: boolean { read-only, access after open }

Remarks If true, then the journal has an out-of-paper sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.24 CapJrnNearEndSensor Property

Syntax CapJrnNearEndSensor: boolean { read-only, access after open }

Remarks If true, then the journal has a low paper sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 509

16.4.25 CapJrnPresent Property

Syntax CapJrnPresent: boolean { read-only, access after open }

Remarks If true, then the journal print station is present. Unlike POS printers, on Fiscal Printers the application is
not able to directly access the journal. The Fiscal Printer itself prints on the journal if present.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.26 CapMultiContractor Property Added in Release 1.6

Syntax CapMultiContractor: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports more than one contractor assigned to the fiscal receipt and items.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.27 CapNonFiscalMode Property

Syntax CapNonFiscalMode: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer allows printing in non-fiscal mode.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.28 CapOnlyVoidLastItem Property Added in Release 1.6

Syntax CapOnlyVoidLastItem: boolean { read-only, access after open }

Remarks If true, then only the last printed item can be voided.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.29 CapOrderAdjustmentFirst Property

Syntax CapOrderAdjustmentFirst: boolean { read-only, access after open }

Remarks If false, the application has to call printRecItem first and then call printRecItemAdjustment to give a
discount of a surcharge for a single article.
If true, then the application has to call printRecItemAdjustment first and then call printRecItem.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
510 Unified POS, V1.16.1

16.4.30 CapPackageAdjustment Property Added in Release 1.6

Syntax CapPackageAdjustment: boolean { read-only, access after open }

Remarks If true, an adjustment may be given to a package of booked items.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.31 CapPercentAdjustment Property

Syntax CapPercentAdjustment: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer handles percentage discounts or percentage surcharges on items. This
property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.32 CapPositiveAdjustment Property

Syntax CapPositiveAdjustment: boolean { read-only, access after open }

Remarks If true, then it is possible to apply surcharges via the printRecItemAdjustment method. This
property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.33 CapPositiveSubtotalAdjustment Property Added in Release 1.11

Syntax CapPositiveSubtotalAdjustment: boolean { read-only, access after open }

Remarks If true, then it is possible to apply surcharges via the printRecSubtoalAdjustment method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 511

16.4.34 CapPostPreLine Property Added in Release 1.6

Syntax CapPostPreLine: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports printing additional lines defined by the PostLine and/or the
PreLine properties when calling some printRec... methods.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.35 CapPowerLossReport Property

Syntax CapPowerLossReport: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer can print a power loss report using the printPowerLossReport method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.36 CapPredefinedPaymentLines Property

Syntax CapPredefinedPaymentLines: boolean { read-only, access after open }

Remarks If true, the Fiscal Printer can store and print predefined payment descriptions.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.37 CapReceiptNotPaid Property

Syntax CapReceiptNotPaid: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports using the printRecNotPaid method to specify a part of the receipt
total that is not paid.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
512 Unified POS, V1.16.1

16.4.38 CapRecEmptySensor Property

Syntax CapRecEmptySensor: boolean { read-only, access after open }

Remarks If true, then the receipt has an out-of-paper sensor. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.39 CapRecNearEndSensor Property

Syntax CapRecNearEndSensor: boolean { read-only, access after open }

Remarks If true, then the receipt has a low paper sensor. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.40 CapRecPresent Property

Syntax CapRecPresent: boolean { read-only, access after open }

Remarks If true, then the receipt print station is present. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.41 CapRemainingFiscalMemory Property

Syntax CapRemainingFiscalMemory: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports using the RemainingFiscalMemory property to show the amount
of Fiscal Memory remaining. If false, the Fiscal Printer does not support reporting the Fiscal Memory
status of the Fiscal Printer. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.42 CapReservedWord Property

Syntax CapReservedWord: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer prints a reserved word (for example, “TOTALE”) before printing the
total amount.

If true, the reserved word is stored in the ReservedWord property. This reserved word may not be
printed using any fiscal print method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Unified POS, v1.16.1 513

16.4.43 CapSetCurrency Property Added in Release 1.6

Syntax CapSetCurrency: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer is able to change the currency to a new one by calling the setCurrency
method. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.44 CapSetHeader Property

Syntax CapSetHeader: boolean { read-only, access after open }

Remarks If true, then it is possible to use the setHeaderLine method to initialize the contents of a particular line
of the receipt header. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.45 CapSetPOSID Property

Syntax CapSetPOSID: boolean { read-only, access after open }

Remarks If true, then it is possible to use the setPOSID method to initialize the values of POSID and CashierID.
These values are printed on each fiscal receipt. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.46 CapSetStoreFiscalID Property

Syntax CapSetStoreFiscalID: boolean { read-only, access after open }

Remarks If true, then it is possible to use the setStoreFiscalID method to set up the Fiscal ID number which will
be printed on each fiscal receipt. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
514 Unified POS, V1.16.1

16.4.47 CapSetTrailer Property

Syntax CapSetTrailer: boolean { read-only, access after open }

Remarks If true, then it is possible to use the setTrailerLine method to initialize the contents of a particular line
of the receipt trailer. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.48 CapSetVatTable Property

Syntax CapSetVatTable: boolean { read-only, access after open }

Remarks If true, then it is possible to use the setVatValue and setVatTable methods to modify the contents of the
Fiscal Printer’s VAT table. Some Fiscal Printers may not allow existing VAT table entries to be
modified. Only new entries may be set on these Fiscal Printers. This property is initialized by the open
method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.49 CapSlpEmptySensor Property

Syntax CapSlpEmptySensor: boolean { read-only, access after open }

Remarks If true, then the slip has a “slip in” sensor. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.50 CapSlpFiscalDocument Property

Syntax CapSlpFiscalDocument: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer allows fiscal printing to the slip station. This property is initialized by the
open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.51 CapSlpFullSlip Property

Syntax CapSlpFullSlip: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports printing full length forms on the slip station. 
It is possible to choose between full slip and validation documents by setting the SlipSelection property.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 515

16.4.52 CapSlpNearEndSensor Property

Syntax CapSlpNearEndSensor: boolean { read-only, access after open }

Remarks If true, then the slip has a “slip near end” sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.53 CapSlpPresent Property

Syntax CapSlpPresent: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer has a slip station.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.54 CapSlpValidation Property

Syntax CapSlpValidation: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports printing validation information on the slip station.

It is possible to choose between full slip and validation documents by setting the SlipSelection property.
In some countries, when printing non fiscal validations using the slip station a limited number of lines
could be printed. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.55 CapSubAmountAdjustment Property

Syntax CapSubAmountAdjustment: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer handles fixed amount discounts on the subtotal.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.56 CapSubPercentAdjustment Property

Syntax CapSubPercentAdjustment: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer handles percentage discounts on the subtotal. This property is initialized
by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
516 Unified POS, V1.16.1

16.4.57 CapSubtotal Property

Syntax CapSubtotal: boolean { read-only, access after open }

Remarks If true, then it is possible to use the printRecSubtotal method to print the current subtotal. This property
is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.58 CapTotalizerType Property Added in Release 1.6

Syntax CapTotalizerType: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports reading different types of totalizers by calling the getTotalizer
method. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.59 CapTrainingMode Property

Syntax CapTrainingMode: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports a training mode. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.60 CapValidateJournal Property

Syntax CapValidateJournal: boolean { read-only, access after open }

Remarks If true, then it is possible to use the printNormal method to print a validation string on the journal
station. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.61 CapXReport Property

Syntax CapXReport: boolean { read-only, access after open }

Remarks If true, then it is possible to use the printXReport method to print an X report. This property is 
 initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 517

16.4.62 ChangeDue Property Added in Release 1.6

Syntax ChangeDue: string { read-write, access after open }

Remarks This property holds the text to be printed as a description for the cash return when using the
printRecTotal method.

This property is only valid if CapChangeDue is true.

This property is initialized to an empty string by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Setting this property is not valid for this service
 (see CapChangeDue property).

E_EXTENDED ErrorCodeExtended = EFPTR_BAD_LENGTH:
The length of the string to be printed is too long.

See Also printRecTotal Method, CapChangeDue Property.

16.4.63 CheckTotal Property Updated in Release 1.11

Syntax CheckTotal: boolean { read-write, access after open }

Remarks If true, automatic comparison between the Fiscal Printer’s total and the application’s total is enabled. If
false, automatic comparison is disabled. 
This property can be changed if CapCheckTotal is true. Otherwise, it is read-only.

This property is initialized to true by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Setting this property is not valid for this Service (see CapCheckTotal).

See Also CapCheckTotal Property.
518 Unified POS, V1.16.1

16.4.64 ContractorId Property Added in Release 1.6

Syntax ContractorId: int32 { read-write, access after open-claim-enable }

Remarks The identification of the contractor to whom the receipt and/or some items of the receipt are
assigned.

It is used to define different header lines to be printed on the fiscal receipt, in order to assign any
item to a specific contractor and to modify the counters and totalizers to be read using getData and
getTotalizer methods.

Values are:

Value Meaning
FPTR_CID_FIRST First contractor is defined.

FPTR_CID_SECOND Second contractor is defined.

FPTR_CID_SINGLE Single contractor.

This property is initialized to FPTR_CID_SINGLE and kept current while the device is enabled,
which is the functionality supported prior to Release 1.6.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Setting this property is not valid for this service
(see CapMultiContractor property).

See Also beginFiscalReceipt Method, getData Method, getTotalizer Method, 
printRec... Methods, CapMultiContractor Property.
Unified POS, v1.16.1 519

16.4.65 CountryCode Property Updated in Release 1.12

Syntax CountryCode: int32 { read-only, access after open }

Remarks Holds a value identifying which countries are supported by the Fiscal Printer. It can contain any of the
following values logically ORed together:

Value Meaning
FPTR_CC_BRAZIL The Fiscal Printer supports Brazil’s fiscal rules.
FPTR_CC_GREECE The Fiscal Printer supports Greece’s fiscal rules.
FPTR_CC_HUNGARY The Fiscal Printer supports Hungary’s fiscal rules.
FPTR_CC_ITALY The Fiscal Printer supports Italy’s fiscal rules.
FPTR_CC_POLAND The Fiscal Printer supports Poland’s fiscal rules.
FPTR_CC_TURKEY The Fiscal Printer supports Turkey’s fiscal rules.
FPTR_CC_RUSSIA The Fiscal Printer supports Russia’s fiscal rules.
FPTR_CC_BULGARIA The Fiscal Printer supports Bulgaria’s fiscal rules.
FPTR_CC_ROMANIA The Fiscal Printer supports Romania’s fiscal rules.
FPTR_CC_CZECH_REPUBLIC

The Fiscal Printer supports the Czech Republic’s fiscal rules.
FPTR_CC_UKRAINE The Fiscal Printer supports Ukraine’s fiscal rules.
FPTR_CC_SWEDEN The Fiscal Printer supports Sweden’s fiscal rules.
FPTR_CC_GERMANY The Fiscal Printer supports German fiscal rules, but
 may not print fiscal receipts, only business transaction
 data is registered.
FPTR_CC_OTHER This is an unknown or new fiscal country.

This property is initialized when the device is first enabled following the open method. (In releases prior
to 1.5, this description stated that initialization took place by the open method. In Release 1.5, it was
updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.66 CoverOpen Property

Syntax CoverOpen: boolean { read-only, access after open-claim-enable }

Remarks If true, then the Fiscal Printer’s cover is open.

If CapCoverSensor is false, then the Fiscal Printer does not have a cover open sensor and this property
is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
520 Unified POS, V1.16.1

16.4.67 DateType Property Updated in Release 1.11

Syntax DateType: int32 { read-write, access after open-claim-enable }

Remarks Specifies the type of date to be requested when calling the getDate method.

Values are:

Value Meaning
FPTR_DT_CONF Date of configuration.

FPTR_DT_EOD Date of last end of day.

FPTR_DT_RESET Date of last reset.

FPTR_DT_RTC Real time clock of the Fiscal Printer.

FPTR_DT_VAT Date of last VAT change.

FPTR_DT_START The date and time that the fiscal day started or of the first fiscal receipt or
 first fiscal document.

FPTR_DT_TICKET_START:
The date and time when the current fiscal receipt was started. If no fiscal

 receipt is opened currently, the date and time when the last receipt was 
 opened.

FPTR_DT_TICKET_END:
The date and time when the last fiscal receipt was closed.

Starting with Release 1.11 support is added for countries (e.g., Greece, Russia, Italy) where it is required
by law to make a Z report and therefore end the fiscal day within a 24 hour period. If the 24 hour period
after the first fiscal ticket or after the fiscal day opening is exceeded, then no new fiscal ticket can be
started and printing of a Z report is required. Setting DateType to FPTR_DT_START and calling
getDate provides the information necessary to detect this situation.

This property is initialized to FPTR_DT_RTC and kept current while the device is enabled, which is the
functionality supported prior to Release 1.6.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support the specified type.

See Also getDate Method.
Unified POS, v1.16.1 521

16.4.68 DayOpened Property Updated in Release 1.6

Syntax DayOpened: boolean { read-only, access after open-claim-enable }

Remarks If true, then the fiscal day has been started on the Fiscal Printer by a first call to the beginFiscalReceipt
or beginFiscalDocument method at a fiscal period (day). The Fiscal Day of the
Fiscal Printer can be either opened or not opened. The DayOpened property reflects whether or not the
Fiscal Printer considers its Fiscal Day to be opened or not.
Some methods may only be called while the Fiscal Day is not yet opened (DayOpened is false). Methods
that can be called after the Fiscal Day is opened change from country to country. Usually all the
configuration methods are to be called only before the Fiscal Day is opened.

This property changes to false after calling printZReport.

Depending on fiscal legislation, the following methods may be allowed only if the Fiscal Printer is in the
Monitor State and has not yet begun its Fiscal Day:

 setCurrency
 setDate
 setHeaderLine
 setPOSID
 setStoreFiscalID
 setTrailerLine
 setVatTable
 setVatValue

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.69 DescriptionLength Property Updated in Release 1.6

Syntax DescriptionLength: int32 { read-only, access after open }

Remarks Holds the maximum number of characters that may be passed as a description parameter.

The exact maximum number for a description parameter of a specific method can be obtained by calling
getData method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also getData Method.
522 Unified POS, V1.16.1

16.4.70 DuplicateReceipt Property

Syntax DuplicateReceipt: boolean { read-write, access after open }

Remarks If true, all the printing commands inside a fiscal receipt will be buffered and they can be printed again
via the printDuplicateReceipt method.

This property is only valid if CapDuplicateReceipt is true.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.71 ErrorLevel Property

Syntax ErrorLevel: int32 { read-only, access after open }

Remarks Holds the severity of the error condition.

This property has one of the following values:

Value Meaning
FPTR_EL_NONE No error condition is present.
FPTR_EL_RECOVERABLE
 A recoverable error has occurred.
 (Example: Out of paper.)
FPTR_EL_FATAL A non-recoverable error has occurred.

(Example: Internal printer failure.)
FPTR_EL_BLOCKED A severe hardware failure which can be resolved only by
 authorized technicians.
 (Example: Fiscal memory failure.).

This error cannot be recovered.

This property is set just before delivering an ErrorEvent. When the error is cleared, then the property is
changed to FPTR_EL_NONE.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 523

16.4.72 ErrorOutID Property Updated in Release 1.6

Syntax ErrorOutID: int32 { read-only, access after open }

Remarks Holds the identifier of the output in the queue which caused an ErrorEvent, when using asynchronous
printing.

This property is initialized when the device is first enabled following the open method. (In releases prior
to 1.5, this description stated that initialization took place by the open method. In Release 1.5, it was
updated for consistency with other devices.)

This property is set just before an ErrorEvent is delivered.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.73 ErrorState Property

Syntax ErrorState: int32 { read-only, access after open }

Remarks Holds the current state of the Fiscal Printer when an ErrorEvent is delivered for an asynchronous output.

This property is set just before an ErrorEvent is delivered.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also PrinterState Property.

16.4.74 ErrorStation Property

Syntax ErrorStation: int32 { read-only, access after open }

Remarks Holds the station or stations that were printing when an error was detected.

This property will be set to one of the following values: FPTR_S_JOURNAL, FPTR_S_RECEIPT,
FPTR_S_SLIP, FPTR_S_JOURNAL_RECEIPT, FPTR_S_JOURNAL_SLIP,
FPTR_S_RECEIPT_SLIP.

This property is only valid if the ErrorLevel is not equal to PTR_EL_NONE. It is set just before
delivering an ErrorEvent.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
524 Unified POS, V1.16.1

16.4.75 ErrorString Property

Syntax ErrorString: string { read-only, access after open }

Remarks Holds a vendor-supplied description of the current error.

This property is set just before delivering an ErrorEvent. If no description is available, the property is
set to an empty string. When the error is cleared, then the property is changed to an empty string.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.76 FiscalReceiptStation Property Added in Release 1.6

Syntax FiscalReceiptStation: int32 { read-write, access after open-claim-enable }

Remarks Selects the station where the transaction of the fiscal receipt started with beginFiscalReceipt method
will be printed. Setting this property is only allowed in the Monitor State.

Values are:

Value Meaning
FPTR_RS_RECEIPT The following transactions will be printed on the receipt station.

FPTR_RS_SLIP The following transactions will be printed on the slip station.

This property is only valid if CapFiscalReceiptStation is true.

This property is initialized to FPTR_RS_RECEIPT and kept current while the device is enabled,
which is the functionality supported prior to Release 1.6.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support the specified station.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
 The Fiscal Printer is not currently in the Monitor State.

See Also beginFiscalReceipt Method, CapFiscalReceiptStation Property.
Unified POS, v1.16.1 525

16.4.77 FiscalReceiptType Property Updated in Release 1.11

Syntax FiscalReceiptType: int32 { read-write, access after open-claim-enable }

Remarks Selects the type of the fiscal receipt. Setting this property is only allowed in the Monitor State.

Values are:

Value Meaning
FPTR_RT_CASH_IN Cash-in receipt

FPTR_RT_CASH_OUT Cash-out receipt

FPTR_RT_GENERIC Generic receipt

FPTR_RT_SALES Retail sales receipt

FPTR_RT_SERVICE Service sales receipt

FPTR_RT_SIMPLE_INVOICE Simplified invoice receipt

FPTR_RT_REFUND Refund sales receipt

This property is only valid if CapFiscalReceiptType is true.

Starting with Release 1.11, due to the need for negative receipts (e.g., in Italy), such as refund receipts,
the receipt type FPTR_RT_REFUND is added.

This property is initialized to FPTR_RT_SALES and kept current while the device is enabled, which is
the functionality supported prior to Release 1.6.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support the specified receipt type.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Monitor State.

See Also beginFiscalReceipt Method, CapFiscalReceiptType Property.
526 Unified POS, V1.16.1

16.4.78 FlagWhenIdle Property

Syntax FlagWhenIdle: boolean { read-write, access after open }

Remarks If true, a StatusUpdateEvent will be enqueued when the device is in the idle state.

This property is automatically reset to false when the status event is delivered.

The main use of idle status event that is controlled by this property is to give the application control when
all outstanding asynchronous outputs have been processed. The event will be enqueued if the outputs
were completed successfully or if they were cleared by the clearOutput method or by an ErrorEvent
handler.

If the State is already set to S_IDLE when this property is set to true, then a StatusUpdateEvent is
enqueued immediately. The application can therefore depend upon the event, with no race condition
between the starting of its last asynchronous output and the setting of this flag.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.79 JrnEmpty Property

Syntax JrnEmpty: boolean { read-only, access after open-claim-enable }

Remarks If true, the journal is out of paper. If false, journal paper is present.

If CapJrnEmptySensor is false, then the value of this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

 See Also JrnNearEnd Property.

16.4.80 JrnNearEnd Property

Syntax JrnNearEnd: boolean { read-only, access after open-claim-enable }

Remarks If true, the journal paper is low. If false, journal paper is not low.

If CapJrnNearEndSensor is false, then the value of this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also JrnEmpty Property.
Unified POS, v1.16.1 527

16.4.81 MessageLength Property

Syntax MessageLength: int32 { read-only, access after open }

Remarks Holds the maximum number of characters that may be passed as a message line in the method
printRecMessage. The value may change in different modes of the Fiscal Printer. For example in the
mode “Fiscal Receipt” the number of characters may be bigger than in the mode “Fiscal Receipt Total.”

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.82 MessageType Property Added in Release 1.6

Syntax MessageType: int32 { read-write, access after open-claim-enable }

Remarks Selects the kind of message to be printed when using the printRecMessage method. Values are:

Value
FPTR_MT_ADVANCE
FPTR_MT_ADVANCE_PAID
FPTR_MT_AMOUNT_TO_BE_PAID
FPTR_MT_AMOUNT_TO_BE_PAID_BACK
FPTR_MT_CARD
FPTR_MT_CARD_NUMBER
FPTR_MT_CARD_TYPE
FPTR_MT_CASH
FPTR_MT_CASHIER
FPTR_MT_CASH_REGISTER_NUMBER
FPTR_MT_CHANGE
FPTR_MT_CHEQUE
FPTR_MT_CLIENT_NUMBER
FPTR_MT_CLIENT_SIGNATURE
FPTR_MT_COUNTER_STATE
FPTR_MT_CREDIT_CARD
FPTR_MT_CURRENCY
FPTR_MT_CURRENCY_VALUE
FPTR_MT_DEPOSIT
FPTR_MT_DEPOSIT_RETURNED
FPTR_MT_DOT_LINE
FPTR_MT_DRIVER_NUMB
FPTR_MT_EMPTY_LINE
FPTR_MT_FREE_TEXT
FPTR_MT_FREE_TEXT_WITH_DAY_LIMIT
FPTR_MT_GIVEN_DISCOUNT
FPTR_MT_LOCAL_CREDIT
FPTR_MT_MILEAGE_KM
FPTR_MT_NOTE
FPTR_MT_PAID
FPTR_MT_PAY_INFPTR_MT_POINT_GRANTED
528 Unified POS, V1.16.1

FPTR_MT_POINTS_BONUS
FPTR_MT_POINTS_RECEIPT
FPTR_MT_POINTS_TOTAL
FPTR_MT_PROFITED
FPTR_MT_RATE
FPTR_MT_REGISTER_NUMB
FPTR_MT_SHIFT_NUMBER
FPTR_MT_STATE_OF_AN_ACCOUNT
FPTR_MT_SUBSCRIPTION
FPTR_MT_TABLE
FPTR_MT_THANK_YOU_FOR_LOYALTY
FPTR_MT_TRANSACTION_NUMB
FPTR_MT_VALID_TO
FPTR_MT_VOUCHER
FPTR_MT_VOUCHER_PAID
FPTR_MT_VOUCHER_VALUE
FPTR_MT_WITH_DISCOUNT
FPTR_MT_WITHOUT_UPLIFT

This property is initialized to FPTR_MT_FREE_TEXT by the open method, which is the
functionality supported prior to Release 1.6.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support this value.

See Also printRecMessage Method.
Unified POS, v1.16.1 529

16.4.83 NumHeaderLines Property

Syntax NumHeaderLines: int32 { read-only, access after open }

Remarks Holds the maximum number of header lines that can be printed for each fiscal receipt. Header lines
usually contain information such as store address, store name, store Fiscal ID. Each header line is set
using the setHeaderLine method and remains set even after the Fiscal Printer is switched off. Header
lines are automatically printed when a fiscal receipt is initiated using the beginFiscalReceipt method or
when the first line item inside a receipt is sold.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.84 NumTrailerLines Property

Syntax NumTrailerLines: int32 { read-only, access after open }

Remarks Holds the maximum number of trailer lines that can be printed for each fiscal receipt. Trailer lines are
usually promotional messages. Each trailer line is set using the setTrailerLine method and remains set
even after the Fiscal Printer is switched off. Trailer lines are automatically printed either after the last
printRecTotal or when a fiscal receipt is closed using the endFiscalReceipt method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.85 NumVatRates Property

Syntax NumVatRates: int32 { read-only, access after open }

Remarks Holds the maximum number of vat rates that can be entered into the Fiscal Printer’s Vat table.

 This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
530 Unified POS, V1.16.1

16.4.86 PostLine Property Added in Release 1.6

Syntax PostLine: string { read-write, access after open-claim-enable }

Remarks An application specific text to be printed on the fiscal receipt after a line item invoked by some
printRec... methods. The property can be written in the Fiscal Receipt State. The length of the text is
reduced to a country specific value

This property is only valid if CapPostPreLine is true.

This property is initialized to an empty string and will be reset to an empty string after being used.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support printing post item lines or the text
 contains invalid characters.

E_EXTENDED ErrorCodeExtended = EFPTR_BAD_LENGTH:
The length of the string is too long.

See Also printRecSubtotal Method, printRecTotal Method, CapPostPreLine Property.

16.4.87 PredefinedPaymentLines Property

Syntax PredefinedPaymentLines: string { read-only, access after open }

Remarks Holds the list of all possible words to be used as indexes of the predefined payment lines (for example,
“a, b, c, d, z”). Those indexes are used in the printRecTotal method for the description parameter.

If CapPredefinedPaymentLines is true, only predefined payment lines are allowed.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 531

16.4.88 PreLine Property Added in Release 1.6

Syntax PreLine: string { read-write, access after open-claim-enable }

Remarks An application specific text to be printed on the fiscal receipt before a line item invoked by some
printRec... methods. The property can be written in the Fiscal Receipt State. The length of the text is
reduced to a country specific value.

This property is only valid if CapPostPreLine is true.

This property is initialized to an empty string and will be reset to an empty string after being used.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGALThe Fiscal Printer does not support printing pre item lines or the text
 contains invalid characters.

E_EXTENDED ErrorCodeExtended = EFPTR_BAD_LENGTH:
 The length of the string is too long.

See Also printRecItem Method, printRecItemAdjustment Method, printRecItemRefund Method,
printRecRefund Method, printRecSubtotalAdjustment Method, CapPostPreLine Property.
532 Unified POS, V1.16.1

16.4.89 PrinterState Property Updated in Release 1.13

Syntax PrinterState: int32 { read-only, access after open }

Remarks Holds the Fiscal Printer’s current operational state. This property controls which methods are currently
legal.

Values are:

Value Meaning
FPTR_PS_MONITOR If TrainingModeActive is false:
 The Fiscal Printer is currently not in a specific operational mode. In
 this state the Fiscal Printer will accept any of the begin… methods as
 well as the set… methods.

If TrainingModeActive is true:
The Fiscal Printer is currently being used for training purposes. In this
state the Fiscal Printer will accept any of the printRec… methods or the
endTraining method.

FPTR_PS_FISCAL_RECEIPT
If TrainingModeActive is false:
The Fiscal Printer is currently processing a fiscal receipt. In this state the
Fiscal Printer will accept any of the printRec… methods.

If TrainingModeActive is true:
The Fiscal Printer is currently being used for training purposes and a fiscal
receipt is currently opened.

FPTR_PS_FISCAL_RECEIPT_TOTAL
If TrainingModeActive is false:
The Fiscal Printer has already accepted at least one payment, but the total
has not been completely paid. In this state the Fiscal Printer will accept
either the printRecTotal, printRecNotPaid, or printRecMessage
methods.

If TrainingModeActive is true:
The Fiscal Printer is currently being used for training purposes and the
Fiscal Printer has already accepted at least one payment, but the total has
not been completely paid.

FPTR_PS_FISCAL_RECEIPT_ENDING
If TrainingModeActive is false:
The Fiscal Printer has completed the receipt up to the total line. In this
state the Fiscal Printer will accept either the printRecMessage or
endFiscalReceipt methods.

If TrainingModeActive is true:
The Fiscal Printer is currently being used for training purposes and a fiscal
receipt is going to be closed.

FPTR_PS_FISCAL_DOCUMENT
The Fiscal Printer is currently processing a fiscal slip. In this state the
Fiscal Printer will accept either the printFiscalDocumentLine or
endFiscalDocument methods.
Unified POS, v1.16.1 533

FPTR_PS_FIXED_OUTPUT
The Fiscal Printer is currently processing fixed text output to one or more
stations. In this state the Fiscal Printer will accept either the
printFixedOutput or endFixedOutput methods.

FPTR_PS_ITEM_LIST The Fiscal Printer is currently processing an item list report. In this state
the Fiscal Printer will accept either the verifyItem or endItemList
methods.

FPTR_PS_NONFISCAL The Fiscal Printer is currently processing non-fiscal output to one or more
stations. In this state the Fiscal Printer will accept either the printNormal
or endNonFiscal methods.

FPTR_PS_LOCKED The Fiscal Printer has encountered a non-recoverable hardware problem.
An authorized Fiscal Printer technician must be contacted to exit this
state.

FPTR_PS_REPORT The Fiscal Printer is currently processing a fiscal report. In this state the
Fiscal Printer will not accept any methods until the report has completed.

There are a few methods that are accepted in any state except FPTR_PS_LOCKED. These are
beginInsertion, endInsertion, beginRemoval, endRemoval, getDate, getData, getTotalizer,
getVatEntry, resetPrinter and clearOutput.

This property is initialized when the device is first enabled following the open method. (In releases prior
to 1.5, this description stated that initialization took place by the open method. In Release 1.5, it was
updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.90 QuantityDecimalPlaces Property Updated in Release 1.6

Syntax QuantityDecimalPlaces: int32 { read-only, access after open }

Remarks Holds the number of decimal digits in the fractional part that should be assumed to be in any quantity
parameter. This property is initialized when the device is first enabled following the open method. (In
releases prior to 1.5, this description stated that initialization took place by the open method. In Release
1.5, it was updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.91 QuantityLength Property Updated in Release 1.6

Syntax QuantityLength: int32 { read-only, access after open }

Remarks Holds the maximum number of digits that may be passed as a quantity parameter, including both the
whole and fractional parts.This property is initialized when the device is first enabled following the open
method. (In releases prior to 1.5, this description stated that initialization took place by the open method.
In Release 1.5, it was updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
534 Unified POS, V1.16.1

16.4.92 RecEmpty Property

Syntax RecEmpty: boolean { read-only, access after open-claim-enable }

Remarks If true, the receipt is out of paper. If false, receipt paper is present.
If CapRecEmptySensor is false, then this property is always false. 
This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also RecNearEnd Property.

16.4.93 RecNearEnd Property

Syntax RecNearEnd: boolean { read-only, access after open-claim-enable }

Remarks If true, the receipt paper is low. If false, receipt paper is not low. 
If CapRecNearEndSensor is false, then this property is always false. 
This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also RecEmpty Property.

16.4.94 RemainingFiscalMemory Property

Syntax RemainingFiscalMemory: int32 { read-only, access after open-claim-enable }

Remarks Holds the remaining counter of Fiscal Memory. This property is initialized and kept current while the
device is enabled and may be updated by printZReport method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapRemainingFiscalMemory Property.



Unified POS, v1.16.1 535

16.4.95 ReservedWord Property

Syntax ReservedWord: string { read-only, access after open }

Remarks Holds the string that is automatically printed with the total when the printRecTotal method is called.
This word may not occur in any string that is passed into any fiscal output methods. 
This property is only valid if CapReservedWord is true. 
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

16.4.96 SlpEmpty Property

Syntax SlpEmpty: boolean { read-only, access after open-claim-enable }

Remarks If true, a slip form is not present. If false, a slip form is present.
If CapSlpEmptySensor is false, then this property is always false. 
This property is initialized and kept current while the device is enabled.
Note:
The “slip empty” sensor should be used primarily to determine whether a form has been inserted before
printing. It can also be monitored to determine whether a form is still in place. This sensor is usually
placed one or more print lines above the slip print head.
However, the “slip near end” sensor (when present) should be used to determine when nearing the end
of the slip. This sensor is usually placed one or more print lines below the slip print head.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also SlpNearEnd Property.

16.4.97 SlpNearEnd Property

Syntax SlpNearEnd: boolean { read-only, access after open-claim-enable }

Remarks If true, the slip form is near its end. If false, the slip form is not near its end. The “near end” sensor is also
sometimes called the “trailing edge” sensor, referring to the bottom edge of the slip. 
If CapSlpNearEndSensor is false, then this property is always false.
This property is initialized and kept current while the device is enabled.

Note:
However, the “slip near end” sensor (when present) should be used to determine when nearing the end
of the slip. This sensor is usually placed one or more print lines below the slip print head.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also SlpEmpty Property.
536 Unified POS, V1.16.1

16.4.98 SlipSelection Property

Syntax SlipSelection: int32 { read-write, access after open-claim-enable }

Remarks Selects the kind of document to be printed on the slip station. This
property has one of the following values:

Value Meaning
FPTR_SS_FULL_LENGTH Print full length documents.
FPTR_SS_VALIDATION Print validation documents.

This property is initialized to FPTR_SS_FULL_LENGTH by the claim method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

 Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid slip type was specified.

16.4.99 TotalizerType Property Added in Release 1.6

Syntax TotalizerType: int32 { read-write, access after open-claim-enable }

Remarks Specifies the type of totalizer to be requested when calling the getTotalizer method.

Values are:

Value Meaning
FPTR_TT_DOCUMENT Document totalizer
FPTR_TT_DAY Day totalizer
FPTR_TT_RECEIPT Receipt totalizer
FPTR_TT_GRAND Grand totalizer

This property is only valid if CapTotalizerType is true.

This property is initialized to FPTR_TT_DAY and kept current while the device is enabled, which is the
functionality supported prior to Release 1.6.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support defining totalizer types or an invalid
type was specified.

See Also getTotalizer Method, CapTotalizerType Property.
Unified POS, v1.16.1 537

16.4.100 TrainingModeActive Property

Syntax TrainingModeActive: boolean { read-only, access after open-claim-enable }

Remarks Holds the current Fiscal Printer's operational state concerning the training mode. Training mode allows
all fiscal commands, but each receipt is marked as non-fiscal and no internal Fiscal Printer registers are
updated with any data while in training mode. Some countries' fiscal rules require that all blank
characters on a training mode receipt be printed as some other character. Italy, for example, requires that
all training mode receipts print a “?” instead of a blank.

This property has one of the following values:

Value Meaning
true The Fiscal Printer is currently in training mode. That means no data
 are written into the EPROM of the Fiscal Printer.
false The Fiscal Printer is currently in normal mode. All printed receipts
 will also update the fiscal memory.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
538 Unified POS, V1.16.1

16.5 Methods (UML operations)

16.5.1 beginFiscalDocument Method Updated in Release 1.11

Syntax beginFiscalDocument (documentAmount: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
documentAmount Amount of document to be stored by the Fiscal Printer.

Remarks Initiates fiscal printing to the slip station.

This method is only supported if CapSlpFiscalDocument is true.
If this is the first call to the beginFiscalDocument method, the Fiscal Day will be started and the
DayOpened property will be set to true.
Each fiscal line will be printed using the printFiscalDocumentLine method. The fiscal document
handling would be as follows:

beginFiscalDocument()
beginInsertion(); endInsertion()
// print fist page
printFiscalDocumentLine()*
beginRemoval(); endRemoval()
beginInsertion(); endInsertion()
// print second page
printFiscalDocumentLine()*
beginRemoval(); endRemoval()

endFiscalDocument()

If this method is successful, the PrinterState property will be changed to
FPTR_PS_FISCAL_DOCUMENT.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:
Unified POS, v1.16.1 539

Value Meaning
E_ILLEGAL The slip station does not exist (see the CapSlpPresent property) or the
 printer does not support fiscal output to the slip station (see the CapSlp
 FiscalDocument property).
E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
 The printer’s current state does not allow this state transition.

ErrorCodeExtended = EFPTR_SLP_EMPTY:
There is no paper in the slip station.

 ErrorCodeExtended = EFPTR_BAD_ITEM_AMOUNT:
The documentAmount parameter is invalid.

 ErrorCodeExtended = EFPTR_MISSING_SET_CURRENCY:
The new receipt cannot be opened, the Fiscal Printer is expecting the
current currency to be changed by calling setCurrency method.

 ErrorCodeExtended = EFPTR_DAY_END_REQUIRED:
The completion of the fiscal day is required by calling printZReport.
No further fiscal receipts or documents can be started before this is done.

See Also CapSlpFiscalDocument Property, CapSlpPresent Property, AmountDecimalPlaces Property,
DayOpened Property, PrinterState Property, beginInsertion Method, endFiscalDocument Method,
endInsertion Method, printFiscalDocumentLine Method, printZReport Method.
540 Unified POS, V1.16.1

16.5.2 beginFiscalReceipt Method Updated in Release 1.11

Syntax beginFiscalReceipt (printHeader: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description
printHeader Indicates if the header lines are to be printed at this time.

Remarks Initiates fiscal printing to the receipt station.

If CapFiscalReceiptStation is true the FiscalReceiptStation property defines the station where the
receipt will be printed. If CapFiscalReceiptStation is false the receipt will be printed on the receipt
station. If CapFiscalReceiptType is true the receipt type must be defined in FiscalReceiptType and a
header line according to the specified receipt type will be printed.
If this is the first call to the beginFiscalReceipt method, the Fiscal Day will be started and the
DayOpened property will be set to true.
If printHeader and CapIndependentHeader are both true all defined header lines will be printed before
control is returned. Otherwise, header lines will be printed when the first item is sold in the case they are
not printed at the end of the preceding receipt. If CapAdditionalHeader is true, application specific
header lines defined by the AdditionalHeader property will be printed after the fixed header lines.
If CapMultiContractor is true, the current receipt is assigned to the contractor specified by the
ContractorId property.

If this method is successful, the PrinterState property will be changed to
FPTR_PS_FISCAL_RECEIPT.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL An invalid receipt type was specified.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer’s current state does not allow this state transition.

 ErrorCodeExtended = EFPTR_MISSING_SET_CURRENCY:
The new receipt cannot be opened, the Fiscal Printer is expecting the
current currency to be changed by calling setCurrency method.

 ErrorCodeExtended = EFPTR_DAY_END_REQUIRED:
The completion of the fiscal day is required by calling printZReport.
No further fiscal receipts or documents can be started before this is done.

See Also CapAdditionalHeader Property, CapFiscalReceiptStation Property, CapFiscalReceiptType
Property, CapIndependentHeader Property, CapMultiContractor Property, AdditionalHeader
Property, ContractorId Property, DayOpened Property, FiscalReceiptStation Property,
FiscalReceiptType Property, PrinterState Property, endFiscalReceipt Method, printRec… Methods.
Unified POS, v1.16.1 541

16.5.3 beginFixedOutput Method

Syntax beginFixedOutput (station: int32, documentType: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description 　　　　　
station　　　 The Fiscal Printer station to be used. May be either FPTR_S_RE　　　
　　　　　　 CEIPT or FPTR_S_SLIP.　　　　　　　　　　　　　　　　　　
documentType Identifier of a document stored in the Fiscal Printer.

Remarks Initiates non-fiscal fixed text printing on a Fiscal Printer station.
This method is only supported if CapFixedOutput is true.

If the station parameter is FPTR_S_SLIP, the slip paper must be inserted into the slip station using begin/
endInsertion before calling this method.

Each fixed output will be printed using the printFixedOutput method. If this method is successful, the
PrinterState property will be changed to FPTR_PS_FIXED_OUTPUT. The endFixedOutput method
ends fixed output modality and resets PrinterState.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• Station does not exist (see the CapSlpPresent property).
• Fiscal Printer does not support fixed output (see the CapFixedOutput

property).
• station parameter is invalid.
• documentType is invalid.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
 The Fiscal Printer’s current state does not allow this state transition.

ErrorCodeExtended = EFPTR_SLP_EMPTY:
There is no paper in the slip station.

See Also CapFixedOutput Property, CapSlpPresent Property, PrinterState Property, beginInsertion Method,
endFixedOutput Method, endInsertion Method, printFixedOutput Method.
542 Unified POS, V1.16.1

16.5.4 beginInsertion Method

Syntax beginInsertion (timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
timeout The timeout parameter gives the number of milliseconds before failing the
 method.

If zero, the method tries to begin insertion mode, then returns the appropriate status immediately. If
FOREVER (-1), the method tries to begin insertion mode, then waits as long as needed until either the
form is inserted or an error occurs.

Remarks Initiates slip processing.

When called, the slip station is made ready to receive a form by opening the form’s handling “jaws” or
activating a form insertion mode. This method is paired with the endInsertion method for controlling
form insertion.

If the Fiscal Printer device cannot be placed into insertion mode, a UposException is thrown. Otherwise,
the device continues to monitor form insertion until either:

• The form is successfully inserted.

• The form is not inserted before timeout milliseconds have elapsed, or an error is reported by the Fis-
cal Printer device. In this case, a UposException is thrown with an ErrorCode of E_TIMEOUT or
another value. The Fiscal Printer device remains in form insertion mode. This allows an application
to perform some user interaction and reissue the beginInsertion method without altering the form
handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
 E_ILLEGAL The slip station does not exist (see the CapSlpPresent property) or an in
 valid timeout parameter was specified.

E_TIMEOUT The specified time has elapsed without the form being properly inserted.

See Also CapSlpPresent Property, endInsertion Method, beginRemoval Method, endRemoval Method.
Unified POS, v1.16.1 543

16.5.5 beginItemList Method

Syntax beginItemList (vatID: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
vatID Vat identifier for reporting.

Remarks Initiates a validation report of items belonging to a particular VAT class.

This method is only supported if CapItemList is true. 

If this method is successful, PrinterState will be changed to FPTR_PS_ITEM_LIST. 
After this method, only verifyItem and endItemList methods may be called.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support an item list report (see the
 CapItemList property) or the Fiscal Printer does not support VAT tables
 (see the CapHasVatTable property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer’s current state does not allow this state transition.


ErrorCodeExtended = EFPTR_BAD_VAT:
The vatID parameter is invalid.

See Also CapHasVatTable Property, CapItemList Property, PrinterState Property, endItemList Method,
verifyItem Method.
544 Unified POS, V1.16.1

16.5.6 beginNonFiscal Method

Syntax beginNonFiscal ():
void { raises-exception, use after open-claim-enable }

Remarks Initiates non-fiscal operations on the Fiscal Printer.

This method is only supported if CapNonFiscalMode is true. Output in this mode is accomplished using
the printNormal method. This method can be successfully called only if the current value of the
PrinterState property is FPTR_PS_MONITOR. If this method is successful, the PrinterState property
will be changed to FPTR_PS_NONFISCAL. In order to stop non fiscal modality endNonFiscal method
should be called.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support non-fiscal output (see the
 CapNonFiscalMode property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer’s current state does not allow this state transition.

See Also CapNonFiscalMode Property, PrinterState Property, endNonFiscal Method, printNormal Method.
Unified POS, v1.16.1 545

16.5.7 beginRemoval Method

Syntax beginRemoval (timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
timeout The timeout parameter gives the number of milliseconds before failing the
 method.

If zero, the method tries to begin removal mode, then returns the appropriate status immediately. If
FOREVER (-1), the method tries to begin removal mode, then waits as long as needed until either the
form is removed or an error occurs.

Remarks Initiates form removal processing.

When called, the Fiscal Printer is made ready to remove a form by opening the form handling “jaws” or
activating a form ejection mode. This method is paired with the endRemoval method for controlling
form removal.

If the Fiscal Printer device cannot be placed into removal or ejection mode, a UposException is thrown.
Otherwise, the device continues to monitor form removal until either:

• The form is successfully removed.

• The form is not removed before timeout milliseconds have elapsed, or an error is reported by the
Fiscal Printer device. In this case, a UposException is thrown with an ErrorCode of E_TIMEOUT
or another value. The Fiscal Printer device remains in form removal mode. This allows an applica-
tion to perform some user interaction and reissue the beginRemoval method without altering the
form handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not have a slip station (see the CapSlpPresent
 property) or an invalid timeout parameter was specified.

E_TIMEOUT The specified time has elapsed without the form being properly removed.

See Also CapSlpPresent Property, beginInsertion Method, endInsertion Method, endRemoval Method.
546 Unified POS, V1.16.1

16.5.8 beginTraining Method

Syntax beginTraining ():
void { raises-exception, use after open-claim-enable }

Remarks Initiates training operations.

This method is only supported if CapTrainingMode is true. Output in this mode is accomplished using
the printRec… methods in order to print a receipt or other methods to print reports. This method can be
successfully called only if the current value of the PrinterState property is FPTR_PS_MONITOR. If
this method is successful, the TrainingModeActive property will be changed to true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support training mode (see the
 CapTrainingMode property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer’s current state does not allow this state transition.

See Also CapTrainingMode Property, PrinterState Property, TrainingModeActive Property, endTraining
Method, printRec… Methods.

16.5.9 clearError Method

Syntax clearError ():
void { raises-exception, use after open-claim-enable }

Remarks Clears all Fiscal Printer error conditions. 
This method is always performed synchronously.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_FAILURE Error recovery failed.
Unified POS, v1.16.1 547

16.5.10 endFiscalDocument Method

Syntax endFiscalDocument ():
void { raises-exception, use after open-claim-enable }

Remarks Terminates fiscal printing to the slip station.

This method is only supported if CapSlpFiscalDocument is true. 
If this method is successful, the PrinterState property will be changed to FPTR_PS_MONITOR.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support fiscal output to the slip station (see the
 CapSlpFiscalDocument property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
 The Fiscal Printer is not currently in the Fiscal Document state.

See Also CapSlpFiscalDocument Property, PrinterState property, beginFiscalDocument Method,
printFiscalDocumentLine Method.
548 Unified POS, V1.16.1

16.5.11 endFiscalReceipt Method Updated in Release 1.6

Syntax endFiscalReceipt (printHeader: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description
printHeader Indicates if the header lines of the following receipt are to be printed at 
 this time.

Remarks Terminates fiscal printing to the receipt station.

If printHeader is false, this method will close the current fiscal receipt, print the trailer lines, if they were
not already printed after the total lines, and cut it. 
If printHeader is true, additionally the header of the next receipt will be printed before cutting the receipt,
otherwise the header will be printed when beginning the next receipt.
All functions carried out by this method will be completed before this call returns. 

If CapAdditionalTrailer is true, application specific trailer lines defined by the AdditionalTrailer
property will be printed after the fiscal trailer lines.

If this method is successful, the PrinterState property will be changed to FPTR_PS_MONITOR.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
 The Fiscal Printer is not currently in the Fiscal Receipt Ending state.

See Also beginFiscalReceipt Method, printRec… Methods, CapAdditionalTrailer Property,
AdditionalTrailer Property.
Unified POS, v1.16.1 549

16.5.12 endFixedOutput Method

Syntax endFixedOutput ():
void { raises-exception, use after open-claim-enable }

Remarks Terminates non-fiscal fixed text printing on a Fiscal Printer station.

This method is only supported if CapFixedOutput is true. If this method is successful, the PrinterState
property will be changed to FPTR_PS_MONITOR.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support fixed output (see the
 CapFixedOutput property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fixed Output state.

See Also beginFixedOutput Method, printFixedOutput Method.

16.5.13 endInsertion Method

Syntax endInsertion ():
void { raises-exception, use after open-claim-enable }

Remarks Ends form insertion processing.

When called, the Fiscal Printer is taken out of form insertion mode. If the slip device has forms “jaws,”
they are closed by this method. If no form is present, a UposException is thrown with its
ErrorCodeExtended property set to EFPTR_SLP_EMPTY.
This method is paired with the beginInsertion method for controlling form insertion. The application
may choose to call this method immediately after a successful beginInsertion if it wants to use the Fiscal
Printer sensors to determine when a form is positioned within the slip printer. Alternatively, the
application may prompt the user and wait for a key press before calling this method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The Fiscal Printer is not in slip insertion mode.

E_EXTENDED ErrorCodeExtended = EFPTR_COVER_OPEN:
The device was taken out of insertion mode while the Fiscal Printer cover
was open.

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The device was taken out of insertion mode without a form being inserted.

See Also beginInsertion Method, beginRemoval Method, endRemoval Method.
550 Unified POS, V1.16.1

16.5.14 endItemList Method Updated in Release 1.13

Syntax endItemList ():
void { raises-exception, use after open-claim-enable }

Remarks Terminates a validation report of items belonging to a particular VAT class.

This method is only supported if CapItemList is true and CapHasVatTable is true.
This method is paired with the beginItemList method.
This method can be successfully called only if current value of PrinterState property is equal to
FPTR_PS_ITEM_LIST.
If this method is successful, the PrinterState property will be changed to FPTR_PS_MONITOR.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support item list report (see the CapItemList
 property) or the Fiscal Printer does not support VAT tables (see the
 CapHasVatTable property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer’s current state does not allow this state transition.

See Also CapItemList Property, CapHasVatTable Property, beginItemList Method, verifyItem Method.

16.5.15 endNonFiscal Method

Syntax endNonFiscal ():
void { raises-exception, use after open-claim-enable }

Remarks Terminates non-fiscal operations on one Fiscal Printer station.

This method is only supported if CapNonFiscalMode is true. If this method is successful, the
PrinterState property will be changed to FPTR_PS_MONITOR.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support non-fiscal output (see the
 CapNonFiscalMode property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Non-Fiscal state.

See Also beginNonFiscal Method, printNormal Method.
Unified POS, v1.16.1 551

16.5.16 endRemoval Method

Syntax endRemoval ():
void { raises-exception, use after open-claim-enable }

Remarks Ends form removal processing.

When called, the Fiscal Printer is taken out of form removal or ejection mode. If a form is present, a
UposException is thrown with the ErrorCodeExtended property set to EFPTR_SLP_FORM.

This method is paired with the beginRemoval method for controlling form removal. The application
may choose to call this method immediately after a successful beginRemoval if it wants to use the Fiscal
Printer sensors to determine when the form has been removed. Alternatively, the application may prompt
the user and wait for a key press before calling this method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer is not in slip removal mode.

E_EXTENDED ErrorCodeExtended = EFPTR_SLP_FORM:
The device was taken out of removal mode while a form was still present.

See Also beginInsertion Method, endInsertion Method, beginRemoval Method.

16.5.17 endTraining Method

Syntax endTraining ():
void { raises-exception, use after open-claim-enable }

Remarks Terminates training operations on either the receipt or the slip station.

This method is only supported if CapTrainingMode is true. If this method is successful, the
TrainingModeActive property will be changed to false.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support training mode (see the
 CapTrainingMode property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Training state.

See Also CapTrainingMode property, beginTraining Method, printRec… Methods.
552 Unified POS, V1.16.1

16.5.18 getData Method Updated in Release 1.12

Syntax getData (dataItem: int32, inout optArgs: int32, inout data: string):
void { raises-exception, use after open-claim-enable }

Parameter Description 
dataItem The specific data item to retrieve.

optArgs For some dataItem this additional argument is needed. Consult the
 Service vendor's documentation for further use of this argument.

data Character string to hold the data retrieved.

The dataItem parameter has one of the following values:

ValueMeaning

Identification data
FPTR_GD_FIRMWARE Get the Fiscal Printer’s firmware release number.
FPTR_GD_PRINTER_ID Get the Fiscal Printer’s fiscal ID.

Totals
FPTR_GD_CURRENT_TOTAL Get the current receipt total.
FPTR_GD_DAILY_TOTAL Get the daily total.
FPTR_GD_GRAND_TOTAL Get the Fiscal Printer’s grand total.
FPTR_GD_MID_VOID Get the total number of voided receipts.
FPTR_GD_NOT_PAID Get the current total of not paid receipts.
FPTR_GD_RECEIPT_NUMBER

Get the number of fiscal receipts printed.
FPTR_GD_REFUND Get the current total of refunds.
FPTR_GD_REFUND_VOID Get the current total of voided refunds.

Fiscal memory counts
FPTR_GD_NUMB_CONFIG_BLOCK

Get the grand number of configuration blocks.
FPTR_GD_NUMB_CURRENCY_BLOCK

Get the grand number of currency blocks.
FPTR_GD_NUMB_HDR_BLOCK

Get the grand number of header blocks.
FPTR_GD_NUMB_RESET_BLOCK

Get the grand number of reset blocks.
FPTR_GD_NUMB_VAT_BLOCK

Get the grand number of VAT blocks.

Counter
FPTR_GD_FISCAL_DOC Get the number of daily fiscal documents.

FPTR_GD_FISCAL_DOC_VOID
 Get the number of daily voided fiscal documents.

FPTR_GD_FISCAL_REC Get the number of daily fiscal sales receipts.

FPTR_GD_FISCAL_REC_VOID
 Get the number of daily voided fiscal sales receipts.

FPTR_GD_NONFISCAL_DOC Get the number of daily non fiscal documents.
Unified POS, v1.16.1 553

FPTR_GD_NONFISCAL_DOC_VOID
 Get the number of daily voided non fiscal documents.

FPTR_GD_NONFISCAL_REC Get the number of daily non fiscal receipts.
FPTR_GD_RESTART Get the Fiscal Printer’s restart count
FPTR_GD_SIMP_INVOICE Get the number of daily simplified invoices.
FPTR_GD_Z_REPORT Get the Z report number.

Fixed fiscal printer text
FPTR_GD_TENDER Get the payment description used in the printRecTotal method,

defined by the given identifier in the optArgs argument.Valid
only, if the CapPredefinedPaymentLines property is true.

Linecounter
FPTR_GD_LINECOUNT Get the number of printed lines, defined by the given identifier in

the optArgs argument. If the CapMultiContractor property is
true, line counters depend on the contractor defined by the
ContractorId property.

Description length　 　　　　　　　　　　　　　　　　　　
FPTR_GD_DESCRIPTION_LENGTH

Get the maximum number of characters that may be passed as a
　 description parameter for a specific method, defined by the given
　 identifier in the optArgs argument.

If dataItem is FPTR_GD_TENDER the optArgs parameter has to be set to one of the following
values:
Value Meaning
FPTR_PDL_CASH　 　　　　　　　Cash.
FPTR_PDL_CHEQUE Cheque.
FPTR_PDL_CHITTY Chitty.
FPTR_PDL_COUPON Coupon.
FPTR_PDL_CURRENCY Currency.
FPTR_PDL_DRIVEN_OFF
FPTR_PDL_EFT_IMPRINTER Printer EFT.
FPTR_PDL_EFT_TERMINAL　　　　 Terminal EFT.
FPTR_PDL_TERMINAL_IMPRINTER
FPTR_PDL_FREE_GIFT Gift.
FPTR_PDL_GIRO Giro.
FPTR_PDL_HOME Home.
FPTR_PDL_IMPRINTER_WITH_ISSUER
FPTR_PDL_LOCAL_ACCOUNT Local account.
FPTR_PDL_LOCAL_ACCOUNT_CARD
 Local card account.
FPTR_PDL_PAY_CARD Pay card.
FPTR_PDL_PAY_CARD_MANUAL Manual pay card.
FPTR_PDL_PREPAY Prepay.
FPTR_PDL_PUMP_TEST Pump test.
FPTR_PDL_SHORT_CREDIT Credit.
FPTR_PDL_STAFF Staff.
FPTR_PDL_VOUCHER Voucher.
554 Unified POS, V1.16.1

If dataItem is FPTR_GD_LINECOUNT the optArgs parameter has to be set to one of the following
values:

Value Meaning
FPTR_LC_ITEM Number of item lines.
FPTR_LC_ITEM_VOID Number of voided item lines.
FPTR_LC_DISCOUNT Number of discount lines.
FPTR_LC_DISCOUNT_VOID Number of voided discount lines.
FPTR_LC_SURCHARGE Number of surcharge lines.
FPTR_LC_SURCHARGE_VOID Number of voided surcharge lines.
FPTR_LC_REFUND Number of refund lines.
FPTR_LC_REFUND_VOID Number of voided refund lines.
FPTR_LC_SUBTOTAL_DISCOUNT Number of subtotal discount lines.
FPTR_LC_SUBTOTAL_DISCOUNT_VOID
 Number of voided subtotal discount lines.
FPTR_LC_SUBTOTAL_SURCHARGE
 Number of subtotal surcharge lines.
FPTR_LC_SUBTOTAL_SURCHARGE_VOID
 Number of voided subtotal surcharge lines.
FPTR_LC_COMMENT Number of comment lines.
FPTR_LC_SUBTOTAL Number of subtotal lines.
FPTR_LC_TOTAL Number of total lines.

If dataItem is FPTR_GD_DESCRIPTION_LENGTH the optArgs parameter has to be set to one of
the following values:

Value Meaning
FPTR_DL_ITEM printRecItem method.
FPTR_DL_ITEM_ADJUSTMENT printRecItemAdjustment method.
FPTR_DL_ITEM_FUEL printRecItemFuel method.
FPTR_DL_ITEM_FUEL_VOID printRecItemFuelVoid method.
FPTR_DL_NOT_PAID printRecNotPaid method.
FPTR_DL_PACKAGE_ADJUSTMENT printRecPackageAdjustment method.
FPTR_DL_REFUND printRecRefund method,
 printRecItemRefund method.
FPTR_DL_REFUND_VOID printRecRefundVoid method,
 printRecItemRefundVoid method.
FPTR_DL_SUBTOTAL_ADJUSTMENT
 printRecSubtotalAdjustment method.
FPTR_DL_TOTAL printRecTotal method.
FPTR_DL_VOID printRecVoid method.
FPTR_DL_VOID_ITEM printRecItemVoid and
 printRecItemAdjustmentVoid methods.

Remarks Retrieves data and counters from the printer’s fiscal module.

If CapMultiContractor is true, line counters depend on the contractor defined by the ContractorId
property.

The data is returned in a string because some of the fields, such as the grand total, might overflow a 4-
byte integer.
Unified POS, v1.16.1 555

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. (Only applies if
 AsyncMode is false.)

E_ILLEGAL The dataItem, optArgs or ContractorId specified is invalid.

See Also printRecTotal Method, CapPredefinedPaymentLines Property, 
ContractorId Property, PredefinedPaymentLines Property.

16.5.19 getDate Method Updated in Release 1.6

Syntax getDate (inout date: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
date Date and time returned as a string.

Remarks Gets the Fiscal Printer’s date and time specified by the DateType property.

The date and time are returned as a string in the format “ddmmyyyyhhmm”:


dd day of the month (1 - 31)
mm month (1 - 12)
yyyy year (1997-)
hh hour (0-23)
mm minutes (0-59)

The fiscal controller may not support hours and minutes depending on the date type. In such cases the
corresponding fields in the returned string are filled with “0”.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Retrieval of the date and time is not valid at this time.

See Also DateType Property
556 Unified POS, V1.16.1

16.5.20 getTotalizer Method Updated in Release 1.6

Syntax getTotalizer (vatID: int32, optArgs: int32, inout data: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
vatID VAT identifier of the required totalizer.
optArgs Specifies the required totalizer.
data Totalizer returned as a string.

The optArgs parameter has one of the following values:
Value Meaning
FPTR_GT_GROSS Gross totalizer specified by the TotalizerType and
 ContractorId properties.
FPTR_GT_NET Net totalizer specified by the TotalizerType and ContractorId
 properties.
FPTR_GT_DISCOUNT Discount totalizer specified by the TotalizerType and
 ContractorId properties.
FPTR_GT_DISCOUNT_VOID
 Voided discount totalizer specified by the TotalizerType and
 ContractorId properties.
FPTR_GT_ITEM Item totalizer specified by the TotalizerType and
 ContractorId properties.
FPTR_GT_ITEM_VOID Voided item totalizer specified by the TotalizerType and
 ContractorId properties.
FPTR_GT_NOT_PAID Not paid totalizer specified by the TotalizerType and
 ContractorId properties.
FPTR_GT_REFUND Refund totalizer specified by the TotalizerType and
 ContractorId properties.
FPTR_GT_REFUND_VOID Voided refund totalizer specified by the TotalizerType and
 ContractorId properties.
FPTR_GT_SUBTOTAL_DISCOUNT 
 Subtotal discount totalizer specified by the
 TotalizerType and ContractorId properties.
FPTR_GT_SUBTOTAL_DISCOUNT_VOID
 Voided discount totalizer specified by the TotalizerType and
 ContractorId properties.
FPTR_GT_SUBTOTAL_SURCHARGES
 Subtotal surcharges totalizer specified by the
 TotalizerType and ContractorId properties.
FPTR_GT_SUBTOTAL_SURCHARGES_VOID
 Voided surcharges totalizer specified by the TotalizerType
 and ContractorId properties.
FPTR_GT_SURCHARGE Surcharge totalizer specified by the TotalizerType and
 ContractorId properties.
FPTR_GT_SURCHARGE_VOID
 Voided surcharge totalizer specified by the
 TotalizerType and ContractorId properties.
FPTR_GT_VAT AT totalizer specified by the TotalizerType and ContractorId
 properties.
FPTR_GT_VAT_CATEGORY
 VAT totalizer per VAT category specified by the TotalizerType
 and ContractorId properties associated to the given vatID.
Unified POS, v1.16.1 557

Remarks Gets the totalizer specified by the optArgs argument Some of the totalizers such as item or VAT
totalizers may be associated with the given vatID.

If CapTotalizerType is true, the type of totalizer (grand, day, receipt specific) depends on the
TotalizerType property.

If CapMultiContractor is true, the type depends on the ContractorId property.

If CapSetVatTable is false, then only one totalizer is present.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
 E_ILLEGAL One of the following errors occurred:

• The vatID parameter is invalid, or

• The ContractorId property is invalid, or

• The specified totalizer is not available.

See Also CapTotalizerType Property, TotalizerType Property,
CapMultiContractor Property, ContractorId Property.

16.5.21 getVatEntry Method Updated in Release 1.11

Syntax getVatEntry (vatID: int32, optArgs: int32, inout vatRate: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
vatID VAT identifier of the required rate.

optArgs For some countries, this additional argument may be needed.
Consult the Fiscal Printer Service vendor's documentation for details.

vatRate The rate associated with the VAT identifier.

Remarks Gets the rate associated with a given VAT identifier.

This method is only supported if CapHasVatTable is true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The vatID parameter is invalid, or CapHasVatTable is false.

See Also CapHasVatTable Property.
558 Unified POS, V1.16.1

16.5.22 printDuplicateReceipt Method

Syntax printDuplicateReceipt ():
void { raises-exception, use after open-claim-enable }

Remarks Prints a duplicate of a buffered transaction.

This method is only supported if CapDuplicateReceipt is true. This method will succeed if both the
CapDuplicateReceipt and DuplicateReceipt properties are true.

This method resets the DuplicateReceipt property to false.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. (Only applies if AsyncMode
 is false.)

E_ILLEGAL The Fiscal Printer does not support duplicate receipts (see the
CapDuplicateReceipt property) or there is no buffered transaction to
print (see DuplicateReceipt property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Monitor state.


ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.


ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.

See Also CapDuplicateReceipt Property, DuplicateReceipt Property.
Unified POS, v1.16.1 559

16.5.23 printFiscalDocumentLine Method

Syntax printFiscalDocumentLine (documentLine: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
documentLine String to be printed on the fiscal slip.

Remarks Prints a line of fiscal text to the slip station.

This method is only supported if CapSlpFiscalDocument is true. 
This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. (Only applies if
 AsyncMode is false.)

E_ILLEGAL The Fiscal Printer does not support fiscal documents (see the
CapSlpFiscalDocument property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Document state.


ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

See Also beginFiscalDocument Method, endFiscalDocument Method.
560 Unified POS, V1.16.1

16.5.24 printFixedOutput Method

Syntax printFixedOutput (documentType: int32, lineNumber: int32, data: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
documentType Identifier of a document stored in the Fiscal Printer

lineNumber Number of the line in the document to print.

data String parameter for placement in printed line.

Remarks Prints a line of a fixed document to the print station specified in the beginFixedOutput method. Each
call prints a single line from a document by merging the stored text with the parameter data. Within a
document lines must be printed sequentially. First and last lines are required; others may be optional.

This method is only supported if CapFixedOutput is true. The Fiscal Printer state is set to
FPTR_PS_FIXED_OUTPUT. This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress.
 (Only applies if AsyncMode is false.)

E_ILLEGAL The Fiscal Printer does not support fixed output (see the
CapFixedOutput property) or the lineNumber is invalid.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not in the Fixed Output state.


ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

See Also beginFixedOutput Method, endFixedOutput Method.
Unified POS, v1.16.1 561

16.5.25 printNormal Method Updated in Release 1.7

Syntax printNormal (station: int32, data: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
station The Fiscal Printer station to be used. May be FPTR_S_RECEIPT,
 FPTR_S_JOURNAL, or FPTR_S_SLIP.

data1 The characters to be printed. May consist mostly of printable characters,
escape sequences, carriage returns (13 decimal), and line feeds (10

 decimal) but in many cases these are not supported.

Remarks Performs non-fiscal printing. Prints data on the Fiscal Printer station.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Special character values within data are:

Value Meaning
Line Feed (10 decimal)
 Print any data in the line buffer, and feed to the next print line. (A Carriage
 Return is not required in order to cause the line to be printed.)

Carriage Return (13 decimal)

If a Carriage Return immediately precedes a Line Feed, or if the line
buffer is empty, then it is ignored.

Otherwise, the line buffer is printed and the Fiscal Printer does not feed to
the next print line. On some Fiscal Printers, print without feed may be
directly supported. On others, a print may always feed to the next line, in
which case the Device will print the line buffer and perform a reverse line
feed if supported. If the Fiscal Printer does not support either of these
features, then Carriage Return acts like a Line Feed.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

1. In the OPOS environment, the format of data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.
562 Unified POS, V1.16.1

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The specified station does not exist. (See the CapJrnPresent, CapRecPre
 sent and CapSlpPresent properties.)

E_BUSY Cannot perform while output is in progress. (Only applies if AsyncMode
is false.)

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Non-Fiscal state.


ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station was specified but is out of paper.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

See Also beginNonFiscal Method, endNonFiscal Method, AsyncMode Property.
Unified POS, v1.16.1 563

16.5.26 printPeriodicTotalsReport Method

Syntax printPeriodicTotalsReport (date1: string, date2: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
date1 Starting date of report to print.
date2 Ending date of report to print.

Remarks Prints a report of totals for a range of dates on the receipt.
This method is always performed synchronously.

The dates are strings in the format “ddmmyyyyhhmm,” where:

dd day of the month (1 - 31)

mm month (1 - 12)

yyyy year (1997-)

hh hour (0-23)

mm minutes (0-59)

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors”
on page 16. 

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
 The Fiscal Printer’s current state does not allow this state transition.

 ErrorCodeExtended = EFPTR_JRN_EMPTY:
 The journal station is out of paper.

 ErrorCodeExtended = EFPTR_REC_EMPTY:
 The receipt station is out of paper.

 ErrorCodeExtended = EFPTR_BAD_DATE:
 One of the date parameters is invalid.
564 Unified POS, V1.16.1

16.5.27 printPowerLossReport Method

Syntax printPowerLossReport ():
void { raises-exception, use after open-claim-enable }

Remarks Prints on the receipt a report of a power failure that resulted in a loss of data stored in the CMOS of the
Fiscal Printer.

This method is only supported if CapPowerLossReport is true.

This method is always performed synchronously.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16. 

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support power loss reports (see the
 CapPowerLossReport property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer’s current state does not allow this state transition.


ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.


ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.


ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.

See Also CapPowerLossReport Property.
Unified POS, v1.16.1 565

16.5.28 printRecCash Method Added in Release 1.6

Syntax printRecCash (amount: currency):
void { raises-exception, use after open-claim-enable }

Parameter Description
amount Amount to be incremented or decremented.

Remarks Prints a cash-in or cash-out receipt amount on the station defined by the FiscalReceiptStation
property.

This method is only allowed if CapFiscalReceiptType is true and the FiscalReceiptType property
is set to FPTR_RT_CASH_IN or FPTR_RT_CASH_OUT and the fiscal Fiscal Printer is in the
Fiscal Receipt state.

This method is performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. 
 (Only applies if AsyncMode is false.)

E_ILLEGAL The Fiscal Printer does not support this method.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, FiscalReceiptStation Property, 
FiscalReceiptType Property.
566 Unified POS, V1.16.1

16.5.29 printRecItem Method Updated in Release 1.6

Syntax printRecItem (description: string, price: currency, quantity: int32, vatInfo: int32, unitPrice:
currency, unitName: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
description Text describing the item sold.

price Price of the line item.

quantity Number of items. If zero, a single item is assumed.

vatInfo VAT rate identifier or amount. If not used a zero must be transferred.

unitPrice Price of each item. If not used a zero must be transferred.

unitName Name of the unit i.e., “kg” or “ltr” or “pcs.” If not used, an empty string
 (“”) must be transferred

Remarks Prints a receipt item for a sold item on the station specified by the FiscalReceiptStation property. If the
quantity parameter is zero, then a single item quantity will be assumed.

Minimum parameters are description and price or description, price, quantity, and unitPrice. Most
countries require quantity and vatInfo and some countries also require unitPrice and unitName. 

VatInfo parameter contains a VAT table identifier if CapHasVatTable is true. Otherwise, it contains a
VAT amount. 

If CapPostPreLine is true, additional application specific lines defined by the PostLine and PreLine
properties will be printed. After printing these lines PostLine and PreLine will be reset to an empty
string.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16. 

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. 
 (Only applies if AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.


ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
Unified POS, v1.16.1 567

(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if
AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_QUANTITY:
The quantity is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_PRICE:
The unit price is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The discount description is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT parameter is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_RECEIPT_TOTAL_OVERFLOW:
The receipt total has overflowed.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods, AmountDecimalPlaces
Property, FiscalReceiptStation Property, PostLine Property, PreLine Property.
568 Unified POS, V1.16.1

16.5.30 printRecItemAdjustment Method Updated in Release 1.11

Syntax printRecItemAdjustment (adjustmentType: int32, description: string, amount: currency, vatInfo:
int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
adjustmentType Type of adjustment. See below for values.

description Text describing the adjustment.

amount Amount of the adjustment.

vatInfo VAT rate identifier or amount.

The adjustmentType parameter has one of the following values (Note: If currency value, four decimal
places are used):

Value Meaning
FPTR_AT_AMOUNT_DISCOUNT

Fixed amount discount. The amount parameter contains a currency value.

FPTR_AT_AMOUNT_SURCHARGE
 Fixed amount surcharge. The amount parameter contains a
 currency value.

FPTR_AT_PERCENTAGE_DISCOUNT
Percentage discount. The amount parameter contains a percentage value.

FPTR_AT_PERCENTAGE_SURCHARGE
Percentage surcharge. The amount parameter contains a percentage value.

FPTR_AT_COUPON_AMOUNT_DISCOUNT
 Fixed amount discount for an advertising coupon.
 The amount parameter contains a currency value.
 The coupon is registered by the fiscal memory.
 If coupons are not registered at fiscal memory separately from
 ordinary discounts in the actual country, then it is
 recommend to use FPTR_AT_AMOUNT_DISCOUNT instead.

FPTR_AT_COUPON_PERCENTAGE_DISCOUNT
Percentage discount for an advertising coupon. The amount parameter
contains a percentage value. The coupon is registered by the fiscal
memory. If coupons are not registered at fiscal memory separately from
ordinary discounts in the actual country, then it is recommend to use
FPTR_AT_PERCENTAGE_DISCOUNT instead.

Remarks Applies and prints a discount or a surcharge to the last receipt item sold on the station specified by the
FiscalReceiptStation property. This discount may be either a fixed currency amount or a percentage
amount relating to the last item.

If CapOrderAdjustmentFirst is true, the method must be called before the corresponding
printRecItem method. If CapOrderAdjustmentFirst is false, the method must be called after the
printRecItem.

This discount/surcharge may be either a fixed currency amount or a percentage amount relating to the
last item. If the discount amount is greater than the receipt subtotal, an error occurs since the subtotal can
never be negative. In many countries discount operations cause the printing of a fixed line of text
expressing the kind of operation that has been performed. 
Unified POS, v1.16.1 569

The VatInfo parameter contains a VAT table identifier if CapHasVatTable is true. Otherwise, it contains
a VAT amount.

Fixed amount discounts/surcharges are only supported if the property CapAmountAdjustment is true.
Percentage discounts are only supported if CapPercentAdjustment is true.

If CapPostPreLine is true, an additional application specific line defined by the PreLine property will
be printed. After printing this line PreLine will be reset to an empty string.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. 

(Only applies if AsyncMode is false.)

E_ILLEGAL One of the following errors occurred:

• The Fiscal Printer does not support fixed amount adjustments (see the
CapAmountAdjustment property).

• The Fiscal Printer does not support percentage discounts (see the
CapPercentAdjustment property).

• The adjustmentType parameter is invalid.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if
AsyncMode is false.)

ErrorCodeExtended = FPTR_BAD_ITEM_AMOUNT:
The discount amount is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The discount description is too long or contains a reserved word. (Only
applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT parameter is invalid.
(Only applies if AsyncMode is false.)
570 Unified POS, V1.16.1

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods, AmountDecimalPlaces
Property, FiscalReceiptStation Property, PreLine Property.

16.5.31 printRecItemAdjustmentVoid Method Added in Release 1.11

Syntax printRecItemAdjustmentVoid (adjustmentType: int32, description: string, amount:
currency, vatInfo: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
adjustmentType Type of adjustment to be voided. See below for values.

description Text describing the adjustment to be voided.

amount Amount of the adjustment to be voided.

vatInfo VAT rate identifier or amount.

The adjustmentType parameter has one of the following values (Note: If currency value, four
decimal places are used):

Value Meaning
FPTR_AT_AMOUNT_DISCOUNT
 Fixed amount discount to be voided. The amount parameter contains a
 currency value.

FPTR_AT_AMOUNT_SURCHARGE 
 Fixed amount surcharge to be voided. The amount parameter
 contains a currency value.

FPTR_AT_PERCENTAGE_DISCOUNT
Percentage discount to be voided. The amount parameter contains a
percentage value.

FPTR_AT_PERCENTAGE_SURCHARGE
Percentage surcharge to be voided. The amount parameter contains a
percentage value.

FPTR_AT_COUPON_AMOUNT_DISCOUNT
 Fixed amount discount for an advertising coupon to be voided.
 The amount parameter contains a currency value. The coupon

 is registered by the fiscal memory. If coupons are not registered at
 fiscal memory separately from ordinary discounts in the actual
 country, then it is recommend to use
 FPTR_AT_AMOUNT_DISCOUNT instead.

FPTR_AT_COUPON_PERCENTAGE_DISCOUNT
Percentage discount for an advertising coupon to be voided. The amount

 parameter contains a percentage value. The coupon is registered by the
fiscal memory. If coupons are not registered at fiscal memory separately
from ordinary discounts in the actual country, then it is recommend to use
FPTR_AT_PERCENTAGE_DISCOUNT instead.

Remarks Cancels an adjustment that has been added to fiscal receipt before and prints a cancellation line with a
negative amount on the station specified by the FiscalReceiptStation property. This adjustment
cancellation amount may be either a fixed currency amount or a percentage amount.
Unified POS, v1.16.1 571

The VatInfo parameter contains a VAT table identifier if CapHasVatTable is true. Otherwise, it contains
a VAT amount.

Fixed amount adjustment cancellations are only supported if the property CapAmountAdjustment is
true. Percentage adjustment cancellations are only supported if CapPercentAdjustment is true.

If CapPostPreLine is true an additional application specific line defined by the PreLine property will
be printed. After printing this line PreLine will be reset to an empty string.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. 
 (Only applies if AsyncMode is false.)

E_ILLEGAL One of the following errors occurred:

• The Fiscal Printer does not support fixed amount adjustments (see the
CapAmountAdjustment property).

• The Fiscal Printer does not support percentage discounts (see the
CapPercentAdjustment property).

• The adjustmentType parameter is invalid.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if
AsyncMode is false.)

ErrorCodeExtended = FPTR_BAD_ITEM_AMOUNT:
The discount amount is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The discount description is too long or contains a reserved word. (Only
applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT parameter is invalid.
(Only applies if AsyncMode is false.)
572 Unified POS, V1.16.1

See Also AmountDecimalPlaces Property, FiscalReceiptStation Property, PreLine Property,
beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods,
printRecItemAdjustment Method.

16.5.32 printRecItemFuel Method Added in Release 1.6

Syntax printRecItemFuel (description: string, price: currency, quantity: int32, vatInfo: int32,
unitPrice: currency, unitName: string, specialTax: currency, specialTaxName: string
):
void { raises-exception, use after open-claim-enable }

Parameter Description
description Text describing the fuel product.

price Price of the fuel item.

quantity Number of items. If zero, a single item is assumed.

vatInfo VAT rate identifier or amount. If not used a zero must be transferred.

unitPrice Price of the fuel item per volume.

unitName Name of the volume unit, i.e., “ltr.” If not used ,an empty string (“”) must
 be transferred

specialTax Special tax amount, e.g., road tax. If not used, a zero must be transferred.

specialTaxName Name of the special tax.

Remarks Prints a receipt fuel item on the station specified by the FiscalReceiptStation property. vatInfo
parameter contains a VAT table identifier if CapHasVatTable is true. Otherwise, it contains a VAT
amount.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. 

(Only applies if AsyncMode is false.)

E_ILLEGAL This method is not supported.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.
ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)
Unified POS, v1.16.1 573

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)
ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if
AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_QUANTITY:
The quantity is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_PRICE:
The unit price is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The discount description is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT parameter is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_RECEIPT_TOTAL_OVERFLOW:
The receipt total has overflowed.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, FiscalReceiptStation Property.
574 Unified POS, V1.16.1

16.5.33 printRecItemFuelVoid Method Added in Release 1.6

Syntax printRecItemFuelVoid (description: string, price: currency, vatInfo: int32,
specialTax: currency):
 void { raises-exception, use after open-claim-enable }

Parameter Description
description Text describing the fuel product.

price Price of the fuel item. If not used, a zero must be transferred.

vatInfo VAT rate identifier or amount. If not used, a zero must be transferred.

specialTax Special tax amount, e.g., road tax. If not used, a zero must be transferred.

Remarks Called to void a fuel item on the station specified by the FiscalReceiptStation property.

If CapOnlyVoidLastItem is true, only the last fuel item transferred to the Fiscal Printer can be voided.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16. 

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. 

(Only applies if AsyncMode is false.)

E_ILLEGAL This method is not supported.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if
AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_PRICE:
The price is invalid.
(Only applies if AsyncMode is false.)
Unified POS, v1.16.1 575

ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The discount description is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT parameter is invalid.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method, 
printRecItemFuel Method, CapOnlyVoidLastItem Property, FiscalReceiptStation Property.
576 Unified POS, V1.16.1

16.5.34 printRecItemRefund Method Added in Release 1.12

Syntax printRecItemRefund (description: string, amount: currency, quantity: int32, vatInfo: int32,
unitAmount: currency, unitName: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
description Text describing the refund.

amount The amount of the refund line.

quantity Number of items. If zero, a single item is assumed.

vatInfo VAT rate identifier or amount. If not used a zero must be transferred.

unitAmount Amount of each refund item. If not used a zero must be transferred.

unitName Name of the unit i.e., “kg” or “ltr” or “pcs.” If not used, an empty string
 (“”) must be transferred.

Remarks Processes one or more item refunds. The amount is positive, but it is printed as a negative number and
the totals registers are decremented.

If unitAmount and quantity are non zero, then the amount parameter corresponds to the product of
quantity and unitAmount. Otherwise this method has the same functionality as the method
printRecRefund.

Some fixed text, along with the description, will be printed on the station defined by the
FiscalReceiptStation property to indicate that a refund has occurred.

The vatInfo parameter contains a VAT table identifier if CapHasVatTable is true. Otherwise it, contains
a VAT amount.

If CapPostPreLine is true an additional application specific line defined by the PreLine property will
be printed. After printing this line, PreLine will be reset to an empty string.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16. 

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. 
 (Only applies if AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)
Unified POS, v1.16.1 577

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_QUANTITY:
The quantity is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_PRICE:
The unit price is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_AMOUNT:
The refund amount is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The discount description is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT parameter is invalid.
(Only applies if AsyncMode is false.)

See Also CapHasVatTable Property, CapPostPreLine Property, FiscalReceiptStation Property, PreLine
Property, printRecItemRefundVoid Method, printRecRefund Method.
578 Unified POS, V1.16.1

16.5.35 printRecItemRefundVoid Method Added in Release 1.12

Syntax printRecItemRefundVoid (description: string, amount: currency, quantity: int32, vatInfo:
int32, unitAmount: currency, unitName: string):
 void { raises-exception, use after open-claim-enable }+

Parameter Description
description Text describing the refund.

amount The amount of the refund line.

quantity Number of items. If zero, a single item is assumed.

vatInfo VAT rate identifier or amount. If not used, a zero must be transferred.

unitAmount Amount of each refund item. If not used, a zero must be transferred.

unitName Name of the unit i.e., “kg” or “ltr” or “pcs.” If not used, an empty string 
 (“”) must be transferred

Remarks Processes a void of one or more item refunds. The amount is positive and the totals registers are
incremented.

If unitAmount and quantity are non zero then the amount parameter corresponds to the product of
quantity and unitAmount. Otherwise this method has the same functionality as the method
printRecRefundVoid.

Some fixed text, along with the description, will be printed on the station defined by the
FiscalReceiptStation property to indicate that a void of a refund has occurred.

The vatInfo parameter contains a VAT table identifier if CapHasVatTable is true. Otherwise it, contains
a VAT amount.

If CapOnlyVoidLastItem is true, only the last refund item transferred to the Fiscal Printer can be
voided.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 　　　　
E_BUSY Cannot perform while output is in progress. 

(Only applies if AsyncMode is false.)

E_ILLEGAL Cancelling is not allowed at this ticket state. May be because no item has
been sold previously.
(See CapOnlyVoidLastItem.)

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)
Unified POS, v1.16.1 579

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if
AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_QUANTITY:
The quantity is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_PRICE:
The unit price is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_AMOUNT:
The refund amount is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The discount description is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT parameter is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_RECEIPT_TOTAL_OVERFLOW:
The receipt total has overflowed.
(Only applies if AsyncMode is false.)

See Also CapHasVatTable Property, CapPostPreLine Property, FiscalReceiptStation Property, PreLine
Property, printRecItemRefund Method, printRecRefundVoid Method.
580 Unified POS, V1.16.1

16.5.36 printRecItemVoid Method　　　　　　　　　　Added in Release 1.11

Syntax printRecItemVoid (description: string, price: currency, quantity: int32, vatInfo: int32,
unitPrice: currency, unitName: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
description Text describing the item to be voided.

price Price of the item to be voided.

quantity Quantity of item to be voided. If zero, a single item is assumed.

vatInfo VAT rate identifier or amount. If not used, a zero must be transferred.

unitPrice Price of each item. If not used, a zero must be transferred.

unitName Name of the unit i.e., “kg” or “ltr” or “pcs.” If not used, an empty string
 (“”) must be transferred.

Remarks Cancels one or more items that has been added to the receipt and prints a void description on the station
defined by the FiscalReceiptStation property.

Minimum parameters are description and price or description, quantity, and unitPrice. Most countries
require quantity and vatInfo and some countries also require unitPrice and unitName.

price is a positive number, it will be printed as a negative and will be decremented from the totals
registers. In some countries price will be ignored, instead the computation from quantity and unitPrice
will be printed as a negative amount. The vatInfo parameter contains a VAT table identifier if
CapHasVatTable is true. Otherwise, it contains a VAT amount.

If CapOnlyVoidLastItem is true, only the last item transferred to the Fiscal Printer can be voided
exclusive an adjustment line for this item.

If CapPostPreLine is true, additional application specific lines defined by the PostLine and PreLine
properties will be printed. After printing these lines PostLine and PreLine will be reset to an empty
string.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. 
 (Only applies if AsyncMode is false.)

E_ILLEGAL Cancelling is not allowed at this ticket state. May be because no item has
been sold previously.
(See CapOnlyVoidLastItem.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.

ErrorCodeExtended = EFPTR_COVER_OPEN: 
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)
Unified POS, v1.16.1 581

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if
AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_AMOUNT:
The price is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_QUANTITY:
The quantity is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT information is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The description is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_NEGATIVE_TOTAL:
The computed total is less than zero.
(Only applies if AsyncMode is false.)

See Also AmountDecimalPlaces Property, CapOnlyVoidLastItem Property, FiscalReceiptStation Property,
beginFiscalReceipt Method, endFiscalReceipt Method, printRecItem Method, printRec… Methods.
582 Unified POS, V1.16.1

16.5.37 printRecMessage Method Updated in Release 1.13

Syntax printRecMessage (message: string):
void { raises-exception, use after open-claim-enable }

Parameter Description 
 message Text message to print.

Remarks Prints a message on the fiscal receipt on the station specified by the FiscalReceiptStation property. The
length of an individual message is limited to the number of characters given in the MessageLength
property. The kind of message to be printed is defined by the MessageType property.

This method is only supported if CapAdditionalLines is true. This method is only supported when the
Fiscal Printer is in one of the Fiscal Receipt states.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. 

(Only applies if AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not in the Fiscal Receipt, Fiscal Receipt total, or
Fiscal Receipt Ending state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open. 
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if
AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The message is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods, CapAdditionalLines
Property, FiscalReceiptStation Property, 
MessageLength Property, MessageType Property.
Unified POS, v1.16.1 583

16.5.38 printRecNotPaid Method Updated in Release 1.11

Syntax printRecNotPaid (description: string, amount: currency):
void { raises-exception, use after open-claim-enable }

Parameter Description
description Text describing the not paid amount.

amount Amount not paid.

Remarks Indicates a part of the receipt’s total to not be paid. Some fixed text, along with the description, will be
printed on the station defined by the FiscalReceiptStation property to indicate that part of the receipt
total has not been paid. This method is only supported if CapReceiptNotPaid is true. If this method is
successful, the PrinterState property will remain in FPTR_PS_FISCAL_RECEIPT_TOTAL state or
change to the value FPTR_PS_FISCAL_RECEIPT_ENDING depending upon whether the entire receipt
total is now accounted for or not. This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. 

 (Only applies if AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in either the Fiscal Receipt or Fiscal
Receipt Total state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if
AsyncMode is false.)


ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The description is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_AMOUNT:
The amount is invalid.
(Only applies if AsyncMode is false.)
584 Unified POS, V1.16.1

See Also AmountDecimalPlaces Property, CapReceiptNotPaid Property, FiscalReceiptStation Property,
beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods.

16.5.39 printRecPackageAdjustment Method Added in Release 1.6

Syntax printRecPackageAdjustment (adjustmentType: int32, 
description: string, vatAdjustment: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
adjustmentType Type of adjustment. See below for values.

description Text describing the adjustment.

vatAdjustment String containing a list of adjustment(s) for different Vat(s).

The adjustmentType parameter has one of the following values:

Value Meaning
FPTR_AT_DISCOUNT Discount.

FPTR_AT_SURCHARGE Surcharge.

The vatAdjustment parameter consists of ASCII numeric semicolon delimited pairs of values which
denote each the VAT identifier of the package item to be adjusted and adjustment amount, separated by
a comma.

The number of pairs is delimited by the NumVatRates property.

Remarks Called to give an adjustment for a package of some items booked before. This adjustment (discount/
surcharge) may be either a fixed currency amount or a percentage amount relating to items combined to
an adjustment package.

Each item of the package must be transferred before.

Fixed amount adjustments are only supported if CapPackageAdjustment is true. 

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.
Unified POS, v1.16.1 585


Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. 
 (Only applies if AsyncMode is false.)

E_ILLEGAL The Fiscal Printer does not support package adjustments (see the
CapPackageAdjustment property), or the adjustmentType parameter is
invalid.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.


ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if
AsyncMode is false.)


ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The description is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

See Also printRecPackageAdjustVoid Method, CapPackageAdjustment Property.
586 Unified POS, V1.16.1

16.5.40 printRecPackageAdjustVoid Method Added in Release 1.6

Syntax printRecPackageAdjustVoid (adjustmentType: int32, 
vatAdjustment: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
adjustmentType Type of adjustment. See below for values.

vatAdjustment String containing a list of adjustment(s) to be voided for different VAT(s).

The adjustmentType parameter has one of the following values:

Value Meaning
FPTR_AT_DISCOUNT Discount.

FPTR_AT_SURCHARGE Surcharge.

The vatAdjustment parameter consists of ASCII numeric semicolon delimited pairs of values which
denote each the VAT identifier of the package item to be adjusted and adjustment amount, separated by
a comma.


The number of pairs is delimited by the NumVatRates property.

Remarks Called to void the adjustment for a package of some items. This adjustment (discount/surcharge) may be
either a fixed currency amount or a percentage amount relating to the current receipt subtotal.

Fixed amount void adjustments are only supported if CapPackageAdjustment is true. 

If CapPostPreLine is true, an additional application specific line defined by the PreLine property will
be printed. After printing this line PreLine will be reset to an empty string.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16. 

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. 
 (Only applies if AsyncMode is false.)

E_ILLEGAL The Fiscal Printer does not support package adjustments (see the
CapPackageAdjustment property), or the adjustmentType parameter is

 invalid.
Unified POS, v1.16.1 587

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
 The Fiscal Printer is not currently in the Fiscal Receipt state.

 ErrorCodeExtended = EFPTR_COVER_OPEN:
 The Fiscal Printer cover is open.
 (Only applies if AsyncMode is false.)

 ErrorCodeExtended = EFPTR_JRN_EMPTY:
 The journal station is out of paper.
 (Only applies if AsyncMode is false.)

 ErrorCodeExtended = EFPTR_REC_EMPTY:
 The receipt station is out of paper.
 (Only applies if AsyncMode is false.)

 ErrorCodeExtended = EFPTR_SLP_EMPTY:
 The slip station was specified, but a form is not inserted.(Only applies
 if AsyncMode is false.)

 ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
 The description is too long or contains a reserved word.
 (Only applies if AsyncMode is false.)

See Also printRecPackageAdjustment Method, CapPackageAdjustment Property,
PreLine Property.
588 Unified POS, V1.16.1

16.5.41 printRecRefund Method Updated in Release 1.12

Syntax printRecRefund (description: string, amount: currency, vatInfo: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
description Text describing the refund.

amount Amount of the refund.

vatInfo VAT rate identifier or amount.

Remarks Processes a refund. The amount is positive, but it is printed as a negative number and the totals registers
are decremented.

Some fixed text, along with the description, will be printed on the station defined by the
FiscalReceiptStation property to indicate that a refund has occurred.

The vatInfo parameter contains a VAT table identifier if CapHasVatTable is true. Otherwise it, contains
a VAT amount.

If CapPostPreLine is true an additional application specific line defined by the PreLine property will
be printed. After printing this line PreLine will be reset to an empty string.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

If several items of the same item type are to be refunded, then it is recommended to use
printRecItemRefund.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16. 

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. 
　 　　　　　　　　　(Only applies if AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
 The Fiscal Printer is not currently in the Fiscal Receipt state.

 ErrorCodeExtended = EFPTR_COVER_OPEN:
 The Fiscal Printer cover is open.
 (Only applies if AsyncMode is false.)

 ErrorCodeExtended = EFPTR_JRN_EMPTY:
 The journal station is out of paper.
 (Only applies if AsyncMode is false.)

 ErrorCodeExtended = EFPTR_REC_EMPTY:
 The receipt station is out of paper.
 (Only applies if AsyncMode is false.)

　　　　　　　　　　　　　　　 ErrorCodeExtended = EFPTR_SLP_EMPTY:
　　　　　　　　　　The slip station was specified, but a form is not inserted.(Only applies if
　　　　　　　　　　AsyncMode is false.)
Unified POS, v1.16.1 589



　　　　　　　　　　ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
　　　　　　　　　　The description is too long or contains a reserved word.
　　　　　　　　　　(Only applies if AsyncMode is false.)

　　　　　　　　　　ErrorCodeExtended = EFPTR_BAD_ITEM_AMOUNT:
　　　　　　　　　　The amount is invalid.
　　　　　　　　　　(Only applies if AsyncMode is false.)

　　　　　　　　　　ErrorCodeExtended = EFPTR_BAD_VAT:
　　　　　　　　　　The VAT information is invalid.
　　　　　　　　　　(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods, AmountDecimalPlaces
Property, FiscalReceiptStation Property, PreLine Property, printRecItemRefund Method.
590 Unified POS, V1.16.1

16.5.42 printRecRefundVoid Method　　　　　　　　　　Updated in Release 1.12

Syntax printRecRefundVoid (description: string, amount: currency, 
vatInfo: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description 
description Text describing the refund.

amount Amount of the voided refund.

vatInfo VAT rate identifier or amount.

Remarks Called to process a void of a refund.

The amount is positive and the totals registers are incremented.

Some fixed text, along with the description, will be printed on the station defined by the
FiscalReceiptStation property to indicate that a void of a refund has occurred.

The vatInfo parameter contains a VAT table identifier if CapHasVatTable is true. Otherwise it, contains
a VAT amount.

If CapOnlyVoidLastItem is true, only the last refund item transferred to the Fiscal Printer can be
voided.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

If the refund of several items of the same item type is to be voided, then it is recommended to use
printRecItemRefundVoid.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16. 

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. 
 (Only applies if AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.


ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)
Unified POS, v1.16.1 591

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if
AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The description is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_AMOUNT:
The amount is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT information is invalid.
(Only applies if AsyncMode is false.)

See Also printRecRefund Method, printRecItemRefundVoid Method, FiscalReceiptStation Property.
592 Unified POS, V1.16.1

16.5.43 printRecSubtotal Method Updated in Release 1.6

Syntax printRecSubtotal (amount: currency):
void { raises-exception, use after open-claim-enable }

Parameter Description
amount Amount of the subtotal.

Remarks Checks and prints the current receipt subtotal on the station defined by the FiscalReceiptStation
property.

If CapCheckTotal is true, the amount is compared to the subtotal calculated by the Fiscal Printer. If the
subtotals match, the subtotal is printed on the station defined by the FiscalReceiptStation property. If
the results do not match, the receipt is automatically canceled. If CapCheckTotal is false, then the
subtotal is printed on the station defined by the FiscalReceiptStation property and the parameter is never
compared to the subtotal computed by the Fiscal Printer.

If CapPostPreLine is true, an additional application specific line defined by the PostLine property will
be printed. After printing this line PostLine will be reset to an empty string.

If this method compares the application’s subtotal with the Fiscal Printer’s subtotal and they do not
match, the PrinterState property will be changed to FPTR_PS_FISCAL_RECEIPT_ENDING.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16. 

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. 
 (Only applies if AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.


ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)
Unified POS, v1.16.1 593

 ErrorCodeExtended = EFPTR_SLP_EMPTY:
 The slip station was specified, but a form is not inserted.
 (Only applies if AsyncMode is false.)

 ErrorCodeExtended = EFPTR_BAD_ITEM_AMOUNT:
 The subtotal from the application does not match the subtotal
　　　　　　　　　　 computed by the Fiscal Printer.
 (Only applies if AsyncMode is false.)

 ErrorCodeExtended = EFPTR_NEGATIVE_TOTAL:
The total computed by the Fiscal Printer is less than zero.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods, AmountDecimalPlaces
Property, FiscalReceiptStation Property, PostLine Property.

16.5.44 printRecSubtotalAdjustment Method Updated in Release 1.11

Syntax printRecSubtotalAdjustment (adjustmentType: int32, 
description: string, amount: currency):
void { raises-exception, use after open-claim-enable }

Parameter Description
adjustmentType Type of adjustment. See below for values.

description Text describing the discount or surcharge.

amount Amount of the adjustment (discount or surcharge).

The adjustmentType parameter has one of the following values (Note: If currency value, four
decimal places are used):

Value Meaning
FPTR_AT_AMOUNT_DISCOUNT

Fixed amount discount. The amount parameter contains a currency value.

FPTR_AT_AMOUNT_SURCHARGE
Fixed amount surcharge. The amount parameter contains a currency
value.

FPTR_AT_PERCENTAGE_DISCOUNT
Percentage discount. The amount parameter contains a percentage value.

FPTR_AT_PERCENTAGE_SURCHARGE
Percentage surcharge. The amount parameter contains a percentage value.

FPTR_AT_COUPON_AMOUNT_DISCOUNT
 Fixed amount discount for an advertising coupon. The amount
 parameter contains a currency value. The coupon is registered by the
 fiscal memory. If coupons are not registered at fiscal memory separately
 from ordinary discounts in the actual country then it is recommend
 to use FPTR_AT_AMOUNT_DISCOUNT instead.
594 Unified POS, V1.16.1

FPTR_AT_COUPON_PERCENTAGE_DISCOUNT
Percentage discount for an advertising coupon. The amount parameter
contains a percentage value. The coupon is registered by the fiscal
memory. If coupons are not registered at fiscal memory separately from
ordinary discounts in the actual country then it is recommend to use
FPTR_AT_PERCENTAGE_DISCOUNT instead.

Remarks Applies and prints a discount/surcharge to the current receipt subtotal on the station defined by the
FiscalReceiptStation property. This discount/surcharge may be either a fixed currency amount or a
percentage amount relating to the current receipt subtotal.
If the discount/surcharge amount is greater than the receipt subtotal, an error occurs since the subtotal
can never be negative.
In many countries discount/surcharge operations cause the printing of a fixed line of text expressing the
kind of operation that has been performed.

Fixed amount discounts are only supported if CapSubAmountAdjustment is true. Percentage discounts
are only supported if CapSubPercentAdjustment is true. Surcharges are only supported if
CapPositiveSubtotalAdjustment is true.

If CapPostPreLine is true, an additional application specific line defined by the PreLine property will
be printed. After printing this line PreLine will be reset to an empty string.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. 
 (Only applies if AsyncMode is false.)

E_ILLEGAL One of the following errors occurred:

• Fixed amount discounts are not supported
 (see the CapSubAmountAdjustment property).

• Percentage discounts are not supported
(see the CapSubPercentAdjustment property).

• Surcharges are not supported
(see the CapPositiveSubtotalAdjustment property).

• The adjustmentType parameter is invalid.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)



Unified POS, v1.16.1 595

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if
AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_AMOUNT:
The discount amount is invalid.

 (Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The discount description is too long or contains a reserved word. (Only
applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods, AmountDecimalPlaces
Property, CapPositiveSubtotalAdjustment Property, FiscalReceiptStation Property, PreLine
Property.
596 Unified POS, V1.16.1

16.5.45 printRecSubtotalAdjustVoid Method Added in Release 1.6

Syntax printRecSubtotalAdjustVoid (adjustmentType: int32, 
amount: currency):
 void { raises-exception, use after open-claim-enable }

Parameter Description
adjustmentType Type of adjustment. See below for values.

amount Amount of the adjustment (discount or surcharge).

The adjustmentType parameter has one of the following values (Note: If currency value, four
decimal places are used):

Value Meaning
FPTR_AT_AMOUNT_DISCOUNT

Fixed amount discount. The amount parameter contains a currency value.

FPTR_AT_AMOUNT_SURCHARGE
Fixed amount surcharge. The amount parameter contains a currency
value.

FPTR_AT_PERCENTAGE_DISCOUNT
Percentage discount. The amount parameter contains a percentage value.

FPTR_AT_PERCENTAGE_SURCHARGE
Percentage surcharge. The amount parameter contains a percentage value.

Remarks Called to void a preceding subtotal adjustment on the station defined by the FiscalReceiptStation
property. This discount/surcharge may be either a fixed currency amount or a percentage amount relating
to the current receipt subtotal.

Fixed amount void discounts are only supported if CapSubAmountAdjustment is true. Percentage void
discounts are only supported if the property CapSubPercentAdjustment is true.

If CapPostPreLine is true, an additional application specific line defined by the PreLine property will
be printed. After printing this line PreLine will be reset to an empty string.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. 

(Only applies if AsyncMode is false.)

E_ILLEGAL One of the following errors occurred:

• Fixed amount discounts are not supported
 (see the CapSubAmountAdjustment property).

• Percentage discounts are not supported
(see the CapSubPercentAdjustment property).

• The adjustmentType parameter is invalid.
Unified POS, v1.16.1 597

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.


ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies AsyncMode is false.)


ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if
AsyncMode is false.)


ErrorCodeExtended = EFPTR_BAD_ITEM_AMOUNT:
The discount amount is invalid.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods, AmountDecimalPlaces
Property, FiscalReceiptStation Property, PreLine Property.
598 Unified POS, V1.16.1

16.5.46 printRecTaxID Method Added in Release 1.6

Syntax printRecTaxID (taxId: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
taxId Customer identification with identification characters and tax number.

Remarks Called to print the customers tax identification on the station defined by the FiscalReceiptStation
property.

This method is only supported when the Fiscal Printer is in the Fiscal Receipt Ending state.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. 
 (Only applies if AsyncMode is false.)

E_ILLEGAL The Fiscal Printer does not support printing tax identifications.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt Ending state.


ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies AsyncMode is false.)


ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if
AsyncMode is false.)

See Also FiscalReceiptStation Property.
Unified POS, v1.16.1 599

16.5.47 printRecTotal Method Updated in Release 1.14

Syntax printRecTotal (total: currency, payment: currency, description: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
total Application computed receipt total.

payment Amount of payment tendered.

description Text description of the payment or the index of a predefined payment
description.

Remarks Checks and prints the current receipt total on the station defined by the FiscalReceiptStation property
and to tender a payment.

If CapCheckTotal is true, the total is compared to the total calculated by the Fiscal Printer. If the totals
match, the total is printed on both the receipt and journal along with some fixed text. If the results do not
match, the receipt is automatically canceled. If CapCheckTotal is false, then the total is printed on the
receipt and journal and the parameter is never compared to the total computed by the Fiscal Printer.

If CapPredefinedPaymentLines is true, then the description parameter contains the index of one of the
Fiscal Printer’s predefined payment descriptions. The index is typically a single character of the alphabet.
The set of allowed values for this index is to be described in the description of the service and stored in
the PredefinedPaymentLines property.

If payment = total, a line containing the description and payment is printed. The PrinterState property
will be set to FPTR_PS_FISCAL_RECEIPT_ENDING.

If payment > total, a line containing the description and payment is printed followed by a second line
containing the change due. If CapChangeDue property is true, a description for the change due defined
by the ChangeDue property is printed as the second line. The PrinterState property will be set to
FPTR_PS_FISCAL_RECEIPT_ENDING.

If payment < total, a line containing the description and payment is printed. Since the entire receipt total
has not yet been tendered, the PrinterState property will be set to
FPTR_PS_FISCAL_RECEIPT_TOTAL.

If payment = 0, no line containing the description and payment is printed. The PrinterState property will
be set to FPTR_PS_FISCAL_RECEIPT_TOTAL.

If CapAdditionalLines is false, then receipt trailer lines, fiscal logotype and receipt cut are executed
after the last total line, whenever receipt’s total became equal to the payment from the application.
Otherwise these lines are printed calling the endFiscalReceipt method.

If CapPostPreLine is true an additional application specific line defined by the PostLine property will
be printed. After printing this line PostLine will be reset to an empty string.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.
600 Unified POS, V1.16.1

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. 
 (Only applies if AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.


ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_BAD_ITEM_AMOUNT:

• The application computed total does not match the Fiscal Printer
computed total, or

• the total parameter is invalid, or
• the payment parameter is invalid
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The description is too long or contains a reserved word.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_NEGATIVE_TOTAL:
The computed total is less than zero.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_WORD_NOT_ALLOWED:
The description contains the reserved word.

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods,
PredefinedPaymentLines Property, AmountDecimalPlaces Property, 
ChangeDue Property, FiscalReceiptStation Property, PostLine Property.
Unified POS, v1.16.1 601

16.5.48 printRecVoid Method Updated in Release 1.6

Syntax printRecVoid (description: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
description Text describing the void.

Remarks Cancels the current receipt.

The receipt is annulled ,but it is not physically canceled from the Fiscal Printer’s fiscal memory since
fiscal receipts are printed with an increasing serial number and totals are accumulated in registers. When
a receipt is canceled, its subtotal is subtracted from the totals registers, but it is added to the canceled
receipt register.

Some fixed text, along with the description, will be printed on the station defined by the
FiscalReceiptStation property to indicate that the receipt has been canceled.

Normally only a receipt with at least one transaction can be voided. If CapEmptyReceiptIsVoidable is
true also an empty receipt (only the beginFiscalReceipt method was called) can be voided.

If this method is successful, the PrinterState property will be changed to
FPTR_PS_FISCAL_RECEIPT_ENDING.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress. 
 (Only applies if AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.


ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)


ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
 The receipt station is out of paper.

(Only applies if AsyncMode is false.)
602 Unified POS, V1.16.1

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The description is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods
CapEmptyReceiptIsVoidable Property, FiscalReceiptStation Property.
Unified POS, v1.16.1 603

16.5.49 printRecVoidItem Method Deprecated in Release 1.11

Syntax printRecVoidItem (description: string, amount: currency, 
quantity: int32, adjustmentType: int32, 
adjustment: currency, vatInfo: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
description Text description of the item void.

amount Amount of item to be voided.

quantity Quantity of item to be voided.

adjustmentType Type of adjustment. See below for values.

adjustment Amount of the adjustment (discount or surcharge).

vatInfo VAT rate identifier or amount.

The adjustmentType parameter has one of the following values (Note: If currency value, four
decimal places are used):

Value Meaning
FPTR_AT_AMOUNT_DISCOUNT
 Fixed amount discount. The adjustment parameter contains a currency
 value.

FPTR_AT_AMOUNT_SURCHARGE
Fixed amount surcharge. The adjustment parameter contains a currency

 value.

FPTR_AT_PERCENTAGE_DISCOUNT
Percentage discount. The adjustment parameter contains a percentage

 value.

FPTR_AT_PERCENTAGE_SURCHARGE
Percentage surcharge. The adjustment parameter contains a percentage
value.

Remarks Cancels an item that has been added to the receipt and prints a void description on the station defined by
the FiscalReceiptStation property.

amount is a positive number, it will be printed as a negative and will be decremented from the totals
registers.

The vatInfo parameter contains a VAT table identifier if CapHasVatTable is true. Otherwise, it contains
a VAT amount. Fixed amount discounts/surcharges are only supported if CapAmountAdjustment is
true. Percentage discounts are only supported if CapPercentAdjustment is true.
604 Unified POS, V1.16.1

If CapOnlyVoidLastItem is true, only the last item transferred to the Fiscal Printer can be voided.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY　　　　　 Cannot perform while output is in progress. 
 (Only applies if AsyncMode is false.)

E_ILLEGAL One of the following errors occurred:

• Fixed amount adjustments are not supported
(see the CapAmountAdjustment property), or

• Percentage discounts are not supported
(see the CapPercentAdjustment property), or

• The adjustmentType parameter is invalid.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.


 ErrorCodeExtended = EFPTR_COVER_OPEN:

The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.(Only applies if
AsyncMode is false.)


ErrorCodeExtended = EFPTR_BAD_ITEM_AMOUNT:
The amount is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_ITEM_QUANTITY:
The quantity is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT information is invalid.
(Only applies if AsyncMode is false.)
Unified POS, v1.16.1 605


ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The description is too long or contains a reserved word.
(Only applies if AsyncMode is false.


ErrorCodeExtended = EFPTR_NEGATIVE_TOTAL:
The computed total is less than zero.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods,
CapOnlyVoidLastItem Property, AmountDecimalPlaces Property, FiscalReceiptStation Property.
606 Unified POS, V1.16.1

16.5.50 printReport Method Updated in Release 1.11

Syntax printReport (reportType: int32, startNum: string, endNum: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
reportType The kind of report to print.

startNum ASCII string identifying the starting record in Fiscal Printer memory from
which to begin printing.

endNum ASCII string identifying the final record in Fiscal Printer memory at
which printing is to end. See reportType table below to find out the exact
meaning of this parameter.

The reportType parameter has one of the following values:

Value Meaning
FPTR_RT_ORDINAL Prints a report between two fiscal memory record numbers. If both start
 Num and endNum are valid and endNum > startNum, then a report of
 the period between startNum and endNum will be printed.
 If startNum is valid and endNum is zero, then a report relating only
 to startNum will be printed.

FPTR_RT_DATE Prints a report between two dates. The dates are strings in the format
“ddmmyyyyhhmm”, where:

 dd day of the month (01 - 31)

 mm month (01 - 12)

 yyyy year (1997- ...)

 hh hour (00-23)

 mm minutes (00-59)

FPTR_RT_EOD_ORDINAL

Prints a report between two Z reports where startNum and endNum
represent a Z report number. If both startNum and endNum are
valid and endNum > startNum, then a report of the period between
startNum and endNum will be printed. If startNum is valid and
endNum is zero, then a report relating only to startNum
will be printed.

Remarks Prints a report of the fiscal EPROM contents on the receipt that occurred between two end points.

This method is always performed synchronously.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.
Unified POS, v1.16.1 607

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress.

E_ILLEGAL One of the following errors occurred:

• The reportType parameter is invalid, or
• One or both of startNum and endNum are invalid, or
• startNum > endNum.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer's current state does not allow this state transition.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.

16.5.51 printXReport Method

Syntax printXReport ():
void { raises-exception, use after open-claim-enable }

Remarks Prints a report of all the daily fiscal activities on the receipt. No data will be written to the fiscal EPROM
as a result of this method invocation.

This method is only supported if CapXReport is true. This method is always performed synchronously.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support X reports
 (see the CapXReport property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer’s current state does not allow this state transition.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.

See Also CapXReport Property.
608 Unified POS, V1.16.1

16.5.52 printZReport Method Updated in Release 1.6

Syntax printZReport ():
void { raises-exception, use after open-claim-enable }

Remarks Prints a report of all the daily fiscal activities on the receipt. Data will be written to the fiscal EPROM as
a result of this method invocation.

Since running printZReport is implicitly a fiscal end of day function, the DayOpened property will be
set to false. This method is always performed synchronously.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
 The Fiscal Printer’s current state does not allow this state transition.

 ErrorCodeExtended = EFPTR_COVER_OPEN:
 The Fiscal Printer cover is open.


ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.


ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.

See Also beginFiscalDocument Method, beginFiscalReceipt Method, DayOpened Property.

16.5.53 resetPrinter Method

Syntax resetPrinter ():
void { raises-exception, use after open-claim-enable }

Remarks Forces the Fiscal Printer to return to Monitor state. This forces any interrupted operations to be canceled
and closed. This method must be invoked when the Fiscal Printer is not in a Monitor state after a
successful call to the claim method and successful setting of the DeviceEnabled property to true. This
typically happens if a power failures occurs during a fiscal operation.

 Calling this method does not close the Fiscal Printer, i.e., does not force a Z report to be printed.
Unified POS, v1.16.1 609

The Device will handle this command as follows:

• If the Fiscal Printer was in either Fiscal Receipt, Fiscal Receipt Total or Fiscal Receipt Ending state,
the receipt will be ended without updating any registers.

• If the Fiscal Printer was in a non-fiscal state, the Fiscal Printer will exit that state.

• If the Fiscal Printer was in the training state, the Fiscal Printer will exit the training state.

This method is always performed synchronously.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.
610 Unified POS, V1.16.1

16.5.54 setCurrency Method Added in Release 1.6

Syntax setCurrency (newCurrency: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
newCurrency The new currency.

The newCurrency parameter has one of the following values:

Value Meaning

FPTR_SC_EURO Change to the EURO currency.

Remarks Called to change to a new currency, e.g., EURO.

This method is only supported if CapSetCurrency is true and can only be called while DayOpened
is false.

The actual currency is kept in the ActualCurrency property.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• The Fiscal Printer does not support this method (see the
CapSetCurrency property), or

• The Fiscal Printer has already begun the fiscal day
(see the DayOpened property), or

• the specified newCurrency value is not valid.

See Also ActualCurrency Property, CapSetCurrency Property, DayOpened Property.
Unified POS, v1.16.1 611

16.5.55 setDate Method

Syntax setDate (date: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
date Date and time as a string.

Remarks Sets the Fiscal Printer’s date and time.

The date and time is passed as a string in the format “ddmmyyyyhhmm”, where:

dd day of the month (1 - 31)

mm month (1 - 12)

yyyy year (1997-)

hh hour (0-23)

mm minutes (0-59)

This method can only be called while DayOpened is false.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer has already begun the fiscal day
 (see the DayOpened property).

E_EXTENDED ErrorCodeExtended = EFPTR_BAD_DATE:
One of the entries of the date parameters is invalid.

See Also DayOpened Property.
612 Unified POS, V1.16.1

16.5.56 setHeaderLine Method Updated in Release 1.6

Syntax setHeaderLine (lineNumber: int32, text: string, doubleWidth: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description 
lineNumber Line number of the header line to set.

text Text to which to set the header line.

doubleWidth Print this line in double wide characters.

Remarks Sets one of the fiscal receipt header lines. The text set by this method will be stored by the Fiscal Printer
and retained across power losses.

If CapMultiContractor property is true, header lines can be defined for different contractors specified
by the ContractorId property.

The lineNumber parameter must be between 1 and the value of the NumHeaderLines property. If text
is an empty string (“”), then the header line is unset and will not be printed. The doubleWidth characters
will be printed if the Fiscal Printer supports them. See the CapDoubleWidth property to determine if
they are supported. This method is only supported if CapSetHeader is true. This method can only be
called while DayOpened is false.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• The Fiscal Printer does not support setting header lines (see the
CapSetHeader property), or

• The Fiscal Printer has already begun the fiscal day (see the DayOpened
property), or

• the lineNumber parameter was invalid.

E_EXTENDED ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The text parameter is too long or contains a reserved word.

See Also CapDoubleWidth Property, CapMultiContractor Property, CapSetHeader Property, ContractorId
Property, DayOpened Property, NumHeaderLines Property.
Unified POS, v1.16.1 613

16.5.57 setPOSID Method

Syntax setPOSID (POSID: string, cashierID: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
POSID Identifier for the POS system.

cashierID Identifier of the current cashier.

Remarks Sets the POS and cashier identifiers. These values will be printed when each fiscal receipt is closed.

This method is only supported if CapSetPOSID is true. This method can only be called while
DayOpened is false.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• The Fiscal Printer does not support setting the POS identifier (see the
CapSetPOSID property), or

• The printer has already begun the fiscal day (see the DayOpened
property), or

• Either the POSID or cashierID parameter is invalid.

See Also CapSetPOSID Property, DayOpened Property.
614 Unified POS, V1.16.1

16.5.58 setStoreFiscalID Method

Syntax setStoreFiscalID (ID: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
ID Fiscal identifier.

Remarks Sets the store fiscal ID. This value is retained by the Fiscal Printer even after power failures. This ID is
automatically printed by the Fiscal Printer after the fiscal receipt header lines.

This method is only supported if CapSetStoreFiscalID is true. This method can only be called while
DayOpened is false.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• The Fiscal Printer does not support setting the store fiscal identifier (see
the CapSetStoreFiscalID property), or

• The Fiscal Printer has already begun the fiscal day (see the DayOpened
property), or

• The ID parameter was invalid.

See Also CapSetStoreFiscalID Property, DayOpened Property.
Unified POS, v1.16.1 615

16.5.59 setTrailerLine Method

Syntax setTrailerLine (lineNumber: int32, text: string, doubleWidth: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description 
lineNumber Line number of the trailer line to set.

text Text to which to set the trailer line.

doubleWidth Print this line in double wide characters.

Remarks Sets one of the fiscal receipt trailer lines. The text set by this method will be stored by the Fiscal Printer
and retained across power losses.

The lineNumber parameter must be between 1 and the value of the NumTrailerLines property. If text is
an empty string (“”), then the trailer line is unset and will not be printed. The doubleWidth characters will
be printed if the Fiscal Printer supports them. See the CapDoubleWidth property to determine if they
are supported. This method is only supported if CapSetTrailer is true. This method can only be called
while DayOpened is false.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• The Fiscal Printer does not support setting the receipt trailer lines (see
the CapSetTrailer property), or

• The Fiscal Printer has already begun the fiscal day (see the DayOpened
property), or

• the lineNumber parameter was invalid.

E_EXTENDED ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The text parameter is too long or contains a reserved word.

See Also CapDoubleWidth Property, CapSetTrailer Property, DayOpened Property, NumTrailerLines
Property.
616 Unified POS, V1.16.1

16.5.60 setVatTable Method

Syntax setVatTable ():
void { raises-exception, use after open-claim-enable }

Remarks Sends the VAT table built inside the Service to the Fiscal Printer. The VAT table is built one entry at a
time using the setVatValue method.

This method is only supported if CapHasVatTable and CapSetVatTable are true. This method can only
be called while DayOpened is false.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• The Fiscal Printer does not support VAT tables or their setting (see the
CapHasVatTable or CapSetVatTable property), or

• The Fiscal Printer has already begun the fiscal day (see the DayOpened
property).

See Also CapHasVatTable Property, CapSetVatTable Property, DayOpened Property, setVatValue Method.
Unified POS, v1.16.1 617

16.5.61 setVatValue Method Updated in Release 1.11

Syntax setVatValue (vatID: int32, vatValue: string):
void { raises-exception, use after open-claim-enable }

Parameter Description 
vatID Index of the VAT table entry to set.

vatValue Tax value as a percentage.

Remarks Sets the value of a specific VAT class in the VAT table. The VAT table is built one entry at a time in the
Service using this method. The entire table is then sent to the Fiscal Printer at one time using the
setVatTable method.

This method is only supported if CapHasVatTable and CapSetVatTable are true. This method can only
be called while DayOpened is false.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• The Fiscal Printer does not support VAT tables (see the
CapHasVatTable or CapSetVatTable property), or

• The Fiscal Printer has already begun the fiscal day (see the DayOpened
property), or

• The Fiscal Printer does not support changing an existing VAT value
(see the CapSetVatTable property).

See Also CapHasVatTable Property, CapSetVatTable Property, DayOpened Property, setVatTable Method.
618 Unified POS, V1.16.1

16.5.62 verifyItem Method Updated in Release 1.13

Syntax verifyItem (itemName: string, vatID: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description 
itemName Item to be verified.

vatID VAT identifier of the item.

Remarks Compares itemName and its vatID with the values stored in the Fiscal Printer.

This method is only supported if CapHasVatTable and CapItemList are true. This method can only be
called while the Fiscal Printer is in the Item List state.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Fiscal Printer does not support an item list report
 (see the CapItemList property) or the Fiscal Printer does not
 support VAT tables (see the CapHasVatTable property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Item List state.


ErrorCodeExtended = EFPTR_BAD_ITEM_DESCRIPTION:
The item name is too long or contains a reserved word.


ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT parameter is invalid.

See Also CapHasVatTable Property, CapItemList Property.
Unified POS, v1.16.1 619

16.6 Events (UML interfaces)

16.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Fiscal Printer Service to provide events to the application that are not otherwise supported by the
Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber
and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Fiscal Printer
devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.
620 Unified POS, V1.16.1

16.6.2 ErrorEvent Updated in Release 1.13

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a Fiscal Printer error has been detected and that a suitable response by the
application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes
 on page 16.

ErrorCodeExtended

int32 Extended Error code causing the error event. If ErrorCode is
E_EXTENDED, then see values below. Otherwise, it may contain a

 Service-specific value.

ErrorLocus int32 Location of the error, and is set to EL_OUTPUT indicating that
the error occurred while processing asynchronous output.

ErrorResponse int32 Error response, whose default value may be overridden by the
 application (i.e., this property is settable). See values below.

If ErrorCode is E_EXTENDED, then ErrorCodeExtended has one of the following values:

Value Meaning
EFPTR_COVER_OPEN The Fiscal Printer cover is open.

EFPTR_JRN_EMPTY The journal station is out of paper.

EFPTR_REC_EMPTY The receipt station is out of paper.

EFPTR_SLP_EMPTY A form is not inserted in the slip station.

EFPTR_SLP_FORM A form is still present in the slip station even though it should
 have been removed by the last action.

EFPTR_WRONG_STATE The requested method could not be executed in the Fiscal
Printer’s current state.

EFPTR_TECHNICAL_ASSISTANCE
The Fiscal Printer has encountered a severe error condition.
Calling for Fiscal Printer technical assistance is required.

EFPTR_CLOCK_ERROR The Fiscal Printer’s internal clock has failed.

EFPTR_FISCAL_MEMORY_FULL
The Fiscal Printer’s fiscal memory has been exhausted.

EFPTR_FISCAL_MEMORY_DISCONNECTED

 The Fiscal Printer’s fiscal memory has been disconnected
Unified POS, v1.16.1 621

EFPTR_FISCAL_TOTALS_ERROR
The Grand Total in working memory does not match the
one in the EPROM.

EFPTR_BAD_ITEM_QUANTITY

The Quantity parameter is invalid.

EFPTR_BAD_ITEM_AMOUNT The Amount parameter is invalid.

EFPTR_BAD_ITEM_DESCRIPTION
The Description parameters is either to long, contains illegal
characters or contains the reserved word.

EFPTR_RECEIPT_TOTAL_OVERFLOW
The receipt total has overflowed.

EFPTR_BAD_VAT The Vat parameter is invalid.

EFPTR_BAD_PRICE The Price parameter is invalid.

EFPTR_BAD_DATE The date parameter is invalid.

EFPTR_WORD_NOT_ALLOWED

The description contains a reserved word.

EFPTR_NEGATIVE_TOTAL The Fiscal Printer’s computed total or subtotal is less than zero.

EFPTR_MISSING_DEVICES Some of the other devices which according to the local fiscal
legislation are to be connected has been disconnected.
In some countries in order to use a fiscal Fiscal Printer a
full set of peripheral devices are to be connected to the
POS (such as cash drawer and customer display).
In case one of these devices is not present sales

 are not allowed.

EFPTR_BAD_LENGTH The length of the string to be printed as post or pre line is 
 too long.

EFPTR_MISSING_SET_CURRENCY
The Fiscal Printer is expecting the activation of a new currency.

EFPTR_DAY_END_REQUIRED
The completion of the fiscal day is required by calling
printZReport. No further fiscal receipts or documents can be
started before this is done.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error processing may change ErrorResponse to one of the following values:

Value Meaning
ER_CLEAR Clear all buffered output data, including all asynchronous
 output. The error state is exited.

ER_RETRY Retry the asynchronous output. The error state is exited. The default.

Remarks Enqueued when an error is detected and the Service’s State transitions into the error state.

See Also “Device Output Models” on page 20, “Device Information Reporting Model” on page 25.
622 Unified POS, V1.16.1

16.6.3 OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the OutputID attribute has
completed successfully.

Attributes This event contains the following attribute:

Attributes Type Description
OutputID int32 The ID number of the asynchronous output request that is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Service has confirmation that
is was processed by the device successfully.

See Also “Device Output Models” on page 20.

16.6.4 StatusUpdateEvent Updated in Release 1.8

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that a Fiscal Printer has had an operation status change.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Indicates the status change, and has one of the

following values:

Value Meaning
FPTR_SUE_COVER_OPEN Fiscal Printer cover is open.

FPTR_SUE_COVER_OK Fiscal Printer cover is closed.

FPTR_SUE_JRN_EMPTY No journal paper.

FPTR_SUE_JRN_NEAREMPTYJournal paper is low.

FPTR_SUE_JRN_PAPEROK Journal paper is ready.

FPTR_SUE_REC_EMPTY No receipt paper.

FPTR_SUE_REC_NEAREMPTY
 Receipt paper is low.

FPTR_SUE_REC_PAPEROK Receipt paper is ready.

FPTR_SUE_SLP_EMPTY No slip form is inserted, and no slip form has been detected
at the entrance to the slip station.
(See “Model Updated in Release 1.12” on page 488
for further details on slip properties and events.)

FPTR_SUE_SLP_NEAREMPTY
Almost at the bottom of the slip form.

FPTR_SUE_SLP_PAPEROK Slip form is inserted.
Unified POS, v1.16.1 623

FPTR_SUE_IDLE All asynchronous output has finished, either successfully
or because output has been cleared. The Fiscal Printer
State is now S_IDLE. The FlagWhenIdle property must
be true for this event to be delivered, and the property
is automatically reset to false just before the event is
delivered.

Note that Release 1.3 added Power State Reporting with additional Power reporting
StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional Status values for
communicating the status/progress of an asynchronous update firmware process.

See “StatusUpdateEvent” description in Chapter 2.

 Release 1.8 and later – Specific Cover State Reporting

Starting with Release 1.8, StatusUpdateEvents for specific stations’ covers are supported. If a Fiscal
Printer has only one cover or if it cannot determine/report which covers are open, then only the original
FPTR_SUE_COVER_OPEN and FPTR_SUE_COVER_OK events should be fired.

For Fiscal Printers supporting multiple covers, the original events should also be fired for compatibility
with current applications. In these cases, the station-specific event should be fired first, followed by the
original event.

If more than one cover is open, the original FPTR_SUE_COVER_OPEN event should only be fired once
after a cover is opened. A FPTR_SUE_COVER_OK event should only be fired after all the covers are
closed.

The event’s Status attribute can contain one of the following additional values to indicate a status change.

Value Meaning
FPTR_SUE_JRN_COVER_OPEN Journal station cover is open.

FPTR_SUE_JRN_COVER_OK Journal station cover is closed.

FPTR_SUE_REC_COVER_OPEN Receipt station cover is open.

FPTR_SUE_REC_COVER_OK Receipt station cover is closed.

FPTR_SUE_SLP_COVER_OPEN Slip station cover is open.

FPTR_SUE_SLP_COVER_OK Slip station cover is closed.

Remarks Enqueued when a significant status event has occurred.

See Also “Events” on page 15.
624 Unified POS, V1.16.1

17 Gate

17.1 General

This Chapter defines the Gate device category.

17.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.12 Not supported

CapCompareFirmwareVersion: boolean { read-only } 1.12 open

CapPowerReporting: int32 { read-only } 1.12 open

CapStatisticsReporting: boolean { read-only } 1.12 open

CapUpdateFirmware: boolean { read-only } 1.12 open

CapUpdateStatistics: boolean { read-only } 1.12 open

CheckHealthText: string { read-only } 1.12 open

Claimed: boolean { read-only } 1.12 open

DataCount: int32 { read-only } 1.12 Not supported

DataEventEnabled: boolean { read-write } 1.12 Not supported

DeviceEnabled: boolean { read-write } 1.12 open

FreezeEvents: boolean { read-write } 1.12 open

OutputID: int32 { read-only } 1.12 Not supported

PowerNotify: int32 { read-write } 1.12 open

PowerState: int32 { read-only } 1.12 open

State: int32 { read-only } 1.12 --

DeviceControlDescription: string { read-only } 1.12 --

DeviceControlVersion: int32 { read-only } 1.12 --

DeviceServiceDescription: string { read-only } 1.12 open

DeviceServiceVersion: int32 { read-only } 1.12 open

PhysicalDeviceDescription: string { read-only } 1.12 open

PhysicalDeviceName: string { read-only } 1.12 open
Unified POS, v1.16.1 625

Properties (Continued)

Specific Type Mutability Version May Use After

CapGateStatus: boolean { read-only } 1.12 open

GateStatus: int32 { read-only } 1.12 open & enable

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.12

close ():
void { raises-exception, use after open }

1.12

claim (timeout: int32):
void { raises-exception, use after open }

1.12

release ():
void { raises-exception, use after open, claim }

1.12

checkHealth (level: int32):
void { raises-exception, use after open, enable }

1.12

clearInput ():
void { }

Not supported

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.12

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, enable }

1.12

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, enable }

1.12

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, enable }

1.12

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, enable }

1.12

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, enable }

1.12

Specific

Name

openGate (): 
void { raises-exception, use after open, enable }

1.12

waitForGateClose (timeout: int32): 
void { raises-exception, use after open, enable }

1.12
626 Unified POS, v1.16.1

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.12

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.12

 Status: int32 { read-only }
Unified POS, v1.16.1 627

17.3 General Information

The Gate programmatic name is “Gate.”

This device category was added to Version 1.12 of the specification.

Various doors and gates can be controlled by the Gate device category, examples are:

• Kiosk front door which can be opened by an application for servicing.

• Self Checkout door which can be opened by an application for servicing.

• Exit gate in kiosk or self checkout environments where a customer scans a barcode printed on the receipt in
order to open the gate.

17.3.1 Capabilities

The Gate Control has the following capability:

• Supports a command to “open” the gate.

The Gate Control may have the following additional capability:

• Gate status reporting of such a nature that the service can determine whether the gate is opened or closed in
environments where the gate is accessible via a hardware port.
628 Unified POS, v1.16.1

17.3.2 Gate Class Diagram

The following diagram shows the relationships between the Gate classes.

+openGate() : void
+waitForGateClose(timeout : int32) : void

+CapGateStatus : boolean
+GateStatus : int32

«interface»
GateControl

+EventNumber : int32
+Data : int32
+Obj : object

«event»
DirectIOEvent

«fires»

+Status : int32

«event»
StatusUpdateEvent

«fires»

«exception»
UposException

«sends»

«sends»
«utility»

GateConst
«utility»

UposConst

«uses»

«uses»
«interface»

BaseControl
Unified POS, v1.16.1 629

17.3.3 Gate Sequence Diagram

The following sequence diagram show the typical usage of the Gate device illustrating the device sharing model.

:ClientApp0 :Gate Service1 Gate
Device

NOTE: We are assuming that the :ClientApp(s) already successfully opened the controls. This
means that the platform specific loading/configuration/creation code executed successfully

1: setDeviceEnabled(true)

:ClientApp1 gate0:Gate gate1:Gate :Gate Service0
:StatusUpdate

Event

2: setDeviceEnabled(true)
3: connect or somehow have access

to the hardware

Service returns
current status of
the gate

4: openGate()
5: openGate() 6: send command to open gate

Gate device is assumed
open successfully and
GateStatus property is
now GATE_GS_OPEN

If the command to open the physical Gate
is successful then this will result in
StatusUpdateEvent delivered to any
registered listeners. This is not shown in
this diagram for simplicity.

7: setDeviceEnabled(true)
8: setDeviceEnabled(true)

10: openGate()
11: openGate()

12: send command to open
gate

9: might communicate with
device

Assume the Gate is
successfully claimed
at this point by
:ClientApp1

13: claim(timeout)
14: claim(timeout)

15: openGate()
16: openGate()

17: throw UposException
This call results in a UposException
since the Gate device is claimed by
the gate1 instance that is used by
:ClientApp1

18: openGate()
19: openGate()

21: send command
 to open gate

20: new

22: deliver SUE to control

23: notify client of new event

Assume that both
:ClientApp0 and :ClientApp1
registered to receive events

26: notify client of new event

This call is successful
and Gate device is
open since gate1
claimed the device
sucessfully.

StatusUpdateEvent is delivered
to all registered handlers, even
though, in the situation above,
only :ClientApp1 is allowed to
call openGate() – since it
sucessfully claimed the device.

25: deliver SUE to control

24: new

Service0 also detects the gate is opened,
either via a message from Service1, a SUE
from Service1 or a lower level interface
630 Unified POS, v1.16.1

17.3.4 Device Sharing

The gate is a sharable device. Its device sharing rules are:

• After opening and enabling the device, the application may access all properties and methods and will receive
status update events.

• If more than one application has opened and enabled the device, each of these applications may access its
properties and methods. Status update events are fired to all of these applications.

• If one application claims the gate, then only that application may call openGate and waitForGateClose. This
feature provides a degree of security, such that these methods may effectively be restricted to the main
application if that application claims the device at startup.

• See the “Summary” table for precise usage prerequisites.
Unified POS, v1.16.1 631

17.4 Properties (UML attributes)

17.4.1 CapGateStatus Property

Syntax CapGateStatus: boolean { read-only, access after open }

Remarks If true, the gate can report status. If false, the Service is not able to determine whether the gate is open or
closed.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

17.4.2 GateStatus Property

Syntax GateStatus: int32 { read-only, access after open-enable }

Remarks Holds the current status of the device. It has one of the following values:

Value Meaning
GATE_GS_CLOSED The gate is closed.

GATE_GS_OPEN The gate is open.

GATE_GS_BLOCKED The gate is blocked.

GATE_GS_MALFUNCTION The gate has a hardware problem. Technical assistance is needed.

If the capability CapGateStatus is false, then the device does not support status reporting, and this
property has no meaning.

This property is initialized and kept current while the device is enabled.

An appropriate StatusUpdateEvent indicating a status change will be enqueued.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapGateStatus Property.
632 Unified POS, v1.16.1

17.5 Methods (UML operations)

17.5.1 openGate Method

Syntax openGate (): 
 void { raises-exception, use after open-enable }

Remarks Opens the gate.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

17.5.2 waitForGateClose Method

Syntax waitForGateClose (timeout: int32): 
 void { raises-exception, use after open-enable }

Parameter Description
timeout Maximum number of milliseconds to wait until the gate is closed before

returning control back to the application. If FOREVER (-1), the method
waits as long as needed until the gate is closed or an error occurs.

Remarks Waits until the gate is closed.

Unless a UposException is thrown, this method will not return to the application while the gate is open.

If CapGateStatus is false, then the device does not support status reporting, and this method will return
immediately.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

A possible value of the exception’s ErrorCode property is:

Value Meaning
E_TIMEOUT The timeout period expired before the gate was closed.

See Also CapGateStatus Property.
Unified POS, v1.16.1 633

17.6 Events (UML interfaces)

17.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Gate Service to provide events to the application that are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attribute Type Description 
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and

the Service. This property is settable.

Obj Object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Gate devices
which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.
634 Unified POS, v1.16.1

17.6.2 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application when the status of the Gate changes.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 The status reported from the Gate.

The Status attribute has one of the following values:

Value Description
GATE_SUE_CLOSED The gate is closed.

GATE_SUE_OPEN The gate is open.

GATE_SUE_BLOCKEDThe gate is blocked.

GATE_SUE_MALFUNCTION
The gate has a hardware problem. Technical assistance is needed.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 1.

Remarks If CapGateStatus is false, then the device does not support status reporting, and this event will never be
delivered to report status changes.

See Also CapGateStatus Property, “Events” on page 15.
Unified POS, v1.16.1 635

636 Unified POS, v1.16.1

18 Hard Totals

18.1 General

This Chapter defines the Hard Totals device category.

18.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.2 Not supported

CapCompareFirmwareVersion: boolean { read-only } 1.9 open

CapPowerReporting: int32 { read-only } 1.3 open

CapStatisticsReporting: boolean { read-only } 1.8 open

CapUpdateFirmware: boolean { read-only } 1.9 open

CapUpdateStatistics: boolean { read-only } 1.8 open

CheckHealthText: string { read-only } 1.0 open

Claimed: boolean { read-only } 1.0 open

DataCount: int32 { read-only } 1.2 Not supported

DataEventEnabled: boolean { read-write } 1.0 Not supported

DeviceEnabled: boolean { read-write } 1.0 open

FreezeEvents: boolean { read-write } 1.0 open

OutputID: int32 { read-only } 1.0 Not supported

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --

DeviceControlVersion: int32 { read-only } 1.0 --

DeviceServiceDescription: string { read-only } 1.0 open

DeviceServiceVersion: int32 { read-only } 1.0 open

PhysicalDeviceDescription: string { read-only } 1.0 open

PhysicalDeviceName: string { read-only } 1.0 open
Unified POS, v1.16.1 637

Properties (Continued)

Specific Type Mutability Version May Use After

CapErrorDetection: boolean { read-only } 1.0 open

CapSingleFile: boolean { read-only } 1.0 open

CapTransactions: boolean { read-only } 1.0 open

FreeData: int32 { read-only } 1.0 open & enable

NumberOfFiles: int32 { read-only } 1.0 open & enable

TotalsSize: int32 { read-only } 1.0 open & enable

TransactionInProgress: boolean { read-only } 1.0 open

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open }

1.0

release ():
void { raises-exception, use after open, claim }

1.0

checkHealth (level: int32):
void { raises-exception, use after open, enable }a

1.0

clearInput ():
void { }

Not supported

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.0

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific
638 Unified POS, v1.16.1

beginTrans ():
void { raises-exception, use after open, enable }

1.0

claimFile (hTotalsFile: int32, timeout: int32): 
void { raises-exception, use after open, enable } b

1.0

commitTrans (): 
void { raises-exception, use after open, enable }

1.0

create (fileName: string, inout hTotalsFile: int32, size: int32,
errorDetection: boolean):
void { raises-exception, use after open, enable } a

1.0

delete (fileName: string): 
void { raises-exception, use after open, enable } b

1.0

find (fileName: string, inout hTotalsFile: int32, inout size: int32):
void { raises-exception, use after open, enable } a

1.0

findByIndex (index: int32, inout fileName: string): 
void { raises-exception, use after open, enable } a

1.0

read (hTotalsFile: int32, inout data: binary, offset: int32, count: int32): 
void { raises-exception, use after open, enable } b

1.0

recalculateValidationData (hTotalsFile: int32): 
void { raises-exception, use after open, enable } b

1.0

releaseFile (hTotalsFile: int32): 
void { raises-exception, use after open, enable }

1.0

rename (hTotalsFile: int32, fileName: string): 
void { raises-exception, use after open, enable } b

1.0

rollback (): 
void { raises-exception, use after open, enable }

1.0

setAll (hTotalsFile: int32, value: byte): 
void { raises-exception, use after open, enable } b

1.0

validateData (hTotalsFile: int32): 
void { raises-exception, use after open, enable } b

1.0

write (hTotalsFile: int32, data: binary, offset: int32, count: int32): 
void { raises-exception, use after open, enable } b

1.0

a. Also requires that no other application has claimed the hard totals device.
b. Also requires that no other application has claimed the hard totals device or the file

on which this method acts.
Unified POS, v1.16.1 639

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.0

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.3

 Status: int32 { read-only }
640 Unified POS, v1.16.1

18.3 General Information

The Hard Totals programmatic name is “HardTotals.”

18.3.1 Capabilities

The Hard Totals device has the following minimal set of capabilities:

• Supports at least one totals file with the name “” (the empty string) in an area of totals memory. Each totals file
is read and written as if it were a sequence of byte data.

• Creates each totals file with a fixed size and may be deleted, initialized, and claimed for exclusive use.

The Hard Totals device may have the following additional capabilities:

• Supporting additional named totals files. They share some characteristics of a file system with only a root
directory level. In addition to the minimal capabilities listed above, each totals file may also be renamed.

• Supporting transactions, with begin and commit operations, plus rollback.

• Supporting advanced error detection. This detection may be implemented through hardware or software.
Unified POS, v1.16.1 641

18.3.2 Hard Totals Class Diagram

The following diagram shows the relationships between the Hard Totals classes.

UposException
(from upos)

<<exception>>

HardTotalsConst
(from upos)

<<utility>>

UposConst
(from upos)

<<utility>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32

(from events)

<<event>>

HardTotalsControl

<<capability>> CapErrorDetection : boolean
<<capability>> CapSingleFile : boolean
<<capability>> CapTransactions : boolean
<<prop>> FreeData : int32
<<prop>> NumberOfFiles : int32
<<prop>> TotalsSize : int32
<<prop>> TransactionInProgress : boolean

beginTrans() : void
claimFile(hTotalsSize : int32, timeout : int32) : void
commitTrans() : void
create(fileName : string, inout hTotalsFile : int32, size : int32, errorDetection : boolean) : void
delete(fileName : string) : void
find(fileName : string, inout hTotalsFile : int32, inout size : int32) : void
findByIndex(index : int32, inout fileName : string) : void
read(hTotalsSize : int32, inout data : binary, offset : int32, count : int32) : void
recalculateValidationData(hTotalsSize : int32) : void
releaseFile(hTotalsFile : int32) : void
rename(hTotalsFile : int32, fileName : string) : void
rollback() : void
setAll(hTotalsFile : int32, value : byte) : void
validateData(hTotalsFile : int32) : void
write(hTotalsFile : int32, data : binary, offset : int32, count : int32) : void

(from upos)

<<Interface>>

<<sends>>
<<uses>>

fires

fires

BaseControl
(from upos)

<<Interface>>

<<uses>>

<<sends>>
642 Unified POS, v1.16.1

18.3.3 Hard Totals Sequence Diagram Added in Release 1.7

The following sequence diagram shows the typical usage of the Hard Totals device, and assumes that a file
already exists on the device containing data. It also demonstrates the transactional capabilities of the Hard Totals
device.

:ClientApp :HardTotals :HardTotalsService

1: getTotalSize()
2: getTotalSize()

3: getFreeData() 4: getFreeData()

5: gather data to write to totals

6: find(fileName,hTotalsFile, size) 7: find(fileName,hTotalsFile, size)

8: hTotalsFile and size9: hTotalsFile and size

10: claimFile(hTotalsFile, timeout)
11: claimFile(hTotalsFile, timeout)

12: write(hTotalsFile, data, offset, count) 13: write(hTotalsFile, data, offset, count)

Assumes that the
claimFile succeeded (also
implies that no other
controls or application is
using this file). Note also
that claimFile(...) is not
required to write to the
totals file.

The following section tries to demonstrate the
transactional capabilities of the HardTotals
device.

14: beginTrans() 15: beginTrans()

16: write(hTotalsFile, data1, offset1, count1) 17: write(hTotalsFile, data1, offset1, count1)

Assume user
decided to undo
previous data write.

18: read(hTotalsFile, data2, offset1, count1) 19: read(hTotalsFile, data2, offset1, count1)

After this call succeeds
the data2 contains the
last value written data1.

20: rollback()
21: rollback()

22: read(hTotalsFile, data2, offset1, count1) 23: read(hTotalsFile, data2, offset1, count1)

At this point the started
transaction ended and
TransactionInProgress
property is now false. If
instead commitTrans()
was called then all writes
would be saved to the
totals area and
transaction would end.

The return values in data2
now matches the data
values since the values
last written are discarded
by the rollback() call. This
is due to the fact that the
file was claimed thus
guaranteeing that no other
writes could have occurred.

NOTE: we are assuming that the :ClientApp already successfully opened and enabled the HardTotals device. This
means that the DeviceEnabled property is == true. Also assumes that file by name fileName is already created
Unified POS, v1.16.1 643

18.3.4 Model

Totals memory is frequently a limited but secure resource - perhaps of only several thousand bytes of storage.
The following is the general model of the Hard Totals:

• A Hard Totals device is logically treated as a sequence of byte data, which the application subdivides into
“totals files.” This is done by the create method, which assigns a name, size, and error detection level to the
totals file. Totals files have a fixed-length that is set at create time.

At a minimum, a single totals file with the name “” (the empty string) can be created and manipulated.
Optionally, additional totals files with arbitrary names may be created.

Totals files model many of the characteristics of a traditional file system. The intent, however, is not to provide
a robust file system. Rather, totals files allow partitioning and ease of access into what is frequently a limited but
secure resource. In order to reduce unnecessary overhead usage of this resource, directory hierarchies are not
supported, file attributes are minimized, and files may not be dynamically resized.

• The following operations may be performed on a totals file:

• read: Read a series of data bytes.

• write: Write a series of data bytes.

• setAll: Set all the data in a totals file to a value.

• find: Locate an existing totals file by name, and return a file handle and size.

• findByIndex: Enumerate all of the files in the Hard Totals area.

• delete: Delete a totals file by name.

• rename: Rename an existing totals file.

• claimFile: Gain exclusive access to a specific file for use by the claiming application. A timeout value may
be specified in case another application maintains access for a period a time.
The common claim method may also be used to claim the entire Hard Totals device.

• releaseFile: Release exclusive access to the file.

• The FreeData property holds the current number of unassigned data bytes.

• The TotalsSize property holds the totals memory size.

• The NumberOfFiles property holds the number of totals files that exist in the hard totals device.

• Transaction operations are optionally supported. A transaction is defined as a series of data writes to be applied
as an atomic operation to one or more Hard Totals files. During a transaction, data writes will typically be
maintained in memory until a commit or rollback. Also FreeData will typically be reduced during a
transaction to ensure that the commit has temporary totals space to perform the commit as an atomic operation.

• beginTrans: Marks the beginning of a transaction.

• commitTrans: Ends the current transaction, and saves the updated data. Software and/or hardware methods
are used to ensure that either the entire transaction is saved, or that none of the updates are applied. This will
typically require writing the transaction to temporary totals space, setting state information within the device
indicating that a commit is in progress, writing the data to the totals files, and freeing the temporary totals
space. 
If the commit is interrupted, perhaps due to a system power loss or reset, then when the Hard Totals Service
is reloaded and initialized, it can complete the commit by copying data from the temporary space into the
644 Unified POS, v1.16.1

totals files. This ensures the integrity of related totals data.

• rollback: Ends the current transaction, and discards the updates. This may be useful in case of user
intervention to cancel an update. Also, if advanced error detection shows that some totals data cannot be read
properly in preparation for an update, then the transaction may need to be aborted.

• TransactionInProgress: Holds the current state of transactions.

The application should claim the files used during a transaction so that no other Hard Totals Control claims a file
before commitTrans, causing the commit to fail, with the exception’s ErrorCode reflecting an already claimed
status.

• Advanced error detection is optionally supported by the following:

• A read or a write may report a validation error. Data is usually divided into validation blocks, over which
sumchecks or CRCs are maintained. The size of validation data blocks is determined by the Service.
A validation error informs the application that one or more of the validation blocks containing the data to be
read or written may be invalid due to a hardware error. (An error on a write can occur when only a portion of
a validation block must be changed. The validation block must be read and the block validated before the
portion is changed.)
When a validation error is reported, it is recommended that the application read all of the data in the totals
file. The application will want to determine which portions of data are invalid, and take action based on the
results of the reads.

• recalculateValidationData may be called to cause recalculation of all validation data within a totals file.
This may be called after recovery has been performed as in the previous paragraph.

• validateData may be called to verify that all data within a totals file passes validation.

• Data writes automatically cause recalculation of validation data for the validation block or blocks in which
the written data resides.

• Since advanced error detection usually imposes a performance penalty, the application may choose to select
this feature when each totals file is created.

18.3.5 Device Sharing

The hard totals device is sharable. Its device sharing rules are:

• After opening the device, most properties are readable.

• After opening and enabling the device, the application may access all properties and methods.

• If more than one application has opened and enabled the device, each of these applications may access its
properties and methods.

• One application may claim the hard totals device. This restricts all other applications from reading, changing,
or claiming any files on the device.

• One application may claim a hard totals file. This restricts all other applications from reading, changing, or
claiming the file, and from claiming the hard totals device.
Unified POS, v1.16.1 645

18.4 Properties (UML attributes)

18.4.1 CapErrorDetection Property

Syntax CapErrorDetection: boolean { read-only, access after open }

Remarks If true, then advanced error detection is supported.This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

18.4.2 CapSingleFile Property

Syntax CapSingleFile: boolean { read-only, access after open }

Remarks If true, then only a single file, identified by the empty string (“”), is supported.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

18.4.3 CapTransactions Property

Syntax CapTransactions: boolean { read-only, access after open }

Remarks If true, then transactions are supported.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

18.4.4 FreeData Property

Syntax FreeData: int32 { read-only, access after open-enable }

Remarks Holds the number of bytes of unallocated data in the Hard Totals device.

It is initialized to an appropriate value when the device is enabled and is updated as files are created and
deleted. If creating a file requires some overhead to support the file information, then this overhead is
not included in what is reported by this property. This guarantees that a new file of size FreeData may
be created.

Data writes within a transaction may temporarily reduce what’s reported by this property, since some
Hard Totals space may need to be allocated to prepare for the transaction commit. Therefore, the
application should ensure that sufficient FreeData is maintained to allow its maximally sized
transactions to be performed.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also create Method, write Method.
646 Unified POS, v1.16.1

18.4.5 NumberOfFiles Property

Syntax NumberOfFiles: int32 { read-only, access after open-enable }

Remarks Holds the number of totals file currently in the Hard Totals device.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also FreeData Property.

18.4.6 TotalsSize Property

Syntax TotalsSize: int32 { read-only, access after open-enable }

Remarks Holds the size of the Hard Totals area. This size is equal to the largest totals file that can be created if no
other files exist.

This property is initialized when the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also FreeData Property.

18.4.7 TransactionInProgress Property

Syntax TransactionInProgress: boolean { read-only, access after open }

Remarks If true, then the application is within a transaction.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also beginTrans Method.
Unified POS, v1.16.1 647

18.5 Methods (UML operations)

18.5.1 beginTrans Method

Syntax beginTrans (): 
 void { raises-exception, use after open-enable }

Remarks Marks the beginning of a series of Hard Totals writes that must either be applied as a group or not at all.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Transactions are not supported by this device.

See Also commitTrans Method, rollback Method.

18.5.2 claim Method (Common)

Syntax claim (timeout: int32):
 void { raises-exception, use after open }

The timeout parameter gives the maximum number of milliseconds to wait for exclusive access to be
satisfied. If zero, the method attempts to claim the device, then returns the appropriate status
immediately. If FOREVER (-1), the method waits as long as needed until exclusive access is satisfied.

Remarks Requests exclusive access to the device.

If any other application has claimed exclusive access to any of the hard totals files by using claimFile,
then this claim cannot be satisfied until those files are released by releaseFile.

When successful, the Claimed property is changed to true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid timeout parameter was specified.

E_TIMEOUT Another application has exclusive access to the device or one or
more of its files and did not relinquish control before timeout milliseconds
expired.

See Also “Device Sharing Model” on page 14, release Method, claimFile Method, releaseFile Method.
648 Unified POS, v1.16.1

18.5.3 claimFile Method Updated in Release 1.8

Syntax claimFile (hTotalsFile: int32, timeout: int32): 
 void { raises-exception, use after open-enable }

Parameter Description
hTotalsFile Handle to the totals file that is to be claimed.

timeout The time in milliseconds to wait for the file to become available. If zero,
the method attempts to claim the file, then returns the appropriate status
immediately.
If FOREVER (-1), the method waits as long as needed until exclusive
access is satisfied.

Remarks Attempts to gain exclusive access to a specific file for use by the claiming application. Once granted, the
application maintains exclusive access until it explicitly releases access or until the device is closed.

If another application has claimed exclusive access to this file by using this method, or if another
application has claimed exclusive access to the entire totals area by using claim, then this request cannot
be satisfied until such claims have been released.

All claims are released when the application calls the close method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The handle is invalid, or an invalid timeout parameter was specified.

E_TIMEOUT The timeout value expired before another application released exclusive
 access of either the requested totals file or the entire totals area.

See Also claim Method, releaseFile Method.

18.5.4 commitTrans Method

Syntax commitTrans (): 
 void { raises-exception, use after open-enable }

Remarks Ends the current transaction. All writes between the previous beginTrans method and this method are
saved to the Hard Totals areas.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Transactions are not supported by this device, or no transaction
 is in progress.

See Also beginTrans Method, rollback Method.
Unified POS, v1.16.1 649

18.5.5 create Method

Syntax create (fileName: string, inout hTotalsFile: int32, size: int32, errorDetection: boolean): 
void { raises-exception, use after open-enable }

Parameter Description

fileName The name to be assigned to the file. Must be no longer than 10 characters. All
displayable ASCII characters (0x20 through 0x7F) are valid.

hTotalsFile Handle of the newly created totals file. Set by the method.

size The byte array size for the data. Once created, the array size and therefore the
file size used to store the array cannot be changed – totals files are fixed-length
files.

errorDetection The level of error detection desired for this file: If true, then the Service will
enable advanced error detection if supported. If false, then higher performance
access is required, so advanced error detection need not be enabled for this file.

Remarks Creates a totals file with the specified name, size, and error detection level. The data area is initialized to
binary zeros.

If CapSingleFile is true, then only one file may be created, and its name must be the empty string (“”).
Otherwise, the number of totals files that may be created is limited only by the free space available in the
Hard Totals area.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The fileName is too long or contains invalid characters.

E_EXISTS fileName already exists.

E_EXTENDED ErrorCodeExtended = ETOT_NOROOM:
There is insufficient room in the totals area to create the file.

See Also find Method, delete Method, rename Method.
650 Unified POS, v1.16.1

18.5.6 delete Method

Syntax delete (fileName: string): 
 void { raises-exception, use after open-enable }

The fileName parameter specifies the totals file to be deleted.

Remarks Deletes the named file.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_CLAIMED Cannot delete because either the totals file or the entire totals area

is claimed by another application.

E_ILLEGAL The fileName is too long or contains invalid characters.

E_NOEXIST fileName was not found.

See Also create Method, find Method, rename Method.

18.5.7 find Method

Syntax find (fileName: string, inout hTotalsFile: int32, inout size: int32): 
 void { raises-exception, use after open-enable }

Parameter Description
fileName The totals file name to be located.

hTotalsFile Handle of the totals file. Set by the method.

size The length of the file in bytes. Set by the method.

Remarks Locates an existing totals file.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_CLAIMED Cannot find because the entire totals file area is claimed by

another application.

E_ILLEGAL The fileName contains invalid characters.

E_NOEXIST fileName was not found.

See Also create Method, delete Method, rename Method.
Unified POS, v1.16.1 651

18.5.8 findByIndex Method

Syntax findByIndex (index: int32, inout fileName: string): 
 void { raises-exception, use after open-enable }

Parameter Description 
index The index of the totals file name to be found.

fileName The file name associated with index. Set by the method.

Remarks Determines the totals file name currently associated with the given index.

This method provides a means for enumerating all of the totals files currently defined. An index of zero
will return the file name at the first file position, with subsequent indices returning additional file names.
The largest valid index value is one less than NumberOfFiles.

The creation and deletion of files may change the relationship between indices and the file names; the
data areas used to manage file names and attributes may be compacted or rearranged as a result.
Therefore, the application may need to claim the device to ensure that all file names are retrieved
successfully.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_CLAIMED Cannot find because the entire totals file area is claimed by
 another application.

E_ILLEGAL The index is greater than the largest file index that is currently defined.

See Also create Method, find Method.
652 Unified POS, v1.16.1

18.5.9 read Method Updated in Release 1.7

Syntax read (hTotalsFile: int32, inout data: binary, offset: int32, count: int32): 
 void { raises-exception, use after open-enable }

Parameter Description
hTotalsFile Totals file handle returned from a create or find method.

data1 The data buffer in which the totals data will be placed. Array length must
be at least count.

offset Starting offset for the data to be read.

count Number of bytes of data to read.

Remarks Reads data from a totals file.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_CLAIMED Cannot read because either the totals file or the entire totals

area is claimed by another application.

E_ILLEGAL The handle is invalid, part of the data range is outside the bounds of the
totals file, or data array length is less than count.

E_EXTENDED ErrorCodeExtended = ETOT_VALIDATION:
A validation error has occurred while reading data.

See Also write Method

1. In the OPOS environment, the format of data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.
Unified POS, v1.16.1 653

18.5.10 recalculateValidationData Method

Syntax recalculateValidationData (hTotalsFile: int32): 
 void { raises-exception, use after open-enable }

The hTotalsFile parameter contains the handle of a totals file.

Remarks Recalculates validation data for the specified totals file.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_CLAIMED Cannot recalculate because either the totals file or the entire totals

area is claimed by another application.

E_ILLEGAL The handle is invalid, or advanced error detection is either not supported
by the Service or by this file.

18.5.11 release Method (Common)

Syntax release ():
 void { raises-exception, use after open-claim }

Remarks Releases exclusive access to the device.

An application may own claims on both the Hard Totals device through claim as well as individual files
through claimFile. Calling release only releases the claim on the Hard Totals device.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGAL The application does not have exclusive access to the device.

See Also “Device Sharing Model” on page 14, claim Method, claimFile Method.
654 Unified POS, v1.16.1

18.5.12 releaseFile Method

Syntax releaseFile (hTotalsFile: int32): 
 void { raises-exception, use after open-enable }

The hTotalsFile parameter contains the handle of the totals file to be released.

Remarks Releases exclusive access to a specific file.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The handle is invalid, or the specified file is not claimed by this 
 application.

See Also claim Method, claimFile Method.

18.5.13 rename Method

Syntax rename (hTotalsFile: int32, fileName: string): 
 void { raises-exception, use after open-enable }

Parameter Description
hTotalsFile The handle of the totals file to be renamed.

fileName The new name to be assigned to the file. Must be no longer than 10 characters.
All displayable ASCII characters (0x20 through 0x7F) are valid.

Remarks Renames a totals file.

If CapSingleFile is true, then this method will fail.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_CLAIMED Cannot rename because either the totals file or the entire
 totals area is claimed by another application.

E_ILLEGAL The handle is invalid, the fileName contains invalid characters, or the
CapSingleFile property is true.

E_EXISTS fileName already exists.

See Also CapSingleFile Property.
Unified POS, v1.16.1 655

18.5.14 rollback Method

Syntax rollback (): 
 void { raises-exception, use after open-enable }

Remarks Ends the current transaction. All writes between the previous beginTrans and this method are discarded;
they are not saved to the Hard Totals areas.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Transactions are not supported by this device, or no transaction is in progress.

See Also beginTrans Method, commitTrans Method.

18.5.15 setAll Method Updated in Release 1.7

Syntax setAll (hTotalsFile: int32, value: byte): 
 void { raises-exception, use after open-enable }

Parameter Description
hTotalsFile Handle of a totals file.

value Value to set all locations to in totals file.

Remarks Sets all the data in a totals file to the specified value.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_CLAIMED Cannot set because either the totals file or the entire totals area is
 claimed by another application.

E_ILLEGAL The handle is invalid.
656 Unified POS, v1.16.1

18.5.16 validateData Method

Syntax validateData (hTotalsFile: int32): 
 void { raises-exception, use after open-enable }

The hTotalsFile parameter contains the handle of a totals file.

Remarks Verifies that all data in the specified totals file passes validation checks.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_CLAIMED Cannot validate because either the totals file or the entire totals area is

claimed by another application.
E_ILLEGAL The handle is invalid, or advanced error detection is either not supported

by the Service or by this file.

18.5.17 write Method Updated in Release 1.7

Syntax write (hTotalsFile: int32, data: binary, offset: int32, count: int32): 
 void { raises-exception, use after open-enable }

Parameter Description
hTotalsFile Totals file handle returned from a create or find method.
data2 Data buffer containing the totals data to be written.
offset Starting offset for the data to be written.
count Number of bytes of data to write.

Remarks Writes data to a totals file. If a transaction is in progress, then the write will be buffered until a
commitTrans or rollback method is called.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_CLAIMED Cannot write because either the totals file or the entire totals area is

claimed by another application.
E_ILLEGAL The handle is invalid, or part of or all of the data range is outside the

bounds of the totals file.
E_EXTENDED ErrorCodeExtended = ETOT_NOROOM:

Cannot write because a transaction is in progress, and there is not enough
free space to prepare for the transaction commit.
ErrorCodeExtended = ETOT_VALIDATION:
A validation error has occurred while reading data.

See Also read Method, beginTrans Method, commitTrans Method, rollback Method, FreeData Property.

2. In the OPOS environment, the format of data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.
Unified POS, v1.16.1 657

18.6 Events (UML interfaces)

18.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Hard Totals Service to provide events to the application that are not otherwise supported by the
Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and

the Service. This property is settable.
Obj object Additional data whose usage varies by the EventNumber and Service.

This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Hard Totals
devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.

18.6.2 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a Hard Totals device.

Attributes This event contains the following attribute:
Attribute Type Description
Status int32 Reports a change in the power state of a Hard Totals device.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 2.

Remarks Enqueued when the Hard Totals device detects a power state change.
See Also “Events” on page 15.
658 Unified POS, v1.16.1

19 Image Scanner

19.1 General

This Chapter defines the Image Scanner device category.

19.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.11 open

CapCompareFirmwareVersion: boolean { read-only } 1.11 open

CapPowerReporting: int32 { read-only } 1.11 open

CapStatisticsReporting: boolean { read-only } 1.11 open

CapUpdateFirmware: boolean { read-only } 1.11 open

CapUpdateStatistics: boolean { read-only } 1.11 open

CheckHealthText: string { read-only } 1.11 open

Claimed: boolean { read-only } 1.11 open

DataCount: int32 { read-only } 1.11 open

DataEventEnabled: boolean { read-write } 1.11 open

DeviceEnabled: boolean { read-write } 1.11 open & claim

FreezeEvents: boolean { read-write } 1.11 open

OutputID: int32 { read-only } 1.11 Not supported

PowerNotify: int32 { read-write } 1.11 open

PowerState: int32 { read-only } 1.11 open

State: int32 { read-only } 1.11 --

DeviceControlDescription: string { read-only } 1.11 --

DeviceControlVersion: int32 { read-only } 1.11 --

DeviceServiceDescription: string { read-only } 1.11 open

DeviceServiceVersion: int32 { read-only } 1.11 open

PhysicalDeviceDescription: string { read-only } 1.11 open

PhysicalDeviceName: string { read-only } 1.11 open
Unified POS, v1.16.1 659

Properties (Continued)

Specific Type Mutability Version May Use After

CapAim: boolean { read-only } 1.11 open

CapDecodeData: boolean { read-only } 1.11 open

CapHostTriggered: boolean { read-only } 1.11 open

CapIlluminate: boolean { read-only } 1.11 open

CapImageData: boolean { read-only } 1.11 open

CapImageQuality: boolean { read-only } 1.11 open

CapVideoData: boolean { read-only } 1.11 open

AimMode: boolean { read-write } 1.11 open

BitsPerPixel: int32 { read-only } 1.11 open

FrameData: binary { read-only } 1.11 open

FrameType: int32 { read-only} 1.11 open

IlluminateMode: boolean { read-write } 1.11 open

ImageHeight: int32 { read-only } 1.11 open

ImageLength: int32 { read-only } 1.11 open

ImageMode: int32 { read-write } 1.11 open

ImageQuality: int32 { read-write } 1.11 open

ImageType: int32 { read-only } 1.11 open

ImageWidth: int32 { read-only } 1.11 open

VideoCount: int32 { read-write } 1.11 open

VideoRate: int32 { read-write } 1.11 open
660 Unified POS, v1.16.1

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.11

close ():
void { raises-exception, use after open }

1.11

claim (timeout: int32):
void { raises-exception, use after open }

1.11

release ():
void { raises-exception, use after open, claim }

1.11

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.11

clearInput ():
void { raises-exception, use after open, claim }

1.11

clearInputProperties ():
void { raises-exception, use after open, claim }

1.11

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.11

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.11

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.11

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.11

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.11

updateStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.11

Specific

startSession ():
void { raises-exception, use after open, claim, enable }

1.11

stopSession ():
void { raises-exception, use after open, claim, enable }

1.11
Unified POS, v1.16.1 661

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent 1.11

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.11

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.11

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.11

 Status: int32 { read-only }
662 Unified POS, v1.16.1

19.3 General Information

The Image Scanner programmatic name is “ImageScanner.”

This device category was added to Version 1.11 of the specification.

19.3.1 Capabilities

The Image Scanner has the capability of reading a single frame of image data in scanning sessions initiated by its
own triggering source. It may also have one or more of the following capabilities (see the capabilities properties
for specific information):

• Reads encoded data from a label

• Reads low-resolution video streams for aiming purposes

• Host is able to control the image scanner’s Illumination feature

• Host is able to control the image scanner’s Aiming feature

• Host is able to start and stop a scanning session.
Unified POS, v1.16.1 663

19.3.2 Image Scanner Class Diagram

The following diagram shows the relationships between the Image Scanner and Scanner classes.

BaseControl
(from upos)

<<Interface>>

UposConst
(from upos)

<<utility>>
ScannerConst

(from upos)

<<utility>>

UposException
(from upos)

<<exception>>

<<uses>>

<<sends>>

ImageScannerConst
(from upos)

<<utility>>

ScannerControl
(from upos)

<<Interface>>

<<uses>>

<<sends>>

ErrorEvent
(from events)

<<event>>

fires

DataEvent
(from events)

<<event>>

fires

DirectIOEvent
(from events)

<<event>>

fires

StatusUpdateEvent
(from events)

<<event>>

fires

ImageScannerControl

<<capability>> CapAim : boolean
<<capability>> CapDecodeData : boolean
<<capability>> CapHostTriggered : boolean
<<capability>> CapIlluminate : boolean
<<capability>> CapImageData : boolean
<<capability>> CapImageQuality : boolean
<<capability>> CapVideoData : boolean
<<property>> AimMode : boolean
<<property>> BitsPerPixel : int32
<<property>> FrameData : binary
<<property>> FrameType : int32
<<property>> IlluminateMode : boolean
<<property>> ImageHeight : int32
<<property>> ImageLength : int32
<<property>> ImageMode : int32
<<property>> ImageQuality : int32
<<property>> ImageType : int32
<<property>> ImageWidth : int32
<<property>> VideoCount : int32
<<property>> VideoRate : int32

startSession() : void
stopSession() : void

(from upos)

<<Interface>>

<<uses>>

<<fires>>

<<fires>>
<<fires>>

<<fires>>
664 Unified POS, v1.16.1

19.3.3 Image Scanner Sequence Diagram 1

The following sequence diagram shows the typical usage of an Image Scanner device with the ImageMode
property set to “IMG_STILL_ONLY.” In this instance there is no interaction with the Scanner class.

 : POS
Application :

ImageScannerControl
 :

ScannerControl
Hardware

1: setImageMode("IMG_STILL_ONLY")

2: setAutoDisable(true)

3: setDeviceEnabled(true)

4: acquire image frame

5: create/enqueue data event and increment data count

6: setDeviceEnabled(false)

7: notify client of new event

8: getFrameData()

9: getImageHeight()

10: getImageWidth()

11: getImageType()

12: setDeviceEnabledTrue()

13: setDataEventEnabled(true)
Unified POS, v1.16.1 665

19.3.4 Image Scanner Sequence Diagram 2

The following sequence diagram shows the typical usage of an Image Scanner device with the ImageMode
property set to “IMG_DECODE_ONLY.” The scanner decodes bar codes, is triggered by the host, but does not
send image frame data. This device could be implemented as a hydra device that supports both the Image
Scanner and the Scanner classes.

 : POS
Application :

ImageScan...
 :

ScannerControl
Hardware

1: setImageMode("IMG_DECODE_ONLY")

2: setDecodeData(true)

3: setAutoDisable(true)

4: setDataEventEnabled(true)

5: startSession()

6: Scanner Specific Command to start Session

7: scan successful label

8: create/enqueue Data event and increment DataCount

9: setDeviceEnabled(false)

10: notify client of new event

11: getScanData()

12: getScanDataLabel()

13: setDeviceEnabled(true)

14: setDataEventEnabled(true)

15: stopSession()

It's a formality to end
the session because a
barcode was acquired
666 Unified POS, v1.16.1

19.3.5 Image Scanner Sequence Diagram 3

The following sequence diagram shows the typical usage of an Image Scanner device with the ImageMode
property set to “IMG_STILL_DECODE.” The scanner decodes bar codes, is triggered by the host, and sends
the image frame that was decoded. This device could be implemented as a hydra device that supports both the
Image Scanner and the Scanner classes.

 : POS
Application

 :
ImageScannerControl

 :
ScannerControl

Hardware

1: setImageMode("IMG_STILL_DECODE")

7: startSession()

4: setDecodeData(true)

5: setAutoDisable(true)

6: setDataEventEnabled(true)

8: Scanner Specific Command to start Session

13: scan successful label

14: create/enqueue Data event and increment DataCount

15: setDeviceEnabled(false)

16: notify client of new event

17: getScanData()

18: getScanDataLabel()

25: setDeviceEnabled(true)

26: setDataEventEnabled(true)

2: setAutoDisable(true)

3: setDataEventEnabled(true)

9: Acquire Image Frame

10: create/enqueu Data event and increment DataCount

11: setDeviceEnabled(false)

12: notify client of new event

19: getFrameData()

20: getImageHeight()

21: getImageWidth()

22: getImageType()

23: setDeviceEnabled(true)

24: setDataEventEnabled(true)
Unified POS, v1.16.1 667

19.3.6 Image Scanner Sequence Diagram 4

The following sequence diagram shows the typical usage of an Image Scanner device with the ImageMode
property set to “IMG_VIDEO_DECODE.” The scanner sends a low-res video stream for use as a viewfinder, is
triggered by the host and decodes bar codes. In this mode, there is no tie between the image frame that was
decoded and the decoded data. This device could be implemented as a hydra device that supports both the Image
Scanner and the Scanner classes.

 : POS
Application

 :
ImageScannerControl

 :
ScannerControl

Hardware

1: setImageMode("IMG_VIDEO_DECODE")

3: setDecodeData(true)

4: setAutoDisable(true)

5: setDataEventEnabled(true)

6: startSession()

7: Scanner Specific Command to start Session

21: scan successful label

22: create/enqueue Data event and increment DataCount

23: setDeviceEnabled(false)

24: notify client of new event

25: getScanData()

26: getScanDataLabel()

27: setDeviceEnabled(true)

28: setDataEventEnabled(true)

14: getFrameData()

11: getImageHeight()

12: getImageWidth()

13: getImageType()

15: setDataEventEnabled(true)

8: Acquire 15 frames of Image Data

9: create/enqueu Data event and increment DataCount

2: setDataEventEnabled(true)

10: notify client of new event

No decode of
these frames

16: Acquire 15 frames of Image Data

17: create/enqueu Data event and increment DataCount

Decode of one of
these frames is
sucessful

18: notify client of new event

19: getFrameData()

20: setDataEventEnabled(true)
668 Unified POS, v1.16.1

19.3.7 Model

The Image Scanner follows the general “Device Input Model” for event-driven input:

• When a frame of image data is received from the image scanner, a DataEvent is enqueued by a Image Scanner
service.

• If the AutoDisable property is true and the image scanner is in Decode or Still Image mode, then the device
automatically disables itself when a DataEvent is enqueued. The AutoDisable property does not apply in the
Low-Res Video mode.

• An enqueued DataEvent can be delivered to the application when the DataEventEnabled property is true and
other event delivery requirements are met. Just before delivering this event, data is copied into corresponding
properties, and further DataEvents are disabled by setting DataEventEnabled to false. This causes
subsequent input data to be enqueued while the application processes the current input and associated
properties. When the application has finished processing the current input and is ready for more data, it
reenables events by setting DataEventEnabled to true.

• An ErrorEvent (or events) is enqueued if an error occurs while gathering or processing input, and is delivered
to the application when DataEventEnabled is true and other event delivery requirements are met.

• The DataCount property may be read to obtain the total number of enqueued DataEvents.

• All enqueued input may be deleted by calling clearInput. See the clearInput method
description for more details.

• All data properties that are populated as a result of firing a DataEvent or ErrorEvent can be
set back to their default values by calling the clearInputProperties method.

Image Scanners that also decode labels are implemented as a “hydra device.” Services are supported for both a
Scanner device and an Image Scanner device.

• When a frame of image data yields decode data, a DataEvent is enqueued by the Scanner service object

Scanned data is placed into the property ScanData. If the application sets the property DecodeData to true, then
the data is decoded into the ScanDataLabel and ScanDataType properties.

19.3.8 Device Sharing

The image scanner is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before the device begins reading input.

• See the “Summary” table for precise usage prerequisites.
Unified POS, v1.16.1 669

19.3.9 Image Scanner State Diagram

The following diagram illustrates the various state transitions within the Image Scanner device category.

[Open && Claim && Enable]
[Closed || Released || Disabled]

Idle
 / setAimMode

 / setIlluminateMode

Receive Video
Stream

Receive
Still Image

Receive
Decode Data

[ImageMode == IMG_ALL ||
ImageMode == IMG_VIDEO_STILL ||

ImageMode == IMG_VIDEO_DECODE
] / startSession()

[ImageMode = IMG_STILL_ONLY ||
ImageMode= IMG_STILL_DECODE] /

startSession()

 / stopSession() || timeout
[ImageMode == IMG_DECODE_ONLY] /

startSession()

 / stopSession() || timeout

[(ImageMode == IMG_ALL ||
ImageMode ==

IMG_STILL_DECODE) &&
Decode Data Received]

 / stopSession() || timeout

[(ImageMode == IMG_ALL ||
ImageMoe == IMG_VIDEO_STILL)

&& Still Image Data Received]

[(ImageMode == IMG_ALL || ImageMode == IMG_VIDEO_DECODE) &&
Decode Data Received]
670 Unified POS, v1.16.1

19.4 Properties (UML attributes)

19.4.1 AimMode Property

Syntax AimMode: boolean { read-write, access after open }

Remarks If true, then the image scanner will turn on an aiming spot or aiming grid during a scan session. If false,
then the image scanner will turn off the aiming spot during a scan session. This property is initialized by
the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Value Meaning
E_ILLEGAL An attempt was made to change AimMode property when the CapAim

property is false.

See Also CapAim Property.

19.4.2 BitsPerPixel Property

Syntax BitsPerPixel: int32 { read-only, access after open }

Remarks Holds a value identifying the number of bits that are used to encode a single pixel of image data.

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also “Device Input Model” on page 18.

19.4.3 CapAim Property

Syntax CapAim: boolean { read-only, access after open }

Remarks If true, then the image scanner supports the property to enable or disable the display of an aiming spot or
grid by the image scanner. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

19.4.4 CapDecodeData Property

Syntax CapDecodeData: boolean { read-only, access after open }

Remarks If true, then the image scanner is able to read encoded data from a label. Any label data that is read is
sent by a Scanner service.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 671

19.4.5 CapHostTriggered Property

Syntax CapHostTriggered: boolean { read-only, access after open }

Remarks If true, then the image scanner is able to support the startSession and stopSession method calls.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

19.4.6 CapIlluminate Property

Syntax CapIlluminate: boolean { read-only, access after open }

Remarks If true, then the image scanner supports the property to enable or disable the use of an illumination source
by the image scanner.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

19.4.7 CapImageData Property

Syntax CapImageData: boolean { read-only, access after open }

Remarks If true, then the image scanner supports a still image capture mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

19.4.8 CapImageQuality Property

Syntax CapImageQuality: boolean { read-only, access after open }

Remarks If true, then the image scanner supports the ImageQuality property that the application can use to control
image compression or capture that effects the quality of the image in exchange for smaller image sizes.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also ImageQuality Property.
672 Unified POS, v1.16.1

19.4.9 CapVideoData Property

Syntax CapVideoData: boolean { read-only, access after open }

Remarks If true, then the image scanner supports a low-resolution video stream mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

19.4.10 FrameData Property

Syntax FrameData: binary { read-only, access after open } 1

Remarks Holds a frame of image data or one or more frames of video data read from the image scanner.

Image data is, in general, in the format as delivered from the image scanner. The attributes of the image
sent are placed in the BitsPerPixel, ImageHeight, ImageWidth, ImageType, and ImageLength
properties.

Video data is, in general, one or more still images that are concatenated together in one frame with no
data compression. This video data is typically used to project a “view finder” that the operator can use to
aim the image scanner (without an aiming pattern). Each block contains at most the number of frames
specified in the VideoCount property. A DataEvent is fired for each block of video data sent. Multiple
blocks of image data are periodically sent by the service object to up to the maximum frames per second
rate set by the VideoRate property. The attributes of every still image that makes up a block of video
data are placed in the BitsPerPixel, ImageHeight, ImageWidth, ImageType, and ImageLength
properties.

Image data, whether for still images or video streams may be acquired in a scan session started by the
startSession method, or by a scan session started asynchronously by the image scanner. The FrameType
property indicates whether the FrameData property contains a single still image, or a block of video
data.

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also BitsPerPixel Property, FrameType Property, ImageHeight Property, ImageLength Property,
ImageType Property, ImageWidth Property, VideoCount Property, VideoRate Property, “Device
Input Model” on page 18.

1. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.
Unified POS, v1.16.1 673

19.4.11 FrameType Property

Syntax FrameType: int32 { read-only, access after open }

Remarks Holds a value identifying the contents of the FrameData property.

Value Meaning 
IMG_FRAME_STILL The FrameData property contains a single still image.
IMG_FRAME_VIDEO The FrameData property contains a block of video stream frames (one 

 or more still images concatenated without data compression).

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also FrameData Property.

19.4.12 IlluminateMode Property

Syntax IlluminateMode: boolean { read-write, access after open }

Remarks If true, then the image scanner will enable the illumination source during a scan session. If false, then the
image scanner will not turn on the illumination source during a scan session

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Value Meaning 
E_ILLEGAL An attempt was made to change IlluminateMode property

when the CapIlluminate property is false.
See Also CapIlluminate Property.

19.4.13 ImageHeight Property

Syntax ImageHeight: int32 { read-only, access after open }

Remarks Holds a value identifying the height of the acquired image in pixels.

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also “Device Input Model” on page 18.
674 Unified POS, v1.16.1

19.4.14 ImageLength Property

Syntax ImageLength: int32 { read-only, access after open }

Remarks Holds a value identifying the length of the acquired image in bytes.

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also “Device Input Model” on page 18.
Unified POS, v1.16.1 675

19.4.15 ImageMode Property

Syntax ImageMode: int32 { read-write, access after open }

Remarks Holds a value identifying the image scanner’s mode of operation.

The value of this property indicates the type of data that is placed into the FrameData property upon a
DataEvent.

This property is initialized by the open method. The default value of this property is
IMG_STILL_ONLY.

Value Meaning 
IMG_DECODE_ONLY The image scanner will not transmit still images or video to the

application, but it will transmit bar code data decoded from
acquired images via a Scanner service. A hydra implementation
of Image Scanner and Scanner is required for this mode.

IMG_STILL_ONLY The image scanner will transmit still images, but it will not attempt to read
bar code data, nor will it transmit video.

IMG_STILL_DECODE The image scanner will transmit still images, and it will attempt to read
bar code data, but it will not transmit video streams. A hydra
implementation of Image Scanner and Scanner is required for this mode.

IMG_VIDEO_DECODE The image scanner will transmit video streams, and it will attempt to read
bar code data. A hydra implementation of Image Scanner and Scanner is
required for this mode.

IMG_VIDEO_STILL The image scanner will transmit video streams, and it will transmit still
images, but it will not attempt to read bar code data. The image resolution
of video data could be different from the resolution of still image data.

IMG_ALL The image scanner will transmit video streams, and it will attempt to read
bar code data. When a bar code is read, the bar code data is transmitted as
well as a still image. The image resolution of video data could be different
from the resolution of still image data. A hydra implementation of Image
Scanner and Scanner is required for this mode.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Value Meaning 
E_ILLEGAL An attempt was made to change the ImageMode property to a

 value that is not in agreement with the capabilities of the image
 scanner as indicated in the CapImageData, CapVideoData 

 and CapDecodeData properties.

See Also CapDecodeData Property, CapImageData Property, CapVideoData Property, FrameData Property,
startSession Method, “Device Input Model” on page 18.
676 Unified POS, v1.16.1

19.4.16 ImageQuality Property

Syntax ImageQuality: int32 { read-write, access after open }

Remarks Defines the quality of the image that the application requires.

Value Meaning 
IMG_QUAL_LOW The quality of the image data is to be low.
IMG_QUAL_MED The quality of the image data is to be medium.
IMG_QUAL_HIGH The quality of the image data is to be high.

This property is initialized to IMG_QUAL_HIGH by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapImageQuality Property.

19.4.17 ImageType Property

Syntax ImageType: int32 { read-only, access after open }

Remarks Holds a value identifying the format of the image data that is contained in the FrameData property.

Value Meaning 
IMG_TYP_BMP The acquired image data is in the Bit Mapped (BMP) format.
IMG_TYP_JPEG The acquired image data is in the Joint Photographic Experts Group (JPEG)

format.
IMG_TYP_GIF The acquired image data is in the Graphic Interchange Format (GIF) format.
IMG_TYP_PNG The acquired image data is in the Portable Network Graphics (PNG) format.
IMG_TYP_TIFF The acquired image data is in the Tagged Image File Format (TIFF) format.

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also FrameData Property.
Unified POS, v1.16.1 677

19.4.18 ImageWidth Property

Syntax ImageWidth: int32 { read-only, access after open }

Remarks Holds a value identifying the width of the acquired image in pixels.

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also “Device Input Model” on page 18.

19.4.19 VideoCount Property

Syntax VideoCount: int32 { read-write, access after open }

Remarks Holds a value identifying the number of frames of video data that are sent with each DataEvent. The
default value of this property is 15. When the VideoRate property is set to 30 frames per second, this
value yields a DataEvent twice a second.

Should the value of this property be larger than the image scanner’s memory storage capabilities, the
value of this property will be coerced by the Service to the image scanner’s maximum supported count.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Value Meaning
E_ILLEGAL An attempt was made to change the VideoCount property to a value that

exceeds the image scanner’s memory storage capabilities.

See Also “Device Input Model” on page 18, VideoRate Property.
678 Unified POS, v1.16.1

19.4.20 VideoRate Property

Syntax VideoRate: int32 { read-write, access after open }

Remarks Holds a value identifying the number of video frames per second that the application can receive. The
default value of this property is 30 frames per second.

The application can set this property and the VideoCount property to throttle the number of DataEvents
that are fired. For example, with the default values of the VideoCount and VideoRate properties, the
application would get a DataEvent two times a second.

Should the value of this property be larger than the image scanner’s maximum supported rate, the value
of this property will be coerced by the Service to the image scanner’s maximum supported rate.

The image scanner may discard frames of image data that exceed the specified VideoRate property.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Value Meaning 
E_ILLEGAL An attempt was made to change the VideoRate property to a

value that exceeds the image scanner’s maximum supported rate.

See Also “Device Input Model” on page 18, VideoCount Property.
Unified POS, v1.16.1 679

19.5 Methods (UML operations)

19.5.1 startSession Method

Syntax startSession ():
void { raises-exception, use after open-enable }

Remarks This method is used to trigger the image scanner to acquire decode data, still images and video stream
data in the mode selected by the ImageMode property. A session is active until the stopSession method
is invoked, or until the image scanner ends the session on its own. A session may terminate early when
an image or decode data is acquired, or when a session timeout has expired. The criteria for ending a
session is implementation dependant.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Value Meaning 
E_ILLEGAL An attempt was made to call the startSession method when the
 CapHostTriggered property is false.

See Also CapHostTriggered Property, ImageMode Property, stopSession Method.

19.5.2 stopSession Method

Syntax stopSession ():
void { raises-exception, use after open-enable }

Remarks This method is used to stop a session that was started with a startSession method. If this method is
invoked and the session is no longer active, then no exception is raised (see startSession method details)

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Value Meaning 
E_ILLEGAL An attempt was made to call the stopSession method when
 the CapHostTriggered property is false.

See Also CapHostTriggered Property, startSession Method
680 Unified POS, v1.16.1

19.6 Events (UML interfaces)

19.6.1 DataEvent

<< event >> upos::events::DataEvent 
Status: int32 { read-only }

Description Notifies the application that input data from the Image Scanner is available.

Attributes This event contains the following attribute:

Attribute Type Description 
Status int32 Always zero.

Remarks The image scanner data is placed in the BitsPerPixel, FrameData, FrameType, ImageHeight,
ImageLength, ImageType, and ImageWidth properties prior to a DataEvent being delivered to the
application.

See Also BitsPerPixel Property, FrameData Property, FrameType Property, ImageHeight Property,
ImageLength Property, ImageType Property, ImageWidth Property, “Events” on page 15.

19.6.2 DirectIO Event

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Image Scanner Service to provide events to the application that are not otherwise supported by
the Control.

Attributes This event contains the following attributes:

Attribute Type Description 
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and the

Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service. This
property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Image
Scanner devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.
Unified POS, v1.16.1 681

19.6.3 ErrorEvent

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an image scanner device error has been detected and a suitable response by
the application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attribute Type Description
ErrorCode int32 Error code causing the error event. See list of ErrorCodes on page 0-21.
ErrorCodeExtended

int32 Extended error code causing the error event. It may contain a Service-
specific value.

ErrorLocus int32 Location of the error. See values below.
ErrorResponse int32 Error response, whose default value may be overridden by the application

(i.e., this property is settable). See values below.

The ErrorLocus property has one of the following values:

Value Meaning 
EL_INPUT Error occurred while gathering or processing event-driven

input. No previously buffered input data is available.
EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and

some previously buffered data is available.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error processing may change ErrorResponse to one of the following values:

Value Meaning 
ER_CLEAR Clear the buffered input data. The error state is exited.

Default when locus is EL_INPUT.
ER_CONTINUEINPUT Use only when locus is EL_INPUT_DATA. Acknowledges the error and

directs the Device to continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and
DataEventEnabled is again set to true, then another ErrorEvent is
delivered with locus EL_INPUT. Default when locus is
EL_INPUT_DATA.

Remarks Enqueued when an error is detected while trying to read image scanner data. This event is not delivered
until DataEventEnabled is true, so that proper application sequencing occurs.

See Also “Events” on page 15.
682 Unified POS, v1.16.1

19.6.4 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of an Image Scanner device.

Attributes This event contains the following attribute:

Attribute Type Description 
Status int32 Reports a change in the power state of a Image Scanner device.

Note that Release 1.3 added Power State Reporting with additional Power reporting
StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional Status values
for communicating the status/progress of an asynchronous update firmware process.

See “StatusUpdateEvent” description in Chapter 1.

Remarks Enqueued when the Image Scanner device detects a power state change.

See Also “Events” on page 15.
Unified POS, v1.16.1 683

684 Unified POS, v1.16.1

20 Item Dispenser

20.1 General

This Chapter defines the Item Dispenser device category.

20.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.12 Not supported

CapCompareFirmwareVersion: boolean { read-only } 1.12 open

CapPowerReporting: int32 { read-only } 1.12 open

CapStatisticsReporting: boolean { read-only } 1.12 open

CapUpdateFirmware: boolean { read-only } 1.12 open

CapUpdateStatistics: boolean { read-only } 1.12 open

CheckHealthText: string { read-only } 1.12 open

Claimed: boolean { read-only } 1.12 open

DataCount: int32 { read-only } 1.12 Not supported

DataEventEnabled: boolean { read-write } 1.12 Not supported

DeviceEnabled: boolean { read-write } 1.12 open & claim

FreezeEvents: boolean { read-write } 1.12 open

OutputID: int32 { read-only } 1.12 Not supported

PowerNotify: int32 { read-write } 1.12 open

PowerState: int32 { read-only } 1.12 open

State: int32 { read-only } 1.12 --

DeviceControlDescription: string { read-only } 1.12 --

DeviceControlVersion: int32 { read-only } 1.12 --

DeviceServiceDescription: string { read-only } 1.12 open

DeviceServiceVersion: int32 { read-only } 1.12 open

PhysicalDeviceDescription: string { read-only } 1.12 open

PhysicalDeviceName: string { read-only } 1.12 open
Unified POS, v1.16.1 685

Properties (Continued)

Specific Type Mutability Version May Use After

CapEmptySensor: boolean { read-only } 1.12 open

CapIndividualSlotStatus: boolean { read-only } 1.12 open

CapJamSensor: boolean { read-only } 1.12 open

CapNearEmptySensor: boolean { read-only } 1.12 open

DispenserStatus: int32 { read-only } 1.12 open, claim, & enable

MaxSlots: int32 { read-only } 1.12 open

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.12

close ():
void { raises-exception, use after open }

1.12

claim (timeout: int32):
void { raises-exception, use after open }

1.12

release ():
void { raises-exception, use after open, claim }

1.12

checkHealth (level: int32):
void { raises-exception, use after open, enable }

1.12

clearInput ():
void { }

Not supported

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.12

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, enable }

1.12

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, enable }

1.12

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, enable }

1.12

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, enable }

1.12

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, enable }

1.12
686 Unified POS, v1.16.1

Specific

Name

adjustItemCount (itemCount: int32, slotNumber: int32): 
void { raises-exception, use after open, claim, enable }

1.12

dispenseItem (inout numItem: int32, slotNumber: int32): 
void { raises-exception, use after open, claim, enable }

1.12

readItemCount (inout itemCount: int32, slotNumber: int32): 
void { raises-exception, use after open, claim, enable }

1.12

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.12

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.12

 Status: int32 { read-only }
Unified POS, v1.16.1 687

20.3 General Information

The Item Dispenser programmatic name is “ItemDispenser.”

This device category was added to Version 1.12 of the specification.

20.3.1 Capabilities

The Item Dispenser has the following capability:

• Supports a method that allows a specified number of items to be dispensed from the device.

The Item Dispenser may have the following additional capabilities:

• Status reporting which indicates empty item slot conditions, near empty item slot conditions and item slot
jamming conditions.

• Supports multiple items dispensed from different slots.

• Status reporting in individual item type.
688 Unified POS, v1.16.1

20.3.2 Item Dispenser Class Diagram

The following diagram shows the relationships between the Item Dispenser classes.

+adjustItemCount(itemCount : int32, slotNumber : int32) : void
+dispenseItem(inout numItemt : int32, slotNumber : int32) : void
+readItemCount(inout itemCount : int32, slotNumber : int32) : void

+CapEmptySensor : boolean
+CapIndividualSlotStatus : boolean
+CapJamSensor : boolean
+CapNearEmptySensor : boolean
+DispenserStatus : int32
+MaxSlots : int32

«interface»
ItemDispenserControl

+EventNumber : int32
+Data : int32
+Obj : object

«event»
DirectIOEvent

«fires»

+Status : int32

«event»
StatusUpdateEvent

«fires»

«exception»
UposException

«sends»

«sends»
«utility»

ItemDispenserConst
«utility»

UposConst

«uses»

«uses»
«interface»

BaseControl
Unified POS, v1.16.1 689

20.3.3 Item Dispenser Sequence Diagram

The following sequence diagram show the typical usage of the Item Dispenser device illustrating dispensing and
the near-empty condition.

Application ItemDispenser Control ItemDispenser Service ItemDispenser

NOTE: We are assuming that the Application has already successfully opened and claimed the ItemDispenser Device
and is registered to receive events from the control.

1: setDeviceEnabled(true)

2: setDeviceEnabled(true)

4: dispenseItem(numItem1,slotNumber1)

5: dispenseItem(numItem1,slotNumber1) 6: dispense Items from slotNumber1

10: update DispenserStatus and deliver SUE

11: notify client of new event

3: connect or somehow have
access to the hardware

7: dispenseItem(numItem2,slotNumber2)

8: dispenseItem(numItem2,slotNumber2) 9: dispense Items from slotNumber2

Assume that after this
point the ItemDispenser
slot2 is getting low

Application event handling code takes appropriate
action (like informing user), after refilling slot2 the
ItemCount has to be adjusted

12: adjustItemCount(itemCount,slotNumber2)

13: adjustItemCount(itemCount,slotNumber2)
690 Unified POS, v1.16.1

20.3.4 Model

The general model of an Item Dispenser is:

An Item Dispenser consists of slots holding items (e.g. CD’s, prepaid telephone card, etc.) to be dispensed. An
application using the Item Dispenser Service is not concerned with controlling the individual slots of items to be
dispensed, but rather calls a method with the number of items to be dispensed. It is the responsibility of the Item
Dispenser Device or the Service to dispense the correct number of items from the various slots.

20.3.5 Device Sharing

The Item Dispenser is an exclusive-use device. Its device sharing rules are:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing some of the properties, dispensing or
collecting, or receiving events.

• See the “Summary” table for precise usage prerequisites.

20.3.6 Item Dispenser State Diagram

The following diagram illustrates the various state transitions within the Item Dispenser device category.

Closed Opened Claimed

open claim

close release

Enabled

readItemCount

Has Items Near Empty Empty

Jammed Fire Events

close release

se
tD

ev
ice

En
ab

led
(fa

lse
)

se
tD

ev
ice

En
ab

led
(tr

ue
)

dispenseItem
dispenseItem

adjustItemCount
add items

adjustItemCount / items added

jams jams

fire event

done

fire event
done

done fire event
Unified POS, v1.16.1 691

20.4 Properties (UML attributes)

20.4.1 CapEmptySensor Property

Syntax CapEmptySensor: boolean { read-only, access after open }

Remarks If true, the item dispenser can report an out-of-item condition.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

20.4.2 CapIndividualSlotStatus Property

Syntax CapIndividualSlotStatus: boolean { read-only, access after open }

Remarks If true, the item dispenser can report an individual status for each slot.

An individual status can be only reported if the device supports multiple slots. Therefore, if
CapIndividualSlotStatus is true, then it is implied that MaxSlots is greater than one (1).

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also MaxSlots Property.

20.4.3 CapJamSensor Property

Syntax CapJamSensor: boolean { read-only, access after open }

Remarks If true, the item dispenser can report the occurrence of a mechanical jam or failure condition.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

20.4.4 CapNearEmptySensor Property

Syntax CapNearEmptySensor: boolean { read-only, access after open }

Remarks If true, the item dispenser can report that it is nearly out of items.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
692 Unified POS, v1.16.1

20.4.5 DispenserStatus Property

Syntax DispenserStatus: int32 { read-only, access after open-claim-enable }

Remarks Holds the current status of the item dispenser. It may be one of the following:

Value Meaning
ITEM_DS_OK Ready to dispense items. This value is also set when the dispenser

is unable to detect error conditions.

ITEM_DS_EMPTY Cannot dispense items, because the dispenser is empty. If
MaxSlots is greater than one (1), some of the slots are empty.

ITEM_DS_NEAREMPTY Can still dispense items, but the dispenser is nearly empty. If
MaxSlots is greater than one (1), some of the slots are near
empty.

ITEM_DS_JAM Cannot dispense items, because a mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. If more than one condition is
present, then the order of precedence starting at the highest is: fault, empty, and near empty.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapEmptySensor Property, CapJamSensor Property, CapNearEmptySensor Property, MaxSlots
Property.

20.4.6 MaxSlots Property

Syntax MaxSlots: int32 { read-only, access after open }

Remarks MaxSlots specifies the maximum number of slots that the device can support.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 693

20.5 Methods (UML operations)

20.5.1 adjustItemCount Method

Syntax adjustItemCount (itemCount: int32, slotNumber: int32): 
 void { raises-exception, use after open-claim-enable }

Parameter Description 
itemCount The itemCount parameter contains the number of items to be initialized.
slotNumber The slotNumber parameter contains the slot number to be initialized.

Valid slot numbers are 1 through MaxSlots.

Remarks This method is called to set the initial number of items in the Item Dispenser after initial setup, or to
adjust the item count after replenishment or removal. This method is called when needed for devices
which cannot determine the exact number of items in them automatically. If the device can determine the
exact number of items, then this method call is ignored. The application would first call readItemCount
to get the current item count, and adjust it to the amount being replenished. Then the application will call
this method to set the number of items currently in the dispenser. To reset the item count simply set it to
zero.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

A possible value of the exception’s ErrorCode property is:

Value Meaning 
E_ILLEGAL The slotNumber parameter exceeds MaxSlots.

See Also MaxSlots Property, readItemCount Method.

20.5.2 dispenseItem Method

Syntax dispenseItem (inout numItem: int32, slotNumber: int32): 
 void { raises-exception, use after open-claim-enable }

Parameter Description 
numItem The numItem parameter contains the number of items to be dispensed. On

return, it contains the actual number of items dispensed.
slotNumber The slotNumber parameter contains the slot number used for dispensing

items. Valid slot numbers are 1 through MaxSlots.

Remarks Dispenses items. The actual number of dispensed items is returned in numItem.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16. 
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_FAILURE The number of items could not be dispensed due to a hardware problem.
E_ILLEGAL The numItem parameter value was illegal or contains a value greater than the

device can dispense, or the slotNumber parameter exceeds MaxSlots.

See Also MaxSlots Property.
694 Unified POS, v1.16.1

20.5.3 readItemCount Method

Syntax readItemCount (inout itemCount: int32, slotNumber: int32): 
 void { raises-exception, use after open-claim-enable }

Parameter Description 
itemCount The item count data is placed into itemCount.
slotNumber The slotNumber parameter contains the slot number used for reading the

item count. Valid slot numbers are 1 through MaxSlots.

Remarks Reads the number of items currently in the item dispenser.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

A possible value of the exception’s ErrorCode property is:

Value Meaning
E_ILLEGAL The slotNumber parameter exceeds MaxSlots.

See Also MaxSlots Property.
Unified POS, v1.16.1 695

20.6 Events (UML interfaces)

20.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Item Dispenser Service to provide events to the application that are not otherwise supported by
the Control.

Attributes This event contains the following attributes:

Attribute Type Description 
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and

the Service. This property is settable.

Obj Object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Item
Dispenser devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.
696 Unified POS, v1.16.1

20.6.2 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application when the status of the Item Dispenser changes.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 The status reported from the Item Dispenser.

The low word of the Status attribute has one of the following values:

Value Description
ITEM_SUE_OK Ready to dispense items from all slots. This value is also set when the

dispenser is unable to detect error conditions.

ITEM_SUE_EMPTY Cannot dispense items, because the dispenser is empty. If MaxSlots
is greater than one (1), some of the slots are empty.

ITEM_SUE_NEAREMPTY Can still dispense items, but the dispenser is nearly empty. If
MaxSlots is greater than one (1), some of the slots are nearly empty.

ITEM_SUE_JAM Cannot dispense items, because a mechanical fault has occurred.

 Note that Release 1.3 added Power State Reporting with additional 
 Power reporting StatusUpdateEvent values.

 The Update Firmware capability, added in Release 1.9, added 
 additional Status values for communicating the status/progress 
 of an asynchronous update firmware process.

 See “StatusUpdateEvent” description in Chapter 1.

Remarks This event applies for status changes of the sensor types supported as indicated by CapEmptySensor,
CapNearEmptySensor and CapJamSensor properties.

If MaxSlots is greater than one (1) but the device can not report status changes on individual slots, the
application will be notified when some of the slots are empty or nearly empty.

If in addition CapIndividualSlotStatus is true, the high word of the Status attribute contains the
corresponding number of the slot having a status change.

See Also CapEmptySensor Property, CapIndividualSlotStatus Property, CapJamSensor Property,
CapNearEmptySensor Property, MaxSlots Property, “Events” on page 15.
Unified POS, v1.16.1 697

698 Unified POS, v1.16.1

21 Keylock

21.1 General

This Chapter defines the Keylock device category.

21.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.2 Not supported

CapCompareFirmwareVersion: boolean { read-only } 1.9 open

CapPowerReporting: int32 { read-only } 1.3 open

CapStatisticsReporting: boolean { read-only } 1.8 open

CapUpdateFirmware: boolean { read-only } 1.9 open

CapUpdateStatistics: boolean { read-only } 1.8 open

CheckHealthText: string { read-only } 1.0 open

Claimed: boolean { read-only } 1.0 open

DataCount: int32 { read-only } 1.2 Not supported

DataEventEnabled: boolean { read-write } 1.0 Not supported

DeviceEnabled: boolean { read-write } 1.0 open

FreezeEvents: boolean { read-write } 1.0 open

OutputID: int32 { read-only } 1.0 Not supported

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --

DeviceControlVersion: int32 { read-only } 1.0 --

DeviceServiceDescription: string { read-only } 1.0 open

DeviceServiceVersion: int32 { read-only } 1.0 open

PhysicalDeviceDescription: string { read-only } 1.0 open

PhysicalDeviceName: string { read-only } 1.0 open
Unified POS, v1.16.1 699

Properties (Continued)

Specific Type Mutability Version May Use After

CapKeylockType: int32 { read-only } 1.11 open

ElectronicKeyValue: binary { read-only } 1.11 open & enable

KeyPosition: int32 { read-only } 1.0 open & enable

PositionCount: int32 { read-only } 1.0 open

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open }

1.0

release ():
void { raises-exception, use after open, claim }

1.0

checkHealth (level: int32):
void { raises-exception, use after open, enable }

1.0

clearInput ():
void { }

Not supported

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.0

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, enable }

1.8
700 Unified POS, v1.16.1

Methods (UML operations)-continued

Specific

Name

waitForKeylockChange (keyPosition: int32, timeout: int32): 
void { raises-exception, use after open, enable }

1.0

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.0

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.0

 Status: int32 { read-only }
Unified POS, v1.16.1 701

21.3 General Information

The Keylock programmatic name is “Keylock.”

21.3.1 Capabilities Updated in Release 1.11

The keylock has the following minimal set of capabilities:

• Supports at least three keylock positions.

• Supports reporting of keylock position changes, either by hardware or software detection.

The keylock may have the following additional capability:

• Supports an electronic keylock.

21.3.2 Keylock Class Diagram Updated in Release 1.11

The following diagram shows the relationships between the Keylock classes.

UposException
(from upos)

<<exception>>

KeylockConst
(from upos)

<<utility>>

UposConst
(from upos)

<<utility>>

BaseControl
(from upos)

<<Interface>>

<<uses>>

<<sends>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32
(from events)

<<event>>

KeylockControl

<<capability>> CapKeylockType : int32
<<prop>> ElectronicKeyValue : binary
<<prop>> KeyPosition : int32
<<prop>> PositionCount : int32

waitForKeylockChange(keyPosition : int32, timeout : int32) : void

(from upos)

<<Interface>>

<<sends>>
<<uses>>

fires

fires
702 Unified POS, v1.16.1

21.3.3 Keylock Sequence Diagram Updated in Release 1.12

The following sequence diagram show the typical usage of the Keylock; as well as showing the unique sharing
model of the Keylock.

:ClientApp0 k0:Keylock k1:Keylock :Keylock
Service0

:Operator

:StatusUpdate
Event

:Keylock
Hardware

:Keylock
Service1

:ClientApp1

1: setDeviceEnabled(true)

4: getKeyPosition()
5: getKeyPosition()

Current Keylock position
is returned to the control

NOTE: we are assuming that the :ClientApp0 already successful ly opened the controls. This means that the plat form specific loading/configuration/creation
code executed successfully. We are also assuming that the :ClientApp has registered event handlers with the control ins tance.

16: change Keylock position
17: notify service of change

18: deliver SUE to control [FreezeEvents == false]

19: deliver event to all regis tered listeners

21: notify service of change

22: deliver SUE to control [FreezeEvents == false]

23: deliver event to all registered listeners

20: notify client of new event

Actual order of
delivery from
hardware to
service might vary

25: claim(timeout) 26: claim(timeout)

27: throws UposException to :ClientApp since Keylock cannot be claimed

2: setDeviceEnabled(true)
3: service will need to update itself of current Keylock position

12: open(logicalName) 13: open(logicalName)

14: setDeviceEnabled(true)
15: setDeviceEnabled(true)

The details of the
Config/Loader are
not shown

SUE == StatusUpdateEvent

11: create and register an event handler with cont rol

24: notify client of new event

6: change Keylock position

7: notify KeylockService of change

8: deliver SUE to control [FreezeEvents == false]

9: deliver event to all registered handlers
10: notify c lient of new event
Unified POS, v1.16.1 703

21.3.4 Model Updated in Release 1.11

The keylock defines three keylock positions as constants. It is assumed that the keylock supports locked, normal,
and supervisor positions. The constants for these keylock positions and their values are as follows:

• LOCK_KP_LOCK 1

• LOCK_KP_NORM 2

• LOCK_KP_SUPR 3

The KeyPosition property holds the value of the keylock position where the values range from one (1) to the
total number of keylock positions contained in the PositionCount property.

For electronic keylocks the ElectronicKeyValue property holds the value of the keylock. It is a unique value
provided as binary string. The range depends on the device.

21.3.5 Device Sharing

The keylock is a sharable device. Its device sharing rules are:

• After opening and enabling the device, the application may access all properties and methods and will receive
status update events.

• If more than one application has opened and enabled the device, each of these applications may access its
properties and methods. Status update events are fired to all of these applications.

• The keylock may not be claimed for exclusive access. Therefore, if an application calls claim or release, these
methods will always raise a UposException.

• See the “Summary” table for precise usage prerequisites.
704 Unified POS, v1.16.1

21.4 Properties (UML attributes)

21.4.1 CapKeylockType Property Added in Release 1.11

Syntax CapKeylockType: int32 { read-only, access after open }

Remarks Holds a value that indicates the type of the keylock.

This property has one of the following values:

Value Meaning 
LOCK_KT_STANDARD Standard Keylock. Value is one (1). This is equivalent

to Services compatible with prior versions of the specification.
LOCK_KT_ELECTRONIC Electronic Keylock. Value is two (2).

If CapKeylockType is LOCK_KT_ELECTRONIC an Electronic Keylock is used and its status will be
provided by the ElectronicKeyValue property. In this case the PositionCount and KeyPosition
properties have no meaning.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also ElectronicKeyValue Property, KeyPosition Property, PositionCount Property, StatusUpdateEvent.

21.4.2 ElectronicKeyValue Property Added in Release 1.11

Syntax ElectronicKeyValue: binary { read-only, access after open-enable }1

Remarks Holds the value read from the electronic keylock.

This property is only valid if CapKeylockType is LOCK_KT_ELECTRONIC. Usually electronic
keylocks send unique key numbers in “raw” format when an electronic key is plugged in. Therefore, a
typical value could be e.g., “0x00, 0x00, 0x01, 0x52, 0x27, 0xaf”, if an electronic key is plugged in and
“0x00, 0x00, 0x00, 0x00, 0x00, 0x00”, if it is removed.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapKeylockType Property, StatusUpdateEvent.

1. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.
Unified POS, v1.16.1 705

21.4.3 KeyPosition Property Updated in Release 1.11

Syntax KeyPosition: int32 { read-only, access after open-enable }

Remarks Holds a value that indicates the keylock position.

This value is set whenever the keylock position is changed. In addition to the application receiving the
StatusUpdateEvent, this value is changed to reflect the new keylock position.

This property has one of the following values:

Value Meaning
LOCK_KP_LOCK Keylock is in the “locked” position. Value is one (1).

LOCK_KP_NORM Keylock is in the “normal” position. Value is two (2).

LOCK_KP_SUPR Keylock is in the “supervisor” position. Value is three (3).

Other Values Keylock is in one of the auxiliary positions. This value may range from
four (4) up to the total number of keylock positions indicated by the
PositionCount property.

If CapKeylockType is LOCK_KT_ELECTRONIC this property has no meaning and is always 0.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapKeylockType Property, PositionCount Property, StatusUpdateEvent.

21.4.4 PositionCount Property Updated in Release 1.11

Syntax PositionCount: int32 { read-only, access after open }

Remarks Holds the total number of keylock positions that are present on the keylock device.

If CapKeylockType is LOCK_KT_ELECTRONIC this property has no meaning and is initialized to 0.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapKeylockType Property
706 Unified POS, v1.16.1

21.5 Methods (UML operations)

21.5.1 waitForKeylockChange Method Updated in Release 1.11

Syntax waitForKeylockChange (keyPosition: int32, timeout: int32): 
 void { raises-exception, use after open-enable }

Parameter Description
keyPosition Requested keylock position. See values below.

timeout Maximum number of milliseconds to wait for the keylock before
returning control back to the application.
If zero, the method then returns immediately. If FOREVER (-1), the
method waits as long as needed until the requested key position is
satisfied or an error occurs.

The keyPosition parameter has one of the following values:

Value Meaning 
LOCK_KP_ANY Wait for any keylock position change. Value is zero (0).
LOCK_KP_LOCK Wait for keylock position to be set to the “locked” position. Value is one

(1).

LOCK_KP_NORM Wait for keylock position to be set to the “normal” position. Value is two
(2).

LOCK_KP_SUPR Wait for keylock position to be set to the “supervisor” position. Value is
three (3).

Other Values Wait for keylock position to be set to one of the auxiliary positions. This
value may range from four (4) up to the total number of keylock positions
indicated by the PositionCount property.

Remarks Waits for a specified keylock position to be set.

If the keylock position specified by the keyPosition parameter is the same as the current keylock position,
then the method returns immediately.

If CapKeylockType is LOCK_KT_ELECTRONIC only LOCK_KP_ANY is allowed as value of the
keyPosition parameter.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid parameter value was specified.

E_TIMEOUT The timeout period expired before the requested keylock positioning
occurred.

See Also CapKeylockType Property, PositionCount Property.
Unified POS, v1.16.1 707

21.6 Events (UML interfaces)

21.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Keylock Service to provide events to the application that are not otherwise supported by the
Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This property is settable.

Obj Object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Keylock
devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.
708 Unified POS, v1.16.1

21.6.2 StatusUpdateEvent Updated in Release 1.11

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application when the keylock position changes.

Attributes This event contains the following attribute:

Attribute Type Description

Status int32 The key position in the Keylock.

The Status attribute has one of the following values:

Value Description
LOCK_KP_ELECTRONIC

Electronic Keylock value. Value is zero (0).

LOCK_KP_LOCK Keylock is in the “locked” position. Value is one (1).

LOCK_KP_NORM Keylock is in the “normal” position. Value is two (2).

LOCK_KP_SUPR Keylock is in the “supervisor” position. Value is three (3).

Other Values Keylock is in one of the auxiliary positions. This value may range from
four (4) to the total number of keylock positions indicated by the
PositionCount property.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 2.

Remarks This event is enqueued when a keylock switch position undergoes a change or if Power State Reporting
is enabled and a change in the power state is detected.

If CapKeylockType is LOCK_KT_ELECTRONIC the electronic key value is placed in the
ElectronicKeyValue property prior to a StatusUpdateEvent being delivered to the application and
Status is set to LOCK_KP_ELECTRONIC.

See Also CapKeylockType Property, ElectronicKeyValue Property, PositionCount Property, “Events” on page
15.
Unified POS, v1.16.1 709

710 Unified POS, v1.16.1

22 Lights

22.1 General

This Chapter defines the Lights device category.

22.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.12 Not supported

CapCompareFirmwareVersion: boolean { read-only } 1.12 open

CapPowerReporting: int32 { read-only } 1.12 open

CapStatisticsReporting: boolean { read-only } 1.12 open

CapUpdateFirmware: boolean { read-only } 1.12 open

CapUpdateStatistics: boolean { read-only } 1.12 open

CheckHealthText: string { read-only } 1.12 open

Claimed: boolean { read-only } 1.12 open

DataCount: int32 { read-only } 1.12 Not supported

DataEventEnabled: boolean { read-write } 1.12 Not supported

DeviceEnabled: boolean { read-write } 1.12 open & claim

FreezeEvents: boolean { read-write } 1.12 open

OutputID: int32 { read-only } 1.12 Not supported

PowerNotify: int32 { read-write } 1.12 open

PowerState: int32 { read-only } 1.12 open

State: int32 { read-only } 1.12 --

DeviceControlDescription: string { read-only } 1.12 --

DeviceControlVersion: int32 { read-only } 1.12 --

DeviceServiceDescription: string { read-only } 1.12 open

DeviceServiceVersion: int32 { read-only } 1.12 open

PhysicalDeviceDescription: string { read-only } 1.12 open

PhysicalDeviceName: string { read-only } 1.12 open
Unified POS, v1.16.1 711

Properties (Continued)

Specific Type Mutability Version May Use After

CapAlarm: int32 { read-only } 1.12 open

CapBlink: boolean { read-only } 1.12 open

CapColor: int32 { read-only } 1.12 open

CapPattern: int32 {read-only} 1.16 open

MaxLights: int32 { read-only } 1.12 open

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.12

close ():
void { raises-exception, use after open }

1.12

claim (timeout: int32):
void { raises-exception, use after open }

1.12

release ():
void { raises-exception, use after open, claim }

1.12

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.12

clearInput ():
void { }

Not supported

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.12

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.12

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.12

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.12

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.12

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.12
712 Unified POS, v1.16.1

Specific

Name

switchOff (lightNumber: int32): 
void { raises-exception, use after open, claim, enable }

1.12

switchOn (lightNumber: int32, blinkOnCycle: int32, 
 blinkOffCycle: int32, color: int32, alarm: int32): 
void { raises-exception, use after open, claim, enable }

1.12

switchOnMultiple (lightNumbers: string, blinkOnCycle: int32,
 blinkOffCycle: int32, color: int32, alarm: int32):
 void {raises-exception, use after open, claim, enable}

1.16

switchOnPattern (pattern: int32, alarm: int32):
void {raises-exception, use after open, claim, enable}

1.16

switchOffPattern ():
void {raises-exception, use after open, claim, enable}

1.16

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.12

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.12

 Status: int32 { read-only }

upos::events::TransitionEvent not supported 1.16
Unified POS, v1.16.1 713

22.3 General Information

The Lights programmatic name is “Lights.”

This device category was added to Version 1.12 of the specification.

22.3.1 Capabilities

• The Lights device control has the following capability:

• Supports commands to “switch on” and “switch off” a light.

• The Lights device control may have the following additional capabilities:

• Supports device-level blinking at adjustable blink cycles.

• Supports multiple lights.

• Supports different colors of a light.

• Supports different alarms

22.3.2 Device Sharing

Lights is an exclusive-use device. Its device sharing rules are:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing some of the
 properties and methods, or receiving events.

• See the “Summary” table for precise usage prerequisites.

22.3.3 Lights Class Diagram

The following diagram shows the relationships between the Lights classes.
714 Unified POS, v1.16.1

+switchOff(lightNumber : int32) : void
+switchOn(lightNumber : int32, blinkOnCycle : int32, blinkOffCycle : int32, color : int32, alarm : int32) : void

+CapAlarm : int32
+CapBlink : boolean
+CapColor : int32
+MaxLights : int32

«interface»
LightsControl

+EventNumber : int32
+Data : int32
+Obj : object

«event»
DirectIOEvent

«fires»

+Status : int32

«event»
StatusUpdateEvent

«fires»

«exception»
UposException

«sends»

«sends»
«utility»

LightsConst
«utility»

UposConst

«uses»

«uses»
«interface»

BaseControl
Unified POS, v1.16.1 715

22.3.4 Lights Sequence Diagram

The following sequence diagram shows the typical usage of the Lights device illustrating the handling of the
media entry indicator lights.

Application Lights Control Lights Service MEI Lights

NOTE: We are assuming that the Application has already successfully opened and claimed the Lights Device, MaxLights is 4
defining the SelfCheckout Media Entry Indicators (light1 is BillAcceptor, light2 is BillDispenser, light3 is CoinAcceptor,
light4 is CoinDispenser) and that CapBlink is true.

1: setDeviceEnabled(true)

2: setDeviceEnabled(true)

4: switchOn(light1,0,0,
LGT_COLOR_PRIMARY,
LGT_ALARM_NOALARM)

3: connect or somehow have
access to the hardware

5: switchOn(light1,0.0,
LGT_COLOR_PRIMARY,
LGT_ALARM_NOALARM)

6: Service switches on the MEI
light for BillAcceptor

Assume transaction is finished
and the customer pays cash

10: switchOff(light1)

11: switchOff(light1)

7: switchOn(light3,0,0,
LGT_COLOR_PRIMARY,
LGT_ALARM_NOALARM) 8: switchOn(light3,0.0,

LGT_COLOR_PRIMARY,
LGT_ALARM_NOALARM)

9: Service switches on the MEI
light for CoinAcceptorAssume customer has paid

and needs to get back change

16: switchOn(light2,250,250,
LGT_COLOR_PRIMARY,
LGT_ALARM_NOALARM) 17: switchOn(light2,250.250,

LGT_COLOR_PRIMARY,
LGT_ALARM_NOALARM)

18: Service switches on the MEI
light for BillDispenser and let it blink19: switchOn(light4,250,250,

LGT_COLOR_PRIMARY,
LGT_ALARM_NOALARM) 20: switchOn(light4,250.250,

LGT_COLOR_PRIMARY,
LGT_ALARM_NOALARM)

21: Service switches on the MEI
light for CoinDispenser and let it blink

12: Service switches off the MEI
light for BillAcceptor

13: switchOff(light3)

14: switchOff(light3)
15: Service switches off the MEI

light for CoinAcceptor

Assume customer has taken
the change

22: switchOff(light2)

23: switchOff(light2)
24: Service switches off the MEI

light for BillDispenser

25: switchOff(light4)

26: switchOff(light4)
27: Service switches off the MEI

light for CoinDispenser
716 Unified POS, v1.16.1

The following sequence diagram shows the typical usage of the Lights device illustrating the handling of the pole
lights.

Application Lights Control Lights Service Pole Light

NOTE: We are assuming that the Application has already successfully opened and claimed the Lights Device, MaxLights is 3
defining a SelfCheckout Pole Light (light1 is green, light2 is yellow, light3 is red) and that the device supports alarms.

1: setDeviceEnabled(true)

2: setDeviceEnabled(true)

4: switchOn(light1,0,0,
LGT_COLOR_PRIMARY,
LGT_ALARM_NOALARM)

3: connect or somehow have
access to the hardware

5: switchOn(light1,0,0,
LGT_COLOR_PRIMARY,
LGT_ALARM_NOALARM)

6: Service switches on the green
light with no alarmAssume there is a problem and

the customer needs assitance

10: switchOn(light3,0,0,
LGT_COLOR_PRIMARY,
LGT_ALARM_MEDIUM)

7: switchOff(light1)

8: switchOff(light1)
9: Service switches off the

green light

11: switchOn(light3,0,0,
LGT_COLOR_PRIMARY,
LGT_ALARM_MEDIUM)

12: Service switches on the
red light with medium alarm
Unified POS, v1.16.1 717

22.4 Properties (UML attributes)

22.4.1 CapAlarm Property

Syntax CapAlarm: int32 { read-only, access after open }

Remarks This capability indicates if the device supports different alarms.

CapAlarm is a logical OR combination of any of the following values:

Value Meaning
LGT_ALARM_NOALARM Alarms are not supported.
LGT_ALARM_SLOW Supports a slow beep.
LGT_ALARM_MEDIUM Supports a medium beep.
LGT_ALARM_FAST Supports a fast beep.
LGT_ALARM_CUSTOM1 Supports 1st custom alarm.
LGT_ALARM_CUSTOM2 Supports 2nd custom alarm.

This property is initialized by the open method. If the device does not support alarms, it is initialized to
LGT_ALARM_NOALARM.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

22.4.2 CapBlink Property

Syntax CapBlink: boolean { read-only, access after open }

Remarks If true, a blinking capability is supported. It may be either a physical capability of the device or emulated
by the service. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

22.4.3 CapColor Property

Syntax CapColor: int32 { read-only, access after open }

Remarks This capability indicates if the device supports different colors.

CapColor is a logical OR combination of any of the following values:

Value Meaning
LGT_COLOR_PRIMARY Supports Primary Color (Usually Green).
LGT_COLOR_CUSTOM1 Supports 1st Custom Color (Usually Red).
LGT_COLOR_CUSTOM2 Supports 2nd Custom Color (Usually Yellow).
LGT_COLOR_CUSTOM3 Supports 3rd Custom Color.
LGT_COLOR_CUSTOM4 Supports 4th Custom Color.
LGT_COLOR_CUSTOM5 Supports 5th Custom Color.

This property is initialized by the open method. If the device supports only one color, it is initialized to
LGT_COLOR_PRIMARY.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
718 Unified POS, v1.16.1

22.4.4 CapPatternProperty Added in Release 1.16

Syntax CapPattern: int32 {read-only, access after open}

Remarks This capability indicates if the device supports different lighting patterns.

CapPattern is a logical OR combination of any of the following values:

Value Meaning

LGT_PATTERN_NOPATTERN 
 Lighting patterns are not supported.

LGT_PATTERN_CUSTOM 
 1~32 Supports 1st to 32th Lighting Pattern.

This property is initialized by the open method. If the device does not support
 lighting pattern, it is initialized to LGT_PATTERN_NOPATTERN.

Errors A UposException may be thrown when this property is accessed. For further
 information, see “Errors” on page 16.

See Also switchOnPattern Method.

22.4.5 MaxLights Property

Syntax MaxLights: int32 { read-only, access after open }

Remarks MaxLights specifies the maximum number of lights that the device can support.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further 
information, see “Errors” on page 16.
Unified POS, v1.16.1 719

22.5 Methods (UML operations)

22.5.1 switchOff Method

Syntax switchOff (lightNumber: int32): 
 void { raises-exception, use after open-claim-enable }

Parameter Description
lightNumber Specifies the light number. Valid light numbers are 1 

through MaxLights.

Remarks Switches off the light specified by lightNumber.

Errors A UposException may be thrown when this method is invoked. For further 
information, see “Errors” on page 16.

A possible value of the exception’s ErrorCode property is:

Value Meaning
E_ILLEGAL The lightNumber parameter exceeds MaxLights.

See Also MaxLights Property.

22.5.2 switchOffPattern Method

Syntax switchOff Pattern (): 
 void {raises-exception, use after open-claim-enable}

Remarks Switches off the pattern lighting.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

A possible value of the exception’s ErrorCode property is:

Value Meaning

E_ILLEGAL Pattern lighting is not executed.

See Also switchOnPattern Method.
720 Unified POS, v1.16.1

22.5.3 switchOn Method

Syntax switchOn (lightNumber: int32, blinkOnCycle: int32,
 blinkOffCycle: int32, color: int32, alarm: int32): 
 void { raises-exception, use after open-claim-enable }

Parameter Description
lightNumber Specifies the light number. Valid light numbers are 1 through

MaxLights.

blinkOnCycle A zero (0) value indicates no blink cycle. A positive value indicates the
blink on cycle time in milliseconds. Negative values are not allowed.

blinkOffCycle A zero (0) value indicates no blink cycle. A positive value indicates the
blink off cycle time in milliseconds. Negative values are not allowed.

color Specifies the color of the light, must be one of the colors defined by
CapColor.

alarm Specifies the used alarm type, must be one of the alarms defined by
CapAlarm.

Remarks Switches on the light specified by lightNumber or let it blink.

If blinkOnCycle and blinkOffCycle are zero (0) or CapBlink is false, then the parameters blinkOnCycle
and blinkOffCycle will be ignored and the light will only be switched on.

If CapBlink is true and blinkOnCycle and blinkOffCycle are positive, then the light will blink.

If CapColor is LGT_COLOR_PRIMARY, the light does not support different colors and color is
ignored, otherwise switchOn will use the color specified by color.

If CapAlarm is LGT_ALARM_NOALARM, the light does not support different alarms and alarm is
ignored, otherwise switchOn will use the alarm specified by alarm.

Subsequent calls to switchOn will change the blink cycles, the color or the alarm type of the light.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

A possible value of the exception’s ErrorCode property is:

Value Meaning
E_ILLEGAL The lightNumber parameter exceeds MaxLights, an invalid color or alarm

was specified.

See Also CapAlarm Property, CapBlink Property, CapColor Property, MaxLights Property.
Unified POS, v1.16.1 721

22.5.4 switchOnMultiple Method Added in Release 1.16

Syntax switchOnMultiple (lightNumbers: string, blinkOnCycle: int32,
 blinkOffCycle: int32, color: int32, alarm: int32): 
 void {raises-exception, use after open-claim-enable}

 Parameter Description

lightNumbers Specifies the comma-delimited list of light number. 
Valid light numbers are 1 through MaxLights.

blinkOnCycle A zero (0) value indicates no blink cycle. 
A positive value indicates the blink on cycle time in milliseconds. 
Negative values are not allowed.

blinkOffCycle A zero (0) value indicates no blink cycle. 
A positive value indicates the blink off cycle time in milliseconds. 
Negative values are not allowed.

color Specifies the color of the light, must be one of the colors defined by
CapColor.

alarm Specifies the used alarm type, must be one of the alarms defined by
 CapAlarm.

Remarks This method does the same as switchOn but in a synchronized way such that all lights are switched on /
blinking synchronously. Switches on the multiple lights specified by lightNumbers or let it blink.

If blinkOnCycle and blinkOffCycle are zero (0) or CapBlink is false, then the parameters blinkOnCycle
and blinkOffCycle will be ignored and the light will only be switched on.

If CapBlink is true and blinkOnCycle and blinkOffCycle are positive, then the light will blink.

If CapColor is LGT_COLOR_PRIMARY, the light does not support different colors and color is
ignored, otherwise switchOnMultiple will use the color specified by color.

If CapAlarm is LGT_ALARM_NOALARM, the light does not support different alarms and alarm is
ignored, otherwise switchOnMultiple will use the alarm specified by alarm.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

A possible value of the exception’s ErrorCode property is:

Value Meaning

E_ILLEGAL The lightNumbers parameter exceeds MaxLights, an 
invalid value was specified.

See Also CapAlarm Property, CapBlink Property, CapColor Property, MaxLights 
 Property.
722 Unified POS, v1.16.1

22.5.5 switchOnPattern Method Added in Release 1.16

Syntax switchOnPattern (pattern: int32, alarm: int32): 
 void {raises-exception, use after open-claim-enable}

 Parameter Description

pattern Specifies the lighting pattern, must be one of the 
patterns defined by CapPattern.

alarm Specifies the used alarm type, must be one of the 
alarms defined by CapAlarm.

Remarks Switches on the light specified by pattern.

If CapAlarm is LGT_ALARM_NOALARM, the light does not support 
different alarms and alarm is ignored, otherwise switchOn and 
switchOnPattern will use the alarm specified by alarm.

Errors A UposException may be thrown when this method is invoked. For further 
information, see “Errors” on page 16.

A possible value of the exception’s ErrorCode property is:

Value Meaning

E_ILLEGAL An invalid value was specified, or unsupported 
operation with the Device.

See AlsoCapAlarm Property, CapPattern Property.

22.6 Events (UML interfaces)

22.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
 EventNumber : int32 { read-only }
 Data : int32 { read-write }
 Obj :object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Lights Service to provide events to the application that are not otherwise supported by the device
control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and the
Service. This property is settable.

Obj Object Additional data whose usage varies by the EventNumber and Service. This
property is settable.
Unified POS, v1.16.1 723

 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Lights
devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.

22.6.2 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a light.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 Reports a change in the power status of a light.

 Note that Release 1.3 added Power State Reporting with additional 
 Power reporting StatusUpdateEvent values.

 The Update Firmware capability, added in Release 1.9, 
 added additional Status values for communicating the
 status/progress of an asynchronous update firmware process.

Remarks Enqueued when the light detects a power state change.

See Also “Events” on page 15.
724 Unified POS, v1.16.1

23 Line Display

23.1 General

This Chapter defines the Line Display device category.

23.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.2 Not supported

CapCompareFirmwareVersion: boolean { read-only } 1.9 open

CapPowerReporting: int32 { read-only } 1.3 open

CapStatisticsReporting: boolean { read-only } 1.8 open

CapUpdateFirmware: boolean { read-only } 1.9 open

CapUpdateStatistics: boolean { read-only } 1.8 open

CheckHealthText: string { read-only } 1.0 open

Claimed: boolean { read-only } 1.0 open

DataCount: int32 { read-only } 1.2 Not supported

DataEventEnabled: boolean { read-write } 1.0 Not supported

DeviceEnabled: boolean { read-write } 1.0 open & claim

FreezeEvents: boolean { read-write } 1.0 open

OutputID: int32 { read-only } 1.0 Not supported

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --

DeviceControlVersion: int32 { read-only } 1.0 --

DeviceServiceDescription: string { read-only } 1.0 open

DeviceServiceVersion: int32 { read-only } 1.0 open

PhysicalDeviceDescription: string { read-only } 1.0 open

PhysicalDeviceName: string { read-only } 1.0 open
Unified POS, v1.16.1 725

Properties (Continued)

Specific Type Mutability Version May Use After

CapBlink: int32 { read-only } 1.0 open

CapBitmap: boolean { read-only } 1.7 open

CapBlinkRate: boolean { read-only } 1.6 open

CapBrightness: boolean { read-only } 1.0 open

CapCharacterSet: int32 { read-only } 1.0 open

CapCursorType: int32 { read-only } 1.6 open

CapCustomGlyph: boolean { read-only } 1.6 open

CapDescriptors: boolean { read-only } 1.0 open

CapHMarquee: boolean { read-only } 1.0 open

CapICharWait: boolean { read-only } 1.0 open

CapMapCharacterSet: boolean { read-only } 1.7 open

CapReadBack: int32 { read-only } 1.6 open

CapReverse: int32 { read-only } 1.6 open

CapScreenMode: boolean { read-only } 1.7 open

CapVMarquee: boolean { read-only } 1.0 open

BlinkRate: int32 { read-write } 1.6 open

CharacterSet: int32 { read-write } 1.0 open, claim, & enable

CharacterSetList: string { read-only } 1.0 open

Columns: int32 { read-only } 1.0 open

CurrentWindow: int32 { read-write } 1.0 open

CursorColumn: int32 { read-write } 1.0 open

CursorRow: int32 { read-write } 1.0 open

CursorType: int32 { read-write } 1.6 open

CursorUpdate: boolean { read-write } 1.0 open

CustomGlyphList: string { read-only } 1.6 open

DeviceBrightness: int32 { read-write } 1.0 open, claim, & enable

DeviceColumns: int32 { read-only } 1.0 open

DeviceDescriptors: int32 { read-only } 1.0 open

DeviceRows: int32 { read-only } 1.0 open

DeviceWindows: int32 { read-only } 1.0 open

GlyphHeight: int32 { read-only } 1.6 open

GlyphWidth: int32 { read-only } 1.6 open

InterCharacterWait: int32 { read-write } 1.0 open

MapCharacterSet: boolean { read-write } 1.7 open
726 Unified POS, v1.16.1

Properties (Continued)

Specific Type Mutability Version May Use After

MarqueeFormat: int32 { read-write } 1.0 open

MarqueeRepeatWait: int32 { read-write } 1.0 open

MarqueeType: int32 { read-write } 1.0 open

MarqueeUnitWait: int32 { read-write } 1.0 open

MaximumX: int32 { read-only } 1.7 open

MaximumY: int32 { read-only } 1.7 open

Rows: int32 { read-only } 1.0 open

ScreenMode: int32 { read-write } 1.7 open & claim

ScreenModeList: string { read-only } 1.7 open

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open }

1.0

release ():
void { raises-exception, use after open, claim }

1.0

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.0

clearInput ():
void { raises-exception, use after open, claim }

Not supported

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { raises-exception, use after open, claim }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.0

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8
Unified POS, v1.16.1 727

Specific
Name Version

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

clearText (): 
void { raises-exception, use after open, claim, enable }

1.0

displayText (data: string, attribute: int32): 
void { raises-exception, use after open, claim, enable }

1.0

displayTextAt (row: int32, column: int32, data: string, attribute: int32):
void { raises-exception, use after open, claim, enable }

1.0

scrollText (direction: int32, units: int32): 
void { raises-exception, use after open, claim, enable }

1.0

clearDescriptors (): 
void { raises-exception, use after open, claim, enable }

1.0

setDescriptor (descriptor: int32, attribute: int32): 
void { raises-exception, use after open, claim, enable }

1.0

createWindow (viewportRow: int32, viewportColumn: int32,
viewportHeight: int32, viewportWidth: int32, windowHeight:
int32, windowWidth: int32):
void { raises-exception, use after open, claim, enable }

1.0

destroyWindow (): 
void { raises-exception, use after open, claim, enable }

1.0

refreshWindow (window: int32): 
void { raises-exception, use after open, claim, enable }

1.0

defineGlyph (glyphCode: int32, glyph: binary): 
void { raises-exception, use after open, claim, enable }

1.6

readCharacterAtCursor (inout cursorData: int32): 
void { raises-exception, use after open, claim, enable }

1.6

displayBitmap (fileName: string, width: int32, alignmentX: int32, align-
mentY: int32): 
void { raises-exception, use after open, claim, enable }

1.7

setBitmap (bitmapNumber: int32, fileName: string, width: int32,
alignmentX: int32, alignmentY: int32): 
void { raises-exception, use after open, claim, enable }

1.7
728 Unified POS, v1.16.1

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.0

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.3

 Status: int32 { read-only }
Unified POS, v1.16.1 729

23.3 General Information

The Line Display programmatic name is “LineDisplay.”

23.3.1 Capabilities Updated in Version 1.7

The Line Display has the following capability:

• Supports text character display. The default mode (or perhaps only mode) of the display is character display
output.

The line display may also have the following additional capabilities:

• Supports windowing with marquee-like scrolling of the window. The display may support vertical or
horizontal marquees, or both.

• Supports a waiting period between displaying characters, for a teletype effect.

• Supports character-level or device-level blinking at adjustable blink rates.

• Supports character-level or device-level reverse video.

• Supports one or more descriptors. Descriptors are small indicators with a fixed label, and are typically used to
indicate transaction states such as item, total, and change.

• Supports device brightness control, with one or more levels of device dimming. All devices support brightness
levels of “normal” and “blank” (at least through software support), but some devices also support one or more
levels of dimming.

• Supports various cursor attributes including underline, block, and reverse video.

• Supports “glyphs” which represent pixel level user definition of character cells.

• Supports changing screen modes - the number of rows and columns supported by the device.

• Supports setting and displaying bitmaps. Can also support the addressing of individual pixels or dots using this
functionality.
730 Unified POS, v1.16.1

23.3.2 Line Display Class Diagram Updated in Release 1.7

The following diagram shows the relationships between the Line Display classes.

UposException
(from upos)

<<exception>>
UposConst
(from upos)

<<uti l i ty>>

Lin eDispla yConst
(from upos)

<<uti l i ty>>

DirectIOEvent

<<prop>> EventNumber : int3...
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

Sta tusUpdateEvent

<<prop>> Status : int32
(from events)

<<event>>

LineDisplayControl

<<capabi l i ty>> Cap Bit map : boole an
<<capabi l i ty>> Cap Bli nk : i nt32
<<capabi l i ty>> Cap Bli nkRa te : boole an
<<capabi l i ty>> Cap Bri gh tn ess : bo ol ea n
<<capabi l i ty>> Cap Ch arac terSe t : in t32
<<capabi l i ty>> Cap Cu rsorT yp e : int3 2
<<capabi l i ty>> Cap Cu stom Gl yp h : b oo lean
<<capabi l i ty>> Cap De scrip tors : bool ea n
<<capabi l i ty>> Cap HMa rquee : bo ol ea n
<<capabi l i ty>> Cap ICha rWait : bo olean
<<capabi l i ty>> Cap MapCh aract erSe t : bo ol ea n
<<capabi l i ty>> Cap Re ad Back : int32
<<capabi l i ty>> Cap Re ve rse : int 32

<<capabi l i ty>> Cap Screen Mode : bo ol ea n
<<capabi l i ty>> Cap VMa rquee : bo ol ea n
<<pro p> > Bl inkRate : i nt32
<<pro p> > Ch arac terSe t : in t32
<<pro p> > Ch arac terSe tL ist : string
<<pro p> > Co lu mns : int3 2
<<pro p> > Cu rrent Wi nd ow : in t32
<<pro p> > Cu rsorCol umn : i nt32
<<pro p> > Cu rsorRow : in t32
<<pro p> > Cu rsorTyp e : int3 2
<<pro p> > Cu rsorUpdat e : b oo lean
<<pro p> > Cu stom Gl yp hL ist : stri ng
<<pro p> > De vi ceBri gh tn ess : int 32
<<pro p> > De vi ceCo lumn s : in t3 2
<<pro p> > De vi ceDe scrip tors : in t32
<<pro p> > De vi ceRo ws : i nt 32
<<pro p> > De vi ceWi nd ows : in t3 2
<<pro p> > Gl yp hHei gh t : in t32
<<pro p> > Gl yp hWid th : i nt32
<<pro p> > Int erCh aract erWait : int3 2
<<pro p> > Map Ch aract erSe t : bo ol ea n
<<pro p> > Marq ueeFormat : int3 2
<<pro p> > Marq ueeRe pe atWa it : int3 2
<<pro p> > Marq ueeType : i nt32
<<pro p> > Marq ueeUn itWai t : in t32
<<pro p> > Maxi mum X : i nt32
<<pro p> > Maxi mum Y : i nt32
<<pro p> > Ro ws : int32
<<pro p> > Sc re en Mode : in t32
<<pro p> > Sc re en ModeL ist : string

c le arTe xt() : vo id
displayText(da ta : st rin g, at tribu te : int3 2) : voi d
displayTextA t(row : int 32 , colum n : int3 2, data : stri ng , a ttr ibute : int 32) : vo id
scrol lTe xt(direc tio n : int3 2, units : int 32) : vo id
c le arDe script ors() : void
set De scrip tor(desc rip to r : in t32, attrib ute : int32) : void
c re ateWin do w(vRow : int32 , vCo l : in t3 2, vHeigh t : int 32 , vWidt h : in t3 2, wHei gh t : in t32, wWid th : i nt32) : vo id
destroyWindow() : void
refreshWin do w(wi nd ow : int 32) : vo id
def ineG lyph (gl yp hCod e : int3 2, gl yp h : bi na ry) : vo id
rea dChara cterAtCursor(in out curso rData : int 32) : vo id
displayBitma p(fi leName : string, widt h : int3 2, al ignm en tX : i nt 32 , a lig nme ntY : in t32) : void
set Bit map (bi tm ap Num be r : in t32, fileName : string, w idt h : in t3 2, al i gn men tX : i nt32 , a lig nme ntY : in t32) : void

(from upos)

<<Interface>>

<<sends>>
<<uses>>

fi res

fires

BaseControl
(from upos)

<<Interface>>

<<uses>>

<<sends>>
Unified POS, v1.16.1 731

23.3.3 Line Display Sequence Diagram Added in Release 1.7

The following sequence diagram shows the typical usage of the Line Display device.

NOTE: we are assuming that the :ClientApp already successfully opened and enabled the
LineDisplay device. This means that the Claimed, DeviceEnabled properties are == true

:ClientApp :LineDisplay :LineDisplayService

1: claim(timeout) 2: claim(timeout)

3: clearText() 4: clearText()

5: displayText(data)
6: displayText(data)

At this point the data
is showing on the
LineDisplay device.

7: setDescriptor(dValue, DISP_SD_BLINK)
8: setDescriptor(dValue, DISP_SD_BLINK)

The descriptor
number = dValue is
now blinking.

Assuming the display supports descriptors
that is CapDescriptors == true.

:ClientApp will perform
similar processing with
the display as needed.

9: clearText() 10: clearText()

11: release()
12: release()

At this point other
controls can
claim(...) the device
and use it.

14: close()
15: close()

16: perform necessary cleanup

13: releases exclusive access to this device
732 Unified POS, v1.16.1

23.3.4 Model Updated in Release 1.7

The general model of a line display consists of:

• One or more rows containing one or more columns of characters. The rows and columns are numbered
beginning with (0, 0) at the upper-left corner of the window. The characters in the default character set will
include at least one of the following, with a capability defining the character set:

• The digits ‘0’ through ‘9’ plus space, minus (‘-’), and period (‘.’).

• The above set plus uppercase ‘A’ through ‘Z.’

• All ASCII characters from 0x20 through 0x7F, which includes space, digits, uppercase, lowercase, and some
special characters.

• Window 0, which is always defined as follows:

• Its “viewport” — the portion of the display that is updated by the window — covers the entire display.

• The size of the window matches the entire display.

• Therefore, window 0, which is also called the “device window,” maps directly onto the display.

• Option to create additional windows. A created window has the following characteristics:

• Its viewport covers part or all of the display.

• The window may either match the size of the viewport, or it may be larger than the viewport in either the
horizontal or vertical direction. In the second case, marquee scrolling of the window can be set.

• The window maintains its own values for rows and columns, current cursor row and column, cursor update
flag, cursor type, scroll type and format, and timers.

• All viewports behave transparently. If two viewports overlap, then the last data displayed by either of the
windows will be visible.
Unified POS, v1.16.1 733

23.3.5 Display Modes

• Immediate Mode
In effect when MarqueeType is DISP_MT_NONE and InterCharacterWait is zero.
If the window is bigger than the viewport, then only those characters which map into the viewport will be seen.

• Teletype Mode
In effect when MarqueeType is DISP_MT_NONE and InterCharacterWait is not zero.
Calls to displayText and displayTextAt are enqueued and processed in the order they are received.
InterCharacterWait specifies the time to wait between outputting each character. InterCharacterWait only
applies to those characters within the viewport.

• Marquee Mode
In effect when MarqueeType is not DISP_MT_NONE.
The window must be bigger than the viewport.
A marquee is typically initialized after entering Marquee Init Mode by setting MarqueeType to
DISP_MT_INIT, then calling clearText, displayText and displayTextAt. Then, when MarqueeType is
changed to an “on” value, Marquee On Mode is entered, and the marquee begins to be displayed in the
viewport beginning at the start of the window (or end if the type is right or down).
When the mode is changed from Marquee On Mode to Marquee Off Mode, the marquee stops in place. A
subsequent transition from back to Marquee On Mode continues from the current position.
When the mode is changed from Marquee On Mode to Marquee Init Mode, the marquee stops. Changes may
be made to the window, then the window may be returned to Marquee On Mode to restart the marquee with
the new data.
It is illegal to use displayText, displayTextAt, clearText, refreshWindow, and scrollText unless in Marquee
Init Mode or Marquee Off Mode.
734 Unified POS, v1.16.1

23.3.6 Data Characters and Escape Sequences Added in Release 1.7

The default character set of all line displays is assumed to support at least the ASCII characters 0x20 through
0x7F, which include spaces, digits, uppercase, lowercase, and some special characters. If the line display does not
support lowercase characters, then the Service may translate them to uppercase.

Starting with Release 1.7, escape sequences are supported.

Every escape sequence begins with the escape character ESC, whose value is 27 decimal, followed by a vertical
bar ('|'). This is followed by zero or more digits and/or lowercase alphabetic characters. The escape sequence is
terminated by an uppercase alphabetic character.

The following escape sequences are recognized within the string data of the displayText and displayTextAt
methods. If an escape sequence specifies an operation that is not supported by the line display, then it is ignored.

CommandsPerform the indicated action.

CharacteristicsThese are reset at the end of each display method or by a “Normal” sequence.

23.3.7 Device Sharing

The line display is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing some properties or calling methods that
update the device.

• See the “Summary” table for precise usage prerequisites.

Name Data Remarks

Display bitmap ESC
|#B

Displays the pre-stored bitmap. The character '#' is replaced by
the bitmap number. See setBitmap method. (If this bitmap is not
defined, or if the bitmap cannot be properly displayed, then the
escape sequence is ignored.)

Name Data Remarks

Reverse video ESC
|rvC Displays in reverse video format.

Blink ESC
|kC Displays as blinking characters.

Normal ESC |N Restores line display characteristics to normal condition.
Unified POS, v1.16.1 735

23.4 Properties (UML attributes)

23.4.1 BlinkRate Property Added in Release 1.6

Syntax BlinkRate: int32 { read-write, access after open }

Remarks Contains the blink cycle time in milliseconds. A blink cycle is the period of time when text completes an
on-off-on cycle during blinking. After this property is set, the service will set the blink rate to the closest
supported rate and change this property to reflect the actual rate. Performing this approximation is
necessary because blink cycles are hardware dependent and probably not controllable at precise
millisecond granularity.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL CapBlinkRate is false.

See Also CapBlinkRate Property.

23.4.2 CapBitmap Property Added in Release 1.7

Syntax CapBitmap: boolean { read-only, access after open }

Remarks If true, then the display of bitmaps is supported.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

23.4.3 CapBlink Property

Syntax CapBlink: int32 { read-only, access after open }

Remarks Holds the character blink capability of the device. It has one of the following values:

Value Meaning
DISP_CB_NOBLINK Blinking is not supported. Value is 0.
DISP_CB_BLINKALL Blinking is supported. The entire contents of the display are either

blinking or in a steady state.
DISP_CB_BLINKEACH

Blinking is supported. Each character may be individually set to blink or
to be in a steady state.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
736 Unified POS, v1.16.1

23.4.4 CapBlinkRate Property Added in Release 1.6

Syntax CapBlinkRate: boolean { read-only, access after open }

Remarks If true, then the device’s blink rate can be controlled and the BlinkRate property is used to indicate the
rate at which the display blinks. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also BlinkRate Property.

23.4.5 CapBrightness Property

Syntax CapBrightness: boolean { read-only, access after open }

Remarks If true, then the brightness control is supported. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

23.4.6 CapCharacterSet Property Updated in Release 1.5

Syntax CapCharacterSet: int32 { read-only, access after open }

Remarks Holds the default character set capability. It has one of the following values:

Value Meaning
DISP_CCS_NUMERIC The default character set supports numeric data, plus space, minus, and

period.
DISP_CCS_ALPHA The default character set supports uppercase alphabetic plus numeric,

space, minus, and period.
DISP_CCS_ASCII The default character set supports all ASCII characters 0x20 through

0x7F.
DISP_CCS_KANA The default character set supports partial code page 932, including ASCII

characters 0x20 through 0x7F and the Japanese Kana characters 0xA1
through 0xDF, but excluding the Japanese Kanji characters.

DISP_CCS_KANJI The default character set supports code page 932, including the Shift-JIS
Kanji characters, Levels 1 and 2.

DISP_CCS_UNICODE The default character set supports Unicode.

The default character set may contain a superset of these ranges. The initial CharacterSet property
may be examined for additional information.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CharacterSet Property.
Unified POS, v1.16.1 737

23.4.7 CapCursorType Property Updated in Release 1.8

Syntax CapCursorType: int32 { read-only, access after open }

Remarks Holds a bitwise indication of the cursor types supported by the device and selectable via the CursorType
property. The following are the values:

Value Meaning
DISP_CCT_NONE Cursor is not displayable.
DISP_CCT_FIXED Cursor is always displayed.
DISP_CCT_BLOCK Cursor is displayable as a block.
DISP_CCT_HALFBLOCK Cursor is displayable as a halfblock.
DISP_CCT_UNDERLINE Cursor is displayable as an underline.
DISP_CCT_REVERSE Cursor is displayable in reverse video.
DISP_CCT_BLINK A blinking cursor is supported.
DISP_CCT_OTHER Cursor is displayable but form is unknown.

If DISP_CCT_NONE is set, then none of the other values will be set. This is because the cursor is
not displayable.

If DISP_CCT_FIXED is set, DISP_CCT_BLINK may be set, and one and only one of the other
values will also be set. This other value will indicate the cursor type that is always displayed.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

23.4.8 CapCustomGlyph Property Added in Release 1.6

Syntax CapCustomGlyph: boolean { read-only, access after open }

Remarks Holds the glyph definition capability of the device. If true, then the device allows custom glyphs to be
defined.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

23.4.9 CapDescriptions Property

Syntax CapDescriptors: boolean { read-only, access after open }

Remarks If true, then the display supports descriptors.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
738 Unified POS, v1.16.1

23.4.10 CapHMarquee Property

Syntax CapHMarquee: boolean { read-only, access after open }

Remarks If true, the display supports horizontal marquee windows.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

23.4.11 CapICharWait Property

Syntax CapICharWait: boolean { read-only, access after open }

Remarks If true, the display supports intercharacter wait.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

23.4.12 CapMapCharacterSet Property Added in Release 1.7

Syntax CapMapCharacterSet: boolean { read-only, access after open}

Remarks Defines the ability of the Service to map the characters of the application to the selected character set
when displaying data.

If CapMapCharacterSet is true, then the Service is able to map the characters to the character sets
defined in CharacterSetList.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CharacterSet Property, MapCharacterSet Property, CharacterSetList Property.

23.4.13 CapReadBack Property Added in Release 1.6

Syntax CapReadBack: int32 { read-only, access after open }

Remarks Holds the capability of the video device to read back the data displayed upon it. It may be one of the
following:

Value Meaning
DISP_CRB_NONE Read back is not supported.
DISP_CRB_SINGLE Read back of a single character at a time is supported.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 739

23.4.14 CapReverse Property Added in Release 1.6

Syntax CapReverse: int32 { read-only, access after open }

Remarks Holds the reverse video capability of the device. It may be one of the following:

Value Meaning
DISP_CR_NONE Reverse video is not supported. Value is 0.
DISP_CR_REVERSEALL Reverse video is supported. The entire contents of the display are

either in reverse video or normal.
DISP_CR_REVERSEEACH Reverse video is supported. Each character may be individually set to

reverse video or normal.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

23.4.15 CapScreenMode Property Added in Release 1.7

Syntax CapScreenMode: boolean { read-only, access after open }

Remarks If true, then the display supports changing the screen mode (i.e., the number of text rows and columns
on the device).

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also ScreenMode Property, ScreenModeList Property.

23.4.16 CapVMarquee Property

Syntax CapVMarquee: boolean { read-only, access after open }

Remarks If true, the display supports vertical marquee windows.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
740 Unified POS, v1.16.1

23.4.17 CharacterSet Property Updated in Release 1.10

Syntax CharacterSet: int32 { read-write, access after open-claim-enable }

Remarks Holds the character set for displaying characters. It has one of the following values:

Value Meaning
Range 101 - 199 Device-specific character sets that do not match a code page or the ASCII

or ANSI character sets.
Range 400 - 990 Code page; matches one of the standard values.
DISP_CS_UNICODE The character set supports Unicode. The value of this constant is 997.
DISP_CS_ASCII The ASCII character set, supporting the ASCII characters 0x20 through

0x7F. The value of this constant is 998.
DISP_CS_ANSI The ANSI character set. The value of this constant is 999.
Range 1000 and above Code page; matches one of the standard values.

For additional implementation-specific information on the use of this property, refer to the
“Mapping of CharacterSet” section in the Annexes. For OPOS, see Annex A, for JavaPOS, see
Annex B.

This property is initialized to an appropriate value when the device is first enabled following the
open method. This value is guaranteed to support at least the set of characters specified by
CapCharacterSet.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CharacterSetList Property, CapCharacterSet Property.

23.4.18 CharacterSetList Property

Syntax CharacterSetList: string { read-only, access after open }

Remarks Holds the character set numbers supported. It consists of ASCII numeric set numbers separated by
commas.

For example, if the string is “101,850,999”, then the device supports a device-specific character set, code
page 850, and the ANSI character set.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CharacterSet Property.
Unified POS, v1.16.1 741

23.4.19 Columns Property

Syntax Columns: int32 { read-only, access after open }

Remarks Holds the number of columns for this window.

For window 0, this property is the same as DeviceColumns.
For other windows, it may be less or greater than DeviceColumns.

This property is initialized to DeviceColumns by the open method, and is updated when
CurrentWindow is set and when createWindow or destroyWindow are called.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also Rows Property.

23.4.20 CurrentWindow Property Updated in Release 1.6

Syntax CurrentWindow: int32 { read-write, access after open }

Remarks Holds the current window to which text is displayed.

Several properties are associated with each window: Rows, Columns, CursorRow, CursorColumn,
CursorUpdate, CursorType, MarqueeFormat, MarqueeType, MarqueeUnitWait,
MarqueeRepeatWait, and InterCharacterWait.

When set, this property changes the current window and sets the associated properties to their values for
this window.

Setting a window does not refresh its viewport. If this window and another window’s viewports overlap,
and the other window has changed the viewport, then refreshWindow may be called to restore this
window’s viewport contents.

This property is initialized to zero – the device window – by the open method, and is updated when
createWindow or destroyWindow are called.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
 E_ILLEGAL The new current window value is invalid.
742 Unified POS, v1.16.1

23.4.21 u8CursorColumn Property

Syntax CursorColumn: int32 { read-write, access after open }

Remarks Holds the column in the current window to which the next displayed character will be output.

Legal values range from zero through Columns. (See displayText for a note on the interpretation of
CursorColumn = Columns.)

This property is initialized to zero by the open and createWindow methods, and is updated when
CurrentWindow is set or clearText, displayTextAt, or destroyWindow is called. It is also updated
when displayText is called if CursorUpdate is true.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGAL An invalid cursor column value was specified.

See Also CursorRow Property, displayText Method.

23.4.22 CursorRow Property

Syntax CursorRow: int32 { read-write, access after open }

Remarks Holds the row in the current window to which the next displayed character will be output.

Legal values range from zero through one less than Rows.

This property is initialized to zero by the open and createWindow methods, and is updated when
CurrentWindow is set or clearText, displayTextAt, or destroyWindow is called. It is also updated
when displayText is called if CursorUpdate is true.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid cursor row value was specified.

See Also CursorColumn Property, displayText Method.
Unified POS, v1.16.1 743

23.4.23 CursorType Property Updated in Release 1.8

Syntax CursorType: int32 { read-write, access after open }

Remarks Holds the cursor type for the current window. The following are the possible values:

Value Meaning
DISP_CT_NONE Cursor is not displayed.
DISP_CT_BLOCK Cursor is displayed as a block.
DISP_CT_HALFBLOCK Cursor is displayed as a halfblock.
DISP_CT_UNDERLINE Cursor is displayed as an underline.
DISP_CT_REVERSE Cursor is displayed in reverse video.
DISP_CT_BLINK A blinking cursor is supported. This value is to be logically ORed

with one of the other values defined for this property.
DISP_CT_OTHER Cursor is displayed but form is unknown.

This property cannot be written if CapCursorType has either DISP_CCT_NONE or
DISP_CCT_FIXED set. Otherwise it can be set to one of the cursor types specified by
CapCursorType, and if supported, DISP_CT_BLINK can be logically ORed with that cursor type
to display a blinking cursor.

This property is maintained for each window. Setting this property affects only the current window
since only the current window has a displayable cursor.

This property is initialized to DISP_CT_NONE (or the appropriate cursor type if CapCursorType
has DISP_CCT_FIXED set) by the open and createWindow methods, and is updated when
CurrentWindow is set or destroyWindow is called.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL CapCursorType is either DISP_CCT_NONE or DISP_CCT_FIXED is

set, or an invalid cursor type value was specified.
See Also CapCursorType Property.

23.4.24 CusorUpdate Property

Syntax CursorUpdate: boolean { read-write, access after open }

Remarks When true, CursorRow and CursorColumn will be updated to point to the character beyond the
last character output when characters are displayed using the displayText or displayTextAt
method. When false, the cursor properties will not be updated when characters are displayed.

This property is maintained for each window. It initialized to true by the open and createWindow
methods, and is updated when CurrentWindow is set or destroyWindow is called.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

See Also CursorRow Property, CursorColumn Property.
744 Unified POS, v1.16.1

23.4.25 CustomGlyphList Property Added in Release 1.6

Syntax CustomGlyphList: string { read-only, access after open }

Remarks Contains character codes that are available for definition as glyphs. Character codes are represented as
two-digit (ASCII) or four-digit (Unicode) hexadecimal values. These values are comma separated and
each value may actually represent a range of values specified by using the ‘-’ character.

For example, if the string is “2D,4D”, then the device supports glyph definitions for the characters “-”
and “M” respectively. If the string is “002D-004D”, then the device supports glyph definitions for the
Unicode characters between 002D and 004D inclusive. Also, if the string is “2D-2F,3D-3F”, then the
device supports glyph definitions for the ranges of hex characters 2D through 2F and 3D through 3F.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapCustomGlyph Property, GlyphHeight Property, GlyphWidth Property, defineGlyph Method.

23.4.26 DeviceBrightness Property

Syntax DeviceBrightness: int32 { read-write, access after open-claim-enable }

Remarks Holds the device brightness value, expressed as a percentage between 0 and 100.

Any device can support 0% (blank) and 100% (full intensity). Blanking can, at a minimum, be supported
by sending spaces to the device. If CapBrightness is true, then the device also supports one or more
levels of dimming.

If a device does not support the specified brightness value, then the Service will choose an appropriate
substitute.

This property is initialized to 100 when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid value was used: Not in the range 0 - 100.

See Also CapBrightness Property.
Unified POS, v1.16.1 745

23.4.27 DeviceColumns Property Updated in Release 1.7

Syntax DeviceColumns: int32 { read-only, access after open }

Remarks Holds the number of columns on this device.

This property is initialized by the open method. It is updated when the ScreenMode property is changed.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also DeviceRows Property, ScreenMode Property.

23.4.28 DeviceDescriptors Property

Syntax DeviceDescriptors: int32 { read-only, access after open }

Remarks Holds the number of descriptors on this device. If CapDescriptors is true, then this property is non-zero.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also setDescriptor Method, clearDescriptors Method.

23.4.29 DeviceRows Property Updated in Release 1.7

Syntax DeviceRows: int32 { read-only, access after open }

Remarks Holds the number of rows on this device. This property is initialized by the open method. It is updated
when the ScreenMode property is changed.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also DeviceColumns Property, ScreenMode Property.

23.4.30 DeviceWindows Property

Syntax DeviceWindows: int32 { read-only, access after open }

Remarks Holds the maximum window number supported by this device. A value of zero indicates that only the
device window is supported and that no windows may be created.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CurrentWindow Property.
746 Unified POS, v1.16.1

23.4.31 GlyphHeight Property Added in Release 1.6

Syntax GlyphHeight: int32 { read-only, access after open }

Remarks Indicates the glyph height based on the number of pixels for a character cell.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapCustomGlyph Property, CustomGlyphList Property, defineGlyph Method.

23.4.32 GlyphWidth Property Added in Release 1.6

Syntax GlyphWidth: int32 { read-only, access after open }

Remarks Indicates the glyph width based on the number of pixels for a character cell.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapCustomGlyph Property, CustomGlyphList Property, defineGlyph Method.

23.4.33 InterCharacterWait Property

Syntax InterCharacterWait: int32 { read-write, access after open }

Remarks Holds the wait time between displaying each character with the displayText and displayTextAt
methods. This provides a “teletype” appearance when displaying text.
This property is only used if the window is not in Marquee Mode — that is, MarqueeType must be
DISP_MT_NONE.
When non-zero and the window is not in Marquee Mode, the window is in Teletype Mode: displayText
and displayTextAt requests are enqueued and processed in the order they are received. This property
specifies the time to wait between outputting each character into the viewport. The wait time is the
specified number of milliseconds. (Note that the system timer resolution may reduce the precision of the
wait time.) If CursorUpdate is true, CursorRow and CursorColumn are updated to their final values
before displayText or displayTextAt returns, even though all of its data may not yet be displayed.
When this property is zero and the window is not in Marquee Mode, Immediate Mode is in effect, so
that characters are processed as quickly as possible. If some display requests are enqueued at the time
this property is set to zero, the requests are completed as quickly as possible.
If CapICharWait is false, then intercharacter waiting is not supported, and the value of this property is
not used. This property is initialized to zero by the open and createWindow methods, and is updated
when CurrentWindow is set or destroyWindow is called. 

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16. Some possible values of the exception’s Error Code Property are:
Value Meaning
E_ILLEGAL An illegal value was specified. 

See Also displayText Method.
Unified POS, v1.16.1 747

23.4.34 MapCharacterSet Property Added in Release 1.7

Syntax MapCharacterSet: boolean { read-write, access after open}

Remarks If MapCharacterSet is true and when outputting data, the Service maps the characters transferred by the
application to the character set selected in the CharacterSet property for displaying data.

If MapCharacterSet is false, then no mapping is supported. In such a case the application has to ensure
the mapping of the character set used in the application to the character set selected in the CharacterSet
property.

If CapMapCharacterSet is false, then this property is always false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CharacterSet Property, CapMapCharacterSet Property.
748 Unified POS, v1.16.1

23.4.35 MarqueeFormat Property

Syntax MarqueeFormat: int32 { read-write, access after open }

Remarks Holds the marquee format for the current window.

Value Meaning
DISP_MF_WALK Begin the marquee by walking data from the opposite side. For example,

if the marquee type is “left,” then the viewport is filled by bringing
characters into the right side and scrolling them to the left.

DISP_MF_PLACE Begin the marquee by placing data. For example, if the marquee type is
“left,” then the viewport is filled by placing characters starting at the left
side, and beginning scrolling only after the viewport is full.

This property is initialized to DISP_MF_WALK by the open and createWindow methods, and is
updated when CurrentWindow is set or destroyWindow is called.

This property is read when a transition is made to Marquee On Mode. It is not used when not in
Marquee Mode.

When this property is DISP_MF_WALK, and a transition is made from Marquee Init Mode to
Marquee On Mode, the following occurs:

1. Map the window to the viewport as follows:
Marquee TypeWindow Viewport 
LeftFirst Column = Last Column
UpFirst Row = Last Row
RightLast Column = First Column
DownLast Row = First Row

Fill the viewport with blanks. Continue to Step 2 without waiting.

2. Display the mapped portion of the window into the viewport, then wait MarqueeUnitWait
 milliseconds. Move the window mapping onto the viewport by one row or column in the marquee
 direction. Repeat until the viewport is full.

3. Refresh the viewport, then wait MarqueeUnitWait milliseconds. Move the window mapping by one
 row or column. Repeat until the last row or column is scrolled into the viewport (in which case, omit
 the unit wait).

4. Wait MarqueeRepeatWait milliseconds. Then go to step back to Step 1.

When this property is DISP_MF_PLACE, and a transition is made from Marquee Init Mode to
Marquee On Mode, the following occurs:

1. Map the window to the viewport as follows:
Unified POS, v1.16.1 749

Marquee TypeWindow Viewport 
LeftFirst Column = First Column
UpFirst Row = First Row
RightLast Column = Last Column
DownLast Row = Last Row

Fill the viewport with blanks. Continue to Step 2 without waiting.

2. Display a row or column into viewport, then wait MarqueeUnitWait milliseconds. Repeat until the
 viewport is full.

3. Move the window mapping onto the viewport by one row or column in the marquee direction, and
 refresh the viewport, then wait MarqueeUnitWait milliseconds. Repeat until the last row or column
 is scrolled into the viewport (in which case, omit the unit wait).

4. Wait MarqueeRepeatWait milliseconds. Then go to step back to Step 1.

Errors A UposException may be thrown when this property is accessed. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid value was used, or attempted to change window 0.

See Also MarqueeType Property, MarqueeUnitWait Property, MarqueeRepeatWait Property.

Example 1

Marquee Walk format.
 - Assume a 2x20 display.
 - An application has a line display instance named myLD.
 - The application has performed:
myLD.createWindow(0, 3, 2, 3, 2, 5); // 2x3 viewport of 2x5 window
myLD.displayText(“0123456789”, DISP_DT_NORMAL);

The window contains:

and the display contains (assuming the other windows are all blank):

If the application performs the sequence:
myLD.setMarqueeType(DISP_MT_INIT);
myLD.setMarqueeFormat(DISP_MF_WALK);
myLD.displayTextAt(0, 4, “AB”, DISP_DT_NORMAL);

the viewport is not changed (since we are in Marquee Init Mode), and the window becomes:

0 1 2 3 4

0 0 1 2 3 4

1 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 1 2

1 5 6 7

0 1 2 3 4
750 Unified POS, v1.16.1

If the application performs:
myLD.setMarqueeType(DISP_MT_LEFT);

the window is not changed, and the viewport becomes:

After MarqueeUnitWait milliseconds, the viewport is changed to:

After MarqueeUnitWait milliseconds, the viewport is changed to:

After MarqueeUnitWait milliseconds, the viewport is changed to:

After MarqueeUnitWait milliseconds, the viewport is changed to:

The marquee has scrolled to the end of the window.
After MarqueeRepeatWait milliseconds, the marquee display restarts with the viewport changing
to:

Example 2

Marquee Place format.
 - Assume a 2x20 display.
 - An application has a line display instance named myLD.
 - The application has performed:
myLD.createWindow(0, 3, 2, 3, 2, 5); // 2x3 viewport of 2x5 window
myLD.displayText(“0123456789”, DISP_DT_NORMAL);

0 0 1 2 3 A

1 B 6 7 8 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0

1 B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 1

1 B 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 1 2

1 B 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3

1 6 7 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 2 3 A

1 7 8 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0

1 B
Unified POS, v1.16.1 751

The window contains:

and display contains (assuming the other windows are all blank):

If the application performs the sequence:
myLD.setMarqueeType(DISP_MT_INIT);
myLD.setMarqueeFormat(DISP_MF_PLACE);
myLD.displayTextAt(0, 4, “AB”, DISP_DT_NORMAL);
the viewport is not changed (since we are in Marquee Init Mode), 
and the window becomes:

If the application performs:

myLD.setMarqueeType(DISP_MT_LEFT);

the window is not changed, and the viewport becomes:

After MarqueeUnitWait milliseconds, the viewport is changed to:

After MarqueeUnitWait milliseconds, the viewport is changed to:

From this point to the end of the window, the marquee action is the same as with marquee
walking…
After MarqueeUnitWait milliseconds, the viewport is changed to:

0 1 2 3 4

0 0 1 2 3 4

1 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 1 2

1 5 6 7

0 1 2 3 4

0 0 1 2 3 A

1 B 6 7 8 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0

1 B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 1

1 B 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 1 2

1 B 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3

1 6 7 8
752 Unified POS, v1.16.1

After MarqueeUnitWait milliseconds, the viewport is changed to:

The marquee has scrolled to the end of the window.
After MarqueeRepeatWait milliseconds, the marquee display restarts with the viewport changing
to:

23.4.36 MarqueeRepeatWait Property

Syntax MarqueeRepeatWait: int32 { read-write, access after open }

Remarks Holds the wait time between scrolling the final character or row of the window into its viewport and
restarting the marquee with the first or last character or row.

The wait time is the specified number of milliseconds. (Note that the timer resolution may reduce the
precision of the wait time.)

This property is initialized to zero by the open and createWindow methods, and is updated when
CurrentWindow is set or destroyWindow is called.

This property is not used if not in Marquee Mode.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An illegal value was specified.

See Also MarqueeType Property, MarqueeFormat Property, MarqueeUnitWait Property.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 2 3 A

1 7 8 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0

1 B
Unified POS, v1.16.1 753

23.4.37 MarqueeType Property

Syntax MarqueeType: int32 { read-write, access after open }

Remarks Holds the marquee type for the current window. When not DISP_MT_NONE, the window is in Marquee
Mode. This property has one of the following values:

Value Meaning
DISP_MT_NONE Marquees are disabled for this window.

DISP_MT_INIT Marquee Init Mode. Changes to the window are not reflected in the
viewport until this property is changed to another value.

DISP_MT_UP Scroll the window up. Illegal unless Rows is greater than the
viewportHeight parameter used for the window’s createWindow call,
and CapVMarquee is true.

DISP_MT_DOWN Scroll the window down. Illegal unless Rows is greater than the
viewportHeight parameter used for the window’s createWindow call,
and CapVMarquee is true.

DISP_MT_LEFT Scroll the window left. Illegal unless Columns is greater than the
viewportWidth parameter used for the window’s createWindow call, and
CapHMarquee is true.

DISP_MT_RIGHT Scroll the window right. Illegal unless Columns is greater than the
viewportWidth parameter used for the window’s createWindow call, and
CapHMarquee is true.

A marquee is typically initialized after entering Marquee Init Mode by setting this property to
DISP_MT_INIT, then calling clearText and displayText(At) methods. Then, when this property is
changed to an “on” value, Marquee On Mode is entered, and the marquee begins to be displayed in the
viewport beginning at the start of the window (or end if the type is right or down).

When the mode is changed from Marquee On Mode to Marquee Off Mode, the marquee stops in place.
A subsequent transition back to Marquee On Mode continues from the current position.

When the mode is changed from Marquee On Mode to Marquee Init Mode, the marquee stops. Changes
may be made to the window, then the window may be returned to Marquee On Mode to restart the
marquee with the new data.

This property is always DISP_MT_NONE for window 0 – the device window.

This property is initialized to DISP_MT_NONE by the open and createWindow methods, and is
updated when CurrentWindow is set or destroyWindow is called.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16. Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid value was used, or attempted to change window 0.

See Also MarqueeFormat Property, MarqueeUnitWait Property, MarqueeRepeatWait Property.
754 Unified POS, v1.16.1

23.4.38 MarqueeUnitWait Property

Syntax MarqueeUnitWait: int32 { read-write, access after open }

Remarks Holds the wait time between marquee scrolling of each column or row in the window.

The wait time is the specified number of milliseconds. (Note that the timer resolution may reduce the
precision of the wait time.)

This property is not used if MarqueeType is DISP_MT_NONE.

This property is initialized to zero by the open and createWindow methods, and is updated when
CurrentWindow is set or destroyWindow is called.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16. Some possible values of the exception’s ErrorCode property are:

Value Meaning 
 E_ILLEGAL An illegal value was specified.

See Also MarqueeType Property, MarqueeFormat Property, MarqueeRepeatWait Property.

23.4.39 MaximumX Property Added in Release 1.7

Syntax MaximumX: int32 { read-only, access after open }

Remarks A value of zero indicates that bitmaps are not supported. Otherwise, contains the maximum number of
horizontal pixels supported by the device. It must be less than 65,536. Dividing MaximumX by
DeviceColumns gives the number of pixels required for each character. This property is initialized by
the open method. It may be updated when the ScreenMode property is changed.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also DeviceColumns Property, ScreenMode Property.MaximumY Property.

23.4.40 MaximumY Property Added in Release 1.7

Syntax MaximumY: int32 { read-only, access after open }

Remarks A value of zero indicates that bitmaps are not supported. Otherwise, contains the maximum number of
vertical pixels supported by the device. It must be less than 65,536. Dividing MaximumY by
DeviceRows gives the number of pixels required for each character

This property is initialized by the open method. It may be updated when the ScreenMode property is
changed.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also DeviceRows Property, MaximumX Property, ScreenMode Property.
Unified POS, v1.16.1 755

23.4.41 Rows Property

Syntax Rows: int32 { read-only, access after open }

Remarks Holds the number of rows for this window. For window 0, this property is the same as DeviceRows.
For other windows, it may be less or greater than DeviceRows.

This property is initialized to DeviceRows by the open method, and is updated when CurrentWindow
is set or createWindow or destroyWindow are called.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also Columns Property.

23.4.42 ScreenMode Property Added in Release 1.7

Syntax ScreenMode: int32 { read-write, access after open-claim }

Remarks Contains the screen mode value of the device. If CapScreenMode is false, then only a value of zero
is allowed. If CapScreenMode is true, then the values can be set to index the values contained in
ScreenModeList. For example:

0 = Default value
1 = First setting in ScreenModeList
2 = Second setting in ScreenModeList, etc.

Note: This property can only be updated when the device is opened and claimed, but not enabled.

 Changing the ScreenMode property also changes the DeviceColumns and DeviceRows properties
 to the new screen size. Also, for some devices, the MaximumX and MaximumY properties may

 be changed due to the columns and/or rows requiring a different number of physical pixels.
 For example, if the display physically contains 48x256 pixels and supports 2x20, 4x32, and 5x32,

 then the Service layout may be:

 This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapScreenMode Property, DeviceColumns Property, DeviceRows Property, MaximumX Property,
MaximumY Property, ScreenModeList Property.

Mode
Pixels

per
Row

Pixels
per

Column
MaximumY MaximumX

Unused
Vertical
Pixels

Unused
Horizontal

Pixels

2x20 24 12 48 240 0 16

4x32 12 8 48 256 0 0

5x32 8 8 40 256 8 0
756 Unified POS, v1.16.1

23.4.43 ScreenModeList Property Added in Release 1.7

Syntax ScreenModeList: string { read-only, access after open }

Remarks Contains the comma-delimited list of row-column pairs that are supported by the device.

If CapScreenMode is false, only one pair will be listed. For example, if the device only supports 2 rows
and 20 columns, then this property should be set to “2x20”.

If the device can operate in 2 by 20, 4 by 32, or 5 by 32 modes, then this property should be set to
“2x20,4x32,5x32”.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapScreenMode Property, ScreenMode Property.
Unified POS, v1.16.1 757

23.5 Methods (UML operations)

23.5.1 clearDescriptors Method

Syntax clearDescriptors (): 
 void { raises-exception, use after open-claim-enable }

Remarks Turns off all descriptors.

This function is illegal if CapDescriptors is false.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGAL The device does not support descriptors.

See Also setDescriptor Method, DeviceDescriptors Property, CapDescriptors Property.

23.5.2 clearText Method Updated in Release 1.7

Syntax clearText (): 
 void { raises-exception, use after open-claim-enable }

Remarks Clears the current window to blanks, sets CursorRow and CursorColumn to zero, and resynchronizes
the beginning of the window with the start of the viewport. All clears all bitmaps displayed in the
window.

If in Immediate Mode or Teletype Mode, the viewport is also cleared immediately.

If in Marquee Init Mode, the viewport is not changed.

If in Marquee On Mode, this method is illegal.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL In Marquee On Mode.

See Also displayText Method.
758 Unified POS, v1.16.1

23.5.3 createWindow Method Updated in Release 1.6

Syntax createWindow (viewportRow: int32, viewportColumn: int32, viewportHeight: int32,
viewportWidth: int32, windowHeight: int32, windowWidth: int32): 
void { raises-exception, use after open-claim-enable }

Parameter Description
viewportRow The viewport’s start device row.
viewportColumn The viewport’s start device column.
viewportHeight The number of device rows in the viewport.
viewportWidth The number of device columns in the viewport.
windowHeight The number of rows in the window.
windowWidth The number of columns in the window.

Remarks Creates a viewport over the portion of the display given by the first four parameters. The window
size is given by the last two parameters. Valid window row values range from zero to one less than
windowHeight and column values range from zero to one less than windowWidth.

The window size must be at least as large as the viewport size.

The window size may be larger than the viewport size in one direction. Using the window marquee
properties MarqueeType, MarqueeFormat, MarqueeUnitWait, and MarqueeRepeatWait,
such a window may be continuously scrolled in a marquee fashion.

When successful, createWindow sets the CurrentWindow property to the window number
assigned to this window. The following properties are maintained for each window, and are
initialized as given:

Property Value
Rows Set to windowHeight.
Columns Set to windowWidth.
CursorRow Set to 0.
CursorColumn Set to 0.
CursorType Set to DISP_CT_NONE (or the appropriate cursor type if

CapCursorType has DISP_CCT_FIXED set).
CursorUpdate Set to true.
MarqueeType Set to DISP_MT_NONE.
MarqueeFormat Set to DISP_MF_WALK.
MarqueeUnitWait Set to 0.
MarqueeRepeatWait Set to 0.
InterCharacterWait Set to 0.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL One or more parameters are out of their valid ranges, or all available windows

are already in use.

See Also CapCursorType Property, CurrentWindow Property, destroyWindow Method.
Unified POS, v1.16.1 759

23.5.4 defineGlyph Method Updated in Release 1.7

Syntax defineGlyph (glyphCode: int32, glyph: binary): 
 void { raises-exception, use after open-claim-enable }

Parameter Description
glyphCode The character code to be defined.

glyph Data bytes that define the glyph.1

Remarks Defines a glyph character.

 The glyph is defined as bits representing each pixel packed into bytes using whole bytes to represent
 each row.

 The minimum number of bytes are sent for each row, based on GlyphWidth and using 8 bits per
 byte. Bytes are sent left-to-right across each row; if more than one byte is required per row, the
 leftmost byte is sent first. The lowest-order bit within a byte represents the rightmost pixel. Bits that

 do not represent pixels are the highest order bits and their value is ignored. Rows are sent from the
 top down.

 A 10 pixel wide glyph would have the two leftmost pixels represented in bits 1 and 0 of the first
 byte, respectively. The remaining 8 pixels would be represented in the second byte.

 Enough rows must be sent to define the entire character. Whether changing the definition of a glyph
 causes currently displayed characters to change, or the change appears only when next drawn, is

 hardware-defined.

 Example: A 5 column 7 row character cell –

1. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.

Bit Position
 76543210

Byte Hex Value

 .*... 0 08

 ..*.. 1 04

 ... 2 12

 .*..* 3 09

 ..*.. 4 04

 ...*. 5 02

 * 6 01
760 Unified POS, v1.16.1

 Example: A 12 column by 16 row character cell –

This function is illegal if CapCustomGlyph is false.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGAL CapCustomGlyph is false, or glyphCode is an unsupported character 

 code for glyph definition.

See Also CapCustomGlyph Property, CustomGlyphList Property, GlyphHeight Property, GlyphWidth
Property.

Bit Position
111111
5432109876543210

Bytes Hex Values

 0,1 00 00

 *...... 2,3 00 40

 ***..... 4,5 00 E0

 ...**.**.... 6,7 01 B0

 ..**...**... 8,9 03 18

 ..**...**... 10,11 03 18

 ..*******... 12,13 03 F8

 ..*******... 14,15 03 F8

 ..**...**... 16,17 03 18

 ..**...**... 18,19 03 18

 ..**...**... 20,21 03 18

 22,23 00 00

 24,25 00 00

 26,27 00 00

 28,29 00 00

 30,31 00 00
Unified POS, v1.16.1 761

23.5.5 destroyWindow Method

Syntax destroyWindow (): 
 void { raises-exception, use after open-claim-enable }

Remarks Destroys the current window. The characters displayed in its viewport are not changed.

CurrentWindow is set to window 0. The device window and the associated window properties are
updated.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The current window is 0. This window may not be destroyed.

See Also createWindow Method, CurrentWindow Property.
762 Unified POS, v1.16.1

23.5.6 displayBitmap Method Added in Release 1.7

Syntax displayBitmap (fileName:string,width:int32,alignmentX:int32,alignmentY:int32):
 void { raises-exception, use after open-claim-enable }

Parameter Description
fileName File name or URL of bitmap file. Various file formats may be supported,

such as bmp, gif, or jpeg files.2

width Width of the bitmap to be displayed. See values below.
alignmentX Horizontal placement of the bitmap. See values below.
alignmentY Vertical placement of the bitmap. See values below.

The width parameter has one of the following values:

Value Meaning
DISP_BM_ASIS Display the bitmap with one bitmap pixel per dot.
Other values Bitmap width expressed in number of pixels.

The alignmentX parameter has one of the following values:

Value Meaning
DISP_BM_LEFT Align the bitmap's left edge with the leftmost pixel of the current character

position, as specified by CursorColumn.
DISP_BM_CENTER Align the bitmap in the horizontal center of the current character position,

as specified by CursorColumn.
DISP_BM_RIGHT Align the bitmap's right edge with the rightmost pixel of the current

character position, as specified by CursorColumn.
Other values Distance from the window’s leftmost pixel column to the left edge of the

bitmap, expressed in number of pixels.

The alignmentY parameter has one of the following values:

Value Meaning
DISP_BM_TOP Align the bitmap's top edge with the topmost pixel of the current character

position, as specified by CursorRow.
DISP_BM_CENTER Align the bitmap in the vertical center of the current character position, as

specified by CursorRow.
DISP_BM_BOTTOM Align the bitmap's bottom edge with the bottommost pixel of the current

character position, as specified by CursorRow.
Other values Distance from the window’s topmost pixel row to the start of the bitmap,

expressed in number of pixels.

Remarks Called to display a bitmap on the LineDisplay. The bitmap is displayed within the current window’s
viewport.

 If DISP_BM_... constants are specified for alignmentX and alignmentY, then it is displayed in
 relation to the character position specified by CursorRow and CursorColumn. If, in addition,
 CursorUpdate is true, then CursorRow and CursorColumn are updated to point to the first

 character position following the bitmap.

2. In the OPOS environment, the Service Object must support two-color (black and white) uncompressed
Windows bitmaps. Black pixels are displayed with the foreground color, while white pixels are
displayed with the background color. Additional formats may be supported.
Unified POS, v1.16.1 763

If the bitmap does not exactly occupy a multiple of rows and columns, then the unoccupied pixels
 of those character positions which are partially occupied are displayed with the background color. In

 other words, the Service will effectively fill all character positions partially or completely occupied
 by the bitmap with the background color before drawing the bitmap.

Bitmap display has the following restrictions:

• Bitmap display is only legal in Immediate Mode.

• The window size must match the window's viewport size.

• The bitmap must be displayable within the window, after consideration of the function parameters. For
example, if alignmentX specifies a pixel near the bottom of the window, and the bitmap height (after
bitmap transformation, if required) exceeds the distance from alignmentX to the window bottom, then
the bitmap is not displayed.

The width parameter controls transformation of the bitmap. If width is DISP_BM_ASIS, then no
 transformation is performed. The bitmap is displayed with one bitmap pixel per line display pixel.
 The advantages of this option are that it:

• Provides the highest performance bitmap display.

• Works well for bitmaps tuned for a specific LineDisplay's aspect ratio between horizontal and vertical
dots.

If width is non-zero, then the bitmap will be transformed by stretching or compressing the bitmap
 such that its width is the specified width and the aspect ratio is unchanged. The advantages of this

 option are that it:

• Sizes a bitmap to fit a variety of LineDisplays.

• Maintains the bitmap's aspect ratio.

 The disadvantages of this option are:

• Lower performance than untransformed data.

• Some lines and images that are “smooth” in the original bitmap may show some “ratcheting.”

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• The LineDisplay does not support bitmap display (CapBitmap is false).
• The width parameter is invalid or too big.
• The alignmentX / alignmentY parameter is invalid or too big.
• The window is not in Immediate Mode.
• The window size does not match its viewport size.
• The bitmap is too large to display at the requested location.
764 Unified POS, v1.16.1

E_NOEXIST The fileName was not found.
E_EXTENDED ErrorCodeExtended = EDISP_TOOBIG:

The bitmap is either too wide to display without transformation, or it is
too big to transform.

ErrorCodeExtended = EDISP_BADFORMAT:
The specified file is either not a bitmap file or it is an unsupported format.

See Also CapBitmap Property, CursorColumn Property, CursorRow Property, CursorUpdate Property.

23.5.7 displayText Method Updated in Release 1.7

Syntax displayText (data: string, attribute: int32): 
 void { raises-exception, use after open-claim-enable }

Parameter Description
data The string of characters to display.3

attribute The display attribute for the text. Must be either DISP_DT_NORMAL,
DISP_DT_BLINK, DISP_DT_REVERSE, or
DISP_DT_BLINK_REVERSE.

Remarks The characters in data are processed beginning at the location specified by CursorRow and
CursorColumn, and continue in succeeding character positions. Any previous data in a character
position is overwritten, including character and bitmap data.

Character processing continues to the next row when the end of a window row is reached. If the end of
the window is reached with additional characters to be processed, then the window is scrolled upward by
one row and the bottom row is set to blanks. If CursorUpdate is true, then CursorRow and
CursorColumn are updated to point to the character position following the last character of data.

Note
Scrolling will not occur when the last character of data is placed at the end of a row. In this case, when
CursorUpdate is true, then CursorRow is set to the row containing the last character, and
CursorColumn is set to Columns (that is, to one more than the final character of the row).

This stipulation ensures that the display does not scroll when a character is written into its last position.
Instead, the Service will wait until another character is written before scrolling the window.

The operation of displayText (and displayTextAt) varies for each mode:

• Immediate Mode (MarqueeType = DISP_MT_NONE and InterCharacterWait = 0):
Updates the window and viewport immediately.

• Teletype Mode (MarqueeType = DISP_MT_NONE and InterCharacterWait not = 0): data
is enqueued. Enqueued data requests are processed in order (typically by another thread within
the Service), updating the window and viewport using a wait of InterCharacterWait
milliseconds after each character is sent to the viewport.

• Marquee Init Mode (MarqueeType = DISP_MT_INIT): Updates the window, but doesn’t
change the viewport.

• Marquee On Mode (MarqueeType not = DISP_MT_INIT): Illegal.

3. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.
Unified POS, v1.16.1 765

If CapBlink is DISP_CB_NOBLINK, then attribute value DISP_DT_BLINK is ignored, and attribute
DISP_DT_BLINK_REVERSE is treated as DISP_DT_RESERVE. 
If CapBlink is DISP_CB_BLINKALL, then the entire display will blink when one or more characters
have been set to blink. 
If CapBlink is DISP_CB_BLINKEACH, then only those characters have been set to blink. 
If CapBlink is DISP_CB_BLINKEACH, then only those characters displayed with the blink attribute
will blink.

If CapReverse is DISP_CR_NONE, then attribute value DISP_DT_REVERSE is ignored, and attribute
DISP_DT_BLINK_REVERSE is treated as DISP_DT_BLINK. 
If CapReverse is DISP_CR_REVERSEALL, then the entire display will be displayed in reverse video
when one or more characters have been set to reverse. 
If CapReverse is DISP_CR_REVERSEEACH, then only those characters displayed with the reverse
attribute will be displayed in reverse video.

The attribute parameter value establishes the initial blink and reverse video attributes. Beginning with
Release 1.7, escape sequences within data may be used to set or reset these attributes.

Special character values within data are:

Value Meaning
Carriage Return (13 decimal) Change the next character’s output position to the beginning of

the current row.

Line Feed (10 decimal) Change the next character’s output position to the beginning of
the next row. Scroll the window if the current row is the last row
of the window.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL attribute is illegal, or the display is in Marquee On Mode.

See Also CapBlink Property, CapReverse Property, CursorColumn Property, CursorRow Property,
CursorUpdate Property, InterCharacterWait Property, clearText Method, displayTextAt Method.
766 Unified POS, v1.16.1

23.5.8 displayTextAt Method Updated in Release 1.7

Syntax displayTextAt (row: int32, column: int32, data: string, attribute: int32): 
 void { raises-exception, use after open-claim-enable }

Parameter Description
row The start row for the text.
column The start column for the text.
data The string of characters to display.4

attribute The display attribute for the text. Must be either DISP_DT_NORMAL,
DISP_DT_BLINK, DISP_DT_REVERSE, or
DISP_DT_BLINK_REVERSE.

Remarks The characters in data are processed beginning at the window location specified by the row and column
parameters, and continuing in succeeding columns.
The operational characteristics of the displayTextAt method are the same as the displayText method.
This method has the same effect as setting the CursorRow to row, setting CursorColumn to column,
and calling the displayText method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL row or column are out or range, attribute is illegal, or in Marquee On Mode.

See Also CapBlink Property, CapReverse Property, CursorColumn Property, CursorRow Property,
InterCharacterWait Property, displayText Method, clearText Method.

23.5.9 readCharacterAtCursor Method Added in Release 1.6

Syntax readCharacterAtCursor (inout cursorData: int32): 
 void { raises-exception, use after open-claim-enable }

Parameter Description
cursorData The character read from the display.

Remarks Reads the currently displayed character at the cursor position.

This function is illegal if CapReadBack is DISP_CRB_NONE.

4. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.
Unified POS, v1.16.1 767

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL CapReadBack is DISP_CRB_NONE.

See Also CapReadBack Property.

23.5.10 refreshWindow Method

Syntax refreshWindow (window: int32): 
 void { raises-exception, use after open-claim-enable }

The window parameter specifies which window must be refreshed.

Remarks Changes the current window to window, then redisplays its viewport. Neither the mapping of the window
to its viewport nor the window’s cursor position is changed.

This function may be used to restore a window after another window has overwritten some of its
viewport.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGAL window is larger than DeviceWindows or has not been created, or in 

 Marquee On Mode.

See Also DeviceWindows Property.
768 Unified POS, v1.16.1

23.5.11 scrollText Method Updated in Release 1.7

Syntax scrollText (direction: int32, units: int32): 
 void { raises-exception, use after open-claim-enable }

The direction parameter indicates the scrolling direction, and is one of the following values:

Value Meaning
DISP_ST_UP Scroll the window up.
DISP_ST_DOWN Scroll the window down.
DISP_ST_LEFT Scroll the window left.
DISP_ST_RIGHT Scroll the window right.

The units parameter indicates the number of columns or rows to scroll.

Remarks Scrolls the current window.

This function is only legal in Immediate Mode.

If the window size for the scroll direction matches its viewport size, then the window data is scrolled, the
last units rows or columns are set to spaces, and the viewport is updated. If the window contains bitmap
data, it is also scrolled.

If the window size for the scroll direction is larger than its viewport, then the window data is not changed.
Instead, the mapping of the window into the viewport is moved in the specified direction. The window
data is not altered, but the viewport is updated. If scrolling by units would go beyond the beginning of
the window data, then the window is scrolled so that the first viewport row or column contains the first
window row or column. If scrolling by units would go beyond the end of the window data, then the
window is scrolled so that the last viewport row or column contains the last window row or column.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL direction is illegal, or in Teletype Mode or Marquee Mode.

See Also displayText Method.

Example 1

 - Assume a 2x20 display.
 - An application has a line display instance named myLD.
 - The application has performed:
myLD.createWindow(0, 3, 2, 4, 2, 4); // 2x4 viewport of 2x4 window
myLD.displayText(“abcdABCD”, DISP_DT_NORMAL);

The window contains:

0 1 2 3

0 a b c d

1 A B C D
Unified POS, v1.16.1 769

and the viewport on the display is:

If the application next performs:
myLD.scrollText (DISP_ST_LEFT, 2);

the window data becomes:

and the viewport becomes:

Example 2

- Assume a 2x20 display.
 - An application has a line display instance named myLD.
 - The application has performed:
myLD.createWindow(0, 3, 2, 4, 2, 8); // 2x4 viewport of 2x8 window
myLD.displayText(“abcdefghABCDEFGH”, DISP_DT_NORMAL);

The window contains:

and the viewport on the display is:

If the application next performs:
myLD.scrollText (DISP_ST_LEFT, 2);

the window data is unchanged, and the viewport becomes:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 a b c d

1 A B C D

0 1 2 3

0 c d

1 C D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 c d

1 C D

0 1 2 3 4 5 6 7

0 a b c d e f g h

1 A B C D E F G H

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 a b c d

1 A B C D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 c d e f

1 C D E F
770 Unified POS, v1.16.1

If the application next performs:
myLD.scrollText (DISP_ST_UP, 1);

the window data becomes:

and the viewport becomes:

0 1 2 3 4 5 6 7

0 A B C D E F G H

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 C D E F

1

Unified POS, v1.16.1 771

23.5.12 setBitmap Method Added in Release 1.7

Syntax setBitmap (bitmapNumber: int32, fileName: string, width: int32, alignmentX: int32,
alignmentY: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
bitmapNumber The number to be assigned to this bitmap. Valid bitmap numbers are 1

through 100.
fileName File name or URL of bitmap file. Various file formats may be supported,

such as bmp, gif, or jpeg files.5

If set to the empty string (“”), then the bitmap is unset.
width Width of the bitmap to be displayed. See values below.
alignmentX Horizontal placement of the bitmap. See values below.
alignmentY Vertical placement of the bitmap. See values below.

The width parameter has one of the following values:

Value Meaning
DISP_BM_ASIS Display the bitmap with one bitmap pixel per dot.
Other values Bitmap width expressed in number of pixels.

The alignmentX parameter has one of the following values:

Value Meaning
DISP_BM_LEFT Align the bitmap’s left edge with the leftmost pixel of the current

character position.
DISP_BM_CENTER Align the bitmap in the horizontal center of the current character position.
DISP_BM_RIGHT Align the bitmap’s right edge with the rightmost pixel of the current

character position.
Other values Distance from the window’s leftmost pixel column to the left edge of the

bitmap, expressed in number of pixels.

The alignmentY parameter has one of the following values:

Value Meaning
DISP_BM_TOP Align the bitmap’s top edge with the topmost pixel of the current

character position.
DISP_BM_CENTER Align the bitmap in the vertical center of the current character position.
DISP_BM_BOTTOM Align the bitmap’s bottom edge with the bottommost pixel of the current

character position.
Other values Distance from the window’s topmost pixel row to the start of the bitmap,

expressed in number of pixels.

5. In the OPOS environment, the Service Object must support two-color (black and white) uncompressed
Windows bitmaps. Black pixels are displayed with the foreground color, while white pixels are
displayed with the background color. Additional formats may be supported.
772 Unified POS, v1.16.1

Remarks Called to save information about a bitmap for later display.

The bitmap may then be displayed by calling the displayText or displayTextAt method with the display
bitmap escape sequence in the display data. The display bitmap escape sequence will typically be
included in a string for displaying advertisements, store logos, or icons. See the Remarks section of
displayBitmap for restrictions on displaying the saved bitmap. If one or more restrictions are not
fulfilled, then the bitmap is not displayed, and the method continues on with the next character of display
data.

A Service may choose to cache the bitmap for later use to provide better performance. Regardless, the
bitmap file and parameters are validated for correctness by this method.

The most frequently used bitmaps should be assigned a small bitmapNumber (close to 1), while
occasionally used bitmaps should be assigned the larger bitmapNumbers. The Service will use this
information to determine how best to store the bitmaps. It may download them to the device when
possible, or cache them in Service memory, or simply remember the fileName and associated properties
for use when it is displayed.

An application must ensure that the LineDisplay window metrics, such as viewport width and height, are
set before calling this method. A Service may perform transformations on the bitmap in preparation for
later displaying based on the current values of these metrics.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• The bitmapNumber parameter is invalid.
• The LineDisplay does not support bitmap display (CapBitmap is false).
• The width parameter is invalid or too big.
• The alignmentX or alignmentY parameter is invalid or too big.

E_NOEXIST The fileName was not found.

E_EXTENDED ErrorCodeExtended = EDISP_TOOBIG:
The bitmap is either too wide to display without transformation, or it is
too big to transform.
ErrorCodeExtended = EDISP_BADFORMAT:
The specified file is either not a bitmap file or it is an unsupported format.

See Also CapBitmap Property, displayBitmap Method, displayText Method, displayTextAt Method.
Unified POS, v1.16.1 773

23.5.13 setDescriptor Method

Syntax setDescriptor (descriptor: int32, attribute: int32): 
 void { raises-exception, use after open-claim-enable }

The descriptor parameter indicates which descriptor to change. The value may range between zero
and one less than DeviceDescriptors.

The attribute parameter indicates the attribute for the descriptor. It has one of the following values:

Value Meaning
DISP_SD_ON Turns the descriptor on.
DISP_SD_BLINK Sets the descriptor to blinking.
DISP_SD_OFF Turns the descriptor off.

Remarks Sets the state of one of the descriptors, which are small indicators with a fixed label.

This function is illegal if CapDescriptors is false.

The device and its Service determine the mapping of descriptor to its descriptors.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning 
E_ILLEGAL The device does not support descriptors, or one of the parameters 
 contained an illegal value.

See Also clearDescriptors Method, DeviceDescriptors Property, CapDescriptors Property.
774 Unified POS, v1.16.1

23.6 Events (UML interfaces)

23.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Line Display Service to provide events to the application that are not otherwise supported by the
Control.

Attributes This event contains the following attributes:

Attribute Type Description 
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and

the Service. This property is settable.
Obj object Additional data whose usage varies by the EventNumber and Service.

This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Line Display
devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.

23.6.2 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a Line Display.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 Reports a change in the power state of a display.


Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 2.

Remarks Enqueued when the Line Display detects a power state change.

See Also “Events” on page 15.
Unified POS, v1.16.1 775

776 Unified POS, v1.16.1

24 MICR - Magnetic Ink Character Recognition Reader

24.1 General

This Chapter defines the MICR - Magnetic Ink Character Recognition Reader device category.

24.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.2 open

CapCompareFirmwareVersion: boolean { read-only } 1.9 open

CapPowerReporting: int32 { read-only } 1.3 open

CapStatisticsReporting: boolean { read-only } 1.8 open

CapUpdateFirmware: boolean { read-only } 1.9 open

CapUpdateStatistics: boolean { read-only } 1.8 open

CheckHealthText: string { read-only } 1.0 open

Claimed: boolean { read-only } 1.0 open

DataCount: int32 { read-only } 1.2 open

DataEventEnabled: boolean { read-write } 1.0 open

DeviceEnabled: boolean { read-write } 1.0 open & claim

FreezeEvents: boolean { read-write } 1.0 open

OutputID: int32 { read-only } 1.0 Not supported

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --

DeviceControlVersion: int32 { read-only } 1.0 --

DeviceServiceDescription: string { read-only } 1.0 open

DeviceServiceVersion: int32 { read-only } 1.0 open

PhysicalDeviceDescription: string { read-only } 1.0 open

PhysicalDeviceName: string { read-only } 1.0 open
Unified POS, v1.16.1 777

Properties (Continued)

Specific Type Mutability Version May Use After

AccountNumber: string { read-only } 1.0 open

Amount: string { read-only } 1.0 open

BankNumber: string { read-only } 1.0 open

CapValidationDevice: boolean { read-only } 1.0 open

CheckType: int32 { read-only } 1.0 open

CountryCode: int32 { read-only } 1.0 open

EPC: string { read-only } 1.0 open

RawData: string { read-only } 1.0 open

SerialNumber: string { read-only } 1.0 open

TransitNumber: string { read-only } 1.0 open

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open }

1.0

release ():
void { raises-exception, use after open, claim }

1.0

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.0

clearInput ():
void { raises-exception, use after open, claim }

1.0

clearInputProperties ():
void { raises-exception, use after open, claim }

1.10

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.0

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8
778 Unified POS, v1.16.1

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific

Name

beginInsertion (timeout: int32): 
void { raises-exception, use after open, claim, enable }

1.0

beginRemoval (timeout: int32): 
void { raises-exception, use after open, claim, enable }

1.0

endInsertion (): 
void { raises-exception, use after open, claim, enable }

1.0

endRemoval (): 
void { raises-exception, use after open, claim, enable }

1.0

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent 1.0

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.0

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.0

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.3

 Status: int32 { read-only }
Unified POS, v1.16.1 779

24.3 General Information

The MICR - Magnetic Ink Character Recognition Reader programmatic name is “MICR.”

24.3.1 Capabilities

The MICR Control has the following minimal set of capabilities:

• Reads magnetic ink characters from a check.

• Provides programmatic control of check insertion, reading and removal. For some MICR devices, this will
require no processing in the Service since the device may automate many of these functions.

• Parses the MICR data into output properties. This version of the specification defines the parsing of fields as
specified in the ANSI MICR standard used in North America. For other countries, the application may need to
parse the MICR data from the data in RawData.

The MICR device may be physically attached to or incorporated into a check validation print device. If this is the
case, once a check is inserted via MICR Control methods, the check can still be used by the Printer Control prior
to check removal.

Some MICR devices support exception tables, which cause non-standard parsing of the serial number for specific
check routing numbers. Exception tables are not directly supported by this specification release. However, a
Service may choose to support them, and could assign entries under its device name to define the exception
entries.

This release of the specification does not define any parsing of partial MICR check data if an error occurs while
reading a check. This is done intentionally since any Service that implements such functionality cannot guarantee
that fields parsed from partial data are correct. For example, it is possible to get MICR data that contains no ‘?’
characters, but fails its checksum. This would indicate that one or more characters in the data are incorrect, but
there is no way to determine which characters they are. If an application wishes to try and parse the partial data
itself, the RawData property is filled in with whatever was read even in error cases.
780 Unified POS, v1.16.1

24.3.2 MICR Class Diagram

The following diagram shows the relationships between the MICR classes.

UposException
(from upos)

<<exception>> UposConst
(from upos)

<<utility>>

MICRConst
(from upos)

<<utility>>

DataEvent

<<prop>> Status : int32

(from events)

<<event>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

ErrorEvent

<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : int32
<<prop>> ErrorLocus : int32
<<prop>> ErrorResponse : int32

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32

(from events)

<<event>>

MICRControl

<<capability>> CapValidationDevice : boolean
<<prop>> AccountNumber : string
<<prop>> Amount : string
<<prop>> BankNumber : string
<<prop>> CheckType : int32
<<prop>> CountryCode : int32
<<prop>> EPC : string
<<prop>> RawData : string
<<prop>> SerialNumber : string
<<prop>> TransitNumber : string

beginInsertion(timeout : int32) : void
beginRemoval(timeout : int32) : void
endInsertion() : void
endRemoval() : void

(from upos)

<<Interface>>

<<sends>>

<<uses>>

fires

fires

fires

f ires

BaseControl
(from upos)

<<Interface>> <<uses>>

<<sends>>
Unified POS, v1.16.1 781

24.3.3 MICR Sequence Diagram Updated in Release 1.8

The following sequence diagram shows the typical usage of the MICR device. This also demonstrate the usage
of the “Device Input Model” and how that works with DataEventEnabled; also shows the steps in the check
removal process.

:ClientApp :MICR :MICRService:DataEvent

1: claim(timeout)

2: claim(timeout)

5: setDeviceEnabled(true)
6: setDeviceEnabled(true)

7: setDataEventEnabled(true)
8: setDataEventEnabled(true)

NOTE: we are assuming that the :ClientApp(s) already successful ly opened the controls. This means that the platform specific
loading/configuration/creation code executed successfully. We also assume that the application already registered some event handlers with the controls.

Further initialization of the
service should be done at
this point

9: beginInsertion(timeout)
10: beginInsertion(timeout)

11: endInsertion() 12: endInsertion()

13: new

14: copy data to new DataEvent

15: enqueue DataEvent to
service's internal queue

16: parse and set MICR properties, DataCount++ and deliver
DataEvent [DataEventEnabled == true && FreezeEvents == false]

19: beginRemoval(timeout)

20: beginRemoval(timeout)

21: indicate user to start removing check

22: endRemoval()

23: endRemoval()

3: setDataEventEnabled(false)
4: setDataEventEnabled(false)

Detect check
insertion and
gather check data

17: del iver event to all registered handlers18: notify client of new event

Right before the DataEvent is
delivered set DataEventEnabled to
false and DataCount--.
782 Unified POS, v1.16.1

24.3.4 Model

The MICR Device follows the general “Device Input Model” for input devices. One point of difference is that
the MICR Device requires the invocation of methods to insert and remove the check for processing. Therefore,
this Device requires more than simply setting the DataEventEnabled property to true in order to receive data.
The basic model is as follows:

• The MICR Control is opened, claimed, and enabled.

• When an application wishes to perform a MICR read, the application calls beginInsertion, specifying a
timeout value. This results in the device being made ready to have a check inserted. If the check is not inserted
before the timeout limit expires, a UposException is raised.

In the event of a timeout, the MICR device will remain in a state allowing a check to be inserted while the
application provides any additional prompting required and then reissues the beginInsertion method.

• Once a check is inserted, the method returns and the application calls endInsertion, which results in the MICR
device being taken out of check insertion mode and the check, if present, actually being read.

• If the check is successfully read, a DataEvent is enqueued.

• If the AutoDisable property is true, then the Device automatically disables itself when a DataEvent is
enqueued.

• A queued DataEvent can be delivered to the application when DataEventEnabled is true and other event
delivery requirements are met. Just before delivering this event, data is copied into properties, and further
data events are disabled by setting DataEventEnabled to false. This causes subsequent input data to be
enqueued while the application processes the current input and associated properties. When the application
has finished processing the current input and is ready for more data, it reenables events by setting
DataEventEnabled to true.

• An ErrorEvent (or events) is enqueued if an error occurs while reading the check, and is delivered to the
application when DataEventEnabled is true and other event delivery requirements are met.

• The DataCount property may be read to obtain the number of enqueued DataEvents.

• All enqueued input may be deleted by calling clearInput. See the clearInput method description for more
details.

• All data properties that are populated as a result of firing a DataEvent or ErrorEvent can be set back to their
default values by calling the clearInputProperties method.

• After processing a DataEvent, the application should query the CapValidationDevice property to determine
if validation printing can be performed on the check prior to check removal. If this property is true, the
application may call the Printer Service’s beginInsertion and endInsertion methods. This positions the check
for validation printing. The POS Printer’s validation printing methods can then be used to perform validation
printing. When validation printing is complete, the application should call the Printer Service’s removal
methods to remove the check.

• Once the check is no longer needed in the device, the application must call the beginRemoval method of the
MICR, or the Check Scanner (if the device can also scan checks), or the POS Printer (if CapValidationDevice
is true), specifying a timeout value. This method will raise a UposException if the check is not removed within
the timeout period. In this case, the application may perform any additional prompting prior to calling the
method again. Once the check is removed, the application should call the same device’s endRemoval method
to take the device out of removal mode.
Unified POS, v1.16.1 783

Many models of MICR devices do not require any check handling processing from the application. Such MICR
devices may always be capable of processing a check and require no commands to actually read and eject the
check. For these types of MICR devices, the beginInsertion, endInsertion, beginRemoval, and endRemoval
methods simply return, and input data will be enqueued until the DataEventEnabled property is set to true.
However, applications should still use these methods to ensure application portability across different MICR
devices.

24.3.5 Device Sharing

The MICR is an exclusive-use device. Its device sharing rules are:

• The application must claim the device before enabling it.

• The application must claim and enable the device before the device begins reading input, or before calling
methods that manipulate the device.

• See the “Summary” table for precise usage prerequisites.
784 Unified POS, v1.16.1

24.3.6 MICR - Character Substitution Updated in Release 1.13

The E-13B MICR format defined by the ANSI MICR standard contains 15 possible characters. Ten of these are
the numbers 0 through 9. A space character may also be returned. The other four characters are special to MICR
data and are known as the Transit, Amount, On-Us, and Dash characters. These character are used to mark the
boundaries of certain special fields in MICR data. Since these four characters are not in the ASCII character set,
the following lower-case characters will be used to represent them in properties and in parameters to methods: 

The CMC-7 MICR format defined by the ISO (1004) standard contains 16 possible characters. Ten of these
characters are the numbers 0 through 9. A space character may also be returned. The other five characters are
special to MICR data and are known as the Internal, Terminator, Amount, Routing, and Unused characters. These
character are used to mark the boundaries of certain special fields in MICR data. Since these five characters are
not defined in the ASCII character set, the following lower-case characters will be used to represent them in
Properties and as Parameters used with methods: 

MICR Character Name Substitute Character

Transit t

Amount a

On-Us o

 Dash -

M IC R C ha ra cte r N am e S ubstitute C ha ra cte r

A Inte rn al i

B T e rm inato r t

C A m o unt a

D U nu se d u

E
Ro uting r

Unified POS, v1.16.1 785

CMC-7 support was formally added to Release 1.13 of this specification. Previously it was not clearly stated
which substitute characters a service should use for the RawData property. Prior to Release 1.13, different
vendors’ services may use different sets of substitute characters. In order to maintain application backward
compatibility with previous versions, service vendors are required to provide a configuration mechanism for the
substitute character set.
786 Unified POS, v1.16.1

24.4 Properties (UML attributes)

24.4.1 AccountNumber Property

Syntax AccountNumber: string { read-only, access after open }

Remarks Holds the account number parsed from the most recently read MICR data.

This account number will not include a check serial number if a check serial number is able to be
separately parsed, even if the check serial number is embedded in the account number portion of the ‘On
Us’ field. If the account number cannot be identified, the string will be empty (“”).

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also RawData Property, DataEvent.

24.4.2 Amount Property

Syntax Amount: string { read-only, access after open }

Remarks Holds the amount field parsed from the most recently read MICR data.

The amount field on a check consists of ten digits bordered by Amount symbols. All non space digits will
be represented in the test string including leading 0’s. If the amount is not present, the string will be
empty (“”).

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also RawData Property, DataEvent

24.4.3 BankNumber Property

Syntax BankNumber: string { read-only, access after open }

Remarks Holds the bank number portion of the transit field parsed from the most recently read MICR data.

The bank number is contained in digits 5 through 8 of the transit field. If the bank number or transit field
is not present or successfully identified, the string will be empty (“”).

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also RawData Property, TransitNumber Property, DataEvent.
Unified POS, v1.16.1 787

24.4.4 CapValidationDevice Property

Syntax CapValidationDevice: boolean { read-only, access after open }

Remarks If true, the device also performs validation printing via the POS Printer’s slip station, and a check does
not have to be removed from the MICR device prior to performing validation printing.

For devices that are both a MICR device as well as a POS Printer, the device will automatically position
the check for validation printing after successfully performing a MICR read. Either the MICR’s or the
POS Printer’s beginRemoval and endRemoval methods may be called to remove the check once
processing is complete.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

24.4.5 CheckType Property

Syntax CheckType: int32 { read-only, access after open }

Remarks Holds the type of check parsed from the most recently read MICR data. It has one of the following values:

Value Meaning
MICR_CT_PERSONAL The check is a personal check.

MICR_CT_BUSINESS The check is a business or commercial check.

MICR_CT_UNKNOWN Unknown type of check.

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also RawData Property, DataEvent
788 Unified POS, v1.16.1

24.4.6 CountryCode Property Updated in Release 1.13

Syntax CountryCode: int32 { read-only, access after open }

Remarks Holds the country of origin of the check parsed from the most recently read MICR data. Or, if the country
cannot be determined, indicates the check font. It has one of the following values:

Value Meaning
MICR_CC_USA The check is from America.

MICR_CC_CANADA The check is from Canada.

MICR_CC_MEXICO The check is from Mexico.

MICR_CC_UNKNOWN Check origination is unknown. The check font
is E-13B.

MICR_CC_CMC7 Check origination is unknown. The check font
is CMC-7.

MICR_CC_OTHER Check origination is unknown. The check font
is either OCR-A or OCR-B.

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also RawData Property, DataEvent

24.4.7 EPC Property

Syntax EPC: string { read-only, access after open }

Remarks Holds the Extended Processing Code (“EPC”) field parsed from the most recently read MICR data. It
will contain a single character 0 though 9 if the field is present. If not, the string will be empty (“”).

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also RawData Property, DataEvent
Unified POS, v1.16.1 789

24.4.8 RawData Property Updated in Release 1.13

Syntax RawData: string { read-only, access after open }

Remarks Holds the MICR data from the most recent MICR read. It contains any of the MICR characters with
appropriate substitution to represent non-ASCII characters (see “MICR Character Substitution”, page
23-9). No parsing or special processing is done to the data returned in this property. 

A sample value for E-13B may look like the following:

“2t123456789t123 4 567890o 123 a0000001957a”

A sample value for CMC-7 may look like the following:

“a0123456 a012345678901r 012345678901i 0000001957t”

Note that spaces are used to represent spaces in the MICR data. Its value is set prior to a DataEvent
being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also AccountNumber Property, Amount Property, BankNumber Property, CheckType Property,
CountryCode Property, EPC Property, SerialNumber Property, TransitNumber Property,
DataEvent

24.4.9 SerialNumber Property

Syntax SerialNumber: string { read-only, access after open }

Remarks Holds the serial number of the check parsed from the most recently read MICR data.

If the serial number cannot be successfully parsed, the string will be empty (“”).

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also RawData Property, DataEvent

24.4.10 TransitNumber Property

Syntax TransitNumber: string { read-only, access after open }

Remarks Holds the transit field of the check parsed from the most recently read MICR data. It consists of all the
characters read between the ‘Transit’ symbols on the check. It is a nine character string. Its value is set
prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also RawData Property, DataEvent
790 Unified POS, v1.16.1

24.5 Methods (UML operations)

24.5.1 beginInsertion Method

Syntax beginInsertion (timeout: int32): 
 void { raises-exception, use after open-claim-enable }

The timeout parameter gives the number of milliseconds before failing the method.

If zero, the method tries to begin insertion mode, then returns immediately if successful. Otherwise a
UposException is raised. If FOREVER (-1), the method initiates the begin insertion mode, then waits as
long as needed until either the check is inserted or an error occurs.

Remarks Initiates check insertion processing.

When called, the MICR is made ready to receive a check by opening the MICR’s check handling “jaws”
or activating a MICR’s check insertion mode. This method is paired with the endInsertion method for
controlling check insertion. Although some MICR devices do not require this sort of processing, the
application should still use these methods to ensure application portability across different MICR
devices.

If the MICR device cannot be placed into insertion mode, a UposException is raised. Otherwise, check
insertion is monitored until either:

• The check is successfully inserted.

• The check is not inserted before timeout milliseconds have elapsed, or an error is reported by the
MICR device. In this case, a UposException is raised. The MICR device remains in check insertion
mode. This allows an application to perform some user interaction and reissue the beginInsertion
method without altering the MICR check handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY If the MICR is a combination device, the peer device may be busy.

E_ILLEGAL An invalid timeout parameter was specified.

E_TIMEOUT The specified time has elapsed without the check being properly inserted.

See Also endInsertion Method, beginRemoval Method, endRemoval Method.
Unified POS, v1.16.1 791

24.5.2 beginRemoval Method

Syntax beginRemoval (timeout: int32): 
 void { raises-exception, use after open-claim-enable }

The timeout parameter gives the number of milliseconds before failing the method.

If zero, the method tries to begin removal mode, then returns immediately if successful. Otherwise a
UposException is raised. If FOREVER (-1), the method initiates the begin removal mode, then waits as
long as needed until either the check is removed or an error occurs.

Remarks Initiates check removal processing.

When called, the MICR is made ready to remove a check, by opening the MICR’s check handling “jaws”
or activating a MICR’s check ejection mode. This method is paired with the endRemoval method for
controlling check removal. Although some MICR devices do not require this sort of processing, the
application should still use these methods to ensure application portability across different MICR
devices.

If the MICR device cannot be placed into removal or ejection mode, a UposException is raised.
Otherwise, check removal is monitored until either:

• The check is successfully removed.

• The check is not removed before timeout milliseconds have elapsed, or an error is reported by the
MICR device. In this case, a UposException is raised. The MICR device remains in check removal
mode. This allows an application to perform some user interaction and reissue the beginRemoval
method without altering the MICR check handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY If the MICR is a combination device, the peer device may be busy.

E_ILLEGAL An invalid timeout parameter was specified.

E_TIMEOUT The specified time has elapsed without the check being properly removed.

See Also beginInsertion Method, endInsertion Method, endRemoval Method.
792 Unified POS, v1.16.1

24.5.3 endInsertion Method

Syntax endInsertion (): 
 void { raises-exception, use after open-claim-enable }

Remarks Ends check insertion processing.

When called, the MICR is taken out of check insertion mode. If a check is not detected in the device, a
UposException is raised with an extended error code of EMICR_NOCHECK. After a successful
endInsertion, if a check is detected, the check will be read by the MICR device and either a DataEvent
or ErrorEvent will be delivered. Data will be available as soon as the DataEventEnabled property is
set to true. This allows an application to prompt the user prior to calling this method to ensure that the
form is correctly positioned.

This method is paired with the beginInsertion method for controlling check insertion. Although some
MICR devices do not require this sort of processing, the application should still use these methods to
ensure application portability across different MICR devices.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The device is not in check insertion mode.

E_EXTENDED ErrorCodeExtended = EMICR_NOCHECK:
The device was taken out of insertion mode without a check being
inserted.

See Also beginInsertion Method, beginRemoval Method, endRemoval Method.
Unified POS, v1.16.1 793

24.5.4 endRemoval Method

Syntax endRemoval (): 
 void { raises-exception, use after open-claim-enable }

Remarks Ends check removal processing.

When called, the MICR is taken out of check removal or ejection mode. If a check is detected in the
device, a UposException is raised with an extended error code of EMICR_CHECK.

This method is paired with the beginRemoval method for controlling check removal. Although some
MICR devices do not require this sort of processing, the application should still use these methods to
ensure application portability across different MICR devices.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The device is not in check removal mode.

E_EXTENDED ErrorCodeExtended = EMICR_CHECK:
The device was taken out of removal mode while a check is still present.

See Also beginInsertion Method, endInsertion Method, beginRemoval Method.
794 Unified POS, v1.16.1

24.6 Events (UML interfaces)

24.6.1 DataEvent

<< event >> upos::events::DataEvent 
Status: int32 { read-only }

Description Notifies the application when MICR data is read from a check and is available to be read.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 Set to zero.

Before delivering this event, the RawData property is updated and the data is parsed (if possible)
into the MICR data fields.

See Also “Device Input Model” on page 18, “Events” on page 15, RawData Property, AccountNumber
Property, Amount Property, BankNumber Property, CheckType Property, CountryCode Property,
EPC Property, SerialNumber Property, TransitNumber Property.

24.6.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific MICR Service to provide events to the application that are not otherwise supported by the
Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described
as part of the JavaPOS standard. Use of this event may restrict the application program from being used
with other vendor’s MICR devices which may not have any knowledge of the Service’s need for this
event.

See Also “Events” on page 15, directIO Method.
Unified POS, v1.16.1 795

24.6.3 ErrorEvent Updated in Release 1.10

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an error has been detected when reading MICR data.

Attributes This event contains the following attributes:

Attribute Type Description
ErrorCode int32 Error Code causing the error event. See the list of ErrorCodes on page 16.
ErrorCodeExtended

int32 Extended Error Code causing the error event. If ErrorCode is
E_EXTENDED, then see values below. Otherwise, it may contain a
Service-specific value.

ErrorLocus int32 Location of the error. See values below.
ErrorResponse int32 Error response, whose default value may be overridden by the application

(i.e., this property is settable). See values below.

If ErrorCode is E_EXTENDED then ErrorCodeExtended contains one of the following values:

Value Meaning
EMICR_BADDATA An unreadable character was detected during input processing. The

RawData property will contain partial data if available, otherwise it will
be an empty string.

EMICR_NODATA The entire input data stream was unreadable. No data is available.
EMICR_BADSIZE The length of the check was beyond the expected readable range. The

RawData property will contain partial data if available, otherwise it will
be an empty string.

EMICR_JAM The check insertion process has caused a paper jam. No data is available.
EMICR_CHECKDIGIT The check digit verification has failed even though there was no error

during input processing. The RawData property will contain partial data
if available, otherwise it will be an empty string.

EMICR_COVEROPEN The check insertion process failed due to the POSPrinter cover being
open. No data is available.

The ErrorLocus property has one of the following values:

Value Meaning
EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.
EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and

some previously buffered data is available.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error processing may change ErrorResponse to one of the following values:

Value Meaning
ER_CLEAR Clear the buffered input data. The error state is exited.

Default when locus is EL_INPUT.
796 Unified POS, v1.16.1

ER_CONTINUEINPUT
Use only when locus is EL_INPUT_DATA. Acknowledges the error and
directs the Device to continue processing. The Device remains in the error
state and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and
DataEventEnabled is again set to true, then another ErrorEvent is
delivered with locus EL_INPUT.
Default when locus is EL_INPUT_DATA.

Remarks This event is not delivered until DataEventEnabled is true and other event delivery requirements are
met, so that proper application sequencing occurs.

See Also “Device Input Model” on page 18, “Device Information Reporting Model” on page 25.

24.6.4 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a MICR device.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 Reports a change in the power state of a MICR device.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 1.

Remarks Enqueued when the MICR device detects a power state change.

See Also “Events” on page 15.
Unified POS, v1.16.1 797

798 Unified POS, v1.16.1

25 Motion Sensor

25.1 General

This Chapter defines the Motion Sensor device category.

25.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.7 Not supported

CapCompareFirmwareVersion: boolean { read-only } 1.9 open

CapPowerReporting: int32 { read-only } 1.3 open

CapStatisticsReporting: boolean { read-only } 1.8 open

CapUpdateFirmware: boolean { read-only } 1.9 open

CapUpdateStatistics: boolean { read-only } 1.8 open

CheckHealthText: string { read-only } 1.7 open

Claimed: boolean { read-only } 1.7 open

DataCount: int32 { read-only } 1.7 Not supported

DataEventEnabled: boolean { read-write } 1.7 Not supported

DeviceEnabled: boolean { read-write } 1.7 open

FreezeEvents: boolean { read-write } 1.7 open

OutputID: int32 { read-only } 1.7 Not supported

PowerNotify: int32 { read-write } 1.7 open

PowerState: int32 { read-only } 1.7 open

State: int32 { read-only } 1.7 --

DeviceControlDescription: string { read-only } 1.7 --

DeviceControlVersion: int32 { read-only } 1.7 --

DeviceServiceDescription: string { read-only } 1.7 open

DeviceServiceVersion: int32 { read-only } 1.7 open

PhysicalDeviceDescription: string { read-only } 1.7 open

PhysicalDeviceName: string { read-only } 1.7 open

Timeout: int32 { read-write } 1.7 open & enable

Motion: boolean { read-only } 1.7 open & enable
Unified POS, v1.16.1 799

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.7

close ():
void { raises-exception, use after open }

1.7

claim (timeout: int32):
void { raises-exception, use after open }

1.7

release ():
void { raises-exception, use after open, claim }

1.7

checkHealth (level: int32):
void { raises-exception, use after open, enable }

1.7

clearInput ():
void { }

Not supported

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.7

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific

Name

waitForMotion(timeout: int32): 
void { raises-exception, use after open, enable }

1.7
800 Unified POS, v1.16.1

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.7

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.7

 Status: int32 { read-only }
Unified POS, v1.16.1 801

25.3 General Information

The Motion Sensor programmatic name is “MotionSensor.”

25.3.1 Capabilities

The Motion Sensor has the following minimal set of capabilities:

• Supports detection of person present at POS device

• Supports reporting of motion detection changes, either by hardware or software detection.

25.3.2 Motion Sensor Class Diagram

The following diagram shows the relationships between the Motion Sensor classes.

UposException
(from upos)

<<exception>> UposConst
(from upos)

<<utility>>

BaseControl
(from upos)

<<Interface>>
<<uses>>

<<sends>>

MotionSensorConst
<<utility>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>> MotionSensorControl
<<prop>> Mot ion : boolean
<<prop>> Timeout : int32

waitForMotion(timeout : int32) : void

<<Interface>>
<<uses>>

f ires

<<sends>>

StatusUpdateEvent

<<prop>> Status : int32
(from events)

<<event>>
802 Unified POS, v1.16.1

25.3.3 Model

The Motion Sensor defines two Motion Sensor indications as constants. It is assumed that the Motion Sensor
supports present and absent indications. The constants for these Motion Sensor positions and their values are as
follows:

• MOTION_M_PRESENT1

• MOTION_M_ABSENT2

StatusUpdateEvents are fired using the above values. The Timeout value is used to set the number of
milliseconds between the last time someone was present and a MOTION_M_ABSENT StatusUpdateEvent
being fired.

25.3.4 Device Sharing

The Motion Sensor is a sharable device. Its device sharing rules are:

• After opening and enabling the device, the application may access all properties and methods and will receive
status update events.

• If more than one application has opened and enabled the device, each of these applications may access its
properties and methods. Status update events are fired to all of these applications.

• The Motion Sensor may not be claimed for exclusive access. Therefore, if an application calls claim or
release, these methods will always raise a UposException.

• See the “Summary” table for precise usage prerequisites.
Unified POS, v1.16.1 803

25.3.5 Motion Sensor Sequence Diagram

The following sequence diagram shows the typical usage of the Motion Sensor device.

:ClientApp1:ClientApp0 ms0:MotionSensor ms1:MotionSensor :StatusUpdate
Event

:MotionSensor
Service0

:MotionSensor
Service1

:MotionSensor
Hardware

:Operator

Note: we are assuming that the :ClientApp0 already successfully opened the controls. This means that the platform specific loading/config/creation
code executed successfully. We are also assuming that the :ClientApp has registered event handlers with the control instance.

1: setDeviceEnabled(true) 2: setDeviceEnabled(true)

3: service will need to update itself of current Keylock position

4: getMotion() 5: getMotion()

Current "Motion" position
is returned to the control

6: Operator steps within Motion Detection range
7: notify MotionSensor Service of change

8: deliver SUE to control [FreezeEvents == false]

9: deliver event to all registered handlers
10: notify client of new event

11: create and register an event handler with control

12: open(logicalName) 13: open(logical Name)

14: setDeviceEnabled(true) 15: setDeviceEnabled(true)

16: Operator steps within Motion Detection rang
17: notify service of change

18: deliver SUE to control [FreezeEvents == false]

19: deliver event to all registered handlers

21: notify service of change

Actual order of
delivery from
hardware to service
might vary

22: deliver SUE to control [FreezeEvents == false]

23: deliver events to all registered listeners

20: notify client of new event

24: notify client of new event

25: claim(timeout)
26: claim(t imeout)

27: throws UposException to :ClientApp since Motion Sensor cannot be claimed
804 Unified POS, v1.16.1

25.3.6 Motion Sensor State Diagram

The following state diagram depicts the Motion Sensor Control device model.

Closed Openedopen()

close()

Enabled

close()

Motion Detection

Operator Absent

Enqueue Status
Update Event

Motion Detected

Operator in
Range

Timer
Running

enqueue Status
Update Event

setDeviceEnabled(true)
setDeviceEnabled(false)

Operator Absent

Enqueue Status
Update Event

Motion Detected

Operator in
Range

Timer
Running

enqueue Status
Update Event

Operator in
Range

Timer
Running

enqueue Status
Update Event

Operator Detected

Start Timer

Reset Timer
Keep checking

Operator out of range

Timer Expired

Enqueue Status
Update Event

Timer expired
Unified POS, v1.16.1 805

25.4 Properties (UML attributes)

25.4.1 Motion Property

Syntax Motion: boolean { read-only, access after open-enable }

Remarks Holds a boolean value that indicates whether motion has been detected. This property is initialized and
kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

25.4.2 Timeout Property

Syntax Timeout: int32 { read-write, access after open-enable }

Remarks Holds a value that indicates the number of milliseconds from the last time motion was detected until the
StatusUpdateEvent of MOTION_M_ABSENT is fired.

This property needs to be application specific for a shared device. If several applications are sharing the
device, each application may set an independent timeout value, and each application will receive
StatusUpdateEvents according to its supplied timeout.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also StatusUpdateEvent
806 Unified POS, v1.16.1

25.5 Methods (UML operations)

25.5.1 waitForMotion Method

Syntax waitForMotion (timeout: int32): 
 void { raises-exception, use after open-enable }

Parameter Description
timeout Maximum number of milliseconds for the Motion Sensor to wait for a

person to be present before returning control back to the application.
If zero, the method returns immediately.

If FOREVER (-1), the method waits as long as needed until motion is
detected or an error occurs.

Remarks Waits for a presence detection from the Motion Sensor.

If the Motion Sensor detects someone is present, then the method returns immediately.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_TIMEOUT The timeout period expired before motion was detected.
Unified POS, v1.16.1 807

25.6 Events (UML interfaces)

25.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Motion Sensor Service to provide events to the application that are not otherwise supported by
the Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This property is settable.

Obj Object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Motion
Sensor devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method
808 Unified POS, v1.16.1

25.6.2 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application when the Motion Sensor detects a change.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 The status of the Motion Sensor.

The Status attribute has one of the following values:

Value Description
MOTION_M_PRESENT Motion Sensor has detected someone is present. Value is one (1).

MOTION_M_ABSENT Motion Sensor has detected no one has been present for the number of
milliseconds specified in Timeout. Value is two (2).


Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 2.

Remarks This event is enqueued when a Motion Sensor detection undergoes a change or if Power State Reporting
is enabled and a change in the power state is detected.

See Also Timeout Property, “Events” on page 15.
Unified POS, v1.16.1 809

810 Unified POS, v1.16.1

26 MSR - Magnetic Stripe Reader

26.1 General

This Chapter defines the Magnetic Stripe Reader device category.

26.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.2 open

CapCompareFirmwareVersion: boolean { read-only } 1.9 open

CapPowerReporting: int32 { read-only } 1.3 open

CapStatisticsReporting: boolean { read-only } 1.8 open

CapUpdateFirmware: boolean { read-only } 1.9 open

CapUpdateStatistics: boolean { read-only } 1.8 open

CheckHealthText: string { read-only } 1.0 open

Claimed: boolean { read-only } 1.0 open

DataCount: int32 { read-only } 1.2 open

DataEventEnabled: boolean { read-write } 1.0 open

DeviceEnabled: boolean { read-write } 1.0 open & claim

FreezeEvents: boolean { read-write } 1.0 open

OutputID: int32 { read-only } 1.0 Not supported

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --

DeviceControlVersion: int32 { read-only } 1.0 --

DeviceServiceDescription: string { read-only } 1.0 open

DeviceServiceVersion: int32 { read-only } 1.0 open

PhysicalDeviceDescription: string { read-only } 1.0 open

PhysicalDeviceName: string { read-only } 1.0 open
Unified POS, v1.16.1 811

Properties (Continued)

Specific Type Mutability Version May Use After

CapCardAuthentication: string { read-only } 1.12 open

CapDataEncryption: int32 { read-only } 1.12 open

CapDeviceAuthentication: int32 { read-only } 1.12 open

CapISO: boolean { read-only } 1.0 open

CapJISOne: boolean { read-only } 1.0 open

CapJISTwo: boolean { read-only } 1.0 open

CapTrackDataMasking: boolean { read-only } 1.12 open

CapTransmitSentinels: boolean { read-only } 1.5 open

CapWritableTracks: int32 { read-only } 1.10 open

AccountNumber: string { read-only } 1.0 open

AdditionalSecurityInformation: binary { read-only } 1.12 open

CardAuthenticationData: binary { read-only } 1.12 open

CardAuthenticationDataLength: int32 { read-only } 1.12 open

CardPropertyList: string { read-only } 1.12 open

CardType: string { read-only } 1.12 open

CardTypeList: string { read-only } 1.12 open

DataEncryptionAlgorithm: int32 { read-write } 1.12 open & claim

DecodeData: boolean { read-write } 1.0 open

DeviceAuthenticated: boolean { read-only } 1.12 open, claim, & enable

DeviceAuthenticationProtocol: int32 { read-only } 1.12 open

EncodingMaxLength: int32 { read-only } 1.10 open, claim, & enable

ErrorReportingType: int32 { read-write } 1.2 open

ExpirationDate: string { read-only } 1.0 open

FirstName: string { read-only } 1.0 open

MiddleInitial: string { read-only } 1.0 open

ParseDecodeData: boolean { read-write } 1.0 open

ServiceCode: string { read-only } 1.0 open

Suffix: string { read-only } 1.0 open

Surname: string { read-only } 1.0 open

Title: string { read-only } 1.0 open

Track1Data: binary { read-only } 1.0 open

Track1DiscretionaryData: binary { read-only } 1.0 open

Track1EncryptedData: binary { read-only } 1.12 open

Track1EncryptedDataLength: int32 { read-only } 1.12 open

Track2Data: binary { read-only } 1.0 open

Track2DiscretionaryData: binary { read-only } 1.0 open
812 Unified POS, v1.16.1

Track2EncryptedData: binary { read-only } 1.12 open

Track2EncryptedDataLength: int32 { read-only } 1.12 open

Track3Data: binary { read-only } 1.0 open

Track3EncryptedData: binary { read-only } 1.12 open

Track3EncryptedDataLength: int32 { read-only } 1.12 open

Track4Data: binary { read-only } 1.5 open

Track4EncryptedData: binary { read-only } 1.12 open

Track4EncryptedDataLength: int32 { read-only } 1.12 open

TracksToRead: int32 { read-write } 1.0 open

TracksToWrite: int32 { read-write } 1.10 open, claim, & enable

TransmitSentinels: boolean { read-write } 1.5 open

WriteCardType: string { read-write } 1.12 open

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open }

1.0

release ():
void { raises-exception, use after open, claim }

1.0

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.0

clearInput ():
void { raises-exception, use after open, claim }

1.0

clearInputProperties ():
void { raises-exception, use after open, claim }

1.10

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.0

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8
Unified POS, v1.16.1 813

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

Specific
authenticateDevice (response: binary):

void { raises-exception, use after open, claim, enable }
1.12

deauthenticateDevice (response: binary):
void { raises-exception, use after open, claim, enable }

1.12

retrieveCardProperty (name: string, out value: string):
void { raises-exception, use after open, claim }

1.12

retrieveDeviceAuthenticationData (inout challenge: binary):
void { raises-exception, use after open, claim, enable }

1.12

updateKey (key: string, keyName: string):
void { raises-exception, use after open, claim, enable }

1.12

writeTracks (data: array of binary, timeout: int32):
void { raises-exception, use after open, claim, enable }

1.10

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent 1.0

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.0

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.0

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.3

 Status: int32 { read-only }
814 Unified POS, v1.16.1

26.3 General Information

The Magnetic Stripe Reader programmatic name is “MSR.”

26.3.1 Capabilities Updated in Release 1.12

The MSR device class supports attachment of a card reader to provide input to the application from a card
inserted (swiped) through the reader. The targeted environment is electronic funds data such as an account
number, customer name, etc. from a magnetically encoded credit and/or debit card.

The MSR Control has the following minimal set of capabilities:

• Reads encoded data from a magnetic stripe. Data is obtainable from any combination of ISO or JIS-I tracks
1,2, 3, and JIS-II.

• Supports decoding of the alphanumeric data bytes into their corresponding alphanumeric codes. Furthermore,
this decoded alphanumeric data may be divided into specific fields accessed as device properties.

The MSR Control may have the following additional capabilities:

• Support for specific card types: ISO, JIS Type I and/or JIS Type II. Note: for the purpose of this standard, the
following convention is assumed:

• Track 1 is ISO or JIS-I Track 1

• Track 2 is ISO or JIS-I Track 2

• Track 3 is ISO or JIS-I Track 3

• Track 4 is JIS-II data

• Determination of the type of card is based on the type of content the card tracks are expected to hold.

• Support for optionally returning the track sentinels with track data.

• Support for writing data to the MSR track(s).

• Supports the reading of driver licenses and other cards formatted according to the AAMVA specification. This
specification can be downloaded from the following web site: https://www.aamva.org/.

• Support for returning track data in an encrypted format to prevent the loss of potentially sensitive card holder
information.

• Support for returning masked track data to the application when the track data is encrypted.

• Support for returning a card authentication data for the purpose of determining if the swiped card is the original
or a duplicate.

• Support for device/host based mutual authentication for the purpose of detecting and preventing phishing/man-
in-the-middle attacks.
Unified POS, v1.16.1 815

http://www.aamva.org/
http://www.aamva.org/

26.3.1.1 Clarifications for JIS-II Data Handling

Prior to Version 1.5 of this specification, it was not clearly stated how the Control should treat JIS-II data and
into which of the TracknData properties the data should be stored. This version of the specification defines
Track4Data, which the Control should use to store JIS-II data. However, in order to maintain application
backward compatibility with previous versions, the Control may also store the JIS-II data into the previously
used TracknData property. In such cases, the DataEvent Status and the ErrorEvent ErrorCodeExtended
attributes should be set to reflect both Track4Data and TracknData. Note that applications that use this
particular method of accessing JIS-II data may not be portable across Controls.
816 Unified POS, v1.16.1

26.3.2 MSR Class Diagram Updated in Release 1.12

The following diagram shows the relationships between the MSR classes.

MSRConst
(from upos)

<<utility>>

DataEvent
(from events)

<<event>>

DirectIOEvent
(from events)

<<event>>

ErrorEvent
(from events)

<<event>>

StatusUpdateEvent
(from events)

<<event>>

MSRControl

<<capability>> CapCardAuthentication : string
<<capability>> CapDataEncryption : int32
<<capability>> CapDeviceAuthentication : int32
<<capability>> CapISO : boolean
<<capability>> CapJISOne : boolean
<<capability>> CapJISTwo : boolean
<<capability>> CapTrackDataMasking : boolean
<<capability>> CapTransmitSentinels : boolean
<<capability>> CapWritableTracks : int32
<<prop>> AccountNumber : string
<<prop>> AdditionalSecurityInformation : binary
<<prop>> CardAuthenticationData : binary
<<prop>> CardAuthenticationDataLength : int32
<<prop>> CardPropertyList : string
<<prop>> CardType : string
<<prop>> CardTypeList : string
<<prop>> DataEncryptionAlgorithm : int32
<<prop>> DecodeData : boolean
<<prop>> DeviceAuthenticated : boolean
<<prop>> DeviceAuthenticationProtocol : int32
<<prop>> EncodingMaxLength : int32
<<prop>> ErrorReportingType : int32
<<prop>> ExpirationDate : string
<<prop>> FirstName : string
<<prop>> MiddleInitial : string
<<prop>> ParseDecodeData : boolean
<<prop>> ServiceCode : string
<<prop>> Suffix : string
<<prop>> Surname : string
<<prop>> Title : string
<<prop>> Track1Data : binary
<<prop>> Track1DiscretionaryData : binary
<<prop>> Track1EncryptedData : binary
<<prop>> Track1EncryptedDataLength : int32
<<prop>> Track2Data : binary
<<prop>> Track2DiscretionaryData : binary
<<prop>> Track2EncryptedData : binary
<<prop>> Track2EncryptedDataLength : int32
<<prop>> Track3Data : binary
<<prop>> Track3EncryptedData : binary
<<prop>> Track3EncryptedDataLength : int32
<<prop>> Track4Data : binary
<<prop>> Track4EncryptedData : binary
<<prop>> Track4EncryptedDataLength : int32
<<prop>> TracksToRead : int32
<<prop>> TracksToWrite : int32
<<prop>> TransmitSentinels : boolean
<<prop>> WriteCardType : string

authenticateDevice(response : binary) : void
deauthenticateDevice(response : binary) : void
retrieveCardProperty(name : string, inout value : string) : void
retrieveDeviceAuthenticationData(inout challenge : binary) : void
updateKey(key : string, keyName : string) : void
writeTracks(data : array of binary, timeout : int32) : void

(from upos)

<<Interface>>

fires

fires

fires

fires

<<uses>>

UposConst
(from upos)

<<utility>>
BaseControl

(from upos)

<<Interface>><<uses>>

UposException
(from upos)

<<exception>>

<<sends>>

<<sends>>
Unified POS, v1.16.1 817

26.3.3 Device Behavior Model Updated in Release 1.12

The general device behavior model of the MSR is:

• Five unique writable properties control MSR data handling:

• The TracksToRead property controls which combination of the tracks should be read. It is not an error to
swipe a card containing less than this set of tracks. Rather, this property should be set to the set of tracks that
the application may need to process.

• The DecodeData property controls decoding of track data from raw into displayable data.

• The ParseDecodeData property controls parsing of decoded data into fields, based on common MSR
standards.

• The ErrorReportingType property controls the type of handling that occurs when a track containing invalid
data is read.

• The DataEncryptionAlgorithm property controls the type of encryption (if any) that the device should use.

26.3.3.1 Input MSR Updated in Release 1.12

The MSR follows the general “Device Input Model” for event-driven input:

• When input is received from the card reader generated by the card swipe, a DataEvent is enqueued.

• If the AutoDisable property is true, the device will automatically disable itself when a DataEvent is
enqueued.

• An enqueued DataEvent can be delivered to the application when the DataEventEnabled property is true and
other event delivery requirements are met. Just before delivering this event, data is copied into corresponding
properties, and further data events are disabled by setting the DataEventEnabled property to false. This
causes subsequent input data to be enqueued while the application processes the current input and associated
properties. When the application has finished the current input and is ready for more data, it re-enables events
by setting DataEventEnabled to true.

• An ErrorEvent or events are enqueued if an error is encountered while gathering or processing input, and are
delivered to the application when the DataEventEnabled property is true and other event delivery
requirements are met.

• The DataCount property can be read to obtain the total number of data events enqueued.

• Queued input may be deleted by calling the clearInput method. See the clearInput method description for
more details.

• All data properties that are populated as a result of firing a DataEvent or ErrorEvent can be set back to their
default values by calling the clearInputProperties method.

• If the CapDeviceAuthentication property is set to MSR_DA_REQUIRED, the device will only enqueue
input data from a card swipe when the device is in the authenticated state (DeviceAuthenticated is true). The
device can be put in the authenticated state by calling the authenticateDevice method.
818 Unified POS, v1.16.1

26.3.3.2 Output - MSR Added in Release 1.10

• To write data to a track, the application calls the writeTracks method. The ability to write data depends upon
the capabilities of the device.

• The writeTracks method is always performed synchronously.
Unified POS, v1.16.1 819

26.3.4 MSR Encryption and Authentication Updated in Release 1.14

Encryption - MSR

In response to increased fraudulent activity and to protect their customers (cardholders), card issuers have placed
requirements (e.g., the Payment Card Industry Data Security Standards, PCI DSS) upon merchants, acquirers,
processors, vendors, and others who handle cardholders data.

To better assist retailers to meet these requirements and help prevent fraud, MSR card readers may have the
capability to encrypt the card data and authenticate the card being read. Encrypting the card data before it leaves
the card reader removes any opportunity to obtain the card data for fraudulent use. The encrypted sensitive
account data is never usable unless the viewer of the data has the necessary key to decrypt the data.

Device authentication provides the ability for the application to validate that it is interfacing with a legitimate
MSR card reader and for the MSR to validate a legitimate application interface.

This standard provides for implementation of different usage scenarios related to interfacing with devices that
support encryption of the MSR data read from a card. At a basic level the options are:

• Only Encrypted data returned

• Encrypted and Unencrypted (masked) data returned

• Encrypted and Unencrypted (parsed, masked data) returned


To support encryption of card data, these additional capabilities, properties, and methods have been added in the
MSR device category:

Capabilities Properties Methods

CapDataEncryption AdditionalSecurityInformation UpdateKey

CapTrackDataMasking DataEncryptionAlgorithm

Track1EncryptedData

Track1EncryptedDataLength

Track2EncryptedData

Track2EncryptedDataLength

Track3EncryptedData

Track3EncryptedDataLength
820 Unified POS, v1.16.1

Encryption Usage Model

Encryption can be supported at either the service (software) or device (hardware) level. Where the encryption will
take place is transparent to the application.

• Data Encryption -- The MSR device is in the encrypted mode if the CapDataEncryption property is not set
to MSR_DE_NONE and the DataEncryptionAlgorithm property is set to a device supported encryption
algorithm when the application opens and claims the device. This standard specifically requires that account
masking must be supported if any unencrypted track data is available for return to the application. This
requirement applies to hardware or software based encryption methods. 

Note: The standard does not require hardware encryption devices to provide unencrypted data.

• Parsed Track Data (in the clear) -- Unencrypted data can be provided for use by the application. The
standard provides for the application to request parsed information. When the ParseDecodeData property is
true, the decoded data contained within the Track1Data and Track2Data properties is further separated into
fields for access via various other properties.

• Masking supported -- The property CapTrackDataMasking is set to true if the device supports returning
unencrypted data. The unencrypted, masked track data will be returned in the TrackXData properties. The
exact fields and level of masking applied is manufacturer specific. This allows existing applications to
integrate with encrypting devices with minimal changes.

The updateKey method is used to provide a new encryption key to the device. It is used only for those
encryption algorithms in which new key values are sent to the terminal as a field in standard messages from
the host.
Unified POS, v1.16.1 821

Authentication - MSR

The threat of device and/or application spoofing facilitates the need for mutual authentication between devices
and applications. By authenticating a device, both the application and the device can be sure they are connected
to the authentic entity and not one that may have been replaced by a malicious user.

To facilitate the authentication feature, these additional capabilities, properties, and methods have been added in
the MSR device category:

Authentication Usage Model

The retrieveDeviceAuthenticationData method is used by the application to retrieve a token from the device
that is to be used to authenticate the device. This token represents a challenge token that is typically passed to a
third entity that has knowledge of a shared secret and is able to create a properly formed response token. The
application then calls the authenticateDevice method and passes the response token, at which time the device
validates the response and either enters the activated state or returns an error if the response token is invalid.
Devices that require authentication (see CapDeviceAuthentication) will not be functional until they enter the
authenticated state.

In the MSR case, this means that the device will only return card data to the application when it is in the
authenticated state. Swiping a card on a device that is not in the authenticated state will not enqueue a DataEvent.

26.3.5 Device Sharing

The MSR is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before the device begins reading input, or before calling
methods that manipulate the device.

• See the “Summary” table for precise usage prerequisites.

Capabilities Properties Methods

CapDeviceAuthentication DeviceAuthenticated authenticateDevice

DeviceAuthenticationProtocol deauthenticateDevice

retrieveDeviceAuthenticationData
822 Unified POS, v1.16.1

26.3.6 MSR Sequence Diagram Updated in Release 1.8

The following sequence diagram shows the typical usage of an MSR device.

:ClientApp :MSRControl :MSRService

 : Operator

:DataEvent

5: claim(timeoutValue)

1: setAutoDisable(true)

2: setAutoDisable(true)

6: claim(timeoutValue)
7: try to claim for exclusive use

If timeoutValue expires then
raise a UposException with
E_TIMEOUT error code

8: setDeviceEnabled(true)
9: setDeviceEnabled(true)

10: be ready for input from device

3: setDataEventEnabled(true) 4: setDataEventEnabled(true)

NOTE: we are assuming that the :ClientApp(s) already successfully registered to receive events and opened the controls. This
means that the platform specific loading/configuration/creation code executed successfully.

11: successful card swiped

Right before the DataEvent is
delivered set DataEventEnabled
to false and DataCount-- .

12: input received [DataEventEnabled == true]

13: data decoding and parse data [DecodeData == true && ParseDecodeData == true]

14: create DataEvent

15: set DeviceEnabled property to false [AutoDisable == true]

16: DataCount++ and enqueue event for delivery

17: set parsed data properties and deliver DataEvent [DataEventEnabled == true && FreezeEvents == false]

18: deliver event to all registered handlers
19: notify client of new event
Unified POS, v1.16.1 823

26.3.7 MSR Device Authentication Sequence Diagram Added in Release 1.12

The following sequence diagram shows the typical usage of an MSR device during the device authentication
process.

:ClientApp :MSRControl :MSRService :MSRDevice

1: setDeviceEnabled(true)

2: setDeviceEnabled(true)

3: retrieveDeviceAuthenticationData()

4: retrieveDeviceAuthenticationData()

5:

Service retrieves a challenge token from
the device and returns it to the
application. The challenge token is
typically encrypted with an encryption
key stored in the hardware.

6:

7:

8:

9:
A response token is generated
from the challenge token. This is
typically performed by an external
security module with knowledge of
the encryption key

10: authenticateDevice(responseToken)

11: authenticateDevice(responseToken)

12:

13:

The response token is validated by the
device and the device enters the
authenticated state. At this time, the
device is active and will report card
swipes to the service until it exits the
authenticated state.

Service sets DeviceAuthenticated property to
true and enqueues a Status Update Event with
status = SUE_DEVICE_AUTHENTICATED

14: deAuthenticateDevice(responseToken)

15: deAuthenticateDevice(responseToken)

16:

17:

The response token is validated by the device and the
device exits the authenticated state. At this time, the
device will no longer report card swipes to the service.

Service sets DeviceAuthenticated property to false
and enqueues a Status Update Event with status =
SUE_DEVICE_DEAUTHENTICATED
824 Unified POS, v1.16.1

26.3.8 MSR State Diagrams

The following state diagrams depict the MSR Control device model.

Error Occurred

entry/ { DataEventEnabled = false, enqueue ErrorEvent, State = UPOS_S_ERROR }

open, claim &
enable

ClearInput Processing

entry/ { DataCount = 0, empty data queue }

done clearing input

Event Processing

done delivering error event

user input[DeviceEnabled == true]

user input[DeviceEnabled == false]

clearInput()

error

The details of
the "Event
Processing"
state are
describe in a
separate
diagram below
Unified POS, v1.16.1 825

Event Processing

Processing input

enqueue DataEvent

entry/ { increase DataCount }

Disable

entry/ {DeviceEnabled = false}

Event Delivering

Pre-processing

entry/ {DataEventEnabled = false}

Process Data

Parse Data
Deliver DataEvent to Listeners

entry/ [decrement DataCount]

Processing input

enqueue DataEvent

entry/ { increase DataCount }

Disable

entry/ {DeviceEnabled = false}

Event Delivering

Pre-processing

entry/ {DataEventEnabled = false}

Process Data

Parse Data
Deliver DataEvent to Listeners

entry/ [decrement DataCount]

enqueue DataEvent

entry/ { increase DataCount }

Disable

entry/ {DeviceEnabled = false}

Pre-processing

entry/ {DataEventEnabled = false}

Process Data

Parse Data
Deliver DataEvent to Listeners

entry/ [decrement DataCount]

Parse Data

[DataEventEnabled == false and DataCount > 0]

[DataCount > 0 and DataEventEnabled == true]

[AutoDisable == true]

[DecodeData == true]

done processing

[DecodeData == false]

[ParseDecodeData == true]
826 Unified POS, v1.16.1

26.4 Properties (UML attributes)

26.4.1 AccountNumber Property Updated in Release 1.13

Syntax AccountNumber: string { read-only, access after open }

Remarks Holds the account number obtained from the most recently swiped card.

This property is initialized to the empty string if:
• The field was not included in the track data obtained, or,
• The track data format was not one of those listed in the ParseDecodeData property description,
• DataEncryptionAlgorithm is not MSR_DE_NONE and CapTrackDataMasking is false, or,
• ParseDecodeData is false.

This property may contain masked data if DataEncryptionAlgorithm is not MSR_DE_NONE and
CapTrackDataMasking is true. When the AccountNumber property is masked, it may be partially or
fully masked as determined by the device. It is often useful to keep the last four digits unmasked as this
allows applications to include these digits on receipts and transactions to help identify the card that was
used. Additionally, it is sometimes useful to keep the first four digits unmasked for use by routing and
processing software. The remaining digits would usually be masked to help prevent fraudulent usage.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also DataEncryptionAlgorithm Property, ParseDecodeData Property, CapTrackDataMasking Property.

26.4.2 AdditionalSecurityInformation Property Added in Release 1.12

Syntax AdditionalSecurityInformation: binary { read-only, access after open }

Remarks Holds additional security/encryption information when a DataEvent is delivered.

The information content and internal format of this property will vary among encryption algorithms. For
example, if the encryption algorithm is DUKPT, then this property will contain the “DUKPT sequence
number.” If the selected encryption algorithm does not require this property, its value will be set to
empty.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapDataEncryption Property, DataEncryptionAlgorithm Property.
Unified POS, v1.16.1 827

26.4.3 CapCardAuthentication Property Added in Release 1.12

Syntax CapCardAuthentication: string { read-only, access after open }

Remarks Holds the type, if any, of card authentication data that is supported by the device. If it contains an empty
string, the device does not support authentication data and the CardAuthenticationData property will
be empty. Otherwise, the service supports card authentication data via the CardAuthenticationData
property when a DataEvent is delivered.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CardAuthenticationData Property.

26.4.4 CapDataEncryption Property Added in Release 1.12

Syntax CapDataEncryption: int32 { read-only, access after open }

Remarks Holds a bitwise indication of the encryption algorithms supported by the device and selectable via the
DataEncryptionAlgorithm property.

Value Meaning
MSR_DE_NONE Data encryption is not enabled. If the DataEncryptionAlgorithm

property is also set to this value, then the TrackXData and parsed
properties will contain unencrypted data.

MSR_DE_3DEA_DUKPT
 Derived Unique Key Per Transaction (USA, Latin America) using Triple

DEA encryption (commonly called Triple DES) based on ANS X9.24-
2004.

Other Values Values 0x01000000 and above are reserved for additional encryption
algorithms supported by the Service.

The inclusion of the setting MSR_DE_NONE does not necessarily mean that data encryption is not
supported, but rather that the Service supports returning unencrypted data.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also DataEncryptionAlgorithm Property, TrackXEncryptedData Property, updateKey Method.
828 Unified POS, v1.16.1

26.4.5 CapDeviceAuthentication Property Added in Release 1.12

Syntax CapDeviceAuthentication: int32 { read-only, access after open }

Remarks Holds the level of device authentication supported by the service. If device authentication is supported,
the service must keep the value of DeviceAuthenticated current when the device is enabled. The service
should also enqueue a StatusUpdateEvent with status value set to
MSR_SUE_DEVICE_AUTHENTICATED or MSR_SUE_DEVICE_DEAUTHENTICATED when the
authentication status changes.

Value Meaning
MSR_DA_NOT_SUPPORTED

The service does not support device authentication.
MSR_DA_OPTIONAL The service supports device authentication, but does not require it.
MSR_DA_REQUIRED The service requires device authentication.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also DeviceAuthenticationProtocol Property, DeviceAuthenticated Property, authenticateDevice
Method, deauthenticateDevice Method, retrieveDeviceAuthenticationData Method.

26.4.6 CapISO Property

Syntax CapISO: boolean { read-only, access after open }

Remarks If true, the MSR device supports ISO cards.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

26.4.7 CapJISOne Property

Syntax CapJISOne: boolean { read-only, access after open }

Remarks If true, the MSR device supports JIS Type-I cards.

JIS-I cards are a superset of ISO cards. Therefore, if CapJISOne is true, then it is implied that CapISO
is also true.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 829

26.4.8 CapJISTwo Property

Syntax CapJISTwo: boolean { read-only, access after open }

Remarks If true, the MSR device supports JIS type-II cards.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

26.4.9 CapTrackDataMasking Property Updated in Release 1.13

Syntax CapTrackDataMasking: boolean { read-only, access after open }

Remarks This value will be true if the Service is capable of masking track data. When true and encryption is
enabled (via DataEncryptionAlgorithm), the Service will mask the track data, so that the TrackXData
properties and the parsed track data properties will contain masked data.

The exact fields and level of masking applied is manufacturer device specific. Devices may provide the
ability to control the level of masking by using the directIO method; however, it is recommended that
the minimal masking applied be sufficient to prevent the reconstruction of the track data and the account
number. A device may provide certain data fields, such as FirstName, MiddleInitial, Title, Surname,
and ExpirationDate in the “clear” in order to provide sufficient data to the application for processing.
Additionally, a device may only partially mask the AccountNumber (see AccountNumber property for
more information.)

CapTrackDataMasking can only be true if the device supports data encryption, that is, if
CapDataEncryption is not equal to MSR_DE_NONE.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapDataEncryption Property, DataEncryptionAlgorithm Property, TrackXData Properties,
ParseDecodeData Property, directIO Method.

26.4.10 CapTransmitSentinels Property Added in Release 1.5

Syntax CapTransmitSentinels: boolean { read-only, access after open }

Remarks If true, the device is able to transmit the start and end sentinels.
If false, these characters cannot be returned to the application.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also TransmitSentinels Property.
830 Unified POS, v1.16.1

26.4.11 CapWritableTracks Property Added in Release 1.10

Syntax CapWritableTracks: int32 { read-only, access after open }

Remarks This capability indicates if the MSR device supports the writing of track data - and which tracks are
supported - or if this functionality is not supported. For example, if set to MSR_TR_1_2_3 then the MSR
device supports writing to tracks 1, 2, and 3; if set to MSR_TR_NONE then writing to MSR tracks is not
supported.

Value Meaning
MSR_TR_NONE The MSR does not support writing track data.
MSR_TR_1 Track 1 is writable.
MSR_TR_2 Track 2 is writable.
MSR_TR_3 Track 3 is writable.
MSR_TR_1_2 Tracks 1 and 2 are writable.
MSR_TR_1_3 Tracks 1 and 3 are writable.
MSR_TR_2_3 Tracks 2 and 3 are writable.
MSR_TR_1_2_3 Tracks 1, 2, and 3 are writable.
MSR_TR_4 Track 4 is writable.
MSR_TR_1_4 Tracks 1 and 4 are writable.
MSR_TR_2_4 Tracks 2 and 4 are writable.
MSR_TR_3_4 Tracks 3 and 4 are writable.
MSR_TR_1_2_4 Tracks 1, 2, and 4 are writable.
MSR_TR_1_3_4 Tracks 1, 3, and 4 are writable.
MSR_TR_2_3_4 Tracks 2, 3, and 4 are writable.
MSR_TR_1_2_3_4 Tracks 1, 2, 3, and 4 are writable.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also TracksToWrite Property.

26.4.12 CardAuthenticationData Property Added in Release 1.12

Syntax CardAuthenticationData: binary { read-only, access after open }

Remarks Holds card authentication information when a DataEvent is delivered.

The information content and internal format of this property will vary among services and depends on
the value of the CapCardAuthentication property. This property will be empty if
CapCardAuthentication is an empty string. Otherwise, the value of this property will be encrypted via
the encryption algorithm contained in the DataEncryptionAlgorithm property. The length of the raw
(unencrypted) value of this property is contained in the CardAuthenticationDataLength property.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapCardAuthentication Property, CardAuthenticationDataLength Property,
DataEncryptionAlgorithm Property.
Unified POS, v1.16.1 831

26.4.13 CardAuthenticationDataLength Property Updated in Release 1.13

Syntax CardAuthenticationDataLength: int32 { read-only, access after open }

Remarks This property will be zero if CapCardAuthentication is an empty string. Otherwise, holds the length of
the raw CardAuthenticationData before it was encrypted. Many encryption algorithms require padding
of the input data before it can be encrypted. This property contains the length of the original unpadded
data before it is encrypted. It may be needed to restore the original data after decryption

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapCardAuthentication Property, CardAuthenticationData Property.

26.4.14 CardPropertyList Property Added in Release 1.12

Syntax CardPropertyList: string { read-only, access after open }

Remarks Holds a comma separated list of the names of the properties parsed from the most recently swiped card.
The values of these properties are allowed to be empty.

This property is initialized to an empty string if:

• The type of card swiped was not recognized, or
• ParseDecodeData is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also ParseDecodeData Property.

26.4.15 CardType Property Added in Release 1.12

Syntax CardType: string { read-only, access after open }

Remarks Holds the card type identifier for the most recently swiped card. If the card's format is not recognized,
this property will be empty. If this property's value begins with an underscore ('_'), the card type is vendor
specific. If this property does not begin with an underscore, the card type is one of the standard card types.
The following list shows all currently defined standard card types:

• “BANK” Bank credit/debit card
• “AAMVA” American & Canadian Driver's License or ID Card

This property is initialized to empty by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
832 Unified POS, v1.16.1

26.4.16 CardTypeList Property Added in Release 1.12

Syntax CardTypeList: string { read-only, access after open }

Remarks Holds a comma separated list of string names of card types supported by the Service. The vendor is
allowed to support non-standard card type by specifying names beginning with an underscore ('_'). All
names not beginning with an underscore are considered to be standard card types. The following list
shows all currently defined standard card types:

• “BANK” Bank credit/debit card
• “AAMVA” American & Canadian Driver's License or ID Card

For bank cards, the following properties are parsed and can be accessed through the
retrieveCardProperty method:

• “AccountNumber”
• “ExpirationDate”
• “FirstName”
• “MiddleInitial”
• “ServiceCode”
• “Suffix”
• “Surname”
• “Title”

For AAMVA driver's licenses and ID cards, the following properties are parsed and can be accessed
through the retrieveCardProperty method:

• “Address”
• “BirthDate”
• “City”
• “Class”
• “Endorsements”
• “ExpirationDate”
• “EyeColor”
• “FirstName”
• “Gender”
• “HairColor”
• “Height”
• “LicenseNumber”
• “PostalCode”
• “Restrictions”
• “State”
• “Suffix”
• “Surname”
• “Weight”

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also ParseDecodeData property.
Unified POS, v1.16.1 833

26.4.17 DataEncryptionAlgorithm Property Added in Release 1.12

Syntax DataEncryptionAlgorithm: int32 {read-write, access after open-claim}

Remarks Holds the encryption algorithm that will be used to encrypt the track data. This property may be set to
one of the supported encryption algorithms as defined in the CapDataEncryption property. However,
for security reasons, a Service (or the device itself) may restrict the set of values that an application may
select.

Note: This property can only be updated when the device is opened and claimed,but not enabled.

This property is initialized by the open method. For devices that support encryption, this property may
be initialized to any value given by CapDataEncryption.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The service does not support the specified encryption algorithm or the device

is currently enabled.

See Also CapDataEncryption Property, TrackXEncryptedData Property, updateKey Method.
834 Unified POS, v1.16.1

26.4.18 DecodeData Property Updated in Release 1.13

Syntax DecodeData: boolean { read-write, access after open }

Remarks If false, the Track1Data, Track2Data, Track3Data, and Track4Data properties contain the original
encoded bit sequences, known as “raw data format.”

If true, each byte of track data contained within the Track1Data, Track2Data, Track3Data, and
Track4Data, properties is mapped from its original encoded bit sequence (as it exists on the
magnetic card) to its corresponding decoded ASCII bit sequence. This conversion is mainly of
relevance for data that is NOT of the 7-bit format, since 7-bit data needs no decoding to decipher its
corresponding alphanumeric and/or Katakana characters.

The decoding that takes place is as follows for each card type, track, and track data format:

This property is initialized to true by the open method.

Setting this property to false automatically sets ParseDecodeData to false.

Note: If DataEncryptionAlgorithm is not MSR_DE_NONE and CapTrackDataMasking is true,
the Service will populate the TrackXData properties with masked track data.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also ParseDecodeData Property.

Card Type
Track Data

Property
Raw Data

Format
Raw Bytes Decoded Values

Track1Data 6-Bit 0x00 - 0x3F 0x20 through 0x5F

ISO Track2Data 4-Bit 0x00 - 0x0F 0x30 through 0x3F

Track3Data 4-Bit 0x00 - 0x0F 0x30 through 0x3F

Track1Data 6-Bit 0x00 - 0x3F 0x20 through 0x5F

Track1Data 7-Bit 0x00 - 0x7F Data Unaltered

JIS-I Track2Data 4-Bit 0x00 - 0x0F 0x20 through 0x3F

Track3Data 4-Bit 0x00 - 0x0F 0x20 through 0x3F

Track3Data 7-Bit 0x00 - 0x7F Data Unaltered

JIS-II Track4Data 7-Bit 0x00 - 0x7F Data Unaltered

Track1Data 6-Bit 0x00 - 0x3F 0x20 through 0x5F

AAMVA Track2Data 4-Bit 0x00 - 0x0F 0x30 through 0x3F

Track3Data 6-Bit 0x00 - 0x3F 0x20 through 0x5F
Unified POS, v1.16.1 835

26.4.19 DeviceAuthenticated Property Added in Release 1.12

Syntax DeviceAuthenticated: boolean { read-only, access after open-claim-enable }

Remarks If the device supports authentication (CapDeviceAuthentication not equal to
MSR_DA_NOT_SUPPORTED), the service must keep the value of this property up to date when the
device is enabled. When the authentication state of the device changes, the service should update the
value of DeviceAuthenticated and enqueue a StatusUpdateEvent with status value set to
MSR_SUE_DEVICE_AUTHENTICATED or MSR_SUE_DEVICE_DEAUTHENTICATED. The
primary reason for this is to notify the application in the event of an authentication timeout or other action
that may not have been initiated by the application.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapDeviceAuthentication Property, authenticateDevice Method, deauthenticateDevice Method,
retrieveDeviceAuthenticationData Method.

26.4.20 DeviceAuthenticationProtocol Property Added in Release 1.12

Syntax DeviceAuthenticationProtocol: int32 { read-only, access after open }

Remarks Holds the device authentication protocol supported by the device.

Value Meaning
MSR_AP_NONE The service does not support device authentication.
MSR_AP_CHALLENGERESPONSE

The service supports the challenge response protocol.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapDeviceAuthentication Property, DeviceAuthenticated Property, authenticateDevice Method,
deauthenticateDevice Method, retrieveDeviceAuthenticationData Method.

26.4.21 EncodingMaxLength Property Updated in Release 1.10

Syntax EncodingMaxLength: int32 { read-only, access after open-claim-enable }

Remarks The maximum length of data that can be written by the MSR to the track(s) defined by the
TracksToWrite property. If multiple tracks are selected in the TracksToWrite property, the length of
the shortest track should be reflected by this property.
This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also TracksToWrite Property, writeTracks Method.
836 Unified POS, v1.16.1

26.4.22 ErrorReportingType Property Updated in Release 1.13

Syntax ErrorReportingType: int32 { read-write, access after open }

Remarks Holds the type of errors to report via ErrorEvents. This property has one of the following values:

Value Meaning
MSR_ERT_CARD Report errors at a card level.
MSR_ERT_TRACK Report errors at the track level

An error is reported by an ErrorEvent when a card is swiped, and one or more of the tracks
specified by the TracksToRead property contains data with errors. When the ErrorEvent is
delivered to the application, two types of error reporting are supported:

• Card level: A general error status is given, with no data returned. This level should be used when a simple pass/
fail of the card data is sufficient.

• Track level: When the ErrorLocus is EL_INPUT and the ErrorCode value is E_EXTENDED, then the
ErrorCodeExtended value contains a status for each of the tracks and the track’s properties are updated as with
a DataEvent. For those tracks that contain invalid data, the track’s properties are set to empty. This level
should be used when the application may be able to utilize a successfully read track or tracks when another of
the tracks contains errors. For example, suppose TracksToRead is MSR_TR_1_2_3, and a swiped card
contains good track 1 and 2 data, but track 3 contains “random noise” that is flagged as an error by the MSR.
With track level error reporting, the ErrorEvent sets the track 1 and 2 properties with the valid data, sets the
track 3 properties to empty, and sets an error code indicating the status of each track.

The processing flow for handling track level error reporting would be as follows:

• * When the card read occurs and track error(s) are detected, then:

•-If any DataEvents are enqueued for delivery, then create and enqueue an ErrorEvent with
 ErrorLocus EL_INPUT_DATA before the oldest DataEvent.

•-Always create and enqueue an ErrorEvent with ErrorLocus EL_INPUT at the end of the
 event queue. Associate the card's retrieved data with this event.

• * When the ErrorEvent with ErrorLocus EL_INPUT_DATA is delivered, no other properties are changed.

• * When the ErrorEvent with ErrorLocus EL_INPUT is delivered, set theTrackXData or the
 TrackXEncryptedData properties to the card read data. For those track(s) on which a read error
 occurred, the property is empty.

• An example of an unlikely error conditon case illustrates how handling track errors are queued. 
 
Suppose that the application has set DataEventEnabled = false, and has enabled track level error reporting.
Then suppose that the MSR is swiped 2 times successfully, then on the 3rd swipe a CRC error occurs on Track
1 but Track 2 is OK. At this point, the event queue must look like this, and its delivery will be gated by the
application’s setting of the DataEventEnabled property to true:

ErrorEvent with locus EL_INPUT_DATA. When delivered, it tells the application that an error occurred,
but that one or more good swipes occurred before the error. If the application sets the error response to
ER_CLEAR, then the remaining events are cleared. But if ER_CONTINUEINPUT is set, then the following
events will be delivered as the application sets the DataEventEnabled property.
 DataEvent (#1) result... When delivered, the track properties will be populated with its data.
 DataEvent (#2) result... When delivered, the track properties will be populated with its data.
Unified POS, v1.16.1 837

 ErrorEvent with locus EL_INPUT result... When delivered, the error code is E_EXTENDED and the
　　ErrorCodeExtended shows that track 1 had an error but track 2 has data. The Track2 data properties
 are populated. 

This property is initialized to MSR_ERT_CARD by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also TracksToRead Property, TrackXData Properties, TrackXEncryptedData Properties, DataEvent,
ErrorEvent.

26.4.23 ExpirationDate Property　　　　　　　　　　　　Updated in Release 1.12

Syntax ExpirationDate: string { read-only, access after open }

Remarks Holds the expiration date obtained from the most recently swiped card, as four ASCII decimal characters
in the form YYMM. For example, February 1998 is “9802” and August 2018 is “1808”.

This property is initialized to the empty string if:

• The field was not included in the track data obtained, or,
• The track data format was not one of those listed in the ParseDecodeData property description,
• DataEncryptionAlgorithm is not MSR_DE_NONE and CapTrackDataMasking is false, or,
• ParseDecodeData is false.

This property may contain masked data if DataEncryptionAlgorithm is not MSR_DE_NONE and
CapTrackDataMasking is true.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also ParseDecodeData Property, CapTrackDataMasking Property.
838 Unified POS, v1.16.1

26.4.24 FirstName Property Updated in Release 1.12

Syntax FirstName: string { read-only, access after open }

Remarks Holds the first name obtained from the most recently swiped card.

This property is initialized to an empty string if:
• The field was not included in the track data obtained, or
• The track data format was not one of those listed in the ParseDecodeData property description,
• DataEncryptionAlgorithm is not MSR_DE_NONE and CapTrackDataMasking is false, or
• ParseDecodeData is false.

This property may contain masked data if DataEncryptionAlgorithm is not MSR_DE_NONE and
CapTrackDataMasking is true.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also ParseDecodeData Property, CapTrackDataMasking Property.

26.4.25 MiddleInitial Property Updated in Release 1.12

Syntax MiddleInitial: string { read-only, access after open }

Remarks Holds the middle initial obtained from the most recently swiped card. This property is initialized to the
empty string if:

• The field was not included in the track data obtained, or
• The track data format was not one of those listed in the ParseDecodeData property description.
• DataEncryptionAlgorithm is not MSR_DE_NONE and CapTrackDataMasking is false, or
• ParseDecodeData is false.

This property may contain masked data if DataEncryptionAlgorithm is not MSR_DE_NONE and
CapTrackDataMasking is true.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16

See Also ParseDecodeData Property, CapTrackDataMasking Property.
Unified POS, v1.16.1 839

26.4.26 ParseDecodeData Property Updated in Release 1.12

Syntax ParseDecodeData: boolean { read-write, access after open }

Remarks When true, the decoded data contained within the Track1Data and Track2Data properties is further
separated into fields for access via various other properties. Track3Data is not parsed because its data
content is of an open format defined by the card issuer. JIS-I Track 1 Format C and ISO Track 1 Format
C data are not parsed for similar reasons. Track4Data is also not parsed.

The parsed data properties are the defined possible fields for cards with data consisting of the following
formats:

• JIS-I / ISO Track 1 Format A
• JIS-I / ISO Track 1 Format B
• JIS-I / ISO Track 1 VISA Format (a defacto standard)
• JIS-I / ISO Track 2 Format

This property is initialized to true by the open method.

Setting this property to true automatically sets DecodeData to true.

Note: If DataEncryptionAlgorithm is not MSR_DE_NONE and CapTrackDataMasking is true, the
Service will populate the TrackXData properties with masked track data and this masked track data will
be parsed and used to populate the various other properties. The resulting parsed properties will contain
the same masked values that exist in the TrackXData properties.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL This property can only be set to true when DataEncryptionAlgorithm is

MSR_DE_NONE or CapTrackDataMasking is true.

See Also DecodeData Property, Surname Property, Suffix Property, AccountNumber Property, FirstName
Property, MiddleInitial Property, Title Property, ExpirationDate Property, ServiceCode Property,
Track1DiscretionaryData Property, Track2DiscretionaryData Property.
840 Unified POS, v1.16.1

26.4.27 ServiceCode Property Updated in Release 1.12

Syntax ServiceCode: string { read-only, access after open }

Remarks Holds the service code obtained from the most recently swiped card.

This property is initialized to the empty string if:
• The field was not included in the track data obtained, or
• The track data format was not one of those listed in the ParseDecodeData property description.
• DataEncryptionAlgorithm is not MSR_DE_NONE and CapTrackDataMasking is false, or

ParseDecodData is false.
This property may contain masked data if DataEncryptionAlgorithm is not MSR_DE_NONE and
CapTrackDataMasking is true.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also ParseDecodeData Property, CapTrackDataMasking Property.

26.4.28 Suffix Property Updated in Release 1.12

Syntax Suffix: string { read-only, access after open }

Remarks Holds the suffix obtained from the most recently swiped card.

This property is initialized to the empty string if:

• The field was not included in the track data obtained, or
• The track data format was not one of those listed in the ParseDecodeData property description.
• DataEncryptionAlgorithm is not MSR_DE_NONE and CapTrackDataMasking is false, or
• ParseDecodeData is false.

This property may contain masked data if DataEncryptionAlgorithm is not MSR_DE_NONE and
CapTrackDataMasking is true.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also ParseDecodeData Property, CapTrackDataMasking Property.
Unified POS, v1.16.1 841

26.4.29 Surname Property Updated in Release 1.12

Syntax Surname: string { read-only, access after open }

Remarks Holds the surname obtained from the most recently swiped card.

This property is initialized to the empty string if:

• The field was not included in the track data obtained, or
• The track data format was not one of those listed in the ParseDecodeData property description.
• DataEncryptionAlgorithm is not MSR_DE_NONE and CapTrackDataMasking is false, or
• ParseDecodeData is false.

This property may contain masked data if DataEncryptionAlgorithm is not MSR_DE_NONE and
CapTrackDataMasking is true.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also ParseDecodeData Property, CapTrackDataMasking Property.

26.4.30 Title Property Updated in Release 1.12

Syntax Title: string { read-only, access after open }

Remarks Holds the title obtained from the most recently swiped card.

This property is initialized to the empty string if:

• The field was not included in the track data obtained, or
• The track data format was not one of those listed in the ParseDecodeData property description.
• DataEncryptionAlgorithm is not MSR_DE_NONE and CapTrackDataMasking is false, or
• ParseDecodeData is false.

This property may contain masked data if DataEncryptionAlgorithm is not MSR_DE_NONE and
CapTrackDataMasking is true.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also ParseDecodeData Property, CapTrackDataMasking Property.
842 Unified POS, v1.16.1

26.4.31 Track1Data Property Updated in Release 1.12

Syntax Track1Data: binary { read-only, access after open }

Remarks Holds the track 1 data obtained from the most recently swiped card.

If TransmitSentinels is false, this property contains track data between but not including the start and
end sentinels. If TransmitSentinels is true, then the start and end sentinels are included.

If DecodeData is true, then the data returned by this property has been decoded from the “raw” format.
The data may also be parsed into other properties when the ParseDecodeData property is set.

If DataEncryptionAlgorithm is not MSR_DE_NONE the following additional rules apply:

• If CapTrackDataMasking is true, the Service will attempt to mask or otherwise conceal any
potentially sensitive information contained in the track data. Examples include but are not limited to
account numbers and/or discretionary data. When possible the Service will replace specific
characters with masked characters while attempting to maintain the original format of the track data
so it can be parsed normally,

• If CapTrackDataMasking is false, this property will be empty.

A zero length array indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also TracksToRead Property, TransmitSentinels Property, ParseDecodeData Property,
CapTrackDataMasking Property.

26.4.32 Track1DiscretionaryData Property Updated in Release 1.12

Syntax Track1DiscretionaryData: binary { read-only, access after open }

Remarks Holds the track 1 discretionary data obtained from the most recently swiped card.

The array will be zero length if:

• The field was not included in the track data obtained, or
• The track data format was not one of those listed in the ParseDecodeData property description.
• DataEncryptionAlgorithm is not MSR_DE_NONE and CapTrackDataMasking is false, or
• ParseDecodeData is false.

This property may contain masked data if DataEncryptionAlgorithm is not MSR_DE_NONE and
CapTrackDataMasking is true.

The amount of data contained in this property varies widely depending upon the format of the track 1
data.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also ParseDecodeData Property, CapTrackDataMasking Property.
Unified POS, v1.16.1 843

26.4.33 Track1EncryptedData Property Added in Release 1.12

Syntax Track1EncryptedData: binary { read-only, access after open }

Remarks Holds the encrypted track 1 data obtained from the most recently swiped card. This property is empty if
DataEncryptionAlgorithm is MSR_DE_NONE.

The length of this property after it is decrypted is contained in the Track1EncryptedDataLength
property.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also DataEncryptionAlgorithm Property, Track1EncryptedDataLength Property.

26.4.34 Track1EncryptedDataLenght Property Updated in Release 1.13

Syntax Track1EncryptedDataLength: int32 { read-only, access after open }

Remarks Holds the length of the raw track 1 data before it was encrypted. Many encryption algorithms require
padding of the input data before it can be encrypted. This property contains the length of the original
unpadded track data before it is encrypted. It may be needed to restore the original track data after
decryption.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also DataEncryptionAlgorithm Property, Track1EncryptedData Property.
844 Unified POS, v1.16.1

26.4.35 Track2Data Property Updated in Release 1.12

Syntax Track2Data: binary { read-only, access after open }

Remarks Holds the track 2 data obtained from the most recently swiped card.

If TransmitSentinels is false, this property contains track data between but not including the start and
end sentinels. If TransmitSentinels is true, then the start and end sentinels are included.

If DecodeData is true, then the data returned by this property has been decoded from the “raw” format.
The data may also be parsed into other properties when the ParseDecodeData property is set.

If DataEncryptionAlgorithm is not MSR_DE_NONE, the following additional rules apply:

• If CapTrackDataMasking is true, the Service will attempt to mask or otherwise conceal any
potentially sensitive information contained in the track data. Examples include, but are not limited
to, account numbers and/or discretionary data. When possible the Service will replace specific
characters with masked characters while attempting to maintain the original format of the track data
so it can be parsed normally,

• If CapTrackDataMasking is false, this property will be empty.

A zero length array indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also TracksToRead Property, TransmitSentinels Property, ParseDecodeData Property,
CapTrackDataMasking Property.

26.4.36 Track2DiscretionaryData Property Added in Release 1.12

Syntax Track2DiscretionaryData: binary { read-only, access after open }

Remarks Holds the track 2 discretionary data obtained from the most recently swiped card.

The array will be zero length if:

• The field was not included in the track data obtained, or
• The track data format was not one of those listed in the ParseDecodeData property description.
• DataEncryptionAlgorithm is not MSR_DE_NONE and CapTrackDataMasking is false, or
• ParseDecodeData is false.

This property may contain masked data if DataEncryptionAlgorithm is not MSR_DE_NONE and
CapTrackDataMasking is true.

The amount of data contained in this property varies widely depending upon the format of the track 2
data.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also ParseDecodeData Property, CapTrackDataMasking Property.
Unified POS, v1.16.1 845

26.4.37 Track2EncryptedData Property Added in Release 1.12

Syntax Track2EncryptedData: binary { read-only, access after open }

Remarks Holds the encrypted track 2 data obtained from the most recently swiped card. This property is empty if
DataEncryptionAlgorithm is MSR_DE_NONE.

The length of this property after it is decrypted is contained in the Track2EncryptedDataLength
property.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also DataEncryptionAlgorithm Property, Track2EncryptedDataLength Property.

26.4.38 Track2EncryptedDataLength Property Updated in Release 1.13

Syntax Track2EncryptedDataLength: int32 { read-only, access after open }

Remarks Holds the length of the raw track 2 data before it was encrypted. Many encryption algorithms require
padding of the input data before it can be encrypted. This property contains the length of the original
unpadded track data before it is encrypted. It may be needed to restore the original track data after
decryption.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also DataEncryptionAlgorithm Property, Track2EncryptedData Property.
846 Unified POS, v1.16.1

26.4.39 Track3Data Property Updated in Release 1.12

Syntax Track3Data: binary { read-only, access after open }

Remarks Holds the track 3 data obtained from the most recently swiped card.

If TransmitSentinels is false, this property contains track data between but not including the start and
end sentinels. If TransmitSentinels is true, then the start and end sentinels are included.

If DecodeData is true, then the data returned by this property has been decoded from the “raw” format.
The data may also be parsed into other properties when the ParseDecodeData property is set.

If DataEncryptionAlgorithm is not MSR_DE_NONE the following additional rules apply:

• If CapTrackDataMasking is true, the Service will attempt to mask or otherwise conceal any
potentially sensitive information contained in the track data. Examples include, but are not limited
to, account numbers and/or discretionary data. When possible the Service will replace specific
characters with masked characters while attempting to maintain the original format of the track data
so it can be parsed normally,

• If CapTrackDataMasking is false, this property will be empty.

A zero length array indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also TracksToRead Property, TransmitSentinels Property, ParseDecodeData Property,
CapTrackDataMasking Property.

26.4.40 Track3EncryptedData Property Added in Release 1.12

Syntax Track3EncryptedData: binary { read-only, access after open }

Remarks Holds the encrypted track 3 data obtained from the most recently swiped card. This property is empty if
DataEncryptionAlgorithm is MSR_DE_NONE.

The length of this property after it is decrypted is contained in the Track3EncryptedDataLength
property.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also DataEncryptionAlgorithm Property, Track3EncryptedDataLength Property.
Unified POS, v1.16.1 847

26.4.41 Track3EncryptedDataLength Property Updated in Release 1.13

Syntax Track3EncryptedDataLength: int32 { read-only, access after open }

Remarks Holds the length of the raw track 3 data before it was encrypted. Many encryption algorithms require
padding of the input data before it can be encrypted. This property contains the length of the original
unpadded track data before it is encrypted. It may be needed to restore the original track data after
decryption.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also DataEncryptionAlgorithm Property, Track3EncryptedData Property.

26.4.42 Track4Data Property Updated in Release 1.12

Syntax Track4Data: binary { read-only, access after open }

Remarks Holds the track 4 data (JIS-II) obtained from the most recently swiped card.

If TransmitSentinels is false, this property contains track data between but not including the start and
end sentinels. If TransmitSentinels is true, then the start and end sentinels are included.

If DecodeData is true, then the data returned by this property has been decoded from the “raw” format.

If DataEncryptionAlgorithm is not MSR_DE_NONE, the following additional rules apply:

• If CapTrackDataMasking is true, the Service will attempt to mask or otherwise conceal any
potentially sensitive information contained in the track data. Examples include but are not limited to
account numbers and/or discretionary data. When possible the Service will replace specific
characters with masked characters while attempting to maintain the original format of the track data
so it can be parsed normally,

• If CapTrackDataMasking is false, this property will be empty.

A zero length array indicates that the track was not accessible.

To maintain compatibility with previous versions, the Control may also continue to store the JIS-II data
in another TracknData property. However, it should be noted that to ensure application portability,
Track4Data should be used to access JIS-II data.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also Track1Data Property, Track2Data Property, Track3Data Property, TransmitSentinels Property,
CapTrackDataMasking Property.
848 Unified POS, v1.16.1

26.4.43 Track4EncryptedData Property Added in Release 1.12

Syntax Track4EncryptedData: binary { read-only, access after open }

Remarks Holds the encrypted track 4 data obtained from the most recently swiped card. This property is empty if
DataEncryptionAlgorithm is MSR_DE_NONE.

The length of this property after it is decrypted is contained in the Track4EncryptedDataLength
property.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also DataEncryptionAlgorithm Property, Track4EncryptedDataLength Property.

26.4.44 Track4EncryptedDataLength Property Updated in Release 1.13

Syntax Track4EncryptedDataLength: int32 { read-only, access after open }

Remarks Holds the length of the raw track 4 data before it was encrypted. Many encryption algorithms require
padding of the input data before it can be encrypted. This property contains the length of the original
unpadded track data before it is encrypted. It may be needed to restore the original track data after
decryption.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also DataEncryptionAlgorithm Property, Track4EncryptedData Property.
Unified POS, v1.16.1 849

26.4.45 TracksToRead Property Updated in Release 1.5

Syntax TracksToRead: int32 { read-write, access after open }

Remarks Holds the track data that the application wishes to have placed into Track1Data, Track2Data,
Track3Data, and Track4Data properties following a card swipe. This property has one of the following
values:
Value Meaning
MSR_TR_1 Obtain track 1.
MSR_TR_2 Obtain track 2.
MSR_TR_3 Obtain track 3.
MSR_TR_1_2 Obtain tracks 1 and 2.
MSR_TR_1_3 Obtain tracks 1 and 3.
MSR_TR_2_3 Obtain tracks 2 and 3.
MSR_TR_1_2_3 Obtain tracks 1, 2, and 3.
MSR_TR_4 Obtain track 4.
MSR_TR_1_4 Obtain tracks 1 and 4.
MSR_TR_2_4 Obtain tracks 2 and 4.
MSR_TR_3_4 Obtain tracks 3 and 4.
MSR_TR_1_2_4 Obtain tracks 1, 2, and 4.
MSR_TR_1_3_4 Obtain tracks 1, 3, and 4.
MSR_TR_2_3_4 Obtain tracks 2, 3, and 4.
MSR_TR_1_2_3_4 Obtain tracks 1, 2, 3, and 4.

Decreasing the required number of tracks may provide a greater swipe success rate and somewhat
greater responsiveness by removing the processing for unaccessed data.

TracksToRead does not indicate a capability of the MSR hardware unit but instead is an
application configurable property representing which track(s) will have their data obtained,
potentially decoded, and returned if possible. Cases such as an ISO card being swiped through a JIS-
II read head, cards simply not having data for particular tracks, and other factors may preclude the
desired data from being obtained.

This property is initialized to MSR_TR_1_2_3 by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also Track1Data Property, Track2Data Property, Track3Data Property, Track4Data Property.
850 Unified POS, v1.16.1

26.4.46 TracksToWrite Property Added in Release 1.10

Syntax TracksToWrite: int32 { read-write, access after open-claim-enable }

Remarks Holds the MSR track(s) that will be written to when the writeTracks method is invoked and an MSR
card is swiped. Valid values can be equal to or a subset of those defined under CapWritableTracks. If
CapWritableTracks contains MSR_TR_NONE then writing to MSR tracks is not supported and an
E_ILLEGAL exception will be thrown on any attempt to update this property.

If an attempt is made to set a track that is not defined as writable in CapWritableTracks, the property
will be left unchanged and an E_ILLEGAL exception will be thrown.

Setting this property may also update EncodingMaxLength since each track may have a different
encoding limit.

This property is initialized to MSR_TR_NONE by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapWritableTracks Property, EncodingMaxLength Property, writeTracks Method.

26.4.47 TransmitSentinels Property Added in Release 1.5

Syntax TransmitSentinels: boolean { read-write, access after open }

Remarks If true, the Track1Data, Track2Data, Track3Data, and Track4Data properties contain start and end
sentinel values.

If false, then these properties contain only the track data between these sentinels.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The CapTransmitSentinels property is false.

See Also CapTransmitSentinels Property, Track1Data Property, Track2Data Property, Track3Data Property,
Track4Data Property.
Unified POS, v1.16.1 851

26.4.48 WriteCardType Property Added in Release 1.12

Syntax WriteCardType: string { read-write, access after open }

Remarks Holds the card type to be used the next time the writeTracks method is called. If this property's value
begins with an underscore ('_'), the card type is vendor specific. If this property does not begin with an
underscore, the card type is one of the standard card types. The following list shows all currently defined
standard card types:

• “BANK” Bank credit/debit card
• “AAMVA” American & Canadian Driver's License or ID Card

This property is initialized to “BANK” by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also writeTracks Method
852 Unified POS, v1.16.1

26.5 Methods (UML operations)

26.5.1 authenticateDevice Method Added in Release 1.12

Syntax authenticateDevice (response: binary):
void { raises-exception, use after open-claim-enable }

Parameter Description
response A response token generated from the challenge token retrieved from a

previous call to the retrieveDeviceAuthenticationData method.

Remarks To authenticate a device, the application first calls the retrieveDeviceAuthenticationData method to
retrieve a challenge token from the device. The application then typically passes this token to another
entity that has special knowledge of a shared secret and is able to create a proper response token. This
response token is then passed as the response parameter to this method and the service uses it to validate
the authentication request. If this method succeeds, the device enters the authenticated state and the
service sets the DeviceAuthenticated property to true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL One of the following conditions occurred:

• The service does not support device authentication
(CapDeviceAuthentication = MSR_DA_NOT_SUPPORTED)

• The device is already in the authenticated state

E_EXTENDED ErrorCodeExtended =
EMSR_DEVICE_AUTHENTICATION_FAILED
The authentication request failed because the response parameter was
invalid.

See Also CapDeviceAuthentication Property, DeviceAuthenticated Property,
retrieveDeviceAuthenticationData Method.
Unified POS, v1.16.1 853

26.5.2 deauthenticateDevice Method Added in Release 1.12

Syntax deauthenticateDevice (response: binary):
void { raises-exception, use after open-claim-enable }

Parameter Description
response A response token generated from the challenge token retrieved from a

previous call to the retrieveDeviceAuthenticationData method.

Remarks This method is used to deauthenticate a device that is currently in the authenticated state
(DeviceAuthenticated = true). The token is typically generated by passing the challenge retrieved from
the retrieveDeviceAuthenticationData method to an entity that has special knowledge of a shared
secret. If this method succeeds, the service sets DeviceAuthenticated to false and enqueues a
StatusUpdateEvent with status value set to MSR_SUE_DEVICE_DEAUTHENTICATED.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL One of the following conditions occurred:

• The service does not support device authentication
(CapDeviceAuthentication = MSR_DA_NOT_SUPPORTED)

• The device is not in the authenticated state

E_EXTENDED ErrorCodeExtended =
EMSR_DEVICE_DEAUTHENTICATION_FAILED
The deauthentication request failed because the response parameter was
invalid.

See Also CapDeviceAuthentication Property, DeviceAuthenticated Property,
retrieveDeviceAuthenticationData Method.
854 Unified POS, v1.16.1

26.5.3 retrieveCardProperty Method Updated in Release 1.13

Syntax retrieveCardProperty (name: string, out value: string):
void { raises-exception, use after open, claim }

Parameter Description
name Name of the property whose value is to be retrieved. The

CardPropertyList property can be parsed to determine the set of valid
properties for the most recently swiped card.

value Contains the returned data for the property specified by the name
parameter. If the name parameter is not recognized or not supported for
the current card type, the data returned will be the empty string.

Remarks Retrieves the value of specific parsed properties from the last card swiped. Until a card is swiped, all
defined properties will return an empty string.

Note: If DataEncryptionAlgorithm is not MSR_DE_NONE and CapTrackDataMasking is true, the
returned value may contain masked information.

For bank cards, the following properties are parsed and can be accessed through the
retrieveCardProperty method:

“AccountNumber”

“ExpirationDate”

“FirstName”

“MiddleInitial”

“ServiceCode”

“Suffix”

“Surname”

“Title”

For AAMVA driver’s licenses and ID cards, the following properties are parsed and can be accessed
through the retrieveCardProperty method:

“Address”

“BirthDate”

“City”

“Class”

“Endorsements”

“ExpirationDate”

“EyeColor”

“FirstName”

“Gender”
Unified POS, v1.16.1 855

“HairColor”

“Height”

“LicenseNumber”

“PostalCode”

“Restrictions”

“State”

“Suffix”

“Surname”

“Weight”

This property is initialized to empty by the open method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The name parameter is not a valid value for the most recently swiped card, or

the ParseDecodeData property is set to false.
See Also CardTypeList Property, ParseDecodeData Property

26.5.4 retrieveDeviceAuthenticationData Method Added in Release 1.12

Syntax retrieveDeviceAuthenticationData (inout challenge: binary):
void { raises-exception, use after open-claim-enable }

Parameter Description
challenge A challenge generated by the device that will be used to generate the

authentication and deauthentication tokens.

Remarks Applications call this method to retrieve a challenge token that will subsequently be used to generate
response tokens that will be passed to the authenticateDevice and deauthenticateDevice methods. The
challenge token is typically sent to another entity that has special knowledge of a shared secret that is
required to generate the proper response token(s).

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The service does not support device authentication

(CapDeviceAuthentication = MSR_DA_NOT_SUPPORTED)

See Also CapDeviceAuthentication Property, authenticateDevice Method,
deauthenticateDevice Method.
856 Unified POS, v1.16.1

26.5.5 updateKey Method Added in Release 1.12

Syntax updateKey (key: string, keyName: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
key A Hex-ASCII value for a new key.

keyName A name used to identify the key.

Remarks Provides a new encryption key to the device. It is used only for those encryption algorithms in which new
key values are sent to the terminal as a field in standard messages from the host.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL One of the following conditions occurred:

• The selected DataEncryptionAlgorithm does not support this func-
tion.

• The keyName specifies an unacceptable key name.
• The key contains a bad key (not Hex-ASCII or wrong length or bad

parity).

See Also CapDataEncryption Property, DataEncryptionAlgorithm Property.
Unified POS, v1.16.1 857

26.5.6 writeTracks Method Updated in Release 1.12

Syntax writeTracks (data: array of binary, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
data1 Array containing the binary track data for all tracks to be written during

this method call. For simplicity, this array should always be 4 elements
long, with the first array element being Track 1. Any tracks that are not
going to be written should be provided as a valid binary object of length
zero (0). The TracksToWrite property controls which tracks are to be
written, so to get a track written correctly requires both a valid binary data
object provided in the array and the corresponding track bit set in the
TracksToWrite property.

timeout The number of milliseconds before failing the method.
If FOREVER (-1), the method initiates encoding the data, then waits as
long as needed until a card is swiped.

Remarks Initiates the encoding of data to the MSR track(s) selected in the TracksToWrite property.
When called, data is prepared to be written on to the next card that is swiped within the allotted timeout
period. If no card is swiped within the timeout period then a UposException is thrown. The next card
swiped will be written in the format specified by the WriteCardType property.
Data that is written to the card is read back from the card in the exact same format, the Service must not
decode/encode the data in any fashion.
This method is always performed synchronously, so that the write will be attempted to the next card that
is swiped.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL The data to be written exceeds the EncodingMaxLength property for the

selected TracksToWrite, or CapWritableTracks is set to
MSR_TR_NONE.

E_FAILURE A card was swiped within the allotted timeout, but that card or track
specified by TracksToWrite is not writable

E_TIMEOUT A card was not swiped within the allotted timeout period.

See Also TracksToWrite Property, WriteCardType Property, EncodingMaxLength Property.

1. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.
858 Unified POS, v1.16.1

26.6 Events (UML interfaces)

26.6.1 DataEvent Updated in Release 1.12

<< event >> upos::events::DataEvent 
Status: int32 { read-only }

Description Notifies the application when input data from the MSR device is available.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 See below.

The Status property is divided into four bytes representing information on up to four tracks of data.
The diagram below indicates how the Status property is divided:

A value of zero for a track byte means that no data was obtained from the swipe for that particular
track. This might be due to the hardware device simply not having a read head for the track, or
perhaps the application intentionally precluded incoming data from the track via the TracksToRead
property.

A value greater than zero indicates the length in bytes of the corresponding TrackxData Property or
TrackxEncryptedData Property if encryption is enabled.

Remarks Before this event is delivered, the swiped data is placed into the TrackxData and/or
TrackxEncryptedData properties. If DecodeData is true, then this track data is decoded. If
ParseDecodeData is true, then the data is parsed into several additional properties.

See Also DecodeData Property, ParseDecodeData Property, TrackxData Properties,
TrackxEncryptedData Properties, TracksToRead Property.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Track 4 Track 3 Track 2 Track 1
Unified POS, v1.16.1 859

26.6.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific MSR Service to provide events to the application that are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and

the Service. This property is settable.
Obj object Additional data whose usage varies by the EventNumber and Service.

This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s MSR devices
which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.
860 Unified POS, v1.16.1

26.6.3 ErrorEvent Updated in Release 1.10

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an error has been detected at the MSR device and a suitable response by the
application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes on page 16.
ErrorCodeExtended

int32 Extended Error code causing the error event. If ErrorCode is
E_EXTENDED, then see values below. Otherwise, it may contain a
Service-specific value.

ErrorLocus int32 Location of the error. See values below.
ErrorResponse int32 Error response, whose default value may be overridden by the application.

(i.e., this property is settable). See values below.

If the ErrorReportingType property is MSR_ERT_TRACK and ErrorLocus is EL_INPUT and
ErrorCode is E_EXTENDED, then ErrorCodeExtended contains track-level statuses, broken down
as follows:

Where each of the track status bytes has one of the following values:
Value Meaning
SUCCESS No error occurred.
EMSR_START Start sentinel error.
EMSR_END End sentinel error.
EMSR_PARITY Parity error.
EMSR_LRC LRC error.
E_FAILURE Other or general error.

The ErrorLocus property may be one of the following:
Value Meaning
EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.
EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and

some previously buffered data is available.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error processing may change ErrorResponse to one of the following values:

High Word Low Word

High Byte Low Byte High Byte Low Byte

Track 4 Track 3 Track 2 Track 1
Unified POS, v1.16.1 861

Value Meaning
ER_CLEAR Clear the buffered input data. The error state is exited.

Default when locus is EL_INPUT.
ER_CONTINUEINPUT Use only when locus is EL_INPUT_DATA. Acknowledges the error and

directs the Device to continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and the
DataEventEnabled property is again set to true, then another
ErrorEvent is delivered with locus EL_INPUT. 
Default when locus is EL_INPUT_DATA.

Remarks Enqueued when an error is detected while trying to read MSR data. This error event is not delivered until
the DataEventEnabled property is true, so that proper application sequencing occurs.

If the ErrorReportingType property is MSR_ERT_CARD, then the track that caused the fault cannot
be determined. The track data properties are not changed. 

If the ErrorReportingType property is MSR_ERT_TRACK, then the ErrorCode and the
ErrorCodeExtended properties may indicate the track-level status. Also, the track data properties are
updated as with a DataEvent, with the properties for the track or tracks in error set to empty strings.

Unlike DataEvent, individual track lengths are not reported. However, the application can determine
their lengths by getting the length of each of the TrackxData properties. 

Also, since this is an ErrorEvent (even though it is reporting partial data), the DataCount property is
not incremented and the Control remains enabled, regardless of the AutoDisable property value.

See Also “Device Behavior Models” on page 10 and ErrorReportingType Property.
862 Unified POS, v1.16.1

26.6.4 StatusUpdateEvent Updated in Release 1.12

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the status of the MSR device.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Indicates a status change, and has one of the following values:

Value Meaning
MSR_SUE_DEVICE_AUTHENTICATED

The device has entered the authenticated state.
MSR_SUE_DEVICE_DEAUTHENTICATED

The device is no longer in the authenticated state.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 2.

Remarks Enqueued when a significant status change event has occurred.

See Also “Events” on page 15.
Unified POS, v1.16.1 863

864 Unified POS, v1.16.1

27 Pin Pad

27.1 General

This Chapter defines the Pin Pad device category.

27.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.3 Not supported

CapCompareFirmwareVersion: boolean { read-only } 1.9 open

CapPowerReporting: int32 { read-only } 1.3 open

CapStatisticsReporting: boolean { read-only } 1.8 open

CapUpdateFirmware: boolean { read-only } 1.9 open

CapUpdateStatistics: boolean { read-only } 1.8 open

CheckHealthText: string { read-only } 1.3 open

Claimed: boolean { read-only } 1.3 open

DataCount: int32 { read-only } 1.3 open

DataEventEnabled: boolean { read-write } 1.3 open

DeviceEnabled: boolean { read-write } 1.3 open & claim

FreezeEvents: boolean { read-write } 1.3 open

OutputID: int32 { read-only } 1.3 Not supported

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.3 --

DeviceControlDescription: string { read-only } 1.3 --

DeviceControlVersion: int32 { read-only } 1.3 --

DeviceServiceDescription: string { read-only } 1.3 open

DeviceServiceVersion: int32 { read-only } 1.3 open

PhysicalDeviceDescription: string { read-only } 1.3 open

PhysicalDeviceName: string { read-only } 1.3 open
Unified POS, v1.16.1 865

Properties (Continued)

Specific Type Mutability Version May Use After

CapDisplay: int32 { read-only } 1.3 open

CapKeyboard: boolean { read-only } 1.3 open

CapLanguage: int32 { read-only } 1.3 open

CapMACCalculation: boolean { read-only } 1.3 open

CapTone: boolean { read-only } 1.3 open

AccountNumber: string { read-write } 1.3 open

AdditionalSecurityInformation: string { read-only } 1.3 open

Amount: currency { read-write } 1.3 open

AvailableLanguagesList: string { read-only } 1.3 open

AvailablePromptsList: string { read-only } 1.3 open

EncryptedPIN: string { read-only } 1.3 open

MaximumPINLength: int32 { read-write } 1.3 open

MerchantID: string { read-write } 1.3 open

MinimumPINLength: int32 { read-write } 1.3 open

PINEntryEnabled: boolean { read-only } 1.3 open

Prompt: int32 { read-write } 1.3 open

PromptLanguage: nls { read-write } 1.3 open

TerminalID: string { read-write } 1.3 open

Track1Data: binary { read-write } 1.3 open

Track2Data: binary { read-write } 1.3 open

Track3Data: binary { read-write } 1.3 open

Track4Data: binary { read-write } 1.5 open

TransactionType: string { read-write } 1.3 open
866 Unified POS, v1.16.1

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.3

close ():
void { raises-exception, use after open }

1.3

claim (timeout: int32):
void { raises-exception, use after open }

1.3

release ():
void { raises-exception, use after open, claim }

1.3

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.3

clearInput ():
void { raises-exception, use after open, claim, enable }

1.3

clearInputProperties ():
void { raises-exception, use after open, claim, enable }

1.10

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.3

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific

Name

beginEFTTransaction (PINPadSystem: string, transactionHost: int32):
void { raises-exception, use after open, claim, enable }

1.3

computeMAC (inMsg: string, outMsg: object):
void { raises-exception, use after beginEFTTransaction }

1.3

enablePINEntry():
void { raises-exception, use after beginEFTTransaction }

1.3

endEFTTransaction (completionCode: int32):
void { raises-exception, use after beginEFTTransaction }

1.3

updateKey (keyNum: int32, key: string):
void { raises-exception, use after beginEFTTransaction }

1.3

verifyMAC (message: string):
void { raises-exception, use after beginEFTTransaction }

1.3
Unified POS, v1.16.1 867

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent 1.3

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.3

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.3

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse int32 { read-write }

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.3

 Status: int32 { read-only }
868 Unified POS, v1.16.1

27.3 General Information

The PIN Pad programmatic name is “PINPad.”

A PIN Pad:

• Provides a mechanism for customers to perform PIN Entry.

• Acts as a cryptographic engine for communicating with an EFT Transaction Host.

A PIN Pad will perform these functions by implementing one or more PIN Pad Management Systems. A PIN Pad
Management System defines the manner in which the PIN Pad will perform functions such as PIN Encryption,
Message Authentication Code calculation, and Key Updating. Examples of PIN Pad Management Systems
include: Master-Session, DUKPT, APACS40, HGEPOS, AS2805, and JDEBIT2, along with many others.

27.3.1 Capabilities

The PIN Pad Control has the following minimal capability:

• Accept a PIN Entry at its keyboard and provide an Encrypted PIN to the application.

The PIN Pad Control may have the following additional capabilities:

• Compute Message Authentication Codes.

• Perform Key Updating in accordance with the selected PIN Pad Management System.

• Supports multiple PIN Pad Management Systems.

• Allow use of the PIN Pad Keyboard, Display, and Tone Generator for application usage. If one or more of
these features are available, then the application opens and uses the associated POS Keyboard, Line Display, or
Tone Indicator Device Objects.
Unified POS, v1.16.1 869

27.3.2 Pin Pad Class Diagram

The following diagram shows the relationships between the PIN Pad classes.

UposConst
(from upos)

<<utility>>

UposException
(from upos)

<<exception>>

PINPadConst
(from upos)

<<utility>>

DataEvent
(from events)

<<event>>

ErrorEvent
(from events)

<<event>>

StatusUpdateEvent
(from events)

<<event>>

PINPadControl

<<capability>> CapDisplay : int32
<<capability>> CapLanguage : int32
<<capability>> CapKeyboard : boolean
<<capability>> CapMACCalculation : boolean
<<capability>> CapTone : boolean
<<prop>> AccountNumber : string
<<prop>> AdditionalSecurityInformation : string
<<prop>> Amount : currency
<<prop>> AvailableLanguagesList : string
<<prop>> AvailablePromptsList : string
<<prop>> EncryptedPIN : string
<<prop>> MaximumPINLength : int32
<<prop>> MerchantID : string
<<prop>> MinimumPINLength : int32
<<prop>> PINEntryEnabled : boolean
<<prop>> Prompt : int32
<<prop>> PromptLanguage : int32
<<prop>> TerminalID : string
<<prop>> Track1Data : binary
<<prop>> Track2Data : binary
<<prop>> Track3Data : binary
<<prop>> Track4Data : binary
<<prop>> TransactionType : int32

beginEFTTransaction(PINPadSystem : string, transactionHost : int32) : void
computeMAC(inMsg : string, outMsg : object) : void
enablePINEntry() : void
endEFTTransaction(completionCode : int32) : void
updateKey(keyNum : int32, key : string) : void
verifyMAC(message : string) : void

(from upos)

<<Interface>>

fires

fires

fires

DirectIOEvent
(from events)

<<event>>
fires

BaseControl
(from upos)

<<Interface>>

<<sends>>

<<uses>>
<<uses>>

<<uses>>

<<sends>>
870 Unified POS, v1.16.1

27.3.3 Pin Pad Sequence Diagram Added in Release 1.7

The following sequence diagram shows the typical usage of a PIN Pad device, showing a general sequence of an
application performing an EFT transaction with message authentication.

NOTE: we are assuming that the :ClientApp already successfully opened, claimed and enabled the PINPad
device. This means that the Claimed, DeviceEnabled properties are == true

:ClientApp :PINPad :PINPadService

 : Customer

:DataEvent

Without loss of generality we are assuming that CapTone
== false and CapDisplay == PPAD_DISP_NONE so that
tone and display functionality for the application are done via
other controls for some other tone and display devices.

1: setAccountNumber(accountNumber)
2: setAccountNumber(accountNumber)

3: setAmount(amount) 4: setAmount(amount)

5: setMerchantID(merchanID) 6: setMerchantID(merchanID)

7: setTerminalID(terminalID)
8: setTerminalID(terminalID)

9: setTrack1Data(track1Data) 10: setTrack1Data(track1Data)

11: setTrack2Data(track2Data)
12: setTrack2Data(track2Data)

13: setTrack3Data(track3Data) 14: setTrack3Data(track3Data)

15: setTrack4Data(track4Data)
16: setTrack4Data(track4Data)

This will be an empty array
except when the track data
is coming from a JIS-II card.

17: beginEFTTransaction() 18: beginEFTTransaction()

At this point the device is
initialized to perform the
encryption functions for
the EFT transaction.

19: enablePINEntry() 20: enablePINEntry()

21: PINEntryEnabled property set to true

22: successfully entered PIN

23: PINEntryEnabled property set to false

24: create new DataEvent

25: enqueue DataEvent [DataEventEnabled == false]

26: deliver DataEvent to control [DataEventEnabled == true && FreezeEvents == false]

Right before the DataEvent is
delivered set DataEventEnabled
to false.

27: deliver event to all registered handlers28: notify application of new event

Assume message
authentication is required.

29: computeMAC(inMsg, outMsg) 30: computeMAC(inMsg, outMsg)

31: verifyMAC(message) 32: verifyMAC(message)

33: endEFTTransaction(PPA_EFT_NORMAL)

34: endEFTTransaction(PPA_EFT_NORMAL)
Unified POS, v1.16.1 871

27.3.4 Feature Not Supported

This specification does not include support for the following:

• Initial Key Loading - This operation usually requires downloading at least one key in the clear and must be
done in a secure location (typically either the factory or at a Financial Institution). Thus, support for initial key
loading is outside the scope of this specification. However, this specification does include support for updating
keys while a PIN Pad unit is installed at a retail site.

• Full EFT functionality - This specification addresses the functionality of a PIN Pad that is used solely as a
peripheral device by an Electronic Funds Transfer application. It specifically does not define the functionality
of an Electronic Funds Transfer application that might execute within an intelligent PIN Pad. This
specification does not include support for applications in which the PIN Pad application determines that a
message needs to be transmitted to the EFT Transaction Host. Consequently, this specification will not apply in
Canada, Germany, Netherlands, and possibly other countries. It also does not apply to PIN Pad in which the
vendor has chosen to provide EFT Functionality in the PIN Pad.

• Smartcard Reader - Some PIN Pad devices will include a Smartcard reader. Support for this device may be
included in a future revision of this specification. In the interim, the directIO method could be used to control
such added functionality.

27.3.5 Note on Terminology

For the PIN Pad device, clarification of the terminology used to describe the data exchange with the device is
necessary. “Hex-ASCII” is used to indicate that the “standard” representation of bytes as hexadecimal ASCII
characters is used. For instance, the byte stream {0x15, 0xC7, 0xF0} would be represented in hex-ASCII as
“15C7F0.”
872 Unified POS, v1.16.1

27.3.6 Model

A PIN Pad performs encryption functions under control of a PIN Pad Management System. Some PIN Pads will
support multiple PIN Pad Management Systems. Some PIN Pad Management Systems support multiple keys
(sets) for different EFT Transaction Hosts. Thus, for each EFT transaction, the application will need to select the
PIN Pad Management System and EFT Transaction Host to be used. Depending on the PIN Pad Management
System, one or more EFT transaction parameters will need to be provided to the PIN Pad for use in the
encryption functions. The application should set the value of ALL EFT Transaction parameter properties to
enable easier migration to EFT Transaction Hosts that require a different PIN Pad Management System.

After opening, claiming, and enabling the PIN Pad Control, an application should use the following general
scenario for each EFT Transaction.

• Set the EFT transaction parameters (AccountNumber, Amount, MerchantID, TerminalID, Track1Data,
Track2Data, Track3Data, Track4Data, and TransactionType properties) and then call the
beginEFTTransaction method. This will initialize the Device to perform the encryption functions for the EFT
transaction.

• If PIN Entry is required, call the enablePINEntry method. Then set the DataEventEnabled property and wait
for the DataEvent.

• If Message Authentication Codes are required, use the computeMAC and verifyMAC methods as needed.

• Call the endEFTTransaction method to notify the Device that all operations for the EFT transaction have
been completed.

• All input data enqueued by the Control may be deleted by calling the clearInput method.

• All data properties that are populated as a result of firing a DataEvent or ErrorEvent can be set back to their
default values by calling the clearInputProperties method.

This specification supports two models of usage of the display. The CapDisplay property indicates one of the
following models.

• An application has complete control of the text that is to be displayed. For this model, there is an associated
Line Display Control that is used by the application to interact with the display.

• An application cannot supply the text to be displayed. Instead, it can only select from a list of predefined
messages to be displayed. For this model, there is a set of PIN Pad properties that are used to control the
display.

27.3.7 Device Sharing

The PIN Pad is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before the device begins reading input, or before calling
methods that manipulate the device.

• See the “Summary” table for precise usage prerequisites.
Unified POS, v1.16.1 873

27.3.8 Pin Pad State Diagram

The following state diagram depicts the PIN Pad Control device model.

Closed Opened Claimed

Enabled

EFT Transaction

Idle

MAC
Processing

PIN Input Processing

Wait PIN Input

Error Event
Processing

Data Event
Processing

Idle

MAC
Processing

PIN Input Processing

Wait PIN Input

Error Event
Processing

Data Event
Processing

Wait for PIN Input

ErrorEvent
Processing

DataEvent
Processing

open()

close()

claim()

Error
[DataEventEnabled == true]

release()

/set DeviceEnabled(true)

close()

beginEFTTransaction()

endEFTTransaction()

release()

/set DeviceEnabled(false)

close()

done

enablePINEntry()

computeMAC(),
verifyMAC()

done
874 Unified POS, v1.16.1

27.4 Properties (UML attributes)

27.4.1 AccountNumber Property

Syntax AccountNumber: string { read-write, access after open }

Remarks Holds the account number to be used for the current EFT transaction. The application must set this
property before calling the beginEFTTransaction method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An attempt was made to change this property after the

beginEFTTransaction method has been called.

See Also beginEFTTransaction Method.

27.4.2 AdditionalSecurityInformation Property

Syntax AdditionalSecurityInformation: string { read-only, access after open }

Remarks Holds additional security/encryption information when a DataEvent is delivered. This property will be
formatted as a HEX-ASCII string. The information content and internal format of this string will vary
among PIN Pad Management Systems. For example, if the PIN Pad Management System is DUKPT,
then this property will contain the “PIN Pad sequence number.” If the PIN Entry was cancelled, this
property will contain the empty string.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

27.4.3 Amount Property Corrected in Release 1.8

Syntax Amount: currency { read-write, access after open }

Remarks Holds the amount of the current EFT transaction. The application must set this property before calling
the beginEFTTransaction method. This property is a monetary value stored using an implied four
decimal places. For example, an actual value of 12345 represents 1.2345.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An attempt was made to change this property after the

beginEFTTransaction method has been called.

See Also beginEFTTransaction Method.
Unified POS, v1.16.1 875

27.4.4 AvailableLanguagesList Property

Syntax AvailableLanguagesList: string { read-only, access after open }

Remarks Holds a semi-colon separated list of a set of a “language definitions” that are supported by the pre-
defined prompts in the PIN Pad. A “language definition” consists of an ISO-639 language code and an
ISO-3166 country code. The two codes are comma separated.

For example, the string “EN,US;FR,CAN” represents two supported language definitions. US English
and Canadian French where the variant of French used will be dependent on what is available on the
device.

If CapLanguage is PPAD_LANG_NONE, then this property will be the empty string.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also PromptLanguage Property.

27.4.5 AvailablePromptsList Property

Syntax AvailablePromptsList: string { read-only, access after open }

Remarks Holds a comma-separated string representation of the supported values for the Prompt property.

The full set of supported Prompt values are shown below:

Name (Value) Meaning
PPAD_MSG_ENTERPIN (1)

Enter pin number on the PIN Pad.

PPAD_MSG_PLEASEWAIT (2)
The system is processing. Wait.

PPAD_MSG_ENTERVALIDPIN (3)
The pin that was entered is not correct. Enter the correct pin number.

PPAD_MSG_RETRIESEXCEEDED (4)
The user has failed to enter the correct pin number and the maximum
number of attempts has been exceeded.

PPAD_MSG_APPROVED (5)
The request has been approved.

PPAD_MSG_DECLINED (6)
The EFT Transaction Host has declined to perform the requested function.

PPAD_MSG_CANCELED (7)
The request is canceled.
876 Unified POS, v1.16.1

PAD_MSG_AMOUNTOK (8)
Enter Yes/No to approve the amount.

PPAD_MSG_NOTREADY (9)
PIN Pad is not ready for use.

PPAD_MSG_IDLE (10) 
The System is Idle.

PPAD_MSG_SLIDE_CARD (11)
Slide card through the integrated MSR.

PPAD_MSG_INSERTCARD (12)
Insert (smart)card.

PPAD_MSG_SELECTCARDTYPE (13)
Select the card type (typically credit or debit).

Value 1000 and above are reserved for device specific defined values.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also Prompt Property
Unified POS, v1.16.1 877

27.4.6 CapDisplay Property

Syntax CapDisplay: int32 { read-only, access after open }

Remarks Defines the operations that the application may perform on the PIN Pad display.

Value Meaning
PPAD_DISP_UNRESTRICTED

The application can use the PIN Pad display in an unrestricted
manner to display messages. In this case, an associated Line Display
Control Object is the interface to the PIN Pad display. The application

 must call Line Display methods to manipulate the display.

PPAD_DISP_PINRESTRICTED
The application can use the PIN Pad display in an unrestricted manner
except during PIN Entry. The PIN Pad will display a pre-defined message
during PIN Entry. If an attempt is made to use the associated Line Display
Control Object while PIN Entry is enabled, the Line Display Control will
throw a UposException with an associated ErrorCode of E_BUSY.

PPAD_DISP_RESTRICTED_LIST
The application cannot specify the text of messages to display. It can only
select from a list of pre-defined messages. There is no associated Line
Display Device Control.

PPAD_DISP_RESTRICTED_ORDER
The application cannot specify the text of messages to display. It can only
select from a list of pre-defined messages. The selections must occur in a
pre-defined acceptable order. There is no associated Line Display Device
Control.

PPAD_DISP_NONE The PIN Pad does not have the PIN Pad display.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

27.4.7 CapKeyboard Property

Syntax CapKeyboard: boolean { read-only, access after open }

Remarks If true, the application can use the PIN Pad to obtain input. The application will use an associated POS
Keyboard Device Control object as the interface to the PIN Pad keyboard. Note that the associated POS
Keyboard Control is effectively disabled while PINEntryEnabled is true.
If false, the application cannot obtain input directly from the PIN Pad keyboard.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
878 Unified POS, v1.16.1

27.4.8 CapLanguage Property Updated in Release 1.9

Syntax CapLanguage: int32 { read-only, access after open }

Remarks Defines the capabilities that the application has to select the language of pre-defined messages (e.g.,
English, French, Arabic etc.).

Value Meaning
PPAD_LANG_NONE The PIN Pad supports no predefined prompt messages. The property will

be set to this value if CapDisplay = PPAD_DISP_UNRESTRICTED.
 Any attempt to set the value of the PromptLanguage property will cause

a UposException to be thrown with the associated ErrorCode of
E_ILLEGAL.

PPAD_LANG_ONE The PIN Pad supports predefined prompt messages in one language. Any
attempt to set the value of the PromptLanguage property to other than
the default value will cause a UposException to be thrown with the
associated ErrorCode of E_ILLEGAL.

PPAD_LANG_PINRESTRICTED
The PIN Pad cannot change prompt languages during PIN Entry. The
application must set the desired value into the PromptLanguage property
before calling enablePINEntry. Any attempt to set the value of the
PromptLanguage while PINEntryEnabled is true will cause a
UposException to be thrown with the associated ErrorCode of E_BUSY.

PPAD_LANG_UNRESTRICTED
The application can change the language of predefined prompt messages
at anytime. The currently displayed message will change immediately.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also PromptLanguage Property.

27.4.9 CapMACCalculation Property

Syntax CapMACCalculation: boolean { read-only, access after open }

Remarks If true, the PIN Pad supports MAC calculation.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 879

27.4.10 CapTone Property

Syntax CapTone: boolean { read-only, access after open }

Remarks If true, the PIN Pad has a Tone Indicator. The Tone Indicator may be accessed by use of an associated
Tone Indicator Control. If false, there is no Tone Indicator.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

27.4.11 EncryptedPIN Property

Syntax EncryptedPIN: string { read-only, access after open }

Remarks Holds the value of the Encrypted PIN after a DataEvent. This property will be formatted as a hexadecimal
ASCII string. Each character is in the ranges ‘0’ through ‘9’ or ‘A’ through ‘F’. Each pair of characters
is the hexadecimal representation for a byte.
For example, if the first four characters are “12FA,” then the first two bytes of the PIN are 12
hexadecimal (18) and FA hexadecimal (250).

If the PIN Entry was canceled, this property will contain the empty string.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

27.4.12 MaximumPINLength Property

Syntax MaximumPINLength: int32 { read-write, access after open }

Remarks Holds the maximum acceptable number of digits in a PIN. This property must be set to a default value
by the open method. If the application wishes to change this property, it should be set before the
enablePINEntry method is called. Note that in some implementations, this value cannot be changed by
the application.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An attempt was made to change this property after the
 enablePINEntry method has been called.
880 Unified POS, v1.16.1

27.4.13 MerchantID Property

Syntax MerchantID: string { read-write, access after open }

Remarks Holds the Merchant ID, as it is known to the EFT Transaction Host. The application must set this
property before calling the beginEFTTransaction method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An attempt was made to change this property after the

beginEFTTransaction method has been called.

27.4.14 MinimumPINLength Property

Syntax MinimumPINLength: int32 { read-only, access after open }

Remarks Holds the minimum acceptable number of digits in a PIN. This property will be set to a default value by
the open method. If the application wishes to change this property, it should be set before the
enablePINEntry method is called. Note that in some implementations, this value cannot be changed by
the application.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An attempt was made to change this property after the enablePINEntry

method has been called.

27.4.15 PINEntryEnabled Property Updated in Release 1.12

Syntax PINEntryEnabled: boolean { read-only, access after open }

Remarks If true, the PIN entry operation is enabled. It is set when the enablePINEntry method is called. It will
be set to false when the user has completed the PIN Entry operation or when the endEFTTransaction
method has completed.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 881

27.4.16 Prompt Property

Syntax Prompt: int32 { read-write, access after open }

Remarks Holds the identifies a predefined message to be displayed on the PIN Pad. This property is used if
CapDisplay is PPAD_DISP_RESTRICTED_LIST or PPAD_DISP_RESTRICTED_ORDER. It is also
used during PIN Entry if CapDisplay has a value of PPAD_DISP_PINRESTRICTED. The
AvailablePromptsList property lists the possible values for this property.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following has occurred.
 * An attempt was made to set the property to a value that is not supported
 by the PIN Pad Service.
 * An attempt was made to select prompt messages in an unacceptable
 order (if CapDisplay is PPAD_DISP_RESTRICTED_ORDER).

See Also PromptLanguage Property
882 Unified POS, v1.16.1

27.4.17 PromptLanguage Property

Syntax PromptLanguage: nls { read-write, access after open }

Remarks Holds the “language definition” for the message to be displayed (as specified by the Prompt property).
This property is used if the Prompt property is being used. The exact effect of changing this property
depends on the value of CapLanguage.

A “language definition” consists of an ISO-639 language code and an ISO-3166 country code. The two
codes are comma separated.

The country code is optional and implies that the application does not care which country variant of the
language is used.

For example, the string “EN,US” represents a US English language definition, the string “FR,” represents
a French language definition where the variant of French used will be dependent on what is available on
the device.

The property is initialized to a default value by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following occurred.

* An attempt was made to set the property to a value that is not supported
by the PIN Pad Service.
* CapLanguage is PPAD_LANG_NONE. and an attempt was made to
set the value of this property.
* CapLanguage is PPAD_LANG_ONE and an attempt was made to set
the value of this property to other than the default value.

E_BUSY CapLanguage is PPAD_LANG_PINRESTRICTED and
PINEntryEnabled is true.

See Also CapLanguage Property, AvailableLanguagesList Property.

27.4.18 TerminalID Property

Syntax TerminalID: string { read-write, access after open }

Remarks Holds the terminal ID, as it is known to the EFT Transaction Host. The application must set this property
before calling the beginEFTTransaction method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An attempt was made to change this property after the

beginEFTTransaction method has been called.
Unified POS, v1.16.1 883

27.4.19 Track1Data Property

Syntax Track1Data: binary { read-write, access after open }

Remarks Holds either the decoded track 1 data from the previous card swipe or an empty array. An empty array
indicates that the track was not physically read. The application must set this property before calling the
beginEFTTransaction method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGAL An attempt was made to change this property after the
 beginEFTTransaction method has been called.

27.4.20 Track2Data Property

Syntax Track2Data: binary { read-write, access after open }

Remarks Holds either the decoded track 2 data from the previous card swipe or an empty array. An empty array
indicates that the track was not physically read. The application must set this property before calling the
beginEFTTransaction method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An attempt was made to change this property after the
 beginEFTTransaction method has been called.

27.4.21 Track3Data Property

Syntax Track3Data: binary { read-write, access after open }

Remarks Holds either the decoded track 3 data from the previous card swipe or an empty array. An empty array
indicates that the track was not physically read. The application must set this property before calling the
beginEFTTransaction method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGAL An attempt was made to change this property after the
 beginEFTTransaction method has been called.
884 Unified POS, v1.16.1

27.4.22 Track4Data Property Added in Release 1.5

Syntax Track4Data: binary { read-write, access after open }

Remarks Holds either the decoded track 4 (JIS-II) data from the previous card swipe or an empty array. An empty
array indicates that the track was not physically read. The application must set this property before calling
the beginEFTTransaction method.

To maintain compatibility with previous versions, the Control may also continue to store the JIS-II data
in another TracknData property. However, it should be noted that to ensure application portability,
Track4Data should be used to access JIS-II data.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An attempt was made to change this property after the

beginEFTTransaction method has been called.

27.4.23 TransactionType Property

Syntax TransactionType: int32 { read-write, access after open }

Remarks Holds the type of the current EFT Transaction. The application must set this property before calling the
beginEFTTransaction method.

This property have one of the following values:

Value Meaning
PPAD_TRANS_DEBIT Debit (decrease) the specified account

PPAD_TRANS_CREDITCredit (increase) the specified account

PPAD_TRANS_INQ (Balance) Inquiry

PPAD_TRANS_RECONCILE
Reconciliation/Settlement

PPAD_TRANS_ADMINAdministrative Transaction

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An attempt was made to change this property after the

beginEFTTransaction method has been called.
Unified POS, v1.16.1 885

27.5 Methods (UML operations)

27.5.1 beginEFTTransaction Method Updated in Release 1.14

Syntax beginEFTTransaction (PINPadSystem: string, transactionHost: int32):
void { raises-exception, use after open-claim-enable }

Value Description
PINPadSystem Name of the desired PIN Pad Management System (see below).
 Note: The Service may support other PIN Pad Management systems not
 defined below; it is left up to the Application to have knowledge of the
 proper string value.

transactionHost Identifications particular EFT Transaction Host to be used for this
transaction.

The PINPadSystem Parameter has one of the following values:

Value Description
“M/S” Master/Session (U.S.A Latin America)

“DUKPT” Derived Unique Key Per Transaction (USA, Latin America)

“APACS40” Standard 40 (UK and other countries)

“AS2805” Australian Standard 2805

“HGEPOS” (Italian)

“JDEBIT2” Japan Debit 2

Remarks Initialize the beginning of an EFT Transaction. The device will perform initialization functions (such as
computing session keys). No other PIN Pad functions can be performed until this method is called.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The requested PIN Pad Management System is not supported by the
 Control, or the requested EFT Transaction Host is an illegal value for the
 selected PIN Pad Management System.

E_BUSY The PIN Pad is already performing an EFT transaction.
886 Unified POS, v1.16.1

27.5.2 computeMAC Method Updated in Release 1.7

Syntax computeMAC (inMsg: string, outMsg: object):
void { raises-exception, use after beginEFTTransaction)

Value Description
inMsg1 The message that the application intends to send to an EFT Transaction.
outMsg1 Contains the result of applying the MAC calculation to inMsg. This output

parameter will contain a reformatted message that may actually be
transmitted to an EFT Transaction Host. 

Remarks Computes a MAC value and appends it to the designated message. Depending on the selected PIN Pad
management system, the PIN Pad may also insert other fields into the message. Note that this method
cannot be used while PIN Pad input (PIN Entry) is enabled.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_DISABLED A beginEFTTransaction method has not been performed.

E_BUSY PINEntryEnabled is true. The PIN Pad cannot perform a MAC
calculation during PIN Entry.

27.5.3 enablePINEntry Method

Syntax enablePINEntry ():
void { raises-exception, use after beginEFTTransaction);

Remarks Enable PIN Entry at the PIN Pad device. When this method is called, the PINEntryEnabled property

will be changed to true. If the PIN Pad uses pre-defined prompts for PIN Entry, then the Prompt property
will be changed to PPAD_MSG_ENTERPIN.

When the user has completed the PIN entry operation (either by entering their PIN or by hitting Cancel),
the PINEntryEnabled property will be changed to false. A DataEvent will be delivered to provide the
encrypted PIN to the application when DataEventEnabled is set to true. Note that any data entered at
the PIN Pad while PINEntryEnabled is true will be supplied in encrypted form and will NOT be
provided to any associated Keyboard Control Object.

Errors A UposException may be thrown when this method is invoked. For further information, se “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_DISABLEDA beginEFTTransaction method has not been performed.

1. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.
Unified POS, v1.16.1 887

27.5.4 endEFTTransaction Method

Syntax endEFTTransaction (completionCode: int32):
void { raises-exception, use after beginEFTTransaction }

The completionCode is one of the following values:

Value Description
PPAD_EFT_NORMAL The EFT transaction completed normally. Note that this does not mean
 that the EFT transaction was approved. It merely means that the proper
 sequence of messages was transmitted and received.

PPAD_EFT_ABNORMAL
The proper sequence of messages was not transmitted and received.

Remarks Ends an EFT Transaction. The Device will perform termination functions (such as computing next
transaction keys).

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

27.5.5 updateKey Method

Syntax updateKey (keyNum: int32, key: string):
void { raises-exception, use after beginEFTTransaction }

Parameter Description
keyNum A key number.

key A Hex-ASCII value for a new key.

Remarks Provides a new encryption key to the PIN Pad. It is used only for those PIN Pad Management Systems
in which new key values are sent to the terminal as a field in standard messages from the EFT Transaction
Host.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following conditions occurred.
 * The selected PIN Pad Management System does not support this
 function.
 * The keyNum specifies an unacceptable key number.
 * The key contains a bad key (not Hex-ASCII or wrong length or bad
 parity).
888 Unified POS, v1.16.1

27.5.6 verifyMAC Method Updated in Release 1.9

Syntax verifyMAC (message: string):
void { raises-exception, use after beginEFTTransaction }

Parameter Description
message Contains a message received from an EFT Transaction Host.

Remarks Verify the MAC value in a message received from an EFT Transaction Host. This method throws a
UposException if it cannot verify the message. Note that this method cannot be used while PIN Entry is
enabled.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY PINEntryEnabled is true. The PIN Pad cannot perform a MAC

verification during PIN Entry.
E_DISABLED A beginEFTTransaction method has not been performed.

E_FAILURE The Service failed to verify the MAC value in message.
Unified POS, v1.16.1 889

27.6 Events (UML interfaces)

27.6.1 DataEvent

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application when a PIN Entry operation has completed.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 See below.

The Status property has one of the following values:

Value Meaning
PPAD_SUCCESS PIN Entry has occurred and values have been stored into the
 EncryptedPIN and AdditionalSecurityInformation properties.

PPAD_CANCEL The user hit the cancel button on the PIN Pad.

PPAD_TIMEOUT A timeout condition occurred in the PIN Pad. (Not all PIN Pads will report
this condition).

Remarks This event is enqueued after the request’s data has been both sent and the Service has confirmation that
is was processed by the device successfully.

See Also “Device Input Model” on page 18.
890 Unified POS, v1.16.1

27.6.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific PIN Pad Service to provide events to the application that are not otherwise supported by the
Device Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service event.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s PIN Pad
devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method
Unified POS, v1.16.1 891

27.6.3 ErrorEvent

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an error was detected while trying to perform a PIN encryption function.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes on page 16.
ErrorCodeExtended

int32 Extended Error code causing the error event. If ErrorCode is
E_EXTENDED, then see values below. Otherwise, it may contain a
Service-specific value.

ErrorLocus int32 Location of the error, and is set to EL_INPUT indicating that the error
occurred while gathering or processing event-driven input.

ErrorResponse int32 Error response, whose default value may be overridden by the application
(i.e., this property is settable). See values below.

If ErrorCode is E_EXTENDED, then ErrorCodeExtended has one of the following values:

Value Meaning
EPPAD_BAD_KEY An Encryption Key is corrupted or missing.

The ErrorLocus property may be one of the following:

Value Meaning
EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.

The application’s error processing may change ErrorResponse to the following value:

Value Meaning
ER_CLEAR Clear the buffered input data. The error state is exited. Default when locus

is EL_INPUT.

Remarks Enqueued when an error is detected and the Service’s State transitions into the error state. This event is
not delivered until DataEventEnabled is true, so that proper application sequencing occurs.

See Also “Device Behavior Models” on page 10 and ErrorReportingType Property.
892 Unified POS, v1.16.1

27.6.4 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a PIN Pad.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Reports a change in the power state of a PIN Pad.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 2.

Remarks Enqueued when the PIN Pad detects a power state change.

See Also “Events” on page 15.
Unified POS, v1.16.1 893

894 Unified POS, v1.16.1

28 Point Card Reader/Writer

28.1 General

This Chapter defines the Point Card Reader/Writer device category.

28.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.5 Not supported

CapCompareFirmwareVersion: boolean { read-only } 1.9 open

CapPowerReporting: int32 { read-only } 1.5 open

CapStatisticsReporting: boolean { read-only } 1.8 open

CapUpdateFirmware: boolean { read-only } 1.9 open

CapUpdateStatistics: boolean { read-only } 1.8 open

CheckHealthText: string { read-only } 1.5 open

Claimed: boolean { read-only } 1.5 open

DataCount: int32 { read-only } 1.5 open

DataEventEnabled: boolean { read-write } 1.5 open

DeviceEnabled: boolean { read-write } 1.5 open & claim

FreezeEvents: boolean { read-write } 1.5 open

OutputID: int32 { read-only } 1.5 open

PowerNotify: int32 { read-write } 1.5 open

PowerState: int32 { read-only } 1.5 open

State: int32 { read-only } 1.5 --

DeviceControlDescription: string { read-only } 1.5 --

DeviceControlVersion: int32 { read-only } 1.5 --

DeviceServiceDescription: string { read-only } 1.5 open

DeviceServiceVersion: int32 { read-only } 1.5 open

PhysicalDeviceDescription: string { read-only } 1.5 open

PhysicalDeviceName: string { read-only } 1.5 open
Unified POS, v1.16.1 895

Properties (Continued)

Specific: Type Mutability Version May Use After

CapBold: boolean { read-only } 1.5 open

CapCardEntranceSensor: int32 { read-only } 1.5 open

CapCharacterSet: int32 { read-only } 1.5 open

CapCleanCard: boolean { read-only } 1.5 open

CapClearPrint: boolean { read-only } 1.5 open

CapDhigh: boolean { read-only } 1.5 open

CapDwide: boolean { read-only } 1.5 open

CapDwideDhigh: boolean { read-only } 1.5 open

CapItalic: boolean { read-only } 1.5 open

CapLeft90: boolean { read-only } 1.5 open

CapMapCharacterSet: boolean { read-only } 1.7 open

CapPrint: boolean { read-only } 1.5 open

CapPrintMode: boolean { read-only } 1.5 open

CapRight90: boolean { read-only } 1.5 open

CapRotate180: boolean { read-only } 1.5 open

CapTracksToRead: int32 { read-only } 1.5 open

CapTracksToWrite: int32 { read-only } 1.5 open

CardState: int32 { read-only } 1.5 open

CharacterSet: int32 { read-write } 1.5 open, claim, & enable

CharacterSetList: string { read-only } 1.5 open

FontTypeFaceList: string { read-only } 1.5 open

LineChars: int32 { read-only } 1.5 open, claim, & enable

LineCharsList: string { read-only } 1.5 open

LineHeight: int32 { read-only } 1.5 open, claim, & enable

LineSpacing: int32 { read-only } 1.5 open, claim, & enable

LineWidth: int32 { read-only } 1.5 open, claim, & enable

MapCharacterSet: boolean { read-write } 1.7 open

MapMode: int32 { read-only } 1.5 open, claim, & enable

MaxLine: int32 { read-only } 1.5 open, claim, & enable

PrintHeight: int32 { read-only } 1.5 open, claim, & enable

ReadState1: int32 { read-only } 1.5 open

ReadState2: int32 { read-only } 1.5 open

RecvLength1: int32 { read-only } 1.5 open, claim, & enable

RecvLength2: int32 { read-only } 1.5 open, claim, & enable

SidewaysMaxChars: int32 { read-only } 1.5 open

SidewaysMaxLines: int32 { read-only } 1.5 open
896 Unified POS, v1.16.1

Properties (Continued)

Specific: Type Mutability Version May Use After

TracksToRead: int32 { read-write } 1.5 open, claim, & enable

TracksToWrite: int32 { read-write } 1.5 open, claim, & enable

Track1Data: binary { read-only } 1.5 open

Track2Data: binary { read-only } 1.5 open

Track3Data: binary { read-only) 1.5 open

Track4Data: binary { read-only } 1.5 open

Track5Data: binary { read-only } 1.5 open

Track6Data: binary { read-only } 1.5 open

WriteState1: int32 { read-only } 1.5 open

WriteState2: int32 { read-only } 1.5 open

Write1Data: binary { read-write } 1.5 open

Write2Data: binary { read-write } 1.5 open

Write3Data: binary { read-write } 1.5 open

Write4Data: binary { read-write } 1.5 open

Write5Data: binary { read-write } 1.5 open

Write6Data: binary { read-write } 1.5 open

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.5

close ():
void { raises-exception, use after open }

1.5

claim (timeout: int32):
void { raises-exception, use after open }

1.5

release ():
void { raises-exception, use after open, claim }

1.5

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.5

clearInput ():
void { raises-exception, use after open, claim }

1.5

clearInputProperties ():
void { raises-exception, use after open, claim }

1.10

clearOutput ():
void { raises-exception, use after open, claim }

1.5

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.5
Unified POS, v1.16.1 897

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific

Name

beginInsertion (timeout: int32):
void { raises-exception, use after open, claim, enable }

1.5

beginRemoval (timeout: int32):
void{ raises-exception, use after open, claim, enable }

1.5

cleanCard ():
void { raises-exception, use after open, claim, enable }

1.5

clearPrintWrite (kind: int32, hposition: int32, vposition: int32, width:
int32, height: int32):
void { raises-exception, use after open, claim, enable }

1.5

endInsertion ():
void { raises-exception, use after open, claim, enable }

1.5

endRemoval ():
void { raises-exception, use after open, claim, enable }

1.5

printWrite (kind: int32, hposition: int32,vposition: int32,data: string):
void { raises-exception, use after open, claim, enable }

1.5

rotatePrint (rotation: int32):
void { raises-exception, use after open, claim, enable }

1.5

validateData (data: string):
void { raises-exception, use after open, claim, enable }

1.5
898 Unified POS, v1.16.1

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent 1.5

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.5

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.5

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent 1.5

 OutputID: int32 { read-only }

upos::events::StatusUpdateEvent 1.5

 Status: int32 { read-only }
Unified POS, v1.16.1 899

28.3 General Information

The Point Card Reader / Writer programmatic name is “PointCardRW.”

This device was introduced in Version 1.5 of the specification.

28.3.1 Capabilities

The Point Card Reader / Writer has the following capabilities.

• Both reading and writing of the point card magnetic data are possible.

• Supports reading and writing of data from up to 6 tracks.

• The data on the tracks is in a device specific format, see the device manual for specific definition. The data is
usually in ASCII format.

• Supports point cards with or without a printing area. Actual printing support depends upon the capabilities of
the device.

• Supports both card insertion and ejection.

• No special security capabilities (e.g., encryption) are supported.
900 Unified POS, v1.16.1

28.3.2 Point Card Reader/Writer Class Diagram

The following diagram shows the relationships between the Point Card Reader Writer classes.

UposException
(from upos)

<<exception>>

UposConst
(from upos)

<<utility>>

PointCardRWConst
(from upos)

<<utility>>

DataEvent
(from events)

<<event>>

StatusUpdateEvent
(from events)

<<event>>

ErrorEvent
(from events)

<<event>>

DirectIOEvent
(from events)

<<event>>

PointCardRWControl

<<capability>> CapBold : boolean
<<capability>> CapCardEntranceSensor : boolean
<<capability>> CapCharacterSet : int32
<<capability>> CapCleanCard : boolean
<<capability>> CapClearPrint : boolean
<<capability>> CapDhigh : boolean
<<capability>> CapDwide : boolean
<<capability>> CapDwideDhigh : boolean
<<capability>> CapItalic : boolean
<<capability>> CapLeft90 : boolean
<<capability>> CapPrint : boolean
<<capability>> CapPrintMode : boolean
<<capability>> CapRight90 : boolean
<<capability>> CapRotate180 : boolean
<<capability>> CapTracksToRead : int32
<<capability>> CapTracksToWrite : int32
<<prop>> CardState : int32
<<prop>> CharacterSet : int32
<<prop>> CharacterSetList : string
<<prop>> FontTypeFaceList : string
<<prop>> LineChars : int32
<<prop>> LineCharsList : string
<<prop>> LineHeight : int32
<<prop>> LineSpacing : int32
<<prop>> LineWidth : int32
<<prop>> MapMode : int32
<<prop>> MaxLines : int32
<<prop>> PrintHeight : int32
<<prop>> RecvLength1 : int32
<<prop>> RecvLength2 : int32
<<prop>> ReadState1 : int32
<<prop>> ReadState2 : int32
<<prop>> SidewaysMaxChars : int32
<<prop>> SidewaysMaxLines : int32
<<prop>> Tracks1Data : binary
<<prop>> Tracks2Data : binary
<<prop>> Tracks3Data : binary
<<prop>> Tracks4Data : binary
<<prop>> Tracks5Data : binary
<<prop>> Tracks6Data : binary
<<prop>> TracksToRead : int32
<<prop>> TracksToWrite : int32
<<prop>> Write1Data : binary
<<prop>> Write2Data : binary
<<prop>> Write3Data : binary
<<prop>> Write4Data : binary
<<prop>> Write5Data : binary
<<prop>> Write6Data : binary
<<prop>> WriteState1 : int32
<<prop>> WriteState2 : int32

beginInsertion()
beginRemoval()
cleanCard()
clearPrintWrite()
endInsertion()
endRemoval()
printWrite()
rotatePrint()
validateData()

(from upos)

<<Interface>>

<<uses>>

<<sends>>

fires

fires

fires

fires

BaseControl
(from upos)

<<Interface>>

<<uses>>

<<uses>>

<<sends>>
Unified POS, v1.16.1 901

28.3.3 Model

The general model of Point Card Reader Writer is as follows:

• The Point Card Reader Writer reads all the magnetic stripes on a point card. The data length and reading
information are placed in the property corresponding to the track.

• The Point Card Reader Writer follows the input model of event driven input during the card insertion
processing. Also, writing to the printing area and the magnetic stripe follows the output model.

28.3.3.1 Input Model

• An application must call open and claim, then set DeviceEnabled to true.

• When an application wants a card inserted, it calls the beginInsertion method, specifying a timeout value.

• If a card is not inserted before the timeout period elapses, the Point Card Reader Writer fires an exception.

• Even if a timeout occurs, the Point Card Reader Writer remains in insertion mode. If the application still wants
a card inserted, it must call the beginInsertion method again.

• To exit insertion mode, either after a card was inserted or the application wishes to abort insertion, the
application calls the endInsertion method.

• If there is a point card in the Point Card Reader Writer when endInsertion is called, the point card’s data tracks
are automatically read and a DataEvent is enqueued. When the application sets the DataEventEnabled
property to true, the DataEvent will be delivered.

• If an error occurs while reading the point card’s data tracks, an ErrorEvent is enqueued instead of a
DataEvent. When the application sets the DataEventEnabled property to true, the ErrorEvent will be
delivered.

• The application can obtain the current number of enqueued data events by reading the DataCount property.

• All enqueued but undelivered input may be deleted by calling the clearInput method.

• All data properties that are populated as a result of firing a DataEvent or ErrorEvent can be set back to their
default values by calling the clearInputProperties method.
902 Unified POS, v1.16.1

28.3.3.2 Output Model Updated in Release 1.7

• To write data to a card, the application calls the printWrite method. The ability to write data depends upon the
capabilities of the device.

• The printWrite method is always performed asynchronously. All asynchronous output is performed on a first-
in, first-out basis.

• When the application calls printWrite, the Point Card Reader Writer buffers the request in program memory,
for delivery to the Physical Device as soon as the Physical Device can receive and process it, assigns a unique
identification number for this request. This ID is stored in the property OutputID. The Point Card Reader
Writer then either queues the request or starts its processing. Either way, the Point Card Reader Writer returns
to the application quickly.

• When the printWrite method completes, an OutputCompleteEvent is delivered to the application. The
OutputID associated with the completed request is passed in the OutputCompleteEvent.

• If the printWrite method fails during its processing, an ErrorEvent will be delivered to the application. If the
application had multiple outstanding output requests, the OutputID of the request that failed can be
determined by watching which requests have successfully completed by monitoring OutputCompleteEvents.
The request that failed is the one that was issued immediately after the last request that successfully completed.

• All buffered output data, including all asynchronous output, may be deleted by calling clearOutput. This
method also stops any output that is in progress, if possible. No OutputCompleteEvents will be delivered for
output requests terminated in this manner.

• When done accessing the point card, the application calls the beginRemoval method, specifying a timeout
value.

• If the card is not removed before the timeout period elapses, the Point Card Reader Writer fires an exception.

• Even if a timeout occurs, the Point Card Reader Writer remains in removal mode. If the application still wants
the card removed, it must call the beginRemoval method again.

• To exit removal mode, either after the card was physically removed or the application wishes to abort removal,
the application calls the endRemoval method.
Unified POS, v1.16.1 903

28.3.4 Card Insertion Diagram

The processing from card insertion to card removal is shown below. All methods, other than printWrite, are
performed synchronously.

1. If the card is not inserted into the Point Card Reader Writer before the application specified timeout elapses, an
exception is fired. The application needs to call beginInsertion again to confirm that a point card has been
inserted or call endInsertion to cancel the card insertion. After a successful beginInsertion, the application
must call endInsertion to cause the Point Card Reader Writer to exit insertion mode and to read the magnetic
stripe data from the point card.

2. If the card is not removed from the Point Card Reader Writer before the application specified timeout elapses,
an exception is fired. The application needs to call beginRemoval again to confirm that the point card has been
removed, or call endRemoval to cancel the card removal. After a successful beginRemoval, the application
must call endRemoval to cause the Point Card Reader Writer to exit removal mode.

DataEvent

beginInsertion

endInsertion

DataEventEnabled = true

OutputCompleteEvent

printWrite

beginRemoval

endRemoval

Card
insertion

Card
write

Card
removal

beginInsertion (1)

beginRemoval

Application
Point Card

Reader Writer

(2)
904 Unified POS, v1.16.1

28.3.5 Printing Capability

• The Point Card Reader Writer supports devices that allow for rewriting the print area of a card.

• The Point Card Reader Writer supports printing specified either by dot units or by line units. When
CapPrintMode is true, the unit type is determined by the value of the MapMode property. When
CapPrintMode is false, the unit type is defined as lines.

• The data to print is passed to the printWrite method as the data parameter. Special character modifications,
such as double height, are dependent upon the capabilities of the device. The starting print location is specified
by the vposition and hposition parameters respectively indicating the vertical and horizontal start position
expressed in units defined by the MapMode property value.

• When using line units, the start position for lines containing both single and double high characters is the top of
a single high character for horizontal printing and the bottom of all characters for vertical printing. See the
diagram below for further clarification.

Horizontal printing Vertical printing

0

0
hposition

vposition

0

0

B
A

Line feed

BA

hposition

vposition

direction of
insertion

Line feed

direction of
insertion
Unified POS, v1.16.1 905

28.3.6 Cleaning Capability

• Cleaning of the Point Card Reader Writer is necessary to prevent errors caused by dirt build up inside the
device.

• A special cleaning card is used. There are two types of cleaning card: a wet card (such as a card wet with
ethanol before use) and a dry card.

• Cleaning is carried out by having the inserted cleaning card make several passes over the read heads inside the
device.

• Some Point Card Reader Writers perform the cleaning operation by use of a switch on the device. Others
perform the cleaning operation entirely under control of the application.

28.3.7 Initialization of Magnetic Stripe Data

• Some Point Card Reader Writers can initialize the magnetic stripe data to prevent the illegal use of a point
card.

• There are three initialization techniques in use for Point Card Reader Writers:

• Initialize all of the data, including the start sentinel, end sentinel, and a correct LRC.

• Write an application specific code into the data area using no sentinels.

• Initialize all tracks to empty by just writing start and end sentinels.

• Initialization of the magnetic stripe is dependent upon the capability of the device.

28.3.8 Device Sharing

The Point Card Reader Writer is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing many Point Card Reader Writer specific
properties.

• The application must claim and enable the device before calling methods that manipulate the device.

• See the “Summary” table for precise usage prerequisites.
906 Unified POS, v1.16.1

28.3.9 Data Characters and Escape Sequences Updated in Release 1.7

The default character set of all Point Card Reader Writers is assumed to support at least the ASCII characters 20-
hex through 7F-hex, which include spaces, digits, uppercase, lowercase, and some special characters. If the Point
Card Reader Writer does not support lowercase characters, then the Service may translate them to uppercase.

Every escape sequence begins with the escape character ESC, whose value is 27 decimal, followed by a vertical
bar (‘|’). This is followed by zero or more digits and/or lowercase alphabetic characters. The escape sequence is
terminated by an uppercase alphabetic character.

If a sequence does not begin with ESC “|”, or it begins with ESC “|” but is not a valid UnifiedPOS escape
sequence, the Service will make a reasonable effort to pass it through to the Point Card Reader Writer. However,
not all such sequences can be distinguished from printable data, so unexpected results may occur.

Starting with Release 1.7, the application can use the ESC|#E escape sequence to ensure more reliable handling
of the amount of data to be passed through to the Point Card Reader Writer. Use of this escape sequence will
make an application non-portable. The application may, however, maintain portability by performing Embedded
Data Escape sequence calls within conditional code. This code may be based upon the value of the
DeviceServiceDescription, the PhysicalDeviceDescription, or the PhysicalDeviceName property.

NOTE: This command sequence definition and the corresponding definition in the POS Printer Chapter, are the
only known deviations from preserving the interchangeability of devices defined in this specification. If an
application finds it necessary to utilize this command sequence, please inform the UnifiedPOS Committee
(retail.omg.org) with the details of its usage, so that a possible standard/generic Application Interface may be
incorporated into a future release of the UnifiedPOS Standard. In order to preserve peripheral independence and
interoperability at the Application level, it is the Committee’s position that this command sequence should be
used only as a “last resort.”

To determine if escape sequences or data can be performed on Point Card Reader Writer, the application can call
the validateData method. (For some escape sequences, corresponding capability properties can also be used.)

The following escape sequences are recognized. If an escape sequence specifies an operation that is not
supported by the Point Card Reader Writer, then it is ignored.

Commands Perform indicated action. Added in Release1.7

Name Data Remarks

Pass through
embedded data
 (See a below.)

a.This escape sequence is only available in Version 1.7 and later.

ESC |#E

Send the following # characters of data through to
the hardware without modifying it. The character '#'
is replaced by an ASCII decimal string telling the
number of bytes following the escape sequence that
should be passed through as-is to the hardware.
Unified POS, v1.16.1 907

http://retail.omg.org

Print Mode Characteristics that are remembered until explicitly changed.

Print Line Characteristics that are reset at the end of each print method or by a “Normal”
sequence.

Name Data Remarks

Font typeface selection ESC |#fT

Selects a new typeface for the following data. Values

for the character ‘#’ are:

0 = Default typeface.

1 = Select first typeface from the FontTypefaceList

property.

2 = Select second typeface from the FontTypefaceL-

ist property.

And so on.

Name Data Remarks

Bold ESC |bC Prints in bold or double-strike.

Underline ESC |#uC Prints with underline. The character ‘#’ is replaced by

an ASCII decimal string telling the thickness of the

underline in printer dot units. If ‘#’ is omitted, then a

printer-specific default thickness is used.

Italic ESC |iC Prints in italics.

Reverse video ESC |rvC Prints in a reverse video format.

Single high and

wide

ESC |1C Prints normal size.

Double wide ESC |2C Prints double-wide characters.

Double high ESC |3C Prints double-high characters.

Double high and

wide

ESC |4C Prints double-high/double-wide characters.

Scale horizontally ESC |#hC Prints with the width scaled ‘#’ times the normal size,

where ‘#’ is replaced by an ASCII decimal string.

Scale vertically ESC |#vC Prints with the height scaled ‘#’ times the normal size,

where ‘#’ is replaced by an ASCII decimal string.

Center ESC |cA Aligns following text in the center.

Right justify ESC |rA Aligns following text at the right.

Normal ESC |N Restores printer characteristics to normal condition.
908 Unified POS, v1.16.1

28.3.10 Point Card Reader Writer Sequence Diagram Added in Release 1.7

ClientApp cd:PCRWDataEventHandler PCRWServiceDataEvent

new

Create and register a DataEventHandler with the control

claim(timeOut) claim(timeOut)

setDeviceEnabled(true)

setDataEventEnabled(true)

setDeviceEnabled(true)

setDataEventEnabled(true)

beginInsertion(timeout)

endInsertion() endInsertion()

beginInsertion(timeout)

new

copy data to DataEvent

parse and set PCRW properties

enqueue DataEvent to service's internal queue

deliver DataEventdeliver DataEvent to each handler

printWrite(kind, hposition, vposition, data)

OCE=OutputCompleteEvent

OCEHandler

set TrackXData properties

printWrite(kind, hposition, vposition, data)

OutputID++

new

copy data to OCE

enqueue OCE to service's internal queue

deliver OutputCompleteEvent

deliver OutputCompleteEvent to each handler

beginRemoval(timeout)

endRemoval() endRemoval()

beginRemoval(timeout)
Unified POS, v1.16.1 909

28.3.11 Point Card Reader Writer State Diagram

Open()

Close() Claim()

Release()

Close()

SetDeviceEnable(false)

SetDeviceEnable(true)

BeginInsertion()
EndInsertion()

EndRemoval()

EndInsertion() BeginRemoval()

ClearInput()

[DeviceEnable==true,and,Card out]

ClearInput()

Closed Opened Claimed

Enable

Clearinput
Processing

Ejected Mode

Eject Card

Eject Card

 Card Inserting

Insert Card

 Input

Card in PointCard R/W

PrintWrite()

Writing and Printing Mode

OutputCompleteEvent

ErrorEvent

Setting
Outputdata

BeginRemoval()[Card in]

 ErrorEvent

DataEvent

ClearInput()

Release()

DataEventEn
abled==true

&
error

Queuing

DataEventEnabled==true
&

error

DataEventEnabled==true
&

error

Write and Print Mode

Write and Print

DataEventEnabled==true
&

error

DataEventEnabled==true
&

error
910 Unified POS, v1.16.1

28.4 Properties (UML attributes)

28.4.1 CapBold Property

Syntax CapBold: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print bold characters, false if it cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

28.4.2 CapCardEntranceSensor Property

Syntax CapCardEntranceSensor: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer has an entrance sensor, false if it does not.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

CapCharacterSet Property

Syntax CapCharacterSet: int32 { read-only, access after open }

Remarks Holds the default character set capability. It may be one of the following:

Value Meaning
PCRW_CCS_ALPHA The default character set supports upper case alphabetic plus numeric, 
 space, minus, and period.

PCRW_CCS_ASCII The default character set supports all ASCII characters between 20-hex and
7F-hex.

PCRW_CCS_KANA The default character set supports partial code page 932, including ASCII
characters 20-hex through 7F-hex and the Japanese Kana characters A1-
hex through DF-hex, but excluding the Japanese Kanji characters.

PCRW_CCS_KANJI The default character set supports code page 932, including the Shift-JIS
Kanji characters, Levels 1 and 2.

PCRW_CCS_UNICODE The default character set supports Unicode.

The default character set may contain a superset of these ranges. The initial CharacterSet property may
be examined for additional information.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.



Unified POS, v1.16.1 911

28.4.3 CapCleanCard Property

Syntax CapCleanCard: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer supports cleaning under application control, false if it does not.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

28.4.4 CapClearPrint Property

Syntax CapClearPrint: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer supports clearing (erasing) the printing area, false if it does not.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

28.4.5 CapDhigh Property

Syntax CapDhigh: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print double high characters, false if it cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

28.4.6 CapDwide Property

Syntax CapDwide: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print double wide characters, false if it cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
912 Unified POS, v1.16.1

28.4.7 CapDwideDhigh Property

Syntax CapDwideDhigh: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print double high / double wide characters, false if it
cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

28.4.8 CapItalic Property

Syntax CapItalic: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print italic characters, false if it cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

28.4.9 CapLeft90 Property

Syntax CapLeft90: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print in rotated 90° left mode, false if it cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

28.4.10 CapMapCharacterSet Property Added in Release 1.7

Syntax CapMapCharacterSet: boolean { read-only, access after open}

Remarks Defines the ability of the Service to map the characters of the application to the selected character set
when printing data.

If CapMapCharacterSet is true, then the Service is able to map the characters to the character sets
defined in CharacterSetList.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CharacterSet Property, MapCharacterSet Property, CharacterSetList Property.
Unified POS, v1.16.1 913

28.4.11 CapPrint Property

Syntax CapPrint: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer has printing capability; false if it does not.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

28.4.12 CapPrintMode Property

Syntax CapPrintMode: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can designate a printing start position with the MapMode
property, false if it cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

28.4.13 CapRight90 Property

Syntax CapRight90: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print in a rotated 90° right mode, false if it cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

28.4.14 CapRotate180 Property

Syntax CapRotate180: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print in a rotated upside down mode, false if it cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
914 Unified POS, v1.16.1

28.4.15 CapTracksToRead Property

Syntax CapTracksToRead: int32 { read-only, access after open }

Remarks A bitmask indicating which magnetic tracks are accessible on the inserted point card. The value
contained in this property is a bitwise OR of the constants PCRW_TRACK1 through PCRW_TRACK6.

For example, access to track 1 is possible when PCRW_TRACK1 is set.

This property is initialized by the open method.

Value Meaning 
PCRW_TRACK1 Track1

PCRW_TRACK2 Track2

PCRW_TRACK3 Track3

PCRW_TRACK4 Track4

PCRW_TRACK5 Track5

PCRW_TRACK6 Track6

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

28.4.16 CapTracksToWrite Property

Syntax CapTracksToWrite: int32 { read-only, access after open }

Remarks A bitmask indicating which magnetic tracks are writable on the inserted point card. The value contained
in this property is a bitwise OR of the constants PCRW_TRACK1 through PCRW_TRACK6.

For example, access to track 1 is possible when PCRW_TRACK1 is set.

This property is initialized by the open method.

Value Meaning
PCRW_TRACK1 Track1

PCRW_TRACK2 Track2

PCRW_TRACK3 Track3

PCRW_TRACK4 Track4

PCRW_TRACK5 Track5

PCRW_TRACK6 Track6

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16. 





Unified POS, v1.16.1 915

28.4.17 CardState Property

Syntax CardState: int32 { read-only, access after open }

Remarks If CapCardEntranceSensor is true, the current card entrance sensor status is stored in this property. The
value will be one of the following.

Value Meaning
PCRW_STATE_NOCARD No card or card sensor position indeterminate

PCRW_STATE_REMAINING Card remaining at the entrance

PCRW_STATE_INRW There is a card in the device

If CapCardEntranceSensor is false, then CardState will always be set to PCRW_STATE_NOCARD.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapCardEntranceSensor Property.

28.4.18 CharacterSet Property Updated in Release 1.10

Syntax CharacterSet: int32 { read-write, access after open-claim-enable }

Remarks The character set for printing characters.

Value Meaning
Range 101 - 199 Device-specific character sets that do not match a code page or the ASCII or

ANSI character sets.
Range 400 - 990 Code page; matches one of the standard values.
PCRW_CS_UNICODE The character set supports Unicode. The value of this constant is 997.
PCRW_CS_ASCII The ASCII character set, supporting the ASCII characters between 0x20 and

0x7F. The value of this constant is 998.
PCRW_CS_ANSI The ANSI character set. The value of this constant is 999.
Range 1000 and above Code page; matches one of the standard values.

For additional implementation-specific information on the use of this property, refer to the “Mapping of
CharacterSet” section in the Annexes. For OPOS, see Annex A, for JavaPOS, see Annex B.

This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid property value was specified.

See Also CharacterSetList Property
916 Unified POS, v1.16.1

28.4.19 CharacterSetList Property

Syntax CharacterSetList: string { read-only, access after open }

Remarks Holds the string of character set numbers. The string consists of an ASCII numeric set numbers separated
by commas.

For example, if the string is “101,850,999”, then the device supports a device specific character set, code
page 850, and the ANSI character set.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CharacterSet Property

28.4.20 FontTypefaceList Property

Syntax FontTypefaceList: string { read-only, access after open }

Remarks A string that specifies the fonts and/or typefaces that are supported by the Point Card Reader Writer.

The string consists of font or typeface names separated by commas. The application selects a font or
typeface for the Point Card Reader Writer by using the font typeface selection escape sequence
(ESC |#fT). The “#” character is replaced by the number of the font or typeface within the list: 1, 2, and
so on.

In Japan, this property will frequently include the fonts “Mincho” and “Gothic.” Other fonts or typefaces
may be commonly supported in other countries.

An empty string indicates that only the default typeface is supported.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

28.4.21 LineChars Property

Syntax LineChars: int32 { read-write, access after open-claim-enable }

Remarks The number of characters that may be printed on a line on the Point Card Reader Writer.

If changed to a line character width that can be supported, then the width is set to the specified value. If
the exact width cannot be supported, then subsequent lines will be printed with a character size that most
closely supports the specified characters per line. (For example, if set to 36 and the Point Card Reader
Writer can print either 30 or 40 characters per line, then the Service should select the character size “40”
and print up to 36 characters on each line.)

If the character width cannot be supported, then an exception is thrown. (For example, if set to 42 and
Point Card Reader Writer can print either 30 or 40 characters per line, then the Service cannot support
the request.)

Setting LineChars may also update LineWidth, LineHeight, and LineSpacing, since the character
pitch or font may be changed.

The value of LineChars is initialized to the Point Card Reader Writer’s default line character width when
the device is first enabled following the open method.
Unified POS, v1.16.1 917

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid line character width was specified.

See Also LineCharsList Property

28.4.22 LineCharsList Property

Syntax LineCharsList: string { read-only, access after open }

Remarks A string containing the line character widths supported by the Point Card Reader Writer.

The string consists of an ASCII numeric set numbers separated by commas. For example, if the string is
“32,36,40,” then the station supports line widths of 32, 36, and 40 characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also LineChars Property

28.4.23 LineHeight Property

Syntax LineHeight: int32 { read-write, access after open-claim-enable }

Remarks The Point Card Reader Writer print line height. If CapPrintMode is true, this is expressed in the unit of
measure given by MapMode.

If changed to a height that can be supported with the current character width, then the line height is set
to this value. If the exact height cannot be supported, then the height is set to the closest supported value.

When LineChars is changed, LineHeight is updated to the default line height for the selected width.

The value of LineHeight is initialized to the Point Card Reader Writer’s default line height when the
device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
918 Unified POS, v1.16.1

28.4.24 LineSpacing Property

Syntax LineSpacing: int32 { read-write, access after open-claim-enable }

Remarks The spacing of each single-high print line, including both the printed line height plus the white space
between each pair of lines. Depending upon the Point Card Reader Writer and the current line spacing,
a multi-high print line might exceed this value. If CapPrintMode is true, line spacing is expressed in the
unit of measure given by MapMode.

If changed to a spacing that can be supported by the Point Card Reader Writer, then the line spacing is
set to this value. If the spacing cannot be supported, then the spacing is set to the closest supported value.

When LineChars or LineHeight is changed, LineSpacing is updated to the default line spacing for the
selected width or height.

The value of LineSpacing is initialized to the Point Card Reader Writer’s default line spacing when the
device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

28.4.25 LineWidth Property

Syntax LineWidth: int32 { read-only, access after open-claim-enable }

Remarks The width of a line of LineChars characters. If CapPrintMode is true, expressed in the unit of measure
given by MapMode.

Setting LineChars may also update LineWidth.

The value of LineWidth is initialized to the Point Card Reader Writer’s default line width when the
device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

28.4.26 MapCharacterSet Property Added in Release 1.7

Syntax MapCharacterSet: boolean { read-write, access after open}

Remarks If MapCharacterSet is true and when outputting data, the Service maps the characters transferred by the
application to the character set selected in the CharacterSet property for printing data.
If MapCharacterSet is false, then no mapping is supported. In such a case the application has to ensure
the mapping of the character set used in the application to the character set selected in the CharacterSet
property.

If CapMapCharacterSet is false, then this property is always false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CharacterSet Property, CapMapCharacterSet Property.
Unified POS, v1.16.1 919

28.4.27 MapMode Property Updated in Release 1.13

Syntax MapMode: int32 { read-write, access after open-claim-enable }

Remarks Contains the mapping mode of the Point Card Reader Writer. The mapping mode defines the unit of
measure used for other properties, such as line heights and line spacings. The following map modes are
supported:

Value Meaning
PCRW_MM_DOTS The Point Card Reader Writer’s dot width. This width may be different

for each Point Card Reader Writer.
PCRW_MM_TWIPS 1/1440 of an inch.
PCRW_MM_ENGLISH 0.001 inch.
PCRW_MM_METRIC 0.01 millimeter.

Setting MapMode may also change LineHeight, LineSpacing, and LineWidth.
Note: The value of MapMode for the PointCardReader/Writer is initialized to PCRW_MM_DOTS
when the device is first enabled following the open method. This default value may be different from
other peripheral devices in the UnifiedPOS standard.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning
E_ILLEGAL An invalid mapping mode value was specified.

28.4.28 MaxLine Property

Syntax MaxLine: int32 { read-only, access after open-claim-enable }

Remarks When the CapPrintMode property is false, MaxLine contains the maximum printable line number.

In the case where there is a double-high character in the same line, this is dependent upon the capability
of the device.

When the LineHeight property and/or the LineSpacing property change, the MaxLine property may be
changed.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also LineHeight Property
920 Unified POS, v1.16.1

28.4.29 PrintHeight Property

Syntax PrintHeight: int32 { read-only, access after open-claim-enable }

Remarks When the CapPrintMode property is true, the height of the largest character in the character set is stored
in this property expressed in MapMode units.

When the MapMode property is changed the value of the PrintHeight property changes.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapPrintMode Property, MapMode Property.

28.4.30 ReadState1 Property

Syntax ReadState1: int32 { read-only, access after open }

Remarks The property is divided into four bytes with each byte containing status information about the first four
tracks. The diagram below indicates how the property value is divided:

The Control sets a value to this property immediately before it enqueues the ErrorEvent or DataEvent.

The following values can be set:

Value Meaning
SUCCESS Successful read of the data.
EPCRW_START It is a start sentinel error.
EPCRW_END It is a end sentinel error.
EPCRW_PARITY It is a parity error.
EPCRW_ENCODE There is no encoding.
EPCRW_LRC It is a LRC error.
EPCRW_VERIFY It is a verify error.
E_FAILURE It is other error.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also ReadState2 Property.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Track4 Track 3 Track 2 Track 1
Unified POS, v1.16.1 921

28.4.31 ReadState2 Property

Syntax ReadState2: int32 { read-only, access after open }

Remarks The property is divided into four bytes with two bytes containing status information about the fifth and
sixth tracks. The diagram below indicates how the property value is divided:

The Point Card Reader Writer sets a value to this property immediately before it enqueues the
ErrorEvent or DataEvent.

The following values can be set.

Value Meaning
SUCCESS Successful read of the data.
EPCRW_START It is a start sentinel error.
EPCRW_END It is a end sentinel error.
EPCRW_PARITY It is a parity error. 　　　　　　　　

EPCRW_ENCODE There is no encoding. 　　　　　　　　　　　　　

EPCRW_LRC It is a LRC error.　　　　　　　　　　　　　　　　　　　

EPCRW_VERIFY It is a verify error.　　　　　　　　　　　　　　　　　　
E_FAILURE It is other error.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also ReadState1 Property.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Unused Unused Track 6 Track 5
922 Unified POS, v1.16.1

28.4.32 RecvLength1 Property

Syntax RecvLength1: int32 { read-only, access after open-claim-enable }

Remarks The property is divided into four bytes with each of the bytes representing information about the first
four tracks. The diagram below indicates how the value is divided:

A value of zero for a track byte means that no data was obtained from the swipe for that particular
track. This might be due to the hardware device simply not having a read head for the track, or
STX, ETX and LRC only was obtained from the swipe for that particular track, or reading of data
without being made with some errors, or perhaps the application intentionally precluded incoming
data from the track via the TracksToRead property. A value greater than zero indicates the length
in bytes of the corresponding TrackxData property.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapTracksToRead property, TracksToRead property, RecvLength2 Property.

28.4.33 RecvLength2 Property

Syntax RecvLength2: int32 { read-only, access after open-claim-enable }

Remarks The property is divided into four bytes with two of the bytes representing information about the fifth and
sixth tracks, while the third and fourth bytes are unused. The diagram below indicates how the value is
divided:

A value of zero for a track byte means that no data was obtained from the swipe for that particular
track. This might be due to the hardware device simply not having a read head for the track, or
STX, ETX, and LRC only was obtained from the swipe for that particular track, or reading of data
without being made with some errors, or perhaps the application intentionally precluded incoming
data from the track via the TracksToRead property.

A value greater than zero indicates the length in bytes of the corresponding TrackxData property.
Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”

on page 16.

See Also CapTracksToRead property, TracksToRead property, RecvLength1 Property.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Track4 Track 3 Track 2 Track 1

High Word Low Word

High Byte Low Byte High Byte Low Byte

Unused Unused Track 6 Track 5
Unified POS, v1.16.1 923

28.4.34 SidewaysMaxChars Property

Syntax SidewaysMaxChars: int32 { read-only, access after open-claim-enable }

Remarks Holds the maximum number of characters that may be printed on each line in sideways mode.

If the capabilities CapLeft90 and CapRight90 are both false, then SidewaysMaxChars is zero.

Changing the properties LineHeight, LineSpacing, and LineChars may cause this property to change.

This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also SidewaysMaxLines Property.

28.4.35 SidewaysMaxLines Property

Syntax SidewaysMaxLines: int32 { read-only, access after open-claim-enable }

Remarks Holds the maximum number of lines that may be printed in sideways mode.

If the capabilities CapLeft90 and CapRight90 are both false, then SidewaysMaxLines is zero.

Changing the properties LineHeight, LineSpacing, and LineChars may cause this property to change.

This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also SidewaysMaxChars Property.
924 Unified POS, v1.16.1

28.4.36 TracksToRead Property

Syntax TracksToRead: int32 { read-write, access after open-claim-enable }

Remarks Holds the tracks that are to be read from the point card. It contains a bitwise OR of the constants
PCRW_TRACK1 through PCRW_TRACK6. It may only contain values that are marked as allowable
by the CapTracksToRead property. For example, to read tracks 1, 2, and 3, this property should be set
to: PCRW_TRACK1 | PCRW_TRACK2 | PCRW_TRACK3.

This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_BUSY This operation cannot be performed because asynchronous output is
 in progress.

E_ILLEGAL An illegal track was defined. The track is not available for reading. Refer
to CapTracksToRead.

See Also CapTracksToRead Property.

28.4.37 TracksToWrite Property

Syntax TracksToWrite: int32 { read-write, access after open-claim-enable }

Remarks Holds the tracks that are to be written to the point card. It contains a bitwise OR of the constants
PCRW_TRACK1 through PCRW_TRACK6. It may only contain values that are marked as allowable
by the CapTracksToWrite property. For example, to write tracks 1, 2, and 3, this property should be set
to: PCRW_TRACK1 | PCRW_TRACK2 | PCRW_TRACK3.

This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY This operation cannot be performed because asynchronous output is
 in progress.

E_ILLEGAL An illegal track was defined. The track is not available for writing. Refer
to CapTracksToWrite.

See Also CapTracksToWrite Property, printWrite Method.
Unified POS, v1.16.1 925

28.4.38 Track1Data Property

Syntax Track1Data: binary { read-only, access after open }

Remarks Contains the track 1 data from the point card.

This property contains track data between but not including the start and end sentinels.

An empty string indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

28.4.39 Track2Data Property

Syntax Track2Data: binary { read-only, access after open }

Remarks Contains the track 2 data from the point card.

This property contains track data between but not including the start and end sentinels.

An empty string indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

28.4.40 Track3Data Property

Syntax Track3Data: binary { read-only, access after open }

Remarks Contains the track 3 data from the point card.

This property contains track data between but not including the start and end sentinels.

An empty string indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

28.4.41 Track4Data Property

Syntax Track4Data: binary { read-only, access after open }

Remarks Contains the track 4 data from the point card.

This property contains track data between but not including the start and end sentinels.

An empty string indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
926 Unified POS, v1.16.1

28.4.42 Track5Data Property

Syntax Track5Data: binary { read-only, access after open }

Remarks Contains the track 5 data from the point card.

This property contains track data between but not including the start and end sentinels.

An empty string indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

28.4.43 Track6Data Property

Syntax Track6Data: binary { read-only, access after open }

Remarks Contains the track 6 data from the point card.

This property contains track data between but not including the start and end sentinels.

An empty string indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

28.4.44 WriteState1 Property

Syntax WriteState1: int32 { read-only, access after open }

Remarks The property is divided into four bytes with each byte containing status information about the first four
tracks. The diagram below indicates how the property is divided:

The Control sets a value to this property immediately before it enqueues the ErrorEvent.

The following value is set.

Value Meaning 
SUCCESS Successful write of the data. 
EPCRW_START It is a start sentinel error.
EPCRW_END It is a end sentinel error.
EPCRW_PARITY It is a parity error.
EPCRW_ENCODE There is not encoding. 
EPCRW_LRC It is a LRC error.
EPCRW_VERIFY It is a verify error.
E_FAILURE It is other error.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Track4 Track 3 Track 2 Track 1
Unified POS, v1.16.1 927

Errors A UposException may be thrown when this property is accessed. For further information, see Syntax
Track6Data: binary { read-only, access after open }

Remarks Contains the track 6 data from the point card.

This property contains track data between but not including the start and end sentinels.

An empty string indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also WriteState2 Property.

28.4.45 WriteState2 Property

Syntax WriteState2: int32 { read-only, access after open }

Remarks The property is divided into four bytes with each byte containing status information about the fifth
and sixth tracks. The diagram below indicates how the property is divided:

The Control sets a value to this property immediately before it enqueues the ErrorEvent.

The following value is set.

Value Meaning 
SUCCESS Successful write of the data.
EPCRW_START It is a start sentinel error.

EPCRW_END It is a end sentinel error.

EPCRW_PARITY It is a parity error.

EPCRW_ENCODE There is not encoding.

EPCRW_LRC It is a LRC error.

EPCRW_VERIFY It is a verify error.

E_FAILURE It is other error.

Errors A UposException may be thrown when this property is accessed. For further information, see Errors
A UposException may be thrown when this property is accessed. For further information, see Syntax
Track6Data: binary { read-only, access after open }

Remarks Contains the track 6 data from the point card.

This property contains track data between but not including the start and end sentinels.

An empty string indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Unused Unused Track 6 Track 5
928 Unified POS, v1.16.1

See Also WriteState2 Property.

See Also WriteState1 Property.

28.4.46 Write1Data Property

Syntax Write1Data: binary { read-write, access after open }

Remarks The printWrite method writes this data to track 1 of a point card.

This property contains track data between but not including the start and end sentinels.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

28.4.47 Write2Data Property

Syntax Write2Data: binary { read-write, access after open }

Remarks The printWrite method writes this data to track 2 of a point card.

This property contains track data between but not including the start and end sentinels.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

28.4.48 Write3Data Property

Syntax Write3Data: binary { read-write, access after open }

Remarks The printWrite method writes this data to track 3 of a point card.

This property contains track data between but not including the start and end sentinels.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

28.4.49 Write4Data Property

Syntax Write4Data: binary { read-write, access after open }

Remarks The printWrite method writes this data to track 4 of a point card.

This property contains track data between but not including the start and end sentinels.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 929

28.4.50 Write5Data Property

Syntax Write5Data: binary { read-write, access after open }

Remarks The printWrite method writes this data to track 5 of a point card.

This property contains track data between but not including the start and end sentinels.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16

28.4.51 Write6Data Property

Syntax Write6Data: binary { read-write, access after open }

Remarks The printWrite method writes this data to track 6 of a point card.

This property contains track data between but not including the start and end sentinels.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
930 Unified POS, v1.16.1

28.5 Methods (UML operations)

28.5.1 beginInsertion Method

Syntax beginInsertion (timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description 
 timeout The number of milliseconds before failing the method

If zero, the method initiates insertion mode and either returns immediately if successful, or raises an
exception. If FOREVER (-1), the method initiates the begin insertion mode, then waits as long as needed
until either the point card is inserted or an error occurs.

Remarks Called to initiate point card insertion processing.

When called, Point Card Reader Writer state is changed to allow the insertion of a point card and the
point card insertion mode is entered. This method is paired with the endInsertion method for controlling
point card insertion.

If the Point Card Reader Writer device cannot be placed into insertion mode, an exception is raised.
Otherwise, the Control continues to monitor point card insertion until either the point card is not inserted
before timeout milliseconds have elapsed, or an error is reported by the Point Card Reader Writer device.
In the latter case, the Control raises an exception with the appropriate error code. The Point Card Reader
Writer device remains in point card insertion mode. This allows an application to perform some user
interaction and reissue the beginInsertion method without altering the point card handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY This operation cannot be performed because asynchronous output is
 in progress.

E_ILLEGAL The Point Card Reader Writer does not exist or an invalid timeout
parameter was specified.

E_TIMEOUT The specified time has elapsed without the point card being properly
inserted.

E_EXTENDED Refer to the definitions for ErrorCodeExtended in the Events section,
“ErrorEvent Updated in Release 1.10” on page 939.

See Also endInsertion Method, beginRemoval Method, endRemoval Method.
Unified POS, v1.16.1 931

28.5.2 beginRemoval Method

Syntax beginRemoval (timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
timeout The number of milliseconds before failing the method

If zero, the method initiates the begin removal mode and either returns immediately or raises an
exception. If FOREVER (-1), the method initiates the begin removal mode, then waits as long as needed
until either the form is removed or an error occurs.

Remarks Called to initiate point card removal processing.

When called, the Point Card Reader Writer is made ready to eject a point card or activating a point card
ejection mode. This method is paired with the endRemoval method for controlling point card removal.

The model that has the sensor in the entrance ends normally when a card is ejected from Point Card
Reader Writer. The model without the sensor ends normally when that ejection processing is
implemented.

If the Point Card Reader Writer cannot be placed into removal or ejection mode, an exception is raised.
Otherwise, the Control continues to monitor point card removal until either the point card is not ejected
before timeout milliseconds have elapsed, or an error is reported by the Point Card Reader Writer. In this
case, the Control raises an exception with the appropriate error code. The Point Card Reader Writer
remains in point card ejection mode. This allows an application to perform some user interaction and
reissue the beginRemoval method without altering the point card handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY This operation cannot be performed because asynchronous output is in

 progress. 
 E_ILLEGAL The Point Card Reader Writer does not exist or an invalid 
 timeout parameter was specified.

E_TIMEOUT The specified time has elapsed without the point card being properly
inserted.

E_EXTENDED Refer to the definitions for ErrorCodeExtended in the Events section,
“ErrorEvent Updated in Release 1.10” on page 939.

See Also CapCardEntranceSensor Property, CardState Property, beginInsertion Method, endInsertion
Method, endRemoval Method.
932 Unified POS, v1.16.1

28.5.3 cleanCard Method

Syntax cleanCard():
void { raises-exception, use after open-claim-enable }

Remarks This method is used to clean the read/write heads of the Point Card Reader Writer. This method is only
supported if the CapCleanCard property is true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Point Card Reader Writer does not exist or CapCleanCard is
 false.

E_EXTENDED Refer to the definitions for ErrorCodeExtended in the Events section,
“ErrorEvent Updated in Release 1.10” on page 939.

See Also CapCleanCard Property.

28.5.4 clearPrintWrite Method

Syntax clearPrintWrite (kind: int32, hposition: int32, vposition: int32, width: int32,
height: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
kind Defines the parts of the point card that will be cleared.
 1: Printing area

2: Magnetic tracks 
 3: Both printing area and magnetic tracks

hposition The horizontal start position for erasing the printing area. The value is in
MapMode units if CapPrintMode is true.

vposition The vertical start position for erasing the printing area. The value is in MapMode
units if CapPrintMode is true.

width The width used for erasing the printing area. The value is in MapMode units if
CapPrintMode is true.

height The height used for erasing the printing area. The value is in MapMode units if
CapPrintMode is true.

Remarks Used to erase the printing area of a point card and/or erase the magnetic track data on a point card.

When the CapPrint and CapClearPrint properties are both true, this method can be used to clear the
printing area of a point card. The hposition, vposition, width, and height parameters define the rectangle
that will be cleared. If these parameters are 0, 0, -1, -1 respectively, this method will erase the entire
printing area.

The initialization of the magnetic track data relies upon the capability of the device.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.
Unified POS, v1.16.1 933

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_BUSY This operation cannot be performed because asynchronous output is
 in progress.

E_EXTENDED Refer to the definitions for ErrorCodeExtended in the Events section,
“ErrorEvent Updated in Release 1.10” on page 939.

See Also CapClearPrint Property, CapPrint Property, CapPrintMode Property, MapMode Property.

28.5.5 endInsertion Method

Syntax endInsertion ():
void { raises-exception, use after open-claim-enable }

Remarks Called to end point card insertion processing.
When called, the Point Card Reader Writer is taken out of point card insertion mode. If no point
card is present, an exception is raised.
This method is paired with the beginInsertion method for controlling point card insertion.

Errors A UposException may be thrown when this method is invoked. For further information, see
“Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The Point Card Reader Writer is not in point card insertion mode.
E_FAILURE A card is not inserted in the Point Card Reader Writer.
E_EXTENDED Refer to the definitions for ErrorCodeExtended in the Events
 section, “ErrorEvent Updated in Release 1.10” on page 939.

See Also beginInsertion Method, beginRemoval Method, endRemoval Method.

28.5.6 endRemoval Method

Syntax endRemoval ():
void { raises-exception, use after open-claim-enable }

Remarks Called to end point card removal processing.
When called, the Point Card Reader Writer is taken out of point card removal or ejection mode. If a
point card is present, an exception is raised. This method is paired with the beginRemoval method for
controlling point card removal.

The application may choose to call this method immediately after a successful beginRemoval if it
wants to use the Point Card Reader Writer sensors to determine when the point card has been ejected.
Alternatively, the application may prompt the user and wait for a key being pressed before calling this
method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.
934 Unified POS, v1.16.1

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGAL The Point Card Reader Writer is not in point card removal mode.
E_FAILURE There is a card in the Point Card Reader Writer.
E_EXTENDED Refer to the definitions for ErrorCodeExtended in the Events section,

“ErrorEvent Updated in Release 1.10” on page 939.

See Also beginInsertion Method, beginRemoval Method, endInsertion Method.

28.5.7 printWrite Method Updated in Release 1.7

Syntax printWrite (kind: int32, hposition: int32, vposition: int32, data: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
kind Designates the effect of the point card.
 1: Print2: Write3: Print+Write

hposition The horizontal start position for printing. The value is in MapMode units if
CapPrintMode is true.

vposition The vertical start position for printing. The value is in MapMode units if
CapPrintMode is true.

data1 The data to be printed. Any escape sequences in the data are dependent upon
the capabilities of the device.

Remarks This method will either print the specified data on the printing area of the point card, write data from the
WriteXData properties to the magnetic tracks, or both. In order to print on a point card, the CapPrint
property must be true. In order to write the magnetic tracks on a point card, the WriteXData properties
for each desired track must be set to the desired value, the TracksToWrite property must be set to a bit-
mask indicating which tracks to write (see TracksToWrite for a complete description) and the Cap-
TracksToWrite property must indicate that each tracks specified in TracksToWrite is legal.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL There is no card in the Point Card Reader Writer.

E_EXTENDED Refer to the definitions for ErrorCodeExtended in the Events section,
“ErrorEvent Updated in Release 1.10” on page 939.

See Also CapPrint Property, CapPrintMode Property, CapTracksToWrite Property, MapMode Property,
TracksToWrite Property, WriteXData Property.

1. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.
Unified POS, v1.16.1 935

28.5.8 rotatePrint Method

Syntax rotatePrint (rotation: int32): 
void { raises-exception, use after open-claim-enable }

Parameter Description
rotation Direction of rotation. See values below.

Value Meaning 
PCRW_RP_RIGHT90 Rotate printing 90º to the right (clockwise).

PCRW_RP_LEFT90 Rotate printing 90º to the left (counter-clockwise).

PCRW_RP_ROTATE180 Rotate printing 180º, that is print upside-down.

PCRW_RP_NORMAL End rotated printing.

Remarks Enters or exits rotated print mode.

The rotatePrint method designates the rotation of the printing area. After calling this method, the
application calls the printWrite method and the print data is printed in the direction specified by the
rotatePrint call. If rotation is PCRW_RP_NORMAL, then rotated print mode is exited.

Changing the rotation mode may also change the Point Card Reader Writer’s line height, line spacing,
line width, and other metrics.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_BUSY This operation cannot be performed because asynchronous output is 

 in progress.

E_ILLEGAL The Point Card Reader Writer does not support the specified rotation.
E_EXTENDED Refer to the definitions for ErrorCodeExtended in the Events section,

“ErrorEvent Updated in Release 1.10” on page 939.

See Also “Data Characters and Escape Sequences” in Chapter 31, printWrite Method.
936 Unified POS, v1.16.1

28.5.9 validateData Method Updated in Release 1.7

Syntax validateData (data: string): 
void { raises-exception, use after open-claim-enable }

Parameter Description
data2 The data to be validated. May include printable data and escape sequences.

Remarks Called to determine whether a data sequence, possibly including one or more escape sequences, is valid
for printing, prior to calling the printWrite method. This method does not cause any printing, but is used
to determine the capabilities of the Point Card Reader Writer.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Some of the data is not precisely supported by the device, but the Control can

select valid alternatives.
E_FAILURE Some of the data is not supported. No alternatives can be selected.

Cases which cause ErrorCode of E_ILLEGAL:

Escape Sequence Condition
Underline The thickness ‘#’ is not precisely supported: Control will select the closest

supported value.
Shading The percentage ‘#’ is not precisely supported: Control will select the closest

supported value.
Scale horizontally The scaling factor ‘#’ is not supported. Control will select the closest

supported value.
Scale vertically The scaling factor ‘#’ is not supported. Control will select the closest

supported value.

Cases which will cause E_FAILURE to be returned are:

Escape Sequence Condition
(General) The escape sequence format is not valid
Font typeface The typeface ‘#’ is not supported:
Bold Not supported.
Underline Not supported.
Italic Not supported.
Reverse video Not supported.
Single high and wide Not supported.
Double wide Not supported.
Double high Not supported.
Double high and wide Not supported.

 See Also “Data Characters and Escape Sequences” in Chapter 31, printWrite Method.

2. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.
Unified POS, v1.16.1 937

28.6 Events (UML Interfaces)

28.6.1 DataEvent

<< event >> upos::events::DataEvent 
Status: int32 { read-only }

Description Fired to present input data from the device to the application.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 The Status parameter contains zero.

Remarks The point card data is placed in each property before this event is delivered.

28.6.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific PointCard Service to provide events to the application that are not otherwise supported by the
Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s point card
devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.
938 Unified POS, v1.16.1

28.6.3 ErrorEvent Updated in Release 1.10

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a PointCard error has been detected and a suitable response by the
application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes in Chapter 1.

ErrorCodeExtended
int32 Extended Error code causing the error event. If ErrorCode is

E_EXTENDED, then see values below. Otherwise, it may contain a
Service-specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden by the application.
(i.e., this property is settable). See values below.

If ErrorCode is E_EXTENDED, then ErrorCodeExtended has one of the following values:

Value Meaning 
EPCRW_READ There was a read error.
EPCRW_WRITE There was a write error.
EPCRW_JAM There was a card jam.
EPCRW_MOTOR There was a conveyance motor error.
EPCRW_COVER The conveyance motor cover was open.
EPCRW_PRINTER The printer has an error.
EPCRW_RELEASE There is a card remaining in the entrance.
EPCRW_DISPLAY There was a display indicator error.
EPCRW_NOCARD There is no card in the reader.

The ErrorLocus property may be one of the following:

Value Meaning 
EL_OUTPUT Error occurred while processing asynchronous output.
EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.
EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and

some previously buffered data is available.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus. The
application’s error processing may change ErrorResponse to one of the following values:
Unified POS, v1.16.1 939

Value Meaning
ER_RETRY Typically valid only when locus is EL_OUTPUT.
 Retry the asynchronous output. The error state is exited.
 May be valid when locus is EL_INPUT.
 Default when locus is EL_OUTPUT.

ER_CLEAR Clear all buffered output data (including all asynchronous output) or
buffered input data. The error state is exited. Default when locus is
EL_INPUT.

ER_CONTINUEINPUT Use only when locus is EL_INPUT_DATA. Acknowledges the error and
directs the Control to continue processing. The Control remains in the
error state and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and the
DataEventEnabled property is again set to true, then another
ErrorEvent is delivered with locus EL_INPUT. Default when locus is
EL_INPUT_DATA.

Remarks Input error events are generated when errors occur while reading the magnetic track data from a newly
inserted card. These error events are not delivered until the DataEventEnabled property is set to true so
as to allow proper application sequencing. All error information is placed into the ReadStateX
properties before this event is delivered. The RecvLengthX property is set to 0 for each track that had
an error and the TrackXData property is set to empty for each track that had an error.

Output error events are generated and delivered when an error occurs during asynchronous printWrite
processing. The errors are placed into the WriteStateX properties before the event is delivered.

See Also ReadStatex Property, RecvLengthx Property, TrackxData Property, WriteStatex Property.

28.6.4 OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the OutputID attribute has
completed successfully.

Attributes This event contains the following attribute:

Attributes Type Description
OutputID int32 The ID number of the asynchronous output request that is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Service has confirmation that
is was processed by the device successfully.

See Also Device Output Models on page 20.
940 Unified POS, v1.16.1

28.6.5 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the status of the PointCard device.

Attributes This event contains the following attribute:

Attributes Type Description 
Status int32 Indicates a change in the status of the PointCard device.
The Status parameter has one of the following values:

Value Meaning 
PCRW_SUE_NOCARD No card or card sensor position indeterminate.
PCRW_SUE_REMAINING Card remaining in the entrance.

PCRW_SUE_INRW There is a card in the device.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 2.

Remarks Fired when the entrance sensor status of the Point Card Reader Writer changes. If the capability
CapCardEntranceSensor is false, then the device does not support status reporting, and this event will
never be fired to report card insertion state changes.

See Also Events on page 15, CapCardEntranceSensor Property.
Unified POS, v1.16.1 941

942 Unified POS, v1.16.1

29 POS Keyboard

29.1 General

This Chapter defines the POS Keyboard device category.

29.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.2 open

CapCompareFirmwareVersion: boolean { read-only } 1.9 open

CapPowerReporting: int32 { read-only } 1.3 open

CapStatisticsReporting: boolean { read-only } 1.8 open

CapUpdateFirmware: boolean { read-only } 1.9 open

CapUpdateStatistics: boolean { read-only } 1.8 open

CheckHealthText: string { read-only } 1.1 open

Claimed: boolean { read-only } 1.1 open

DataCount: int32 { read-only } 1.2 open

DataEventEnabled: boolean { read-write } 1.1 open

DeviceEnabled: boolean { read-write } 1.1 open & claim

FreezeEvents: boolean { read-write } 1.1 open

OutputID: int32 { read-only } 1.1 Not supported

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.1 --

DeviceControlDescription: string { read-only } 1.1 --

DeviceControlVersion: int32 { read-only } 1.1 --

DeviceServiceDescription: string { read-only } 1.1 open

DeviceServiceVersion: int32 { read-only } 1.1 open

PhysicalDeviceDescription: string { read-only } 1.1 open

PhysicalDeviceName: string { read-only } 1.1 open
Unified POS, v1.16.1 943

Properties (Continued)

Specific Type Mutability Version May Use After

CapKeyUp: boolean { read-only } 1.2 open

EventTypes: int32 { read-write } 1.2 open

POSKeyData: int32 { read-only } 1.1 open

POSKeyEventType: int32 { read-only } 1.2 open

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.1

close ():
void { raises-exception, use after open }

1.1

claim (timeout: int32):
void { raises-exception, use after open }

1.1

release ():
void { raises-exception, use after open, claim }

1.1

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.1

clearInput ():
void { raises-exception, use after open, claim }

1.1

clearInputProperties ():
void { }

Not supporteda

a. Only a single key value is stored at any one time.

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.1

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific

None
944 Unified POS, v1.16.1

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent 1.1

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.1

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.1

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.3

 Status: int32 { read-only }
Unified POS, v1.16.1 945

29.3 General Information

The POS Keyboard programmatic name is “POSKeyboard.”

29.3.1 Capabilities

The POS Keyboard has the following capability:

• Reads keys from a POS keyboard. A POS keyboard may be an auxiliary keyboard, or it may be a virtual
keyboard consisting of some or all of the keys on the system keyboard.

29.3.2 POS Keyboard Class Diagram

The following diagram shows the relationships between the POS Keyboard classes.

UposException
(from upos)

<<exception>>

UposConst
(from upos)

<<utility>>

POSKeyboardConst
(from upos)

<<utility>>

DataEvent

<<prop>> Status : int32

(from events)

<<event>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

ErrorEvent

<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : int32
<<prop>> ErrorLocus : int32
<<prop>> ErrorResponse : int32

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32

(from events)

<<event>>

POSKeyboardControl

<<capability>> CapKeyUp : boolean
<<prop>> EventTypes : int32
<<prop>> POSKeyData : int32
<<prop>> POSKeyEventType : int32

(from upos)

<<Interface>>

<<sends>>

<<uses>>

fires

fires

fires

fires

BaseControl
(from upos)

<<Interface>>
<<uses>><<sends>>
946 Unified POS, v1.16.1

29.3.3 POS Keyboard Sequence Diagram Updated in Release 1.8

The following sequence diagram shows the typical usage of the POS Keyboard device.

:POSKeyboardService

NOTE: we are assuming that the :ClientApp already successfully registered event handlers and opened, claimed
and enabled the POSKeyboard device. This means that the Claimed, DeviceEnabled properties are == true

:ClientApp :POSKeyboard

 : Operator

:DataEvent

1: setDataEventEnabled(true) 2: setDataEventEnabled(true)

3: key pressed4: new

5: copy data info and enqueue DataEvent for delivery

7: key pressed
8: new

9: copy data info and enqueue DataEvent for delivery

Depending on how fast the :Operator presses key, it might be that DataEvent
are delivered as soon as enqueued (but conceptually this detail is not important)

11: deliver each DataEvent to control [DataEventEnabled == true && FreezeEvents == false]

At this point the
:ClientApp event
handler code executes

14: clearInput()
15: clearInput()

16: all enqueued DataEvent are cleared from queue

17: DataCount is set to 0

10: DataCount++

13: notify client of new event

6: DataCount++

Right before the DataEvent is
delivered set DataEventEnabled
to false and DataCount--.

12: deliver DataEvents to all registered handlers
Unified POS, v1.16.1 947

29.3.4 Model

The POS Keyboard follows the general “Device Input Model” for input devices:

• When input is received from the POS Keyboard a DataEvent is enqueued.

• If the AutoDisable property is true, then the Device automatically disables itself when a DataEvent is
enqueued.

• A queued DataEvent can be delivered to the application when the DataEventEnabled property is true and
other event delivery requirements are met. Just before firing this event, data is copied into the properties, and
further data events are disabled by setting DataEventEnabled to false. This causes subsequent input data to be
enqueued while the application processes the current input and associated properties. When the application has
finished the current input and is ready for more data, it reenables events by setting DataEventEnabled to true.

• An ErrorEvent (or events) is enqueued if an error occurs while gathering or processing input, and is delivered
to the application when DataEventEnabled is true and other event delivery requirements are met.

• The DataCount property may be read to obtain the number of queued DataEvents.

• All queued input may be deleted by calling clearInput.

29.3.4.1 Keyboard Translation Updated in Release 1.13

The POS Keyboard Control must supply a mechanism for translating its internal key codes into user-defined
codes which are returned by the DataEvents. Note that this translation must be end-user configurable. If the end-
user does not specify translation for some key codes, then they will return vendor-specific values.

29.3.5 Device Sharing

The POS keyboard is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before the device begins reading input.

• See the “Summary” table for precise usage prerequisites.
948 Unified POS, v1.16.1

29.4 Properties (UML attributes)

29.4.1 CapKeyUp Property

Syntax CapKeyUp: boolean { read-only, access after open }

Remarks If true, then the device is able to generate both key down and key up events, depending upon the setting
of the EventTypes. If false, then the device is only able to generate the key down event.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also EventTypes Property

29.4.2 EventTypes Property

Syntax EventTypes: int32 { read-write, access after open }

Remarks Holds the type of events that the application wants to receive. It has one of the following values:

Value Meaning
KBD_ET_DOWN Generate key down events.

KBD_ET_DOWN_UP Generate key down and key up events.

This property is initialized to KBD_ET_DOWN by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

29.4.3 POSKeyData Property

Syntax POSKeyData: int32 { read-only, access after open }

Remarks Holds the value of the key from the last DataEvent. The application may treat this value as device
independent, assuming that the system installer has configured the Service to translate internal key codes
to the codes expected by the application. Such configuration is inherently Service-specific.

This property is set just before delivering the DataEvent.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also DataEvent
Unified POS, v1.16.1 949

29.4.4 POSKeyEventType Property

Syntax POSKeyEventType: int32 { read-only, access after open }

Remarks Holds the type of the last keyboard event: Is the key being pressed or released? It has one of the following
values:

Value Meaning
KBD_KET_KEYDOWN The key in POSKeyData was pressed.

KBD_KET_KEYUP The key in POSKeyData was released.

This property is set just before delivering the DataEvent.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also POSKeyData Property, DataEvent.
950 Unified POS, v1.16.1

29.5 Events (UML interfaces)

29.5.1 DataEvent

<< event >> upos::events::DataEvent 
Status: int32 { read-only }

Description Notifies the application that input data is available from the POS Keyboard device.

Attributes This event contains the following attribute:

Attribute Type Description 
 Status int32 Contains zero.

Remarks The logical key number is placed in the POSKeyData property and the event type is placed in the
POSKeyEventType property before this event is delivered.

See Also POSKeyData Property, POSKeyEventType Property, “Events” on page 15.

29.5.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific POS Keyboard Service to provide events to the application that are not otherwise supported by
the Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and the
Service. This property is settable.

Obj Object Additional data whose usage varies by the EventNumber and Service. This
property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s POS
Keyboard devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method
Unified POS, v1.16.1 951

29.5.3 ErrorEvent Updated in Release 1.10

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an error was detected trying to read POS Keyboard data.

Attributes This event contains the following attributes:

Attribute Type Description
ErrorCode int32 Error Code causing the error event. See list of ErrorCodes on

 page 16.

ErrorCodeExtended int32 Extended Error Code causing the error event. It may contain a
Service-specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden by the
application (i.e., this property is settable). See values below.

The ErrorLocus property has one of the following values:

Value Meaning
EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.

EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and some
previously buffered data is available.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus. The
application’s error processing may change ErrorResponse to one of the following values:

Value Meaning
ER_CLEAR Clear the buffered input data. The error state is exited.

Default when locus is EL_INPUT.

ER_CONTINUEINPUT Use only when locus is EL_INPUT_DATA. Acknowledges the error and
directs the Device to continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and
DataEventEnabled is again set to true, then another ErrorEvent is
delivered with locus EL_INPUT.
Default when locus is EL_INPUT_DATA.

Remarks Enqueued when an error is detected while trying to read POS Keyboard data. This event is not delivered
until DataEventEnabled is true, so that proper application sequencing occurs.

See Also “Device Input Model” on page 18, “Device Information Reporting Model” on page 25.
952 Unified POS, v1.16.1

29.5.4 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application when the working status of the POS Keyboard changes.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 The status reported from the POS Keyboard.

Note that Release 1.3 added Power State Reporting with additional Power
reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 2.

Remarks Enqueued when the POS Keyboard needs to alert the application of a device state change.

See Also “Events” on page 15.
Unified POS, v1.16.1 953

954 Unified POS, v1.16.1

30 POS Power

30.1 General

This Chapter defines the POS Power device category.

30.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.5 Not supported

CapCompareFirmwareVersion: boolean { read-only } 1.9 open

CapPowerReporting: int32 { read-only } 1.3 open

CapStatisticsReporting: boolean { read-only } 1.8 open

CapUpdateFirmware: boolean { read-only } 1.9 open

CapUpdateStatistics: boolean { read-only } 1.8 open

CheckHealthText: string { read-only } 1.5 open

Claimed: boolean { read-only } 1.5 open

DataCount: int32 { read-only } 1.5 Not supported

DataEventEnabled: boolean { read-write } 1.5 Not supported

DeviceEnabled: boolean { read-write } 1.5 open & claim

FreezeEvents: boolean { read-write } 1.5 open

OutputID: int32 { read-only } 1.5 Not supported

PowerNotify: int32 { read-write } 1.5 open

PowerState: int32 { read-only } 1.5 open

State: int32 { read-only } 1.5 --

DeviceControlDescription: string { read-only } 1.5 --

DeviceControlVersion: int32 { read-only } 1.5 --

DeviceServiceDescription: string { read-only } 1.5 open

DeviceServiceVersion: int32 { read-only } 1.5 open

PhysicalDeviceDescription: string { read-only } 1.5 open

PhysicalDeviceName: string { read-only } 1.5 open
Unified POS, v1.16.1 955

Properties (Continued)

Specific Type Mutability Ver-
sion

May Use
After

CapBatteryCapacityRemaining: boolean {read-only} 1.9 open

CapBatteryCapacityRemainingInSeconds: boolean {read-only} 1.16 open

CapChargeTime: boolean {read-only} 1.16 open

CapFanAlarm: boolean {read-only} 1.5 open

CapHeatAlarm: boolean {read-only} 1.5 open

CapQuickCharge: boolean {read-only} 1.5 open

CapRestartPOS: boolean {read-only} 1.9 open

CapShutdownPOS: boolean {read-only} 1.5 open

CapStandbyPOS: boolean {read-only} 1.9 open

CapSuspendPOS: boolean {read-only} 1.9 open

CapUPSChargeState: int32 {read-only} 1.5 open

CapVariableBatteryCriticallyLowThreshold: boolean {read-only} 1.9 open

CapVariableBatteryCriticallyLowThresholdInSeconds: boolean {read-only} 1.16 open

CapVariableBatteryLowThreshold: boolean {read-only} 1.9 open

CapVariableBatteryLowThresholdInSeconds: boolean {read-only} 1.16 open

BatteryCapacityRemaining: int32 {read-only} 1.9 open

BatteryCapacityRemainingInSeconds: int32 {read-only} 1.16 open

BatteryCriticallyLowThreshold: int32 {read-write} 1.9 open

BatteryCriticallyLowThresholdInSeconds: int32 {read-write} 1.16 open

BatteryLowThreshold: int32 {read-write} 1.9 open

BatteryLowThresholdInSeconds: int32 {read-write} 1.16 open

ChargeTime: int32 {read-only} 1.16 open

EnforcedShutdownDelayTime: int32 {read-write} 1.5 open

PowerFailDelayTime: int32 {read-only} 1.5 open

PowerSource: int32 {read-only} 1.9 open

QuickChargeMode: boolean {read-only} 1.5 open

QuickChargeTime: int32 {read-only} 1.5 open

UPSChargeState: int32 {read-only} 1.5 open,
claim &
enable

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.5
956 Unified POS, v1.16.1

close ():
void { raises-exception, use after open }

1.5

claim (timeout: int32):
void { raises-exception, use after open }

1.5

release ():
void { raises-exception, use after open, claim }

1.5

checkHealth (level: int32):
void { raises-exception, use after open, enable }

1.5

clearInput ():
void { }

Not supported

clearInputProperties ():
void { }

Not supported
Unified POS, v1.16.1 957

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.5

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific

Name

restartPOS (): 
void { raises-exception, use after open, enable }

1.9

shutdownPOS (): 
void { raises-exception, use after open, enable }

1.5

standbyPOS (reason: int32): 
void { raises-exception, use after open, enable }

1.9

suspendPOS (reason: int32): 
void { raises-exception, use after open, enable }

1.9

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.5

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent Not supported

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.5

 Status: int32 { read-only }

upos::events::TransitionEvent Not supported 1.16
958 Unified POS, v1.16.1

30.3 General Information

The POS Power programmatic name is “POSPower.”

30.3.1 Capabilities

The POSPower device class has the following capabilities:

• Supports a command to “shut down” the system.

• Supports a command to restart the system.

• Supports a command to “suspend” the system.

• Supports a command to have the system go to standby.

• Supports accessing a power handling mechanism of the underlying operating system and hardware.

• Informs the application if a power fail situation has occurred.

• Informs the application about battery level.

• Informs the application if the UPS charge state has changed.

• Informs the application about high CPU temperature.

• Informs the application about stopped CPU fan.

• Informs the application if an operating system dependent enforced shutdown mechanism is processed.

• Allows the application after saving application data locally or transferring application data to a server to shut
down the POS terminal.

• Informs the application about an initiated shutdown.

30.3.2 Device Sharing

The POSPower is a sharable device. Its device sharing rules are:

• After opening and enabling the device, the application may access all properties and methods and will receive
status update events.

• If more than one application has opened and enabled the device, all applications may access its properties and
methods. Status update events are fired to all of the applications.

• If one application claims the POSPower, then only that application may call the shutdownPOS, standbyPOS,
or suspendPOS methods. This feature provides a degree of security, such that these methods may effectively
be restricted to the main POS application if that application claims the device at startup.

• See the “Summary” table for precise usage prerequisites.
Unified POS, v1.16.1 959

30.3.3 Model

The general model of POSPower is based on the power model of each device in version 1.3 or later. The same
common properties are used but all states relate to the POS terminal itself and not to a peripheral device.

There are three states of the POSPower:

• ONLINE. The POS terminal is powered on and ready for use. This is the “operational” state.

• OFF. The POS terminal is powered off or detached from the power supplying net. The POS terminal runs on
battery power support. This is the powerfail situation.

• OFFLINE. The POS terminal is powered on but is running in a “lower-power-consumption” mode. It may
need to be placed online by pressing a button or key or something else which may wake up the system.

Power reporting only occurs while the device is open, enabled and power notification is switched on.

In a powerfail situation - that means the POSPower is in the state OFF - the POS terminal will be shut down
automatically after the last application has closed the POSPower device or the time specified by the
EnforcedShutdownDelayTime property has been elapsed.

A call to the shutdownPOS method will always shut down the POS terminal independent of the system power
state.

Version 1.9 or later

Support of battery powered devices is added. In addition to adding properties to report battery levels and power
sources, properties are added to allow for the setting of low and critically low battery levels. The POSPower
device also includes the ability to request or respond to request to enter the standby and suspend states. The
model does not attempt to duplicate other power management models such as APM and ACPI, but leaves those
implementation details to the provider. As a rule, the suspend state will consume less power than the standby
state, which in turn will consume less power than the on state. A suggested mapping of these states to other
power management models is:

State ACPI APM Description

On S0 ON Active, Powered On

Standby S1 SUSPEND Displays and drives off, CPU, RAM and fans
powered on

Suspend S3 SUSPEND Only RAM powered

Off S5 OFF Completely powered off
960 Unified POS, v1.16.1

30.3.4 POSPower Class Diagram Updated in Release 1.16

The following diagram shows the relationships between the POSPower classes.

<<exception>> <<interface>> <<utility>> <<utility>>
UposException BaseControl UposConst POSPowerConst

PWR_UPS_FULL : int32 {frozen}
PWR_UPS_LOW : int32 {frozen}
PWR_UPS_CRITICAL : int32 {frozen}
PWR_UPS_WARING : int32 {frozen}
PWR_SUE_UPS_FULL : int32 {frozen}
PWR_SUE_UPS_LOW : int32 {frozen}
PWR_SUE_UPS_CRITICAL : int32 {frozen}
PWR_SUE_UPS_WARING : int32 {frozen}

<<capability>> +CapBatteryCapacityRemaining:boolean PWR_SUE_FAN_STOPPED : int32 {frozen}
<<capability>> +CapBatteryCapacityRemainingInSeconds:boolean PWR_SUE_FAN_RUNNING : int32 {frozen}
<<capability>> +CapChargeTime:boolean PWR_SUE_TEMPERATURE_HIGH : int32 {frozen}
<<capability>> +CapFanAlarm:boolean PWR_SUE_TEMPERATURE_OK : int32 {frozen}
<<capability>> +CapHeatAlarm:boolean PWR_SUE_SHUTDOWN : int32 {frozen}
<<capability>> +CapQuickCharge:boolean PWR_SOURCE_NA : int32 {frozen}
<<capability>> +CapRestartPOS:boolean PWR_SOURCE_AC : int32 {frozen}
<<capability>> +CapShutdownPOS:boolean PWR_SOURCE_BATTERY : int32 {frozen}
<<capability>> +CapStandbyPOS:boolean PWR_SOURCE_BACKUP : int32 {frozen}
<<capability>> +CapSuspendPOS:boolean PWR_SUE_BAT_LOW : int32 {frozen}
<<capability>> +CapUPSChargeState:int32 PWR_SUE_BAT_CRITICAL : int32 {frozen}
<<capability>> +CapVariableBatteryCriticallyLowThreshold:boolean PWR_SUE_BAT_CAPACITY_REMAINING : int32 {frozen}
<<capability>> +CapVariableBatteryCriticallyLowThresholdInSeconds:boolean PWR_SUE_BAT_CAPACITY_REMAINING_IN_SECONDS:int32 {frozen}
<<capability>> +CapVariableBatteryLowThreshold:boolean PWR_SUE_RESTART : int32 {frozen}
<<capability>> +CapVariableBatteryLowThresholdInSeconds:boolean PWR_SUE_STANDBY : int32 {frozen}
<<property>> +BatteryCapacityRemaining:int32 PWR_SUE_USER_STANDBY : int32 {frozen}
<<property>> +BatteryCapacityRemainingInSeconds:int32 PWR_SUE_SUSPEND : int32 {frozen}
<<property>> +BatteryCriticallyLowThreshold:int32 PWR_SUE_USER_SUSPEND : int32 {frozen}
<<property>> +BatteryCriticallyLowThresholdInSeconds:int32 PWR_SUE_POWER_SOURCE : int32 {frozen}
<<property>> +BatteryLowThreshold:int32
<<property>> +BatteryLowThresholdInSeconds:int32
<<property>> +ChargeTime:int32
<<property>> +EnforcedShutdownDelayTime:int32
<<property>> +PowerFailDelayTime:int32
<<property>> +PowerSource:int32
<<property>> +QuickChargeMode:boolean
<<property>> +QuickChargeTime:int32
<<property>> +UPSChargeState:int32
+restartPOS (): void
+shutdownPOS (): void
+standbyPOS (reason: int32): void
+suspendPOS (reason: int32): void

<<event>>
StatusUpdateEvent

+Status : int32 +EventNumber: int32
+Data: int32
+Obj: object

<<interface>>
POSPower Control

<<event>>
DirectIOEvent

<<sends>>
<<uses>>

<<uses>>

<<fires>> <<fires>>

<<sends>>

<<uses>>
Unified POS, v1.16.1 961

30.3.5 POSPower Sequence Diagram

The following sequence diagram shows the typical usage of the POSPower device for registering for
StatusUpdateEvents and an atypical case of initiating a shutdownPOS call.

NOTE: we are assuming that the :ClientApp already successfully opened and enabled the
POSPower device and also PowerNotify property is set to PN_ENABLED.

:ClientApp :POSPower :POSPowerService Some Critical Situation
(like power failure)

:StatusUpdateEvent

7: getPowerFailDelayTime() 8: getPowerFailDelayTime()

:ClientApp might access other properties and setup
internal condition to handle events and power situation
such as decision to shutdown...

9: UPS battery LOW
10: create new SUE

11: deliver SUE to POSPower control
:ClientApp will execute
some SUE handling code
and if conditions for
shutdown are met and
CapShutdownPOS == true.
Initiates shutdown, as below.

14: prepare for shutdown by releasing resources and saving appropriate data

15: claim(timeout)

17: claim(timeout)

Assuming that claim was
successful (that is no
other application has
claimed the service).

16: shutdownPOS()

18: shutdownPOS()

12: deliver SUE to all handlers

1: setPowerNotify(true) 2: setPowerNotify(true)

3: setDeviceEnabled(true) 4: setDeviceEnabled(true)

5: getUPSChargeState() 6: getUPSChargeState()

13: notify client of new event
962 Unified POS, v1.16.1

30.3.6 POSPower Standby Sequence Diagram 

:ClientApp :POSPower :StatusUpdateEvent :
POSPowerSe...

Some Battery Level
Situation : Event

NOTE: we are assuming that the :ClientApp already successfully opened and enabled
the POSPower device and also PowerNotify property is set to PN_ENABLED.

1: setPowerNotify(true)

2: setPowerNotify(true)

3: setDeviceEnabled(true)

4: setDeviceEnabled(true)

5: getCapBatteryLowThreshold()

6: getCapBatteryLowThreshold()

7: setBatteryLowThreshold(10)

8: setBatteryLowThreshold(10)

9: battery less than 10%

10: create new SUE

11: deliver SUE to POSPower control

12: deliver SUE to all handlers

13: notify client of new event

:ClientApp will execute
some SUE handling code
and if conditions for
shutdown are met and
CapShutdownPOS == true.
Initiates shutdown,...

14: prepare for standby

15: claim(timeout)

16: claim(timeout)

17: standbyPOS(reason)

18: standbyPOS(reason)

19: create new SUE

20: deliver SUE to POSPower control

21: deliver SUE to all handlers

22: notify client of new event
Unified POS, v1.16.1 963

30.3.7 POSPower State Diagram

The following state diagram depicts the POSPower Control device model.

The State Diagram shows
the states when the device is
opened, claimed, enabled and
additionally when PowerNotify is enabled.
Claiming the device is optional since
POSPower is a sharable device.

Additionally, for CapPowerReporting only
the value PR_ADVANCED is possible.

/open(…)

/ claim(...)/ release()

/close()

/ setDevice-
Enabled(false)

/ setDevice-
Enabled (true)

[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_ENABLED]

[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_DISABLED]

/ claim(...)

/ setDevice-
Enabled(true)

[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_ENABLED]

[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_DISABLED]

[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_ENABLED]

[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_DISABLED]

/ setDevice-
Enabled(false)

/ release()

/ setDevice-
Enabled(true)

/ setDevice-
Enabled(false)

/ release()/ claim(...)

/ setDevice-
Enabled (true)

/ setDevice-
Enabled(false)

/ release()/ claim(...)
[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_ENABLED]

[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_DISABLED]

Opened & Claimed
State == S_IDLE

Claimed == true

DeviceEnabled == false

PowerNotify == PN_DISABLED

Opened, Claimed & Enabled
State == S_IDLE

Claimed == true

DeviceEnabled == true

PowerNotify == PN_DISABLED

Opened & PowerEnabled
State == S_IDLE

Claimed == false

DeviceEnabled == false

PowerNotify == PN_ENABLED

Opened, Claimed & PowerEnabled
State == S_IDLE

Claimed == true

DeviceEnabled == false

PowerNotify == PN_ENABLED

Opened & Enabled
State == S_IDLE

Claimed == false

DeviceEnabled == true

PowerNotify == PN_DISABLED

Opened
State = S_IDLE

Claimed=false

DeviceEnabled=false

PowerNotify=PN_DISABLED

OS / application stopped.

[CapShutdownPOS == true]
/ Application saves all data and
sets itself to a defined state.
/ shutdownPOS()

Shutdown Operating System
entry / {Deliver StatusUpdateEvent

(PWR_SUE_SHUTDOWN) }

Opened, Claimed, Enabled
& PowerEnabled
State == S_IDLE

Claimed == true

DeviceEnabled == true

PowerNotify == PN_ENABLED

Opened, Enabled
& PowerEnabled
State == S_IDLE

Claimed == false

DeviceEnabled == true

PowerNotify == PN_ENABLED

The
details of
these
states are
described
in
separate
diagrams
below.
964 Unified POS, v1.16.1

30.3.8 POSPower PowerState Diagram - Part 1

The following state diagram depicts the POSPower Power States.

Opened, Enabled & PowerEnabled OR Opened, Claimed, Enabled & PowerEnabled

The State Diagram shows
the states when the POS terminal
changes its power state.

PowerState ONLINE

The POS terminal is powered on and ready for use

PowerState= = PS_ONLINE

entry / {Deliver StatusUpdateEvent (SUE_POWER_ONLINE) }

PowerState OFFLINE

The POS terminal is powered on but is running

is a “lower-power-consumption” mode

PowerState= = PS_OFFLINE

entry / {Deliver StatusUpdateEvent
(SUE_POWER_OFFLINE) }

[The POS terminal is powered off or
detached from the power supplying net.]

[The POS terminal is
again powered on
or attached to the
power supplying net.]

[The POS terminal is running in a
“lower-power-consumption” mode]

[The POS
terminal is
placed online by
pressing a
button or key or
due to a power
fail situation or
some-thing else
which may wake
up the system.]

Application saves all
data and sets itself
to a defined state.

OS/ application stopped.

[last POSPower
Device instance
opened]

/ close ()

[EnforcedShutdown-
DelayTime >0]

After the time specified in
EnforcedShutdown-DelayTime

PowerState OFF
(Power Fail Situation)

The POS terminal runs on battery power

support. This is the powerfail situation.

PowerState == PS_OFF

entry / {Deliver StatusUpdateEvent
(SUE_POWER_OFF) }

[PowerFailDelayTime >0 && The POS terminal is
powered off or detached from the power supplying
net

[The POS terminal is again powered on or attached
to the power supplying net within the time specified in
PowerFailDelayTime.]

OFFONLINE

Shutdown Operating System
entry / {Deliver StatusUpdateEvent

(PWR_SUE_SHUTDOWN) }

The details of these
states are described
in separate diagrams
below.
Unified POS, v1.16.1 965

30.3.9 POSPower PowerState Diagram - Part 2

The following state diagram depicts the POSPower PowerState ONLINE.

PowerState ONLINE

The State Diagram shows
the sub states in the
PowerState ONLINE state
when charging the UPS battery.

UPSChargeState PWR_UPS_CRITICAL

UPS battery is in a critical state

PowerState= = PS_ONLINE

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_CRITICAL) }

[(CapUPSChargeState &
PWR_UPS_LOW) != 0
&& physical battery

charge state is near empty]
/ Battery is loading

UPSChargeState PWR_UPS_WARNING

UPS battery UPS battery is near 50% charge

PowerState= = PS_ONLINE

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_WARNING) }

UPSChargeState PWR_UPS_LOW

UPS battery UPS battery is near empty.

PowerState= = PS_ONLINE

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_LOW) }

UPSChargeState PWR_UPS_FULL

UPS battery UPS battery is near full charge

PowerState= = PS_ONLINE

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_FULL) }

[(CapUPSChargeState &
PWR_UPS_WARNING) != 0
&& physical battery charge state

is near 50%]
/ Battery is loading

[(CapUPSChargeState &
PWR_UPS_FULL) != 0
&& physical battery charge

state is near full]
/ Battery is loading

[(CapUPSChargeState & PWR_UPS_CRITICAL) != 0
&& physical battery charge state is critical]

[(CapUPSChargeState & PWR_UPS_LOW) != 0
&& physical battery charge state is near empty]

[(CapUPSChargeState &
PWR_UPS_WARNING) != 0 &&
physical battery charge state is
near 50% charge]

[(CapUPSChargeState &
PWR_UPS_FULL) != 0 &&
physical battery charge state
is near full]
966 Unified POS, v1.16.1

30.3.10 POSPower PowerState Diagram - Part 3

The following state diagram depicts the POSPower PowerState OFF.

PowerState OFF

The State Diagram shows
the sub states in the
PowerState OFF state
when unloading the UPS battery.

UPSChargeState PWR_UPS_CRITICAL

UPS battery is in a critical state

PowerState= = PS_OFF

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_CRITICAL) }

[(CapUPSChargeState &
PWR_UPS_CRITICAL) != 0
&& physical battery charge

state is critical]
/ Battery is unloading

UPSChargeState PWR_UPS_WARNING

UPS battery UPS battery is near 50% charge

PowerState= = PS_OFF

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_WARNING) }

UPSChargeState PWR_UPS_LOW

UPS battery UPS battery is near empty.

PowerState= = PS_OFF

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_LOW) }

UPSChargeState PWR_UPS_FULL

UPS battery UPS battery is near full charge

PowerState= = PS_OFF

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_FULL) }

[(CapUPSChargeState &
PWR_UPS_LOW) != 0
&& physical battery charge

state is near empty] / Battery
is unloading

[(CapUPSChargeState &
PWR_UPS_WARNING) != 0
&& physical battery charge
state is near 50%]
/ Battery is unloading

[(CapUPSChargeState & PWR_UPS_CRITICAL) != 0
&& physical battery charge state is critical]

[(CapUPSChargeState & PWR_UPS_LOW) != 0
&& physical battery charge state is near empty]

[(CapUPSChargeState &
PWR_UPS_WARNING) != 0 &&
physical battery charge state is
near 50% charge]

[(CapUPSChargeState &
PWR_UPS_FULL) != 0 &&
physical battery charge state
is near full]
Unified POS, v1.16.1 967

30.3.11 POSPower State Chart Diagram for Fan and Temperature

The following state diagram depicts the handling of fan and temperature alarms.

Opened, Enabled & PowerEnabled OR Opened, Claimed, Enabled & PowerEnabled

The State Diagrams shows
the states for handling
high CPU temperature and
stopped CPU fan.

CPU temperature is high

entry / {Deliver StatusUpdateEvent
(PWR_SUE_TEMPERATURE_HIGH) }

CPU temperature
decrease and leaves
the critical state

CPU temperature
increases and reaches
a critical state

CPU temperature is low

entry / {Deliver StatusUpdateEvent
(PWR_SUE_TEMPERATURE_OK) }

[(CapHeatAlarm == true &&
CPU temperature is critical]

[(CapHeatAlarm == true &&
CPU temperature is uncritical]

Opened, Enabled & PowerEnabled OR Opened, Claimed, Enabled & PowerEnabled

The CPU fan is stopped.

entry / {Deliver StatusUpdateEvent
(PWR_SUE_FAN_STOPPED) }

Fan starts running
Fan stops running

CPU fan is running

entry / {Deliver StatusUpdateEvent
(PWR_SUE_FAN_RUNNING) }

[(CapFanAlarm == true &&
fan is stopped]

[(CapFanAlarm == true &&
fan works properly]
968 Unified POS, v1.16.1

30.3.12 POSPower Battery State Diagram

Illustrates the transition of states when the POS
is only powered by the battery. It is assumed
that the battery threshold is already set.

Opened, Enabled and PowerEnabled OR Opened, Claimed, Enabled and PowerEnabled (Battery)

Battery is fully charged

entry/ PowerSource is set to PWR_SOURCE_BATTERY

Battery is low

entry/ PowerSource is set to PWR_SOURCE_BATTERY
entry/ Fires PWR_SUE_BAT_LOW
do/ Update BatteryCapacityRemaining and sends PWR_SUE_BAT_CAPACITY_REMAINING when changed

Battery is critically low

entry/ PowerSource is set to PWR_SOURCE_BATTERY
entry/ Fires PWR_SUE_BAT_CRITICAL
do/ Update BatteryCapacityRemaining and sends PWR_SUE_BAT_CAPACITY_REMAINING when changed

Battery is fully charged

entry/ PowerSource is set to PWR_SOURCE_BATTERY

Battery is low

entry/ PowerSource is set to PWR_SOURCE_BATTERY
entry/ Fires PWR_SUE_BAT_LOW
do/ Update BatteryCapacityRemaining and sends PWR_SUE_BAT_CAPACITY_REMAINING when changed

Battery is critically low

entry/ PowerSource is set to PWR_SOURCE_BATTERY
entry/ Fires PWR_SUE_BAT_CRITICAL
do/ Update BatteryCapacityRemaining and sends PWR_SUE_BAT_CAPACITY_REMAINING when changed

disconnected from power, battery is fully charged

disconnected from power, battery is low

disconnected from power, battery is critically low

Battery capacity falls below BatteryLowThreshold returns to AC power

Battery capacity falls below BatteryCriticallyLowThreshold
returns to AC power

returns to AC power
Unified POS, v1.16.1 969

30.3.13 POSPower Transitions State Diagram

The state diagram
illustrates the changes
when the POS is
powered by battery

Opened, Enabled and PowerEnabled OR Opened, Claimed, Enabled and PowerEnabled

POS attached and receiving AC Power

entry/ PowerSource is set to PWR_SOURCE_AC
entry/ PWR_SUE_POWER_SOURCE fired

POS running on UPS Power

do/ See previous diagrams
entry/ PowerSource is set to PWR_SOURCE_BACKU...
entry/ PWR_SUE_POWER_SOURCE fired

POS running on battery

entry/ PowerSource is set to PWR_SOURCE_BATTERY
entry/ PWR_SUE_POWER_SOURCE fired

POS is shutdown

entry/ PWR_SUE_SHUTDOWN Fired

POS is suspended

entry/ PWR_SUE_SUSPEND or PWR_SUE_USER_SUSPEND fired

POS is restarted

entry/ PWR_SUE_RESTART fired
POS is in standby

entry/ PWR_SUE_STANDBY or PWR_SUE_USER_STANDBY fired

POS attached and receiving AC Power

entry/ PowerSource is set to PWR_SOURCE_AC
entry/ PWR_SUE_POWER_SOURCE fired

POS running on UPS Power

do/ See previous diagrams
entry/ PowerSource is set to PWR_SOURCE_BACKU...
entry/ PWR_SUE_POWER_SOURCE fired

POS running on battery

entry/ PowerSource is set to PWR_SOURCE_BATTERY
entry/ PWR_SUE_POWER_SOURCE fired

POS is shutdown

entry/ PWR_SUE_SHUTDOWN Fired

POS is suspended

entry/ PWR_SUE_SUSPEND or PWR_SUE_USER_SUSPEND fired

POS is restarted

entry/ PWR_SUE_RESTART fired

Loss of AC power

running on AC power

running on UPS power

running on battery power

Loss of UPS power

AC restored

attached to AC Power

UPS restored

application request shutdown

application request suspend

application request restart

POS is in standby

entry/ PWR_SUE_STANDBY or PWR_SUE_USER_STANDBY fired

application request standby
970 Unified POS, v1.16.1

30.4 Properties (UML attributes)

30.4.1 BatteryCapacityRemaining Property

Syntax BatteryCapacityRemaining: int32 { read-only, access after open }

Remarks A value of 0 to 100 represents percent of battery capacity remaining.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapBatteryCapacityRemaining Property

30.4.2 BatteryCapacityRemainingInSeconds Property Added in Release 1.16

Syntax BatteryCapacityRemainingInSeconds: int32 {read-only, access after open}

Remarks A value of battery capacity remaining in seconds.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapBatteryCapacityRemainingInSeconds Property

30.4.3 BatteryCriticallyLowThreshold Property

Syntax BatteryCriticallyLowThreshold: int32 { read-write, access after open }

Remarks If not zero, this property holds the threshold at which a PWR_SUE_BAT_CRITICAL Status Update
Event is generated. The values 1 through 99 represent the percentage of the capacity remaining. The
value 0 indicates that Battery Critically Low reporting is not supported or is disabled.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16. Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid value was specified. Or it does not support this function.

See Also CapVariableBatteryCriticallyLowThreshold Property, StatusUpdateEvent

30.4.4 BatteryCriticallyLowThresholdInSeconds Property 
 Added in Release 1.16

Syntax BatteryCriticallyLowThresholdInSeconds: int32 {read-write, access after open}

Remarks If not zero, this property holds the threshold at which a PWR_SUE_BAT_CRITICAL
Unified POS, v1.16.1 971

StatusUpdateEvent is generated. The values of seconds of the capacity remaining. The value 0
indicates that Battery Critically Low reporting is not supported or is disabled.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16. Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid value was specified. Or it does not support this function.

See Also CapVariableBatteryCriticallyLowThresholdInSeconds Property, StatusUpdateEvent

30.4.5 BatteryLowThreshold Property Added in Release 1.9

Syntax BatteryLowThreshold: int32 { read-write, access after open }

Remarks If not zero, this property holds the threshold at which a PWR_SUE_BAT_LOW Status Update Event is
generated. The value 1 to 99 represents the percent capacity remaining. The value 0 indicates that battery
low reporting is not supported or is disabled. If variable battery low threshold is supported, setting a value
between 1 and 99 sets the threshold to that value. Setting a value of zero disables battery low reporting.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16. Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid value was specified. Or it does not support this function.

See Also CapVariableBatteryLowThreshold Property, StatusUpdateEvent

30.4.6 BatteryLowThresholdInSeconds Property Added in Release 1.16

Syntax BatteryLowThresholdInSeconds: int32 {read-write, access after open}

Remarks If not zero, this property holds the threshold at which a PWR_SUE_BAT_LOW StatusUpdateEvent is
generated. The value of seconds of the capacity remaining. The value 0 indicates that battery low
reporting is not supported or is disabled. If variable battery low threshold is supported, setting a value of
seconds sets the threshold to that value. Setting a value of zero disables battery low reporting.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16. Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid value was specified. Or it does not support this function.

See Also CapVariableBatteryLowThresholdInSeconds Property, StatusUpdateEvent
972 Unified POS, v1.16.1

30.4.7 CapBatteryCapacityRemaining Property

Syntax CapBatteryCapacityRemaining: boolean { read-only, access after open }

Remarks If true, the device is able to provide battery capacity information. Otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also BatteryCapacityRemaining Property

30.4.8 CapBatteryCapacityRemainingInSeconds Property 
 Added in Release 1.16

Syntax CapBatteryCapacityRemainingInSeconds: boolean {read-only, access after open}

Remarks If true, the device is able to provide battery capacity information seconds. Otherwise, it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also BatteryCapacityRemainingInSeconds Property

30.4.9 CapChargeTime Property Added in Release 1.16

Syntax CapChargeTime: boolean {read-only, access after open}

Remarks If true, the device is able to acquire the remaining time until full charging. Otherwise, it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also ChargeTime Property.

30.4.10 CapFanAlarm Property

Syntax CapFanAlarm: boolean { read-only, access after open }

Remarks If true, the device is able to detect whether the CPU fan is stopped. Otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 973

30.4.11 CapHeatAlarm Property

Syntax CapHeatAlarm: boolean { read-only, access after open }

Remarks If true, the device is able to detect whether the CPU is running at too high of a temperature. Otherwise it
is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

30.4.12 CapQuickCharge Property

Syntax CapQuickCharge: boolean { read-only, access after open }

Remarks If true, the power management allows the charging of the UPS battery in quick mode. The time for
charging the battery is shorter than usual. Otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also QuickChargeMode Property, QuickChargeTime Property.
974 Unified POS, v1.16.1

30.4.13 CapRestartPOS Property

Syntax CapRestartPOS: boolean { read-only, access after open }

Remarks If true, the device is able to explicitly restart the POS. Otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also restartPOS Method.

30.4.14 CapShutdownPOS Property

Syntax CapShutdownPOS: boolean { read-only, access after open }

Remarks If true, the device is able to explicitly shut down the POS. Otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also shutdownPOS Method.

30.4.15 CapStandbyPOS Property

Syntax CapStandbyPOS: boolean { read-only, access after open }

Remarks If true, the device is able to request that the POS System enter the Standby state. Otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also standbyPOS Method.

30.4.16 CapSuspendPOS Property

Syntax CapSuspendPOS: boolean { read-only, access after open }

Remarks If true, the device is able to request that the POS System enter the Suspend state. Otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also suspendPOS Method.
Unified POS, v1.16.1 975

30.4.17 CapUPSChargeState Property

Syntax CapUPSChargeState: int32 { read-only, access after open }

Remarks If not equal to zero, the UPS can deliver one or more charge states. It can contain any of the following
values logically ORed together.

Value Meaning
PWR_UPS_FULL UPS battery is near full charge.
PWR_UPS_WARNING UPS battery is near 50% charge.
PWR_UPS_LOW UPS battery is near empty. Application shutdown should be started to

ensure that is can be completed before the battery charge is depleted. A
minimum of 2 minutes of normal system operation can be assumed when
this state is entered unless this is the first state reported upon entering the
“Off” power state.

PWR_UPS_CRITICAL UPS battery is in a critical state and could be disconnected at any time
without further warning.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also UPSChargeState Property.

30.4.18 CapVariableBatteryCriticallyLowThreshold Property

Syntax CapVariableBatteryCriticallyLowThreshold: 
 boolean { read-only, access after open }

Remarks If true, the device supports a variable threshold for critically low battery. Otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also BatteryCriticallyLowThreshold Property, StatusUpdateEvent

30.4.19 CapVariableBatteryCriticallyLowThresholdInSeconds Property 　　　　　　　

　　　　　　　　 Added in Release 1.16

Syntax CapVariableBatteryCriticallyLowThresholdInSeconds:
　　boolean {read-only, access after open}

Remarks If true, the device supports a second’s variable threshold for critically low battery. Otherwise, it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also BatteryCriticallyLowThresholdInSeconds Property, StatusUpdateEvent
976 Unified POS, v1.16.1

30.4.20 CapVariableBatteryLowThreshold Property

Syntax CapVariableBatteryLowThreshold: boolean { read-only, access after open }

Remarks If true, the device supports a variable threshold for battery low. Otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also BatteryLowThreshold Property, StatusUpdateEvent

30.4.21 CapVariableBatteryLowThresholdInSeconds Property
　 Added in Release 1.16

Syntax CapVariableBatteryLowThresholdInSeconds:
　　boolean {read-only, access after open}

Remarks If true, the device supports a second’s variable threshold for battery low. Otherwise, it is false. This
property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also BatteryLowThresholdInSeconds Property, StatusUpdateEvent

30.4.22 ChargeTime Property 　　 Added in Release 1.16

Syntax ChargeTime: int32 {read-only, access after open}

Remarks Indicates the time remaining until the battery is fully charged in seconds.

If equal to zero, the battery is not charging or not supported.

This property is only set if CapChargeTime is true.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapChargeTimeProperty
Unified POS, v1.16.1 977

30.4.23 EnforcedShutdownDelayTime Property

Syntax EnforcedShutdownDelayTime: int32 { read-write, access after open }

Remarks If not equal to zero, the system has a built-in mechanism to shut down the POS terminal after a
determined time in a power fail situation. This property contains the time in milliseconds when the
system will shut down automatically after a power failure. A power failure is the situation when the POS
terminal is powered off or detached from the power supplying net and runs on UPS. 
If zero, no automatic shutdown is performed and the application has to call itself the shutdownPOS
method.

 Applications will be informed about an initiated automatic shutdown.This property is initialized by the
open method. Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid value was specified. Or it does not support this function.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also shutdownPOS Method.

30.4.24 PowerFailDelayTime Property

Syntax PowerFailDelayTime: int32 { read-only, access after open }

Remarks This property contains the time in milliseconds for power fail intervals which will not create a power fail
situation. In some countries the power has sometimes short intervals where the power supply is
interrupted. Those short intervals are in the range of milliseconds up to a few seconds and are handled
by batteries or other electric equipment and should not cause a power fail situation. The power fail
interval starts when the POS terminal is powered off or detached from the power supplying net and runs
on UPS. The power fail interval ends when the POS terminal is again powered on or attached to the power
supplying net. However, if the power fail interval is longer than the time specified in the
PowerFailDelayTime property a power fail situation is created.

Usually this parameter is a configuration parameter of the underlying power management. So, the
application can only read this property.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
978 Unified POS, v1.16.1

30.4.25 PowerSource Property Added in Release 1.9

Syntax PowerSource: int32 { read-only, access after open }

Remarks This property holds the current power source if power source reporting is available. 
A StatusUpdateEvent is generated each time this property is updated.

Value Meaning
PWR_SOURCE_NA Power source reporting is not available.

PWR_SOURCE_AC The current power source is the AC line.

PWR_SOURCE_BATTERY The current power source is a system battery. This value is only
presented for systems that operate normally on battery.

PWR_SOURCE_BACKUP The current power source is a backup source such as an UPS or
backup battery.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also StatusUpdateEvent

30.4.26 QuickChargeMode Property

Syntax QuickChargeMode: boolean { read-only, access after open }

Remarks If true, the UPS battery is being recharged in a quick charge mode.
If false, it is being charged in a normal mode.

 This property is only set if CapQuickCharge is true.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapQuickCharge Property, QuickChargeTime Property.
Unified POS, v1.16.1 979

30.4.27 QuickChargeTime Property

Syntax QuickChargeTime: int32 {read-only, access after open}

Remarks This time specifies the remaining time for charging the UPS battery in quick charge mode. After the time
has elapsed, the UPS battery charging mechanism of power management usually switches into normal
mode.

This time is specified in milliseconds.

This property is only set if CapQuickCharge is true.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapQuickCharge Property, QuickChargeTime Property.

30.4.28 UPSChargeState Property

Syntax UPSChargeState: int32 {read-only, access after open-enable}

Remarks This property holds the actual UPS charge state.

It has one of the following values:

Value Meaning
PWR_UPS_FULL UPS battery is near full charge.

PWR_UPS_WARNING UPS battery is near 50% charge.

PWR_UPS_LOW UPS battery is near empty. Application shutdown should be started to
ensure that is can be completed before the battery charge is depleted. A
minimum of 2 minutes of normal system operation can be assumed when
this state is entered unless this is the first state reported upon entering the
“Off” power state.

PWR_UPS_CRITICAL UPS battery is in a critical state and could be disconnected at any time
without further warning.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapUPSChargeState Property.
980 Unified POS, v1.16.1

30.5 Methods (UML operations)

30.5.1 restartPOS Method

Syntax restartPOS (): void { raises-exception, use after open-enable }

Remarks Call to restart the POS terminal. This method will always restart the system independent of the system
power state.

If the POSPower is claimed, only the application which claimed the device is able to restart the POS
terminal.

Applications will be informed about an initiated restart.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGAL This method is not supported (see the CapRestartPOS property)

See Also CapRestartPOS Property
Unified POS, v1.16.1 981

30.5.2 shutdownPOS Method

Syntax shutdownPOS (): void {raises-exception, use after open-enable}

Remarks Call to shut down the POS terminal. This method will always shut down the system independent of the
system power state.

If the POSPower is claimed, only the application which claimed the device is able to shut down the POS
terminal.

Applications will be informed about an initiated shutdown.

It is recommended that in a power fail situation an application has to call this method after saving all data
and setting the application to a defined state.
If the EnforcedShutdownDelayTime property specifies a time greater than zero and the application did
not call the shutdownPOS method within the time specified in EnforcedShutdownDelayTime, the
system will be shut down automatically. This mechanism may be provided by an underlying operating
system to prevent the battery from being emptied before the system is shut down.
This method is only supported if CapShutdownPOS is true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL This method is not supported (see the CapShutdownPOS property)

See Also CapShutdownPOS Property, EnforcedShutdownDelayTime Property.
982 Unified POS, v1.16.1

30.5.3 standbyPOS Method

Syntax standbyPOS (reason: int32): 
 void {raises-exception, use after open-enable}

Remarks Call to request that the system be placed into the Standby state or to respond to a request from the system,
OS or other application that the system be put into Standby state.

The reason parameter indicates the reason the POS terminal should enter a standby state:

Value Description 
PWR_REASON_REQUEST Call is to request that the system enter the standby state.
PWR_REASON_ALLOW Call is a response to a standby Status Update Event and specifies that

the request should be allowed.
PWR_REASON_DENY Call is a response to a standby Status Update Event and specifies that

the request should be denied.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 

E_ILLEGAL This method is not supported (see the CapStandbyPOS property)

See Also CapStandbyPOS Property.
Unified POS, v1.16.1 983

30.5.4 suspendPOS Method

Syntax suspendPOS (reason: int32): 
 void {raises-exception, use after open-enable}

Remarks Call to request that the system be placed into the Suspend state or to respond to a request from the system,
OS or other application that the system be put into Suspend state.

The reason parameter indicates the reason the POS terminal should enter a standby state:

Value Description 
PWR_REASON_REQUEST Call is to request that the system enter the suspend state.
PWR_REASON_ALLOW Call is a response to a suspend Status Update Event and specifies

that the request should be allowed.
PWR_REASON_DENY Call is a response to a suspend Status Update Event and specifies

that the request should be denied.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGAL This method is not supported (see the CapSuspendPOS property)

See Also CapSuspendPOS Property.
984 Unified POS, v1.16.1

30.6 Events (UML interfaces)

30.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific POSPower Service to provide events to the application that are not otherwise supported by the
Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and the

Service. This property is settable.
Obj object Additional data whose usage varies by the EventNumber and Service. This

property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s POSPower
devices which may not have any knowledge of the Service’s need for this event.

See Also “Errors” on page 16
Unified POS, v1.16.1 985

30.6.2 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
 Status : int32 { read-only }

Description Delivered when UPSChargeState changes or an alarm situation occurs.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 See below.

The Status property contains the updated power status or alarm status.

Value Meaning 
PWR_SUE_UPS_FULL UPS battery is near full charge. Can be returned if 
 CapUPSChargeState contains PWR_UPS_FULL.
PWR_SUE_UPS_WARNING UPS battery is near 50% charge. Can be returned if

CapUPSChargeState contains PWR_UPS_WARNING.

PWR_SUE_UPS_LOW UPS battery is near empty. Application shutdown should be started
to ensure that it can be completed before the battery charge is
depleted. A minimum of 2 minutes of normal system operation can
be assumed when this state is entered unless this is the first charge
state reported upon entering the “Off” state. Can be returned if
CapUPSChargeState contains PWR_UPS_LOW.

PWR_SUE_UPS_CRITICAL UPS is in critical state, and will in short time be disconnected. Can
be returned if CapUPSChargeState contains
PWR_UPS_CRITICAL.

PWR_SUE_FAN_STOPPED The CPU fan is stopped. Can be returned if CapFanAlarm is true.

PWR_SUE_FAN_RUNNING The CPU fan is running. Can be returned if CapFanAlarm is true.

PWR_SUE_TEMPERATURE_HIGH
The CPU is running on high temperature. Can be returned if
CapHeatAlarm is true.

PWR_SUE_TEMPERATURE_OK
The CPU is running on normal temperature. Can be returned if
CapHeatAlarm is true.

PWR_SUE_SHUTDOWN The system will shutdown immediately.
986 Unified POS, v1.16.1

PWR_SUE_BAT_LOW The system remaining battery capacity is at or below the low battery
threshold and the system is operating from the battery.

PWR_SUE_BAT_CRITICAL The system remaining battery capacity is at or below the critically
low battery threshold and the system is operating from the battery.

PWR_SUE_BAT_CAPACITY_REMAINING.
The BatteryCapacityRemaining property has been updated.

PWR_SUE_RESTART The system will restart immediately.

PWR_SUE_STANDBY The system is requesting a transition to the Standby state

PWR_SUE_USER_STANDBY The system is requesting a transition to the Standby state as a result
of user input.

PWR_SUE_SUSPEND The system is requesting a transition to the Suspend state.

PWR_SUE_USER_SUSPEND The system is requesting a transition to the Suspend state as a result
of user input.

PWR_SUE_PWR_SOURCE The PowerSource property has been updated.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added
additional Status values for communicating the status/progress of an
asynchronous update firmware process.

See “StatusUpdateEvent” description in Chapter 2.

See Also CapFanAlarm Property, CapHeatAlarm Property, CapUPSChargeState Property, UPSChargeState
Property.
Unified POS, v1.16.1 987

988 Unified POS, v1.16.1

31 POS Printer

31.1 General

This Chapter defines the POS Printer device category.

31.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.2 Not supported

CapCompareFirmwareVersion: boolean { read-only } 1.9 open

CapPowerReporting: int32 { read-only } 1.3 open

CapStatisticsReporting: boolean { read-only } 1.8 open

CapUpdateFirmware: boolean { read-only } 1.9 open

CapUpdateStatistics: boolean { read-only } 1.8 open

CheckHealthText: string { read-only } 1.0 open

Claimed: boolean { read-only } 1.0 open

DataCount: int32 { read-only } 1.2 Not supported

DataEventEnabled: boolean { read-write } 1.0 Not supported

DeviceEnabled: boolean { read-write } 1.0 open & claim

FreezeEvents: boolean { read-write } 1.0 open

OutputID: int32 { read-only } 1.0 open

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --

DeviceControlVersion: int32 { read-only } 1.0 --

DeviceServiceDescription: string { read-only } 1.0 open

DeviceServiceVersion: int32 { read-only } 1.0 open

PhysicalDeviceDescription: string { read-only } 1.0 open

PhysicalDeviceName: string { read-only } 1.0 open
Unified POS, v1.16.1 989

Properties (Continued)

Specific Type Mutability Version May Use After

CapCharacterSet:
CapConcurrentJrnRec:
CapConcurrentJrnSlp:
CapConcurrentPageMode:
CapConcurrentRecSlp:
CapCoverSensor:
CapMapCharacterSet:
CapTransaction:

int32
boolean
boolean
boolean
boolean
boolean
boolean
boolean

{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

1.1
1.0
1.0
1.9
1.0
1.0
1.7
1.1

open
open
open
open
open
open
open
open

CapJrnPresent:
CapJrn2Color:
CapJrnBold:
CapJrnDhigh:
CapJrnDwide:
CapJrnDwideDhigh:
CapJrnEmptySensor:
CapJrnItalic:
CapJrnNearEndSensor:
CapJrnUnderline:

boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean

{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

open
open
open
open
open
open
open
open
open
open

CapJrnCartridgeSensor:

CapJrnColor:

int32
int32

{ read-only }

{ read-only }

1.5

1.5

open

open

CapRecPresent:

CapRec2Color:

CapRecBarCode:

CapRecBitmap:

CapRecBold:

CapRecDhigh:

CapRecDwide:

CapRecDwideDhigh:

CapRecEmptySensor:

CapRecItalic:

CapRecLeft90:

CapRecNearEndSensor:

CapRecPapercut:

CapRecRight90:

CapRecRotate180:

CapRecStamp:

CapRecUnderline:

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

CapRecCartridgeSensor: int32 { read-only } 1.5 open

CapRecColor: int32 { read-only } 1.5 open

CapRecMarkFeed: int32 { read-only } 1.5 open
990 Unified POS, v1.16.1

Properties (Continued)

Specific (continued) Type Mutability Version May Use After

CapRecPageMode: boolean { read-only } 1.9 open

CapRecRuledLine: int32 { read-only } 1.13 open

CapSlpPresent:

CapSlpFullslip:

CapSlp2Color:

CapSlpBarCode:

CapSlpBitmap:

CapSlpBold:

CapSlpDhigh:

CapSlpDwide:

CapSlpDwideDhigh:

CapSlpEmptySensor:

CapSlpItalic:

CapSlpLeft90:

CapSlpNearEndSensor:

CapSlpRight90:

CapSlpRotate180:

CapSlpUnderline:

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

CapSlpBothSidesPrint: boolean { read-only } 1.5 open

CapSlpCartridgeSensor: int32 { read-only } 1.5 open

CapSlpColor: int32 { read-only } 1.5 open

CapSlpPageMode: boolean { read-only } 1.9 open

CapSlpRuledLine: int32 { read-only } 1.13 open

AsyncMode: boolean { read-write } 1.0 open

CartridgeNotify: int32 { read-write } 1.5 open

CharacterSet: int32 { read-write } 1.0 open, claim, & enable

CharacterSetList: string { read-only } 1.0 open

CoverOpen: boolean { read-only } 1.0 open, claim, & enable

ErrorLevel: int32 { read-only } 1.1 open

ErrorStation: int32 { read-only } 1.0 open

ErrorString: string { read-only } 1.1 open

FontTypefaceList: string { read-only } 1.1 open

FlagWhenIdle: boolean { read-write } 1.0 open

MapCharacterSet: boolean { read-write } 1.7 open

MapMode: int32 { read-write } 1.0 open

PageModeArea: string { read-only } 1.9 open
Unified POS, v1.16.1 991

Properties (Continued)

Specific (continued) Type Mutability Version May Use After

PageModeHorizontalPosition: int32 { read-write } 1.9 open

PageModePrintArea: string { read-write } 1.9 open

PageModePrintDirection: int32 { read-write } 1.9 open

PageModeStation: int32 { read-write } 1.9 open

PageModeVerticalPosition: int32 { read-write } 1.9 open

RotateSpecial: int32 { read-write } 1.1 open

JrnLineChars: int32 { read-write } 1.0 open, claim, & enable

JrnLineCharsList: string { read-only } 1.0 open

JrnLineHeight: int32 { read-write } 1.0 open, claim, & enable

JrnLineSpacing: int32 { read-write } 1.0 open, claim, & enable

JrnLineWidth: int32 { read-only } 1.0 open, claim, & enable

JrnLetterQuality: boolean { read-write } 1.0 open, claim, & enable

JrnEmpty: boolean { read-only } 1.0 open, claim, & enable

JrnNearEnd: boolean { read-only } 1.0 open, claim, & enable

JrnCartridgeState: int32 { read-only } 1.5 open, claim, & enable

JrnCurrentCartridge: int32 (read-write } 1.5 open, claim, & enable

RecLineChars: int32 { read-write } 1.0 open, claim, & enable

RecLineCharsList: string { read-only } 1.0 open

RecLineHeight: int32 { read-write } 1.0 open, claim, & enable

RecLineSpacing: int32 { read-write } 1.0 open, claim, & enable

RecLineWidth: int32 { read-only } 1.0 open, claim, & enable

RecLetterQuality: boolean { read-write } 1.0 open, claim, & enable

RecEmpty: boolean { read-only } 1.0 open, claim, & enable

RecNearEnd: boolean { read-only } 1.0 open, claim, & enable

RecSidewaysMaxLines: int32 { read-only } 1.0 open, claim, & enable

RecSidewaysMaxChars: int32 { read-only } 1.0 open, claim, & enable

RecLinesToPaperCut: int32 { read-only } 1.0 open, claim, & enable

RecBarCodeRotationList: string { read-only } 1.0 open

RecBitmapRotationList: string { read-only } 1.7 open

RecCartridgeState: int32 { read-only } 1.5 open, claim, & enable

RecCurrentCartridge: int32 { read-write } 1.5 open, claim, & enable

SlpLineChars: int32 { read-write } 1.0 open, claim, & enable

SlpLineCharsList: string { read-only } 1.0 open

SlpLineHeight: int32 { read-write } 1.0 open, claim, & enable
992 Unified POS, v1.16.1

Properties (Continued)

Specific (continued) Type Mutability Version May Use After

SlpLineSpacing: int32 { read-write } 1.0 open, claim, & enable

SlpLineWidth: int32 { read-only } 1.0 open, claim, & enable

SlpLetterQuality: boolean { read-write } 1.0 open, claim, & enable

SlpEmpty: boolean { read-only } 1.0 open, claim, & enable

SlpNearEnd: boolean { read-only } 1.0 open, claim, & enable

SlpSidewaysMaxLines: int32 { read-only } 1.0 open, claim, & enable

SlpSidewaysMaxChars: int32 { read-only } 1.0 open, claim, & enable

SlpMaxLines: int32 { read-only } 1.0 open, claim, & enable

SlpLinesNearEndToEnd: int32 { read-only } 1.0 open, claim, & enable

SlpBarCodeRotationList: string { read-only } 1.1 open

SlpBitmapRotationList: string { read-only } 1.7 open

SlpPrintSide: int32 { read-only } 1.5 open, claim, & enable

SlpCartridgeState: int32 { read-only } 1.5 open, claim, & enable

SlpCurrentCartridge: int32 { read-write } 1.5 open, claim, & enable

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open }

1.0

release ():
void { raises-exception, use after open, claim }

1.0

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.0

clearInput ():
void { }

Not supported

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { raises-exception, use after open, claim }

1.0

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.0

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8
Unified POS, v1.16.1 993

Methods (UML operations) (continued)

Common

Name Version

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific

Name Version

beginInsertion (timeout: int32):
void { raises-exception, use after open, claim, enable }

1.0

beginRemoval (timeout: int32):
void { raises-exception, use after open, claim, enable }

1.0

changePrintSide (side: int32):
void { raises-exception, use after open, claim, enable }

1.5

clearPrintArea ():
 void { raises-exception, use after open, claim, enable }

1.9

cutPaper (percentage: int32):
void { raises-exception, use after open, claim, enable }

1.0

drawRuledLine (station: int32, positionList: string, lineDirection: int32,
lineWidth: int32, lineStyle: int32, lineColor: int32):
void { raises-exception, use after open, claim, enable }

1.13

endInsertion ():
void { raises-exception, use after open, claim, enable }

1.0

endRemoval ():
void { raises-exception, use after open, claim, enable }

1.0

markFeed (type: int32):
void { raises-exception, use after open, claim, enable }

1.5

pageModePrint (control: int32):
 void { raises-exception, use after open, claim, enable }

1.9

printBarCode (station: int32, data: string, symbology: int32, height: int32,
width: int32, alignment: int32, textPosition: int32):
void { raises-exception, use after open, claim, enable }

1.0

printBitmap (station: int32, fileName: string, width: int32, alignment: int32
):
void { raises-exception, use after open, claim, enable }

1.0

printImmediate (station: int32, data: string):
void { raises-exception, use after open, claim, enable }

1.0

printMemoryBitmap (station: int32, data: binary, type: int32, width: int32,
alignment: int32): 
void { raises-exception, use after open, claim, enable }

1.10
994 Unified POS, v1.16.1

Methods (UML operations) (continued)

Specific

Name Version

printNormal (station: int32, data: string):
void { raises-exception, use after open, claim, enable }

1.0

printTwoNormal (station: int32, data1: string, data2: string):
void { raises-exception, use after open, claim, enable }

1.0

rotatePrint (station: int32, rotation: int32):
void { raises-exception, use after open, claim, enable }

1.0

setBitmap (bitmapNumber: int32, station: int32, fileName: string, width:
int32, alignment: int32):
void { raises-exception, use after open, claim, enable }

1.0

setLogo (location: int32, data: string):
void { raises-exception, use after open, claim, enable }

1.0

transactionPrint (station: int32, control: int32):
void { raises-exception, use after open, claim, enable }

1.1

validateData (station: int32, data: string):
void { raises-exception, use after open, claim, enable }

1.1

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.0

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.0

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse int32 { read-write }

upos::events::OutputCompleteEvent 1.0

 OutputID: int32 { read-only }
Unified POS, v1.16.1 995

upos::events::StatusUpdateEvent 1.0

 Status: int32 { read-only }

Events (UML interfaces)

Name Type Mutability Version
996 Unified POS, v1.16.1

31.3 General Information

The POS Printer programmatic name is “POSPrinter.”

The POS Printer Service does not attempt to encapsulate the behavior of a generic graphics printer. Rather, for
performance and ease of use considerations, the interfaces are defined to directly control a POS printer. Usually,
an application will print one line to one station per method, for ease of use and accuracy in recovering from
errors.

The printer model defines three stations with the following general uses:

• Journal: Used for simple text to log transaction and activity information. Kept by the store for audit and other
purposes.

• Receipt: Used to print transaction information. Usually given to the customer. Also often used for store
reports. Contains either a knife to cut the paper between transactions, or a tear bar to manually cut the paper.

• Slip: Used to print information on a form. Usually given to the customer.

• Also used to print “validation” information on a form. The form type is typically a check or credit card slip.

Sometimes, limited forms-handling capability is integrated with the receipt or journal station to permit validation
printing. Often this limits the number of print lines, due to the station’s forms-handling throat depth. The Printer
Service nevertheless addresses this printer functionality as a slip station.

31.3.1 Capabilities Updated in Release 1.8

The POS printer has the following capability:

• The default character set can print ASCII characters (0x20 through 0x7F), which includes space, digits,
uppercase, lowercase, and some special characters. (If the printer does not support all of these, then it should
translate them to close approximations – such as lowercase to uppercase.)

The POS printer may have several additional capabilities. See the capabilities properties for specific information.

The following capabilities are not addressed in this version of the specification. A Service may choose to support
them through the directIO mechanism.

• Downloadable character sets.

• Character substitution.

• Pixel-level printing is only supported through bitmaps when the printBitmap or setBitmap method is called
with the width parameter set to PTR_BM_ASIS. Therefore, it is possible for the application to programmatically
prepare and print bitmaps with the required pixels set.
Unified POS, v1.16.1 997

31.3.2 POS Printer Class Diagram

The following diagram shows the relationships between the POS Printer classes.

StatusUpdateEvent
(from events)

<<event>>
ErrorEvent
(from events)

<<event>>
OutputCompleteEvent

(from events)

<<event>>
DirectIOEvent

(from events)

<<event>>

POSPrinterControl

beginInsertion(timeout : int32) : void
beginRemoval(timeout : int32) : void
changePrintSide(side : int32) : void
cutPaper(percentage : int32) : void
endInsertion() : void
endRemoval() : void
markFeed(type : int32) : void
printBarCode(station : int32, data : string, symbology : int32, height : int32, width : int32, alignment : int32, textPosition : int32) : void
printBitmap(station : int32, fileName : string, width : int32, alignment : int32) : void
printImmediate(station : int32, data : string) : void
printNormal(station : int32, data : string) : void
printTwoNormal(stations : int32, data1 : string, data2 : string) : void
rotatePrint(station : int32, rotation : int32) : void
setBitmap(bitmapNumber : int32, station : int32, fileName : string, width : int32, alignment : int32) : void
setLogo(location : int32, data : string) : void
transactionPrint(station : int32, control : int32) : void
validateData(station : int32, data : string) : void

(from upos)

<<Interface>>

fires fires fires fires

POSPrinterConst
(from upos)

<<utility>>

<<uses>>

UposConst
(from upos)

<<utility>>

<<uses>>

UposException
(from upos)

<<exception>>
BaseControl

(from upos)

<<Interface>>
<<uses>> <<sends>>

<<sends>>

Only the methods of the
POSPrinterControl are shown in
order to avoid cluttering the diagram.
998 Unified POS, v1.16.1

31.3.3 POS Printer Class Diagram Updates Updated in Release 1.10

The following diagram shows the relationships between the POS Printer classes that were updated/added in
versions 1.5 and later of the specification.

UposException
(from upos)

<<exception>>
UposConst

(from upos)

<<utility>>
POSPrinterConst

(from upos)

<<utility>>

ErrorEvent
(from events)

<<event>>

DirectIOEvent
(from events)

<<event>>

OutputCompleteEvent
(from events)

<<event>>

StatusUpdateEvent
(from events)

<<event>>

POSPrinterControl

<<capability>> CapConcurrentPageMode : boolean
<<capability>> CapJrnCartridgeSensor : int32
<<capability>> CapJrnColor : int32
<<capability>> CapMapCharacterSet : boolean
<<capability>> CapRecCartridgeSensor : int32
<<capability>> CapRecColor : int32
<<capability>> CapRecMarkFeed : int32
<<capability>> CapRecPageMode : boolean
<<capability>> CapSlpBothSidesPrint : boolean
<<capability>> CapSlpCartridgeSensor : int32
<<capability>> CapSlpColor : int32
<<capability>> CapSlpPageMode : boolean
<<prop>> CartridgeNotify : int32
<<prop>> JrnCartridgeState : int32
<<prop>> JrnCurrentCartridge : int32
<<prop>> MapCharacterSet : boolean
<<prop>> RecBitmapRotationList : string
<<prop>> RecCartridgeState : int32
<<prop>> RecCurrentCartridge : int32
<<prop>> PageModeArea : string
<<prop>> PageModeDescriptor : int32
<<prop>> PageModeHorizontalPosition : int32
<<prop>> PageModePrintArea : string
<<prop>> PageModePrintDirection : int32
<<prop>> PageModeStation : int32
<<prop>> PageModeVerticalPosition : int32
<<prop>> SlpBitmapRotationList : string
<<prop>> SlpCartridgeState : int32
<<prop>> SlpCurrentCartridge : int32
<<prop>> SlpPrintSide : int32

changePrintSide(side : int32) : void
clearPrintArea() : void
markFeed(type : int32) : void
pageModePrint(control : int32) : void
printMemoryBitmap(station : int32, data : binary, type : int32, width : int32, alignment : int32) : void

(from upos)

<<Interface>>

<<uses>> <<sends>>

fires

fires

fires

fires

Only properties and methods
added at or after 1.5 of the
POSPrinterControl are shown
in order to avoid cluttering the
diagram.
Unified POS, v1.16.1 999

31.3.4 Model Updated in Release 1.13

The POS Printer follows the general device behavior model for output devices, with some enhancements:

• The following methods are always performed synchronously: beginInsertion, endInsertion, beginRemoval,
endRemoval, changePrintSide, and checkHealth. These methods will fail if asynchronous output is
outstanding.

• The printImmediate method is also always performed synchronously: This method tries to print its data
immediately (that is, as the very next printer operation). It may be called when asynchronous output is
outstanding. This method is primarily intended for use in exception conditions when asynchronous output is
outstanding.

• The following methods are performed either synchronously or asynchronously, depending on the value of the
AsyncMode property: cutPaper, drawRuledLine, markFeed, printBarCode, printBitmap, printNormal,
printTwoNormal, rotatePrint, and transactionPrint. When AsyncMode is false, then these methods are
performed synchronously.

• When AsyncMode is true, then these methods operate as follows:

• The Service buffers the request in program memory, for delivery to the Physical Device as soon as the
Physical Device can receive and process it, sets the OutputID property to an identifier for this request, and
returns as soon as possible. When the request completes successfully, an OutputCompleteEvent is
enqueued. A property of this event contains the OutputID of the completed request.

• Asynchronous printer methods will not raise an exception due to a printing problem, such as out of paper or
printer fault. These errors will only be reported by an ErrorEvent. An exception is raised only if the printer
is not claimed and enabled, a parameter is invalid, or the request cannot be enqueued. The first two error
cases are due to an application error, while the last is a serious system resource error exception.

• If an error occurs while performing an asynchronous request, an ErrorEvent is enqueued. The ErrorStation
property is set to the station or stations that were printing when the error occurred. The ErrorLevel and
ErrorString properties are also set.

• The event handler may call synchronous print methods (but not asynchronous methods), then can either retry
the outstanding output or clear it.

• All asynchronous output is performed on a first-in first-out basis.

• All buffered output data, including all asynchronous output, may be deleted by calling clearOutput.
OutputCompleteEvents will not be delivered for cleared output. This method also stops any output that may
be in progress (when possible).

• The property FlagWhenIdle may be set to cause a StatusUpdateEvent to be enqueued when all outstanding
outputs have finished, whether successfully or because they were cleared.

• Transaction mode printing is supported. A transaction is a sequence of print operations that are printed to a
station as a unit. Print operations which may be included in a transaction are printNormal, cutPaper,
drawRuledLine, rotatePrint, printBarCode, printBitmap, and markFeed. During a transaction, the print
operations are first validated. If valid, they are added to the transaction but not printed yet. Once the
application has added as many operations as required, then the transaction print method is called.

• If the transaction is printed synchronously and an exception is not raised, then the entire transaction printing
was successful. If the transaction is printed asynchronously, then the asynchronous print rules listed above
are followed. If an error occurs and the Error Event handler causes a retry, the entire transaction is retried.
The printer error reporting model is as follows:

• Printer out-of-paper, cover open, and various cartridge handling conditions are reported by setting the
1000 Unified POS, v1.16.1

exception’s (or ErrorEvent’s) ErrorCode to E_EXTENDED and then setting the associated
ErrorCodeExtended to one of the following error conditions:
EPTR_JRN_EMPTY,
EPTR_REC_EMPTY,
EPTR_SLP_EMPTY,
EPTR_COVER_OPEN,
EPTR_JRN_CARTRIDGE_REMOVED,
EPTR_REC_CARTRIDGE_REMOVED,
EPTR_SLP_CARTRIDGE_REMOVED,
EPTR_JRN_CARTRIDGE_EMPTY,
EPTR_REC_CARTRIDGE_EMPTY,
EPTR_SLP_CARTRIDGE_EMPTY,
EPTR_JRN_HEAD_CLEANING,
EPTR_REC_HEAD_CLEANING, or
EPTR_SLP_HEAD_CLEANING.

• Other printer errors are reported by setting the exception’s (or ErrorEvent’s) ErrorCode to E_FAILURE or
another standard error status. These failures are typically due to a printer fault or jam, or to a more serious
error.

While the printer is enabled, the printer state is monitored, and changes are reported to the application. Most
printer statuses are reported by both firing a StatusUpdateEvent and by updating a printer property. Statuses, as
defined in the later properties and events sections, are:

StatusUpdateEvent Property
PTR_SUE_COVER_OPEN CoverOpen = true
PTR_SUE_COVER_OK CoverOpen = false
PTR_SUE_JRN_EMPTY JrnEmpty = true
PTR_SUE_JRN_NEAREMPTY JrnNearEnd = true
PTR_SUE_JRN_PAPEROK JrnEmpty = JrnNearEnd = false
PTR_SUE_REC_EMPTY RecEmpty = true
PTR_SUE_REC_NEAREMPTY RecNearEnd = true
PTR_SUE_REC_PAPEROK RecEmpty = RecNearEnd = false
PTR_SUE_SLP_EMPTY SlpEmpty = true
PTR_SUE_SLP_NEAREMPTY SlpNearEnd = true
PTR_SUE_SLP_PAPEROK SlpEmpty = SlpNearEnd = false
Unified POS, v1.16.1 1001

Release 1.5 and later

Two properties are used to report cartridge statuses. One (such as RecCurrentCartridge) selects a station’s
cartridge, and a second (such as RecCartridgeState) reports that cartridge’s status. When a cartridge
StatusUpdateEvent is delivered, it indicates the highest priority cartridge condition. The cartridge state for at
least one cartridge should match the StatusUpdateEvent’s corresponding property value, while other cartridges
may have lower priority conditions or be OK.

PTR_SUE_JRN_CARTRIDGE_EMPTY
JrnCartridgeState = PTR_CART_EMPTY or
PTR_CART_REMOVED

PTR_SUE_JRN_HEAD_CLEANING
JrnCartridgeState = PTR_CART_CLEANING

PTR_SUE_JRN_CARTRIDGE_NEAREMPTY
JrnCartridgeState = PTR_CART_NEAREND

PTR_SUE_JRN_CARTRIDGE_OK
JrnCartridgeState = PTR_CART_OK

PTR_SUE_REC_CARTRIDGE_EMPTY
RecCartridgeState = PTR_CART_EMPTY or

 PTR_CART_REMOVED
PTR_SUE_REC_HEAD_CLEANING

RecCartridgeState = PTR_CART_CLEANING
PTR_SUE_REC_CARTRIDGE_NEAREMPTY

RecCartridgeState = PTR_CART_NEAREND
PTR_SUE_REC_CARTRIDGE_OK

RecCartridgeState = PTR_CART_OK
PTR_SUE_SLP_CARTRIDGE_EMPTY

SlpCartridgeState = PTR_CART_EMPTY or
PTR_CART_REMOVED

PTR_SUE_SLP_HEAD_CLEANING
SlpCartridgeState = PTR_CART_CLEANING

PTR_SUE_SLP_CARTRIDGE_NEAREMPTY
SlpCartridgeState = PTR_CART_NEAREND

PTR_SUE_SLP_CARTRIDGE_OK
SlpCartridgeState = PTR_CART_OK

Release 1.8 and later

PTR_SUE_JRN_COVER_OPEN CoverOpen = true
PTR_SUE_JRN_COVER_OK CoverOpen = false if all covers closed;

CoverOpen = true if any other cover is open
PTR_SUE_REC_COVER_OPEN CoverOpen = true
PTR_SUE_REC_COVER_OK CoverOpen = false if all covers closed;

CoverOpen = true if any other cover is open
PTR_SUE_SLP_COVER_OPEN CoverOpen = true
PTR_SUE_SLP_COVER_OK CoverOpen = false if all covers closed;

CoverOpen = true if any other cover is open
1002 Unified POS, v1.16.1

Release 1.8 – Clarification

The printer’s slip station statuses must be reported independently from the slip insertion and removal methods –
beginInsertion / endInsertion and beginRemoval / endRemoval. This is important because some applications
base logic decisions upon printer state changes. That is, the application will only perform slip insertion after
knowing that a slip has been placed at the entrance to the slip station. An example: After the Total key is pressed,
the application enters tendering mode. It begins to monitor peripherals and the keyboard to determine the type of
tender to perform. If a credit or debit card is swiped at an MSR, then its DataEvent causes the application to
begin credit/debit tender. But if a form is placed at the slip station, then its StatusUpdateEvent or SlpEmpty
property change causes the application to begin a check MICR read.

When a form is placed at the entrance to the slip station, the printer must fire a PTR_SUE_SLP_PAPEROK
StatusUpdateEvent and set the SlpEmpty and SlpNearEnd properties to false. The application may then call
the beginInsertion and endInsertion methods with reasonable confidence that they will succeed. Note that it
must not be assumed that the form is ready for printing after the PTR_SUE_SLP_PAPEROK is received. Only
after successful beginInsertion and endInsertion calls is the form ready for printing.

When a form is removed from the slip station, the printer must fire a PTR_SUE_SLP_EMPTY
StatusUpdateEvent and set the SlpEmpty property to true. If the beginInsertion and endInsertion method
sequence has not been called, then removing the form from the slip station entrance will cause this to occur. If
this method sequence has successfully completed, then the event and property change will typically occur after a
beginRemoval and endRemoval method sequence. But they would also occur if the slip prints beyond the end
of the form or if the form is forcibly removed.

Exception: The design of some printers makes it impossible for a service to determine the presence of a form
until the printer “jaws” are opened, which occurs when beginInsertion is called. This exception is largely limited
to cases where the CapSlpFullslip property is false, indicating a “validation” type of slip station. Validation
stations typically use the same printer mechanism as the receipt and/or journal stations. In these cases, the slip
status events must be fired as soon as possible, given the constraints of the device.

Release 1.5 and later – Print cartridge support added

The print cartridge model is as follows:

• The CapJrnCartridgeSensor, CapRecCartridgeSensor, and the CapSlpCartridgeSensor capabilities are
used to determine whether the printer has the ability to detect the operating condition of the cartridge.

• Prior to determining a cartridge’s operating condition, a cartridge is selected by using one of the following
properties: JrnCurrentCartridge, RecCurrentCartridge, or SlpCurrentCartridge.

• The condition of the selected cartridge is set up using one of the JrnCartridgeState, RecCartridgeState or
SlpCartridgeState properties. The values that these properties can take in order of high priority to low priority
are as follows: PTR_CART_UNKNOWN, PTR_CART_REMOVED, PTR_CART_EMPTY,
PTR_CART_CLEANING, PTR_CART_NEAREND, PTR_CART_OK.

• CapJrnColor, CapRecColor, and CapSlpColor capabilities are used to determine the color capabilities of
the station.



Unified POS, v1.16.1 1003

Mono Color

• CapJrnColor, CapRecColor, and CapSlpColor capabilities are set to PTR_COLOR_PRIMARY.

Two Color

• CapJrnColor, CapRecColor, and CapSlpColor capabilities are a logical OR combination of
PTR_COLOR_PRIMARY and PTR_COLOR_CUSTOM1.

• PTR_COLOR_CUSTOM1 refers to the secondary color, usually red.

• Secondary color printing can be done by using the ESC|rC escape sequence.

Custom Color

• CapJrnColor, CapRecColor, and CapSlpColor capabilities are a logical OR combination of
PTR_COLOR_PRIMARY and any of the following bit values:
PTR_COLOR_CUSTOM1, PTR_COLOR_CUSTOM2, PTR_COLOR_CUSTOM3,
PTR_COLOR_CUSTOM4, PTR_COLOR_CUSTOM5, PTR_COLOR_CUSTOM6.

• Selection of a custom color can be done using the ESC|#rC escape sequence.

Full Color

• CapJrnColor, CapRecColor, and CapSlpColor capabilities are a logical OR combination of
PTR_COLOR_FULL and the following values:
PTR_COLOR_CYAN, PTR_COLOR_MAGENTA, PTR_COLOR_YELLOW.

• PTR_COLOR_FULL is not used to indicate that a print cartridge is currently installed in the printer. Rather, it
is used to indicate that the printer has the ability to print in full color mode.

• Full color printing is accomplished by using the ESC|#fC escape sequence.

Full Color with Custom Color(s)

• CapJrnColor, CapRecColor, and CapSlpColor are a logical OR combination of the settings for Custom
Color and Full Color.

Release 1.5 and later – Cartridge State Reporting Requirements for DeviceEnabled

• The print cartridge state reporting model is:

• CartridgeNotify property: The application may set this property to enable cartridge state reporting via
StatusUpdateEvents and JrnCartridgeState, RecCartridgeState, and SlpCartridgeState properties. This
property may only be set before the device is enabled (that is, before DeviceEnabled is set to true). This
restriction allows simpler implementation of cartridge status notification with no adverse effects on the
application. The application is either prepared to receive notifications or doesn’t want them, and has no need
to switch between these cases. This property may be one of:

PTR_CN_DISABLED, or PTR_CN_ENABLED

• The following semantics are added to DeviceEnabled when the CapJrnCartridgeSensor,
CapRecCartridgeSensor, and CapSlpCartridgeSensor capabilities are not zero, and CartridgeNotify is set
to PTR_CN_ENABLED:

• Monitoring the cartridge state begins when DeviceEnabled changes from false to true.

• When DeviceEnabled changes from true to false, the state of the cartridge is no longer valid. Therefore,
1004 Unified POS, v1.16.1

JrnCartridgeState, RecCartridgeState, and SlpCartridgeState properties are set to
PTR_CART_UNKNOWN.

Release 1.8 and later – Synchronous Printing – Updated in Release 1.10

Prior to Release 1.8 the behavior of line printers, such as thermal printers, when in synchronous mode was not
clearly defined. For example, when an application called printNormal (PTR_S_RECEIPT, “UnifiedPOS”), the
synchronous model stated that the method should not return successfully unless the text was printed on the paper.
However, this example would not print on paper unless a line feed or carriage return is included in the printed
data or unless the current print line was full.

Starting with Release 1.8, each call to printNormal, printTwoNormal, or printImmediate when in
synchronous mode must completely print its data (that is, no unprinted partial line of text may remain) or an
exception will be raised. For example, calling these APIs with the C- or Java-formatted strings “UnifiedPOS\n”
(text followed by a line feed) or “\x1B|3B” (escape sequence to print bitmap #3) is correct, while “UnifiedPOS”
(text without a line feed) will result in an exception. It is recommended that the application follow this practice
for all print modes.

Release 1.9 and later – Page Mode Printing

Page Mode printing support is modeled after Transaction Mode printing support, i.e., all activities within Page
Mode are handled and recovered as a single entity. Page Mode support is designed to allow the user to
dynamically compose elaborate page printouts using the printNormal, printBitmap, and printBarcode methods
as well as additional Page Mode methods and properties. Composed pages can be printed, saved, and modified
multiple times as long as Page Mode is active.

31.3.5 Device Sharing

The POS Printer is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing many printer-specific properties.

• The application must claim and enable the device before calling methods that manipulate the device.

• See the “Summary” table for precise usage prerequisites.
Unified POS, v1.16.1 1005

31.3.6 POS Printer State Diagram

The following diagram illustrates the various state transitions within the POS Printer device category.
1006 Unified POS, v1.16.1

31.3.7 Page Mode Printing State Diagram Added in Release 1.9

The following illustrates the various state transitions within the full Page Mode support.

Note that when the slip station is being used in Page Mode, beginInsertion/endInsertion should be
used to control the slip handling process as normal.

Normal
pageModePrint(PTR_PM_NORMAL|PTR_PM_CANCEL) Mode

setPageModeStation(PTR_S_RECEIPT) / pageModePrint(PTR_PM_PAGE_MODE)

Page Mode
pageModePrint(PTR_PM_PRINT_SAVE)

printNormal/printBitmap/printBarcode
Unified POS, v1.16.1 1007

31.3.8 “Both sides printing” sequence Diagram

The following sequence diagram is a representation of the typical usage of the “Both sides printing” feature.

:POSPrinterControl:Client

beginInsertion(1000)

endInsertion()

Example on how to print some string on both
side with a POSPrinter service s upporting both
sides printing.
NOTE: the sequence below assumes no errors

Prints "Some
String Data"
on the Side1
of the Slip of
POSPrinter

changePrintSide(PTR_PS_SIDE2) [CapSlpBothSidesPrint == true]

changePrintSide(PTR_PS_SIDE1) [CapSlpBothSidesPrint == true]

printNormal(PTR_S_SLIP, "Some String Data")

printNormal(PTR_S_SLIP, "Some String Data")

Prints "Some
String Data"
on the Side2
of the Slip of
POSPrinter

beginRemoval(5000)

endRemoval()
1008 Unified POS, v1.16.1

31.3.9 Page Mode printing sequence Diagram Added in Release 1.9

Various sequence diagrams are used to illustrate how the Full Page Mode support API can be used. These
scenarios are designed to show the rationale and key concepts behind the structure of the Page Mode API. There
are two main scenarios for Page Mode support:

• Page Mode invoked on a single station

• Page Mode invoked simultaneously on multiple stations

The following sequence diagram is a representation of Page Mode printing to a single print station.

Application :POSPrinterControl

1: setPageModeStation(PTR_S_RECEIPT)

2: pageModePrint(PTR_PM_PAGE_MODE)

3: getPageModeArea(buffer)

4: "200,200"

5: setPageModePrintArea("1,1,100,100")

6: printNormal(PTR_S_RECEIPT, "1st line\0d\0a")

7: setPageModePrintDirection(PTR_PD_TOP_TO_BOTTOM)

8: printNormal(PTR_S_RECEIPT, "2nd Line printed Right 90\0d\0a")

9: pageModePrint(PTR_PM_NORMAL)
Unified POS, v1.16.1 1009

31.3.10 Data Characters and Escape Sequences Updated in Release 1.13

The default character set of all POS printers is assumed to support at least the ASCII characters 0x20 through
0x7F, which include spaces, digits, uppercase, lowercase, and some special characters. If the printer does not
support lowercase characters, then the Service may translate them to uppercase.

Every escape sequence begins with the escape character ESC, whose value is 27 decimal, followed by a vertical
bar (‘|’). This is followed by zero or more digits and/or lowercase alphabetic characters. The escape sequence is
terminated by an uppercase alphabetic character.

In the escape sequences tables below, the digits forming a non-negative number are denoted by the place holder
“#”. If a part of the escape sequence is optional then this part is enclosed by brackets “[...]”. E.g., the UnifiedPOS
escape sequence for paper cut is “ESC|[#]P” which means that the ‘#’ placeholder is optional. For this pattern the
escape sequence “ESC|75P” - meaning a 75% cut is requested - will be valid as well as “ESC|P” - meaning a full
cut is requested.

If the escape sequence begins with the escape ESC, Vertical bar (’|’), and asterisk (‘*’), then the sequence
contains variable length data after its terminating uppercase alphabetic character. The asterisk must be followed
by a sequence of digits whose value specifies the length of this data. A hypothetical example is: 
ESC |*6azQHELLO! where the 6 characters “HELLO!” complete the sequence.

If the escape sequence begins with escape ESC, Vertical bar (’|’), and exclamation point (‘!’), then the ‘!’ causes
the effect of the remainded of the sequence to be reversed. The documentation indicates when this functionality
is valid, such as:
ESC|[!]bC where the ‘!’, when present, causes bold printing to be disabled.

If a sequence does not begin with ESC “|”, or it begins with ESC “|” but is not a valid UnifiedPOS escape
sequence, the Service will make a reasonable effort to pass it through to the printer. However, not all such
sequences can be distinguished from printable data, so unexpected results may occur.

Starting with Release 1.7, the application can use the ESC|#E escape sequence to ensure more reliable handling
of the amount of data to be passed through to the printer. Use of this escape sequence will make an application
non-portable. The application may, however, maintain portability by performing Embedded Data Escape
sequence calls within conditional code. This code may be based upon the value of the
DeviceServiceDescription, the PhysicalDeviceDescription, or the PhysicalDeviceName property.

NOTE: This command sequence definition and the corresponding definition in the Point Card Reader Writer
Chapter, are the only known deviations from preserving the interchangeability of devices defined in this
specification. If an application finds it necessary to utilize this command sequence, please inform the
UnifiedPOS Committee (retail.omg.org) with the details of its usage, so that a possible standard/generic
Application Interface may be incorporated into a future release of the UnifiedPOS Standard. In order to preserve
peripheral independence and interoperability at the Application level, it is the Committee’s position that this
command sequence should be used only as a “last resort.”

To determine if escape sequences or data can be performed on a printer station, the application can call the
validateData method. (For some escape sequences, corresponding capability properties can also be used.) To
avoid unpredictable printing results due to escape sequence parameter scope violations or unsupported parameter
values it is recommended to verify escape sequences by calling the validateData method. The following escape
sequences are recognized. If an escape sequence specifies an operation that is not supported by the printer
station, then it is ignored.
1010 Unified POS, v1.16.1

http://retail.omg.org

Commands Perform indicated action. Updated in Release 1.13

Name Data Remarks

Paper cut ESC |[#]P

Cuts receipt paper. The placeholder ‘#’ is replaced by an
ASCII decimal string telling the percentage cut desired.
If ‘#’ is omitted, then a full cut is performed. For
example: The C string “\x1B|75P” requests a 75%
partial cut.

If the printer does not support the requested cut value
then the service implementation will choose the most
suitable cutting behavior depending on the underlying
hardware.

Feed and Paper cut ESC |[#]fP
Cuts receipt paper, after feeding the paper by the
RecLinesToPaperCut lines. The placeholder ‘#’ is
defined by the “Paper cut” escape sequence.

Feed, Paper cut,

and Stamp
ESC |[#]sP

Cuts and stamps receipt paper, after feeding the paper
by the RecLinesToPaperCut lines. The placeholder
‘#’ is defined by the “Paper cut” escape sequence.

Fire stamp ESC |sL
Fires the stamp solenoid, which usually contains a
graphical store emblem.

Print bitmap ESC |#B

Prints the pre-stored bitmap. The placeholder ‘#’ is
replaced by the bitmap number. See setBitmap method.

If the given bitmap number has not been set
successfully by the setBitmap method then the printing
results may be unpredictable.

Print top logo ESC |tL Prints the pre-stored top logo.

Print bottom logo ESC |bL Prints the pre-stored bottom logo.

Feed lines ESC |[#]lF
Feed the paper forward by lines. The placeholder ‘#’ is
replaced by an ASCII decimal string telling the number
of lines to be fed. If ‘#’ is omitted, then one line is fed.

Feed units ESC |[#]uF

Feed the paper forward by mapping mode units. The
placeholder ‘#’ is replaced by an ASCII decimal string
telling the number of units to be fed. If ‘#’ is omitted,
then one unit is fed.

Feed reverse ESC |[#]rF
Feed the paper backward. The placeholder ‘#’ is
replaced by an ASCII decimal string telling the number
of lines to be fed. If ‘#’ is omitted, then one line is fed.

Pass through
embedded data
 (See a below.)

a. This escape sequence is only available in Version 1.7 and later. The ‘*’ may be used in
Version 1.13 and later.

ESC |[*]#E

Send the following # characters of data through to the
hardware without modifying it. The placeholder '#' is
replaced by an ASCII decimal string telling the number
of bytes following the escape sequence that should be
passed through as-is to the hardware.

Print in-line
barcode

(See b below.)
ESC |[*]#R

Prints the defined barcode in-line. The placeholder ‘#’
is the number of characters following the R to use in the
definition of the characteristics of the barcode to be
printed. See details below.
Unified POS, v1.16.1 1011

In-Line BarCode Printing Updated in Release 1.13

Starting with Release 1.10, the application can use the ESC|[*]#R escape sequence to print barcodes in-line with
other print commands. The character ‘#’ is the number of characters following the R to use in the definition of
the characteristics of the barcode to be printed.

In the data following the R, other lower case letters and numbers are used to identify different values. The same
value definitions as defined for the printBarCode method headers and definitions are used for the various
barcode values. Converting to string the values from the definitions are consistent.

The attribute symbols are defined as follows:
s symbology
h height
w width
a alignment
t human readable text position
d start of data
e end of sequence

The attributes must appear in the order specified in the above list. All attributes are mandatory. If one of these
two conditions is violated or the parameters contain unsupported values, then the printing results may be
unpredictable.

Using a basic UPCA, center aligned, with bottom text, 200 dots height and ~400 dots wide, the command is as
follows:
ESC|33Rs101h200w400a-2t-13d123456789012e

or optionally for Version 1.13 or later:

ESC|*33Rs101h200w400a-2t-13d123456789012e

Ruled Line Drawing Printing Added in Release 1.13

Starting with Release 1.13, the application can use the ESC|*#dL escape sequence to print Ruled Line Drawings
in line with other print commands. The character ‘#’ is the number of characters following the dL to use in the
definition of the characteristics of the ruled line to be drawn.

b. This escape sequence is only available in Version 1.10 and later; updated in Version 1.13. 
The ‘*’ may be used in Version 1.13 and later.

Name Data Remarks

Print in-line ruled
line

(See a below.)

a. This escape sequence is only available in Version 1.13 and later.

ESC |*#dL

Draws a continuous ruled line in-line. The placeholder
‘#’ is the number of character positions following the
dL to be used to determine the characteristics of the
ruled line to be drawn. See further details below.
1012 Unified POS, v1.16.1

In the data following the dL, other lower case letters and numbers are used to identify the different values. The
same value definitions as defined for the drawRuledLine method headers and definitions are used for the
various ruled line values. Converting to string the values from the definitions are consistent.

The attribute symbols are defined as follows:
p position
d line direction
w line width
s line style
c line color

The attributes must appear in the order specified in the above list. All attributes are mandatory. If one of these
two conditions is violated or the parameters contain unsupported values, then the printing results may be
unpredictable.

Drawing a ruled line, 300 dots of length, with a starting position of 0 dot position, horizontal in direction, 1 dot
in width, using double solid line as the style, and using red color (Custom1), the command is as follows:
ESC|*14dLp0,300d1w1s2c1

Print Mode Characteristics that are remembered until explicitly changed.

Print Line Characteristics that are reset at the end of each print method, by an explicit reset (where
applicable), or by a “Normal” sequence. Updated in Release 1.12

Name Data Remarks

Font typeface selection ESC |#fT

Selects a new typeface for the following
data. Values for the placeholder ‘#’ are:

0 = Default typeface.
1 = Select first typeface from the
FontTypefaceList property.
2 = Select second typeface from the
FontTypefaceList property.
And so on.

If the given font typeface number exceeds
the number of font typefaces defined in the
FontTypefaceList property then the
printing results may be unpredictable.

Name Data Remarks

Bold ESC |[!]bC Prints in bold or double-strike. If ‘!’ is specified then
bold is disabled, see a below.

Underline ESC |[!][#]uC

Prints with underline. The placeholder ‘#’ is replaced
by an ASCII decimal string telling the thickness of
the underline in printer dot units. If ‘#’ is omitted,
then a printer-specific default thickness is used. If ‘!’
is specified then underline mode is switched off, see
c below.

Italic ESC |[!]iC Prints in italics. If ‘!’ is specified then italic is
disabled, see a below.
Unified POS, v1.16.1 1013

Alternate color (Custom) ESC |[#]rC

Prints using an alternate custom color. The
placeholder ‘#’ is replaced by an ASCII decimal
string indicating the desired color. The value of the
decimal string is equal to the value of the cartridge
constant used in the printer device properties. If ‘#’ is
omitted, then the secondary color (Custom Color 1) is
selected. Custom Color 1 is usually red.
If the given color value specifies an unsupported
cartridge number then the printing results may be
unpredictable.

Reverse video ESC |[!]rvC Prints in a reverse video format. If ‘!’ is specified
then reverse video is disabled, see a below.

Shading ESC |[#]sC

Prints in a shaded manner. The placeholder ‘#’ is
replaced by an ASCII decimal string telling the
percentage shading desired. If ‘#’ is omitted, then a
printer-specific default level of shading is used.

Single high and wide ESC |1C Prints normal size.

Double wide ESC |2C Prints double-wide characters.

Double high ESC |3C Prints double-high characters.

Double high and wide ESC |4C Prints double-high/double-wide characters.

Scale horizontally ESC |#hC

Prints with the width scaled ‘#’ times the normal size,
where ‘#’ is replaced by an ASCII decimal string.
If the scaled printout would exceed the printable area
then the printing results may be unpredictable.

Scale vertically ESC |#vC

Prints with the height scaled ‘#’ times the normal
size, where ‘#’ is replaced by an ASCII decimal
string.
If the scaled printout would exceed the printable area
then the printing results may be unpredictable.

RGB Color

 (See b below)
ESC |[#]fC

Prints in # color. The placeholder ‘#’ is replaced by
an ASCII decimal string indicating the additive
amount of RGB to produce the desired color. There
are 3 digits each of Red, Green, and Blue elements.
Valid values range from “000” to “255”. (E.g.,
“255255000” represents yellow). Color Matching to
the subtractive percentage of CMY (Cyan, Magenta
and Yellow color components) to produce the desired
color matching specified by RGB is up to the Service.
If ‘#’ is omitted, then the primary color is used.
Bitmap printing is not affected.
If the specified RGB color element values exceed the
allowed RGB range then the printing results may be
unpredictable.

SubScript (See b below) ESC |[!]tbC Prints SubScript characters. If ‘!’ is specified then
SubScript is disabled, see a below.

SuperScript (See b below) ESC |[!]tpC Prints SuperScript characters. If ‘!’ is specified then
SuperScript is disabled, see a below.

Center ESC |cA Aligns following text in the center.

Right justify ESC |rA Aligns following text at the right.

Left justify (see a below) ESC |lA Aligns following text at the left.
1014 Unified POS, v1.16.1

Strike-through

 (see c below)
ESC |[!][#]stC

Prints in strike-through mode. The placeholder ‘#’ is
replaced by an ASCII decimal string telling the
thickness of the strike-through in printer dot units. If
‘#’ is omitted, then a printer-specific default
thickness is used. If ‘!’ is specified then strike-
through mode is switched off.

If the given thickness exceeds the maximum
thickness supported by the printer then the printing
results may be unpredictable.

Normal ESC |N Restores printer characteristics to normal condition.

a. These escape sequences and variations are only available in Version 1.10 and later.

b. These escape sequences are only available in Version 1.5 and later.

c. These escape sequences and variations are only available in Version 1.12 and later.
Unified POS, v1.16.1 1015

31.3.11 POS Printer State Diagrams (Low Level)

Purpose:

The Low level state diagrams show a simplified, implementable flow of the POSPrinter.

They are intended to be used by Service implementers as an example of how a Service may be designed. It uses
multiple threads of execution to separate initiation of requests (via the POSPrinter APIs) with their processing
and event delivery.

They are also intended to be used by application developers to show more details on processing of their API calls
than can be given in the high level state diagram.

These diagrams assume:

• A separate request thread that processes print request.
Print requests are placed on a request queue (RequestQ) for the request thread to
access. The request thread has some mechanism to report request completion and results.

• A separate event thread that delivers events.
Events are placed on an event queue (EventQ) for the event thread to access. The event thread has some
mechanism to report error event results.

Print Commands: changePrintSide, cutPaper, markFeed, printBarCode, printBitmap, printNormal,
printTwoNormal, rotatePrint.

Not Shown: Validation of APIs. If an API fails during validation, then it may return an error result and return
prematurely to the “Wait for API” state.
1016 Unified POS, v1.16.1

POS Printer State Diagram (Low Level): API

[Opened &&
Claimed &&
Enabled]

[Closed ||
Released ||
Disabled]

Wait For API

/ transactionPrint (end)

/ transactionPrint (begin)

/ printImmediate
[request
complete]

Print Immediate
do { Add print request to beginning

of RequestQ }

Request Complete
do { Raise exception

if error }

Begin Transaction
do { Init transaction buffer;

Set Transaction-Mode (TM) flag }

End Transaction
do { Make print request from

transaction buffer; Reset TM flag }

Print
do { Add print request to

end of RequestQ }

Print Transaction
do { Add print request to

transaction buffer }

Clear Output
do { Add clear request to end of RequestQ; cancel TM }

Begin Insertion
do { Wait for up to app specified

timeout for form in }

Begin Removal
do { Wait for up to app specified

timeout for form out }

Other
do { Process command }

End Removal
do { If form not out, then error }

Removal
Mode

[No form out before timeout ||
other failure]

/ beginRemoval

/ endRemoval

[Form out] / endRemoval

End Insertion
do { If form in, then close �jaws�; else error}

Insertion
Mode

[No form in before timeout ||
other failure]

/ beginInsertion

[Form in] / endInsertion

/ endInsertion

/ Other Command

/ beginRemoval

/ beginInsertion

/ clearOutput

[TM]
/ Print Command

[no TM] / Print Command

Async Request Started
do { Assign & Set OutputID }

[AsyncMode == true]

[(AsyncMode == false)
&& request complete]

[request complete]
Unified POS, v1.16.1 1017

POS Printer State Diagram (Low Level):
Request Thread

[Started
by main
Service
Thread]

[Stopped before
Service terminates]

Wait For Work

Clear
do { Stop printer; clear

RequestQ & InProgressQ;
mark as complete }

Error
do { Stop printer;

enqueue ErrorEvent } [response
== retry]

Done
do { Set print request

result; mark as complete;
remove from InProgressQ }

Print Request
do { Send to printer; move

from PrintQ to
InProgressQ }

[(AsyncMode == false)
&& (done || error)]

[AsyncMode == true]

[AsyncMode == false]

[AsyncMode == true]

StatusUpdateEvent
do { Enqueue

StatusUpdateEvent }

Idle SUE
do { Enqueue Idle

StatusUpdateEvent; set
FlagWhenIdle = false }

Retry
do { Resend requests in

the InProgressQ }

OutputCompleteEvent
do { Enqueue

OutputCompleteEvent }

[RequestQ Empty && FlagWhenIdle == true]

[status change]

/ RequestQ: Print

[async request done]

[async request error]

/ RequestQ: Clear

[response == clear]
1018 Unified POS, v1.16.1

POS Printer State Diagram (Low Level):
Event Delivery Thread

[Started
by main
Service
Thread]

[Stopped before
Service terminates]

Idle

Events to Deliver

Fire DataEvent
do { Set DataEventEnabled =

false; Fire event }

Fire ErrorEvent
do { Fire event; Return response

to Request Thread }

Events
= true]

[Input ErrorEvent &&
DataEventEnabled == true]

[Output ErrorEvent]

[OutputCompleteEvent ||
StatusUpdateEvent ||
DirectIOEvent]

Events to Deliver and
Events Not Frozen

[DataEvent &&
DataEventEnabled == true]

Fire Other Event
do { Fire event }

[EventQ Not
Empty]

[EventQ
Empty]

[FreezeEvents
== false]

[Freeze
=

Unified POS, v1.16.1 1019

POS Printer Slip Handling State Diagram

Non-Slip Printing (Receipt and/or Journal)

/ beginInsertion

[(no form in before timeout (E_TIMEOUT)) ||
(Other failure (E_ILLEGAL, E_BUSY, E_FAILURE, etc.))]

beginInsertion (timeout)

endInsertion

[Form in before
timeout
(SUCCESS)]
/ endInsertion

Insertion
Mode

/ beginInsertion

/ endInsertion

[Failure (EPTR_SLP_EMPTY, E_FAILURE, etc.)][Form in
(SUCCESS)]

Slip Inserted: Perform Slip Printing (printNormal, etc�)

/ beginRemoval

beginRemoval (timeout)

endRemoval

Removal
Mode

[(Form not out before timeout (E_TIMEOUT)) ||
(Other failure (E_ILLEGAL, E_BUSY, E_FAILURE, etc.))]

[Form out before
timeout
(SUCCESS)]
/ endRemoval

/ beginRemoval

/ endRemoval

[Failure (EPTR_SLP_FORM, E_FAILURE, etc.)][Form out
(SUCCESS)]
1020 Unified POS, v1.16.1

31.4 Properties (UML attributes)

31.4.1 AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, then the print methods cutPaper, markFeed, printBarCode, printBitmap, printNormal,
printTwoNormal, rotatePrint, and transactionPrint will be performed asynchronously.
If false, they will be printed synchronously.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.2 CapCharacterSet Property Updated in Release 1.5

Syntax CapCharacterSet: int32 { read-only, access after open }

Remarks Holds the default character set capability. It has one of the following values:

Value Meaning 
PTR_CCS_ALPHA The default character set supports uppercase alphabetic plus numeric,

space, minus, and period.
PTR_CCS_ASCII The default character set supports all ASCII characters 0x20 through

0x7F.
PTR_CCS_KANA The default character set supports partial code page 932, including ASCII

characters 0x20 through 0x7F and the Japanese Kana characters 0xA1
through 0xDF, but excluding the Japanese Kanji characters.

PTR_CCS_KANJI The default character set supports code page 932, including the Shift-JIS
Kanji characters, Levels 1 and 2.

PTR_CCS_UNICODE The default character set supports Unicode.

The default character set may contain a superset of these ranges. The initial CharacterSet property
may be examined for additional information.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CharacterSet Property.
Unified POS, v1.16.1 1021

31.4.3 CapConcurrentJrnRec Property

Syntax CapConcurrentJrnRec: boolean { read-only, access after open }

Remarks If true, then the Journal and Receipt stations can print at the same time.
The printTwoNormal method may be used with the PTR_TWO_RECEIPT_JOURNAL and
PTR_S_JOURNAL_RECEIPT station parameter. If false, the application should print to only one of the
stations at a time, and minimize transitions between the stations. Non-concurrent printing may be
required for reasons such as:

• Higher likelihood of error, such as greater chance of paper jams when moving between the stations.
• Higher performance when each station is printed separately.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.4 CapConcurrentJrnSlp Property

Syntax CapConcurrentJrnSlp: boolean { read-only, access after open }

Remarks If true, then the Journal and Slip stations can print at the same time. The printTwoNormal method may
be used with the PTR_TWO_RECEIPT_JOURNAL and PTR_S_JOURNAL_SLIP station parameter. If
false, the application must use the sequence beginInsertion/endInsertion followed by print requests to
the Slip followed by beginRemoval/endRemoval before printing on the Journal. Non-concurrent
printing may be required for reasons such as:

• Physical constraints, such as the Slip form being placed in front of the Journal station.
• Higher likelihood of error, such as greater chance of paper jams when moving between the stations.
• Higher performance when each station is printed separately.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.5 CapConcurrentPageMode Property Added in Release 1.9

Syntax CapConcurrentPageMode: boolean { read-only, access after open }

Remarks If true, then the printer is capable of supporting Page Mode concurrently for both the receipt and slip
stations. If Page Mode is not supported on either station, only on one station, or only on one station at a
time, then this value should be false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
1022 Unified POS, v1.16.1

31.4.6 CapConcurrentRecSlp Property

Syntax CapConcurrentRecSlp: boolean { read-only, access after open }

Remarks If true, then the Receipt and Slip stations can print at the same time. The printTwoNormal method may
be used with the PTR_TWO_RECEIPT_JOURNAL and PTR_S_RECEIPT_SLIP station parameter. If
false, the application must use the sequence beginInsertion/endInsertion followed by print requests to
the Slip followed by beginRemoval/endRemoval before printing on the Receipt. Non-concurrent
printing may be required for reasons such as:

• Physical constraints, such as the Slip form being placed in front of the Receipt station.
• Higher likelihood of error, such as greater chance of paper jams when moving between the stations.
• Higher performance when each station is printed separately.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.7 CapCoverSensor Property

Syntax CapCoverSensor: boolean { read-only, access after open }

Remarks If true, then the printer has a “cover open” sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.8 CapJrn2Color Property

Syntax CapJrn2Color: boolean { read-only, access after open }

Remarks If true, then the journal can print dark plus an alternate color.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 1023

31.4.9 CapJrnBold Property

Syntax CapJrnBold: boolean { read-only, access after open }

Remarks If true, then the journal can print bold characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.10 CapJrnCartridgeSensor Property Added in Release 1.5

Syntax CapJrnCartridgeSensor: int32 { read-only, access after open}

Remarks This bit mapped parameter is used to indicate the presence of Journal Cartridge monitoring sensors.
If CapJrnPresent is false, this property is “0”. Otherwise it is a logical OR combination of any of the
following values:
Value Meaning
PTR_CART_REMOVED There is a function to indicate that the Cartridge has been removed.
PTR_CART_EMPTY There is a function to indicate that the Cartridge is empty.
PTR_CART_CLEANING There is a function to indicate that the head is being cleaned.
PTR_CART_NEAREND There is a function to indicate that the color Cartridge is near end.
Note that the above mentioned values are arranged according to their priority level.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also JrnCartridgeState Property, JrnCurrentCartridge Property, CartridgeNotify Property.
1024 Unified POS, v1.16.1

31.4.11 CapJrnColor Property Added in Release 1.5

Syntax CapJrnColor: int32 { read-only, access after open}

Remarks This capability indicates the availability of Journal color cartridges.

If CapJrnPresent is false, this property is “0.” Otherwise, this property indicates the supported color
cartridges.

CapJrnColor is a logical OR combination of any of the following values:

Value Meaning 
PTR_COLOR_PRIMARY Supports Primary Color (Usually Black)
PTR_COLOR_CUSTOM1 Supports 1st Custom Color (Secondary Color, usually Red)
PTR_COLOR_CUSTOM2 Supports 2nd Custom Color
PTR_COLOR_CUSTOM3 Supports 3rd Custom Color
PTR_COLOR_CUSTOM4 Supports 4th Custom Color
PTR_COLOR_CUSTOM5 Supports 5th Custom Color
PTR_COLOR_CUSTOM6 Supports 6th Custom Color
PTR_COLOR_CYAN Supports Cyan Color for full color printing
PTR_COLOR_MAGENTA Supports Magenta Color for full color printing
PTR_COLOR_YELLOW Supports Yellow Color for full color printing
PTR_COLOR_FULL Supports Full Color
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.12 CapJrnDhigh Property

Syntax CapJrnDhigh: boolean { read-only, access after open }

Remarks If true, then the journal can print double high characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.13 CapJrnDwide Property

Syntax CapJrnDwide: boolean { read-only, access after open }

Remarks If true, then the journal can print double wide characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 1025

31.4.14 CapJrnDwideDhigh Property

Syntax CapJrnDwideDhigh: boolean { read-only, access after open }

Remarks If true, then the journal can print double high / double wide characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.15 CapJrnEmptySensor Property

Syntax CapJrnEmptySensor: boolean { read-only, access after open }

Remarks If true, then the journal has an out-of-paper sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.16 CapJrnItalic Property

Syntax CapJrnItalic: boolean { read-only, access after open }

Remarks If true, then the journal can print italic characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.17 CapJrnNearEndSensor Property

Syntax CapJrnNearEndSensor: boolean { read-only, access after open }

Remarks If true, then the journal has a low paper sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
1026 Unified POS, v1.16.1

31.4.18 CapJrnPresent Property

Syntax CapJrnPresent: boolean { read-only, access after open }

Remarks If true, then the journal print station is present.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.19 CapJrnUnderline Property

Syntax CapJrnUnderline: boolean { read-only, access after open }

Remarks If true, then the journal can underline characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.20 CapMapCharacterSet Property Added in Release 1.7

Syntax CapMapCharacterSet: boolean { read-only, access after open}

Remarks Defines the ability of the Service to map the characters of the application to the selected character set
when printing data.
If CapMapCharacterSet is true, then the Service is able to map the characters to the character sets
defined in CharacterSetList.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CharacterSet Property, MapCharacterSet Property, CharacterSetList Property.

31.4.21 CapRec2Color Property

Syntax CapRec2Color: boolean { read-only, access after open }

Remarks If true, then the receipt can print dark plus an alternate color.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 1027

31.4.22 CapRecBarCode Property

Syntax CapRecBarCode: boolean { read-only, access after open }

Remarks If true, then the receipt has bar code printing capability.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.23 CapRecBitmap Property

Syntax CapRecBitmap: boolean { read-only, access after open }

Remarks If true, then the receipt can print bitmaps.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.24 CapRecBold Property

Syntax CapRecBold: boolean { read-only, access after open }

Remarks If true, then the receipt can print bold characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.25 CapRecCartridgeSensor Property Added in Release 1.5

Syntax CapRecCartridgeSensor: int32 { read-only, access after open}

Remarks This bit mapped parameter is used to indicate the presence of Receipt Cartridge monitoring sensors.
If CapRecPresent is false, this property is “0.” Otherwise it is a logical OR combination of any of the
following values:
Value Meaning
PTR_CART_REMOVED There is a function to indicate that the Cartridge has been removed.
PTR_CART_EMPTY There is a function to indicate that the Cartridge is empty.
PTR_CART_CLEANING There is a function to indicate that the head is being cleaned.
PTR_CART_NEAREND There is a function to indicate that the color Cartridge is near end.
Note that the above mentioned values are arranged according to their priority level.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also RecCartridgeState Property, RecCurrentCartridge Property,
CartridgeNotify Property.
1028 Unified POS, v1.16.1

31.4.26 CapRecColor Property Added in Release 1.5

Syntax CapRecColor: int32 { read-only, access after open }

Remarks This capability indicates the availability of Receipt color cartridges.

If CapRecPresent is false, this property is “0.” Otherwise, this property indicates the supported color
cartridges.

CapRecColor is a logical OR combination of any of the following values:

Value Meaning 
PTR_COLOR_PRIMARY Supports Primary Color (Usually Black)
PTR_COLOR_CUSTOM1 Supports 1st Custom Color (Secondary Color, usually Red)
PTR_COLOR_CUSTOM2 Supports 2nd Custom Color
PTR_COLOR_CUSTOM3 Supports 3rd Custom Color
PTR_COLOR_CUSTOM4 Supports 4th Custom Color
PTR_COLOR_CUSTOM5 Supports 5th Custom Color
PTR_COLOR_CUSTOM6 Supports 6th Custom Color
PTR_COLOR_CYAN Supports Cyan Color for full color printing
PTR_COLOR_MAGENTA Supports Magenta Color for full color printing
PTR_COLOR_YELLOW Supports Yellow Color for full color printing
PTR_COLOR_FULL Supports Full Color

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.27 CapRecDhigh Property

Syntax CapRecDhigh: boolean { read-only, access after open }

Remarks If true, then the receipt can print double high characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.28 CapRecDwide Property

Syntax CapRecDwide: boolean { read-only, access after open }

Remarks If true, then the receipt can print double wide characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 1029

31.4.29 CapRecDwideDhigh Property

Syntax CapRecDwideDhigh: boolean { read-only, access after open }

Remarks If true, then the receipt can print double high /double wide characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.30 CapRecEmptySensor Property

Syntax CapRecEmptySensor: boolean { read-only, access after open }

Remarks If true, then the receipt has an out-of-paper sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.31 CapRecItalic Property

Syntax CapRecItalic: boolean { read-only, access after open }

Remarks If true, then the receipt can print italic characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.32 CapRecLeft90 Property

Syntax CapRecLeft90: boolean { read-only, access after open }

Remarks If true, then the receipt can print in a rotated 90° left mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
1030 Unified POS, v1.16.1

31.4.33 CapRecMarkFeed Property Added in Release 1.5

Syntax CapRecMarkFeed: int32 { read-only, access after open }

Remarks This parameter indicates the type of mark sensed paper handling available.

CapRecMarkFeed is a logical OR combination of the following values. (The values are identical to
those used with the markFeed method.)

Value Meaning 
PTR_MF_TO_TAKEUP Feed the Mark Sensed paper to the paper take-up position.
PTR_MF_TO_CUTTER Feed the Mark Sensed paper to the autocutter cutting position.
PTR_MF_TO_CURRENT_TOF Feed the Mark Sensed paper to the present paper’s top of form.

(Reverse feed if required)
PTR_MF_TO_NEXT_TOF Feed the Mark Sensed paper to the paper’s next top of form.

If CapRecMarkFeed equals “0,” mark sensed paper handling is not supported.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also markFeed Method.

31.4.34 CapRecNearEndSensor Property

Syntax CapRecNearEndSensor: boolean { read-only, access after open }

Remarks If true, then the receipt has a low paper sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.35 CapRecPageMode Property Added in Release 1.9

Syntax CapRecPageMode: boolean { read-only, access after open }

Remarks If true, then the printer is capable of supporting Page Mode for the receipt station.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 1031

31.4.36 CapRecPapercut Property

Syntax CapRecPapercut: boolean { read-only, access after open }

Remarks If true, then the receipt can perform paper cuts.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.37 CapRecPresent Property

Syntax CapRecPresent: boolean { read-only, access after open }

Remarks If true, then the receipt print station is present.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.38 CapRecRight90 Property

Syntax CapRecRight90: boolean { read-only, access after open }

Remarks If true, then the receipt can print in a rotated 90° right mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.39 CapRecRotate180 Property

Syntax CapRecRotate180: boolean { read-only, access after open }

Remarks If true, then the receipt can print in a rotated upside down mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
1032 Unified POS, v1.16.1

31.4.40 CapRecRuledLine Property Added in Release 1.13

Syntax CapRecRuledLine: int32 { read-only, access after open}

Remarks This capability property indicates the printer has the ability to support the use of ruled lines in the receipt.
If CapRecPresent is false, this property is “0.”

If CapRecRuledLine equals “0,” the printer does not support drawing ruled lines.

CapRecRuledLine is a logical OR combination of any of the following values:

Value Meaning
PTR_RL_HORIZONTAL The horizontal ruled line is supported.
PTR_RL_VERTICAL The vertical ruled line is supported.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapRecPresent Property, drawRuledLine Method.

31.4.41 CapRecStamp Property

Syntax CapRecStamp: boolean { read-only, access after open }

Remarks If true, then the receipt has a stamp capability.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.42 CapRecUnderline Property

Syntax CapRecUnderline: boolean { read-only, access after open }

Remarks If true, then the receipt can underline characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 1033

31.4.43 CapSlp2Color Property

Syntax CapSlp2Color: boolean { read-only, access after open }

Remarks If true, then the slip can print dark plus an alternate color.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.44 CapSlpBarCode Property

Syntax CapSlpBarCode: boolean { read-only, access after open }

Remarks If true, then the slip has bar code printing capability.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.45 CapSlpBitmap Property

Syntax CapSlpBitmap: boolean { read-only, access after open }

Remarks If true, then the slip can print bitmaps.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.46 CapSlpBold Property

Syntax CapSlpBold: boolean { read-only, access after open }

Remarks If true, then the slip can print bold characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
1034 Unified POS, v1.16.1

31.4.47 CapSlpBothSidesPrint Property Added in Release 1.5

Syntax CapSlpBothSidesPrint: boolean { read-only, access after open }

Remarks If true, then the slip station can automatically print on both sides of a check, either by flipping the check
or through the use of dual print heads.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.48 CapSlpCartridgeSensor Property Added in Release 1.5

Syntax CapSlpCartridgeSensor: int32 { read-only, access after open }

Remarks This bit mapped parameter is used to indicate the presence of Slip Cartridge monitoring sensors.

If CapSlpPresent is false, this property is “0.” Otherwise it is a logical OR combination of any of the
following values:

Value Meaning 
PTR_CART_REMOVED There is a function to indicate the Cartridge has been removed.
PTR_CART_EMPTY There is a function to indicate the Cartridge is empty.
PTR_CART_CLEANING There is a function to indicate head is being cleaned.
PTR_CART_NEAREND There is a function to indicate the color Cartridge is near end.

Note that the above mentioned values are arranged according to their priority level.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also SlpCartridgeState Property, SlpCurrentCartridge Property,
CartridgeNotify Property.
Unified POS, v1.16.1 1035

31.4.49 CapSlpColor Property Added in Release 1.5

Syntax CapSlpColor: int32 { read-only, access after open }

Remarks This capability indicates the availability of Slip printing color cartridges.

If CapSlpPresent is false, this property is “0.” Otherwise, this property indicates the supported color
cartridges.

CapSlpColor is a logical OR combination of any of the following values:

Value Meaning 
PTR_COLOR_PRIMARY Supports Primary Color (Usually Black)
PTR_COLOR_CUSTOM1 Supports 1st Custom Color (Secondary Color, usually Red)
PTR_COLOR_CUSTOM2 Supports 2nd Custom Color
PTR_COLOR_CUSTOM3 Supports 3rd Custom Color
PTR_COLOR_CUSTOM4 Supports 4th Custom Color
PTR_COLOR_CUSTOM5 Supports 5th Custom Color
PTR_COLOR_CUSTOM6 Supports 6th Custom Color
PTR_COLOR_CYAN Supports Cyan Color for full color printing
PTR_COLOR_MAGENTA Supports Magenta Color for full color printing
PTR_COLOR_YELLOW Supports Yellow Color for full color printing
PTR_COLOR_FULL Supports Full Color

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.50 CapSlpDhigh Property

Syntax CapSlpDhigh: boolean { read-only, access after open }

Remarks If true, then the slip can print double high characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.51 CapSlpDwide Property

Syntax CapSlpDwide: boolean { read-only, access after open }

Remarks If true, then the slip can print double wide characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
1036 Unified POS, v1.16.1

31.4.52 CapSlpDwideDhigh Property

Syntax CapSlpDwideDhigh: boolean { read-only, access after open }

Remarks If true, then the slip can print double high / double wide characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.53 CapSlpEmptySensor Property

Syntax CapSlpEmptySensor: boolean { read-only, access after open }

Remarks If true, then the slip has a “slip in” sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.54 CapSlpFullslip Property

Syntax CapSlpFullslip: boolean { read-only, access after open }

Remarks If true, then the slip is a full slip station. It can print full-length forms. If false, then the slip is a
“validation” type station. This usually limits the number of print lines, and disables access to the receipt
and/or journal stations while the validation slip is being used.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.55 CapSlpItalic Property

Syntax CapSlpItalic: boolean { read-only, access after open }

Remarks If true, then the slip can print italic characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 1037

31.4.56 CapSlpLeft90 Property

Syntax CapSlpLeft90: boolean { read-only, access after open }

Remarks If true, then the slip can print in a rotated 90° left mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.57 CapSlpNearEndSensor Property

Syntax CapSlpNearEndSensor: boolean { read-only, access after open }

Remarks If true, then the slip has a “slip near end” sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.58 CapSlpPageMode Property Added in Release 1.9

Syntax CapSlpPageMode: boolean { read-only, access after open }

Remarks If true, then the printer is capable of supporting Page Mode for the slip station.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.59 CapSlpPresent Property

Syntax CapSlpPresent: boolean { read-only, access after open }

Remarks If true, then the slip print station is present.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
1038 Unified POS, v1.16.1

31.4.60 CapSlpRight90 Property

Syntax CapSlpRight90: boolean { read-only, access after open }

Remarks If true, then the slip can print in a rotated 90° right mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.61 CapSlpRotate180 Property

Syntax CapSlpRotate180: boolean { read-only, access after open }

Remarks If true, then the slip can print in a rotated upside down mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.62 CapSlpRuledLine Property Added in Release 1.13

Syntax CapSlpRuledLine: int32 { read-only, access after open}

Remarks This capability property indicates the printer has the ability to support the use of ruled lines in the slip.
If CapSlpPresent is false, this property is “0.”

If CapSlpRuledLine equals “0,” the printer does not support drawing ruled lines.

CapSlpRuledLine is a logical OR combination of any of the following values:

Value Meaning
PTR_RL_HORIZONTAL The horizontal ruled line is supported.
PTR_RL_VERTICAL The vertical ruled line is supported.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapSlpPresent Property, drawRuledLine Method.
Unified POS, v1.16.1 1039

31.4.63 CapSlpUnderline Property

Syntax CapSlpUnderline: boolean { read-only, access after open }

Remarks If true, then the slip can underline characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.64 CapTransaction Property

Syntax CapTransaction: boolean { read-only, access after open }

Remarks If true, then printer transactions are supported by each station.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
1040 Unified POS, v1.16.1

31.4.65 CartridgeNotify Property Added in Release 1.5

Syntax CartridgeNotify: int32 { read-write, access after open }

Remarks Contains the type of cartridge state notification selected by the application.

The CartridgeNotify values are:

Value Meaning
PTR_CN_DISABLED The Control will not provide any cartridge state notifications to the

application or set any cartridge related ErrorCodeExtended values. No
cartridge state notification StatusUpdateEvents will be fired, and
JrnCartridgeState, RecCartridgeState, and SlpCartridgeState may not
be set.

PTR_CN_ENABLED The Control will fire cartridge state notification StatusUpdateEvents and
update JrnCartridgeState, RecCartridgeState and SlpCartridgeState,
beginning when DeviceEnabled is set true. The level of functionality
depends upon CapJrnCartridgeSensor, CapRecCartridgeSensor and
CapSlpCartridgeSensor.

CartridgeNotify may only be set while the device is disabled, that is, while DeviceEnabled is false.

This property is initialized to PTR_CN_DISABLED by the open method. This value provides
compatibility with earlier releases.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGAL One of the following errors occurred:

The device is already enabled.
CapJrnCartridgeSensor, CapRecCartridgeSensor, and
CapSlpCartridgeSensor = “0”.

See Also CapJrnCartridgeSensor Property, CapRecCartridgeSensor Property, CapSlpCartridgeSensor
Property, JrnCartridgeState Property, RecCartridgeState Property, SlpCartridgeState Property.
Unified POS, v1.16.1 1041

31.4.66 CharacterSet Property Updated in Release 1.10

Syntax CharacterSet: int32 { read-write, access after open-claim-enable }

Remarks Holds the character set for printing characters. It has one of the following values:

Value Meaning 
Range 101 - 199 Device-specific character sets that do not match a code page or the ASCII 
 or ANSI character sets.
Range 400 - 990 Code page; matches one of the standard values.
PTR_CS_UNICODE The character set supports Unicode. The value of this constant is 997.
PTR_CS_ASCII The ASCII character set, supporting the ASCII characters 0x20 through

0x7F. The value of this constant is 998.
PTR_CS_ANSI The ANSI character set. The value of this constant is 999.
Range 1000 and above Code page; matches one of the standard values.

For additional implementation-specific information on the use of this property, refer to the “Mapping of
CharacterSet” section in the Appendices. For OPOS, see Annex A, for JavaPOS, see Annex B.

This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CharacterSetList Property.

31.4.67 CharacterSetList Property

Syntax CharacterSetList: string { read-only, access after open }

Remarks Holds the character set numbers. It consists of ASCII numeric set numbers separated by commas.

For example, if the string is “101,850,999”, then the device supports a device-specific character set, code
page 850, and the ANSI character set.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CharacterSet Property.
1042 Unified POS, v1.16.1

31.4.68 CoverOpen Property

Syntax CoverOpen: boolean { read-only, access after open-claim-enable }

Remarks If true, then the printer’s cover is open.

If CapCoverSensor is false, then the printer does not have a cover open sensor, and this property always
returns false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.69 ErrorLevel Property

Syntax ErrorLevel: int32 { read-only, access after open }

Remarks Holds the severity of the error condition. It has one of the following values:

Value Meaning 
PTR_EL_NONE No error condition is present.
PTR_EL_RECOVERABLE

A recoverable error has occurred.
(Example: Out of paper.)

PTR_EL_FATAL A non-recoverable error has occurred.
(Example: Internal printer failure.)

This property is set just before delivering an ErrorEvent. When the error is cleared, then the property is
changed to PTR_EL_NONE.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 1043

31.4.70 ErrorStation Property

Syntax ErrorStation: int32 { read-only, access after open }

Remarks Holds the station or stations that were printing when an error was detected.

This property will be set to one of the following values: 
PTR_S_JOURNAL PTR_S_RECEIPT
PTR_S_SLIP PTR_S_JOURNAL_RECEIPT PTR_S_JOURNAL_SLIP 
 PTR_S_RECEIPT_SLIP
PTR_TWO_RECEIPT_JOURNAL PTR_TWO_SLIP_JOURNAL
PTR_TWO_SLIP_RECEIPT

This property is only valid if the ErrorLevel is not equal to PTR_EL_NONE. It is set just before
delivering an ErrorEvent.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.71 ErrorString Property

Syntax ErrorString: string { read-only, access after open }

Remarks Holds a vendor-supplied description of the current error.

This property is set just before delivering an ErrorEvent. If no description is available, the property is
set to an empty string. When the error is cleared, then the property is changed to an empty string.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
1044 Unified POS, v1.16.1

31.4.72 FlagWhenIdle Property

Syntax FlagWhenIdle: boolean { read-write, access after open }

Remarks If true, a StatusUpdateEvent will be enqueued when the device is in the idle state.

This property is automatically reset to false when the status event is delivered.

The main use of idle status event that is controlled by this property is to give the application control when
all outstanding asynchronous outputs have been processed. The event will be enqueued if the outputs
were completed successfully or if they were cleared by the clearOutput method or by an ErrorEvent
handler.

If the State is already set to S_IDLE when this property is set to true, then a StatusUpdateEvent is
enqueued immediately. The application can therefore depend upon the event, with no race condition
between the starting of its last asynchronous output and the setting of this flag.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.73 FontTypefaceList Property

Syntax FontTypefaceList: string { read-only, access after open }

Remarks Holds the fonts and/or typefaces that are supported by the printer. The string consists of font or typeface
names separated by commas. The application selects a font or typeface for a printer station by using the
font typeface selection escape sequence (ESC |#fT). The “#” character is replaced by the number of the
font or typeface within the list: 1, 2, and so on.

In Japan, this property will frequently include the fonts “Mincho” and “Gothic.” Other fonts or typefaces
may be commonly supported in other countries.

An empty string indicates that only the default typeface is supported.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also “Data Characters and Escape Sequences” in Chapter 31.
Unified POS, v1.16.1 1045

31.4.74 JrnCartridgeState Property Added in Release 1.5

Syntax JrnCartridgeState: int32 { read-only, access after open-claim-enable }

Remarks This property contains the status of the currently selected Journal cartridge (ink, ribbon or toner).

It contains one of the following values:

Value Meaning
PTR_CART_UNKNOWN Cannot determine the cartridge state, for one of the following

reasons:
CapJrnCartridgeSensor = “0.” 
Device does not support cartridge state reporting.
CartridgeNotify = PTR_CN_DISABLED. Cartridge state
notifications are disabled.
DeviceEnabled = FALSE. 
Cartridge state monitoring does not occur until the device is enabled.

PTR_CART_REMOVED The cartridge selected by JrnCurrentCartridge has been removed.
PTR_CART_EMPTY The cartridge selected by JrnCurrentCartridge is empty.
PTR_CART_CLEANING The head selected by JrnCurrentCartridge is being cleaned.
PTR_CART_NEAREND The cartridge selected by JrnCurrentCartridge is near end.
PTR_CART_OK The cartridge selected by JrnCurrentCartridge is in normal

condition.

Note that the above mentioned values are arranged according to their priority level.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also JrnCurrentCartridge Property, CapJrnCartridgeSensor Property, CartridgeNotify Property.
1046 Unified POS, v1.16.1

31.4.75 JrnCurrentCartridge Property Updated in Release 1.9

Syntax JrnCurrentCartridge: int32 { read-write, access after open-claim-enable }

Remarks This property specifies the currently selected Journal cartridge.

This property is initialized when the device is first enabled following the open method call. If
CapJrnPresent is false, this property is initialized to zero. Otherwise, this value is guaranteed to be one
of the color cartridges specified by the CapJrnColor property. (PTR_COLOR_FULL cannot be set.)

Setting JrnCurrentCartridge may also update JrnCartridgeState.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid property value was specified.

See Also CapJrnPresent property, JrnCartridgeState Property.

31.4.76 JrnEmpty Property

Syntax JrnEmpty: boolean { read-only, access after open-claim-enable }

Remarks If true, the journal is out of paper. If false, journal paper is present.

If CapJrnEmptySensor is false, then the value of this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also JrnNearEnd Property.
Unified POS, v1.16.1 1047

31.4.77 JrnLetterQuality Property

Syntax JrnLetterQuality: boolean { read-write, access after open-claim-enable }

Remarks If true, prints in high quality mode. If false, prints in high speed mode.

This property advises the Service that either high quality or high speed printing is desired. For example,
printers with bi-directional print capability may be placed in unidirectional mode for high quality, so that
column alignment is more precise.

Setting this property may also update JrnLineWidth, JrnLineHeight, and JrnLineSpacing if
MapMode is PTR_MM_DOTS. (See the footnote at MapMode.)

This property is initialized to false when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.78 JrnLineChars Property

Syntax JrnLineChars: int32 { read-write, access after open-claim-enable }

Remarks Holds the number of characters that may be printed on a journal line.

If changed to a line character width that is less than or equal to the maximum value allowed for the
printer, then the width is set to the specified value. If the exact width cannot be supported, then
subsequent lines will be printed with a character size that most closely supports the specified characters
per line. (For example, if set to 36 and the printer can print either 30 or 40 characters per line, then the
Service should select the 40 characters per line size and print only up to 36 characters per line.) 

If the character width is greater than the maximum value allowed for the printer, then an exception is
thrown. (For example, if set to 42 and the printer can print either 30 or 40 characters per line, then the
Service cannot support the request.)

Setting this property may also update JrnLineWidth, JrnLineHeight, and JrnLineSpacing, since the
character pitch or font may be changed.

This property is initialized to the printer’s default line character width when the device is first enabled
following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also JrnLineCharsList Property.
1048 Unified POS, v1.16.1

31.4.79 JrnLineCharsList Property

Syntax JrnLineCharsList: string { read-only, access after open }

Remarks Holds the line character widths supported by the journal station. The string consists of ASCII numeric
set numbers separated by commas.

For example, if the string is “32,36,40,” then the station supports line widths of 32, 36, and 40 characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also JrnLineChars Property.

31.4.80 JrnLineHeight Property

Syntax JrnLineHeight: int32 { read-write, access after open-claim-enable }

Remarks Holds the journal print line height. Expressed in the unit of measure given by MapMode.

If changed to a height that can be supported with the current character width, then the line height is set
to this value. If the exact height cannot be supported, then the height is set to the closest supported value.

When JrnLineChars is changed, this property is updated to the default line height for the selected width.

This property is initialized to the printer’s default line height when the device is first enabled following
the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 1049

31.4.81 JrnLineSpacing Property

Syntax JrnLineSpacing: int32 { read-write, access after open-claim-enable }

Remarks Holds the spacing of each single-high print line, including both the printed line height plus the
whitespace between each pair of lines. Depending upon the printer and the current line spacing, a multi-
high print line might exceed this value. Line spacing is expressed in the unit of measure given by
MapMode.

If changed to a spacing that can be supported by the printer, then the line spacing is set to this value. If
the spacing cannot be supported, then the spacing is set to the closest supported value.

When JrnLineChars or JrnLineHeight is changed, this property is updated to the default line spacing
for the selected width or height.

This property is initialized to the printer’s default line spacing when the device is first enabled following
the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.82 JrnLineWidth Property

Syntax JrnLineWidth: int32 { read-only, access after open-claim-enable }

Remarks Holds the width of a line of JrnLineChars characters. Expressed in the unit of measure given by
MapMode.

Setting JrnLineChars may also update this property.

This property is initialized to the printer’s default line width when the device is first enabled following
the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.83 JrnNearEnd Property

Syntax JrnNearEnd: boolean { read-only, access after open-claim-enable }

Remarks If true, the journal paper is low. If false, journal paper is not low.

If CapJrnNearEndSensor is false, then this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also JrnEmpty Property.
1050 Unified POS, v1.16.1

31.4.84 MapCharacterSet Property Added in Release 1.7

Syntax MapCharacterSet: boolean { read-write, access after open}

Remarks If MapCharacterSet is true and when outputting data, the Service maps the characters transferred by the
application to the character set selected in the CharacterSet property for printing data.
If MapCharacterSet is false, then no mapping is supported. In such a case the application has to ensure
the mapping of the character set used in the application to the character set selected in the CharacterSet
property.

If CapMapCharacterSet is false, then this property is always false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CharacterSet Property, CapMapCharacterSet Property.

31.4.85 MapMode Property Updated in Release 1.13

Syntax MapMode: int32 { read-write, access after open }

Remarks Holds the mapping mode of the printer. The mapping mode defines the unit of measure used for other
properties, such as line heights and line spacings. It has one of the following values:

Value Meaning 
PTR_MM_DOTS The printer’s dot width. This width may be different for each printer 

station.1

PTR_MM_TWIPS 1/1440 of an inch.
PTR_MM_ENGLISH 0.001 inch.
PTR_MM_METRIC 0.01 millimeter.
Setting this property may also change JrnLineHeight, JrnLineSpacing, JrnLineWidth,
RecLineHeight, RecLineSpacing, RecLineWidth, SlpLineHeight, SlpLineSpacing, and
SlpLineWidth.

Note: The value of the MapMode for the POSPrinter is initialized to PTR_MM_DOTS when the device
is first enabled following the open method. This default value may be different from other peripheral
devices in the UnifiedPOS standard.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

1. From the POS Printer perspective, the exact definition of a “dot” is not significant. It is a Printer/Service unit used
to express various metrics. For example, some printers define a “half-dot” that is used in high-density graphics
printing, and perhaps in text printing. A POS Printer Service may handle this case in one of these ways:
(a) Consistently define a “dot” as the printer’s smallest physical size, that is, a half-dot.
(b) If the Service changes bitmap graphics printing density based on the XxxLetterQuality setting, then alter the

size of a dot to match the bitmap density (that is, a physical printer dot when false and a half-dot when true).
Note that this choice should not be used if the printer’s text metrics are based on half-dot sizes, since accurate
values for the metrics may not then be possible.
Unified POS, v1.16.1 1051

31.4.86 PageModeArea Property Added in Release 1.9

Syntax PageModeArea: string { read-only, access after open }

Remarks Holds the page area for the selected PageModeStation expressed in the unit of measure given by
MapMode. This page area can be different than the print area and is determined by the hardware
capability of the printer. The string consists of two ASCII numbers separated by a comma, in the
following order: horizontal size, vertical size.

For example, if the string is “450,800,” then the page size is 450 horizontal units by 800 vertical units,
and the station print area is a rectangle beginning at the top left point (0,0), and continuing up to but not
including the bottom right point (450,800).

The PageModeStation property must be set to a valid station before accessing this property, otherwise
an empty string is returned.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also MapMode Property, PageModeStation Property.

31.4.87 PageModeDescriptor Property Added in Release 1.9

Syntax PageModeDescriptor: int32 { read-only, access after open }

Remarks This is a bitmask indicating the basic Page Mode functionality of the printer for the selected
PageModeStation.

Value Meaning 
PTR_PM_BITMAP Printing of bitmaps on the PageModeStation is supported
PTR_PM_BARCODE Printing of barcodes on the PageModeStation is supported
PTR_PM_BM_ROTATE

Rotation of bitmaps on the PageModeStation is supported
PTR_PM_BC_ROTATE

Rotation of barcodes on the PageModeStation is supported
PTR_PM_OPAQUE Text, graphics, and background are opaque, meaning items already placed on

the page area in the specified print area will not be visible after being printed
over.

The PageModeStation property must be set to a valid station before accessing this property, otherwise
the value zero (0) is returned.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also PageModeStation Property.
1052 Unified POS, v1.16.1

31.4.88 PageModeHorizontalPosition Property Added in Release 1.9

Syntax PageModeHorizontalPosition: int32 { read-write, access after open }

Remarks Holds the horizontal start position offset within the print area for the selected PageModeStation,
expressed in the unit of measure given by MapMode.

The horizontal direction is the same as the actual PageModePrintDirection property. If the exact
position cannot be supported then the position is set to the closest supported value.

A read/get on this property will return the horizontal position offset set by the last write/set and not the
current position. The PageModeStation property must be set to a valid station before accessing this
property, otherwise the value zero (0) is returned.

The following code sample shows usage of PageModeHorizontalPosition.

myptr.setMapMode(PTR_MM_ENGLISH);
myptr.setPageModeStation(PTR_S_RECEIPT);
myptr.pageModePrint(PTR_PM_PAGE_MODE);
// Set print area to 2 inches by 0.5 inches
myptr.setPageModePrintArea(“0,0,2000,500”);
myptr.setPageModePrintDirection(PTR_PD_LEFT_TO_RIGHT);
myptr.setPageModeHorizontalPosition(1500);
myptr.printNormal(PTR_S_RECEIPT, “123456789012345678901234567890\n”);

The above code sample will generate the following receipt.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also MapMode Property, PageModePrintDirection Property, PageModeStation Property.

012345678901234567890 0.5 inches

2 inches

PageModeHorizontalPosition = 1.5 inches 123456789
Unified POS, v1.16.1 1053

31.4.89 PageModePrintArea Property Added in Release 1.9

Syntax PageModePrintArea: string { read-write, access after open }

Remarks Holds the print area for the selected PageModeStation expressed in the unit of measure given by
MapMode. The maximum print area is the page area.

The string consists of four ASCII numbers separated by commas, in the following order: horizontal start,
vertical start, horizontal size, vertical size. For example, if the string is “50,100,200,400,” then the station
print area is a rectangle beginning at the point (50,100), and continuing up to but not including the point
(250,500). This property is initialized to “0,0,0,0.”

Text written to the right edge of the print area will wrap to the next line. Any text or image written beyond
the bottom of the print area will be truncated. For example:

myptr.setMapMode(PTR_MM_ENGLISH);
myptr.setPageModeStation(PTR_S_RECEIPT);
myptr.pageModePrint(PTR_PM_PAGE_MODE);
// Set print area to half inch square block
myptr.setPageModePrintArea(“0,0,500,500”);
myptr.setPageModePrintDirection(PTR_PD_LEFT_TO_RIGHT);
myptr.printNormal(PTR_S_RECEIPT,“123456789012345678901234567890\n”);

The above code sample will generate the following receipt.

The PageModeStation property must be set to a valid station before accessing this property, otherwise
an empty string is returned.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also MapMode Property, PageModeStation Property.

12345678

90123456

78901234

0.5 inches

0.5 inches
1054 Unified POS, v1.16.1

31.4.90 PageModePrintDirection Property Added in Release 1.9

Syntax PageModePrintDirection: int32 { read-write, access after open }

Remarks Holds the print direction. The print direction shall be as follows:

Value Meaning
PTR_PD_LEFT_TO_RIGHT Print left to right, starting at top left position of the print area, i.e.,

normal printing.
PTR_PD_BOTTOM_TO_TOP Print bottom to top, starting at the bottom left position of the print

area, i.e., rotated left 90° printing.
PTR_PD_RIGHT_TO_LEFT Print right to left, starting at the bottom right position of the print

area, i.e., upside down printing.
PTR_PD_TOP_TO_BOTTOM Print top to bottom, starting at the top right position of the print area,

i.e., rotated right 90° printing.

This property is initialized to PTR_PD_LEFT_TO_RIGHT when the device is first enabled
following the open method.

Setting this property may also change PageModeHorizontalPosition and
PageModeVerticalPosition. Setting this property will have an effect on the current print area. By
changing the print area, it is possible to generate a receipt or slip with text printed in multiple
rotations. For example:

myptr.setMapMode(PTR_MM_ENGLISH);
myptr.setPageModeStation(PTR_S_RECEIPT);
myptr.pageModePrint(PTR_PM_PAGE_MODE);
// Set print area to half inch square block
myptr.setPageModePrintArea(“0,0,500,500”);
myptr.setPageModePrintDirection(PTR_PD_LEFT_TO_RIGHT);
myptr.printNormal(PTR_S_RECEIPT,“123456789012345678901234567890\n”);
myptr.setPageModePrintArea(“500,0,500,500”);
myptr.setPageModePrintDirection(PTR_PD_BOTTOM_TO_TOP);
myptr.printNormal(PTR_S_RECEIPT,“123456789012345678901234567890\n”);
myptr.setPageModePrintArea(“1000,0,500,500”);
myptr.setPageModePrintDirection(PTR_PD_RIGHT_TO_LEFT);
myptr.printNormal(PTR_S_RECEIPT,“123456789012345678901234567890\n”);
myptr.setPageModePrintArea(“1500,0,500,500”);
myptr.setPageModePrintDirection(PTR_PD_TOP_TO_BOTTOM);
myptr.printNormal(PTR_S_RECEIPT,“123456789012345678901234567890\n”);

The above code sample will generate the following receipt.

It is also possible to generate rotated text.

0.5 inches

0.5 inches 0.5 inches 0.5 inches 0.5 inches

12345678

90123456

78901234

1
2

3
4

5
6

7
8

9
0

1
2

3
4

5
6

7
8

9
0

1
2

3
4

12345678

90123456

78901234
1

2
3

4
5

6
7

8

9
0

1
2

3
4

5
6

7
8

9
0

1
2

3
4

Unified POS, v1.16.1 1055

myptr.setMapMode(PTR_MM_ENGLISH);
myptr.setPageModeStation(PTR_S_RECEIPT);
myptr.pageModePrint(PTR_PM_PAGE_MODE);
myptr.pageModeVerticalPosition(100);
myptr.pageModeHorizontalPosition(200);
myptr.setPageModePrintArea(“0,0,1000,500”);
myptr.setPageModePrintDirection(PTR_PD_LEFT_TO_RIGHT);
myptr.printNormal(PTR_S_RECEIPT, “Normal print.\n”);
myptr.setPageModePrintArea(“1000,0,1000,500”);
myptr.setPageModePrintDirection(PTR_PD_TOP_TP_BOTTOM);
myptr.printNormal(PTR_S_RECEIPT, “Rotated right 90 print.\n”);
myptr.setPageModePrint(PTR_PM_NORMAL);

The above code sample will generate the following receipt.

The PageModeStation property must be set to a valid station before accessing this property,
otherwise the value zero (0) is returned.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also PageModeHorizontalPosition Property, PageModeStation Property, PageModeVerticalPosition
Property.

0.5 inches

1.0 inch 1.0 inch

Normal print.

 R
o

ta
t

ed
 rig

h
t

9
0

 p
rin

t.

PageModeVerticalPosition = 0.1 inches

PageModeHorizontalPosition = 0.2 inches
1056 Unified POS, v1.16.1

31.4.91 PageModeStation Property Added in Release 1.9

Syntax PageModeStation: int32 { read-write, access after open }

Remarks Set the print station for subsequent Page Mode properties. Note that pageModePrint will allow for the
selection of the print station that the output will be generated on. This value will only contain one Page
Mode station at a time, PTR_S_RECEIPT or PTR_S_SLIP. If Page Mode is not supported on any station,
the value should be zero. To control Page Mode for more than one station, this value will need to be
changed between the stations.

This property is initialized to zero by the open method, and must be set to a valid value before Page Mode
properties or methods are used.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also pageModePrint Method.

31.4.92 PageModeVerticalPosition Property Added in Release 1.9

Syntax PageModeVerticalPosition: int32 { read-write, access after open }

Remarks Holds the vertical start position offset within the print area for the selected PageModeStation, expressed
in the unit of measure given by MapMode. The vertical direction is perpendicular to the direction
specified in the actual PageModePrintDirection property. If the exact position cannot be supported then
the position is set to the closest supported value. A read/get on this property will return the vertical
position offset set by the last write/set and not the current position.

The following code sample shows usage of PageModeVerticalPosition.

myptr.setMapMode(PTR_MM_ENGLISH);
myptr.setPageModeStation(PTR_S_RECEIPT);
myptr.pageModePrint(PTR_PM_PAGE_MODE);
// Set print area to 2 inches by 0.5 inches
myptr.setPageModePrintArea(“0,0,2000,500”);
myptr.setPageModePrintDirection(PTR_PD_LEFT_TO_RIGHT);
myptr.setPageModeVerticalPosition(250);
myptr.printNormal(PTR_S_RECEIPT,“123456789012345678901234567890\n”);

The above code sample will generate the following receipt.

The PageModeStation property must be set to a valid station before accessing this property, otherwise
the value zero (0) is returned.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also MapMode Property, PageModePrintDirection Property, PageModeStation Property.

123456789012345678901234567890
0.5 inches

2 inches

PageModeVerticalPosition = 0.25 inches
Unified POS, v1.16.1 1057

31.4.93 RecBarCodeRotationList Property Updated in Release 1.7

Syntax RecBarCodeRotationList: string { read-only, access after open }

Remarks Holds the directions in which a receipt bar code may be rotated. The string consists of rotation strings
separated by commas. An empty string indicates that bar code printing is not supported. The legal
rotation strings are:

Value Meaning 
0 Bar code may be printed in the normal orientation.
R90 Bar code may be rotated 90° to the right.
L90 Bar code may be rotated 90° to the left.
180 Bar code may be rotated 180° - upside down.

For example, if the string is “0,180”, then the printer can print normal bar codes and upside down bar
codes.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also RotateSpecial Property, printBarCode Method, rotatePrint Method.

31.4.94 RecBitmapRotationList Property Added in Release 1.7

Syntax RecBitmapRotationList: string { read-only, access after open }

Remarks Holds the directions in which a receipt bitmap may be rotated. The string consists of rotation strings
separated by commas. An empty string indicates that bitmap printing is not supported. The legal rotation
strings are:

Value Meaning 
0 Bitmap may be printed in the normal orientation.
R90 Bitmap may be rotated 90° to the right.
L90 Bitmap may be rotated 90° to the left.
180 Bitmap may be rotated 180° - upside down.

For example, if the string is “0,180,” then the printer can print normal bitmaps and upside down bitmaps.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also printBitmap Method, rotatePrint Method.
1058 Unified POS, v1.16.1

31.4.95 RecCartridgeState Property Added in Release 1.5

Syntax RecCartridgeState: int32 { read-only, access after open-claim-enable }

Remarks This property contains the status of the currently selected Receipt cartridge (ink, ribbon or toner).

It contains one of the following values:

Value Meaning 
PTR_CART_UNKNOWN Cannot determine the cartridge state, for one of the following
 reasons:

CapRecCartridgeSensor = “0”. 
Device does not support cartridge state reporting.
CartridgeNotify = PTR_CN_DISABLED. Cartridge state
notifications are disabled.
DeviceEnabled = FALSE. 
Cartridge state monitoring does not occur until the device is enabled.

PTR_CART_REMOVED The cartridge selected by RecCurrentCartridge has been removed.
PTR_CART_EMPTY The cartridge selected by RecCurrentCartridge is empty.
PTR_CART_CLEANING The head selected by RecCurrentCartridge is being cleaned.
PTR_CART_NEAREND The cartridge selected by RecCurrentCartridge is near end.
PTR_CART_OK The cartridge selected by RecCurrentCartridge is in normal

condition.

Note that the above mentioned values are arranged according to their priority level.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also RecCurrentCartridge Property, CapRecCartridgeSensor Property, CartridgeNotify Property.
Unified POS, v1.16.1 1059

31.4.96 RecCurrentCartridge Property Updated in Release 1.9

Syntax RecCurrentCartridge: int32 { read-write, access after open-claim-enable }

Remarks This property specifies the currently selected Receipt cartridge.

This property is initialized when the device is first enabled following the open method call. If
CapRecPresent is false, this property is initialized to zero. Otherwise, this value is guaranteed to be one
of the color cartridges specified by the CapRecColor property. (PTR_COLOR_FULL cannot be set.)

Setting RecCurrentCartridge may also update RecCartridgeState.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid property value was specified.

See Also CapRecPresent property, RecCartridgeState Property.

31.4.97 RecEmpty Property

Syntax RecEmpty: boolean { read-only, access after open-claim-enable }

Remarks If true, the receipt is out of paper. If false, receipt paper is present.

If CapRecEmptySensor is false, then this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also RecNearEnd Property.
1060 Unified POS, v1.16.1

31.4.98 RecLetterQuality Property

Syntax RecLetterQuality: boolean { read-write, access after open-claim-enable }

Remarks If true, prints in high quality mode. If false, prints in high speed mode.

This property advises the Service that either high quality or high speed printing is desired. For example:

• Printers with bi-directional print capability may be placed in unidirectional mode for high quality,
so that column alignment is more precise.

• Bitmaps may be printed in a high-density graphics mode for high-quality, and in a low-density mode
for high speed.

Setting this property may also update RecLineWidth, RecLineHeight, and RecLineSpacing if
MapMode is PTR_MM_DOTS. (See the footnote at MapMode.)

This property is initialized to false when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also MapMode Property, RecLineHeight Property, RecLineSpacing Property, RecLineWidth Property.

31.4.99 RecLineChars Property

Syntax RecLineChars: int32 { read-write, access after open-claim-enable }

Remarks Holds the number of characters that may be printed on a receipt line.

If changed to a line character width that is less than or equal to the maximum value allowed for the
printer, then the width is set to the specified value. If the exact width cannot be supported, then
subsequent lines will be printed with a character size that most closely supports the specified characters
per line. (For example, if set to 36 and the printer can print either 30 or 40 characters per line, then the
Service should select the 40 characters per line size and print only up to 36 characters per line.) 

If the character width is greater than the maximum value allowed for the printer, then an exception is
thrown. (For example, if set to 42 and the printer can print either 30 or 40 characters per line, then the
Service cannot support the request.)

Setting this property may also update RecLineWidth, RecLineHeight, and RecLineSpacing, since the
character pitch or font may be changed.

This property is initialized to the printer’s default line character width when the device is first enabled
following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also RecLineCharsList Property.
Unified POS, v1.16.1 1061

31.4.100 RecLineCharsList Property

Syntax RecLineCharsList: string { read-only, access after open }

Remarks Holds the line character widths supported by the receipt station. The string consists of ASCII numeric
set numbers, separated by commas.

For example, if the string is “32,36,40,” then the station supports line widths of 32, 36, and 40 characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also RecLineChars Property.

31.4.101 RecLineHeight Property

Syntax RecLineHeight: int32 { read-write, access after open-claim-enable }

Remarks Holds the receipt print line height, expressed in the unit of measure given by MapMode.

If changed to a height that can be supported with the current character width, then the line height is set
to this value. If the exact height cannot be supported, then the height is set to the closest supported value.

When RecLineChars is changed, this property is updated to the default line height for the selected width.

This property is initialized to the printer’s default line height when the device is first enabled following
the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also RecLineChars Property.

31.4.102 RecLineSpacing Property

Syntax RecLineSpacing: int32 { read-write, access after open-claim-enable }

Remarks Holds the spacing of each single-high print line, including both the printed line height plus the
whitespace between each pair of lines. Depending upon the printer and the current line spacing, a multi-
high print line might exceed this value. Line spacing is expressed in the unit of measure given by
MapMode.

If changed to a spacing that can be supported by the printer, then the line spacing is set to this value. If
the spacing cannot be supported, then the spacing is set to the closest supported value.

When RecLineChars or RecLineHeight are changed, this property is updated to the default line spacing
for the selected width or height.

This property is initialized to the printer’s default line spacing when the device is first enabled following
the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
1062 Unified POS, v1.16.1

31.4.103 RecLinesToPaperCut Property

Syntax RecLinesToPaperCut: int32 { read-only, access after open-claim-enable }

Remarks Holds the number of lines that must be advanced before the receipt paper is cut.

If CapRecPapercut is true, then this is the line count before reaching the paper cut mechanism.
Otherwise, this is the line count before the manual tear-off bar.

Changing the properties RecLineChars, RecLineHeight, and RecLineSpacing may cause this property
to change.

This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.104 RecLineWidth Property

Syntax RecLineWidth: int32 { read-only, access after open-claim-enable }

Remarks Holds the width of a line of RecLineChars characters, expressed in the unit of measure given by
MapMode.

Setting RecLineChars may also update this property.

This property is initialized to the printer’s default line width when the device is first enabled following
the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.105 RecNearEnd Property

Syntax RecNearEnd: boolean { read-only, access after open-claim-enable }

Remarks If true, the receipt paper is low. If false, receipt paper is not low.

If CapRecNearEndSensor is false, then this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also RecEmpty Property.
Unified POS, v1.16.1 1063

31.4.106 RecSidewaysMaxChars Property

Syntax RecSidewaysMaxChars: int32 { read-only, access after open-claim-enable }

Remarks Holds the maximum number of characters that may be printed on each line in sideways mode.

If CapRecLeft90 and CapRecRight90 are both false, then this property is zero.

Changing the properties RecLineHeight, RecLineSpacing, and RecLineChars may cause this property
to change.

This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also RecSidewaysMaxLines Property.

31.4.107 RecSidewaysMaxLines Property

Syntax RecSidewaysMaxLines: int32 { read-only, access after open-claim-enable }

Remarks Holds the maximum number of lines that may be printed in sideways mode.

If CapRecLeft90 and CapRecRight90 are both false, then this property is zero.

Changing the properties RecLineHeight, RecLineSpacing, and RecLineChars may cause this property
to change.

This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also RecSidewaysMaxChars Property.

31.4.108 RotateSpecial Property

Syntax RotateSpecial: int32 { read-write, access after open }

Remarks Holds the rotation orientation for bar codes. It has one of the following values:

Value Meaning 
PTR_RP_NORMAL Print subsequent bar codes in normal orientation.
PTR_RP_RIGHT90 Rotate printing 90° to the right (clockwise)
PTR_RP_LEFT90 Rotate printing 90° to the left (counter-clockwise)
PTR_RP_ROTATE180 Rotate printing 180°, that is, print upside-down

This property is initialized to PTR_RP_NORMAL by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also printBarCode Method.
1064 Unified POS, v1.16.1

31.4.109 SlpBarCodeRotationList Property Updated in Release 1.7

Syntax SlpBarCodeRotationList: string { read-only, access after open }

Remarks Holds the directions in which a slip barcode may be rotated. The string consists of rotation strings
separated by commas. An empty string indicates that bar code printing is not supported. The legal
rotation strings are:

Value Meaning 
0 Bar code may be printed in the normal orientation.
R90 Bar code may be rotated 90° to the right.
L90 Bar code may be rotated 90° to the left.
180 Bar code may be rotated 180° - upside down.

For example, if the string is “0,180”, then the printer can print normal bar codes and upside down bar
codes.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also RotateSpecial Property, printBarCode Method, rotatePrint Method.

31.4.110 SlpBitmapRotationList Property Added in Release 1.7

Syntax SlpBitmapRotationList: string { read-only, access after open }

Remarks Holds the directions in which a slip bitmap may be rotated. The string consists of rotation strings
separated by commas. An empty string indicates that bitmap printing is not supported. The legal rotation
strings are:

Value Meaning 
0 Bitmap may be printed in the normal orientation.
R90 Bitmap may be rotated 90° to the right.
L90 Bitmap may be rotated 90° to the left.
180 Bitmap may be rotated 180° - upside down.

For example, if the string is “0,180,” then the printer can print normal bitmaps and upside down bitmaps.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also printBitmap Method, rotatePrint Method.
Unified POS, v1.16.1 1065

31.4.111 SlpCartridgeState Property Added in Release 1.5

Syntax SlpCartridgeState: int32 { read-only, access after open-claim-enable }

Remarks This property contains the status of the currently selected Slip cartridge (ink, ribbon or toner).

It contains one of the following values:

Value Meaning 
PTR_CART_UNKNOWN Cannot determine the cartridge state, for one of the following
 reasons:

CapSlpCartridgeSensor = “0.” 
Device does not support cartridge state reporting.
CartridgeNotify = PTR_CN_DISABLED. Cartridge state
notifications are disabled.
DeviceEnabled = FALSE. 
Cartridge state monitoring does not occur until the device is enabled.

PTR_CART_REMOVED The cartridge selected by SlpCurrentCartridge has been removed.
PTR_CART_EMPTY The cartridge selected by SlpCurrentCartridge is empty.
PTR_CART_CLEANING The head selected by SlpCurrentCartridge is being cleaned.
PTR_CART_NEAREND The cartridge selected by SlpCurrentCartridge is near end.
PTR_CART_OK The cartridge selected by SlpCurrentCartridge is in normal

condition.

Note that the above mentioned values are arranged according to their priority level.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also SlpCurrentCartridge Property, CapSlpCartridgeSensor Property, CartridgeNotify Property.
1066 Unified POS, v1.16.1

31.4.112 SlpCurrentCartridge Property Updated in Release 1.9

Syntax SlpCurrentCartridge: int32 { read-write, access after open-claim-enable }

Remarks This property specifies the currently selected slip cartridge.

This property is initialized when the device is first enabled following the open method call. If
CapSlpPresent is false, this property is initialized to zero. Otherwise, this value is guaranteed to be one
of the color cartridges specified by the CapSlpColor property. (PTR_COLOR_FULL cannot be set.)

Setting SlpCurrentCartridge may also update SlpCartridgeState.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGAL An invalid property value was specified.

See Also CapSlpPresent property, SlpCartridgeState Property.

31.4.113 SlpEmpty Property

Syntax SlpEmpty: boolean { read-only, access after open-claim-enable }

Remarks If true, a slip form is not present. If false, a slip form is present.

If CapSlpEmptySensor is false, then this property is always false.

This property is initialized and kept current while the device is enabled.

Note
The “slip empty” sensor should be used primarily to determine whether a form has been inserted before
printing, and can be monitored to determine whether a form is still in place. This sensor is usually placed
one or more print lines above the slip print head.

However, the “slip near end” sensor (when present) should be used to determine when nearing the end
of the slip. This sensor is usually placed one or more print lines below the slip print head.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also SlpNearEnd Property.
Unified POS, v1.16.1 1067

31.4.114 SlpLetterQuality Propert

Syntax SlpLetterQuality: boolean { read-write, access after open-claim-enable }

Remarks If true, prints in high quality mode. If false, prints in high speed mode.

This property advises that either high quality or high speed printing is desired.

For example:

• Printers with bi-directional print capability may be placed in unidirectional mode for high quality,
so that column alignment is more precise.

• Bitmaps may be printed in a high-density graphics mode for high-quality, and in a low-density mode
for high speed.

Setting this property may also update SlpLineWidth, SlpLineHeight, and SlpLineSpacing if
MapMode is PTR_MM_DOTS. (See the footnote at MapMode.)

This property is initialized to false when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.115 SlpLineChars Property

Syntax SlpLineChars: int32 { read-write, access after open-claim-enable }

Remarks Holds the number of characters that may be printed on a slip line.

If changed to a line character width that is less than or equal to the maximum value allowed for the
printer, then the width is set to the specified value. If the exact width cannot be supported, then
subsequent lines will be printed with a character size that most closely supports the specified characters
per line. (The Service should print the requested characters in the column positions closest to the side of
the slip table at which the slip is aligned. (For example, if the operator inserts the slip with the right edge
against the table side and if SlpLineChars is set to 36 and the printer prints 60 characters per line, then
the Service should add 24 spaces at the left margin and print the characters in columns 25 through 60.)

If the character width is greater than the maximum value allowed for the printer, then an exception is
thrown. (For example, if set to 65 and the printer can only print 60 characters per line, then the Service
cannot support the request.)

Setting this property may also update SlpLineWidth, SlpLineHeight, and SlpLineSpacing, since the
character pitch or font may be changed.

This property is initialized to the printer’s default line character width when the device is first enabled
following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also SlpLineCharsList Property.
1068 Unified POS, v1.16.1

31.4.116 SlpLineCharsList Property

Syntax SlpLineCharsList: string { read-only, access after open }

Remarks Holds the line character widths supported by the slip station. The string consists of ASCII numeric set
numbers, separated by commas.

For example, if the string is “32,36,40,” then the station supports line widths of 32, 36, and 40 characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also SlpLineChars Property.

31.4.117 SlpLineHeight Property

Syntax SlpLineHeight: int32 { read-write, access after open-claim-enable }

Remarks Holds the slip print-line height, expressed in the unit of measure given by MapMode.

If changed to a height that can be supported with the current character width, then the line height is set
to this value. If the exact height cannot be supported, then the height is set to the closest supported value.

When SlpLineChars is changed, this property is updated to the default line height for the selected width.

This property is initialized to the printer’s default line height when the device is first enabled following
the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also SlpLineChars Property.
Unified POS, v1.16.1 1069

31.4.118 SlpLinesNearEndToEnd Property

Syntax SlpLinesNearEndToEnd: int32 { read-only, access after open-claim-enable }

Remarks Holds the number of lines that may be printed after the “slip near end” sensor is true but before the printer
reaches the end of the slip.

This property may be used to optimize the use of the slip, so that the maximum number of lines may be
printed.

Changing the SlpLineHeight, SlpLineSpacing, or SlpLineChars properties may cause this property to
change.

This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also SlpEmpty Property, SlpNearEnd Property.

31.4.119 SlpLineSpacing Property

Syntax SlpLineSpacing: int32 { read-write, access after open-claim-enable }

Remarks Holds the spacing of each single-high print line, including both the printed line height plus the
whitespace between each pair of lines. Depending upon the printer and the current line spacing, a multi-
high print line might exceed this value. Line spacing is expressed in the unit of measure given by
MapMode.

If changed to a spacing that can be supported by the printer, then the line spacing is set to this value. If
the spacing cannot be supported, then the spacing is set to the closest supported value.

When SlpLineChars or SlpLineHeight are changed, this property is updated to the default line spacing
for the selected width or height.

The value of this property is initialized to the printer’s default line spacing when the device is first
enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
1070 Unified POS, v1.16.1

31.4.120 SlpLineWidth Property

Syntax SlpLineWidth: int32 { read-only, access after open-claim-enable }

Remarks Holds the width of a line of SlpLineChars characters, expressed in the unit of measure given by
MapMode.

Setting SlpLineChars may also update this property.

This property is initialized to the printer’s default line width when the device is first enabled following
the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

31.4.121 SlpMaxLines Property

Syntax SlpMaxLines: int32 { read-only, access after open-claim-enable }

Remarks Holds the maximum number of lines that can be printed on a form.

When CapSlpFullslip is true, then this property will be zero, indicating an unlimited maximum slip
length. When CapSlpFullslip is false, then this value will be non-zero.

Changing the SlpLineHeight, SlpLineSpacing, or SlpLineChars properties may cause this property to
change.

This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 1071

31.4.122 SlpNearEnd Property

Syntax SlpNearEnd: boolean { read-only, access after open-claim-enable }

Remarks If true, the slip form is near its end. If false, the slip form is not near its end.

The “near end” sensor is also sometimes called the “trailing edge” sensor, referring to the bottom edge
of the slip.

If CapSlpNearEndSensor is false, then this property is always false.

This property is initialized and kept current while the device is enabled.

Note
The “slip empty” sensor should be used primarily to determine whether a form has been inserted before
printing, and can be monitored to determine whether a form is still in place. This sensor is usually placed
one or more print lines above the slip print head.

However, the “slip near end” sensor (when present) should be used to determine when nearing the end
of the slip. This sensor is usually placed one or more print lines below the slip print head.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also SlpEmpty Property, SlpLinesNearEndToEnd Property.
1072 Unified POS, v1.16.1

31.4.123 SlpPrintSide Property Added in Release 1.5

Syntax SlpPrintSide: int32 { read-only, access after open-claim-enable }

Remarks This property holds the current side of the slip document on which printing will occur.

If the Slip is not inserted, the value of the property is PTR_PS_UNKNOWN.

If the printer has both side print capability, CapSlpBothSidesPrint is true, then when a slip is inserted,
the value stored here will be either PTR_PS_SIDE1 or PTR_PS_SIDE2. This property value may be
changed when the changePrintSide method is executed.

If a printer does not have both side print capability, CapSlpBothSidesPrint is false, then when a slip is
inserted, the property is always set to PTR_PS_SIDE1.

If a printer has both side print capability, the value of SlpPrintSide property is PTR_PS_SIDE1 after
beginInsertion/endInsertion methods are executed. However, after beginInsertion/endInsertion
methods for MICR processing are executed, the value of SlpPrintSide property is not limited to
PTR_PS_SIDE1. In this case, SlpPrintSide property indicates the side of the validation printing.

It contains one of the following values:

Value Meaning 
PTR_PS_UNKNOWN Slip is not inserted.
PTR_PS_SIDE1 Default Print side. (After slip paper insertion,

printer can print this side immediately.)
PTR_PS_SIDE2 The other side of the document to print on. 

(Reverse side of default.)

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16. 

See Also CapSlpBothSidesPrint Property, changePrintSide Method.

31.4.124 SlpSidewaysMaxChars Property

Syntax SlpSidewaysMaxChars: int32 { read-only, access after open-claim-enable }

Remarks Holds the maximum number of characters that may be printed on each line in sideways mode.

If CapSlpLeft90 and CapSlpRight90 are both false, then this property is zero.

Changing the properties SlpLineHeight, SlpLineSpacing, and SlpLineChars may cause this property
to change.

This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16. 

See Also SlpSidewaysMaxLines Property.
Unified POS, v1.16.1 1073

31.4.125 SlpSidewaysMaxLines Property

Syntax SlpSidewaysMaxLines: int32 { read-only, access after open-claim-enable }

Remarks Holds the maximum number of lines that may be printed in sideways mode.

If CapSlpLeft90 and CapSlpRight90 are both false, then this property is zero.

Changing the properties SlpLineHeight, SlpLineSpacing, and SlpLineChars may cause this property
to change.

This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also SlpSidewaysMaxChars Property.
1074 Unified POS, v1.16.1

31.5 Methods (UML operations)

31.5.1 beginInsertion Method

Syntax beginInsertion (timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
timeout The number of milliseconds before failing the method

If zero, the method initiates the begin insertion mode, then returns the appropriate status immediately. If
FOREVER (-1), the method initiates the begin insertion mode, then waits as long as needed until either
the form is inserted or an error occurs.

Remarks Initiates slip processing.

When called, the slip station is made ready to receive a form by opening the form’s handling “jaws” or
activating a form insertion mode. This method is paired with the endInsertion method for controlling
form insertion.

If the printer device cannot be placed into insertion mode, an exception is raised. Otherwise, form
insertion is monitored until either:

• The form is successfully inserted.

• The form is not inserted before timeout milliseconds have elapsed, or an error is reported by the
printer device. In this case, an exception is raised with an ErrorCode of E_TIMEOUT or another
value. The printer device remains in form insertion mode. This allows an application to perform
some user interaction and reissue the beginInsertion method without altering the form handling
mechanism.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform request while output is in progress.

E_ILLEGAL The slip station does not exist (see the CapSlpPresent property) or an invalid
timeout parameter was specified.

E_TIMEOUT The specified time has elapsed without the form being properly inserted.

See Also endInsertion Method, beginRemoval Method, endRemoval Method.
Unified POS, v1.16.1 1075

31.5.2 beginRemoval Method

Syntax beginRemoval (timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description 
timeout The number of milliseconds before failing the method

If zero, the method initiates the begin removal mode, then returns the appropriate status immediately. If
FOREVER (-1), the method initiates the begin removal mode, then waits as long as needed until either
the form is removed or an error occurs.

Remarks Initiates form removal processing.

When called, the printer is made ready to remove a form by opening the form handling “jaws” or
activating a form ejection mode. This method is paired with the endRemoval method for controlling
form removal.

If the printer device cannot be placed into removal or ejection mode, an exception is raised. Otherwise,
form removal is monitored until either:

• The form is successfully removed.

• The form is not removed before timeout milliseconds have elapsed, or an error is reported by the
printer device. In this case, an exception is raised with an ErrorCode of E_TIMEOUT or another
value. The printer device remains in form removal mode. This allows an application to perform some
user interaction and reissue the beginRemoval method without altering the form handling
mechanism.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_BUSY Cannot perform request while output is in progress.

E_ILLEGAL The slip station does not exist (see the CapSlpPresent property) or an invalid
timeout parameter was specified.

E_TIMEOUT The specified time has elapsed without the form being properly removed.

See Also beginInsertion Method, endInsertion Method, endRemoval Method.
1076 Unified POS, v1.16.1

31.5.3 changePrintSide Method Updated in Release 1.9

Syntax changePrintSide (side: int32):
void { raises-exception, use after open-claim-enable }

The side parameter indicates the side on which to print. Valid values are:

Value Description 
PTR_PS_SIDE1 Indicates that the default print side of the document is selected. (Default
 print side is the side where printing will occur immediately after a
 document has been inserted. Therefore, PTR_PS_SIDE1 is selected after
 beginInsertion/endInsertion is executed.)
PTR_PS_SIDE2 Indicates that the opposite side of the document from the one that the

printer defaults to is to be selected. (Reverse side of PTR_PS_SIDE1.)
PTR_PS_OPPOSITE Indicates that the current printing side is switched and printing will now

occur on the opposite side of the slip. (e.g., if SlpPrintSide was
PTR_PS_SIDE1, it is to be changed to PTR_PS_SIDE2.)

Remarks Selects the side of the document where printing is to occur.

This allows a print operation to occur on both sides of a document. This may be accomplished by
mechanical paper handling of the document or by using multiple print heads that are positioned to print
on each side of the document.

If a document is not inserted, an error is returned.

If side is not SlpPrintSide or side is PTR_PS_OPPOSITE, the side of the document is changed and the
document is fed to TOF. If side is SlpPrintSide, nothing occurs and method returns.

Executing the method may cause the SlpPrintSide property to change.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_BUSY Cannot be performed while output is in progress.

(Can only apply if AsyncMode is false.)
E_ILLEGAL One of the following errors occurred:

* The slip station does not exist (see the CapSlpPresent property)
* the printer does not support both sides printing (see the

CapSlpBothSidesPrint property)
* an invalid side parameter was specified

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
(Can only apply if AsyncMode is false.)
Unified POS, v1.16.1 1077

ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip station cartridge is empty.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip station cartridge has been removed.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip station head is being cleaned.
(Can only apply if AsyncMode is false.)

See Also CapSlpBothSidesPrint Property, CapSlpPresent Property, SlpPrintSide Property, cutPaper Method.

31.5.4 clearPrintArea Method Added in Release 1.9

Syntax clearPrintArea ():
void { raises-exception, use after open-claim-enable }

Remarks Clear the area defined by the PageModePrintArea property.

The entire page may be cleared by setting the PageModePrintArea to be the same as the
PageModeArea and then using clearPrintArea or by exiting Page Mode with pageModePrint with
PTR_PM_CANCEL.

The PageModeStation property must be set to a valid station prior to invoking this method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also PageModeArea Property, PageModePrintArea Property, PageModeStation Property,
pageModePrint Method.
1078 Unified POS, v1.16.1

31.5.5 cutPaper Method Updated in Release 1.9

Syntax cutPaper (percentage: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description 
percentage The percentage of paper to cut.

The constant identifier PTR_CP_FULLCUT or the value 100 causes a full paper cut. Other values
request a partial cut percentage.

Remarks Cuts the receipt paper.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Many printers with paper cut capability can perform both full and partial cuts. Some offer gradations of
partial cuts, such as a perforated cut and an almost-full cut. Although the exact type of cut will vary by
printer capabilities, the following general guidelines apply:

Value Meaning
100 Full cut.
90 Leave only a small portion of paper for very easy final separation.
70 Perforate the paper for final separation that is somewhat more difficult and

unlikely to occur by accidental handling.
50 Partial perforation of the paper.

The Service will select an appropriate type of cut based on the capabilities of its device and these general
guidelines.

An escape sequence embedded in a printNormal or printImmediate method call may also be used to
cause a paper cut.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_BUSY Cannot perform while output is in progress. (Can only apply if 
 AsyncMode is false.)
E_ILLEGAL An invalid percentage was specified, the receipt station does not exist (see the

CapRecPresent property), the receipt printer does not have paper cutting
ability (see the CapRecPapercut property), or Page Mode for the receipt
station is active.

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station is out of paper.
(Can only apply if AsyncMode is false.)

See Also “Data Characters and Escape Sequences” in Chapter 31.
Unified POS, v1.16.1 1079

31.5.6 drawRuledLine Method Added in Release 1.13

Syntax drawRuledLine (station: int32, positionList: string, lineDirection: int32, lineWidth: int32,
lineStyle: int32, lineColor: int32): 
void { raises-exception, use after open-claim-enable }

Parameter Description 
station The printer station to be used. May be either PTR_S_RECEIPT or
 PTR_S_SLIP.
positionList Position parameters for the ruled line

lineDirection Direction of ruled line. See values below.

lineWidth Width of the ruled line. The unit of thickness is “dot”.

lineStyle How the printed ruled line appears. See values below.

lineColor Color of the ruled line. Has the same values as discussed in the Print Line
Table, Alternate Color, page 27.

The lineDirection parameter has one of the following values:

Value Meaning 
PTR_RL_HORIZONTAL Print the ruled line in a horizontal direction.
PTR_RL_VERTICAL Print the ruled line in a vertical direction.

Other Values A UposException will be thrown.

The lineStyle parameter has one of the following values:

Value Meaning

Other Values The printing results will be unpredictable.

Remarks Prints a drawn, ruled line on the paper of the specified printer station.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

The character string of the positionList is different for the specified lineDirection of a horizontal ruled
line and a vertical ruled line.

1080 Unified POS, v1.16.1

Horizontal Ruled Line Example:

The positionList character string consists of ASCII numeric, comma delimited units of measure values
which denote starting position and length and followed by the ASCII semicolon character “;” if multiple
ruled lines are specified. The data pattern is repeated for any additional horizontal ruled lines. The units
of measure are the same as the units of measure defined by the MapMode property.

positionList = “0,500”

This results in a drawn ruled line started in MapMode unit position “0” and continuing for 500
MapMode units in length.

positionList = “0,200;300,100”

This results in a drawn ruled line started in MapMode unit position “0” and continuing for 200
MapMode units in length; then a drawn ruled line started in MapMode unit position “300” and
continues for 100 MapMode units in length.

Vertical Ruled Line Example:

The parameter consists of ASCII numeric, comma delimited values which denote the positions for the
vertical drawn ruled line(s). A continuous vertical ruled line will be drawn from each position for the
print lines that follow, until the vertical ruled lines are changed or terminated by a call to drawRuledLine
or a ruled line escape sequence. An empty string in the positionLine value causes the vertical ruled lines
to be terminated.. The units of measure are the same as the units of measure defined by the MapMode
property.

positionList = “0,100,400,500”

This results in four drawn ruled lines starting in MapMode unit positions “0,” “100,” “400,” and “500”
when each line of data is printed.

positionList = “” (empty string)

When the empty string value is set in the positionLine parameter, the vertical ruled line drawing will be
terminated.

The base point (“0”) position is changed by the rotatePrint method as follows:

Value Meaning 
PTR_RP_NORMAL Starting position is Top Left position
PTR_RP_RIGHT90 Starting position is Top Right position

PTR_RP_LEFT90 Starting postion is Bottom Left position

PTR_RP_ROTATE180 Starting position is Bottom Right position

The lineWidth parameter specifies the thickness of the ruled line. When an unsupported value is
specified, the “best fit” value for the printer will be used.

The lineStyle parameter specifies the type of the ruled line to be used as noted in table above. When an
unsupported value is specified, the printing results will be unpredictable.
Unified POS, v1.16.1 1081

The lineColor parameter specifies the color of the ruled line. When an unsupported value is specified,
the printing results may be unpredictable.

This method can be used when the data for the printing is buffered by the service (device) in transaction
mode or the rotate print mode. Otherwise a UposException will be thrown. 

If a ruled line of rotate left 90 or rotate right 90 is not supported by the device, a UposException will be
thrown.

If clearOutput method is called or if the print mode is changed, the drawing of ruled lines is terminated
and positionList is set to “” (empty string).

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_BUSY Cannot perform while output is in progress. (Can only apply if 
 AsyncMode is false.)
E_ILLEGAL One of the following parameter errors occurred:

* station does not exist
* station does not support bitmap printing
* width parameter is invalid or too big
* alignment is invalid or too big

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

See Also MapMode Property.
1082 Unified POS, v1.16.1

31.5.7 endInsertion Method

Syntax endInsertion ():
void { raises-exception, use after open-claim-enable }

Remarks Ends form insertion processing.

When called, the printer is taken out of form insertion mode. If the slip device has forms “jaws,” they are
closed by this method. If no form is present, an exception is raised with its ErrorCodeExtended property
set to EPTR_SLP_EMPTY.

This method is paired with the beginInsertion method for controlling form insertion. The application
may choose to call this method immediately after a successful beginInsertion if it wants to use the
printer sensors to determine when a form is positioned within the slip printer. Alternatively, the
application may prompt the user and wait for a key press before calling this method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_BUSY Cannot perform request while output is in progress.
E_ILLEGAL The printer is not in slip insertion mode.
E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:

The device was taken out of insertion mode while the printer cover was open.
ErrorCodeExtended = EPTR_SLP_EMPTY:
The device was taken out of insertion mode without a form being inserted.

See Also beginInsertion Method, beginRemoval Method, endRemoval Method.
Unified POS, v1.16.1 1083

31.5.8 endRemoval Method

Syntax endRemoval ():
void { raises-exception, use after open-claim-enable }

Remarks Ends form removal processing.

When called, the printer is taken out of form removal or ejection mode. If a form is present, an exception
is raised with its ErrorCodeExtended property set to EPTR_SLP_FORM.

This method is paired with the beginRemoval method for controlling form removal. The application
may choose to call this method immediately after a successful beginRemoval if it wants to use the printer
sensors to determine when the form has been removed. Alternatively, the application may prompt the
user and wait for a key press before calling this method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_BUSY Cannot perform request while output is in progress.

E_ILLEGAL The printer is not in slip removal mode.

E_EXTENDED ErrorCodeExtended = EPTR_SLP_FORM:
The device was taken out of removal mode while a form was still present.

See Also beginInsertion Method, endInsertion Method, beginRemoval Method.
1084 Unified POS, v1.16.1

31.5.9 markFeed Method Added in Release 1.5

Syntax markFeed (type: int32):
void { raises-exception, use after open-claim-enable }

The type parameter indicates the type of mark sensed paper handling. Valid values are:

Value Description 
PTR_MF_TO_TAKEUP

Feed the Mark Sensed paper to the paper take-up position.

PTR_MF_TO_CUTTER
Feed the Mark Sensed paper to the auto cutter cutting position.

PTR_MF_TO_CURRENT_TOF
Feed the Mark Sensed paper to the present paper’s top of form. (Reverse
feed.)

PTR_MF_TO_NEXT_TOF
Feed the Mark Sensed paper to the next paper’s top of form.

Remarks This method is used to utilize the printer’s mark sensor for receipt paper.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

If type is PTR_MF_TO_TAKEUP, the printer will feed the mark sensed paper so that the present form is
moved so that it can be manually removed by the operator.

If type is PTR_MF_TO_CUTTER, the printer will feed the mark sensed paper so that the present form
is in position to be cut off by the auto cutter. This will usually be followed by a call to the cutPaper
method.

If type is PTR_MF_TO_CURRENT_TOF, the printer will feed the mark sensed paper (backwards if
necessary) so that the print head points to the top of the present form.

If type is PTR_MF_TO_NEXT_TOF, the printer will feed the mark sensed paper so that print head points
to the top of the next form.

The following diagram provides a pictorial representation of the functions performed by this method.
Unified POS, v1.16.1 1085

1

2

Print Head

Auto Cutter

Inside of the Printer

Outside of the Printer

PTR_MF_TO_CUTTER

1

2

1

2

Print Head

Auto Cutter

Inside of the Printer

Outside of the Printer

PTR_MF_TO_
CURRENT_TOF

1

2

PTR_MF_TO_CURRENT_TOFPTR_MF_TO_TAKEUP

Print Head

Auto Cutter

Inside of the Printer

Outside of the Printer

2

3

PTR_MF_TO_NEXT_TOF
1086 Unified POS, v1.16.1

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_BUSY Cannot be performed while output is in progress.

(Can only apply if AsyncMode is false.)

E_ILLEGAL The receipt print station does not support the given mark sensed paper
handling function. (Refer to the CapRecMarkFeed property)

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt paper is empty.
(Can only apply if AsyncMode is false.)

See Also CapRecMarkFeed Property.

31.5.10 pageModePrint Method Updated in Release 1.11

Syntax pageModePrint (control: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description 
control Page Mode control. See values below:

Value Meaning 
PTR_PM_PAGE_MODE

Enter Page Mode.
PTR_PM_PRINT_SAVE

Print PageModePrintArea and save the canvas. Page Mode is not exited.
Use for printing of repeated pages.

PTR_PM_NORMAL Print the print area and destroy the canvas and exit Page Mode.
PTR_PM_CANCEL Clear the page and exit the Page Mode without any printing of any print area.

Remarks Enters or exits Page Mode for the station specified in the PageModeStation property.

If control is PTR_PM_PAGE_MODE, then Page Mode is entered. Subsequent calls to printNormal,
printBarCode, printBitmap, and printMemoryBitmap will buffer the print data (either at the printer
or the Service, depending on the printer capabilities) until pageModePrint is called with the control
parameter set to PTR_PM_PRINT_SAVE, PTR_PM_NORMAL, or PTR_PM_CANCEL. (In this case,
the print methods only validate the method parameters and buffer the data – they do not initiate printing.
Also, the value of the AsyncMode property does not affect their operation: No OutputID will be
assigned to the request, nor will an OutputCompleteEvent be enqueued.)
Unified POS, v1.16.1 1087

If control is PTR_PM_PRINT_SAVE, then Page Mode is not exited. If some data is buffered by calls to
the methods printNormal, printBarCode, printBitmap, and printMemoryBitmap, then the buffered
data is saved and printed. This control is used to print the same page layout with additional print items
inside of the page.

If control is PTR_PM_NORMAL, then Page Mode is exited. If some data is buffered by calls to the
methods printNormal, printBarCode, printBitmap, and printMemoryBitmap, then the buffered data
is printed. The buffered data will not be saved.

If control is PTR_PM_CANCEL, then Page Mode is exited. If some data is buffered by calls to the
methods printNormal, printBarCode, printBitmap, and printMemoryBitmap, then the buffered data
is not printed and is not saved.

Note that when the pageModePrint method is called, all of the data that is to be printed in the
PageModePrintArea will be printed and the paper is fed to the end of the PageModePrintArea. If more
than one PageModePrintArea is defined, then after the pageModePrint method is called, all of the data
that is to be printed in the respective PageModePrintArea(s) will be printed and the paper will be fed to
the end of the PageModePrintArea located the farthest “down” the sheet of paper. (See figure below).

The entire Page Mode transaction is treated as one message. This method is performed synchronously if
AsyncMode is false, and asynchronously if AsyncMode is true.

Feed End Position

Paper Feed Direction

PageModeArea

PageModePrintArea
(Second)

PageModePrintArea
(First)

Paper
1088 Unified POS, v1.16.1

Calling the clearOutput method cancels Page Mode. Any buffered print lines are also cleared.

Page Mode can be used within a transaction print, but not within a rotate print.

The PageModeStation property must be set to a valid station prior to invoking this method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The specified PageModeStation does not exist (see the CapRecPresent and

CapSlpPresent properties), or CapxxxPageMode is false, or the specified
PageModeStation is not in Page Mode and control is set to
PTR_PM_NORMAL, PTR_PM_PRINT_SAVE, or PTR_PM_CANCEL.

E_BUSY Cannot perform while output is in progress. (Can only apply if AsyncMode
is false and control is PTR_PM_NORMAL, PTR_PM_PRINT_SAVE, or
PTR_PM_CANCEL.)

See Also CapXxxPageMode Properties, PageModePrintArea Property, PageModeStation Property.

31.5.11 printBarCode Method Updated in Release 1.13

Syntax printBarCode (station: int32, data: string, symbology: int32, height: int32, width: int32,
alignment: int32, textPosition: int32): 
void { raises-exception, use after open-claim-enable }

Parameter Description
station The printer station to be used. May be either PTR_S_RECEIPT or

PTR_S_SLIP.
data2 Character string to be bar coded.
symbology Bar code symbol type to use. See values below.
height Bar code height. Expressed in the unit of measure given by MapMode.
width Bar code width. Expressed in the unit of measure given by MapMode.
alignment Placement of the bar code. See values below.
textPosition Placement of the readable character string. See values below.

2. In the OPOS environment, the format of data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.
Unified POS, v1.16.1 1089

The alignment parameter has one of the following values:

Value Meaning 
PTR_BC_LEFT Align with the left-most print column.
PTR_BC_CENTER Align in the center of the station.
PTR_BC_RIGHT Align with the right-most print column.
Other Values Distance from the left-most print column to the start of the bar code.

Expressed in the unit of measure given by MapMode.

The textPosition parameter has one of the following values:

Value Meaning 
PTR_BC_TEXT_NONE No text is printed. Only print the bar code.
PTR_BC_TEXT_ABOVE Print the text above the bar code.
PTR_BC_TEXT_BELOW Print the text below the bar code.

The symbology parameter has one of the following values:

Value Meaning 
One Dimensional Symbologies
PTR_BCS_UPCA UPC-A
PTR_BCS_UPCA_S UPC-A with supplemental barcode
PTR_BCS_UPCE UPC-E
PTR_BCS_UPCE_S UPC-E with supplemental barcode
PTR_BCS_UPCD1 UPC-D1
PTR_BCS_UPCD2 UPC-D2
PTR_BCS_UPCD3 UPC-D3
PTR_BCS_UPCD4 UPC-D4
PTR_BCS_UPCD5 UPC-D5
PTR_BCS_EAN8 EAN 8 (= JAN 8)
PTR_BCS_JAN8 JAN 8 (= EAN 8)
PTR_BCS_EAN8_S EAN 8 with supplemental barcode
PTR_BCS_EAN13 EAN 13 (= JAN 13)
PTR_BCS_JAN13 JAN 13 (= EAN 13)
PTR_BCS_EAN13_S EAN 13 with supplemental barcode
PTR_BCS_EAN128 EAN-128
PTR_BCS_TF Standard (or discrete) 2 of 5
PTR_BCS_ITF Interleaved 2 of 5
PTR_BCS_Codabar Codabar
PTR_BCS_Code39 Code 39
PTR_BCS_Code93 Code 93
PTR_BCS_Code128 Code 128
PTR_BCS_OCRA OCR “A”
PTR_BCS_OCRB OCR “B”
1090 Unified POS, v1.16.1

Added in Release 1.8

PTR_BCS_Code128_Parsed Code 128 with parsing.
PTR_BCS_RSS14 Reduced Space Symbology - Deprecated v1.12; replaced by

PTR_BCS_GS1DATABAR (which has the same value)
PTR_BCS_RSS_EXPANDED Reduced Space Symbology - Expanded - Deprecated v1.12;

replaced by PTR_BCS_GS1DATABAR_E (which has the same
value)

Added in Release 1.12

PTR_BCS_GS1DATABAR GS1 DataBar Omnidirectional
PTR_BCS_GS1DATABAR_S GS1 DataBar Stacked Omnidirectional
PTR_BCS_GS1DATABAR_E GS1 DataBar Expanded
PTR_BCS_GS1DATABAR_E_S

GS1 DataBar Expanded Stacke

Two Dimensional Symbologies

PTR_BCS_PDF417 PDF 417
PTR_BCS_MAXICODE MAXICODE

Added in Release 1.13

PTR_BCS_DATAMATRIX Data Matrix

PTR_BCS_QRCODE QR Code

PTR_BCS_UQRCODE Micro QR Code

PTR_BCS_AZTEC Aztec

PTR_BCS_UPDF417 Micro PDF 417

Special Cases

PTR_BCS_OTHER If a Service defines additional symbologies, they will be greater or equal to
this value.

Note: Added in Release 1.14

The “Scanner (Bar Code Reader) device was updated in Release 1.14 to include additional scanner
symbologies, not all of which are common to POS transactions. Therefore it would not be a normal
requirement for a POS printer to be able to print these new symbologies. These new symbologies are not
included in the above supported symbology lists above. However, if one of these newly added Scanner
symbologies were to be printed, it would fall under the Special Cases, PTR_BCS_OTHER if a printer
was capable of printing.

Future updates to the above list may be included as usage of new POS scanner codes become mainstream
requirements for POS.
Unified POS, v1.16.1 1091

Special Considerations for Code 128

The Code 128 Bar Code Symbology is comprised of three code sets and also includes some special
characters that denote either a change in code set, a function code, or a shift code. The characters for each
code set are:

Code Set Character Set
Code A 0x00-0x5f, FNC1, FNC2, FNC3, FNC4, SHIFT, CODE B, CODE C
Code B 0x20-0x7f, FNC1, FNC2, FNC3, FNC4, SHIFT, CODE A, CODE C
Code C 0x00-0x63 for decimal values 00-99, FNC1, CODE A, CODE B

Release 1.7 and earlier

The data format to be supplied by the application was not specified in these releases. Therefore, the
default code set and data content varies by vendor. An application that sends Code 128 data to a 1.7 or
earlier service will need to conform to that service's requirements.

Release 1.8 and later

For migration of current applications, the symbology PTR_BCS_Code128 is maintained so that a service
may continue to support the data format that it used with earlier releases. (New service implementations
should handle this symbology as with PTR_BCS_Code128_Parsed.)

The new symbology PTR_BCS_Code128_Parsed standardizes the data format with consistent parsing.
Data is comprised of ASCII characters, which the service maps to the corresponding value for the
selected code set. In Code Sets A and B, this will be a one to one mapping. In Code Set C, each pair of
digits is converted to a single Code C data character in the range 0x00 through 0x63 (99). (If the Code
Set C data contains an odd number of digits, then a leading zero digit is added by the service before
conversion.) A sentinel character, the left curly bracket “{”, followed by a certain value, is used to
indicate a special character. The following table lists the character pairs for encoding the special
characters:

Special Characters ASCII Representation
SHIFT {S
CODE A {A
CODE B {B
CODE C {C
FNC1 {1
FNC2 {2
FNC3 {3
FNC4 {4
{ {{

The default Code Set may differ by vendor, so a starting code set is required at the start of the data.

Remarks Prints a bar code on the specified printer station.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

If RotateSpecial indicates that the bar code is to be rotated, then perform the rotation. The height, width,
and textPosition parameters are applied to the bar code before the rotation. For example, if
PTR_BC_TEXT_BELOW is specified and the bar code is rotated left, then the text will appear on the
paper to the right of the bar code.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:
1092 Unified POS, v1.16.1

Value Meaning
E_ILLEGAL One of the following parameter errors occurred:

* station does not exist
* station does not support bar code printing
* height or width is zero or too big
* symbology is not supported
* not all characters in data are supported by symbology
* alignment is invalid or too big
* Code Set is not specified for PTR_BCS_Code128_Parsed at start of

data
* textPosition is invalid, or
* the RotateSpecial rotation is not supported.

E_BUSY Cannot perform while output is in progress.
(Can only apply if AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

See Also MapMode Property, RotateSpecial Property.
Unified POS, v1.16.1 1093

31.5.12 printBitmap Method Updated in Release 1.7

Syntax printBitmap (station: int32, fileName: string, width: int32, alignment: int32): 
void { raises-exception, use after open-claim-enable }

Parameter Description 
station The printer station to be used. May be either PTR_S_RECEIPT or 
 PTR_S_SLIP.
fileName File name or URL of bitmap file. Various file formats may be supported, such

as bmp, gif, or jpeg files.3

width Printed width of the bitmap to be performed. See values below.

alignment Placement of the bitmap. See values below.

The width parameter has one of the following values:

Value Meaning 
PTR_BM_ASIS Print the bitmap with one bitmap pixel per printer dot.
Other Values Bitmap width expressed in the unit of measure given by MapMode.

The alignment parameter has one of the following values:

Value Meaning 
PTR_BM_LEFT Align with the left-most print column.
PTR_BM_CENTER Align in the center of the station.

PTR_BM_RIGHT Align with the right-most print column.

Other Values Distance from the left-most print column to the start of the bitmap. Expressed
in the unit of measure given by MapMode.

Remarks Prints a bitmap on the specified printer station. If a partial text line has been sent (for example, via
printNormal) but not yet printed, then an implicit line feed is added to this text and the line is printed
before the bitmap is printed. Text data sent after this printBitmap begins on the line following the
bitmap.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

The width parameter controls transformation of the bitmap. If width is PTR_BM_ASIS, then no
transformation is performed. The bitmap is printed with one bitmap pixel per printer dot. Advantages of
this option are that it:

• Provides the highest performance bitmap printing.
• Works well for bitmaps tuned for a specific printer’s aspect ratio between horizontal dots and

vertical dots.

3. In the OPOS environment, the Service Object must support two-color (black and white) uncompressed
Windows bitmaps. Black pixels are printed, while white pixels are not printed. Additional formats may
be supported.
1094 Unified POS, v1.16.1

If width is non-zero, then the bitmap will be transformed by stretching or compressing the bitmap such
that its width is the specified width and the aspect ratio is unchanged. Advantages of this option are:

• Sizes a bitmap to fit a variety of printers.
• Maintains the bitmap’s aspect ratio.

Disadvantages are:

• Lowers performance than untransformed data.
• Some lines and images that are “smooth” in the original bitmap may show some “ratcheting.”

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_BUSY Cannot perform while output is in progress. (Can only apply if
 AsyncMode is false.)
E_ILLEGAL One of the following parameter errors occurred:

* station does not exist
* station does not support bitmap printing
* width parameter is invalid or too big
* alignment is invalid or too big

E_NOEXIST fileName was not found.

E_EXTENDED ErrorCodeExtended = EPTR_TOOBIG:
The bitmap is either too wide to print without transformation, or it is too
big to transform.

ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_BADFORMAT:
The specified file is either not a bitmap file, or it is in an unsupported
format.

ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
Unified POS, v1.16.1 1095

ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

See Also MapMode Property.
1096 Unified POS, v1.16.1

31.5.13 printImmediate Method Updated in Release 1.13

Syntax printImmediate (station: int32, data: string): 
void { raises-exception, use after open-claim-enable }

Parameter Description 
station The printer station to be used. May be either PTR_S_JOURNAL, 
 PTR_S_RECEIPT or PTR_S_SLIP.
data4 The characters to be printed. May consist of printable characters, escape

sequences, carriage returns (13 decimal), and line feeds (10 decimal).

Remarks Prints data on the printer station immediately.

This method tries to print its data immediately – that is, as the very next printer operation. It may be called
when asynchronous output is outstanding. This method is primarily intended for use in exception
conditions when asynchronous output is outstanding, such as within an error event handler.

Special character values within data are:

Value Meaning 
Line Feed (10) Print any data in the line buffer, and feed to the next print line. (A Carriage 
 Return is not required in order to cause the line to be printed.)
Carriage Return (13) If a Carriage Return immediately precedes a Line Feed, or if the line buffer is

empty, then it is ignored.
Otherwise, the line buffer is printed and the printer does not feed to the next
print line. On some printers, print without feed may be directly supported. On
others, a print may always feed to the next line, in which case the Service will
print the line buffer and perform a reverse line feed if supported. If the printer
does not support either of these features, then Carriage Return acts like a Line
Feed.
The validateData method may be used to determine whether a Carriage
Return without Line Feed is possible, and whether a reverse line feed is
required to support it.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGAL The specified station does not exist (see the CapJrnPresent, CapRecPresent,
 and CapSlpPresent properties.), or the station is in Page Mode and the device
 does not support direct printing in Page Mode.

4. In the OPOS environment, the format of data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.
Unified POS, v1.16.1 1097

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
ErrorCodeExtended = EPTR_JRN_EMPTY:
The journal station was specified but is out of paper.
ErrorCodeExtended = EPTR_JRN_CARTRIDGE_REMOVED:
A journal cartridge has been removed.
ErrorCodeExtended = EPTR_JRN_CARTRIDGE_EMPTY:
A journal cartridge is empty.
ErrorCodeExtended = EPTR_JRN_HEAD_CLEANING:
A journal cartridge head is being cleaned.
ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
ErrorCodeExtended =EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
ErrorCodeExtended = EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
ErrorCodeExtended = EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.

See Also printNormal Method, printTwoNormal Method.
1098 Unified POS, v1.16.1

31.5.14 printMemoryBitmap Method Added in Release 1.12

Syntax printMemoryBitmap (station: int32, data: binary, type: int32, width: int32, alignment: int32): 
void { raises-exception, use after open-claim-enable }

Parameter Description 
station The printer station to be used. May be either PTR_S_RECEIPT or 
 PTR_S_SLIP.
data5 Memory byte array representation of the bitmap.
type Various bitmap formats may be supported, such as bmp, gif, or jpeg files.6

See values below.
width Printed width of the bitmap to be performed. See values below.
alignment Placement of the bitmap. See values below.

The type parameter has one of the following values:

Value Meaning 
PTR_BMT_BMP The data parameter contains a BMP format bitmap.
PTR_BMT_JPEG The data parameter contains a JPEG format bitmap.
PTR_BMT_GIF The data parameter contains a GIF format bitmap.

The width parameter has one of the following values:

Value Meaning 
PTR_BM_ASIS Print the bitmap with one bitmap pixel per printer dot.
Other Values Bitmap width expressed in the unit of measure given by MapMode.

The alignment parameter has one of the following values:

Value Meaning 
PTR_BM_LEFT Align with the left-most print column.
PTR_BM_CENTER Align in the center of the station.
PTR_BM_RIGHT Align with the right-most print column.
Other Values Distance from the left-most print column to the start of the bitmap. Expressed

in the unit of measure given by MapMode.

Remarks Prints a memory-stored bitmap on the specified printer station. If a partial text line has been sent (for
example, via printNormal) but not yet printed, then an implicit line feed is added to this text and the line
is printed before the bitmap is printed. Text data sent after this printMemoryBitmap begins on the line
following the bitmap.
This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.
The width parameter controls transformation of the bitmap. If width is PTR_BM_ASIS, then no
transformation is performed. The bitmap is printed with one bitmap pixel per printer dot. Advantages of
this option are that it:
• Provides the highest performance bitmap printing.
• Works well for bitmaps tuned for a specific printer’s aspect ratio between horizontal dots and

vertical dots.
If width is non-zero, then the bitmap will be transformed by stretching or compressing the bitmap such
that its width is the specified width and the aspect ratio is unchanged. Advantages of this option are:
• Sizes a bitmap to fit a variety of printers.
• Maintains the bitmap’s aspect ratio.

5. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.

6. In the OPOS environment, the Service Object must support two-color (black and white) uncompressed
Windows bitmaps. Black pixels are printed, while white pixels are not printed. Additional formats may
be supported.
Unified POS, v1.16.1 1099

Disadvantages are:
• Lowers performance compared to untransformed data.
• Some lines and images that are “smooth” in the original bitmap may show some “ratcheting.”

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_BUSY Cannot perform while output is in progress. (Can only apply if
 AsyncMode is false.)
E_ILLEGAL One of the following parameter errors occurred:

* station does not exist
* station does not support bitmap printing
* width parameter is invalid or too big
* alignment is invalid or too big

E_EXTENDED ErrorCodeExtended = EPTR_TOOBIG:
The bitmap is either too wide to print without transformation, or it is too
big to transform.
ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_BADFORMAT:
The specified file is either not a bitmap file, or it is in an unsupported
format.
ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

See Also MapMode Property.
1100 Unified POS, v1.16.1

31.5.15 printNormal Method Updated in Release 1.7

Syntax printNormal (station: int32, data: string): 
void { raises-exception, use after open-claim-enable }

Parameter Description 
station The printer station to be used. May be either PTR_S_JOURNAL, 
 PTR_S_RECEIPT or PTR_S_SLIP.
data7 The characters to be printed. May consist of printable characters, escape

sequences, carriage returns (13 decimal), and line feeds (10 decimal).

Remarks Prints data on the printer station.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Special character values within data are:

Value Meaning 
Line Feed (10) Print any data in the line buffer, and feed to the next print line. (A Carriage
 Return is not required in order to cause the line to be printed.)
Carriage Return (13) If a Carriage Return immediately precedes a Line Feed, or if the line buffer is

empty, then it is ignored.

Otherwise, the line buffer is printed and the printer does not feed to the next
print line. On some printers, print without feed may be directly supported. On
others, a print may always feed to the next line, in which case the Service will
print the line buffer and perform a reverse line feed if supported. If the printer
does not support either of these features, then Carriage Return acts like a Line
Feed.

The validateData method may be used to determine whether a Carriage
Return without Line Feed is possible, and whether a reverse line feed is
required to support it.

7. In the OPOS environment, the format of data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.
Unified POS, v1.16.1 1101

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The specified station does not exist. (See the CapJrnPresent, CapRecPresent,
 and CapSlpPresent properties.)

E_BUSY Cannot perform while output is in progress.(Can only apply if AsyncMode is
false.)

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
ErrorCodeExtended = EPTR_JRN_EMPTY:
The journal station was specified but is out of paper.
ErrorCodeExtended = EPTR_JRN_CARTRIDGE_REMOVED:
A journal cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_JRN_CARTRIDGE_EMPTY:
A journal cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_JRN_HEAD_CLEANING:
A journal cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended =EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

See Also printImmediate Method, printTwoNormal Method.
1102 Unified POS, v1.16.1

31.5.16 printTwoNormal Method Updated in Release 1.9

Syntax printTwoNormal (stations: int32, data1: string, data2: string): 
void { raises-exception, use after open-claim-enable }

Parameter Description
stations Release 1.2
 The printer stations to be used may be: PTR_S_JOURNAL_RECEIPT, 
 PTR_S_JOURNAL_SLIP, or PTR_S_RECEIPT_SLIP.
 Release 1.3 and later:

 Select one of the following:

data1 8 The characters to be printed on the first station. May consist of printable characters and
escape sequences as listed in the “Print Line” table under “Data Characters and
Escape Sequences” in Chapter 31. The characters must all fit on one printed line, so
that the printer may attempt to print on both stations simultaneously.

data2 7 The characters to be printed on the second station. (Restrictions are the same as for
data1.) If this string is the empty string (“”), then print the same data as data1. On some
printers, using this format may give additional increased print performance.

Remarks Prints two strings on two print stations simultaneously. When supported, this may give increased print
performance.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Release 1.2
Documentation release 1.2 was not sufficiently clear as to the meaning of “first” and “second” station so
Service implementations varied between the following:

• Assign stations based on order within the constants. For example, PTR_S_JOURNAL_RECEIPT
prints data1 on the journal and data2 on the receipt.

• Assign stations based upon physical device characteristics or internal print order.

Due to this inconsistency, the application should use the new constants if the Control and Service
versions indicate Release 1.3 or later.

stations Parameter
First

Station
Second
Station

PTR_TWO_RECEIPT_JOURNAL Receipt Journal

PTR_TWO_SLIP_JOURNAL Slip Journal

PTR_TWO_SLIP_RECEIPT Slip Receipt

8. In the OPOS environment, the format of data1 and data2 depends upon the value of the
BinaryConversion property. See BinaryConversion property in Annex A.
Unified POS, v1.16.1 1103

Release 1.3 and later
Service for Release 1.3 or later should support both sets of constants. The vendor should define and
document the behavior of the obsolete constants.

The sequence of stations in the constants does not imply the physical printing sequence on the stations.
The physical sequence depends on the printer and may be different based on the bi-directional printing
multiple print heads and so on.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGAL The specified stations do not support concurrent printing (see the
 CapConcurrentJrnRec, CapConcurrentJrnSlp, and CapConcurrentRecSlp
 properties.), or Page Mode is active for either station specified in stations.
E_BUSY Cannot perform while output is in progress. (Can only apply if AsyncMode is

false.)

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.

ErrorCodeExtended = EPTR_JRN_EMPTY:
The journal station was specified but is out of paper.

ErrorCodeExtended = EPTR_JRN_CARTRIDGE_REMOVED:
A journal cartridge has been removed. (Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_JRN_CARTRIDGE_EMPTY:
A journal cartridge is empty. (Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_JRN_HEAD_CLEANING:
A journal cartridge head is being cleaned. (Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper. (Can only apply if
AsyncMode is false.)

ErrorCodeExtended =EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed. (Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty. (Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned. (Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted. (Can only apply if
AsyncMode is false.)

ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed. (Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty. (Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned. (Can only apply if AsyncMode is false.)

See Also printNormal Method
1104 Unified POS, v1.16.1

31.5.17 rotatePrint Method Updated in Version 1.11

Syntax rotatePrint (station: int32, rotation: int32): 
void { raises-exception, use after open-claim-enable }

Parameter Description 
station The printer station to be used. May be PTR_S_RECEIPT or 
 PTR_S_SLIP.
rotation Direction of rotation. See values below.

Value Meaning 
PTR_RP_RIGHT90 Start rotated printing 90° to the right (clockwise)
PTR_RP_LEFT90 Start rotated printing 90° to the left (counter-clockwise)
PTR_RP_ROTATE180 Start rotated printing 180°, that is, print upside-down
PTR_RP_BARCODE Start rotated bar code printing. This value is ORed with one of the above start

rotated print values.
PTR_RP_BITMAP Start rotated bitmap printing. This value is ORed with one of the above start

rotated print values.
PTR_RP_NORMAL End rotated printing.

Remarks Enters or exits rotated print mode.

This method is performed synchronously if AsyncMode is false, asynchronously if AsyncMode is true.

If rotation includes PTR_RP_ROTATE180, then upside-down print mode is entered. Subsequent calls
to printNormal or printImmediate will print the data upside-down until rotatePrint is called with
rotation set to PTR_RP_NORMAL. Each print line is rotated by 180°. Lines are printed in the order that
they are sent, with the start of each line justified at the right margin of the printer station. If rotation does
not include PTR_RP_BARCODE and/or PTR_RP_BITMAP, then only the print methods printNormal
and printImmediate may be used while in upside-down print mode.

If rotation includes PTR_RP_RIGHT90 or PTR_RP_LEFT90, then sideways print mode is entered.
Subsequent calls to printNormal will buffer the print data (either at the printer or the Service, depending
on the printer capabilities) until rotatePrint is called with rotation set to PTR_RP_NORMAL. (In this
case, printNormal only buffers the data – it does not initiate printing. Also, the value of the AsyncMode
property does not affect its operation: No OutputID will be assigned to the request, nor will an
OutputCompleteEvent be enqueued.) Each print line is rotated by 90°. If the lines are not all the same
length, then they are justified at the start of each line. If rotation does not include PTR_RP_BARCODE
and/or PTR_RP_BITMAP, then only printNormal may be used while in sideways print mode.

If rotation includes PTR_RP_NORMAL, then rotated print mode is exited. If sideways-rotated print
mode was in effect and some data was buffered by calls to the printNormal method, then the buffered
data is printed. The entire rotated block of lines are treated as one message.

If rotation includes PTR_RP_BARCODE and/or PTR_RP_BITMAP, then any bar codes (printed with
printBarCode or printed with the Escape Sequence “|#R”) and/or bitmaps (printed with printBitmap
or printed with the Escape Sequence “|#B”) submitted for printing during the rotatePrint processing
cycle will also be rotated. Such rotation will be within the limitations that may be specified by the
RecBarCodeRotationList, SlpBarCodeRotationList, RecBitmapRotationList, and
SlpBitmapRotationList properties respectively.

If rotation includes PTR_RP_BARCODE, then the contents of RotateSpecial are ignored.
Unified POS, v1.16.1 1105

Changing the rotation mode may also change the station’s line height, line spacing, line width, and other
metrics.

Calling the clearOutput method cancels rotated print mode. Any buffered sideways rotated print lines
are also cleared.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGAL The specified station does not exist (see the CapJrnPresent, CapRecPresent,
 and CapSlpPresent properties), or the station does not support the specified
 rotation (see the station’s rotation capability properties).
E_BUSY Cannot perform while output is in progress. (Can only apply if AsyncMode is

false.)
E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:

The printer cover is open.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended =EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

See Also “Data Characters and Escape Sequences” in Chapter 31, RotateSpecial Property.
1106 Unified POS, v1.16.1

31.5.18 setBitmap Method Updated in Release 1.7

Syntax setBitmap (bitmapNumber: int32, station: int32, fileName: string, width: int32, alignment: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description 
bitmapNumber The number to be assigned to this bitmap. Valid bitmap numbers are 1 
 through 20.

Release 1.6 and earlier: Valid bitmap numbers are 1 and 2.

station The printer station to be used. May be either PTR_S_RECEIPT or
PTR_S_SLIP.

fileName File name or URL of bitmap file. Various file formats may be supported, such
as bmp, gif, or jpeg files.9

If set to an empty string (“”), then the bitmap is unset.

width Printed width of the bitmap to be performed. See printBitmap for values.

alignment Placement of the bitmap. See printBitmap for values.

Remarks Saves information about a bitmap for later printing.

The bitmap may then be printed by calling the printNormal or printImmediate method with the print
bitmap escape sequence in the print data. The print bitmap escape sequence will typically be included in
a string for printing top and bottom transaction headers.

If a partial text line has been sent before the print bitmap escape sequence is encountered, then an implicit
line feed is added to this text and the line is printed before the bitmap is printed. Text data sent after the
print bitmap escape sequence begins on the line following the bitmap.

A Service may choose to cache the bitmap for later use to provide better performance. Regardless, the
bitmap file and parameters are validated for correctness by this method.

The most frequently used bitmaps should be assigned a small bitmapNumber (close to 1), while
occasionally used bitmaps should be assigned the larger bitmapNumbers. The Service will use these
subsets to determine how best to store the bitmaps. It may download them to the device when possible,
or cache them in Service memory, or simply remember the fileName and associated properties for use
when it is printed.

The application must ensure that the printer station metrics, such as character width, line height, and line
spacing are set for the station before calling this method. The Service may perform transformations on
the bitmap in preparation for later printing based upon the current values.

The application may set bitmaps numbered 1 through 20 for each of the two valid stations. If desired, the
same bitmap fileName may be set to the same bitmapNumber for each station, so that the same print
bitmap escape sequence may be used for either station.

9. In the OPOS environment, the Service Object must support two-color (black and white) uncompressed
Windows bitmaps. Black pixels are printed, while white pixels are not printed. Additional formats may
be supported.
Unified POS, v1.16.1 1107

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGAL One of the following errors occurred:
 * bitmapNumber is invalid
 * station does not exist
 * station does not support bitmap printing
 * width is too big
 * alignment is invalid or too big
E_NOEXIST fileName was not found.
E_EXTENDED ErrorCodeExtended = EPTR_TOOBIG:

The bitmap is either too wide to print without transformation, or it is too
big to transform.
ErrorCodeExtended = EPTR_BADFORMAT:
The specified file is either not a bitmap file, or it is in an unsupported
format.

See Also “Data Characters and Escape Sequences” in Chapter 31, printBitmap Method.

31.5.19 setLogo Method Updated in Release 1.10

Syntax setLogo (location: int32, data: string):
void { raises-exception, use after open-claim-enable }

Parameter Description
location The logo to be set. May be PTR_L_TOP or PTR_L_BOTTOM.
data10 The characters that produce the logo. May consist of printable characters,

escape sequences (except logos), carriage returns (13 decimal), and line feeds
(10 decimal).

Remarks Saves a data string as the top or bottom logo.

A logo may then be printed by calling the printNormal, printTwoNormal, or printImmediate method
with the print top logo or print bottom logo escape sequence in the print data.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGAL An invalid location was specified.

See Also “Data Characters and Escape Sequences” in Chapter 31.

10.In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.
1108 Unified POS, v1.16.1

31.5.20 transactionPrint Method

Syntax transactionPrint (station: int32, control: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

station The printer station to be used. May be PTR_S_JOURNAL,
PTR_S_RECEIPT, or PTR_S_SLIP.

control Transaction control. See values below:

Value Meaning

PTR_TP_TRANSACTION Begin a transaction.

PTR_TP_NORMAL End a transaction by printing the buffered data.

Remarks Enters or exits transaction mode.

If control is PTR_TP_TRANSACTION, then transaction mode is entered. Subsequent calls to
printNormal, cutPaper, rotatePrint, printBarCode, and printBitmap will buffer the print data
(either at the printer or the Service, depending on the printer capabilities) until transactionPrint is
called with the control parameter set to PTR_TP_NORMAL. (In this case, the print methods only
validate the method parameters and buffer the data – they do not initiate printing. Also, the value of
the AsyncMode property does not affect their operation: No OutputID will be assigned to the
request, nor will an OutputCompleteEvent be enqueued.)

If control is PTR_TP_NORMAL, then transaction mode is exited. If some data was buffered by
calls to the methods printNormal, cutPaper, rotatePrint, printBarCode, and printBitmap, then
the buffered data is printed. The entire transaction is treated as one message. This method is
performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is true.

Calling the clearOutput method cancels transaction mode. Any buffered print lines are also
cleared.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The specified station does not exist (see the CapJrnPresent, CapRecPresent,
 and CapSlpPresent properties), or CapTransaction is false.

E_BUSY Cannot perform while output is in progress. (Can only apply if AsyncMode is false
and control is PTR_TP_NORMAL.)

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
(Can only apply if AsyncMode is false and control is PTR_TP_NORMAL.)
ErrorCodeExtended = EPTR_JRN_EMPTY:
The journal station was specified but is out of paper.
ErrorCodeExtended = EPTR_JRN_CARTRIDGE_REMOVED:
A journal cartridge has been removed.
(Can only apply if AsyncMode is false.)
Unified POS, v1.16.1 1109

ErrorCodeExtended = EPTR_JRN_CARTRIDGE_EMPTY:
A journal cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_JRN_HEAD_CLEANING:
A journal cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended =EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

See Also CapTransaction Property, cutPaper Method, printBarCode Method, printBitmap Method,
printNormal Method, rotatePrint Method.
1110 Unified POS, v1.16.1

31.5.21 validateData Method Updated in Release 1.9

Syntax validateData (station: int32, data: string): 
void { raises-exception, use after open-claim-enable }

Parameter Description 
station The printer station to be used. May be either PTR_S_JOURNAL, 
 PTR_S_RECEIPT or PTR_S_SLIP.
data11 The data to be validated. May include printable data and escape sequences.

Remarks Determines whether a data sequence, possibly including one or more escape sequences, is valid for the
specified station, before calling the printImmediate, printNormal, or printTwoNormal methods.

This method does not cause any printing, but is used to determine the capabilities of the station.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGAL Some of the data is not precisely supported by the printer station, but
 the Service can select valid alternatives. This exception can also be
 thrown if an escape sequence is not supported while either Page 
 Mode or rotate sideways is active.
E_FAILURE Some of the data is not supported. No alternatives can be selected.

Cases which cause ErrorCode of E_ILLEGAL:

Escape Sequence Condition 
Paper cut The percentage ‘#’ is not precisely supported: Service will select the
 closest supported value.
Feed and Paper cut The percentage ‘#’ is not precisely supported: Service will select the

closest supported value.
Feed, Paper cut, and Stamp The percentage ‘#’ is not precisely supported: Service will select the

closest supported value.
Feed units The unit count ‘#’ is not precisely supported: Service will select the

closest supported value.
Feed reverse The line count ‘#’ is too large: Service will select the maximum

supported value.
Underline The thickness ‘#’ is not precisely supported: Service will select the

closest supported value.
Shading The percentage ‘#’ is not precisely supported: Service will select the

closest supported value.
Scale horizontally The scaling factor ‘#’ is not supported: Service will select the closest

supported value.
Scale vertically The scaling factor ‘#’ is not supported: Service will select the closest

supported value.
Alternate Color The color ‘#’ is not supported: Service will select the closest

supported value.

11.In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.
Unified POS, v1.16.1 1111

RGB Color The color ‘#’ is not supported: Service will select the closest
supported value.

Data Condition

data1CRdata2LF (Where CR is a Carriage Return and LF is a Line Feed.) In order to
print data data1 and remain on the same line, the Service will print
with a line advance, then perform a reverse line feed. The data data2
will then overprint data1.

Cases which will cause ErrorCode of E_FAILURE:

Escape Sequence Condition 
(General) The escape sequence format is not valid.
Paper cut Not supported.
Feed and Paper cut Not supported.
Feed, Paper cut, and Stamp Not supported.
Fire stamp Not supported.
Print bitmap Bitmap printing is not supported, or the bitmap number ‘#’ is out of

range.
Feed reverse Not supported.
Font typeface The typeface ‘#’ is not supported.
Bold Not supported.
Underline Not supported.
Italic Not supported.
Alternate color Not supported.
RGB color Not supported.
Reverse video Not supported.
SubScript Not supported.
SuperScript Not supported.
Shading Not supported.
Single high and wide Not supported.
Double wide Not supported.
Double high Not supported.
Double high and wide Not supported.

Data Condition
data1CRdata2LF (Where CR is a Carriage Return and LF is a Line Feed.) Not able to

print data and remain on the same line. The data data1 will print on
one line, and the data data2 will print on the next line.

See Also “Data Characters and Escape Sequences” in Chapter 31.
1112 Unified POS, v1.16.1

31.6 Events (UML interfaces)

31.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific POS Printer Service to provide events to the application that are not otherwise supported by the
Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service.
This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s POS Printer
devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.
Unified POS, v1.16.1 1113

31.6.2 ErrorEvent Updated in Release 1.9

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a POS Printer error has been detected and that a suitable response by the
application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes on page 0-21.

ErrorCodeExtended
int32 Extended Error code causing the error event. If ErrorCode is

E_EXTENDED, then see values below. Otherwise, it may contain a
Service-specific value.

ErrorLocus int32 Location of the error, and is set to EL_OUTPUT indicating that the error
occurred while processing asynchronous output.

ErrorResponse int32 Error response, whose default value may be overridden by the application
(i.e., this property is settable). See values below.

If ErrorCode is E_EXTENDED, then ErrorCodeExtended has one of the following values:

Value Meaning
EPTR_COVER_OPEN The printer cover is open.

EPTR_JRN_EMPTY The journal station is out of paper.

EPTR_REC_EMPTY The receipt station is out of paper.

EPTR_SLP_EMPTY A form is not inserted in the slip station.

EPTR_JRN_CARTRIDGE_REMOVED:
A journal cartridge has been removed.

EPTR_JRN_CARTRIDGE_EMPTY:
A journal cartridge is empty.

EPTR_JRN_HEAD_CLEANING:
A journal cartridge head is being cleaned.

EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.

EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.

EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
1114 Unified POS, v1.16.1

EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.

EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.

EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error processing may change ErrorResponse to one of the following values:

Value Meaning
ER_CLEAR Clear all buffered output data, including all asynchronous output. (The
 effect is the same as when clearOutput is called.) The error state is
 exited.

ER_RETRY Retry the asynchronous output. The error state is exited. The default.

Remarks Enqueued when an error is detected and the Service’s State transitions into the error state.

See Also “Device Output Models” on page 20, “Device Information Reporting Model” on page 25.

31.6.3 OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the OutputID attribute has
completed successfully.

Attributes This event contains the following attribute:

Attributes Type Description
OutputID int32 The ID number of the asynchronous output request that is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Service has confirmation that
it was processed by the device successfully.

See Also “Device Output Models” on page 20.
Unified POS, v1.16.1 1115

31.6.4 StatusUpdateEvent Updated in Release 1.8

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that a printer has had an operation status change.

Attributes This event contains the following attribute:

Attributes Type Description 
Status int32 Indicates the status change, and has one of the

following values:
Value Meaning
PTR_SUE_COVER_OPEN Printer cover is open.
PTR_SUE_COVER_OK Printer cover is closed.
PTR_SUE_JRN_EMPTY No journal paper.
PTR_SUE_JRN_NEAREMPTY Journal paper is low.
PTR_SUE_JRN_PAPEROK Journal paper is ready.
PTR_SUE_REC_EMPTY No receipt paper.
PTR_SUE_REC_NEAREMPTY Receipt paper is low.
PTR_SUE_REC_PAPEROK Receipt paper is ready.
PTR_SUE_SLP_EMPTY No slip form is inserted, and no slip form has been detected at the

 entrance to the slip station. (See “Model” in Chapter 30 for
 further details on slip properties and events.)

PTR_SUE_SLP_NEAREMPTY Almost at the bottom of the slip form.
PTR_SUE_SLP_PAPEROK Slip form is inserted.
PTR_SUE_IDLE All asynchronous output has finished, either successfully or

 because output has been cleared. The printer State is now
 S_IDLE. The FlagWhenIdle property must be true for this event
 to be delivered, and the property is automatically reset to false
 just before the event is delivered.


Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added
additional Status values for communicating the status/progress of an
asynchronous update firmware process.

See “StatusUpdateEvent” description in Chapter 2.
1116 Unified POS, v1.16.1

Release 1.5 and later – Cartridge State Reporting

If CartridgeNotify = PTR_CN_ENABLED, StatusUpdateEvents with the following status
parameter values may be fired.

Value Meaning 
PTR_SUE_JRN_CARTRIDGE_EMPTY

A journal cartridge needs to be replaced. Cartridge is empty or
not present.

PTR_SUE_JRN_HEAD_CLEANING
A journal cartridge has begun cleaning.

PTR_SUE_JRN_CARTRIDGE_NEAREMPTY
A journal cartridge is near end.

PTR_SUE_JRN_CARTRIDGE_OK
All journal cartridges are ready. It gives no indication of
the amount of media in the cartridge.

PTR_SUE_REC_CARTRIDGE_EMPTY
A receipt cartridge needs to be replaced. Cartridge is empty or not present.

PTR_SUE_REC_HEAD_CLEANING
A receipt cartridge has begun cleaning.

PTR_SUE_REC_CARTRIDGE_NEAREMPTY
A receipt cartridge is near end.

PTR_SUE_REC_CARTRIDGE_OK
All receipt cartridges are ready. It gives no indication of
the amount of media in the cartridge.

PTR_SUE_SLP_CARTRIDGE_EMPTY
A slip cartridge needs to be replaced. Cartridge is empty or not present.

PTR_SUE_SLP_HEAD_CLEANING
A slip cartridge has begun cleaning.

PTR_SUE_SLP_CARTRIDGE_NEAREMPTY
A slip cartridge is near end.

PTR_SUE_SLP_CARTRIDGE_OK
All slip cartridges are ready. It gives no indication of the
amount of media in the cartridge.

Release 1.8 and later – Specific Cover State Reporting

Starting with Release 1.8, StatusUpdateEvents for specific stations’ covers are supported. If a
printer has only one cover or if the printer cannot determine/report which covers are open, then only
the original PTR_SUE_COVER_OPEN and PTR_SUE_COVER_OK events should be fired.

For printers supporting multiple covers, the original events should also be fired for compatibility
with current applications. In these cases, the station-specific event should be fired first, followed by
the original event.

If more than one cover is open, the original PTR_SUE_COVER_OPEN event should only be fired
once after a cover is opened. A PTR_SUE_COVER_OK event should only be fired after all the
covers are closed.

The event’s Status attribute can contain one of the following additional values to indicate a status
change.
Unified POS, v1.16.1 1117

Value Meaning 
PTR_SUE_JRN_COVER_OPEN Journal station cover is open.
PTR_SUE_JRN_COVER_OK Journal station cover is closed.
PTR_SUE_REC_COVER_OPEN Receipt station cover is open.
PTR_SUE_REC_COVER_OK Receipt station cover is closed.
PTR_SUE_SLP_COVER_OPEN Slip station cover is open.
PTR_SUE_SLP_COVER_OK Slip station cover is closed.

Example A: Suppose that a printer includes two cover sensors, but reports “cover open” if either is
open. Then here are the actions and StatusUpdateEvents that should be fired.

Action StatusUpdateEvent 
Open front cover PTR_SUE_COVER_OPEN
Open rear cover (no additional SUE)
Close front cover (no additional SUE)
Close rear cover PTR_SUE_COVER_OK

Example B: Suppose that a printer includes two sensors which report their statuses independently.
Then here are the actions and StatusUpdateEvents that should be fired.

Action StatusUpdateEvent(s) 
Open front cover PTR_SUE_SLP_COVER_OPEN, then

PTR_SUE_COVER_OPEN
Open rear cover PTR_SUE_REC_COVER_OPEN
Close front cover PTR_SUE_SLP_COVER_OK
Close rear cover PTR_SUE_REC_COVER_OK, then

PTR_SUE_COVER_OK

This status reporting allows the migration of applications written to earlier releases, plus additional
functionality for applications written to the new release:

• An application that either ignores the new statuses or was written before 1.8 continues to respond to the
PTR_SUE_COVER_OPEN and PTR_SUE_COVER_OK StatusUpdateEvents. (It is assumed that the
application will ignore statuses that are not expected.)

• An application written to support the new statuses can respond to the station-specific status
(PTR_SUE_xxx_COVER_OK), and the general status (PTR_SUE_COVER_OK) will not provide
any additional information. But if it receives a general status without a preceding station-specific
status, then it processes the general status.

Remarks Enqueued when a significant status event has occurred.

See Also “Events” on page 15.
1118 Unified POS, v1.16.1

32 Remote Order Display

32.1 General

This Chapter defines the Remote Order Display device category.

32.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.3 Not supported

CapCompareFirmwareVersion: boolean { read-only } 1.9 open

CapPowerReporting: int32 { read-only } 1.3 open

CapStatisticsReporting: boolean { read-only } 1.8 open

CapUpdateFirmware: boolean { read-only } 1.9 open

CapUpdateStatistics: boolean { read-only } 1.8 open

CheckHealthText: string { read-only } 1.3 open

Claimed: boolean { read-only } 1.3 open

DataCount: int32 { read-only } 1.3 open

DataEventEnabled: boolean { read-write } 1.3 open

DeviceEnabled: boolean { read-write } 1.3 open & claim

FreezeEvents: boolean { read-write } 1.3 open

OutputID: int32 { read-only } 1.3 open

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.3 --

DeviceControlDescription: string { read-only } 1.3 --

DeviceControlVersion: int32 { read-only } 1.3 --

DeviceServiceDescription: string { read-only } 1.3 open

DeviceServiceVersion: int32 { read-only } 1.3 open

PhysicalDeviceDescription: string { read-only } 1.3 open

PhysicalDeviceName: string { read-only } 1.3 open
Unified POS, v1.16.1 1119

Properties (Continued)

Specific Type Mutability Version May Use After

CapMapCharacterSet: boolean { read-only } 1.7 open

CapSelectCharacterSet: boolean { read-only } 1.3 open, claim, & enable

CapTone: boolean { read-only } 1.3 open, claim, & enable

CapTouch: boolean { read-only } 1.3 open, claim, & enable

CapTransaction: boolean { read-only } 1.3 open

AsyncMode: boolean { read-write } 1.3 open, claim, & enable

AutoToneDuration: int32 { read-write } 1.3 open, claim, & enable

AutoToneFrequency: int32 { read-write } 1.3 open, claim, & enable

CharacterSet: int32 { read-only } 1.3 open, claim, & enable

CharacterSetList: string { read-only } 1.3 open, claim, & enable

Clocks: int32 { read-only } 1.3 open, claim, & enable

CurrentUnitID: int32 { read-write } 1.3 open, claim, & enable

ErrorString: string { read-only } 1.3 open

ErrorUnits: int32 { read-only } 1.3 open

EventString: string { read-only } 1.3 open & claim

EventType: int32 { read-write } 1.3 open

EventUnitID: int32 { read-only } 1.3 open & claim

EventUnits: int32 { read-only } 1.3 open & claim

MapCharacterSet: boolean { read-write } 1.7 open

SystemClocks: int32 { read-only } 1.3 open, claim, & enable

SystemVideoSaveBuffers: int32 { read-only } 1.3 open, claim, & enable

Timeout: int32 { read-write } 1.3 open

UnitsOnline: int32 { read-only } 1.3 open, claim, & enable

VideoDataCount: int32 { read-only } 1.3 open, claim, & enable

VideoMode: int32 { read-write } 1.3 open, claim, & enable

VideoModesList: string { read-only } 1.3 open, claim, & enable

VideoSaveBuffers: int32 { read-only } 1.3 open, claim, & enable
1120 Unified POS, V1.16.1

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.3

close ():
void { raises-exception, use after open }

1.3

claim (timeout: int32):
void { raises-exception, use after open }

1.3

release ():
void { raises-exception, use after open, claim }

1.3

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.3

clearInput ():
void { raises-exception, use after open, claim }

1.3

clearInputProperties ():
void { }

Not supporteda

clearOutput ():
void { raises-exception, use after open, claim }

1.3

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.3

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific

Name

clearVideo (units: int32, attribute: int32): 
void { raises-exception, use after open, claim, enable }

1.3

clearVideoRegion (units: int32, row: int32, column: int32, height: int32, width:
int32, attribute: int32): 
void { raises-exception, use after open, claim, enable }

1.3

controlClock (units: int32, function: int32, clockId: int32, hour: int32, min: int32,
sec: int32, row: int32, column: int32, attribute: int32, mode: int32): 
void { raises-exception, use after open, claim, enable }

1.3

controlCursor (units: int32, function: int32): 
void { raises-exception, use after open, claim, enable }

1.3

copyVideoRegion (units: int32, row: int32, column: int32, height: int32, width:
int32, targetRow: int32, targetColumn: int32): 
void { raises-exception, use after open, claim, enable }

1.3

a. No sensitive information is generated or stored.
Unified POS, v1.16.1 1121

a.No sensitive information is generated or stored.

Methods (Continued)

displayData (units: int32, row: int32, column: int32, attribute: int32, data: string): 
void { raises-exception, use after open, claim, enable }

1.3

drawBox (units: int32, row: int32, column: int32, height: int32, width: int32, attri-
bute: int32, bordertype: int32): 
void { raises-exception, use after open, claim, enable }

1.3

freeVideoRegion (units: int32, bufferId: int32): 
void { raises-exception, use after open, claim, enable }

1.3

resetVideo (units: int32): 
void { raises-exception, use after open, claim, enable }

1.3

restoreVideoRegion (units: int32, targetRow: int32, targetColumn: int32, bufferId:
int32): 
void { raises-exception, use after open, claim, enable }

1.3

saveVideoRegion (units: int32, row: int32, column: int32, height: int32, width: int32,
bufferId: int32): 
void { raises-exception, use after open, claim, enable }

1.3

selectCharacterSet (units: int32, characterSet: int32): 
void { raises-exception, use after open, claim, enable }

1.3

setCursor (units: int32, row: int32, column: int32): 
void { raises-exception, use after open, claim, enable }

1.3

transactionDisplay (units: int32, function: int32): 
void { raises-exception, use after open, claim, enable }

1.3

updateVideoRegionAttribute (units: int32, function: int32, row: int32, column:
int32, height: int32, width: int32, attribute: int32): 
void { raises-exception, use after open, claim, enable }

1.3

videoSound (units: int32, frequency: int32, duration: int32, numberOfCycles: int32,
interSoundWait: int32): 
void { raises-exception, use after open, claim, enable }

1.3
1122 Unified POS, V1.16.1

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent 1.3

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.3

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.3

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent 1.3

 OutputID: int32 { read-only }

upos::events::StatusUpdateEvent 1.3

 Status: int32 { read-only }
Unified POS, v1.16.1 1123

32.3 General Information

The Remote Order Display programmatic name is “RemoteOrderDisplay.”

32.3.1 Capabilities

The Remote Order Display has the following minimal set of capabilities:

• Supports color or monochrome text character displays.

• Supports 8 foreground colors (or gray scale on monochrome display) with the option of using the intensity
attribute.

• Supports 8 background colors (or gray scale on monochrome display) with the option of using only a blinking
attribute.

• The individual event types support disabling such that the application only receives a subset of data events if
requested.

• Supports video region buffering.

• Supports cursor functions.

• Supports clock functions.

• Supports resetting a video unit to power on state.

The Remote Order Display may also have the following additional capabilities:

• Supports multiple video displays each with possibly different video modes.

• Supports touch video input for a touch screen display unit.

• Supports video enunciator output with frequency and duration.

• Supports tactile feedback via an automatic tone when a video display unit is touched (for touch screen only).

• Supports downloading alternate character sets to one or many video units.

• Supports transaction mode display output to one or many video units.

The following capability is not supported:

• Support for graphical displays, where the video display is addressable by individual pixels or dots. The
addition of this support is under investigation for future revisions.
1124 Unified POS, V1.16.1

32.3.2 Remote Order Display Class Diagram

The following diagram shows the relationships between the Remote Order Display classes.

UposException
(from upos)

<<exception>>

RemoteOrderDisplayConst
(from upos)

<<utility>>

UposConst
(from upos)

<<utility>>

DataEvent

<<prop>> Status : int32

(from events)

<<event>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

ErrorEvent

<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : int32
<<prop>> ErrorLocus : int32
<<prop>> ErrorResponse : int32

(from events)

<<event>>

OutputCompleteEvent

<<prop>> OutputID : int32

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32

(from events)

<<event>>

RemoteOrderDisplayControl

<<capability>> CapSelectCharacterSet : boolean
<<capability>> CapTone : boolean
<<capability>> CapTouch : boolean
<<capability>> CapTransaction : boolean
<<prop>> AsyncMode : boolean
<<prop>> AutoToneDuration : int32
<<prop>> AutoToneFrequency : int32
<<prop>> CharacterSet : int32
<<prop>> CharacterSetList : string
<<prop>> Clocks : int32
<<prop>> CurrentUnitID : int32
<<prop>> ErrorString : string
<<prop>> ErrorUnits : int32
<<prop>> EventString : string
<<prop>> EventType : int32
<<prop>> EventUnitID : int32
<<prop>> EventUnits : int32
<<prop>> SystemClocks : int32
<<prop>> SystemVideoSaveBuffers : in32
<<prop>> Timeout : int32
<<prop>> UnitsOnline : int32
<<prop>> VideoDataCount : int32
<<prop>> VideoMode : in32
<<prop>> VideoModesList : string
<<prop>> VideoSaveBuffers : int32

clearVideo()
clearVideoRegion()
controlClock()
controlCursor()
copyVideoRegion()
displayData()
drawBox()
freeVideoRegion()
resetVideo()
restoreVideoRegion()
saveVideoRegion()
selectCharacterSet()
setCursor()
transactionDisplay()
updateVideoRegionAttribute()
videoSound()

(from upos)

<<Interface>>

<<sends>>

<<uses>>

fires

fires

fires

fires

fires

BaseControl
(from upos)

<<Interface>>
<<uses>>

<<sends>>
Unified POS, v1.16.1 1125

32.3.3 Model Updated in Release 1.7

The general model of a Remote Order Display:

The Remote Order Display device class is a subsystem of video units. The initial targeted environment is food
service, to display order preparation and fulfillment information. Remote Order Displays are often used in
conjunction with Bump Bars.

The general model of a Remote Order Display is an output device but may also be an input device when, in some
implementations, the device can report additional status or user input data back to the application program.

• The subsystem can support up to 32 video units.

Typically, one application on one workstation (or POS Terminal) would manage and control the entire
subsystem of Remote Order Displays. However, if applications on the same or other workstations (or POS
Terminals) would need to access the subsystem, then one of the applications must act as a subsystem server
and expose the necessary interfaces to other applications.

• All specific methods are broadcast methods. This means that the method can apply to one unit, a selection of
units or all online units. The units parameter is an int32, with each bit identifying an individual video unit. The
Service will attempt to satisfy the method for all units indicated in the units parameter. If an error is received
from one or more units, the ErrorUnits property is updated with the appropriate units in error. The
ErrorString property is updated with a description of the error or errors received. The method will then raise a
UposException. In the case where two or more units encounter different errors, the exception’s ErrorCode will
indicate the more severe error.

• The common methods checkHealth, clearInput, and clearOutput are not broadcast methods and use the unit
ID indicated in the CurrentUnitID property. See the description of these common methods to understand how
the CurrentUnitID property is used.

• When the CurrentUnitID property is set by the application, all the corresponding properties are updated to
reflect the settings for that unit. 

If the CurrentUnitID property is set to a unit ID that is not online, the dependent properties will contain non-
initialized values.

The CurrentUnitID uniquely represent a single video unit. The definitions range from ROD_UID_1 to
ROD_UID_32. These definitions are also used to create the bitwise parameter, units, used in the broadcast
methods.

• The rows and columns are numbered beginning with (0,0) at the top-left corner of the video display. The
dimensions are defined by the height and width parameters. The region depicted below would have the
parameters
 row = 1, column = 2, height = 3, and width = 4.
1126 Unified POS, V1.16.1

All position parameters are expressed in text characters.

• The VGA-like attribute parameter, that is used in various methods, is an int32. Bits 7-0 define the text attribute
and bits 31-8 are reserved and must be 0, otherwise an E_ILLEGAL exception is raised. The following table
defines bits 7-0:


If a foreground or background color is requested, but the Service does not support that color, it chooses the best fit
from the colors supported.

The following constants may be used, with up to one constant selected from each category:

• Blinking: ROD_ATTR_BLINK

• Background Color: ROD_ATTR_BG_color, where color is replaced by BLACK, BLUE, GREEN, CYAN,
RED, MAGENTA, BROWN, or GRAY

• Intensity: ROD_ATTR_INTENSITY

• Foreground Color: ROD_ATTR_FG_color, where color is replaced by BLACK, BLUE, GREEN, CYAN,
RED, MAGENTA, BROWN, or GRAY

• For touch video input, the Remote Order Display Control follows the general “Input Model” for event-driven
input with some differences:

• When input is received a DataEvent is enqueued.

• This device does not support the AutoDisable property, so will not automatically disable itself when a
DataEvent is enqueued.

• An enqueued DataEvent is delivered to the application when the DataEventEnabled property is true and
other event delivery requirements are met. Just before delivering this event, data is copied into the properties,
and further data events are disabled by setting the DataEventEnabled property to false. This causes
subsequent input data to be enqueued while the application processes the current input and associated
properties. When the application has finished the current input and is ready for more data, it reenables events
by setting DataEventEnabled to true.

• An ErrorEvent is enqueued if an error occurs while gathering or processing input, and is delivered to the
application when the DataEventEnabled property is true and other event delivery requirements are met.
Unified POS, v1.16.1 1127

• The VideoDataCount property may be read to obtain the number of video DataEvents for a specific unit ID
enqueued. The DataCount property can be read to obtain the total number of data events enqueued.

• Input enqueued may be deleted by calling the clearInput method. See clearInput method description for
more details.

• For video and tone output, the Remote Order Display follows the general Output Model, with some
enhancements.

• The following methods are always performed synchronously: controlClock, controlCursor,
selectCharacterSet, resetVideo, and setCursor. These methods will fail if asynchronous output is
outstanding. The following method is also always performed synchronously but without regard to outstanding
asynchronous output: freeVideoRegion.

• The following methods are performed either synchronously or asynchronously, depending on the value of the
AsyncMode property: clearVideo, clearVideoRegion, copyVideoRegion, displayData, drawBox,
restoreVideoRegion, saveVideoRegion, transactionDisplay, updateVideoRegionAttribute, and
videoSound. When AsyncMode is false, then these methods operate synchronously.

• When AsyncMode is true, then these methods operate as follows:

• The request is buffered in program memory for delivery to the Physical Device as soon as the Physical
Device can receive and process it, the OutputID property is set to an identifier for this request, and returns as
soon as possible. When the device completes the request successfully, then the EventUnits property is
updated and an OutputCompleteEvent is enqueued. A property of this event contains the output ID of the
completed request.
Asynchronous methods will not raise a UposException due to a display problem, such as communications
failure. These errors will only be reported by an ErrorEvent. A UposException is raised only if the display is
not claimed and enabled, a parameter is invalid, or the request cannot be enqueued. The first two error cases
are due to an application error, while the last is a serious system resource exception.

• If an error occurs while performing an asynchronous request, an ErrorEvent is enqueued. The EventUnits
property is set to the unit or units in error. The EventString property is also set.
Note: ErrorEvent updates EventUnits and EventString. If an error is reported by a synchronous broadcast
method, then ErrorUnits and ErrorString are set instead.

The event handler may call synchronous display methods (but not asynchronous methods), then can either
retry the outstanding output or clear it.

• Asynchronous output is performed on a first-in first-out basis.

• All unit buffered output data, including all asynchronous output, may be deleted by setting the
CurrentUnitID property and calling clearOutput. OutputCompleteEvents will not be delivered for
cleared output. This method also stops any output that may be in progress (when possible).

When AsyncMode is false, then these methods operate synchronously and the Service returns to the
application after completion. When operating synchronously, a UposException is raised if the method could
not complete successfully.

• The Remote Order Display device may support transaction mode. A transaction is a sequence of display
operations that are sent to a video unit as a single unit. Display operations which may be included in a
transaction are clearVideo, clearVideoRegion, copyVideoRegion, displayData, drawBox,
restoreVideoRegion, saveVideoRegion, and updateVideoRegionAttribute. During a transaction, the display
operations are first validated. If valid, they are added to the transaction but not displayed yet. Once the
application has added as many operations as required, then the transaction display method is called.


1128 Unified POS, V1.16.1

If the transaction is displayed synchronously, then any exception raised indicates that an error occurred during
the display. If the transaction is displayed asynchronously, then the asynchronous display rules listed above are
followed. If an error occurs and the ErrorEvent handler causes a retry, the entire transaction is retried.

32.3.4 Device Sharing

The Remote Order Display is an exclusive-use device. Its device sharing rules are:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing many Remote Order Display specific
properties.

• The application must claim and enable the device before calling methods that manipulate the device.

• When a claim method is called again, settable device characteristics are restored to their condition at release.
Examples of restored characteristics are character set, video mode, and tone frequency. Region memory
buffers, clock and cursor settings are considered state characteristics and are not restored.

• See the “Summary” table for precise usage prerequisites.
Unified POS, v1.16.1 1129

32.4 Properties (UML attributes)

32.4.1 AsyncMode Property Updated in Release 1.11

Syntax AsyncMode: boolean { read-write, access after open-claim-enable }

Remarks If true, then the clearVideo, clearVideoRegion, copyVideoRegion, displayData, drawBox,
restoreVideoRegion, saveVideoRegion, transactionDisplay, updateVideoRegionAttribute, and
videoSound methods will be performed asynchronously.
If false, they will be performed synchronously.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

32.4.2 AutoToneDuration Property Updated in Release 1.11

Syntax AutoToneDuration: int32 { read-write, access after open-claim-enable }

Remarks Holds the duration (in milliseconds) of the automatic tone for the video unit indicated in the
CurrentUnitID property.

This property is initialized to the default value for each online video unit when the device is first enabled
following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An illegal value was specified. The ErrorString property is updated.

See Also CurrentUnitID Property.

32.4.3 AutoToneFrequency Property

Syntax AutoToneFrequency: int32 { read-write, access after open-claim-enable }

Remarks Holds the frequency (in Hertz) of the automatic tone for the video unit indicated in the CurrentUnitID
property.

This property is initialized to the default value for each online video unit when the device is first enabled
following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGAL An illegal value was specified. The ErrorString property is updated.

See Also CurrentUnitID Property.
1130 Unified POS, V1.16.1

32.4.4 CapMapCharacterSet Property Added in Release 1.7

Syntax CapMapCharacterSet: boolean { read-only, access after open}

Remarks Defines the ability of the Service to map the characters of the application to the selected character set
when displaying data.

If CapMapCharacterSet is true, then the Service is able to map the characters to the character sets
defined in CharacterSetList.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CharacterSet Property, MapCharacterSet Property, CharacterSetList Property.

32.4.5 CapSelectCharacterSet Property

Syntax CapSelectCharacterSet: boolean {read-only, access after open-claim-enable}

Remarks If true, the video unit indicated in the CurrentUnitID property may be loaded with an alternate, user
supplied character set.

This property is initialized for each video unit online when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CurrentUnitID Property.

32.4.6 CapTone Property

Syntax CapTone: boolean { read-only, access after open-claim-enable }

Remarks If true, the video unit indicated in the CurrentUnitID property supports an enunciator.

This property is initialized for each video unit online when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CurrentUnitID Property.
Unified POS, v1.16.1 1131

32.4.7 CapTouch Property

Syntax CapTouch: boolean { read-only, access after open-claim-enable }

Remarks If true, the video unit indicated in the CurrentUnitID property supports the ROD_DE_TOUCH_UP,
ROD_DE_TOUCH_DOWN, and ROD_DE_TOUCH_MOVE event types.

This property is initialized for each video unit online when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CurrentUnitID Property, DataEvent.

32.4.8 CapTransaction Property

Syntax CapTransaction: boolean { read-only, access after open }

Remarks If true, then transactions are supported by each video unit.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
1132 Unified POS, V1.16.1

32.4.9 CharacterSet Property Updated in Release 1.10

Syntax CharacterSet: int32 { read-only, access after open-claim-enable }

Remarks Holds the character set for displaying characters for the video unit indicated by CurrentUnitID. When
CapSelectCharacterSet is true, this property can be set to one of the following values:

Value Meaning 
Range 101 - 199 Device-specific character sets that do not match a code page or the ASCII or

ANSI character sets.
Range 400 - 990 Code page; matches one of the standard values.
ROD_CS_UNICODE The character set supports Unicode. The value of this constant is 997.
ROD_CS_ASCII The ASCII character set, supporting the ASCII characters 0x20 through

0x7F. The value of this constant is 998.
ROD_CS_ANSI The ANSI character set. The value of this constant is 999.
Range 1000 and above Code page; matches one of the standard values.

For additional implementation-specific information on the use of this property, refer to the “Mapping of
CharacterSet” section in the Annexes. For OPOS, see Annex A, for JavaPOS, see Annex B.

This property is initialized to the default video character set used by each video unit online when the
device is first enabled following the open method.

This is updated during the selectCharacterSet method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CurrentUnitID Property, CharacterSetList Property, CapSelectCharacterSet Property,
selectCharacterSet method.

32.4.10 CharacterSetList Property

Syntax CharacterSetList: string { read-only, access after open-claim-enable }

Remarks Holds a string of character set numbers for the video unit indicated in the CurrentUnitID property.

If CapSelectCharacterSet is true, this property is initialized for each video unit online when the device
is first enabled following the open method.

The character set number string consists of an ASCII numeric set of numbers, separated by commas.

For example, if the string is “101, 850, 999,” the video unit supports a device-specific character set, code
page 850, and the ANSI character set.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CurrentUnitID Property, CharacterSet Property, CapSelectCharacterSet Property,
selectCharacterSet Method.
Unified POS, v1.16.1 1133

32.4.11 Clocks Property

Syntax Clocks: int32 { read-only, access after open-claim-enable }

Remarks Holds the number of clocks the video unit, indicated in the CurrentUnitID property, can support.

This property is initialized for each online video unit when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CurrentUnitID Property

32.4.12 Current UnitID Property

Syntax CurrentUnitID: int32 { read-write, access after open-claim-enable }

Remarks Holds the current video unit ID. Up to 32 units are allowed on one Remote Order Display device. The
unit ID definitions range from ROD_UID_1 to ROD_UID_32.

The following properties and methods apply only to the selected video unit ID:

• Properties: AutoToneDuration, AutoToneFrequency, CapSelectCharacterSet, CapTone,
CapTouch, CharacterSet, CharacterSetList, Clocks, VideoDataCount, VideoMode,
VideoModesList, VideoSaveBuffers.

Setting CurrentUnitID will update these properties to the current values for the specified unit.

Methods: checkHealth, clearInput, clearOutput.

This property is initialized to ROD_UID_1 when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGAL An illegal unit id was specified. The ErrorString property is updated.
1134 Unified POS, V1.16.1

32.4.13 DataCount Property (Common)

Syntax DataCount: int32 { read-only, access after open }

Remarks Holds the total number of DataEvents enqueued. All units online are included in this value. The number
of enqueued events for a specific unit ID is stored in the VideoDataCount property.

The application may read this property to determine whether additional input is enqueued from a device,
but has not yet been delivered because of other application processing, freezing of events, or other causes.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also “Device Input Model” on page 18, VideoDataCount Property, DataEvent.

32.4.14 ErrorString Property

Syntax ErrorString: string { read-only, access after open }

Remarks Holds a description of the error which occurred to the unit(s) specified by the ErrorUnits property, when
an error occurs for any method that acts on a bitwise set of video units.

If an error occurs during processing of an asynchronous request, the ErrorEvent updates the property
EventString instead.

This property is initialized to an empty string by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also ErrorUnits Property.

32.4.15 ErrorUnits Property

Syntax ErrorUnits: int32 { read-only, access after open }

Remarks Holds a bitwise mask of the unit(s) that encountered an error, when an error occurs for any method that
acts on a bitwise set of video units.

If an error occurs during processing of an asynchronous request, the ErrorEvent updates the property
EventUnits instead.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also ErrorString Property.
Unified POS, v1.16.1 1135

32.4.16 EventString Property

Syntax EventString: string { read-only, access after open-claim }

Remarks Holds a description of the error which occurred to the unit(s) specified by the EventUnits property, when
an ErrorEvent is delivered.

This property is initialized to an empty string by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also EventUnits Property, ErrorEvent.

32.4.17 EventType Property

Syntax EventType: int32 { read-write, access after open }

Remarks Holds a bitwise mask that is used to selectively indicate which event types are to be delivered by the
DataEvent, for all video units online. See the DataEvent description for event type definitions.

This property is initialized to all defined event types by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGAL An illegal unit id was specified. The ErrorString property is updated.

See Also DataEvent

32.4.18 EventUnitID Property

Syntax EventUnitID: int32 { read-only, access after open-claim }

Remarks Holds the video unit ID of the last delivered DataEvent. The unit ID definitions range from BB_UID_1
to BB_UID_32.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also DataEvent
1136 Unified POS, V1.16.1

32.4.19 EventUnits Property

Syntax EventUnits: int32 { read-only, access after open-claim }

Remarks Holds a bitwise mask of the unit(s) when an OutputCompleteEvent, output ErrorEvent, or
StatusUpdateEvent is delivered.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also OutputCompleteEvent, ErrorEvent, StatusUpdateEvent.

32.4.20 MapCharacterSet Property Added in Release 1.7

Syntax MapCharacterSet: boolean { read-write, access after open}

Remarks If MapCharacterSet is true and when outputting data, the Service maps the characters transferred by the
application to the character set selected in the CharacterSet property for displaying data.

If MapCharacterSet is false, then no mapping is supported. In such a case the application has to ensure
the mapping of the character set used in the application to the character set selected in the CharacterSet
property.

If CapMapCharacterSet is false, then this property is always false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CharacterSet Property, CapMapCharacterSet Property.

32.4.21 SystemClocks Property

Syntax SystemClocks: int32 { read-only, access after open-claim-enable }

Remarks Holds the total number of clocks the Remote Order Display device can support at one time.

This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also Clocks Property.
Unified POS, v1.16.1 1137

32.4.22 SystemVideoSaveBuffers Property

Syntax SystemVideoSaveBuffers: int32 { read-only, access after open-claim-enable }

Remarks Holds the total number of video save buffers the Remote Order Display device can support at one time.

This property is initialized when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also VideoSaveBuffers Property.

32.4.23 Timeout Property

Syntax Timeout: int32 { read-write, access after open }

Remarks Holds the timeout value in milliseconds used by the Remote Order Display device to complete all output
methods supported. If the device cannot successfully complete an output method within the timeout
value, then the method throws a UposException if AsyncMode is false, or enqueues an ErrorEvent if
AsyncMode is true.

This property is initialized to a Service dependent default timeout following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An illegal unit id was specified. The ErrorString property is updated.

See Also AsyncMode Property.

32.4.24 UnitsOnline Property

Syntax UnitsOnline: int32 { read-only, access after open-claim-enable }

Remarks Holds a bitwise mask indicating the video units online. Bit 0 is ROD_UID_1. 32 video units are
supported.

This property is initialized when the device is first enabled following the open method. This property is
updated as changes are detected, such as before a StatusUpdateEvent is enqueued and during the
checkHealth method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also “Model Updated in Release 1.7” on page 1126, checkHealth Method, StatusUpdateEvent.
1138 Unified POS, V1.16.1

32.4.25 VideoDataCount Property

Syntax VideoDataCount: int32 { read-only, access after open-claim-enable }

Remarks Holds the number of DataEvents enqueued for the video unit indicated in the CurrentUnitID property.

The application may read this property to determine whether additional input is enqueued from a video
unit, but has not yet been delivered because of other application processing, freeing of events, or other
causes.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CurrentUnitID Property, DataEvent.

32.4.26 VideoMode Property

Syntax VideoMode: int32 { read-write, access after open-claim-enable }

Remarks Holds the video ModeId selected for the video unit indicated by the CurrentUnitID property. The
ModeId represents one of the selections in the VideoModesList property.

This property is initialized to the Service dependent default video ModeId used by each video unit online
when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An illegal unit id was specified. The ErrorString property is updated.

E_FAILURE An error occurred while communicating with the video unit indicated in the
CurrentUnitID property. The ErrorString property is updated.

See Also CurrentUnitID Property, VideoModesList Property.
Unified POS, v1.16.1 1139

32.4.27 VideoModesList Property

Syntax VideoModesList: string { read-only, access after open-claim-enable }

Remarks Holds the video modes supported for the video unit indicated in the CurrentUnitID property. The video
modes are listed in a comma delineated string with the following format:

<ModeId>:<Height>x<Width>x<NumberOfColors><M|C>.
The ModeId values are determined by the Remote Order Display system.
M = Monochrome (and gray scales) and C = Color.

For example, if the string is “1:40x25x16C,2:80x25x16C”, then the video unit supports two video modes,
ModeId 1 and ModeId 2. ModeId 1 has 40 rows, 25 columns, 16 colors, and is Color. ModeId 2 has 80
rows, 25 columns, 16 colors, and is Color.

The ModeId is used to initialize the VideoMode property for each video unit online.

This property is initialized to the video modes list supported by each video unit online when the device
is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CurrentUnitID Property, VideoMode Property.

32.4.28 VideoSaveBuffers Property

Syntax VideoSaveBuffers: int32 { read-only, access after open-claim-enable }

Remarks Holds the number of save buffers for the video unit indicated in the CurrentUnitID property. This
property should be consulted when using the saveVideoRegion, restoreVideoRegion and
freeVideoRegion methods. When set to 0, this indicates that buffering for the selected unit is not
supported. When this property is greater than 0, the Remote Order Display device can save at minimum
one entire video screen for the selected video unit.

This property is initialized for each video unit online when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CurrentUnitID Property, saveVideoRegion Method, restoreVideoRegion Method, freeVideoRegion
Method.
1140 Unified POS, V1.16.1

32.5 Methods (UML operations)

32.5.1 checkHealth Method (Common)

Syntax checkHealth (level: int32): 
void { raises-exception, use after open-claim-enable }

The level parameter indicates the level of health check to be performed on the device. The following
values may be specified:

Value Meaning 
CH_INTERNAL Perform a health check that does not physically change the device. The
 device is tested by internal tests to the extent possible.

CH_EXTERNAL Perform a more thorough test that may change the device. For example, a
pattern may be displayed on the video.

CH_INTERACTIVE Perform an interactive test of the device. The Service will typically display a
modal dialog box to present test options and results.

Remarks When CH_INTERNAL or CH_EXTERNAL level is requested, the method checks the health of the unit
indicated in the CurrentUnitID property. If the current unit ID property is zero, an EROD_NOUNITS
error is set. When the current unit ID property is set to a unit that is not currently online, the device will
attempt to check the health of the video unit and report a communication error if necessary. The
CH_INTERACTIVE health check operation is up to the Service designer.

A text description of the results of this method is placed in the CheckHealthText property.

The UnitsOnline property will be updated with any changes before returning to the application.

This method is always synchronous.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_EXTENDED ErrorCodeExtended = EROD_NOUNITS: The CurrentUnitID 

property is zero.

E_FAILURE An error occurred while communicating with the video unit indicated in
CurrentUnitID property.

See Also CurrentUnitID Property, UnitsOnline Property.
Unified POS, v1.16.1 1141

32.5.2 clearInput Method (Common)

Syntax clearInput (): 
void { raises-exception, use after open-claim }

Remarks Clears the device input that has been buffered for the unit indicated in the CurrentUnitID property. If
the current unit ID property is zero, an EROD_NOUNITS is set.

Any data events that are enqueued – usually waiting for DataEventEnabled to be set to true and
FreezeEvents to be set to false – are also cleared.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_EXTENDED ErrorCodeExtended = EROD_NOUNITS: The CurrentUnitID

property is zero.

See Also CurrentUnitID Property, “Device Input Model” on page 18.

32.5.3 clearOutput Method (Common) Updated in Release 1.7

Syntax clearOutput (): 
void { raises-exception, use after open-claim }

Remarks Clears all outputs that have been buffered, including all asynchronous output, for the unit indicated in the
CurrentUnitID property, including video and tone outputs. If the current unit ID property is zero, an
EROD_NOUNITS is set.

Any output complete and output error events that are enqueued – usually waiting for DataEventEnabled
to be set to true and FreezeEvents to be set to false – are also cleared.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_EXTENDED ErrorCodeExtended = EROD_NOUNITS: The CurrentUnitID 

property is set to zero.

See Also CurrentUnitID Property, “Device Output Models” on page 20.
1142 Unified POS, V1.16.1

32.5.4 clearVideo Method

Syntax clearVideo (units: int32, attribute: int32): 
void { raises-exception, use after open-claim-enable }

Parameter Description 
units Bitwise mask indicating which video unit(s) to operate on.

attribute See Model on page 8 in the General Information section.

Remarks Clears the entire display area for the video unit(s) indicated in the units parameter. The display area will
be cleared using the attribute placed in the attribute parameter.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also AsyncMode Property, “Model Updated in Release 1.7” on page 1126.

32.5.5 clearVideoRegion Method

Syntax clearVideoRegion (units: int32, row: int32, column: int32, height: int32, width: int32, attribute:
int32): 
void { raises-exception, use after open-claim-enable }

Parameter Description
units Bitwise mask indicating which video unit(s) to operate on.

row The region’s start row.
column The region’s start column.
height The number of rows in the region.
width The number of columns in the region.
attribute See “Model Updated in Release 1.7” on page 1126 in the General Information section.

Remarks Clears the specified video region for the video unit(s) indicated in the units parameter. The display area
will be cleared using the attribute placed in the attribute parameter.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_FAILURE An error occurred while communicating with one of the video units indicated in units.
The ErrorUnits and ErrorString properties are updated. (Can only occur if
AsyncMode is false.)

See Also AsyncMode Property, ErrorString Property, ErrorUnits Property, “Model Updated in Release 1.7”
on page 1126.
Unified POS, v1.16.1 1143

32.5.6 controlClock Method

Syntax controlClock (units: int32, function: int32, clockId: int32, hour: int32, min: int32, sec: int32, row:
int32, column: int32, attribute: int32, mode: int32): 
void { raises-exception, use after open-claim-enable }

Parameter Description
units Bitwise mask indicating which video unit(s) to operate on.

function The requested clock command. See values below.

clockId Clock identification number. The valid values can be from 1 - Clocks. When the
function parameter is
ROD_CLK_PAUSE, ROD_CLK_RESUME, or ROD_CLK_STOP
then clockId can be ROD_CLK_ALL to specify all clocks started on the specified
video unit(s).

hour The initial hours for the clock display.

min The initial minutes for the clock display.

sec The initial seconds for the clock display.

row The clock’s row.

column The clock’s start column.

attribute See “Model Updated in Release 1.7” on page 1126 in the General Information section.

mode The type of clock to display. See values below.

The function parameter values are:

Value Meaning
ROD_CLK_START Starts a clock display assigned to the given clockId.

ROD_CLK_PAUSE Temporarily stops a clock from updating the display until a
ROD_CLK_RESUME requested.

ROD_CLK_RESUME Resumes a clock that was previously paused, such that display updates
continue.

ROD_CLK_STOP Permanently stops the clock from updating the display and the clockId
becomes free.

ROD_CLK_MOVE Moves an instantiated clock to a new position.

The mode parameter values are:

Value Meaning
ROD_CLK_SHORT Displays a clock with “M:SS” format.

ROD_CLK_NORMAL Displays a clock with “MM:SS” format.

ROD_CLK_12_int Displays a 12 hour clock with “HH:MM:SS” format.

ROD_CLK_24_int Displays a 24 hour clock with “HH:MM:SS” format.

Remarks Performs the clock command requested in the function parameter on the video unit(s) indicated in the
units parameter. The clock will be displayed in the requested mode format at the location found in the
row and column parameters.

The clock will start at the specified hour, min, and sec, time values and will be updated every second
until a ROD_CLK_PAUSE or ROD_CLK_STOP is requested for this clockId.
1144 Unified POS, V1.16.1

When a ROD_CLK_PAUSE, ROD_CLK_RESUME, or ROD_CLK_STOP command is issued, the
hour, min, sec, row, column, attribute, and mode parameters are ignored. During a ROD_CLK_PAUSE
command, the clock display updates are suspended. During a ROD_CLK_RESUME command, the
clock updates continue.

If a ROD_CLK_PAUSE, ROD_CLK_RESUME, ROD_CLK_STOP or ROD_CLK_MOVE command
is requested on an uninitialized clockId for any of the video units indicated in the units parameter, a
EROD_BADCLK error is thrown. If a ROD_CLK_RESUME command is requested without doing a
ROD_CLK_PAUSE, this has no effect and no exception is thrown.

When a ROD_CLK_MOVE command is issued, the clock is moved to the new location found in the row
and column parameters. The hour, min, sec, attribute and mode parameters are ignored for this command
function.

Generally a video unit can support the number of clocks indicated in the Clocks property. However, the
ROD_CLK_START command will raise an exception containing EROD_NOCLOCKS if it exceeds the
number of SystemClocks even though the Clocks property may indicate the unit can support more
clocks than allocated for that unit.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_EXTENDED ErrorCodeExtended = EROD_BADCLK:
 A ROD_CLK_PAUSE, ROD_CLK_RESUME, ROD_CLK_START,
 ROD_CLK_MOVE command was requested and the specified clockId
 has not been initialized by the ROD_CLK_START command.

 ErrorCodeExtended = EROD_NOCLOCKS: The ROD_CLK_START
 failed because the number of SystemClocks has been reached.
 The ErrorUnits and ErrorString properties are updated.

E_FAILURE An error occurred while communicating with one of the video units
 indicated in the units parameter. The ErrorUnits and ErrorString
 properties are updated.

E_BUSY When a ROD_CLK_START command is requested but the specified
 clockId is in use. The ErrorUnits and ErrorString properties are

 updated.

See Also Clocks Property, ErrorString Property, ErrorUnits Property, “Model Updated in Release 1.7” on
page 1126.
Unified POS, v1.16.1 1145

32.5.7 controlCursor Method

Syntax controlCursor (units: int32, function: int32): 
void { raises-exception, use after open-claim-enable }

Parameter Description 
units Bitwise mask indicating which video unit(s) to operate on.

function The cursor command, indicating the type of cursor to display. See values below.

Value Meaning 
ROD_CRS_LINE enable a solid underscore line.

ROD_CRS_LINE_BLINK enable a blinking solid underscore cursor.

ROD_CRS_BLOCK enable a solid block cursor.

ROD_CRS_BLOCK_BLINK enable a blinking solid block cursor.

ROD_CRS_OFF Disable cursor.

Remarks Enables or disables the cursor depending on the function parameter, for the video unit(s) indicated in the
units parameter.

When the function is ROD_CRS_OFF, the cursor is disabled, otherwise the cursor is enabled as the
requested cursor type. If the video unit cannot support the requested cursor type, the Service will use the
next closest cursor type.

The cursor attribute is taken from the current cursor location.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_FAILURE An error occurred communicating with one of the video units indicated in 
 units. The ErrorUnits and ErrorString properties are updated.

See Also ErrorString Property, ErrorUnits Property.
1146 Unified POS, V1.16.1

32.5.8 copyVideoRegion Method

Syntax copyVideoRegion (units: int32, row: int32, column: int32, height: int32, width: int32, targetRow:
int32, targetColumn: int32): 
void { raises-exception, use after open-claim-enable }

Parameter Description 
units Bitwise mask indicating which video unit(s) to operate on.

row The region’s start row.

column The region’s start column.

height The number of rows in the region.

width The number of columns in the region.

targetRow The start row of the target location.

targetColumn The start column of the target location.

Remarks Copies a region of the display area to a new location on the display area for the video unit(s) indicated
in the units parameter. The source area is defined by the row, column, height, and width parameters. The
top-left corner of the target location is defined by the targetRow and targetColumn parameters. If the
ranges overlap the copy is done such that all original data is preserved.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_FAILURE An error occurred while communicating with one of the video units 

indi cated in units. The ErrorUnits and ErrorString properties are updated.
 (Can only occur if AsyncMode is false.)

See Also AsyncMode Property, ErrorString Property, ErrorUnits Property, “Model Updated in Release
1.7” on page 1126.
Unified POS, v1.16.1 1147

32.5.9 displayData Method Updated in Release 1.7

Syntax displayData (units: int32, row: int32, column: int32, attribute: int32, data: string): 
void { raises-exception, use after open-claim-enable }

Parameter Description
units Bitwise mask indicating which video unit(s) to operate on.
row The start row for the text.
column The start column for the text.
attribute The video attribute. See “Model Updated in Release 1.7” on page 1126 in the

General Information section.
 data1 The string of characters to display.

Remarks Displays the characters in data beginning at the location specified by row and column, and continues in
succeeding columns on the video unit(s) indicated in the units parameter. Any characters that extend
beyond the last column will be discarded.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_FAILURE An error occurred while communicating with one of the video units
 indicated in units. The ErrorUnits and ErrorString properties are
 updated. (Can only occur if AsyncMode is false.)

See Also AsyncMode Property, ErrorString Property, ErrorUnits Property, “Model Updated in Release 1.7”
on page 1126.

1. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.
1148 Unified POS, V1.16.1

32.5.10 drawBox Method

Syntax drawBox (units: int32, row: int32, column: int32, height: int32, width: int32, attribute: int32,
bordertype: int32): 
void { raises-exception, use after open-claim-enable }

Parameter Description
units Bitwise mask indicating which video unit(s) to operate on.
row The box’s start row.
column The box’s start column.
height The number of rows in the box.
width The number of columns in the box.
attribute The video attribute. See “Model Updated in Release 1.7” on page 1126.
bordertype The border type to be drawn. Can be any printable character or a defined
 border type. See values below.

Value Meaning
ROD_BDR_SINGLE A single line border.
ROD_BDR_DOUBLE A double line border.
ROD_BDR_SOLID A solid block border.

Remarks Draws a box on the video unit(s) indicated in the units parameter.

The Remote Order Display will attempt to draw a box with the border type specified. If the character set
does not support the chosen border type, the Service will choose the best fit from the given character set.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_FAILURE An error occurred while communicating with one of the video units
 indicated in units. The ErrorUnits and ErrorString properties are
 updated.

See Also AsyncMode Property, ErrorString Property, ErrorUnits Property, “Model Updated in Release 1.7”
on page 1126.
Unified POS, v1.16.1 1149

32.5.11 freeVideoRegion Method

Syntax freeVideoRegion (units: int32, bufferId: int32): 
void { raises-exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which video unit(s) to operate on.

bufferId Number identifying the video buffer to free. Valid values range from 1 to the
VideoSaveBuffers property for a selected unit(s).

Remarks Frees any buffer memory allocated for the video unit(s) indicated in the units parameter. The number of
video buffers supported is stored in the VideoSaveBuffers property for each video unit online. If the
bufferId was never used in a previous saveVideoRegion method, no action is taken.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_FAILURE An error occurred while communicating with one of the video units indicated
in units. The ErrorUnits and ErrorString properties are updated.

See Also ErrorString Property, ErrorUnits Property, VideoSaveBuffers Property, saveVideoRegion Method.

32.5.12 resetVideo Method

Syntax resetVideo (units: int32): 
void { raises-exception, use after open-claim-enable }

units is a bitwise mask indicating which video unit(s) to operate on.

Remarks Sets the video unit(s) indicated in the units parameter to a power on state. All Service buffers and clocks
associated with the unit(s) are released. All settable characteristics are set to default values.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_FAILURE An error occurred while communicating with one of the video units indicated

in units. The ErrorUnits and ErrorString properties are updated.

See Also ErrorString Property, ErrorUnits Property.
1150 Unified POS, V1.16.1

32.5.13 restoreVideoRegion Method

Syntax restoreVideoRegion (units: int32, targetRow: int32, targetColumn: int32, bufferId: int32): 
void { raises-exception, use after open-claim-enable }

Parameter Description
units Bitwise mask indicating which video unit(s) to operate on.

targetRow The start row of the target location.

targetColumn The start column of the target location.

bufferId Number identifying the source video buffer to use. Valid values range from 1
to the VideoSaveBuffers property for the selected unit(s).

Remarks Restores a previously saved video region of the display area from the requested bufferId for the video
unit(s) indicated in the units parameter. A region can be saved using the saveVideoRegion method. The
number of video buffers supported is stored in the VideoSaveBuffers property for each video unit online.
The target location is defined by the targetRow and targetColumn parameters. This method doesn’t free
the memory after restoring, therefore, this method can be used to copy a video region to multiple
locations on the display. Use the freeVideoRegion method to free any memory allocated for a video
buffer.

If the bufferId does not contain a previously saved video region for the units selected, a
EROD_NOREGION exception is raised.

Video regions cannot be restored between video units. For example, the saveVideoRegion method is
called with units = 0000 1000 and bufferId = 1. This will save a video region for the Unit Id 4, in to Buffer
1 for that unit. If this method is called with units = 0000 0100 and bufferId = 1 with the intention of
restoring the previously saved buffer to Unit Id 3, then either a UposException with ErrorCode of
EROD_NOREGION would be thrown, or an unwanted region would be restored.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_EXTENDED ErrorCodeExtended = EROD_NOREGION: The bufferId does not contain a

previously saved video region.

E_FAILURE An error occurred while communicating with one of the video units indicated
in units. The ErrorUnits and ErrorString properties are updated. (Can only
occur if AsyncMode is false.)

See Also AsyncMode Property, ErrorString Property, ErrorUnits Property, VideoSaveBuffers Property,
saveVideoRegion Method.
Unified POS, v1.16.1 1151

32.5.14 saveVideoRegion Method

Syntax saveVideoRegion (units: int32, row: int32, column: int32, height: int32, width: int32, bufferId:
int32): 
void { raises-exception, use after open-claim-enable }

Parameter Description
units Bitwise mask indicating which video unit(s) to operate on.
row The start row of the region to save.
column The start column of the region to save.
height The number of rows in the region to save.
width The number of columns in the region to save.
bufferId Number identifying the video buffer to use. Valid values range from 1 to the
 VideoSaveBuffers property for a selected unit(s).

Remarks Saves the specified video region of the display area to one of the provided video buffers for the video
unit(s) indicated in the units parameter. The number of video buffers supported is stored in the
VideoSaveBuffers property for each video unit online. However, a UposException will be raised if the
requested buffer exceeds the number of SystemVideoSaveBuffers even though the VideoSaveBuffers
property may indicated the unit can support more save buffers than currently allocated for that unit.

If VideoSaveBuffers is greater than 0, the Service will be able to support at minimum one entire video
screen. This does not guarantee that the Service can save an entire video screen in each supported buffer
for a single unit. A UposException is raised when all the buffer memory has been allocated for a specific
unit.

The source area is defined by the row, column, height, and width parameters. The video region can be
restored to the screen by calling the restoreVideoRegion method. If saveVideoRegion is called twice
with the same bufferId, the previous video data is lost, and any allocated memory is returned to the
system.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL bufferId, row, column, height, or width is out of range. The ErrorUnits and

ErrorString properties are updated.

E_EXTENDED ErrorCodeExtended = EROD_NOBUFFERS:
Requested buffer exceeds the number of SystemVideoSaveBuffers.

ErrorCodeExtended = EROD_NOROOM:
All the buffer memory has been allocated for a specific unit. The ErrorUnits
and ErrorString properties are updated.

E_FAILURE An error occurred while communicating with one of the video units indicated
in units. The ErrorUnits and ErrorString properties are updated. (Can only
occur if AsyncMode is false.)

See Also AsyncMode Property, ErrorString Property, ErrorUnits Property, SystemVideoSaveBuffers
Property, VideoSaveBuffers Property, restoreVideoRegion Method.
1152 Unified POS, V1.16.1

32.5.15 selectCharacterSet Method

Syntax selectCharacterSet (units: int32, characterSet: int32): 
void { raises-exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which video unit(s) to operate on.

characterSet Contain the character set for displaying characters. Values are:

Value Meaning

Range 101 - 199 A device-specific character set that does not match a code page, nor the
ASCII or ANSI character sets.

Range 400 - 990 Code page; matches one of the standard values.

ROD_CS_UNICODE The character set supports Unicode. The value of this constant is 997.

ROD_CS_ASCII The ASCII character set, supporting the ASCII characters between 20-hex
and 7F-hex. The value of this constant is 998.

ROD_CS_ANSI The ANSI character set. The value of this constant is 999.

Remarks Selects a compatible character set for the video unit(s) indicated in the units parameter.

The CharacterSet property is updated for each video unit id that is successfully assigned a new character
set.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_FAILURE An error occurred while communicating with one of the video units indicated

in units. The ErrorUnits and ErrorString properties are updated.

See Also ErrorString Property, ErrorUnits Property, CapSelectCharacterSet Property, CharacterSet
Property.

32.5.16 setCursor Method

Syntax setCursor (units: int32, row: int32, column: int32): 
void { raises-exception, use after open-claim-enable }

Parameter Description
units Bitwise mask indicating which video unit(s) to operate on.

row Row to place the cursor on.

column Column to place the cursor on.

Remarks Updates the cursor position on the video unit(s) indicated in the units parameter.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_FAILURE An error occurred while communicating with one of the video units indicated

in units. The ErrorUnits and ErrorString properties are updated.

See Also ErrorString Property, ErrorUnits Property.
Unified POS, v1.16.1 1153

32.5.17 transactionDisplay Method

Syntax transactionDisplay (units: int32, function: int32): 
void { raises-exception, use after open-claim-enable }

Parameter Description
units Bitwise mask indicating which video unit(s) to operate on.

function Transaction control function. Valid values are:

Value Meaning
ROD_TD_TRANSACTION Begin a transaction.

ROD_TD_NORMAL End a transaction by displaying the buffered data.

Remarks Enters or exits transaction mode for the video unit(s) indicated in the units parameter.

If function is ROD_TD_TRANSACTION, then transaction mode is entered. Subsequent calls to
clearVideo, clearVideoRegion, copyVideoRegion, displayData, drawBox, restoreVideoRegion,
saveVideoRegion, and updateVideoRegionAttribute will buffer the display data (either at the video
unit or the Service, depending on the display capabilities) until transactionDisplay is called with the
function parameter set to ROD_TD_NORMAL. (In this case, the display methods only validate the
method parameters and buffer the data – they do not initiate displaying. Also, the value of the
AsyncMode property does not affect their operation: No OutputID will be assigned to the request, nor
will an OutputCompleteEvent be enqueued.)

If function is ROD_TD_NORMAL, then transaction mode is exited. If some data was buffered by calls
to the methods clearVideo, clearVideoRegion, copyVideoRegion, displayData, drawBox,
restoreVideoRegion, saveVideoRegion, and updateVideoRegionAttribute, then the buffered data is
displayed. The entire transaction is treated as one message. This method is performed synchronously if
AsyncMode is false, and asynchronously if AsyncMode is true.

Calling the clearOutput method cancels transaction mode for the unit indicated in the CurrentUnitID
property. Any buffered print lines are also cleared.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_BUSY Cannot perform while output is in progress for one of the video units

indicated in units. The ErrorUnits and ErrorString properties are updated.
(Can only occur if AsyncMode is false and function is
ROD_TD_NORMAL.)

E_FAILURE An error occurred while communicating with one of the video units indicated
in units. The ErrorUnits and ErrorString properties are updated. (Can only
occur if AsyncMode is false and function is ROD_TD_NORMAL.)

See Also clearVideo Method, clearVideoRegion Method, copyVideoRegion Method, displayData Method,
drawBox Method, restoreVideoRegion Method, saveVideoRegion Method,
updateVideoRegionAttribute Method.
1154 Unified POS, V1.16.1

32.5.18 updateVideoRegionAttribute Method

Syntax updateVideoRegionAttribute (units: int32, function: int32, row: int32, column: int32, height:
int32, width: int32, attribute: int32): 
void { raises-exception, use after open-claim-enable }

Parameter Description
units Bitwise mask indicating which video unit(s) to operate on.

function The attribute command. See values below.

row The region’s start row.

column The region’s start column.

height The number of rows in the region.

width The number of columns in the region.

attribute See “Model Updated in Release 1.7” on page 1126 in the General Information
section.

The function parameter values are:

Value Meaning
ROD_UA_SET Set the region with the new attribute.

ROD_UA_INTENSITY_ON Turn on foreground intensity in the region.

ROD_UA_INTENSITY_OFF Turn off foreground intensity in the region.

ROD_UA_REVERSE_ON Reverse video the region.

ROD_UA_REVERSE_OFF Remove reverse video from the region.

ROD_UA_BLINK_ON Turn on blinking in the region.

ROD_UA_BLINK_OFF Turn off blinking in the region.

Remarks Modifies the attribute on the video unit(s) indicated in the units parameter in the region defined by the
row, column, height, and width parameters. When the function parameter is ROD_UA_SET, the region’s
attributes will be replaced with the new value in the attribute parameter; otherwise the attribute
parameter is ignored and the region’s attributes will be modified.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_FAILURE An error occurred while communicating with one of the video units indicated

in units. The ErrorUnits and ErrorString properties are updated. (Can only
occur if AsyncMode is false.)

See Also AsyncMode Property, ErrorString Property, ErrorUnits Property, “Model Updated in Release 1.7”
on page 1126.
Unified POS, v1.16.1 1155

32.5.19 videoSound Method

Syntax videoSound (units: int32, frequency: int32, duration: int32, numberOfCycles: int32,
interSoundWait: int32): 
void { raises-exception, use after open-claim-enable }

Parameter Description
units Bitwise mask indicating which video unit(s) to operate on.

frequency Tone frequency in Hertz.

duration Tone duration in milliseconds.

numberOfCycles If FOREVER, then start tone sounding and, repeat continuously. Else perform the
specified number of cycles.

interSoundWait When numberOfCycles is not one, then pause for interSoundWait milliseconds
before repeating the tone cycle (before playing the tone again).

Remarks Sounds the video enunciator for the video(s) indicated in the units parameter.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

The duration of a video tone cycle is:

duration parameter + interSoundWait parameter (except on the last tone cycle)

After the video has started an asynchronous sound, then the clearOutput method will stop the sound.
(When an interSoundWait value of FOREVER was used to start the sound, then the application must use
clearOutput to stop the continuous sounding of tones.)

If CapTone is false for the selected unit(s), a UposException is raised.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_FAILURE An error occurred while communicating with one of the video units indicated

in units. The ErrorUnits and ErrorString properties are updated. (Can only
occur if AsyncMode is false.)

See Also AsyncMode Property, ErrorString Property, ErrorUnits Property, CapTone Property, clearOutput
Method.
1156 Unified POS, V1.16.1

32.6 Events (UML interfaces)

32.6.1 DataEvent

<< event >> upos::events::DataEvent 
Status: int32 { read-only }

Description Notifies the application when input data from a video touch unit is available.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 As described below

The Status attribute is divided into four bytes as indicated below:

The low word contains the Event type. The high word contains additional data depending on the Event
type. When the Event type is ROD_DE_TOUCH_UP, ROD_DE_TOUCH_DOWN, or
ROD_DE_TOUCH_MOVE, the high word indicates where the touch occurred. The low byte contains
the Column position and the high byte contains the Row position, with valid values ranging from 0-255.

Remarks This event can be filtered at the Remote Order Display device by setting the EventType property.

The EventUnitID property is updated before the event is delivered.

See Also “Device Input Model” on page 18, EventUnitID Property, DataEventEnabled Property, FreezeEvents
Property.

High Word Low Word (Event Type)

High Byte Low Byte

Row Column
 ROD_DE_TOUCH_UP
 ROD_DE_TOUCH_DOWN
 ROD_DE_TOUCH_MOVE
Unified POS, v1.16.1 1157

32.6.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Remote Order Display Service to provide events to the application that are not otherwise
supported by the Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and the
Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service. This
property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Remote Order
Display devices which may not have any knowledge of the Service’s need for this event.

See Also “Errors” on page 16, directIO Method.
1158 Unified POS, V1.16.1

32.6.3 ErrorEvent Updated in Release 1.10

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a Remote Order Display error has been detected and a suitable response by
the application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attribute Type Description
ErrorCode int32 Error code causing the error event. See list of ErrorCodes in Chapter 1.

ErrorCodeExtended
int32 Extended error code causing the error event. If ErrorCode is E_EXTENDED,

then see values below. Otherwise, it may contain a Service-specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden by the application
(i.e., this property is settable). See values below.

The ErrorLocus property may be one of the following:

Value Meaning
EL_OUTPUT Error occurred while processing asynchronous output.

EL_INPUT Error occurred while gathering or processing event-driven input. No
previously buffered input data is available.

EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and some
previously buffered data is available.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus. The
application’s error processing may change ErrorResponse to one of the following values:

Value Meaning
ER_RETRY Use only when locus is EL_OUTPUT.

Retry the asynchronous output. The error state is exited.
Default when locus is EL_OUTPUT.

ER_CLEAR Clear all buffered output data (including all asynchronous output) or buffered
input data. The error state is exited.
Default when locus is EL_INPUT.

ER_CONTINUEINPUT Use only when locus is EL_INPUT_DATA. Acknowledges the error and
directs the Device to continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and the
DataEventEnabled property is again set to true, then another ErrorEvent is
delivered with locus EL_INPUT.
Default when locus is EL_INPUT_DATA.

Remarks Input error events are not delivered until the DataEventEnabled property is true, so that proper
application sequencing occurs.

The EventUnits and EventString properties are updated before the event is delivered.
Unified POS, v1.16.1 1159

See Also “Device Output Models” on page 20, “Device Information Reporting Model” on page 25,
DataEventEnabled Property, EventUnits Property, EventString Property.

32.6.4 OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the OutputID property has
completed successfully.

Attributes This event contains the following attribute:

Attribute Type Description
OutputID int32 The ID number of the asynchronous output request that is complete.

Remarks Enqueued when a previously started asynchronous output request completes successfully. The
EventUnits property is updated before the event is delivered.

See Also EventUnits Property, “Device Output Models” on page 20.

32.6.5 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a video unit.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 Reports a change in the power state of a display.

Note that Release 1.3 added Power State Reporting with additional Power
reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 2.

Remarks Enqueued when the Remote Order Display detects a power state change.

Deviation from the standard StatusUpdateEvent (see Chapter 2):

• Before delivering the event, the EventUnits property is set to the units for which the new power state
applies.

• When the Remote Order Display is enabled, then a StatusUpdateEvent is enqueued to specify the
bitmask of online units.

• While the Remote Order Display is enabled, a StatusUpdateEvent is enqueued when the power
state of one or more units change. If more than one unit changes state at the same time, the Service
may choose to either enqueue multiple events or to coalesce the information into a minimal number
of events applying to EventUnits.

See Also EventUnits Property.
1160 Unified POS, V1.16.1

33 RFID Scanner

33.1 General

This Chapter defines the RFID Scanner device category.

33.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.12 open

CapCompareFirmwareVersion: boolean { read-only } 1.12 open

CapPowerReporting: int32 { read-only } 1.12 open

CapStatisticsReporting: boolean { read-only } 1.12 open

CapUpdateFirmware: boolean { read-only } 1.12 open

CapUpdateStatistics: boolean { read-only } 1.12 open

CheckHealthText: string { read-only } 1.12 open

Claimed: boolean { read-only } 1.12 open

DataCount: int32 { read-only } 1.12 open

DataEventEnabled: boolean { read-write } 1.12 open

DeviceEnabled: boolean { read-write } 1.12 open & claim

FreezeEvents: boolean { read-write } 1.12 open

OutputID: int32 { read-only } 1.12 open

PowerNotify: int32 { read-write } 1.12 open

PowerState: int32 { read-only } 1.12 open

State: int32 { read-only } 1.12 --

DeviceControlDescription: string { read-only } 1.12 --

DeviceControlVersion: int32 { read-only } 1.12 --

DeviceServiceDescription: string { read-only } 1.12 open

DeviceServiceVersion: int32 { read-only } 1.12 open

PhysicalDeviceDescription: string { read-only } 1.12 open

PhysicalDeviceName: string { read-only } 1.12 open
Unified POS, v1.16.1 1161

Properties (Continued)

Specific: Type Mutability Version May Use After

CapContinuousRead: boolean { read-only } 1.12 open

CapDisableTag: boolean { read-only } 1.12 open

CapLockTag: boolean { read-only } 1.12 open

CapMultipleProtocols: int32 { read-only } 1.12 open

CapReadTimer: boolean { read-only } 1.12 open

CapWriteTag: int32 { read-only } 1.12 open

ContinuousReadMode: boolean { read-only } 1.12 open

CurrentTagID: binary { read-only } 1.12 open

CurrentTagProtocol: int32 { read-only } 1.12 open

CurrentTagUserData: binary { read-only } 1.12 open

ProtocolMask: int32 { read-write } 1.12 open & claim

ReadTimerInterval: int32 { read-write } 1.12 open & claim

TagCount: int32 { read-only } 1.12 open

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.12

close ():
void { raises-exception, use after open }

1.12

claim (timeout: int32):
void { raises-exception, use after open }

1.12

release ():
void { raises-exception, use after open, claim }

1.12

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.12

clearInput ():
void { raises-exception, use after open, claim }

1.12

clearInputProperties ():
void { raises-exception, use after open, claim }

1.12

clearOutput ():
void { raises-exception, use after open, claim }

1.12

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.12

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.12
1162 Unified POS, v1.16.1

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.12

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.12

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.12

updateStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.12

Specific

Name

disableTag (tagID: binary, timeout: int32, password: binary):
void { raises-exception, use after open, claim, enable }

1.12

firstTag ():
void { raises-exception, use after open }

1.12

lockTag (tagID: binary, timeout: int32, password: binary):
void { raises-exception, use after open, claim, enable }

1.12

nextTag ():
 void { raises-exception, use after open }

1.12

previousTag ():
 void { raises-exception, use after open }

1.12

readTags (cmd: int32, filterID: binary, filtermask: binary, start: int32,
length: int32, timeout: int32, password: binary):

void { raises-exception, use after open, claim, enable }

1.12

startReadTags (cmd: int32, filterID: binary, filtermask: binary, start:
int32, length: int32, password: binary):

void { raises-exception, use after open, claim, enable }

1.12

stopReadTags (password: binary):
void { raises-exception, use after open, claim, enable }

1.12

writeTagData (tagID: binary, userdata: binary, start: int32, timeout: int32,
password: binary):

void { raises-exception, use after open, claim, enable }

1.12

writeTagID (sourceID: binary, destID: binary, timeout: int32, password:
binary):

void { raises-exception, use after open, claim, enable }

1.12
Unified POS, v1.16.1 1163

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent 1.12

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.12

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.12

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent 1.12

 OutputID: int32 { read-only }

upos::events::StatusUpdateEvent 1.12

 Status: int32 { read-only }
1164 Unified POS, v1.16.1

33.3 General Information

The RFID Scanner device programmatic name is “RFIDScanner.”

This device was introduced in Version 1.12 of this specification.

33.3.1 Capabilities

The RFID Scanner device has the following capabilities:

• Reads TagID and UserData from RFID tags.

• Reading of partial UserData

The RFID Scanner device may also support the following capabilities:

• Continuous reading of tags.

• Writes TagID to RFID tags

• Locking a tag

• Writes UserData to specified RFID tags

• Disables (kills) RFID tags

• Writing of partial UserData
Unified POS, v1.16.1 1165

33.3.2 RFID Scanner Class Diagram

The following diagram shows the relationships between the RFID Scanner classes.
1166 Unified POS, v1.16.1

33.3.3 Model

The RFID Scanner is both an event-driven input device and an output device. Input and output are always
asynchronous. The tag is considered to consist of contiguous fields called the Tag ID and the User Data. This
present standard does not at this time define the Tag ID or User Data fields; they are determined in a device
specific manner by the RFID Scanner Service and may vary depending on the protocol property setting.

Input

The RFID Scanner follows the general “Device Input Model”, with some differences. In particular, only one
DataEvent is delivered for the entire group of tags read in one input operation:

• In its simplest form, readTags method can be invoked with the cmd parameter serving as data selector (ID,
FullData, PartialData, or combinations) and other parameters holding corresponding default values, a
collection of tags that meet the parameterized criteria will be returned.

• Application can filter read tags by passing in two bit patterns: filterID and filtermask. A filtered read operation
should only return the tags whose TagID, when bitwise AND’ed with the parameterized filtermask matches the
bitwise AND’ed result of filterID and filtermask. To request all tags in read range, the application can pass in a
filtermask with all zeros. When all tag data has been collected, a DataEvent is enqueued. Tag filtering must be
supported, either in hardware or in the RFID Scanner Service.

• Partial UserData reading must also be supported, if not in the hardware then in the RFID Scanner Service. For
accessing a specific segment of the UserData, the application can configure the cmd parameter by turning on
the RFID_RT_PARTIALUSERDATA bit, and then pass in the starting position and the length of the targeted
segment. The CurrentTagUserData property that is populated by a navigation method such as nextTag will
now contain the segment that is specified.

• If the AutoDisable property is true, the device automatically disables itself when a DataEvent is enqueued.

• An enqueued DataEvent can be delivered to the application when the DataEventEnabled property is true and
other event delivery requirements are met. Just before delivering this event, TagCount is set to the total
number of tags that were read, the data from the first tag are placed into the CurrentTagID,
CurrentTagProtocol and CurrentTagUserData properties, and further DataEvents are disabled by setting
DataEventEnabled to false.

• After receiving a DataEvent the application determines the total number of tags read by reading the
TagCount property. The application can navigate through the tags by calling firstTag, nextTag, and
previousTag and can retrieve tag information via the CurrentTagID, CurrentTagProtocol, and
CurrentTagUserData properties. The firstTag, nextTag, and previousTag methods are synchronous and no
physical input or output occurs when they are called.

• When the application finishes processing all the current input and is ready for more data, it re-enables events
by setting DataEventEnabled to true.

• An ErrorEvent (or events) is enqueued if an error occurs while gathering or processing input, such as a
timeout event, and is delivered to the application when DataEventEnabled is true and other event delivery
requirements are met.

• A DataEvent or an ErrorEvent must be received before another readTags method can be invoked. All
enqueued input may be deleted by calling clearInput.

• If CapContinuousRead is true, application can invoke startReadTags and stopReadTags for continuously
reading. startReadTags polls tags within the range in the same manner as readTags, but it continuously
queues tag read DataEvent until it is interrupted by stopReadTags.
Unified POS, v1.16.1 1167

Output

The RFID Scanner follows the general “Device Output Model,” with some differences and enhancements:

• The application can determine what is writable by querying CapWriteTag.

• If supported, the application can write to TagID and UserData by invoking the writeTagID or the
writeTagData method respectively.

• All write operations involving the tag’s UserData can be considered partial writes (i.e. they will only overwrite
the section of the tag’s UserData field specified by the userData and start parameters of the writeTagData
method). Therefore, in order to overwrite the entire contents of the tag’s UserData field, the application must
ensure that the userData parameter contains enough data to completely overwrite the tag’s UserData section.
The application may need to pad the userData parameter with null (0x0) bytes in order to completely overwrite
existing data and may need to first read the tag’s UserData in order to determine amount of padding required.

• If CapLockTag is true, the application can also lock a tag by invoking the lockTag method. When a tag is
locked both the ID and UserData become read-only. For the case where a password is required, it can be
specified in the parameter list.

• If CapDisableTag is true, the application can also call disableTag giving the tagID of the tag it wants to
permanently disable (kill).

• The RFID Scanner Service buffers the request for delivery to the RFID hardware as soon as the RFID
hardware can receive and process it, sets the OutputID property to an identifier for this request, and returns as
soon as possible. When the Service completes the request successfully, an OutputCompleteEvent is
enqueued. A property of this event contains the OutputID of the completed request.

• If an error occurs while performing an asynchronous request, such as a timeout event, an ErrorEvent is
enqueued.
1168 Unified POS, v1.16.1

33.3.4 RFID Scanner Sequence Diagrams

The following diagram shows a typical initialization sequence for a RFID Scanner device.

: Client App : RFID Scanner : RFID Scanner Service

getCapMultipleProtocols()

getCapMultipleProtocols()

setProtocolMask()

setProtocolMask()
Unified POS, v1.16.1 1169

The following diagram shows a typical usage of a RFID Scanner device reading tags.

: ClientApp : RFID Scanner : RFID Scanner Service : RFID Hardware

setProtocolMask()

setProtocolMask()

readTag(RFID_READ_TAGID)

readTag(RFID_READ_TAGID)

issue read command

send tag data

collect data from all tags which match the tag mask

enqueue DataEvent
load data from first tag into CurrentTag* properties and deliver enqueued DataEvent to control

deliver DataEvent to application
notify client of new event

getTagCount()

getCurrentTagID() getCurrentTagID()

nextTag()
nextTag()

load next tag data into CurrentTag* properties

getTagCount()

getCurrentTagUserData() getCurrentTagUserData()
1170 Unified POS, v1.16.1

The following diagram shows a typical usage of a RFID Scanner device writing tags.

: Client App : RFID Scanner : RFID Scanner Service
: RFID Output Complete

Event : RFID Hardware

writeTagData()

writeTagData()

generate OutputID(1)

send write cmd and associated user datagetOutputID()

getOutputID()

write cmd complete

create

deliver enqueued OutputCompleteEvent to control

deliver OutputCompleteEvent to all event handlers

notify client of new event
Unified POS, v1.16.1 1171

33.3.5 RFID Scanner State Diagram

The following diagram illustrates the various state transitions within the RFID Scanner device category.

33.3.6 Device Sharing

The RFID Scanner is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing many of the RFID Scanner specific
properties.

• The application must claim and enable the device before calling methods that manipulate the device.

• See the “Summary” table for precise usage prerequisites.

Closed

Opened

Claimed

EnabledContinuous Read Mode

Output Requested

Input RequestedreadTags()

writeTagData()

writeTagID()

lockTag()

disableTag()

OutputCompleteEvent

ErrorEvent

clearOutput()

ErrorEvent

DataEvent
clearInput()

startReadTags()

stopReadTags()

release()

open()

close()

claim()

Busy State

SetDeviceEnabled(true)

SetDeviceEnabled(false)
1172 Unified POS, v1.16.1

33.4 Properties (UML Attributes)

33.4.1 CapContinuousRead Property

Syntax CapContinuousRead: boolean { read-only, access after open }

Remarks If true, the device supports continuous reading. The application should query this property before
invoking startReadTags and other continuous read methods.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also ContinuousReadMode Property, startReadTags Method, stopReadTags Method.

33.4.2 CapDisableTag Property

Syntax CapDisableTag: boolean { read-only, access after open }

Remarks If true, the device supports disabling a tag permanently. The application should query this property
before invoking the disableTag method.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also disableTag Method.

33.4.3 CapLockTag Property

Syntax CapLockTag: boolean { read-only, access after open }

Remarks Indicates whether this reader supports locking a tag. Application should query this property before
invoking lockTag method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also lockTag Method.
Unified POS, v1.16.1 1173

33.4.4 CapMultipleProtocols Property

Syntax CapMultipleProtocols: int32 { read-only, access after open }

Remarks This property indicates the available predefined RFID tag protocols this device supports. If the device
supports more than one of these protocols, the value of this property will be the bitwise sum of the values
of the supported protocols.
Value Meaning 
RFID_PR_EPC0 EPC class 0 read-only passive tags
RFID_PR_0PLUS Non-standard EPC class “0+” write once passive tags
RFID_PR_EPC1 EPC class 1 write once passive tags
RFID_PR_EPC1G2 EPC class 1 gen 2 (ISO 18000-6C) write once passive tags
RFID_PR_EPC2 EPC class 2 rewritable tags
RFID_PR_ISO14443A ISO 14443A HF tags
RFID_PR_ISO14443B ISO 14443B HF tags
RFID_PR_ISO15693 ISO 15693 HF tags
RFID_PR_ISO180006B ISO 18000-6B UHF tags
RFID_PR_OTHER A tag that does not fit into one of the defined protocols

Based on this property, ProtocolMask can further filter the tags it wants to exclude by turning off the
bits.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CurrentTagProtocol Property, ProtocolMask Property.

33.4.5 CapReadTimer Property

Syntax CapReadTimer: boolean { read-only, access after open }

Remarks If true, the device supports a read timer. Application should query this property first before setting
ReadTimerInterval.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also ReadTimerInterval Property.
1174 Unified POS, v1.16.1

33.4.6 CapWriteTag Property

Syntax CapWriteTag: int32 { read-only, access after open }

Remarks Indicates the writable fields in the tag. Possible values are:

Value Meaning 
RFID_CWT_NONE No writable fields in the tag (0)
RFID_CWT_ID The ID field in the tag is writable (1)
RFID_CWT_USERDATA The UserData field in the tag is writable (2)
RFID_CWT_ALL All fields in the tag are writable (3)

The value of this property indicates only the write capability of the device and does not imply the
writability of any specific tag. The application should query this property before invoking writing
methods.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also writeTagData Method, writeTagID Method.

33.4.7 ContinuousReadMode Property

Syntax ContinuousReadMode: boolean {read-only, access after open}

Remarks If true, the device is in continuous read mode. The ProtocolMask and ReadTimerInterval properties
are read-only when this property is true.
This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapContinuousRead Property.

33.4.8 CurrentTagID Property

Syntax CurrentTagID: binary { read-only, access after open }1

Remarks This property represents present tag’s TagID.
Just before a DataEvent is delivered, the service populates this property with data from the first tag that
was read. The service keeps this property up to date when the application calls the firstTag, nextTag,
and previousTag methods.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also firstTag Method, nextTag Method, previousTag Method, readTags Method, startReadTags Method.

1. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.
Unified POS, v1.16.1 1175

33.4.9 CurrentTagProtocol Property

Syntax CurrentTagProtocol: int32 { read-only, access after open }

Remarks The Service populates this property with the Protocol that this tag was read through. The value here
should match one of the selection in ProtocolMask. This property may be updated by the Service for
each individual tag.
Just before a DataEvent is delivered, the service populates this property with data from the first tag that
was read. The service keeps this property up to date when the application calls the firstTag, nextTag,
and previousTag methods.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also ProtocolMask Property, firstTag Method, nextTag Method, previousTag Method, readTags Method,
startReadTags Method.

33.4.10 CurrentTagUserData Property

Syntax CurrentTagUserData: binary { read-only, access after open }1

Remarks The Service populates this property with the data read from the physical tag. If it is a partial read, it will
populate it with the targeted segment.
Just before a DataEvent is delivered, the service populates this property with data from the first tag that
was read. The service keeps this property up to date when the application calls the firstTag, nextTag,
and previousTag methods.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also firstTag Method, nextTag Method, previousTag Method, readTags Method, startReadTags Method.
1176 Unified POS, v1.16.1

33.4.11 ProtocolMask Property

Syntax ProtocolMask: int32 { read-write, access after open-claim }

Remarks Holds a bit pattern wherein each bit signifies one predefined RFID tag protocol. The nonzero bit entries
indicate protocols for which the read is requested. Only tags of the specified protocol type will be read.
If the reader is in Continuous Read mode, this property is read-only.
Value Tag Type 
RFID_PR_EPC0 EPC class 0 read-only passive tags
RFID_PR_0PLUS Non-standard EPC class “0+” write once passive tags
RFID_PR_EPC1 EPC class 1 write once passive tags
RFID_PR_EPC1G2 EPC class 1 gen 2 (ISO 18000-6C) write once passive tags
RFID_PR_EPC2 EPC class 2 rewritable tags
RFID_PR_ISO14443A ISO 14443A HF tags
RFID_PR_ISO14443B ISO 14443B HF tags
RFID_PR_ISO15693 ISO 15693 HF tags
RFID_PR_ISO180006B ISO 18000-6B UHF tags
RFID_PR_OTHER A tag that does not fit into one of the defined protocols
RFID_PR_ALL Read all tags supported by the reader

This property is initialized to the same value as CapMultipleProtocols by the open method, and is
normally updated by the application during its initialization phase.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapMultipleProtocols Property, CurrentTagProtocol Property.

33.4.12 ReadTimerInterval Property

Syntax ReadTimerInterval: int32 { read-write, access after open-claim }

Remarks Indicates the minimum time interval between tag reads in milliseconds. This property only applies to
continuous reading. A value of zero indicates no delay between reads. The value of this property is zero
if CapReadTimer is false. Attempts to set this property when CapReadTimer is false or when
ContinuousReadMode is true will raise an exception.
This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapReadTimer Property.

33.4.13 TagCount Property

Syntax TagCount: int32 { read-only, access after open }

Remarks This property contains the total number of tags read by the corresponding read operation. The service
populates this property just before a DataEvent is delivered to the application.
This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also readTags Method, startReadTags Method, DataEvent Event.
Unified POS, v1.16.1 1177

33.5 Methods (UML operations)

33.5.1 disableTag Method

Syntax disableTag (tagID: binary, timeout: int32, password: binary):
void { raises-exception, use after open-claim-enable }

Parameter Description 
tagId2 the tagID of the tag it is disabling
timeout allowed execution time, in milliseconds, before the method fails and a

timeout ErrorEvent is sent to the application. If FOREVER (-1) the service
will wait as long as needed until either the operation completes or an error
occurs.

password2 authorized key for reader that might be required for this operation, zero length
(or empty) if not applicable.

Remarks Permanently disables the specific tag matching the tagID parameter.

This method is always performed asynchronously and OutputID will be set on a successful start plus an
OutputCompleteEvent or ErrorEvent will be fired to indicate completion.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also “Device Output Models” on page 20.

33.5.2 firstTag Method

Syntax firstTag ():
void { raises-exception, use after open }

Remarks Resets the Service’s counter to the first tag in the tag list, and copies that tag’s information into the
corresponding properties. Used if the application needs to re-process the list of tags from its beginning.
The method is synchronous, because no physical input or output occurs when it is called.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also CurrentTagID Property, CurrentTagProtocol Property, CurrentTagUserData Property, TagCount
Property.

2. In the OPOS environment, the format of tagId and password depends upon the value of the
BinaryConversion property. See BinaryConversion property in Annex A.
1178 Unified POS, v1.16.1

33.5.3 lockTag Method

Syntax lockTag (tagID: binary, timeout: int32, password: binary):
void { raises-exception, use after open-claim-enable }

Parameter Description 
tagId3 the tagID of the tag it is locking
timeout allowed execution time, in milliseconds, before the method fails and a

timeout ErrorEvent is sent to the application. If FOREVER (-1) the service
will wait as long as needed until either the operation completes or an error
occurs.

password3 authorized key for reader that might be required for this operation, zero length
(or empty) if not applicable.

Remarks This operation will turn the tag into a read-only mode that both ID and UserData fields are not writable.
If invoking this method with CapLockTag being false, an exception will the thrown.

This method is always performed asynchronously and OutputID will be set on a successful start plus an
OutputCompleteEvent or ErrorEvent will be fired to indicate completion.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also “Device Output Models” on page 20, CapLockTag Property.

33.5.4 nextTag Method

Syntax nextTag ():
void { raises-exception, use after open }

Remarks Moves the Service’s counter to the next tag in the tag list, and copies that tag’s information into the
corresponding properties. Used in normal RFID read processing. The method is synchronous, because
no physical input or output occurs when it is called, only memory to memory copies.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also CurrentTagID Property, CurrentTagProtocol Property, CurrentTagUserData Property, TagCount
Property.

3. In the OPOS environment, the format of tagId and password depends upon the value of the
BinaryConversion property. See BinaryConversion property in Annex A.
Unified POS, v1.16.1 1179

33.5.5 previousTag Method

Syntax previousTag ():
void { raises-exception, use after open }

Remarks Moves the Service’s counter to the previous tag in the tag list, and copies that tag’s information into the
corresponding properties. Used if the application needs to process the list of tags in reverse order. The
method is synchronous, because no physical input or output occurs when it is called, only memory to
memory copies.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also CurrentTagID Property, CurrentTagProtocol Property, CurrentTagUserData Property, TagCount
Property.
1180 Unified POS, v1.16.1

33.5.6 readTags Method

Syntax readTags (cmd: int32, filterID: binary, filtermask: binary, start: int32, length: int32, timeout: int32,
password: binary):
void { raises-exception, use after open-claim-enable }

Parameter Description
cmd Possible values are:

Value Description
RFID_RT_ID Read only the ID data
RFID_RT_FULLUSERDATA

Read the full UserData
RFID_RT_PARTIALUSERDATA

Read the defined partial UserData
RFID_RT_ID_FULLUSERDATA

Read the ID and full UserData
RFID_RT_ID_PARTIALUSERDATA

Read the ID and the defined partial UserData
Some readers allow for a faster read if only the ID is requested.

filterID4 It holds a bit pattern to be AND’ed with filtermask to determine which tag(s) to
read.

filtermask4 It holds a bit pattern to be AND’ed with filterID, only the tagIDs that when
AND’ed with this mask match the ANDing of filterID and filtermask will be
returned. To get all tags in the field, pass in a filtermask of all 0’s.

start Indicates the zero-based position within the tags UserData field to begin reading
from. This parameter only applies when cmd is set to
RFID_RT_PARTIALUSERDATA or RFID_RT_ID_PARTIALUSERDATA,
otherwise it is ignored.

length Indicates the number of bytes of user data to read starting at the position indicated
by the start parameter. This parameter only applies when cmd is set to
RFID_RT_PARTIALUSERDATA or RFID_RT_ID_PARTIALUSERDATA,
otherwise it is ignored.

timeout allowed execution time, in milliseconds, before the method fails and a timeout
ErrorEvent is sent to the application. If FOREVER (-1) the service will wait as
long as needed until either the operation completes or an error occurs.

password4 authorized key for reader that might be required for this operation, zero length (or
empty) if not applicable.

Remarks Performs a poll of all the tags within range that meet the parameterized criteria. A DataEvent or an
ErrorEvent has to be received before another readTags invocation.

4. In the OPOS environment, the format of filterID, filtermask, and password depends upon the value of
the BinaryConversion property. See BinaryConversion property in Annex A.
Unified POS, v1.16.1 1181

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also TagCount Property, firstTag Method, nextTag Method, previousTag Method, “Device Input Model”
on page 18.

33.5.7 startReadTags Method

Syntax startReadTags (cmd: int32, filterID: binary, filtermask: binary, start: int32, length: int32,
password: binary):
void { raises-exception, use after open-claim-enable }

Parameter Description
cmd Possible values are:

Value Description
RFID_RT_ID Read only the ID data
RFID_RT_FULLUSERDATA

Read the full UserData
RFID_RT_PARTIALUSERDATA

Read the defined partial UserData
RFID_RT_ID_FULLUSERDATA

Read the ID and full UserData
RFID_RT_ID_PARTIALUSERDATA

Read the ID and the defined partial UserData
Some readers allow for a faster read if only the ID is requested.

filterID5 It holds a bit pattern to be AND’ed with filtermask to determine which tag(s) to
read.

filtermask5 It holds a bit pattern to be AND’ed with filterID, only the tagIDs that when
AND’ed with this mask match the ANDing of filterID and filtermask will be
returned. To get all tags in the field, pass in a filtermask of all 0’s.

start Indicates the zero-based position within the tags UserData field to begin reading
from. This parameter only applies when cmd is set to
RFID_RT_PARTIALUSERDATA or RFID_RT_ID_PARTIALUSERDATA,
otherwise it is ignored.

length Indicates the number of bytes of user data to read starting at the position indicated
by the start parameter. This parameter only applies when cmd is set to
RFID_RT_PARTIALUSERDATA or RFID_RT_ID_PARTIALUSERDATA,
otherwise it is ignored.

password5 authorized key for reader that might be required for this operation, zero length (or
empty) if not applicable.

5. In the OPOS environment, the format of filterID and filtermask depends upon the value of the
BinaryConversion property. See BinaryConversion property in Annex A.
1182 Unified POS, v1.16.1

Remarks Performs a continuous polling of tags that meet the parameterized criteria. Each polling operation will
result in either a DataEvent or an ErrorEvent being sent. The service will continue polling until
stopReadTags is invoked. ContinuousReadMode is true during startReadTags execution, another
startReadTags invocation will trigger an exception.

This method is always performed asynchronously but OutputID is not set and OutputCompleteEvents
are not sent as a result of invoking this method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also “Device Input Model” on page 18, stopReadTags Method.

33.5.8 stopReadTags Method

Syntax stopReadTags (password: binary):
void { raises-exception, use after open-claim-enable }

Parameter Description
password6 authorized key for reader that might be required for this operation, zero length (or

empty) if not applicable.

Remarks Stops the continuous reading mode. All read-only properties due to continuous reading mode are writable
again. Invoking this method when not in continuous reading mode will trigger an exception.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also “Device Input Model” on page 18, startReadTags Method.

6. In the OPOS environment, the format of password depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.
Unified POS, v1.16.1 1183

33.5.9 writeTagData Method

Syntax writeTagData (tagID: binary, userdata: binary, start: int32, timeout: int32, password: binary):
void { raises-exception, use after open-claim-enable }

Parameter Description 
tagID7 tagID of the tag whose UserData it is writing to
userdata7 to-be-written data
start Indicates the zero-based position within the tags UserData field to begin writing to.
timeout allowed execution time, in milliseconds, before the method fails and a timeout

ErrorEvent is sent to the application. If FOREVER (-1), the service will wait as long
as needed until either the operation completes or an error occurs.

password7 authorized key for reader that might be required for this operation, zero length (or
empty) if not applicable.

Remarks Over-write the entire or part of the UserData field of targeted tag. Application should query
CapWriteTag for this operation’s supportability.

This method is always performed asynchronously and OutputID will be set on a successful start plus an
OutputCompleteEvent or ErrorEvent will be fired to indicate completion.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also “Device Output Model” on page 20, CapWriteTag Property.

33.5.10 writeTagID Method

Syntax writeTagID (sourceID: binary, destID: binary, timeout: int32, password: binary):
void { raises-exception, use after open-claim-enable }

Parameter Description 
sourceID8 tagID of the tag that it is writing the new ID to
destID8 new ID of the tag
timeout allowed execution time, in milliseconds, before the method fails and a timeout

ErrorEvent is sent to the application. If FOREVER (-1), the service will wait as long
as needed until either the operation completes or an error occurs.

password8 authorized key for reader that might be required for this operation, zero length (or
empty) if not applicable.

Remarks Over-write the existing tagID with a new ID. Application should query CapWriteTag to verify this is a
supported method. Invoking this method with CapWriteTag’s WRITE_TAG_ID bit off will trigger an
exception.

This method is always performed asynchronously and OutputID will be set on a successful start plus an
OutputCompleteEvent or ErrorEvent will be fired to indicate completion.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also “Device Output Model” on page 20, CapWriteTag Property.

7. In the OPOS environment, the format of tagID, userData, and password depends upon the value of
the BinaryConversion property. See BinaryConversion property in Annex A.

8. In the OPOS environment, the format of sourceID, destID, and password depends upon the value of
the BinaryConversion property. See BinaryConversion property in Annex A.
1184 Unified POS, v1.16.1

33.6 Events (UML Interfaces)

33.6.1 DataEvent

<< event >> upos::events::DataEvent 
Status: int32 { read-only }

Description Notifies the application that input data from the RFID Scanner is available.

Attributes This event contains the following attribute:

Attributes Type Description 
Status int32 The Status parameter contains zero.

Remarks The property TagCount is updated prior to this event being delivered to the application. For tag details
reported by this DataEvent, the application should invoke the firstTag or nextTag method to enumerate
each tag in the Event, then query a series of CurrentTagXXX properties.

See Also CurrentTagID Property, CurrentTagProtocol Property, CurrentTagUserData Property, TagCount
Property.

33.6.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific RFID Scanner Service to provide events to the application that are not otherwise supported by
the Control.

Attributes This event contains the following attributes:

Attributes Type Description 
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and
 the Service. This property is settable. 
Obj object Additional data whose usage varies by the EventNumber and Service. 
 This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendors’ RFID Scanner
devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.
Unified POS, v1.16.1 1185

33.6.3 ErrorEvent

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an RFID Scanner device error has been detected and a suitable response by
the application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type Description 
ErrorCode int32 Error code causing the error event. See a list of Error Codes on page 16.
ErrorCodeExtended

int32 Extended Error code causing the error event. It may contain a Service-
specific value.

ErrorLocus int32 Location of the error. See values below.
ErrorResponse int32 Error response, whose default value may be overridden by the application.

(i.e., this property is settable). See values below.

The ErrorLocus property may be one of the following:

Value Meaning 
EL_OUTPUT Error occurred while processing asynchronous output.
EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.
EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and

some previously buffered data is available.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error processing may change ErrorResponse to one of the following values:

Value Meaning 
ER_RETRY Typically valid only when locus is EL_OUTPUT.
 Retry the asynchronous output. The error state is exited.
 May be valid when locus is EL_INPUT.
 Default when locus is EL_OUTPUT.
ER_CLEAR Clear all buffered output data (including all asynchronous output) or

buffered input data. The error state is exited. Default when locus is
EL_INPUT.

ER_CONTINUEINPUT Used only when locus is EL_INPUT_DATA. Acknowledges the error
and directs the Control to continue processing. The Control remains in the
error state and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and the
DataEventEnabled
property is again set to true, then another ErrorEvent is delivered with
locus EL_INPUT. Default when locus isEL_INPUT_DATA.

Remarks Input error events are generated when errors occur while reading the data from the RFID Scanner
device. Such events are not delivered until the DataEventEnabled property is set to true so as to allow
proper application sequencing.

Output error events are generated and delivered when an error occurs during asynchronous output
processing.

See Also “Events” on page 15.
1186 Unified POS, v1.16.1

33.6.4 OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the OutputID attribute has
completed successfully.

Attributes This event contains the following attribute:

Attributes Type Description 
OutputID int32 The ID number of the asynchronous output request that is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Service has confirmation that
it was processed by the device successfully.

See Also “Device Output Models” on page 20.

33.6.5 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of an RFID Scanner device.

Attributes This event contains the following attribute:

Attributes Type Description 
Status int32 Reports a change in the power state of an RFID Scanner device.

Note that Release 1.3 added Power State Reporting with additional Power
reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional Status
values for communicating the status/progress of an asynchronous update firmware
process.

See “StatusUpdateEvent” description in Chapter 2.

Remarks Enqueued when the RFID Scanner device detects a power state change.

See Also “Events” on page 15.
Unified POS, v1.16.1 1187

1188 Unified POS, v1.16.1

34 Scale

34.1 General

This Chapter defines the Scale device category.

34.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.3 open

CapCompareFirmwareVersion: boolean { read-only } 1.9 open

CapPowerReporting: int32 { read-only } 1.3 open

CapStatisticsReporting: boolean { read-only } 1.8 open

CapUpdateFirmware: boolean { read-only } 1.9 open

CapUpdateStatistics: boolean { read-only } 1.8 open

CheckHealthText: string { read-only } 1.0 open

Claimed: boolean { read-only } 1.0 open

DataCount: int32 { read-only } 1.3 open

DataEventEnabled: boolean { read-write } 1.3 open

DeviceEnabled: boolean { read-write } 1.0 open & claim

FreezeEvents: boolean { read-write } 1.0 open

OutputID: int32 { read-only } 1.0 Not supported

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --

DeviceControlVersion: int32 { read-only } 1.0 --

DeviceServiceDescription: string { read-only } 1.0 open

DeviceServiceVersion: int32 { read-only } 1.0 open

PhysicalDeviceDescription: string { read-only } 1.0 open

PhysicalDeviceName: string { read-only } 1.0 open
Unified POS, v1.16.1 1189

Properties (Continued)

Specific Type Mutability Version May Use After

CapDisplay: boolean { read-only } 1.2 open

CapDisplayText: boolean { read-only } 1.3 open

CapFreezeValue boolean { read-only } 1.14 open

CapPriceCalculating: boolean { read-only } 1.3 open

CapReadLiveWeightWithTare boolean { read-only } 1.14 open

CapSetPriceCalculationMode boolean { read-only } 1.14 open

CapSetUnitPriceWithWeightUnit boolean { read-only } 1.14 open

CapSpecialTare boolean { read-only } 1.14 open

CapStatusUpdate: boolean { read-only } 1.9 open

CapTarePriority boolean { read-only } 1.14 open

CapTareWeight: boolean { read-only } 1.3 open

CapZeroScale: boolean { read-only } 1.3 open

AsyncMode: boolean { read-write } 1.3 open

MaxDisplayTextChars: int32 { read-only } 1.3 open

MaximumWeight: int32 { read-only } 1.0 open

MinimumWeight: int32 { read-only } 1.14 open

SalesPrice: currency { read-only } 1.3 open, claim, & enable

ScaleLiveWeight: int32 { read-only } 1.9 open

StatusNotify: int32 { read-write } 1.9 open

TareWeight: int32 { read-write } 1.3 open, claim, & enable

UnitPrice: currency { read-write } 1.3 open, claim, & enable

WeightUnit: int32 { read-only } 1.0 open

ZeroValid boolean { read-write } 1.13 open

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.3

close ():
void { raises-exception, use after open }

1.3

claim (timeout: int32):
void { raises-exception, use after open }

1.3

release ():
void { raises-exception, use after open, claim }

1.3

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.3
1190 Unified POS, v1.16.1

clearInput ():
void { raises-exception, use after open, claim }

1.3

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.3

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific

Name

displayText (data: string): 
void { raises-exception, use after open, claim, enable }

1.3

doPriceCalculating (out weightValue: int32, out tare: int32, 
out unitPrice: currency, out unitPriceX: currency, 
out weightUnitX: int32, out weightNumeratorX: int32, 
out weightDenominatorX: int32, out price: currency, 
timeout: int32):
void { raises-exception, use after open, claim, enable }

1.14

freezeValue (item: int32, freeze: boolean):
void { raises-exception, use after open, claim, enable }

1.14

readLiveWeightWithTare (out weightData: int32, out tare: int32,
timeout: int32): 
void { raises-exception, use after open, claim, enable }

1.14

readWeight (inout weightData: int32, timeout: int32): 
void { raises-exception, use after open, claim, enable }

1.3

setPriceCalculationMode (mode: int32): 
void { raises-exception, use after open, claim, enable }

1.14

setSpecialTare (mode: int32, data: int32): 
void { raises-exception, use after open, claim, enable }

1.14

setTarePrioity (priority: int32): 
void { raises-exception, use after open, claim, enable }

1.14

setUnitPriceWithWeightUnit (unitPrice: currency, weightUnit: int32,
weightNumerator: int32, weightDenominator: int32): 
void { raises-exception, use after open, claim, enable }

1.14

zeroScale (): 
void { raises-exception, use after open, claim, enable }

1.3
Unified POS, v1.16.1 1191

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent 1.3

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.0

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.3

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.3

 Status: int32 { read-only }
1192 Unified POS, v1.16.1

34.3 General Information

The Scale programmatic name is “Scale.”

34.3.1 Capabilities

The scale Device has the following capability:

• Provides item weight to the application. The measure of weight may be in grams, kilograms, ounces, or
pounds, depending upon the scale device.

The scale may have the following additional capabilities:

• Includes an integrated display with the current weight, or with the current weight plus application-specified
text.

• Performs price calculations (weight X unit price) and returns the sale price. (This feature is mostly used in
Europe at this time.)

• Supports application setting of tare weight.

• Supports application zeroing of the scale.

The following functionality is added for Release 1.9:

A scale device is used to obtain weight for two distinct purposes, legal weight for calculating price, and live
weight for updating customer displays. Prior to Release 1.9, a good interface is provided for an application to
obtain a legal weight, but no interface for obtaining a live weight existed. The following added functionality in
Release 1.9 formalizes an interface for obtaining scale status and live weight:

• A scale weight status update capability property, CapStatusUpdate.

• A scale weight status notify property, StatusNotify, to enable or disable weight status event notification.

• A ScaleLiveWeight property containing a value to be used for updating a customer display with the current
scale weight.

• Extensions to the readWeight method and StatusUpdateEvent for scale weight status.

The following functionality is added for Release 1.13.

A writable property that controls the delivery of “0” as a valid weight for applications that need to report this as
a legitimate value for the weight was added. When the property ZeroValid is true, the service is allowed to
report “0” back to the application as a valid weight; when false, allows the service to be backward compatible by
not allowing a “0” weight to be valid.

Changes in Release 1.14

The more sophisticated scales have the functionality to not only weigh items but to calculate the prices of the
items in the scale and return to the application. Building on simple price calculation added in Release 1.3,
Release 1.14 adds more complex price calculation allowing for multiple tare values and adding additional items
on the scale which may have different pricing requirements. The new Properties and Methods are:

• A CapFreezeValue property to indicate if the scale supports the freezeValue method.

• A CapReadLiveWeightWithTare property to indicate if the scale supports live weight measurements
incorporating a tare value.
Unified POS, v1.16.1 1193

• A CapSetPriceCalculationMode property to indicate if the scale supports different methods to calculate
price.

• A CapSetUnitPriceWithWeightUnit property to indicate if the scale supports the ability to use different
weight unit types apart from the default scale weight unit types; useful for more complext price calculations.

• A CapSpecialTare property to indicate if the scale supports the ability to use different tare values in
replacement of or in addition to the default scale tare value used in determining the net weight.

• A CapTarePriority property to indicate if the scale supports the ability to use multiple tare values in a certain
ranking order for the calculation of net weight and item price.

• A MinimumWeight property which contains the minimum value that the scale will use before it will register a
valid weight read.

• A doPriceCalculating method that comprises the functionality of the readWeight method plus the ability to do
price calculating. All the properties necessary to facilitate the price calculation are included in one method call.

• A freezeValue method to control the state of the tare and unit price values that the scale uses.

• A readLiveWeightWithTare method that allows the scale to return the live weight and the tare value; it may
be used to display the tare value and weight value. In this method, the live weight is the stable net weight.

• A setPriceCalculationMode method to allow for different uses of the scale such as self service or operator
attended modes.

• A setSpecialTare method that provides for different ways the scale can use the tare values in deteriming net
weight and item price.

• A setTarePriority method that provides for ranking the order of tare values the scale can use in determining
the net weight and item price.

• A setUnitPriceWithWeightUnit method that allows the scale to calculate the price of the item using other
than the default scale parameter values.
1194 Unified POS, v1.16.1

34.4 Scale Class Diagram Updated in Release 1.14

The following diagram shows the relationships between the Scale classes.
Unified POS, v1.16.1 1195

34.5 Scale Sequence Diagram Added in Release 1.7

The following sequence diagram shows the typical synchronous usage of a Scale device.

:ClientApp :Scale :ScaleService

 : Operator
1: open(logicalName)

2: open(logicalName)

3: claim(timeout) 4: claim(timeout)

5: setDeviceEnabled(true)
6: setDeviceEnabled(true)

7: makes sure that scale is empty (ask :Operator if necessary)

8: zeroScale() [CapZeroScale == true]

9: zeroScale() [CapZeroScale == true]

After successful
execution of this
method the scale is
assumed to be
"zeroed"10: show message to place item on scale

11: place item on scale

12: readWeight(weightData, timeout)
13: readWeight(weightData, timeout)

14: displayText(data) [CapDisplayText == true]

15: displayText(data) [CapDisplayText == true]

NOTE: we are assuming that the :ClientApp already successfully opened and enabled the
Scale device.
1196 Unified POS, v1.16.1

34.5.1 Model

The general model of a scale is:

• A scale returns the weight of an item placed on its weighing surface.

• The primary scale method is readWeight. By default, it is performed synchronously. It returns after reading
data from the scale; the weight is returned in the readWeight’s weightData parameter. If an error occurs or if
the timeout elapses, a UposException will be thrown.

• UnifiedPOS Release 1.3 and later - Asynchronous Input

If the AsyncMode property is true when readWeight is called, then the method is performed asynchronously.
It initiates event driven input and returns immediately. The timeout parameter specifies the maximum time the
application wants to wait for a settled weight. Additional points are:

• If an error occurs while initiating event driven input (such as the device is offline), then a UposException is
thrown. Otherwise, readWeight returns immediately to the application, and scale processing continues
asynchronously.

• If a settled weight is received, then a DataEvent is enqueued containing the weight data in the Status
property.

• If a scale error occurs (including a timeout with no settled weight), then an ErrorEvent is enqueued. The
application event handler may retry the weighing process by setting the event’s ErrorResponse property to
ER_RETRY.

• Only one asynchronous call to readWeight can be in progress at a time. An attempt to nest asynchronous
scale operations will result in a UposException being thrown.

• An asynchronous scale operation may be cancelled with the clearInput method.

For price-calculating scales, the application should set the UnitPrice property before calling readWeight. After
a weight is read (and just before the DataEvent is delivered to the application, for asynchronous mode), the
SalesPrice property is set to the calculated price of the item.

34.5.2 Device Sharing

The scale is an exclusive-use device, as follows:

• After opening the device, properties are readable.

• The application must claim the device before enabling it.

• The application must claim and enable the device before calling methods that manipulate the device.

• See the “Summary” table for precise usage prerequisites.
Unified POS, v1.16.1 1197

34.6 Properties (UML attributes)

34.6.1 AsyncMode Property Added in Release 1.3

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, then the readWeight method will be performed asynchronously. If false, the readWeight method
will be performed synchronously.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

34.6.2 CapDisplay Property

Syntax CapDisplay: boolean { read-only, access after open }

Remarks If true, the scale includes an integrated display that shows the current weight. If false, the application may
need to show the current weight on another display.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapDisplayText Property, MaxDisplayTextChars Property.

34.6.3 CapDisplayText Property Added in Release 1.3

Syntax CapDisplayText: boolean { read-only, access after open }

Remarks If true, the scale includes an integrated display that shows the current weight and can also show text that
describes the item being weighed. If false, extra text cannot be shown on the display.

If true, then CapDisplay must also be true.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapDisplay Property, MaxDisplayTextChars Property.
1198 Unified POS, v1.16.1

34.6.4 CapFreezeValue Property Added in Release 1.14

Syntax CapFeeezeValue: boolean { read-only, access after open }

Remarks If true, the scale supports the ability to determine and control the state and values of the tare and unit
price that it uses after a readWeight or doPriceCalculating method call. If false, the scale does not
support the freezeValue method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also freezeValue Method, readWeight Method, doPriceCalculating Method.

34.6.5 CapPriceCalculating Property Added in Release 1.3

Syntax CapPriceCalculating: boolean { read-only, access after open }

Remarks If true, the scale can calculate prices. If false, the scale only returns a weight.

For price calculating scales the calculation unit is in the scale rather than in the data-receiving terminal.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also readWeight Method, WeightUnit Property, UnitPrice Property, 
SalesPrice Property.

34.6.6 CapReadLiveWeightWithTare Property Added in Release 1.14

Syntax CapReadLiveWeightWithTare: boolean { read-only, access after open }

Remarks If true, the scale supports the ability to return the weightData and the tare value with the
readLiveWeightWithTare method. 

If false, the scale does not support the readLiveWeightWith Tare method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also readLiveWeightWithTare Method.
Unified POS, v1.16.1 1199

34.6.7 CapSetPriceCalculationMode Property Added in Release 1.14

Syntax CapSetPriceCalculationMode: boolean { read-only, access after open }

Remarks If true, the scale can utilize different methods for calculating the price of a weighed item on the scale.
This may be useful, for example, to determine the pricing information for a produce label. If false, the
scale does not support the setPriceCalculationMode method.

For price calculating scales this functionality is resident in the scale rather than in the data-receiving
terminal.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also setPriceCalculationMode Method, doPriceCalculating Method, WeightUnit Property, UnitPrice
Property, SalesPrice Property.

34.6.8 CapSetUnitPriceWithWeightUnit Property Added in Release 1.14

Syntax CapSetUnitPriceWithWeightUnit: boolean { read-only, access after open }

Remarks If true, the scale can support a method to associate a unit price with a specific weight unit measure that
is different from the default weight measure unit for the scale. If false, the scale can only associate a unit
price with a preset weight measure unit.

For price calculating scales this functionality is resident in the scale rather than in the data-receiving
terminal.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also setUnitPriceWithWeightUnit Method, readWeight Method, doPriceCalculating Method,
WeightUnit Property, UnitPrice Property, SalesPrice Property.

34.6.9 CapSpecialTare Property Added in Release 1.14

Syntax CapSpecialTare: boolean { read-only, access after open }

Remarks If true, the scale supports special tare weight components that can be used in the calculations to determine
the scale net weight. If false, the scale may only support standard scale tare net weight calculations.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also setSpecialTare Method.
1200 Unified POS, v1.16.1

34.6.10 CapStatusUpdate Property Added in Release 1.9

Syntax CapStatusUpdate: boolean { read-only, access after open }

Remarks If true, then the scale is capable of providing scale weight status with StatusUpdateEvents. This
property is initialized by the open method.

If true when the device is enabled, an immediate StatusUpdateEvent will be generated to tell the
application the current state of the scale.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also ScaleLiveWeight Property, StatusNotify Property.

34.6.11 CapTarePriority Property Added in Release 1.14

Syntax CapTarePriority: boolean { read-only, access after open }

Remarks If true, the scale supports the ability to set the order in which multiple tare weight components can be
applied in the calculations used to determine the scale net weight. If false, the scale does not support this
setTarePriority method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also setTarePriority Method.

34.6.12 CapTareWeight Property Added in Release 1.3

Syntax CapTareWeight: boolean { read-only, access after open }

Remarks If true, the scale includes setting a tare value. If false, the scale does not support tare values.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also TareWeight Property.
Unified POS, v1.16.1 1201

34.6.13 CapZeroScale Property Added in Release 1.3

Syntax CapZeroScale: boolean { read-only, access after open }

Remarks If true, the application can set the scale weight to zero. If false, the scale does not support programmatic
zeroing.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also zeroScale Method.

34.6.14 MaxDisplayTextChars Property Added in Release 1.3

Syntax MaxDisplayTextChars: int32 { read-only, access after open }

Remarks Holds the number of characters that may be displayed on an integrated display for the text which
describes an article.

If CapDisplayText is false, then the device does not support text displaying and this property is always
zero.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapDisplay Property, CapDisplayText Property.

34.6.15 MaximumWeight Property

Syntax MaximumWeight: int32 { read-only, access after open }

Remarks Holds the maximum weight measurement possible from the scale. The measurement unit is available via
the WeightUnit property.

This property has an assumed decimal place located after the “thousands” digit position. For example,
an actual value of 12345 represents 12.345, and an actual value of 5 represents 0.005.

The value held by this property must be processed considering the value returned by the WeightUnit
property.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also WeightUnit Property.
1202 Unified POS, v1.16.1

34.6.16 MinimumWeight Property Added in Release 1.14

Syntax MinimumWeight: int32 { read-only, access after open }

Remarks Holds the minimum weight measurement possible from the scale. The measurement unit is available via
the WeightUnit property.

This property has an assumed decimal place located after the “thousands” digit position. For example,
an actual value of 5 represents 0.005.

The value held by this property must be processed considering the value returned by the WeightUnit
property.

This property is initialized by the open method. The minimum weight depends upon the operation mode
of the scale (see setPriceCalculationMode).

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also WeightUnit Property.

34.6.17 SalesPrice Property Updated in Release 1.6

Syntax SalesPrice: currency { read-only, access after open }

Remarks Holds the sales price read from the scale for price calculating scales. For price calculating scales the scale
calculates this value during the process of weighing by multiplying the UnitPrice property by the
acquired weight. This property is a monetary value stored using an implied four decimal places. For
example, an actual value of 12345 represents 1.2345.

This property is set before the readWeight or doPriceCalculating methods return (in synchronous
mode) or the DataEvent is delivered (in asynchronous mode).

If CapPriceCalculating is false, then the device is not a price calculating scale and SalesPrice is always
zero.

This property is initialized to zero when the device is first enabled following the open method. (In
releases prior to 1.5, this description stated that initialization took place by the open method. In Release
1.5, it was updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also readWeight Method, doPriceCalculating Method, setUnitPriceWithWeightUnit Method,
WeightUnit Property, CapPriceCalculating Property, UnitPrice Property.
Unified POS, v1.16.1 1203

34.6.18 ScaleLiveWeight Property Updated in Release 1.14

Syntax ScaleLiveWeight: int32 { read-only, access after open-claim-enable }

Remarks Contains the returned value for the weight measured by the scale if the StatusUpdateEvent Status is set
to SCAL_SUE_STABLE_WEIGHT, else zero.

The property is set before the readLiveWeightWithTare method returns 
when AsyncMode = false or before the DataEvent is delivered when AsyncMode = true.

The weight has an assumed decimal place located after the “thousands” digit position. For example, an
actual value of 12345 represents 12.345, and an actual value of 5 represents 0.005.

It is suggested that an application use the weight in this property only for display purposes. For a weight
to use for sale purposes, it is suggested that the application call the readWeight or the
doPriceCalculating method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also “Device Input Model” on page 18, CapStatusUpdate Property, StatusNotify Property,
readLiveWeightWithTare method.
1204 Unified POS, v1.16.1

34.6.19 StatusNotify Property Updated in Release 1.10

Syntax StatusNotify: int32 { read-write, access after open }

Remarks Scale weight state notification can only be set by the application if the capability CapStatusUpdate is
true. The StatusNotify values are:

Value Meaning
SCAL_SN_DISABLED The Control will not provide any scale weight state notifications to the

application or set any related ErrorCodeExtended values. No scale weight
state notification StatusUpdateEvents will be fired, and ScaleLiveWeight
may not be set.

SCAL_SN_ENABLED The Control will fire scale weight state notification StatusUpdateEvents and
update the ScaleLiveWeight property beginning when DeviceEnabled is set
true. The level of functionality depends upon CapStatusUpdate.

StatusNotify may only be set while the device is disabled, that is, while DeviceEnabled is false. This
property is initialized to SCAL_SN_DISABLED by the open method. This value provides compatibility
with earlier releases.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL One of the following errors occurred:

• The device is already enabled.
• CapStatusUpdate is false.

See Also CapStatusUpdate Property, ScaleLiveWeight Property.
Unified POS, v1.16.1 1205

34.6.20 TareWeight Property Updated in Release 1.14

Syntax TareWeight: int32 { read-write, access after open-claim-enable }

Remarks Holds the tare weight of scale data. This property has an assumed decimal place located after the
“thousands” digit position. For example, an actual value of 12345 represents 12.345, and an actual value
of 5 represents 0.005. The measured unit is specified in the WeightUnit property. If CapTareWeight is
false, then the device does not support setting of a tare value and this property is always zero.

TareWeight is not included in the item weight returned by the readWeight method. It is updated by the
doPriceCalculating method.

This property is initialized to the scale’s default tare weight (usually zero), when the device is first
enabled following the open method. (In releases prior to 1.5, this description stated that initialization
took place by the open method. In Release 1.5, it was updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGAL CapTareWeight is false or an invalid tare value was specified.

See Also readWeight Method, doPriceCalculating method, WeightUnit Property, CapTareWeight Property.

34.6.21 UnitPrice Property Updated in Release 1.14

Syntax UnitPrice: currency { read-write, access after open-claim-enable }

Remarks Holds the unit price of the article to be weighed. For price calculating scales this property is to be set
before calling the readWeight method. It is updated by the doPriceCalculating method. During
weighing, the scale sets the SalesPrice property to the product of the item’s weight and this property.
This property is a monetary value stored using an implied four decimal places. For example, an actual
value of 12345 represents 1.2345. If CapPriceCalculating is false, then setting of a unit price is not
supported and this property is always zero.

This property is initialized to zero when the device is first enabled following the open method. (In
releases prior to 1.5, this description stated that initialization took place by the open method. In Release
1.5, it was updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGAL CapPriceCalculating is false or an invalid price was specified.

See Also readWeight Method, doPriceCalculating method, WeightUnit Property, CapPriceCalculating
Property, SalesPrice Property.
1206 Unified POS, v1.16.1

34.6.22 WeightUnit Property

Syntax WeightUnit: int32 { read-only, access after open }

Remarks Holds the unit of weight of scale data, and has one of the following values:

Value Meaning
SCAL_WU_GRAM Unit is a gram.

SCAL_WU_KILOGRAM Unit is a kilogram (= 1000 grams).

SCAL_WU_OUNCE Unit is an ounce.

SCAL_WU_POUND Unit is a pound (= 16 ounces).

This property is initialized to the scale’s weight unit by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

34.6.23 ZeroValid Property Added in Release 1.13

Syntax ZeroValid: boolean { read-write, access after open }

Remarks If true, then the readWeight method will return zero (0.00) as a valid stable weight. 
 
If false, then the readWeight method will not return zero as a valid stable weight.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also readWeight Method.
Unified POS, v1.16.1 1207

34.7 Methods (UML operations)

34.7.1 displayText Method Updated in Release 1.7

Syntax displayText (data: string): 
 void { raises-exception, use after open-claim-enable }

Parameter Description
data1 The string of characters to display.

Remarks If CapDisplayText is true, updates the text shown on the integrated display. Calling this method with an
empty string (“”) will clear the display.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid text was specified -- the text contains more characters than

MaxDisplayTextChars, or CapDisplayText is false.

See Also CapDisplay Property, CapDisplayText Property, MaxDisplayTextChars Property.

34.7.2 doPriceCalculating Method Added in Release 1.14

Syntax doPriceCalculating (out weightData: int32, out tare: int32, 
out unitPrice: currency, out unitPriceX: currency, out weightUnitX: int32,
out weightNumeratorX: int32, out weightDenominatorX: int32, 
out price: currency, timeout: int32): 
 void { raises-exception, use after open-claim-enable }

Parameter Description 
weightData The value for the net weight in the price calculation algorithm.

If in asynchronous mode (AsyncMode is true), the returned value is zero.

tare The value used to determine the item net weight in the price calculation
algorithm.
If in asynchronous mode (AsyncMode is true), the returned value is zero.

unitPrice The cost per measurement unit that is used in the price calcuation
algorithm. The measurement unit is the same as that in the scale
WeightUnit property.
If in asynchronous mode (AsyncMode is true), the returned value is zero.

unitPriceX The cost per measurement unit that is used in the price calcuation
algorithm that comes from the setUnitPriceWithWeightUnit method.
The measurement unit is the same as that in the
setUnitPriceWithWeightUnit method parameter, weightUnit.

1. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.
1208 Unified POS, v1.16.1

weightUnitX The value representing the unit of weight that differs from the default
value for the scale and is the same as setUnitPriceWithWeightUnit
method parameter, weightUnit.

weightNumeratorX The dividend which is the weight value based on the
setUnitPriceWithWeightUnit method parameter, weightNumerator.

weightDenominatorX The divisor which is the weight value based on the
setUnitPriceWithWeightUnit method parameter, weightDenominator.

price The calculated monetary value for the item on the scale in the price
calculation algorithm.
If in asynchronous mode (AsyncMode is true), the returned value is zero.

timeout In synchronous mode the number of milliseconds to wait for a settled
weight before failing the method. 
If in asynchronous mode (AsyncMode is true), the timeout value is
ignored.

Remarks This method is used to have the scale calculate and return the price of the item(s) on it allowing for
multiple price determing factors.

In synchronous mode (AsyncMode = false), this method starts the read weight process and when a stable
weight is obtained, does a price calculation. Upon successful completion, the ScaleLiveWeight,
TareWeight, UnitPrice, and SalesPrice properties are updated; the values for weightData, tare,
unitPrice, unitPriceX, weightUnitX, weightNumeratorX, weightDenominatorX, and the resultant price
are returned.

In asynchronous mode (AsyncMode = true), the weighing and subsequent price calculation is done
asynchronously. The method returns immediately with the return values for weightData, tare, unitPrice,
unitPriceX, weightUnitX, weightNumeratorX, weightDenominatorX and resultant price set as noted in
table above. 

Upon completion of the price calculating process, the ScaleLiveWeight, TareWeight, UnitPrice, and
SalesPrice properties are updated and a DataEvent is delivered.

The weight returned, weightData and ScaleLiveWeight, has an assumed decimal place located after the
“thousands” digit position. For example, an actual value of 12345 represents 12.345, and an actual value
of 5 represents 0.005.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:
Unified POS, v1.16.1 1209

Value Meaning 
E_ILLEGAL An invalid timeout parameter was specified.
E_BUSY An asynchronous doPriceCalculating method is in progress.
E_TIMEOUT If ZeroValid is false, a stable non-zero weight was not available before

timeout milliseconds elapsed (only if AsyncMode is false).
If ZeroValid is true, a stable weight (including a zero weight) was not
available before timeout milliseconds elapsed (only if AsyncMode is
false).

E_EXTENDED ErrorCodeExtended = ESCAL_OVERWEIGHT:
The weight was over MaximumWeight. This can only be returned if
AsyncMode is false.

ErrorCodeExtended = ESCAL_UNDERWEIGHT:
The weight was under the MinimumWeight. This can only be returned if
AsyncMode is false.

 ErrorCodeExtended = ESCAL_UNDER_ZERO:
The scale is reporting a weight that is less than zero due to a calibration
error. The scale should be recalibrated. This can only be returned if
AsyncMode is false.

 ErrorCodeExtended = ESCAL_SAME_WEIGHT:
The scale is reporting that the item/weight on the scale is identical to the
previously reported item/weight; i.e., the item has not been removed from
the scale. This can only be returned if AsyncMode is false and the scale
hardware directly supports this capability.

See Also setUnitPriceWithWeightUnit method, UnitPrice Property, WeightUnit Property,
CapPriceCalculating Property, CapSetPriceCalculationMode property, SalesPrice Property,
TareWeight Property, ZeroValid Property.
1210 Unified POS, v1.16.1

34.7.3 freezeValue Method Added in Release 1.14

Syntax freezeValue (item: int32, freeze: boolean): 
 void { raises-exception, use after open-claim-enable }

Parameter Description
item The bitwise value setting the state of the selected parameter item(s).

freeze If the freeze value is true, the representative item is not automatically set
to zero; as an example after a readWeight method call and the weight is
removed. 
Note: In this example, to delete the specific item without calling the
readWeight method, make a freezeValue method call with the freeze
value set to false.

If the freeze value is set to false, the item is automatically set to zero after
a readWeight method call and the removal of the weight.

Value Description
SCAL_SFR_MANUAL_TARE Freezes a manual tare

SCAL_SFR_WEIGHTED_TARE Freezes a weighted tare

SCAL_SFR_PERCENT_TARE Freezes a percentage tare

SCAL_SFR_UNITPRICE Freezes the unit price

Remarks The freezeValue method performs a bitwise logical OR function to determine the state of the item(s)
selected after a readWeight or a doPriceCalculating method call is processed. If the representative item
bit value is set to true, then the scale will not clear (set to zero) the associated tare values and/or unit price. 
If the representative item bit value is set to false, then the scale will clear (set to zero) the associated tare
values and/or unit price.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The current state of the scale device does not allow the freezing of the

requested tare or unit price value.

See Also doPriceCalculating Method, readWeightWithTare Method, setSpecialTare Method.
Unified POS, v1.16.1 1211

34.7.4 readLiveWeightWithTare Method Added in Release 1.14

Syntax readLiveWeightWithTare (out weightData: int32, out tare: int32, 
timeout: int32): 
 void { raises-exception, use after open-claim-enable }

Parameter Description 
weightData If in synchronous mode (AsyncMode is false), contains the returned 
 value for the net weight calculated by the scale. 

If in asynchronous mode (AsyncMode is true) the returned value is zero.

tare The value used to calculate the net weight.
If in asynchronous mode (AsyncMode is true), the returned value is zero.

timeout In synchronous mode the number of milliseconds to wait for a settled weight
before failing the method. 
If in asynchronous mode (AsyncMode is true), the timeout value is ignored.

Remarks This method is used to determine the value for the displaying the net weight.
In synchronous mode (AsyncMode is false), this method starts the read weight process and when a stable
weight is obtained, does a net weight calculation. Upon successful completion, the ScaleLiveWeight and
TareWeight properties are updated and the values for weightData and tare are returned.

In asynchronous mode (AsyncMode is true), the weighing and subsequent net weight calculation is done
asynchronously. The method returns immediately with the return values for weightData and tare set as
noted above. Upon completion of this method, the ScaleLiveWeight and TareWeight properties are
updated and a DataEvent is delivered.

The weight returned, weightData and ScaleLiveWeight, has an assumed decimal place located after the
“thousands” digit position. For example, an actual value of 12345 represents 12.345, and an actual value
of 5 represents 0.005.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:
1212 Unified POS, v1.16.1

Value Meaning 
E_ILLEGAL An invalid timeout parameter was specified.
E_BUSY An asynchronous readWeightWithTare method is in progress.
E_TIMEOUT If ZeroValid is false, a stable non-zero weight was not available before

timeout milliseconds elapsed (only if AsyncMode is false).
If ZeroValid is true, a stable weight (including a zero weight) was not
available before timeout milliseconds elapsed (only if AsyncMode is
false).

E_EXTENDED ErrorCodeExtended = ESCAL_OVERWEIGHT:
The weight was over MaximumWeight. This can only be returned if
AsyncMode is false.

ErrorCodeExtended = ESCAL_UNDERWEIGHT:
The weight was under the MinimumWeight. This can only be returned if
AsyncMode is false.

 ErrorCodeExtended = ESCAL_UNDER_ZERO:
The scale is reporting a weight that is less than zero due to a calibration
error. The scale should be recalibrated. This can only be returned if
AsyncMode is false.

 ErrorCodeExtended = ESCAL_SAME_WEIGHT:
The scale is reporting that the item/weight on the scale is identical to the
previously reported item/weight; i.e., the item has not been removed from
the scale. This can only be returned if AsyncMode is false and the scale
hardware directly supports this capability.

See Also ScaleWeight Property, TareWeight Property, ZeroValid Property, readWeight method.
Unified POS, v1.16.1 1213

34.7.5 readWeight Method

Syntax readWeight (inout weightData: int32, timeout: int32): 
 void { raises-exception, use after open-claim-enable }

Parameter Description 
weightData If AsyncMode is false, contains the returned value for the weight 
 measured by the scale, else zero.

timeout The number of milliseconds to wait for a settled weight before failing the
method. If zero, the method attempts to read the scale weight, then returns the
appropriate status immediately. If FOREVER (-1), the method waits as long
as needed until a weight is successfully read or an error occurs.

Remarks Reads a weight from the scale.

The weight returned, weightData, has an assumed decimal place located after the “thousands” digit
position. For example, an actual value of 12345 represents 12.345, and an actual value of 5 represents
0.005.

Release 1.2
The weighing process is performed synchronously and the method will return after finishing the
weighing process. The weight is returned in the weightData parameter.

Release 1.3 and later
If AsyncMode is false, then readWeight operates synchronously, as with earlier releases.

Release 1.13 and later
If the ZeroValid property is true, the scale service will return zero as a valid weight. If this property is
false, then the service will behave as prior to release 1.13, namely zero on the scale platter will result in
E_TIMEOUT. This property is initialized to false by the open method.

If AsyncMode is true, the weighing process is performed asynchronously. The method will initiate a
read, then return immediately. Once the weighing process is complete, a DataEvent is delivered with the
item’s weight contained in the event’s Status property.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:
1214 Unified POS, v1.16.1

Value Meaning 
E_ILLEGAL An invalid timeout parameter was specified.
E_BUSY An asynchronous readWeight is in progress.
E_TIMEOUT If ZeroValid is false, a stable non-zero weight was not available before

timeout milliseconds elapsed (only if AsyncMode is false).
If ZeroValid is true, a stable weight (including a zero weight) was not
available before timeout milliseconds elapsed (only if AsyncMode is
false).

E_EXTENDED ErrorCodeExtended = ESCAL_OVERWEIGHT:
The weight was over MaximumWeight. This can only be returned if
AsyncMode is false.

The following standard extended error codes have been added in Release
1.14

ErrorCodeExtended = ESCAL_UNDERWEIGHT:
The weight was under the MinimumWeight. This can only be returned if
AsyncMode is false.

 The following standard extended error codes have been added in Release
　　　　　　　　　　1.9 as possible values of the exception’s ErrorCode property:

 ErrorCodeExtended = ESCAL_UNDER_ZERO:
The scale is reporting a weight that is less than zero due to a calibration
error. The scale should be re-calibrated. This can only be returned if
AsyncMode is false.

 ErrorCodeExtended = ESCAL_SAME_WEIGHT:
The scale is reporting that the item/weight on the scale is identical to the
previously reported item/weight; i.e., the item has not been removed from
the scale. This can only be returned if AsyncMode is false and the scale
hardware directly supports this capability.

See Also UnitPrice Property, WeightUnit Property, CapPriceCalculating Property, SalesPrice Property,
TareWeight Property, ZeroValid Property.
Unified POS, v1.16.1 1215

34.7.6 setPriceCalculationMode Method Added in Release 1.14

Syntax setPriceCalculationMode (mode: int32): 
 void { raises-exception, use after open-claim-enable }

Parameter Description 
mode The operation functionality selected for the scale.

Value Description
SCAL_PCM_PRICE_LABELING

Set scale to price labeling mode.The scale has a printer and is capable of
printing price labels.

SCAL_PCM_SELF_SERVICE
Set scale to self service mode. The customer is weighing the products placed
on the scale.

SCAL_PCM_OPERATOR
Set scale to operator mode. The operator is using the scale and weighing the
items for the customer.

Remarks This method allows for various modes of operation based upon the user and provides for the
corresponding rules for price calculations.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The current state of the scale device does not allow this type of functionality

or invalid parameters were received.

See Also CapSetPriceCalculationMode Property
1216 Unified POS, v1.16.1

34.7.7 setSpecialTare Method Added in Release 1.14

Syntax setSpecialTare (mode: int32, data: int32): 
 void { raises-exception, use after open-claim-enable }

Parameter Description
mode Select the tare mode that is to be modified.

data Provides additional information specific to the mode selected to
determine the characteristics for the tare that is to be modified.

Value Description
SCAL_SST_DEFAULT The data argument is interpreted as a weight value. For instance, a value

of 12345 means 12.345 kg. 
The measured unit is specified in the WeightUnit property. 
The data argument will be used as the TareWeight for the price
calculation.

SCAL_SST_MANUAL The data argument is interpreted as a weight value. For instance, a value
of 12345 means 12.345 kg. 
The measured unit is specified in the WeightUnit property. 
The data argument will be used as the TareWeight for the price
calculation.

A data value of zero disables the tare immediately and deletes the tare
value.

SCAL_SST_PERCENT The data argument is interpreted as a percent value. For instance a value
of 99999 means 999.99%.

A data value of zero disables the tare immediately and deletes the tare
value.

SCAL_SST_WEIGHTED If there is a weight on the scale the data argument is ignored and the
weight from the scale will be used as the TareWeight for the next price
calculation.

When there is no weight on the scale the weighted tare is deleted.

Remarks The TareWeight used by the scale usually differs from the data parameter and depends upon the
rounding rules of the scale. The exact value for data is returned by the doPriceCalculation method.
If a tare is set, additional setSpecialTare calls with the same mode parameter are accepted and will
update the new data value. Other values of the mode parameter may be accepted and depend upon the
tare priority indicated by the setTarePriority or the influence of local jurisdictional laws.
In addition, the tare value might be deleted automatically if this action is required as a result of a prior
freezeValue method call.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.
Unified POS, v1.16.1 1217

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The current state of the scale device does not allow this operation.

See Also CapSpecialTare Property, setTarePriority Method, readWeight Method, doPriceCalculation
Method, freezeValue Method

34.7.8 setTarePriority Method Added in Release 1.14

Syntax setTarePriority(priority: int32): 
 void { raises-exception, use after open-claim-enable }

Parameter Description 
priority The sequence in which a tare value is used when determining the net
 weight.

Value Description
SCAL_STP_FIRST If a tare is active, no other tare can be selected until the current tare is

disabled.

SCAL_STP_NONE Any tare can replace the currently selected tare.

Remarks This method provides the mechanism to select the set of rules that can be used to control the prioritization
of the tare component for net weight calculations.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The current state of the scale device does not allow this operation.

See Also CapTarePriority Property
1218 Unified POS, v1.16.1

34.7.9 setUnitPriceWithWeightUnit Method Added in Release 1.14

Syntax setUnitPriceWithWeightUnit (unitPrice: currency, weightUnit: int32,
weightNumerator: int32, weightDenominator: int32): 
 void { raises-exception, use after open-claim-enable }

Parameter Description
unitPrice The cost per unit price as calculated by this method.

weightUnit The value representing the new unit of weight that differs from the default
value for the scale.

weightNumerator The dividend which is the weight value based on the current unit weight.

weightDenominator The divisor which is the weight value based on the new unit weight.

weightUnit Value Description
SCAL_WU_GRAM Units of weight specified in grams

SCAL_WU_KILOGRAM
Units of weight specified in kilograms

SCAL_WU_OUNCE Units of weight specified in ounces

SCAL_WU_POUND Units of weight specified in pounds

Remarks This method can be used to calculate a new unitPrice based upon a conversion factor that translates the
old per unitPrice into a new per unitPrice. 

For an example:
The tags at a chocolate shop are based upon 100 g instead of 1kg. The conversion calculation can be done
by the scale instead of forcing the application to normalize every tag to kg. The scale works with kg by
default. The application has provided the unit price of chocolate to be 2.55 Euros per 100 g. The correct
weighing can be configured by:
setUnitPriceWithWeightUnit (2.55, SCAL_WU_GRAM, 100, 1);

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The current state of the scale device does not allow this function of the scale

or wrong parameters have been used.

See Also WeightUnit Property
Unified POS, v1.16.1 1219

34.7.10 zeroScale Method Updated in Release 1.10

Syntax zeroScale (): 
 void { raises-exception, use after open-claim-enable }

Remarks If CapZeroScale is true, sets the current scale weight to zero. It may be used for initial calibration, or to
account for tare weight on the scale.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGAL CapZeroScale is false.

E_BUSY An asynchronous readWeight is in progress.

See Also CapZeroScale Property.
1220 Unified POS, v1.16.1

34.8 Events (UML interfaces)

34.8.1 DataEvent Added in Release 1.3

<< event >> upos::events::DataEvent 
Status: int32 { read-only }

Description Notifies the application that an asynchronous readWeight has completed.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 The weight of the item.

 Remarks If the scale is a price calculating scale, the unit price is placed in the UnitPrice property and the
calculated sales price is placed in the SalesPrice property before this event is delivered.

See Also “Events” on page 15.

34.8.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Scale Service to provide events to the application that are not otherwise supported by the
Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and the
Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service. This
property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Scale devices
which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.
Unified POS, v1.16.1 1221

34.8.3 ErrorEvent Updated in Release 1.10

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a scale device error has been detected and a suitable response by the
application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attribute Type Description 
ErrorCode int32 Error code causing the error event. See list of ErrorCodes on page 16.
ErrorCodeExtended

int32 Extended error code causing the error event. It may contain a Service-
specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden by the application
(i.e., this property is settable). See values below.

The ErrorLocus property has one of the following values:

Value Meaning 
EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.
EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and

some previously buffered data is available.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error processing may change ErrorResponse to one of the following values:

Value Meaning 
ER_RETRY Retry the asynchronous input. The error state is exited.

ER_CLEAR Clear the buffered input data. The error state is exited.
Default when locus is EL_INPUT.

ER_CONTINUEINPUT Use only when locus is EL_INPUT_DATA. Acknowledges the error and
directs the Device to continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and
DataEventEnabled is again set to true, then another ErrorEvent is
delivered with locus EL_INPUT.
Default when locus is EL_INPUT_DATA.

Remarks Enqueued when an error is detected while trying to read scale data. This event is not delivered until
DataEventEnabled is true, so that proper application sequencing occurs.

See Also “Events” on page 15.
1222 Unified POS, v1.16.1

34.8.4 StatusUpdateEvent Updated in Release 1.10

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a Scale device.

If the StatusNotify property is SCAL_SN_ENABLED, this event can also notify the application that
there is a change in the Scale device weight.

If the property StatusNotify is true when the scale is enabled, an immediate StatusUpdateEvent should
be generated to notify the application of the current state of the scale.

Attributes This event contains the following attribute:

Attribute Type Description 
Status int32 Reports a change in the power state of a Scale device.

Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 2.

Added in Release 1.9 and delivered if StatusNotify is set to SCAL_SN_ENABLED.

Value Meaning 
SCAL_SUE_STABLE_WEIGHT Scale weight is stable. The ScaleLiveWeight property
 is updated before event delivery.
SCAL_SUE_WEIGHT_UNSTABLE Scale weight is unstable.
SCAL_SUE_WEIGHT_ZERO Scale weight is zero.
SCAL_SUE_WEIGHT_OVERWEIGHT Scale weight is overweight.
SCAL_SUE_WEIGHT_UNDERWEIGHT

Scale weight is underweight.
SCAL_SUE_NOT_READY Scale is not ready to weigh.
SCAL_SUE_WEIGHT_UNDER_ZERO Scale weight is under zero.

Remarks Enqueued when the Scale device detects a power state change or a status change.

See Also “Events” on page 15, ScaleLiveWeight Property, StatusNotify Property.
Unified POS, v1.16.1 1223

1224 Unified POS, v1.16.1

35 Scanner (Bar Code Reader)

35.1 General

This Chapter defines the Scanner (Bar Code Reader) device category.

35.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.2 open

CapCompareFirmwareVersion: boolean { read-only } 1.9 open

CapPowerReporting: int32 { read-only } 1.3 open

CapStatisticsReporting: boolean { read-only } 1.8 open

CapUpdateFirmware: boolean { read-only } 1.9 open

CapUpdateStatistics: boolean { read-only } 1.8 open

CheckHealthText: string { read-only } 1.0 open

Claimed: boolean { read-only } 1.0 open

DataCount: int32 { read-only } 1.2 open

DataEventEnabled: boolean { read-write } 1.0 open

DeviceEnabled: boolean { read-write } 1.0 open & claim

FreezeEvents: boolean { read-write } 1.0 open

OutputID: int32 { read-only } 1.0 Not supported

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --

DeviceControlVersion: int32 { read-only } 1.0 --

DeviceServiceDescription: string { read-only } 1.0 open

DeviceServiceVersion: int32 { read-only } 1.0 open

PhysicalDeviceDescription: string { read-only } 1.0 open

PhysicalDeviceName: string { read-only } 1.0 open
Unified POS, v1.16.1 1225

Properties (Continued)

Specific Type Mutability Version May Use After

DecodeData: boolean { read-write } 1.2 open

ScanData: binary { read-only } 1.0 open

ScanDataLabel: binary { read-only } 1.2 open

ScanDataType: int32 { read-only } 1.2 open

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open }

1.0

release ():
void { raises-exception, use after open, claim }

1.0

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.0

clearInput ():
void { raises-exception, use after open, claim }

1.0

clearInputProperties ():
void { raises-exception, use after open, claim }

1.10

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.0

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific

None
1226 Unified POS, v1.16.1

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent 1.0

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.0

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.0

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.3

 Status: int32 { read-only }
Unified POS, v1.16.1 1227

35.3 General Information

The Scanner programmatic name is “Scanner.”

35.3.1 Capabilities

The Scanner Device has the following capability:

• Reads encoded data from a label.

35.3.2 Scanner Class Diagram

The following diagram shows the relationships between the Scanner classes.
1228 Unified POS, v1.16.1

35.3.3 Scanner Sequence Diagram Updated in Release 1.8

The following sequence diagram shows the typical usage of a Scanner device.
Unified POS, v1.16.1 1229

NOTE: we are assuming that the :ClientApp already successfully registered event handlers and opened,
claimed and enabled the Scanner device. This means that the Claimed, DeviceEnabled properties are == true

:ClientApp :Scanner :DataEvent :ScannerService

 : Operator
1: setDecodeData(true)

2: setDecodeData(true)

3: setAutoDisable(true) 4: setAutoDisable(true)

5: setDataEventEnabled(true) 6: setDataEventEnabled(true)

7: scan successful label

9: create DataEvent

10: decode data

11: enqueue DataEvent and DataCount++

13: set Scanner data properties and deliver enqueued DataEvent to control
 [DataEventEnabled == true && FreezeEvents == false]

Typically this firing of events would
be done by some worker thread
managed by the ScannerService

12: set DeviceEnabled property to false [AutoDisable == true]

16: getScanData() 17: getScanData()

18: getScanDataLabel() 19: getScanDataLabel()

20: setDeviceEnabled(true) 21: setDeviceEnabled(true)

8: service is notified of new event

15: notify client of new event

14: deliver DataEvent to all event handlers
Right before the DataEvent is
delivered set DataEventEnabled
to false and DataCount--.

22: setDataEventEnabled(true)
23: setDataEventEnabled(true)
1230 Unified POS, v1.16.1

35.3.4 Model

The Scanner follows the general “Device Input Model” for event-driven input:

• When input is received from the scanner, a DataEvent is enqueued.

• If the AutoDisable property is true, then the device automatically disables itself when a DataEvent is
enqueued.

• An enqueued DataEvent can be delivered to the application when the DataEventEnabled property is true and
other event delivery requirements are met. Just before delivering this event, data is copied into corresponding
properties, and further data events are disabled by setting DataEventEnabled to false. This causes subsequent
input data to be enqueued while the application processes the current input and associated properties. When the
application has finished processing the current input and is ready for more data, it reenables events by setting
DataEventEnabled to true.

• An ErrorEvent (or events) is enqueued if an error occurs while gathering or processing input, and is delivered
to the application when DataEventEnabled is true and other event delivery requirements are met.

• The DataCount property may be read to obtain the total number of enqueued DataEvents.

• All enqueued input may be deleted by calling clearInput. See the clearInput method description for more
details.

• All data properties that are populated as a result of firing a DataEvent or ErrorEvent can be set back to their
default values by calling the clearInputProperties method.

Scanned data is placed into the property ScanData. If the application sets the property DecodeData to true, then
the data is decoded into the ScanDataLabel and ScanDataType properties.

35.3.5 Device Sharing

The scanner is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before the device begins reading input.

• See the “Summary” table for precise usage prerequisites.
Unified POS, v1.16.1 1231

35.4 Properties (UML attributes)

35.4.1 DecodeData Property

Syntax DecodeData: boolean { read-write, access after open }

Remarks If true, then ScanData will be decoded into the properties ScanDataLabel and ScanDataType.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also “Device Input Model” on page 18
1232 Unified POS, v1.16.1

35.4.2 ScanData Property Updated in Release 1.7

Syntax ScanData: binary { read-only, access after open } 1

Remarks Holds the data read from the scanner.

Scan data is, in general, in the format as delivered from the scanner. Message header and trailer
information are removed, however, since they do not contain useful information for an application and
are likely to be scanner-specific.

Common header information is a prefix character (such as an STX character). Common trailer
information is a terminator character (such as an ETX or CR character) and a block check character if
one is generated by the scanner.

This property should include a symbology character if one is returned by the scanner (for example, an
‘A’ for UPC-A). It should also include check digits if they are present in the label and returned by the
scanner. (Note that both symbology characters and check digits may or may not be present, depending
upon the scanner configuration. The scanner will return them if present, but will not generate or calculate
them if they are absent.)

Some merchandise may be marked with a supplemental barcode. This barcode is typically placed to the
right of the main barcode, and consists of an additional two or five characters of information. If the
scanner reads merchandise that contains both main and supplemental barcodes, the supplemental
characters are appended to the main characters, and the result is delivered to the application as one label.
(Note that a scanner may support configuration that enables or disables the reading of supplemental
codes.)

Some merchandise may be marked with multiple labels, sometimes called multi-symbol labels or tiered
labels. These barcodes are typically arranged vertically, and may be of the same or different symbology.
If the scanner reads merchandise that contains multiple labels, each barcode is delivered to the
application as a separate label. This is necessary due to the current lack of standardization of these
barcode types. One is not able to determine all variations based upon the individual barcode data.
Therefore, the application will need to determine when a multiple label barcode has been read based upon
the data returned. (Note that a scanner may or may not support reading of multiple labels.)

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also “Device Input Model” on page 18.

1. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.
Unified POS, v1.16.1 1233

35.4.3 ScanDataLabel Property Updated in Release 1.10

Syntax ScanDataLabel: binary { read-only, access after open } 2

Remarks Holds the decoded bar code label.

When DecodeData is false, this property will have zero length. When DecodeData is true, then
ScanData is decoded into this property as follows:

• Scanner-generated symbology characters are removed, if present.

• If the label type can be determined to be a UPC/EAN label (a symbology identifier was provided by
the scanner), then the check digit must be present in this property. If the scanner hardware does not
return the UPC/EAN check digit, then the Service must calculate it and include it in this property to
ensure that the data reflects a complete UPC/EAN label.

• For variable length bar codes, the length identification is removed, if present.

For example, the EAN-13 barcode which appears printed as “5 018374 827715” on a label may be
received from the scanner and placed into ScanData as the following:

Received from scanner ScanData Comment
5018374827715 5018374827715 Complete barcode only

501837482771<CR> 501837482771 Without check digit with carriage return

F5018374827715<CR> F5018374827715 With scanner-dependent symbology
character and carriage return

<STX>F5018374827715<ETX> F5018374827715 With header, symbology character, and
trailer

For each of these cases (and any other variations), this property must always be set to the string
“5018374827715,” and ScanDataType must be set to SCAN_SDT_EAN13.

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also “Device Input Model” on page 18.

2. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.
1234 Unified POS, v1.16.1

35.4.4 ScanDataType Property Updated in Release 1.14

Syntax ScanDataType: int32 { read-only, access after open }

Remarks Holds the decoded bar code label type.

When DecodeData is false, this property is set to SCAN_SDT_UNKNOWN. When DecodeData is true,
the Service tries to determine the scan label type. The following label types are defined:

Value Label Type 
One Dimensional Symbologies

SCAN_SDT_UPCA UPC-A
SCAN_SDT_UPCA_S UPC-A with supplemental barcode
SCAN_SDT_UPCE UPC-E
SCAN_SDT_UPCE_S UPC-E with supplemental barcode
SCAN_SDT_UPCD1 UPC-D1
SCAN_SDT_UPCD2 UPC-D2
SCAN_SDT_UPCD3 UPC-D3
SCAN_SDT_UPCD4 UPC-D4
SCAN_SDT_UPCD5 UPC-D5
SCAN_SDT_EAN8 EAN 8 (= JAN 8)
SCAN_SDT_JAN8 JAN 8 (= EAN 8)
SCAN_SDT_EAN8_S EAN 8 with supplemental barcode
SCAN_SDT_EAN13 EAN 13 (= JAN 13)
SCAN_SDT_JAN13 JAN 13 (= EAN 13)
SCAN_SDT_EAN13_S EAN 13 with supplemental barcode
SCAN_SDT_EAN128 EAN-128
SCAN_SDT_TF Standard (or discrete) 2 of 5
SCAN_SDT_ITF Interleaved 2 of 5
SCAN_SDT_Codabar Codabar
SCAN_SDT_Code39 Code 39
SCAN_SDT_Code93 Code 93
SCAN_SDT_Code128 Code 128
SCAN_SDT_OCRA OCR “A”
SCAN_SDT_OCRB OCR “B”

Value Label Type 
One Dimensional Symbologies - Added in Release 1.8

SCAN_SDT_RSS14 14 digit GTIN only - Deprecated v1.12; replaced by
SCAN_SDT_GS1DATABAR (which has the same value)

SCAN_SDT_RSS_EXPANDED 14 digit GTIN plus additional defined fields (e.g., price, weight)
- Deprecated v1.12; replaced by
SCAN_SDT_GS1DATABAR_E (which has the same value)
Unified POS, v1.16.1 1235

Value Label Type 
One Dimensional Symbologies - Added in Release 1.12

SCAN_SDT_GS1DATABAR GS1 DataBar Omnidirectional (normal or stacked)
SCAN_SDT_GS1DATABAR_E GS1 DataBar Expanded (normal or stacked)

Value Label Type 
One Dimensional Symbologies - Added in Release 1.14

SCAN_SDT_ITF_CK Interleaved 2 of 5 check digit verified and transmitted
SCAN_SDT_GS1DATABAR_TYPE2

GS1 DataBar Limited
SCAN_SDT_AMES Ames Code
SCAN_SDT_TFMAT Matrix 2 of 5
SCAN_SDT_Code39_CK Code 39 with check character verified and transmitted
SCAN_SDT_Code32 Code 39 with Mod 32 check character
SCAN_SDT_CodeCIP Code 39 CIP
SCAN_SDT_TRIOPTIC39 Tri-Optic Code 39
SCAN_SDT_ISBT128 ISBT-128
SCAN_SDT_Code11 Code 11
SCAN_SDT_MSI MSI Code
SCAN_SDT_PLESSEY Plessey Code
SCAN_SDT_TELEPEN Telepen

Value Label Type 
Composite Symbologies - Added in Release 1.8
SCAN_SDT_CCA Composite Component A.

Up to 56 characters of data.
SCAN_SDT_CCB Composite Component B.

Up to 338 characters of data.
SCAN_SDT_CCC Composite Component C.

Up to 2361 characters of data.

Value Label Type 
Composite Symbologies - Added in Release 1.14
SCAN_SDT_TLC39 TLC-39

A Composite Component may occur with any one of several different label types, such as UPC,
EAN, and GS1 DataBar. The composite component is read at the same time as the linear component.
When such a label is read, a DataEvent is delivered that sets ScanDataType to SCAN_SDT_CCA,
SCAN_SDT_CCB, or SCAN_SDT_CCC. The next DataEvent always delivers the linear
component. (In other words, the Service enqueues two DataEvents at the same time: First the
composite component, then the linear component.) It is the application writer's responsibility to
merge the data associated with the two DataEvents.

Value Label Type 
Two Dimensional Symbologies

SCAN_SDT_PDF417 PDF 417
SCAN_SDT_MAXICODE MAXICODE
1236 Unified POS, v1.16.1

Value Label Type
Two Dimensional Symbologies - Added in Release 1.11

SCAN_SDT_DATAMATRIX Data Matrix
SCAN_SDT_QRCODE QR Code
SCAN_SDT_UQRCODE Micro QR Code
SCAN_SDT_AZTEC Aztec
SCAN_SDT_UPDF417 Micro PDF 417

Value Label Type 
Two Dimensional Symbologies - Added in Release 1.14

SCAN_SDT_GS1DATAMATRIX
GS1 DataMatrix

SCAN_SDT_GS1QRCODE 
GS1 QR Code

SCAN_SDT_Code49 Code 49
SCAN_SDT_Code16k Code 16K
SCAN_SDT_CodablockA Codablock A
SCAN_SDT_CodablockF Codablock F
SCAN_SDT_Codablock256 Codablock 256
SCAN_SDT_HANXIN Han Xin Code

Value Label Type 
Postal Code Symbologies - Added in Release 1.14

SCAN_SDT_AusPost Australian Post
SCAN_SDT_CanPost Canada Post
SCAN_SDT_ChinaPost China Post
SCAN_SDT_DutchKix Dutch Post
SCAN_SDT_InfoMail InfoMail
SCAN_SDT_JapanPost Japan Post
SCAN_SDT_KoreanPost Korean Post
SCAN_SDT_SwedenPost Sweden Post
SCAN_SDT_UkPost UK Post BPO
SCAN_SDT_UsIntelligent US Intelligent Mail
SCAN_SDT_UsPlanet US Planet Code
SCAN_SDT_PostNet US Postnet

Value Label Type 
Special Cases

SCAN_SDT_OTHER If greater or equal to this type, then the Service has returned an
undefined symbology.

SCAN_SDT_UNKNOWN The Service cannot determine the barcode symbology.
ScanDataLabel may not be properly formatted for the actual
barcode type.
Unified POS, v1.16.1 1237

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also “Device Input Model” on page 18.
1238 Unified POS, v1.16.1

35.5 Events (UML interfaces)

35.5.1 DataEvent

<< event >> upos::events::DataEvent 
Status: int32 { read-only }

Description Notifies the application that input data from the Scanner (Bar Code Reader) is available.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 Always zero.

Remarks The scanner data is placed in the ScanData, ScanDataLabel, and ScanDataType properties prior to a
DataEvent being delivered to the application.

See Also “Events” on page 15.

35.5.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Scanner Service to provide events to the application that are not otherwise supported by the
Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and the
Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service. This
property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Scanner
devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method
Unified POS, v1.16.1 1239

35.5.3 ErrorEvent Updated in Release 1.10

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a scanner device error has been detected and a suitable response by the
application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attribute Type Description 
ErrorCode int32 Error code causing the error event. See list of ErrorCodes on page 16.
ErrorCodeExtended

int32 Extended error code causing the error event. It may contain a Service-
specific value.

ErrorLocus int32 Location of the error. See values below.
ErrorResponse int32 Error response, whose default value may be overridden by the application

(i.e., this property is settable). See values below.

The ErrorLocus property has one of the following values:

Value Meaning 
EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.
EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and

some previously buffered data is available.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error processing may change ErrorResponse to one of the following values:

Value Meaning 
ER_CLEAR Clear the buffered input data. The error state is exited.

Default when locus is EL_INPUT.
ER_CONTINUEINPUT Use only when locus is EL_INPUT_DATA. Acknowledges the error and

directs the Device to continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and
DataEventEnabled is again set to true, then another ErrorEvent is
delivered with locus EL_INPUT.
Default when locus is EL_INPUT_DATA.

Remarks Enqueued when an error is detected while trying to read scanner data. This event is not delivered until
DataEventEnabled is true, so that proper application sequencing occurs.

See Also “Events” on page 15.
1240 Unified POS, v1.16.1

35.5.4 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a Scanner device.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 Reports a change in the power state of a Scanner device.

Note that Release 1.3 added Power State Reporting with additional Power reporting
StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional Status values
for communicating the status/progress of an asynchronous update firmware process.

See “StatusUpdateEvent” description in Chapter 2.

Remarks Enqueued when the Scanner device detects a power state change.

See Also “Events” on page 15.
Unified POS, v1.16.1 1241

1242 Unified POS, v1.16.1

36 Signature Capture

36.1 General

This Chapter defines the Signature Capture device category.

36.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.2 open

CapCompareFirmwareVersion: boolean { read-only } 1.9 open

CapPowerReporting: int32 { read-only } 1.3 open

CapStatisticsReporting: boolean { read-only } 1.8 open

CapUpdateFirmware: boolean { read-only } 1.9 open

CapUpdateStatistics: boolean { read-only } 1.8 open

CheckHealthText: string { read-only } 1.0 open

Claimed: boolean { read-only } 1.0 open

DataCount: int32 { read-only } 1.2 open

DataEventEnabled: boolean { read-write } 1.0 open

DeviceEnabled: boolean { read-write } 1.0 open & claim

FreezeEvents: boolean { read-write } 1.0 open

OutputID: int32 { read-only } 1.0 Not supported

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --

DeviceControlVersion: int32 { read-only } 1.0 --

DeviceServiceDescription: string { read-only } 1.0 open

DeviceServiceVersion: int32 { read-only } 1.0 open

PhysicalDeviceDescription: string { read-only } 1.0 open

PhysicalDeviceName: string { read-only } 1.0 open
Unified POS, v1.16.1 1243

Properties (Continued)

Specific Type Mutability Version May Use After

CapDisplay: boolean { read-only } 1.0 open

CapRealTimeData: boolean { read-only } 1.2 open

CapUserTerminated: boolean { read-only } 1.0 open

MaximumX: int32 { read-only } 1.0 open

MaximumY: int32 { read-only } 1.0 open

PointArray:
array of
points

{ read-only } 1.0 open, claim, & enable

RawData: binary { read-only } 1.0 open, claim, & enable

RealTimeDataEnabled: boolean { read-write } 1.2 open

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open }

1.0

release ():
void { raises-exception, use after open, claim }

1.0

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.0

clearInput ():
void { raises-exception, use after open, claim }

1.0

clearInputProperties ():
void { raises-exception, use after open, claim }

1.10

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.0

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8
1244 Unified POS, v1.16.1

Methods (Continued)

Specific

Name

beginCapture (formName: string): 
void { raises-exception, use after open, claim, enable }

1.0

endCapture (): 
void { raises-exception, use after open, claim, enable }

1.0

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent 1.0

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.0

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.0

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.3

 Status: int32 { read-only }
Unified POS, v1.16.1 1245

36.3 General Information

The Signature Capture programmatic name is “SignatureCapture.”

36.3.1 Capabilities

The Signature Capture Device has the following capability:

• Obtains a signature captured by a signature capture device. The captured signature data is in the form of lines
consisting of a series of points. Each point lies within the co-ordinate system defined by the resolution of the
device, where (0, 0) is the upper-left point of the device, and (MaximumX, MaximumY) is the lower-right
point. The signature line points are presented to the application by a DataEvent with a single array of line
points

The Signature Capture Device may have the following additional capabilities:

• Provides a way for the user to terminate signature capture – that is, to tell the device that she or he has
completed the signature.

• Displays form/data on the signature capture device.

• Returns the signature in “real time” as it is entered on the device. If this capability is true and has been enabled
by application by setting the RealTimeDataEnabled property to true, then a series of DataEvents are
enqueued, each with an array of one or more line points representing a partial signature.
1246 Unified POS, v1.16.1

36.3.2 Signature Capture Class Diagram

The following diagram shows the relationships between the Signature Capture classes.

UposException
(from upos)

<<exception>>
UposConst
(from upos)

<<utility>>

SignatureCaptureConst
(from upos)

<<utility>>

DataEvent

<<prop>> Status : int32

(from events)

<<event>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

ErrorEvent

<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : int32
<<prop>> ErrorLocus : int32
<<prop>> ErrorResponse : int32

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32

(from events)

<<event>>

SignatureCaptureControl

<<capability>> CapDisplay : boolean
<<capability>> CapRealTimeData : boolean
<<capability>> CapUserTerminated : boolean
<<prop>> MaximumX : int32
<<prop>> MaximumY : int32
<<prop>> PointArray : array of point
<<prop>> RawData : binary
<<prop>> RealTimeDataEnabled : boolean

beginCapture(formName : string) : void
endCapture() : void

(from upos)

<<Interface>>

<<sends>>

<<uses>>

fires

fires

fires

fires
Unified POS, v1.16.1 1247

36.3.3 Signature Capture Sequence Diagram Updated in Release 1.8

The following sequence diagram shows the typical usage of gathering data from a Signature Capture device.

NOTE: we are assuming that the :ClientApp already successfully registered event handlers and opened, claimed and
enabled the SignatureCapture device. This means that the Claimed, DeviceEnabled properties are == true

:ClientApp :SignatureCapture :SignatureCapture
Service

 : Customer

:DataEvent

1: setDataEventEnabled(true)
2: setDataEventEnabled(true)

3: beginCapture(formName)
4: beginCapture(formName)

5: sign name

6: create new DataEvent

8: update properties and deliver DataEvent
[DataEventEnabled == true && FreezeEvents == false]

At this point the :ClientApp
will execute some event
handling code as shown
below

11: getMaximumX()
12: getMaximumX()

13: getMaximumY()
14: getMaximumY()

15: getPointArray()
16: getPointArray()

17: application specific processing with gathered data

9: deliver DataEvent to each registered handlers

We are assuming that this device support real time
data capture so that CapRealTimeData == true

7: DataCount++ and enqueue

If CapUserTerminate == true
then there is no need to
terminate capture with
endCapture()

10: notify client of new event

Right before the DataEvent
is delivered, set
DataEventEnabled to false
and DataCount--.
1248 Unified POS, v1.16.1

36.3.4 Model

The signature capture device usage model is:

• Open and claim the device.

• Enable the device and set the property DataEventEnabled to true.

• Begin capturing a signature by calling beginCapture. This method displays a form or data screen (if the
device has a display) and enables the stylus.

• If the device is capable of supplying signature data in real time as the signature is entered
(CapRealTimeData) is true, and if RealTimeDataEnabled is true, the signature is presented to the
application as a series of partial signature data events until the signature capture is terminated.

• If the device provides a way for the user to terminate the signature, then when the user terminates, a
DataEvent is enqueued. Otherwise, the application must call endCapture to terminate the signature.

• Disable the device. If the device has a display, this also clears the display.

The Signature Capture follows the general “Device Input Model” for event-driven input:

• When input is received by the Service, it enqueues a DataEvent.

• If AutoDisable is true, then the Device automatically disables itself when a DataEvent is enqueued. However,
note that setting AutoDisable probably is not very useful for the Signature Capture control. If
RealTimeDataEnabled is true, then AutoDisable does not make sense. If RealTimeDataEnabled is false,
then the pacing of signatures is controlled by the application via the beginCapture method. It is probably in
the best interests of the application not to use the AutoDisable property for this device class.

• A queued DataEvent can be delivered to the application when the property DataEventEnabled is true and
other event delivery requirements are met. Just before delivering this event, data is copied into properties, and
further data events are disabled by setting DataEventEnabled to false. This causes subsequent input data to be
enqueued while the application processes the current input and associated properties. When the application has
finished processing the current input and is ready for more data, it re-enables events by setting
DataEventEnabled to true.

• An ErrorEvent (or events) is enqueued if the an error occurs while gathering or processing input, and is
delivered to the application when DataEventEnabled is true and other event delivery requirements are met.

• The DataCount property may be read to obtain the number of queued DataEvents.

• All enqueued input may be deleted by calling clearInput. See the clearInput method description for more
details.

• All data properties that are populated as a result of firing a DataEvent or ErrorEvent can be set back to their
default values by calling the clearInputProperties method.

Deviations from the general “Device Input Model” for event-driven input are:

• The capture of signature data begins when beginCapture is called.

• If signature capture is terminated by calling endCapture, then no DataEvent will be enqueued.
Unified POS, v1.16.1 1249

36.3.5 Device Sharing

The Signature Capture is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before calling methods that manipulate the device or before
changing some writable properties.

• See the “Summary” table for precise usage prerequisites.
1250 Unified POS, v1.16.1

36.4 Properties (UML attributes)

36.4.1 CapDisplay Property

Syntax CapDisplay: boolean { read-only, access after open }

Remarks If true, the device is able to display a form or data entry screen.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

36.4.2 CapRealTimeData Property

Syntax CapRealTimeData: boolean { read-only, access after open }

Remarks If true, the device is able to supply signature data as the signature is being captured (“real time”).

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

36.4.3 CapUserTerminated Property

Syntax CapUserTerminated: boolean { read-only, access after open }

Remarks If true, the user is able to terminate signature capture by checking a completion box, pressing a
completion button, or performing some other interaction with the device. If false, the application must
end signature capture by calling the endCapture method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

36.4.4 DeviceEnabled Property (Common)

Syntax DeviceEnabled: boolean { read-write, access after open-claim }

Remarks If true, the signature capture device is enabled.

If CapDisplay is true, then the display screen of the device is cleared.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 1251

36.4.5 MaximumX Property

Syntax MaximumX: int32 { read-only, access after open }

Remarks Holds the maximum horizontal coordinate of the signature capture device. It must be less than 65,536.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

36.4.6 MaximumY Property

Syntax MaximumY: int32 { read-only, access after open }

Remarks Holds the maximum vertical coordinate of the signature capture device. It must be less than 65,536.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
1252 Unified POS, v1.16.1

36.4.7 PointArray Property Updated in Release 1.7

Syntax PointArray: array-of-points { read-only, access after open-claim-enable } 1

Remarks Holds the signature captured from the device. It consists of an array of (x, y) coordinate points. Each point
is represented by four characters: x (low 8 bits), x (high 8 bits), y (low 8 bits), y (high 8 bits).

A special point value is (0xFFFF, 0xFFFF) which indicates the end of a line (that is, a pen lift). Almost
all signatures are comprised of more than one line.

If RealTimeDataEnabled is false, then this property contains the entire captured signature. If
RealTimeDataEnabled is true, then this property contains at least one point of the signature. The actual
number of points delivered at one time is implementation dependent. The points from multiple data
events are logically concatenated to form the entire signature, such that the last point from a data event
is followed immediately by the first point of the next data event.

The point representation definition is the same regardless of whether the signature is presented as a single
PointArray, or as a series of real time PointArrays.

Reconstruction of the signature using the points is accomplished by beginning a line from the first point
in the signature to the second point, then to the third, and so on. When an end-of-line point is encountered,
the drawing of the line ends, and the next line is drawn beginning with the next point. An end-of-line
point is assumed (but need not be present in PointArray) at the end of the signature.

This property is set prior to a DataEvent being delivered to the application or by the endCapture
method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also RawData Property.

1. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.
Unified POS, v1.16.1 1253

36.4.8 RawData Property Updated in Release 1.7

Syntax RawData: binary { read-only, access after open-claim-enable } 2

Remarks Holds the signature captured from the device in a device-specific format.

This data is often in a compressed form to minimize signature storage requirements. Reconstruction of
the signature from this data requires device-specific processing.

This property is set prior to a DataEvent being delivered to the application or by the endCapture
method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also PointArray Property.

36.4.9 RealTimeDataEnabled Property

Syntax RealTimeDataEnabled: boolean { read-write, access after open }

Remarks If true and CapRealTimeData is true, a series of partial signature data events is enqueued as the
signature is captured until signature capture is terminated. Otherwise, the captured signature is enqueued
as a single DataEvent when signature capture is terminated.

Setting RealTimeDataEnabled will not cause any change in system behavior until a subsequent
beginCapture method is performed. This prevents confusion regarding what would happen if it were
modified between a beginCapture - endCapture pairing.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Cannot set to true because CapRealTimeData is false.

See Also CapRealTimeData Property, beginCapture Method, endCapture Method.

2. In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.
1254 Unified POS, v1.16.1

36.5 Methods (UML operations)

36.5.1 beginCapture Method

Syntax beginCapture (formName: string): 
 void { raises-exception, use after open-claim-enable }

Parameter Description
formName The parameter contains the platform specific location for obtaining form or

data screen information for display on the device screen.

Remarks Starts capturing a signature.

If CapDisplay is true, then formName is used to find information about the form or data screen to be
displayed. The format and features of each signature capture device’s form/data screen varies widely and
is often built with proprietary tools. Therefore, this location’s data, and possibly additional values and
data, contain information that varies by Service. Typically, the contents of this data are set to a form/data
screen file name, and extra values and data are set as needed to control its display.

After displaying the form or data screen, when applicable, the signature capture stylus is enabled.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_NOEXIST formName was not found.

See Also CapDisplay Property, endCapture Method.
Unified POS, v1.16.1 1255

36.5.2 endCapture Method

Syntax endCapture (): 
 void { raises-exception, use after open-claim-enable }

Remarks Stops (terminates) capturing a signature.

If RealTimeDataEnabled is false and a signature was captured, then it is placed in the properties
PointArray and RawData. If no signature was captured, then PointArray and RawData are set to a
length of zero.

If RealTimeDataEnabled is true and there are signature points remaining which have not been delivered
to the application by a DataEvent, then the remaining signature is placed into the properties PointArray
and RawData. If no signature was captured or all signature points have been delivered to the application,
then PointArray and RawData are set to a length of zero.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Signature capture was not in progress.

See Also PointArray Property, RawData Property, RealTimeDataEnabled Property, beginCapture Method,
DataEvent.
1256 Unified POS, v1.16.1

36.6 Events (UML interfaces)

36.6.1 DataEvent

<< event >> upos::events::DataEvent 
Status: int32 { read-only }

Description Notifies the application that input data is available.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 Non-zero if the user has entered a signature before terminating capture. Zero

if the user terminated capture with no signature.

Remarks This event can only be enqueued if the user can terminate signature capture – that is, if
CapUserTerminated is true or RealTimeDataEnabled is true.

The properties PointArray and RawData are set to appropriate values prior to a DataEvent being
delivered to the application.

See Also endCapture Method, “Events” on page 15.

36.6.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Signature Capture Service to provide events to the application that are not otherwise supported
by the Device Control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and the

Service. This property is settable.
Obj object Additional data whose usage varies by the EventNumber and Service. This

property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Signature
Capture devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method
Unified POS, v1.16.1 1257

36.6.3 ErrorEvent Updated in Release 1.11

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a Signature Capture device error has been detected and a suitable response
by the application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attribute Type Description 
ErrorCode int32 Error Code causing the error event. See the list of ErrorCodes on page 16.
ErrorCodeExtended

int32 Extended Error Code causing the error event. This may contain a Service-
specific value.

ErrorLocus int32 Location of the error. See values below.
ErrorResponse int32 Error response, whose default value may be overridden by the application

(i.e., this property is settable). See values below.

The ErrorLocus property has one of the following values:

Value Meaning 
EL_INPUT Error occurred while gathering or processing event-driven input. No
 previously buffered input data is available.
EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and

some previously buffered data is available. (Very unlikely – see
Remarks.)

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error processing may change ErrorResponse to one of the following values:

Value Meaning 
ER_CLEAR Clear the buffered input data. The error state is exited.

Default when locus is EL_INPUT.
ER_CONTINUEINPUT Use only when locus is EL_INPUT_DATA. Acknowledges the error and

directs the Device to continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and
DataEventEnabled is again set to true, then another ErrorEvent is
enqueued with locus EL_INPUT.
Default when locus is EL_INPUT_DATA.
1258 Unified POS, v1.16.1

Remarks Enqueued when an error is detected while trying to read signature capture data. This event is not
delivered until DataEventEnabled is true and other event delivery requirements are met, so that proper
application sequencing occurs.

With proper programming, an ErrorEvent with locus EL_INPUT_DATA will not occur. This is
because each signature requires an explicit beginCapture method, which can generate at most one
DataEvent. The application would need to defer the DataEvent by setting DataEventEnabled to false
and request another signature before an EL_INPUT_DATA would be possible.

See Also “Device Input Model” on page 18, “Device Information Reporting Model” on page 25, “Events” on page
15.

36.6.4 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a Signature Capture device.

Attributes This event contains the following attribute:

Attribute Type Description
Status int32 Reports a change in the power state of a Signature Capture device.

Note that Release 1.3 added Power State Reporting with additional Power
reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 2.

Remarks Enqueued when the Signature Capture device detects a power state change.

See Also “Events” on page 15.
Unified POS, v1.16.1 1259

1260 Unified POS, v1.16.1

37 Smart Card Reader/Writer

37.1 General

This Chapter defines the Smart Card Reader/Writer device category.

37.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.8 Not supported

CapCompareFirmwareVersion: boolean { read-only } 1.9 open

CapPowerReporting: int32 { read-only } 1.3 open

CapStatisticsReporting: boolean { read-only } 1.8 open

CapUpdateFirmware: boolean { read-only } 1.9 open

CapUpdateStatistics: boolean { read-only } 1.8 open

CheckHealthText: string { read-only } 1.8 open

Claimed: boolean { read-only } 1.8 open

DataCount: int32 { read-only } 1.8 open

DataEventEnabled: boolean { read-write } 1.8 open

DeviceEnabled: boolean { read-write } 1.8 open & claim

FreezeEvents: boolean { read-write } 1.8 open

OutputID: int32 { read-only } 1.8 open

PowerNotify: int32 { read-write } 1.8 open

PowerState: int32 { read-only } 1.8 open

State: int32 { read-only } 1.8 --

DeviceControlDescription: string { read-only } 1.8 --

DeviceControlVersion: int32 { read-only } 1.8 --

DeviceServiceDescription: string { read-only } 1.8 open

DeviceServiceVersion: int32 { read-only } 1.8 open

PhysicalDeviceDescription: string { read-only } 1.8 open

PhysicalDeviceName: string { read-only } 1.8 open
Unified POS, v1.16.1 1261

Properties (Continued)

Specific: Type Mutability Version May Use After

CapCardErrorDetection: boolean { read-only } 1.8 open

CapInterfaceMode: int32 { read-only } 1.8 open

CapIsoEmvMode: int32 { read-only } 1.8 open

CapSCPresentSensor: int32 { read-only } 1.8 open

CapSCSlots: int32 { read-only } 1.8 open

CapTransmissionProtocol: int32 { read-only } 1.8 open

InterfaceMode: int32 { read-write } 1.8 open, claim, & enable

IsoEmvMode: int32 { read-write } 1.8 open, claim, & enable

SCPresentSensor: int32 { read-only } 1.8 open, claim, & enable

SCSlot: int32 { read-write } 1.8 open, claim, & enable

TransactionInProgress: boolean { read-only } 1.8 open

TransmissionProtocol: int32 { read-only } 1.8 open

Methods (UML operations)

Common
Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.8

close ():
void { raises-exception, use after open }

1.8

claim (timeout: int32):
void { raises-exception, use after open }

1.8

release ():
void { raises-exception, use after open, claim }

1.8

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.8

clearInput ():
void { raises-exception, use after open, claim }

1.8

clearInputProperties ():
void { raises-exception, use after open, claim }

1.10

clearOutput ():
void { raises-exception, use after open, claim }

1.8

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.8

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9
1262 Unified POS, v1.16.1

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific
Name Version

beginInsertion (timeout: int32):
void { raises-exception, use after open, claim, enable }

1.8

beginRemoval (timeout: int32):
void{ raises-exception, use after open, claim, enable }

1.8

endInsertion ():
void { raises-exception, use after open, claim, enable }

1.8

endRemoval ():
void { raises-exception, use after open, claim, enable }

1.8

readData (action: int32, inout count: int32, inout data: string):
void { raises-exception, use after open, claim, enable }

1.8

writeData (action: int32, count: int32, data: string):
void { raises-exception, use after open, claim, enable }

1.8

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent 1.8

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.8

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.8

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent 1.8

 OutputID: int32 { read-only }

upos::events::StatusUpdateEvent 1.8

 Status: int32 { read-only }
Unified POS, v1.16.1 1263

37.3 General Information

The Smart Card Reader / Writer programmatic name is “SmartCardRW.”

This device was introduced in Version 1.8 of the specification.

37.3.1 Capabilities

The Smart Card Reader / Writer (SCR/W) device has the following capabilities.

• Support for the reading and writing of Smart Cards that conform to the ISO/IEC 7816 standard (contact type)
and ISO/IEC 14443 (contactless type).

• Interface with simple memory cards, protected or segmented memory cards, stored value memory cards, and
CPU/MPU multifunction cards.

• Functions are limited to the actual Smart Card read and write operations only. Full function type devices such
as a “Payment Terminal” (defined as a unit that incorporates a SCR/W plus additional devices such as a Pin
Pad, Display, Signature Capture, and MSR reader in an integrated device) are not covered in this peripheral
class.

• Support for Smart Cards that use physical electrical contacts and/or close range Radio Frequency to exchange
power and data.

• Ability to sense when a card is present or absent is supported.

• Optional support of Security Application Modules (SAM) for CPU/MPU cards may be provided.

• Up to four types of API communication methods to the SCR/W may be supported: 

1. Command and Data Mode: Very basic ASCII format for commands and data interchange.

2. Data Block Mode: A block of string data that contains commands and data is sent to the SCR/W Device
Service.
The application and the SCR/W Service need to agree upon a communication protocol and data format before
using this mode. 

3. APDU Mode: Same as Data Block Mode except that the block of string data that contains commands
and data sent to the SCR/W Service conforms to the ISO/IEC 7816 APDU (Application Protocol Data
Units) standard for smart cards. ISO and EMV messaging formats are supported and selectable if the
SCR/W has the capability to switch to one of these formats.

4. XML Data Block Mode: A block of string data that contains commands and data is sent to the SCR/W
Service. The application and the SCR/W Service agree to use a communication protocol and data format
defined in this standard consistent with the XML Data Dictionary and XML schema guidelines as
outlined in the ARTS XML standard.
1264 Unified POS, v1.16.1

37.4 Smart Card Reader / Writer Class Diagram

The following diagram shows the relationships between the SCR/W classes.

«event»
UPOSException

«event»
StatusUpdateEvent

«prop» Status : int32

«event»
BaseControl

«event»
DataEvent

«prop» Status : int32

«event»
DirectIOEvent

«prop» EventNumber : int32
«prop» Data : int32
«prop» Obj : object

«utility»
SmartCardRWConst

«utility»
UposConst

Smart Card R/W Control

«capability» CapCardErrorDetection : boolean
«capability» CapInterfaceMode : int32
«capability» CapIsoEmvMode : int32
«capability» CapSCPresentSensor : int32
«capability» CapSCSlots : int32
«capability» CapTransmissionProtocol : int32
«prop» InterfaceMode : int32
«prop» IsoEmvMode : int32
«prop» SCPresentSensor : int32
«prop» SCSlot : int32
«prop» TransactionInProgress : boolean
«prop» TransmissionProtocol : int32

«method» beginInsertion ()
«method» beginRemoval ()
«method» endInsertion ()
«method» endRemoval ()
«method» readData ()
«method» writeData ()

<<sends>>
<<uses>>

«fires»

<<sends>>

«fires»

«fires»

<<uses>>

«event»
ErrorEvent

«prop» ErrorCode : int32
«prop» ErrorCodeExtended : int32
«prop» ErrorLocus : int32
«prop» ErrorResponse : int32

«fires»
Unified POS, v1.16.1 1265

37.5 Model

The general model of Smart Card Reader / Writer is as follows:

• The Smart Card Reader / Writer (SCR/W) device has a wide range of usages that depend upon a variety of ISO
7816 compliant smart cards. These include cards with or without physical electrical contacts and proximity
types that may function as memory cards, processor cards (T0 and/or T1 TransmissionProtocol), electronic
purse cards, security access module (SAM) processor cards, and security cards. The SCR/W scope is limited to
providing access to the smart card so that data retrieval, data storage, or program execution on the smart card
can be implemented.

• It is the responsibility of the application to have knowledge of what type of Smart Card transactions the SCR/
W device will allow. To help facilitate a wide range of possibilities of usage, four different communication
command and data interchange methods (InterfaceMode) are provided. As part of the initialization sequence,
the application should query the CapInterfaceMode to determine what is allowed and set the InterfaceMode
property to the mode that will be used.

• To begin operation, the application must call the open and claim methods to set up a communication path to
the SCR/W device. When the application is ready to interact with a smart card, the DeviceEnabled property
must be set to true. Then the SCR/W is able to accept a smart card; a StatusUpdateEvent is fired when one
has been detected. 

The beginInsertion method, with its time-out value set to some finite value, provides a way to allow the
application to wait for a smart card to be detected. If the time-out value expires, the program must call another
beginInsertion method to continue its quest for detecting a smart card. Once the smart card has been detected,
the application must call the endInsertion method.

Input Updated in Release 1.10
The application must invoke the readData method in order to request data from the smart card. Notification of the
availability of data from the smart card is accomplished when a DataEvent is delivered. For this device, notification
of a DataEvent does not mean the data has been read, only that the smart card is in a stable condition where any data
that is available to be read can in fact be read. The application must use the readData method to actually retrieve the
data that the smart card has available. The application must set the DataEventEnabled property to true in order for
the DataEvent to be delivered.
If an error occurs while reading the smart card’s data, an ErrorEvent is enqueued instead of a DataEvent. When the
application sets the DataEventEnabled property to true, the ErrorEvent will be delivered.

The application can obtain the current number of enqueued data events by reading the DataCount property.

All enqueued but undelivered input may be deleted by calling the clearInput method.

All data properties that are populated as a result of firing a DataEvent or ErrorEvent can be set back to their default
values by calling the clearInputProperties method.

 Output
The writeData method is always performed asynchronously. All output data is performed on a first-in, first-out basis.
When the application calls the writeData method, the SCR/W buffers the request and begins the communication pro-
cess through the SCR/W device to the smart card. 


Depending upon the InterfaceMode property, the writeData method data is either parsed by the Service or passed
natively directly to the SCR/W device and then on to the smart card. A unique identification number is assigned for
the data associated with the writeData call and is stored in the OutputID property. The data is enqueued for delivery
1266 Unified POS, v1.16.1

to the SCR/W device as soon as it can receive and process it. 


When the writeData method completes sending the data associated with the current output request, an OutputCom-
pleteEvent is delivered to the application. The OutputID associated with this output request is contained in the Out-
putCompleteEvent.


If the writeData method fails during data transfer, an ErrorEvent will be delivered to the application. If the applica-
tion had multiple outstanding output requests, the OutputID of the failed request is determined by evaluating the
OutputID associated with the last successful OutputCompleteEvent. The request that failed is the one that was
issued immediately after the last request that successfully completed.


All buffered output data may be deleted by calling the clearOutput method. This also stops any output that is in
progress, if possible. No OutputCompleteEvents will be delivered for output requests terminated in this manner.

• When done accessing the smart card, the application must call the beginRemoval method, specifying a timeout
value. If the card is not removed before the timeout period elapses, the SCR/W fires an exception. The
application must call the beginRemoval method again until the smart card is removed from the SCR/W device. 

When the smart card is no longer detected in the SCR/W, a StatusUpdateEvent is fired. 

To exit the removal mode, either after the card was physically removed or the application aborts the smart card
removal process, the application must call the endRemoval method.

When the application is finished using the SCR/W device, the application must set the DeviceEnabled
property to false and call the release method. If no further interaction with the SCR/W device is required, the
application must call the close method. 

There may be times when the smart card is extracted from the SCR/W device before the normal usage
sequence has been completed. This is referred to as having the card “torn” from the SCR/W device. The
application will receive a StatusUpdateEvent indicating the card is no longer “present.” In addition the
SCPresentSensor property would have been set to false.
Unified POS, v1.16.1 1267

37.6 Card Insertion Diagram

The processing from card insertion to card removal is shown below. All methods, other than writeData, are
performed synchronously.

1.If the smart card is not inserted into the SCR/W before the application specified timeout elapses, an exception
is fired. The application needs to call beginInsertion again to confirm that a smart card has been inserted or
call endInsertion to cancel the card insertion. After a successful beginInsertion, the application must call
endInsertion to cause the SCR/W to exit insertion mode and allow for further readData, writeData, or other
methods to be used with the SCR/W to obtain data from the smart card. When a card is detected, a
StatusUpdateEvent is fired.

2.If the smart card is not removed from the SCR/W before the application specified timeout elapses, an exception
is fired. The application needs to call beginRemoval again to confirm that the smart card has been removed, or
call endRemoval to cancel the card removal. After a successful beginRemoval, the application must call

Application SCR/W Device User : Actor1

Read of Data Available from
Smart Card and Ready to
Transfer to Application

Write Data Available to Transfer
to Smart Card from Application

User Removes the Card from the
Smart Card RW

1 : beginInsertion : \Timer\

Return if Timer Expires

2 : beginInsertion : \Timer\

3 : \Card Inserted...Note 1\
StatusUpdateEvent : \void\

4 : endInsertion : \void\

5 : setDataEventEnabled : \= true\

readData : \action, count, data\

DataEvent : \void\

6 : writeData : \action, count, data\

OutputCompleteEvent : \void\

7 : beginRemoval : \Timer\

8 : \Card is Removed or no Longer
Detected...Note 2\

Return if Timer expires

9 : beginRemoval : \Timer\

StatusUpdateEvent : \void\

10 : endRemoval : \void\
1268 Unified POS, v1.16.1

endRemoval to cause the SCR/W to exit removal mode. When a card is no longer detected, a
StatusUpdateEvent is fired.

37.7 Device Sharing

The SCR/W is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing many of the SCR/W specific properties.

• The application must claim and enable the device before calling methods that manipulate the device.

• See the “Summary” table for precise usage prerequisites.
Unified POS, v1.16.1 1269

37.8 Data Transfer Modes

The SCR/W has the flexibility to be able to operate in one or more modes to enable the transfer of data to and
from the smart card. When the SCR/W is initialized, the application must determine what communication and
operation mode will be used based upon a query of the capabilities of the SCR/W device.

The InterfaceMode property is used to store the current communication mode.

In the Command / Data mode, a simple read and write data functionality is defined between the application and
the SCR/W. The commands will cause the data to be retrieved from, placed onto, or placed onto and executed on
the smart card currently available to the SCR/W device. Greater knowledge of the specific SCR/W device is
required in this mode. The application should query the PhysicalDeviceName and/or
PhysicalDeviceDescription properties and create the write data and resultant read data based upon the type of
SCR/W that is connected to the system. 

In the Block Transfer mode, blocks of commands/data are sent to and retrieved from the SCR/W Service. It is up
to the Service to parse the commands and data from the block of information sent to it from the application and
invoke the necessary function and response in the smart card currently in the SCR/W. Knowledge of the message
content between the application and the SCR/W must be established when the open method is called. The
application should query the PhysicalDeviceName and/or PhysicalDeviceDescription properties and base its
message content upon the type of SCR/W that is connected to the system. 

In the APDU Transfer mode, blocks of data are sent to and retrieved from the SCR/W Service similar to the
Block Transfer mode described above. However, in this mode the commands and data consist of string data
elements that comply to the ISO/IEC 7816 APDU (Application Protocol Data Units) standard for Smart Cards
communication. Provision has been made to support the messaging requirements of ISO or EMV for operating in
the APDU mode. The CapIsoEmvMode property can be queried to determine what modes are supported by the
device. The application then sets the IsoEmvMode property to the desired messaging scheme prior to sending
data to and receiving data from the SCR/W device.

In the XML Block Transfer mode, blocks of data are sent to and retrieved from the SCR/W Service similar to the
Block Transfer mode described above. However, in this mode the commands and data are in the form of XML
messages. The data elements and schemas of these messages conform to the ARTS XML messaging as they
apply to the SCR/W device.
1270 Unified POS, v1.16.1

37.9 Smart Card Reader / Writer Sequence Diagram

ClientAP DataEventHandler OCE Handler cd SCRW DataEvent SCRW Service User : Actor2StatusUpdateEventSUE Handler

Read Operation to the SCR/W and
on to the Smart Card Shown Next

Parse and set SCR/W Properties

Write Operation to the SCR/W and
on to the Smart Card Shown Next

Output Data++

OCE

1 : \new\

3 : \Create and Register a DataEvent
Handler with the Control\

5 : \claim(timeout)\

7 : \setDeviceEnabled(true)\

Smart Card Insertedenqueue SUE

2 : \new\

4 : \claim(timeout)\

6 : \setDeviceEnabled(true)\

8 : \beginInsertion(timeout)\

deliver StatusUpdateEvent
9 : \endInsertion()\

10 : \endInsertion()\

11 : \readData(action, count, data)\
12 : \readData(action, count, data)\

copy data to DataEvent
deliver DataEvent

13 : \writeData(action, count, data)\
14 : \writeData(action, count, data)\

deliver DataEvent to each handler

15 : \new\
deliver OutputCompleteEventdeliver OutputCompleteEvent to each

handler

16 : \beginRemoval(timeout)\
17 : \beginRemoval(timeout)\

Smart Card Removed

18 : \endRemoval()\
19 : \endRemoval()\

20 : \setDeviceEnable(false)\

21 : \setDeviceEnable(false)\
22 : \release()\

23 : \release()\
Unified POS, v1.16.1 1271

37.10 Smart Card Reader / Writer State Diagram

Closed

Opened

Claimed

open() close()

claim() release()

close()

Enabled

set DeviceEnabled(true)

set DeviceEnabled(false)
release()

Smart Card Detected

User Inserts Smart Card

beginInsertion(timeout)

endInsertion()

Application Access to Smart Card

Smart Card no Longer Detected

User Removes Smart Card

beginRemoval(timeout)
endRemoval()

StatusUpdateEvent()
StatusUpdateEvent()

Smart Card R/W Read Requested
Smart Card R/W Write Requested

readData(action, count, data)

Data Read From Card Enqueued

Error While Reading Data

DataEvent()

ErrorEvent()

Clear Data Input

clearInput()

Write Data Dequeued

Error While Writing Data

writeData(action, count, data)

ErrorEvent()

OutputCompleteEvent()

Clear Data Output

clearOutput()

Error: Smart Card "Torn" (Removed)
From SCR/W Prematurely

ErrorEvent()

Normal Removal Condition
1272 Unified POS, v1.16.1

37.11 Properties (UML Attributes)

37.11.1 CapCardErrorDetection Property

Syntax CapCardErrorDetection: boolean { read-only, access after open }

Remarks If true, then the SCR/W has the ability to report that the smart card has been “torn” (removed before all
transfers have been completed) from the device, false if it does not. The ErrorEvent is only fired with
the ErrorCode set to the value “ESC_TORN” if a “torn” error is detected and the value for this property
is true.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see Syntax
MaximumY: int32 { read-only, access after open }

Remarks Holds the maximum vertical coordinate of the signature capture device. It must be less than 65,536.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also ErrorEvent event.

37.11.2 CapInterfaceMode Property

Syntax CapInterfaceMode: int32 { read-only, access after open }

Remarks This capability indicates the types of interface modes that the SCR/W device is capable of supporting, a
simple transaction command and data mode, a block data mode, APDU format block data mode, or a
block XML data mode that uses the ARTS XML Standard for SCR/W functionality. The InterfaceMode
property will reflect the currently selected interface mode that the application is using to communicate
with the device. 

CapInterfaceMode is a bitwise logical OR combination of any of the following values:

Value Meaning 
SC_CMODE_TRANS Simple Transaction Command and Data Mode

SC_CMODE_BLOCK Block Data Mode

SC_CMODE_APDU Same as Block Data Mode except APDU Standard
Commands are used.

SC_CMODE_XML XML Block Data Mode

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see Syntax
MaximumY: int32 { read-only, access after open }

Remarks Holds the maximum vertical coordinate of the signature capture device. It must be less than 65,536.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also InterfaceMode Property, IsoEmvMode Property.
Unified POS, v1.16.1 1273

37.11.3 CapIsoEmvMode Property

Syntax CapIsoEmvMode: int32 { read-only, access after open }

Remarks This capability indicates the message modes the SCR/W supports in order to interoperate with a smart
card when the InterfaceMode is set to SC_MODE_APDU. The APDU messaging format is dependent
upon whether the ISO or EMV standard is desired to be used. The IsoEmvMode property is used to
select the APDU mode that the SCR/W is currently using to interoperate with the smart card. 

CapIsoEmvMode is a bitwise logical OR combination of any of the following values:

Value Meaning 
SC_CMODE_ISO APDU messaging format conforms to the ISO standard.

SC_CMODE_EMV APDU messaging format conforms to the EMV standard.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see Syntax
MaximumY: int32 { read-only, access after open }

Remarks Holds the maximum vertical coordinate of the signature capture device. It must be less than 65,536.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also IsoEmvMode Property, InterfaceMode Property.

37.11.4 CapSCPresentSensor Property

Syntax CapSCPresentSensor: int32 { read-only, access after open }

Remarks This capability indicates if the SCR/W device can sense if a smart card is present in one of the available
slots (entry points and/or proximity zones) where a user can insert a smart card. 
The SCR/W device will always have a minimum of one slot available (designated as the default slot)
indicated by the LSB. 

CapSCPresentSensor is a bitwise logical OR combination of any of the int32 bits with bit 0 (LSB) slot
0 (default); bit 1, slot 1; bit 2, slot 2; etc. If the bit value is one, then the SCR/W has a sensor that can
detect when a smart card is present; the bit value is zero if it does not.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see Syntax
MaximumY: int32 { read-only, access after open }

Remarks Holds the maximum vertical coordinate of the signature capture device. It must be less than 65,536.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also SCPresentSensor Property.
1274 Unified POS, v1.16.1

37.11.5 CapSCSlots Property

Syntax CapSCSlots: int32 { read-only, access after open }

Remarks This capability indicates the bit mask of available slots (entry points and/or proximity zones) where a
user can insert a smart card for detection in the SCR/W device. The application can select the slot to use
by setting the SCSlot property to one of the allowable CapSCSlots values. The device will always have
a minimum of one slot available (designated as the default slot) indicated by the LSB set to one. 

CapSCSlots is a bitwise logical OR combination of any of the int32 bits with bit 0 (LSB) slot 0 (default);
bit 1, slot 1; bit 2, slot 2; etc.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see Syntax
MaximumY: int32 { read-only, access after open }

Remarks Holds the maximum vertical coordinate of the signature capture device. It must be less than 65,536.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also SCSlot Property.

37.11.6 CapTransmissionProtocol Property

Syntax CapTransmissionProtocol: int32 { read-only, access after open }

Remarks This capability indicates the types of ISO 7816-3 transmission protocols that the SCR/W device is
capable of supporting, T=0 (asynchronous half duplex character transmission protocol), T=1
(asynchronous half duplex block transmission protocol). The TransmissionProtocol property will
reflect the currently selected transmission protocol being used to communicate with the device. 

CapTransmissionProtocol is a bitwise logical OR combination of any of the following values:

Value Meaning 
SC_CTRANS_PROTOCOL_T0 Asynchronous, Half Duplex, Character,

Transmission Protocol Mode

SC_CTRANS_PROTOCOL_T1 Asynchronous, Half Duplex, Block Transmission Protocol
Mode

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see Syntax
MaximumY: int32 { read-only, access after open }

Remarks Holds the maximum vertical coordinate of the signature capture device. It must be less than 65,536.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also TransmissionProtocol Property.
Unified POS, v1.16.1 1275

37.11.7 InterfaceMode Property

Syntax InterfaceMode: int32 { read-write, access after open-claim-enable }

Remarks This property indicates the current communication interface mode that the SCR/W device is using to
communicate with the application program. The property CapInterfaceMode contains the interface
modes that are supported by the SCR/W Service. If an InterfaceMode is selected that is not consistent
with CapInterfaceMode, a UposException will be thrown.

InterfaceMode may be one of the following values:

Value Meaning 
SC_MODE_TRANS Simple Transaction Command and Data Mode

SC_MODE_BLOCK Block Data Mode

SC_MODE_APDU Same as Block Data Mode except APDU Standard
Defines the Commands and data.

SC_MODE_XML XML Block Data Mode

This property is initialized to SC_MODE_TRANS by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see Syntax
MaximumY: int32 { read-only, access after open }

Remarks Holds the maximum vertical coordinate of the signature capture device. It must be less than 65,536.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapInterfaceMode Property.









1276 Unified POS, v1.16.1

37.11.8 IsoEmvMode Property

Syntax IsoEmvMode: int32 { read-only, access after open-claim-enable }

Remarks This property indicates the message modes the SCR/W is currently using in order to interoperate with a
smart card when the InterfaceMode is set to SC_MODE_APDU. The APDU messaging format is
dependent upon whether the ISO or EMV standard is desired to be used. The CapIsoEmvMode
capability defines the available modes the SCR/W supports and the IsoEmvMode property will be set to
reflect the mode that is currently in use by the SCR/W device.


IsoEmvMode may be one of the following values:

Value Meaning 
SC_MODE_ISO APDU messaging format currently in use conforms to the ISO standard.

SC_MODE_EMV APDU messaging format currently in use conforms to the EMV standard.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see Syntax
MaximumY: int32 { read-only, access after open }

Remarks Holds the maximum vertical coordinate of the signature capture device. It must be less than 65,536.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapIsoEmvMode Property, InterfaceMode Property.
Unified POS, v1.16.1 1277

37.11.9 SCPresentSensor Property

Syntax SCPresentSensor: int32 { read-only, access after open-claim-enable }

Remarks This property indicates that a smart card has been detected in one of the supported slots present in the
SCR/W device and is in a position to exchange data with the application. This property is only active if
the CapSCPresentSensor confirms that a smart card present sensor is supported by the slot. The SCR/
W device will always have a minimum of one slot available (designated as the default slot) indicated by
the LSB but may or may not support a smart card present sensor.


SCPresentSensor is a bitwise logical OR combination of any of the int32 bits with bit 0 (LSB) slot 0
(default); bit 1, slot 1; bit 2, slot 2; etc. If the bit value is one, then the sensor indicates that a smart card
is present; the bit value is zero if it does not. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see Syntax
MaximumY: int32 { read-only, access after open }

Remarks Holds the maximum vertical coordinate of the signature capture device. It must be less than 65,536.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapSCPresentSensor Property.

37.11.10 SCSlot Property

Syntax SCSlot: int32 { read-write, access after open-claim-enable }

Remarks This property indicates the current slot (entry point or proximity zone) where a user can insert a smart
card for detection in the SCR/W device. The application can select the slot to use by setting the SCSlot
property to one of the allowable CapSCSlots values. The device will always have a minimum of one slot
available (designated as the default, slot 0) indicated by the LSB set to one. 

SCSlot may be set by the application to one of the CapSCSlots values as follows:

bit 0 (LSB) slot 0 (default); bit 1, slot 1; bit 2, slot 2; etc.

This property is initialized by the open method to the default, slot 0 value.

Errors A UposException may be thrown when this property is accessed. For further information, see Syntax
MaximumY: int32 { read-only, access after open }

Remarks Holds the maximum vertical coordinate of the signature capture device. It must be less than 65,536.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapSCSlots Property.
1278 Unified POS, v1.16.1

37.11.11 TransactionInProgress Property

Syntax TransactionInProgress: boolean { read-only, access after open }

Remarks If true, then a smart card has been detected and active interchange of information with the smart card is
taking place.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see Syntax
MaximumY: int32 { read-only, access after open }

Remarks Holds the maximum vertical coordinate of the signature capture device. It must be less than 65,536.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also SCPresentSensor Property.

37.11.12 TransmissionProtocol Property

Syntax TransmissionProtocol: int32 { read-only, access after open }

Remarks This property indicates the type of ISO 7816-3 transmission protocols that the SCR/W device is currently
supporting, T=0 (asynchronous half duplex character transmission protocol) or T=1 (asynchronous half
duplex block transmission protocol). The TransmissionProtocol property will reflect the currently
selected transmission protocol being used to communicate with the device.

TransmissionProtocol is a bitwise data element based upon the supported modes as defined by the
CapTransmissionProtocol property and may be one of the following values:

Value Meaning 
SC_TRANS_PROTOCOL_T0 Asynchronous, Half Duplex, Character,

Transmission Protocol Mode

SC_TRANS_PROTOCOL_T1 Asynchronous, Half Duplex, Block 
Transmission Protocol Mode

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see Syntax
MaximumY: int32 { read-only, access after open }

Remarks Holds the maximum vertical coordinate of the signature capture device. It must be less than 65,536.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapTransmissionProtocol Property.
Unified POS, v1.16.1 1279

37.12 Methods (UML operations)

37.12.1 beginInsertion Method

Syntax beginInsertion (timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description 
timeout The number of milliseconds before failing the method.

If zero, the method initiates insertion mode and either returns immediately if successful, or raises an
exception. If FOREVER (-1), the method initiates the begin insertion mode, then waits as long as needed
until either the smart card is inserted or an error occurs.

Remarks Called to initiate smart card insertion processing in either a contact type or contactless type SCR/W.

When called, SCR/W state is changed to allow the insertion of a smart card and the smart card insertion
mode is entered. This method is paired with the endInsertion method for controlling smart card
insertion.

If the SCR/W device cannot be placed into insertion mode, an exception is raised. Otherwise, the Control
continues to monitor smart card insertion until either the smart card is not inserted before timeout
milliseconds have elapsed, or an error is reported by the SCR/W device. In the latter case, the Control
raises an exception with the appropriate error code. The SCR/W device remains in smart card insertion
mode. This allows an application to perform some user interaction and reissue the beginInsertion
method without altering the smart card handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further information, see Syntax
MaximumY: int32 { read-only, access after open }

Remarks Holds the maximum vertical coordinate of the signature capture device. It must be less than 65,536.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_BUSY This operation cannot be performed because asynchronous output is

 in progress.

E_ILLEGAL The SCR/W does not exist or an invalid timeout parameter was specified.

E_TIMEOUT The specified time has elapsed without the smart card being properly
inserted.

E_EXTENDED Refer to the definitions for ErrorCodeExtended in the Events section, 
“ErrorEvent Updated in Release 1.10” on page 939.

See Also endInsertion Method, beginRemoval Method, endRemoval Method.
1280 Unified POS, v1.16.1

37.12.2 beginRemoval Method

Syntax beginRemoval (timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description 
timeout The number of milliseconds before failing the method

If zero, the method initiates the begin removal mode and either returns immediately or raises an
exception. If FOREVER (-1), the method initiates the begin removal mode, then waits as long as needed
until either the smart card is removed or an error occurs.

Remarks Called to initiate smart card removal processing.

When called, the SCR/W is made ready to be removed from either a contact type or a contactless type
SCR/W. This method is paired with the endRemoval method for controlling smart card removal.

The contact type model that has the sensor in the entrance ends normally when a card is removed from
SCR/W. The contactless model (without a sensor) ends normally when the smart card has been removed
from the proximity of the SCR/W device.

If the SCR/W cannot be placed into removal or ejection mode, an exception is raised. Otherwise, the
Control continues to monitor smart card removal until either the smart card is not ejected before timeout
milliseconds have elapsed, or an error is reported by the SCR/W. In this case, the Control raises an
exception with the appropriate error code. The SCR/W remains in smart card ejection mode. This allows
an application to perform some user interaction and reissue the beginRemoval method without altering
the smart card handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further information, see Syntax
MaximumY: int32 { read-only, access after open }

Remarks Holds the maximum vertical coordinate of the signature capture device. It must be less than 65,536.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_BUSY This operation cannot be performed because asynchronous output is

 in progress.

E_ILLEGAL The SCR/W does not exist or an invalid timeout parameter was specified.

E_TIMEOUT The specified time has elapsed without the smart card being properly
removed.

E_EXTENDED Refer to the definitions for ErrorCodeExtended in the Events section,
“ErrorEvent Updated in Release 1.10” on page 939.

See Also beginInsertion Method, endInsertion Method, endRemoval Method.
Unified POS, v1.16.1 1281

37.12.3 endInsertion Method

Syntax endInsertion ():
void { raises-exception, use after open-claim-enable }

Remarks Called to end smart card insertion processing.
When called, the SCR/W is taken out of smart card insertion mode. If no smart card is present, an
exception is raised.
This method is paired with the beginInsertion method for controlling smart card insertion in either a
contact type or contactless type SCR/W.

Errors A UposException may be thrown when this method is invoked. For further information, see Syntax
MaximumY: int32 { read-only, access after open }

Remarks Holds the maximum vertical coordinate of the signature capture device. It must be less than 65,536.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGAL The SCR/W is not in smart card insertion mode.

E_FAILURE A card is not inserted in the SCR/W.

E_EXTENDED Refer to the definitions for ErrorCodeExtended in the Events section,
“ErrorEvent Updated in Release 1.10” on page 939.

See Also beginInsertion Method, beginRemoval Method, endRemoval Method.

37.12.4 endRemoval Method

Syntax endRemoval ():
void { raises-exception, use after open-claim-enable }

Remarks Called to end smart card removal processing.
When called, the SCR/W is taken out of smart card removal mode in either a contact type or contactless
type SCR/W. If a smart card is present, an exception is raised. This method is paired with the
beginRemoval method for controlling smart card removal.

The application may choose to call this method immediately after a successful beginRemoval if it
wants to use the SCR/W sensors to determine when the smart card has been removed. Alternatively, the
application may prompt the user and wait for a key being pressed before calling this method.

Errors A UposException may be thrown when this method is invoked. For further information, see Syntax
MaximumY: int32 { read-only, access after open }

Remarks Holds the maximum vertical coordinate of the signature capture device. It must be less than 65,536.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

1282 Unified POS, v1.16.1

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGAL The SCR/W is not ti smart card removal mode.
E_FAILURE Thee is a card in the CSR/W.
E_EXTENDED Refer to the definitions for ErrorCodeExtended in the Events section

“ErrorEvent “ on page 905

See Also beginInsertion Method, beginRemoval Method, endInsertion Method.
Unified POS, v1.16.1 1283

37.12.5 readData Method Updated in Release 1.10

Syntax readData (action: int32, inout count: int32, inout data: string): 
 void { raises-exception, use after open-enable }

Parameter Description 
action Indicates the type of processing of the data that is to be done by the smart
 card.

count The total number of data bytes that are being returned by the smart card.

data The data that is returned from the smart card.

Remarks Reads data from a smart card using the SCR/W. Note that a DataEvent is used to indicate that the smart
card is in a stable condition where read data is available and that the readData method can be called to
return the data.

The action parameter may have one of the following values:

Value Meaning 
SC_READ_DATA The data being read from the smart card present in the SCR/W is from the
 Data Area on the smart card.

SC_READ_PROGRAM The data being read from the smart card present in the SCR/W is an
executable program that was found in the smart card memory associated with
executable programs.

SC_EXECUTE_AND_READ_DATA
The data being read from the smart card present in the SCR/W is data that was
processed by a program currently resident on the smart card. When this action
is requested the smart card program will be started and send back the data that
it has processed.

SC_XML_READ_BLOCK_DATA
The data being read is XML data that the SCR/W is sending to the
application. It is up to the application to parse the data being returned.

Errors A UposException may be thrown when this method is invoked. For further information, see Syntax
MaximumY: int32 { read-only, access after open }

Remarks Holds the maximum vertical coordinate of the signature capture device. It must be less than 65,536.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_CLAIMED Cannot read because the smart card present in the 

SCR/W is claimed by another application.

E_ILLEGAL The action is not valid for the type of smart card present in the SCR/W or the
count value is not valid for the smart card present in the SCR/W.

See Also writeData Method, Smart Card Model, Input Section.
1284 Unified POS, v1.16.1

37.12.6 writeData Method

Syntax writeData (action: int32, count: int32, data: string): 
 void { raises-exception, use after open-enable }

Parameter Description 
action Indicates the type of processing of the data that is to be done by the smart
 card.

count The total number of data bytes that are being sent to the smart card with this
method.

data The data that is to be sent to the smart card.

Remarks Writes data to a smart card using the SCR/W.

The action parameter may have one of the following values:

Value Meaning 
SC_STORE_DATA The data being sent to the smart card present in the

SCR/W is to be stored in the Data Area on the smart card.

SC_STORE_PROGRAM 
The data being sent to the smart card present in the 
SCR/W is an executable program and will be placed in the smart card
memory associated with executable programs.

SC_EXECUTE_DATA The data being sent to the smart card present in the SCR/W is data that will
be processed by a program that is currently resident and can execute on the
smart card. When this action is requested the smart card program will be
started and will use the data that has been sent.

SC_XML_BLOCK_DATA
The data being sent is XML data and is to be parsed by the SCR/W to
determine what actions are to take place.

SC_SECURITY_FUSE The smart card present in the SCR/W will have its security fuse activated to
prevent future data from being stored in the smart card.

SC_RESET The smart card present in the SCR/W will be instructed to be reset to its
“power on” state and ready to execute an application command.

Errors A UposException may be thrown when this method is invoked. For further information, see Syntax
MaximumY: int32 { read-only, access after open }

Remarks Holds the maximum vertical coordinate of the signature capture device. It must be less than 65,536.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_CLAIMED Cannot write because the smart card present in the 

SCR/W is claimed by another application.

E_ILLEGAL The action is not valid for the type of smart card present in the SCR/W or the
count value is not valid for the smart card present in the SCR/W.

See Also readData Method.
Unified POS, v1.16.1 1285

37.13 Events (UML Interfaces)

37.13.1 DataEvent Updated in Release 1.10

<< event >> upos::events::DataEvent 
Status: int32 { read-only }

Description Fired to indicate that the smart card is in a stable condition in order to read data from the card. The
readData method can then be called to retrieve the data that the smart card contains.

Attributes This event contains the following attribute:

Attributes Type Description 
Status int32 The Status parameter contains zero.

Remarks The smart card is now in a stable condition such that data can be read from the smart card. The smart
card has either been inserted into the SCR/W or is within the read range for a successful data read. In
either case, the readData method must be called to retrieve the data from the smart card.

See Also Smart Card Model, Input Section.

37.13.2 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific SCR/W Service to provide events to the application that are not otherwise supported by the
Control.

Attributes This event contains the following attributes:

Attributes Type Description 
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and the
Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service. This
property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s smart card
devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.
1286 Unified POS, v1.16.1

37.13.3 ErrorEvent Updated in Release 1.10

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a SCR/W error has been detected and a suitable response by the application
is necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes in Chapter 1.

ErrorCodeExtended

int32 Extended Error code causing the error event. If ErrorCode is
E_EXTENDED, then see values below. Otherwise, it may contain a
Service-specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden by the application.
(i.e., this property is settable). See values below.

If ErrorCode is E_EXTENDED, then ErrorCodeExtended has one of the following values:

Value Meaning 
ESC_READ There was a read error.
ESC_WRITE There was a write error.
ESC_TORN The smart card was prematurely removed from the 

SCR/W unexpectedly. Note: CapCardErrorDetection capability must
be true before this can be set.

ESC_NO_CARD There is no card detected in the SCR/W but a card was expected.

The ErrorLocus property may be one of the following:

Value Meaning 
EL_OUTPUT Error occurred while processing asynchronous output.
EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.
EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and

some previously buffered data is available.

The contents of the ErrorResponse property are preset to a default value, based on the ErrorLocus.
The application’s error processing may change ErrorResponse to one of the following values:
Unified POS, v1.16.1 1287

Value Meaning 
ER_RETRY Typically valid only when locus is EL_OUTPUT.
 Retry the asynchronous output. The error state is exited.
 May be valid when locus is EL_INPUT.
 Default when locus is EL_OUTPUT.

ER_CLEAR Clear all buffered output data (including all asynchronous output) or
buffered input data. The error state is exited. Default when locus is
EL_INPUT.

ER_CONTINUEINPUT

Used only when locus is EL_INPUT_DATA. Acknowledges the error
and directs the Control to continue processing. The Control remains in the
error state and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and the
DataEventEnabled property is again set to true, then another
ErrorEvent is delivered with locus EL_INPUT. Default when locus is
EL_INPUT_DATA.

Remarks Input error events are generated when errors occur while reading the data from a newly inserted smart
card. These error events are not delivered until the DataEventEnabled property is set to true so as to
allow proper application sequencing. All error information is placed into the applicable properties
before this event is delivered. 

Output error events are generated and delivered when an error occurs during asynchronous writeData
processing. The errors are placed into the applicable properties before the event is delivered.

See Also CapCardErrorDetection Property, SCPresentSensor Property, readData method, writeData
method.

37.13.4 OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the OutputID attribute has
completed successfully.

Attributes This event contains the following attribute:

Attributes Type Description
OutputID int32 The ID number of the asynchronous output request that is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Service has confirmation that
it was processed by the device successfully.

See Also “Device Output Models” on page 20.
1288 Unified POS, v1.16.1

37.13.5 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the status of the SCR/W device.

Attributes This event contains the following attribute:

Attributes Type Description 
Status int32 Indicates a change in the status of the SCR/W device.

The Status parameter has one of the following values:

Value Meaning 
SC_SUE_NO_CARD No card detected in the SCR/W Device.

SC_SUE_CARD_PRESENT There is a card in the device.

Note that Release 1.3 added Power State Reporting with additional Power
reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 2.

Remarks Fired when the status of a smart card in the SCR/W changes.

See Also “Events” on page 15.
Unified POS, v1.16.1 1289

1290 Unified POS, v1.16.1

38 Tone Indicator

38.1 General

This Chapter defines the Tone Indicator device category.

38.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.2 Not supported

CapCompareFirmwareVersion: boolean { read-only } 1.9 open

CapPowerReporting: int32 { read-only } 1.3 open

CapStatisticsReporting: boolean { read-only } 1.8 open

CapUpdateFirmware: boolean { read-only } 1.9 open

CapUpdateStatistics: boolean { read-only } 1.8 open

CheckHealthText: string { read-only } 1.2 open

Claimed: boolean { read-only } 1.2 open

DataCount: int32 { read-only } 1.2 Not supported

DataEventEnabled: boolean { read-write } 1.2 Not supported

DeviceEnabled: boolean { read-write } 1.2 open

FreezeEvents: boolean { read-write } 1.2 open

OutputID: int32 { read-only } 1.2 open

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.2 --

DeviceControlDescription: string { read-only } 1.2 --

DeviceControlVersion: int32 { read-only } 1.2 --

DeviceServiceDescription: string { read-only } 1.2 open

DeviceServiceVersion: int32 { read-only } 1.2 open

PhysicalDeviceDescription: string { read-only } 1.2 open

PhysicalDeviceName: string { read-only } 1.2 open
Unified POS, v1.16.1 1291

Properties (Continued)

Specific Type Mutability Version May Use After

AsyncMode: boolean { read-write } 1.2 open & enable

CapMelody int32 { read-only } 1.13 open

CapPitch: boolean { read-only } 1.2 open

CapVolume: boolean { read-only } 1.2 open

InterToneWait: int32 { read-write } 1.2 open & enable

MelodyType int32 { read-write } 1.13 open & enable

MelodyVolume int32 { read-write } 1.13 open & enable

Tone1Duration: int32 { read-write } 1.2 open & enable

Tone1Pitch: int32 { read-write } 1.2 open & enable

Tone1Volume: int32 { read-write } 1.2 open & enable

Tone2Duration: int32 { read-write } 1.2 open & enable

Tone2Pitch: int32 { read-write } 1.2 open & enable

Tone2Volume: int32 { read-write } 1.2 open & enable

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.2

close ():
void { raises-exception, use after open }

1.2

claim (timeout: int32):
void { raises-exception, use after open }

1.2

release ():
void { raises-exception, use after open, claim }

1.2

checkHealth (level: int32):
void { raises-exception, use after open, enable } Note

1.2

clearInput ():
void { }

Not supported

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { raises-exception, use after open, enable }

1.2

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.2

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.9

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.8
1292 Unified POS, v1.16.1

Note:Also requires that no other application has claimed the ToneIndicator.

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.9

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.8

Specific

Name

sound (numberOfCycles: int32, interSoundWait: int32):
void { raises-exception, use after open, enable } Note

1.2

soundImmediate ():
void { raises-exception, use after open, enable } Note

1.2

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.2

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.2

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent 1.2

 OutputID: int32 { read-only }

upos::events::StatusUpdateEvent 1.3

 Status: int32 { read-only }
Unified POS, v1.16.1 1293

38.3 General Information

The Tone Indicator programmatic name is “ToneIndicator.”

38.3.1 Capabilities

The Tone Indicator has the following capabilities:

• Sound a tone device, which may be the PC or NC system speaker or another hardware device. In many cases
the PC or NC speaker will not be available or will be in a position that is inaudible to the operator.

• Sound a two-tone indicator or multiple tone “melodies,” providing simple pitch and volume control.

• Provide a synchronous one-shot indicator, similar to an Operating System’s Beep function.

38.3.2 Tone Indicator Class Diagram

The following diagram shows the relationships between the Tone Indicator classes.

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

ErrorEvent

<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : int32
<<prop>> ErrorLocus : int32
<<prop>> ErrorResponse : int32

(from events)

<<event>>

OutputCompleteEvent

<<prop>> OutputID : int32

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32

(from events)

<<event>>

ToneIndicatorControl

<<capability>> CapVolume : boolean
<<capability>> CapPitch : boolean
<<prop>> AsyncMode : boolean
<<prop>> InterToneWait : boolean
<<prop>> Tone1Pitch : int32
<<prop>> Tone2Pitch : int32
<<prop>> Tone1Volume : int32
<<prop>> Tone2Volume : int32
<<prop>> Tone1Durat ion : int32
<<prop>> Tone2Durat ion : int32

sound(numOfCyles : int32, interSoundWait : int32) : void
soundImmediate() : void

(from upos)

<<Interface>>

fires

fires

f ires

f ires

UposConst
(from upos)

<<utility>>

ToneIndicatorConst
(from upos)

<<uti lity>>

UposExcept ion
(from upos)

<<exception>>

<<uses>>

<<sends>>

BaseControl
(from upos)

<<Interface>>
<<uses>>

<<sends>>
1294 Unified POS, v1.16.1

38.3.3 Tone Indicator Sequence Diagram Added in Release 1.7

The following sequence diagram shows the typical usage of the Tone Indicator device.

NOTE: we are assuming that the :ClientApp has already successfully opened and enabled the ToneIndicator device and
registered its event handlers with the control. This means that the DeviceEnabled property is == true

:ClientApp :ToneIndicator :ToneIndicatorService:OutputCompleteEvent

1: setInterToneWait(waitTime) 2: setInterToneWait(waitTime)

3: setTone1Pitch(t1Pitch)
4: setTone1Pitch(t1Pitch)

5: setTone2Pitch(t2Pitch) 6: setTone2Pitch(t2Pitch)

7: sound(numOfCycles, iSWait)
8: sound(numOfCycles, iSWait)

9: setAsyncMode(true)
10: setAsyncMode(true)

11: sound(numOfCycles, iSWait) 12: sound(numOfCycles, iSWait)

16: create new OCE event
15: enqueue requests and sound tones

17: deliver OCE to control

18: deliver event to all registered handlers

13: getOutputID() 14: getOutputID()

19: notify client of new event

The new OutputCompleteEvent is
created when tone finishes playing any
enqueued requests.
Unified POS, v1.16.1 1295

38.3.4 Model Updated in Release 1.13

The Tone Indicator device is for use when the POS hardware platform provides such capabilities external to the
PC or NC standard speaker. Many POS systems have such devices, embedded, for example, in a keyboard, so
that an indicator is always present at the point of sale.

This device may support a two-tone sound so that “siren” tones can be produced. It may also support multiple
tone sounds so that “melody” tones can be produced. 

The indicator is in general also started asynchronously so applications may perform other functions while waiting
for the user to acknowledge the tone. There are also options to start the tone asynchronously with no count, so it
runs forever, and be stopped by the application at a later time.

When the tone is started asynchronously, an OutputCompleteEvent is enqueued when all the tones have been
played. This allows the application to know that the tone has stopped. For example, when the cash drawer is
opened the tone could be started, quietly for a given number of cycles. If the cash drawer is closed, then the tone
is stopped explicitly by the application. If not, then the notification by the OutputCompleteEvent allows the
application to alter the prompt to the operator and possibly restart the tone a little louder.

The Tone Indicator follows the general device behavior model for output devices. Asynchronous output is
handled as follows:

• The Device buffers the request in program memory, for delivery to the Physical Device as soon as the Physical
Device can receive and process it, sets OutputID to an identifier for this request, and returns as soon as
possible. When the request completes successfully, an OutputCompleteEvent is enqueued. A parameter of
this event contains the OutputID of the completed request.

The sound method will not raise an exception due to a hardware problem. These errors will only be reported
by an ErrorEvent. An exception will only be raised if the control is not claimed and enabled, a parameter is
invalid, or the request cannot be enqueued. The first two error cases are due to an application error, while the
last is a serious system resource exception.

• If an error occurs while performing an asynchronous request, an ErrorEvent is enqueued.

• Asynchronous output is performed on a first-in first-out basis.

• All buffered output data, including all asynchronous output, may be deleted by calling clearOutput.
OutputCompleteEvents will not be delivered for cleared output. This method also stops any output that may
be in progress (when possible).

• The selection of “siren” and “melody” tones is determined by the MelodyType property. If the MelodyType
property is set to TONE_MT_NONE then the“siren” tone is selected; otherwise the“melody” tone is selected.
If the“melody” tone is selected, then properties ToneXPitch, ToneXVolume, ToneXDuration, and
InterToneWait are ignored.
1296 Unified POS, v1.16.1

38.3.5 Device Sharing

The Tone Indicator is a sharable device. Its device sharing rules are:

• After opening and enabling the device, the application may access all properties, methods, and enqueued
StatusUpdateEvents.

• If more than one application has opened and enabled the device, each of these applications may access its
properties and methods. StatusUpdateEvents will be delivered to all applications that are using the device and
have registered to receive the event.

• If one application claims the tone indicator, then only that application may call sound and soundImmediate.
Use of this feature will effectively restrict the tone indicator to the main application if that application claims
the device at startup.

• The application that initiates asynchronous sounds is the only one that receives the corresponding
OutputCompleteEvents and ErrorEvents.

• If a scenario exists such that an application is playing a sound and a separate application legally claims the
device and plays a sound, then the sound being played from the first application will be interrupted. If the first
application is in the midst of a synchronous sound method, an exception will be raised with the ErrorCode
property set to E_CLAIMED from the method call. If the application has issued an asynchronous sound
method, then no consistent reporting mechanism is possible and the first sound is simply terminated.

• See the “Summary” table for precise usage prerequisites.
Unified POS, v1.16.1 1297

38.4 Properties (UML attributes)

38.4.1 AsyncMode Property Updated in Release 1.6

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, the sound method will be performed asynchronously. If false, tones are generated synchronously.

This property is initialized to false when the device is first enabled following the open method. (In
releases prior to 1.5, this description stated that initialization took place by the open method. In Release
1.5, it was updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see Syntax
MaximumY: int32 { read-only, access after open }

Remarks Holds the maximum vertical coordinate of the signature capture device. It must be less than 65,536.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

38.4.2 CapMelody Property Added in Release 1.13

Syntax CapMelody: int32 { read-only, access after open }

Remarks Holds the number of available “melody” tones. If “melody” tones are not supported the value of this
property is initialized to zero.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

38.4.3 CapPitch Property

Syntax CapPitch: boolean { read-only, access after open }

Remarks If true, the hardware tone generator has the ability to vary the pitch of the tone.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

38.4.4 CapVolume Property

Syntax CapVolume: boolean { read-only, access after open }

Remarks If true, the hardware tone generator has the ability to vary the volume of the tone.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
1298 Unified POS, v1.16.1

38.4.5 InterToneWait Property Updated in Release 1.6

Syntax InterToneWait: int32 { read-write, access after open }

Remarks Holds the number of milliseconds of silence between tone-1 and tone-2. If a gap is required after tone-2
but before a repeat of tone-1, then set the sound parameter interSoundWait.

This property is initialized to zero when the device is first enabled following the open method. (In
releases prior to 1.5, this description stated that initialization took place by the open method. In Release
1.5, it was updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 
E_ILLEGAL A negative value was specified.

38.4.6 MelodyType Property Added in Release 1.13

Syntax MelodyType: int32 { read-write, access after open }

Remarks Holds the respective identifier for the “melody” tones that may be selected.

If the device does not support user-defined melody tones (CapMelody is zero), then any value greater
than zero indicates that the tone indicator device uses its default tone value.
Some possible values MelodyType property are:

Value Meaning 
TONE_MT_NONE (=0)The default tone “siren” is selected.

TONE_MT_TYPE1 (=1) The “melody” tone identified as TYPE1 is selected.

TONE_MT_TYPE2 (=2) The “melody” tone identified as TYPE2 is selected.

TONE_MT_TYPE3 (=3) The “melody” tone identified as TYPE3 is selected.

TONE_MT_TYPE4 (=4) The “melody” tone identified as TYPE4 is selected.

TONE_MT_TYPE5 (=5) The “melody” tone identified as TYPE5 is selected.

If the device supports more than six types of “melody” tones, a value greater than 6 can be specified.

This property is initialized to TONE_MT_NONE when the device is first enabled following the
open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapMelody Property, MelodyVolume Property
Unified POS, v1.16.1 1299

38.4.7 MelodyVolume Property Added in Release 1.13

Syntax MelodyVolume: int32 { read-write, access after open }

Remarks Holds the volume of the selected “melody” as a percentage of the device’s capability where 0 (or less)
is silent and 100 (or more) is maximum loudness available.

If the device does not support user defined volume to control loudness (CapVolume is false), then any
value greater than zero will enable the device to use its default level of loudness.

This property is initialized to “100” when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also CapMelody Property, CapVolume Property, MelodyType Property.

38.4.8 Tone1Duration Property Updated in Release 1.6

Syntax Tone1Duration: int32 { read-write, access after open }

Remarks Holds the duration of the first tone in milliseconds. A value of zero or less will cause this tone not to
sound.

This property is initialized to zero when the device is first enabled following the open method. (In
releases prior to 1.5, this description stated that initialization took place by the open method. In Release
1.5, it was updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

38.4.9 Tone1Pitch Property Updated in Release 1.6

Syntax Tone1Pitch: int32 { read-write, access after open }

Remarks Holds the pitch or frequency of the first tone in hertz. A value of zero or less will cause this tone not to
sound.

If the device does not support user-defined pitch (CapPitch is false), then any value greater than zero
indicates that the tone indicator uses its default value.

This property is initialized to zero when the device is first enabled following the open method. (In
releases prior to 1.5, this description stated that initialization took place by the open method. In Release
1.5, it was updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
1300 Unified POS, v1.16.1

38.4.10 Tone1Volume Property Updated in Release 1.6

Syntax Tone1Volume: int32 { read-write, access after open }

Remarks Holds the volume of the first tone in percent of the device's capability, where 0 (or less) is silent and 100
(or more) is maximum.

If the device does not support user-defined volume (CapVolume is false), then any value greater than
zero indicates that the tone indicator uses its default value.

This property is initialized to 100 when the device is first enabled following the open method. (In
releases prior to 1.5, this description stated that initialization took place by the open method. In Release
1.5, it was updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

38.4.11 Tone2Duration Property Updated in Release 1.6

Syntax Tone2Duration: int32 { read-write, access after open }

Remarks Holds the duration of the second tone in milliseconds. A value of zero or less will cause this tone not to
sound.

This property is initialized to zero when the device is first enabled following the open method. (In
releases prior to 1.5, this description stated that initialization took place by the open method. In Release
1.5, it was updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

38.4.12 Tone2Pitch Property Updated in Release 1.6

Syntax Tone2Pitch: int32 { read-write, access after open }

Remarks Holds the pitch or frequency of the second tone in hertz. A value of zero or less will cause this tone not
to sound.

If the device does not support user-defined pitch (CapPitch is false), then any value greater than zero
indicates that the tone indicator uses its default value.

This property is initialized to zero when the device is first enabled following the open method. (In
releases prior to 1.5, this description stated that initialization took place by the open method. In Release
1.5, it was updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
Unified POS, v1.16.1 1301

38.4.13 Tone2Volume Property Updated in Release 1.6

Syntax Tone2Volume: int32 { read-write, access after open }

Remarks Holds the volume of the second tone in percent of the device's capability, where 0 (or less) is silent and
100 (or more) is maximum.

If the device does not support user-defined volume (CapVolume is false), then any value greater than
zero indicates that the tone indicator uses its default value.

This property is initialized to 100 when the device is first enabled following the open method. (In
releases prior to 1.5, this description stated that initialization took place by the open method. In Release
1.5, it was updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.
1302 Unified POS, v1.16.1

38.5 Methods (UML operations)

38.5.1 sound Method Updated in Release 1.13

Syntax sound (numberOfCycles: int32, interSoundWait: int32):

void { raises-exception, use after open-enable }

Parameter Description
numberOfCycles The number of cycles to sound the indicator device. If FOREVER, then
 start the indicator sounding and repeat continuously, else perform the 

sound for the specified number of cycles.

interSoundWait When numberOfCycles is not one, then pause for interSoundWait
milliseconds before repeating the tone cycle (before playing tone-1 again).

Remarks Sounds the indicator device, or start it sounding asynchronously.

This method is performed synchronously if AsyncMode is false, and asynchronously if AsyncMode is
true.

The duration of an indicator cycle is:

“Siren” tones:
Tone1Duration property +
 InterToneWait property +
 Tone2Duration property +
 interSoundWait parameter (except on the last tone cycle)

“Melody” tones:
MelodyType property +
 interSoundWait parameter (except on the last tone cycle)

After the tone indicator has started an asynchronous sound, then the sound may be stopped by using one
of the following methods. (When a numberOfCycles value of FOREVER was used to start the sound,
then the application must use one of these to stop the continuous sounding of the tones.)

• clearOutput

• soundImmediate

 Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_CLAIMED Indicates that another application has claimed the device and has

taken over the tone device causing the sound from this method to be
 interrupted (can only be returned if AsyncMode is false.)

E_ILLEGAL One of the following errors occurred:
• numberOfCycles is neither a positive, non-zero value 
 nor FOREVER.
• numberOfCycles is FOREVER when
 AsyncMode is false.
• A negative interSoundWait was specified.
• A negative InterToneWait was specified.
Unified POS, v1.16.1 1303

38.5.2 soundImmediate Method

Syntax soundImmediate ():

void { raises-exception, use after open-enable }

Remarks Sounds the hardware tone generator once, synchronously. Both tone-1 and tone-2 are sounded using
InterToneWait.

If asynchronous output is outstanding, then it is terminated before playing the immediate sound (as if
clearOutput were called). This method is primarily intended for use in exception conditions when
asynchronous output is outstanding, such as within an error event handler.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16. 
1304 Unified POS, v1.16.1

38.6 Events (UML interfaces)

38.6.1 DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Tone Indicator Service to provide events to the application that are not otherwise supported by
the Control.

Attributes This event contains the following attributes:

Attributes Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and the
Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber and Service. This
property is settable.

 Remarks This event to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program from being used with other vendor’s Tone
Indicator devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.

38.6.2 ErrorEvent Updated in Release 1.9

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an error has been detected at the device and a suitable response is necessary
to process the error condition.

Attributes This event contains the following attributes:
Unified POS, v1.16.1 1305

Attributes Type Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes on page 16.

ErrorCodeExtended
int32 Extended Error code causing the error event. These values are device

category specific.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden by the application
(i.e., this property is settable). See values below.

The ErrorLocus property has one of the following values:

Value Meaning
EL_OUTPUT Error occurred while processing asynchronous output.

The application’s error processing may change ErrorResponse to one of the following values:

Value Meaning
ER_RETRY Retry the asynchronous output. The error state is exited. This is the default

value.

ER_CLEAR Clear all buffered output data, including all asynchronous output. The
error state is exited.

Remarks This event is enqueued when an error is detected and the Device’s State transitions into the error state.

See Also “Device Output Models” on page 20, “Device Information Reporting Model” on page 25, “Error Codes”
on page 16.

38.6.3 OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the OutputID property has
completed successfully.

Attributes This event contains the following attribute:

Attributes Type Description
OutputID int32 The ID number of the asynchronous output request that is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Service has confirmation that
is was processed by the device successfully.

See Also “Device Output Models” on page 20.
1306 Unified POS, v1.16.1

38.6.4 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a Tone Indicator device.

Attributes This event contains the following attribute:

Attributes Type Description
Status int32 Reports a change in the power state of a Tone Indicator device.


Note that Release 1.3 added Power State Reporting with additional
Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9, added additional
Status values for communicating the status/progress of an asynchronous
update firmware process.

See “StatusUpdateEvent” description in Chapter 2.

Remarks Enqueued when the Tone Indicator device detects a power state change.

See Also “Events” on page 15.
Unified POS, v1.16.1 1307

1308 Unified POS, v1.16.1

39 Video Capture

39.1 General

This Chapter defines the Video Capture device category.

39.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.16 Not supported

CapCompareFirmwareVersion: boolean { read-only } 1.16 open

CapPowerReporting: int32 { read-only } 1.16 open

CapStatisticsReporting: boolean { read-only } 1.16 open

CapUpdateFirmware: boolean { read-only } 1.16 open

CapUpdateStatistics: boolean { read-only } 1.16 open

CheckHealthText: string { read-only } 1.16 open

Claimed: boolean { read-only } 1.16 open

DataCount: int32 { read-only } 1.16 Not supported

DataEventEnabled: boolean { read-write } 1.16 Not supported

DeviceEnabled: boolean { read-write } 1.16 open & claim

FreezeEvents: boolean { read-write } 1.16 open

OutputID: int32 { read-only } 1.16 Not supported

PowerNotify: int32 { read-write } 1.16 open

PowerState: int32 { read-only } 1.16 open

State: int32 { read-only } 1.16 --

DeviceControlDescription: string { read-only } 1.16 --

DeviceControlVersion: int32 { read-only } 1.16 --

DeviceServiceDescription: string { read-only } 1.16 open

DeviceServiceVersion: int32 { read-only } 1.16 open

PhysicalDeviceDescription: string { read-only } 1.16 open

PhysicalDeviceName: string { read-only } 1.16 open

Specific Type Mutability Version May Use After

CapAssociatedHardTotalsDevice: string {read-only} 1.16 open

CapAutoExposure: boolean {read-only} 1.16 open

CapAutoFocus: boolean {read-only} 1.16 open
Unified POS, v1.16.1 1309

Properties (Continued)

Specific Type Mutability Version May Use After

CapAutoGain: boolean {read-only} 1.16 open

CapAutoWhiteBalance: boolean {read-only} 1.16 open

CapBrightness: boolean {read-only} 1.16 open

CapContrast: boolean {read-only} 1.16 open

CapExposure: boolean {read-only} 1.16 open

CapGain: boolean {read-only} 1.16 open

CapHorizontalFlip: boolean {read-only} 1.16 open

CapHue: boolean {read-only} 1.16 open

CapPhoto: boolean {read-only} 1.16 open

CapPhotoColorSpace: boolean {read-only} 1.16 open

CapPhotoFrameRate: boolean {read-only} 1.16 open

CapPhotoResolution: boolean {read-only} 1.16 open

CapPhotoType: boolean {read-only} 1.16 open

CapSaturation: boolean {read-only} 1.16 open

CapStorage: int32 {read-only} 1.16 open

CapVerticalFlip: boolean {read-only} 1.16 open

CapVideo: boolean {read-only} 1.16 open

CapVideoColorSpace: boolean {read-only} 1.16 open

CapVideoFrameRate: boolean {read-only} 1.16 open

CapVideoResolution: boolean {read-only} 1.16 open

CapVideoType: boolean {read-only} 1.16 open

AutoExposure: boolean {read-write} 1.16 open, claim & enable

AutoFocus: boolean {read-write} 1.16 open, claim & enable

AutoGain: boolean {read-write} 1.16 open, claim & enable

AutoWhiteBalance: boolean {read-write} 1.16 open, claim & enable

Brightness: int32 {read-write} 1.16 open, claim & enable

Contrast: int32 {read-write} 1.16 open, claim & enable

Exposure: int32 {read-write} 1.16 open, claim & enable

Gain: int32 {read-write} 1.16 open, claim & enable

HorizontalFlip: boolean {read-write} 1.16 open, claim & enable

Hue: int32 {read-write} 1.16 open, claim & enable

PhotoColorSpace: string {read-write} 1.16 open, claim & enable

PhotoColorSpaceList: string {read-only} 1.16 open

PhotoFrameRate: int32 {read-write} 1.16 open, claim & enable

PhotoMaxFrameRate: int32 {read-only} 1.16 open

PhotoResolution: string {read-write} 1.16 open, claim & enable

PhotoResolutionList: string {read-only} 1.16 open
1310 Unified POS, v1.16.1

PhotoType: string {read-write} 1.16 open, claim & enable

PhotoTypeList: string {read-only} 1.16 open

RemainingRecordingTimeInSec: int32 {read-only} 1.16 open, claim & enable

Saturation: int32 {read-write} 1.16 open, claim & enable

Storage: int32 {read-write} 1.16 open, claim & enable

VerticalFlip: boolean {read-write} 1.16 open, claim & enable

VideoCaptureMode: int32 {read-only} 1.16 open, claim & enable

VideoColorSpace: string {read-write} 1.16 open, claim & enable

VideoColorSpaceList: string {read-only} 1.16 open

VideoFrameRate: int32 {read-write} 1.16 open, claim & enable

VideoMaxFrameRate: int32 {read-only} 1.16 open

VideoResolution: string {read-write} 1.16 open, claim & enable

VideoResolutionList: string {read-only} 1.16 open

VideoType: string {read-write} 1.16 open, claim & enable

VideoTypeList: string {read-only} 1.16 open

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.16

close ():
void { raises-exception, use after open }

1.16

claim (timeout: int32):
void { raises-exception, use after open }

1.16

release ():
void { raises-exception, use after open, claim }

1.16

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.16

clearInput ():
void { raises-exception, use after open, claim }

1.16

clearInputProperties ():
void { }

Not supported

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void {raises-exception, use after open}

1.16

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void {raises-exception, use after open, claim, enable}

1.16

resetStatistics (statisticsBuffer: string):
void {raises-exception, use after open, claim, enable}

1.16

retrieveStatistics (inout statisticsBuffer: string):
void {raises-exception, use after open, claim, enable}

1.16
Unified POS, v1.16.1 1311

updateFirmware (firmwareFileName: string):
void {raises-exception, use after open, claim, enable}

1.16

updateStatistics (statisticsBuffer: string):
void {raises-exception, use after open, claim, enable}

1.16

Specific

Name Version

startVideo (fileName: string, overwrite: boolean, recordingTime: int32):
void {raises-exception, use after open, claim, enable}

1.16

stopVideo ():
void {raises-exception, use after open, claim, enable}

1.16

takePhoto (fileName: string, overwrite: boolean, timeout:int32):
 void {raises-exception, use after open, claim, enable}

1.16

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent

Not supported

upos::events::DirectIOEvent

EventNumber:

Data:

Obj:

int32

int32

object

{read-only}
{read-write}
{read-write}

1.16

upos::events::ErrorEvent
 ErrorCode:
 ErrorCodeExtended:
 ErrorLocus:
 ErrorResponse:

int32
int32
int32
int32

{read-only}
{read-only}
{read-only}
{read-write}

1.16

upos::events::OutputCompleteEvent

Not supported

upos::events::StatusUpdateEvent
 Status:


int32 {read-only}

1.16

upos::events::TransitionEvent Not supported 1.16
1312 Unified POS, v1.16.1

39.3 General Information

The Video Capture Device name is “Video Capture”.

39.3.1 Capabilities

Video capture device class has the following capabilities:

• Take a photo and record it as a file in a host and may store it in the targeted storage device.

• Take a video and record it as a file in a host and may store it in the targeted storage device.

• May read the encoded data from the bar code label with the hydra connected scanner device.

• May detect the individuals faces and/or objects with the hydra connected individual recognition device.

39.3.2 Video Capture Class Diagram

The following diagram shows the relationships between the Video Capture classes.
Unified POS, v1.16.1 1313

<<exception> <<interface> <<utility>>
UposExceptio BaseControl UposConst

<<event>>
DirectIOEvent

+EventNumber: int32
+Data: int32
+Obj: object

<<event>>
ErrorEvent

+ErrorCode: int32
+ErrorCodeExtended: int32
+ErrorLocus: int32
+ErrorResponse: int32

<<event>>
StatusUpdateEvent

+Status: int32

+takePhoto (fileName: string, overwrite: boolean, timeout: int32): void

<<property>> +VideoTypeList:string
+startVideo (fileName : string, overwrite : boolean, recordingTime: int32): void
+stopVideo(): void

<<property>> +VideoFrameRate:int32
<<property>> +VideoMaxFrameRate:int32
<<property>> +VideoResolution:string
<<property>> +VideoResolutionList:string
<<property>> +VideoType:string

<<property>> +VerticalFlip:boolean
<<property>> +VideoCaptureMode:int32
<<property>> +VideoColorSpace:string
<<property>> +VideoColorSpaceList:string

<<property>> +Hue:int32
<<property>> +PhotoColorSpace:string
<<property>> +PhotoColorSpaceList:string
<<property>> +PhotoFrameRate:int32

<<property>> +Saturation:int32
<<property>> +RemainingRecordingTimeInSec:int32
<<property>> +PhotoTypeList:string

<<property>> +PhotoResolutionList:string
<<property>> +PhotoType:string

<<property>> +PhotoResolution:string
<<property>> +PhotoMaxFrameRate:int32

<<property>> +AutoWhiteBalance:boolean
<<property>> +Brightness:int32

<<property>> +Exposure:int32
<<property>> +Gain:int32
<<property>> +HorizontalFlip:boolean

<<property>> +Contrast:int32

<<capability>> +CapVideoResolution:boolean
<<capability>> +CapVideoType:boolean
<<property>> +AutoExposure:boolean
<<property>> +AutoFocus:boolean
<<property>> +AutoGain:boolean

<<capability>> +CapExposure:boolean
<<capability>> +CapGain:boolean

<<property>> +Storage:int32

<<capability>> +CapHorizontalFlip:boolean
<<capability>> +CapHue:boolean
<<capability>> +CapPhoto:boolean
<<capability>> +CapPhotoColorSpace:boolean
<<capability>> +CapPhotoFrameRate:boolean
<<capability>> +CapPhotoResolution:boolean
<<capability>> +CapPhotoType:boolean
<<capability>> +CapSaturation:boolean
<<capability>> +CapStorage:int32
<<capability>> +CapVerticalFlip:boolean
<<capability>> +CapVideo:boolean
<<capability>> +CapVideoColorSpace:boolean
<<capability>> +CapVideoFrameRate:boolean

<<capability>> +CapContrast:boolean

<<interface>>

<<capability>> +CapAutoGain:boolean
<<capability>> +CapAutoWhiteBalance:boolean
<<capability>> +CapBrightness:boolean

Video Capture Device Control

<<capability>> +CapAutoExposure:boolean
<<capability>> +CapAutoFocus:boolean

<<capability>> +CapAssociatedHardTotalsDevice:string

<<fires>>

<<fires>>

<<fires>>

<<sends>>

<<uses>><<sends>>

<<uses>>
1314 Unified POS, v1.16.1

39.4 Model

39.4.1 Modes

The Video Capture Device has two operation modes.

• Photo Mode

• Video Mode

The operation of each mode is as follows.

Photo Mode

Photo Mode may capture a photo image and may save it in a host as the image data file format, if CapPhoto
property is true. Its’ capable data file format is indicated in the PhotoType property and all of the capable values are
listed in the PhotoTypeList property. And the device may save the file in the targeted storage device that is
specified by the Storage property, if CapStorage value is VCAP_CST_HARDTOTALS_ONLY or
VCAP_CST_ALL.　

Video Mode

Video Mode may capture a video image data and may save it in a host as the video image data file format, if
CapVideo property is true. Its’ capable data file format is indicated in the VideoType property and all of the
capable values are listed in the VideoTypeList property. And the device may save the file in the targeted storage
device that is specified by the Storage property, if CapStorage value is VCAP_CST_HARDTOTALS_ONLY or
VCAP_CST_ALL.　

39.4.2 Device behaviors

“Video capture device” device control follows the device behavior as follows. They are different in each mode as
described below.

39.4.3 Photo Mode

If CapPhoto property is true, this mode can be executed. Prior to start this mode, “Video Capture Device” device
control needs to set the VideoCaptureMode property as to be VCAP_VCMODE_PHOTO. And each of
CapPhotoColorSpace, CapPhotoFrameRate, CapPhotoResolution, CapPhotoType property is true and these
PhotoColorSpaceList, PhotoMaxFrameRate, PhotoResolutionList and PhotoTypeList should have the
appropriate values to be used as the photo file data in this targeted device. And then it needs to set the appropriate
values in the each of PhotoColorSpace property, PhotoFrameRate property, PhotoResolution property and
PhotoType property.

It starts photo capturing by executing the takePhoto method. Then, “Video Capture Device” device control may
capture a photo image and may save it in a host as an image data file format specified by the value of PhotoType
property that is listed in the PhotoTypeList property. And may store it in the storage device specified by the
Storage property, if CapStorage value is VCAP_CST_HARDTOTALS_ONLY or VCAP_CST_ALL. Then the
file name is set by the takePhoto method parameter and can deliver the photo data file to the application. If device
needs to be able to write the image data file to an associated Hard Totals device, the
CapAssociatedHardTotalsDevice property holds the open name of the associated Hard Totals device.

This method is performed synchronously as the process of taking photo. The process of recorded data storing is
performed asynchronously. StatusUpdateEvents are delivered to the application when the start and the end of
Unified POS, v1.16.1 1315

device states are changed. Only one call to takePhoto method can be in progress at a time. If you try to nest the
video capture device operation of the device, before the storing is finished, an UPOSException will be thrown.

When it exceeded the specified parameter time out or when photo file generation is finished or when clearInput
method is executed, the taking photo process will be ended.

StatusUpdateEvent with status VCAP_SUE_START_PHOTO is evoked when takePhoto method is executed to
notify the application that recording state has started.

When the taking photo is finished, or the specified time out has been exceeded, a StatusUpdateEvent with status
VCAP_SUE_END_PHOTO is evoked to notify the application that photo taking has been ended.

An ErrorEvent event (or events) is enqueued if an error occurs while gathering or processing input.

If ErrorEvent response is ER_RETRY, the process of recorded data storing was retired. However, as long as the
cause of the error is not resolved, the ErrorEvent will occur again immediately.

If ErrorEvent is ER_CLEAR, all of the device buffered data is cleared and the takePhoto method is discarded.

All enqueued input may be deleted by calling clearInput method. See the clearInput method description for more
details.

39.4.4 Video Mode

Prior to start this mode, “Video Capture Device” device control needs to set the VideoCaptureMode property as
to be VCAP_VCMODE_VIDEO. And each of CapVideoColorSpace, CapVideoFrameRate,
CapVideoResolution and CapVideoType property is true and these VideoColorSpaceList,
VideoMaxFrameRate, VideoResolutionList and VideoTypeList should have the appropriate values to be used as
the video image data file in this targeted device. And then it needs to set the appropriate values in the each of
VideoColorSpace property, VideoFrameRate property, VideoResolution property and VideoType property.

It starts video image capturing by executing the startVideo method. This method is executed synchronously.
During video image capturing, recorded data storing is processed asynchronously and when the start and end the
device state is changed, StatusUpdateEvents are delivered to the application. In addition, remaining device
recording time is updated in the RemainingRecordingTimeInSec property.

 “Video Capture Device” device control captures a video image and save it in a host with the filename specified
value of VideoType property that is listed in the VideoTypeList property. And may store it in the storage device
specified by the Storage property, if CapStorage value is VCAP_CST_HARDTOTALS_ONLY or
VCAP_CST_ALL. And the file name is set by the startVideo method parameter and can deliver the video image
data file to the application. This method is executed synchronously.

The video capturing ends after the specified time has elapsed or when stopVideo method is called or when
clearInput method is called even startVideo method is called.

The remaining video capture recording time in seconds can be obtained from the property
RemainingRecordingTimeInSec.

StatusUpdateEvent with status VCAP_SUE_START_VIDEO is evoked when startVideo method is executed to
notify the application that taking video has been started.

When the taking video is finished, or the specified time out has been exceeded, a StatusUpdateEvent with status
VCAP_SUE_STOP_VIDEO is evoked to notify the application that taking video has been ended.

If the time specified by the startVideo method is FOREVER(-1), execution will continue until the stopVideo
method is called. When stopVideo is called, the previous taking video data may be recorded in a host and deliver to
the targeted storage device specified by the Storage property, if CapStorage property value is
VCAP_CST_HARDTOTALS_ONLY or VCAP_CST_ALL. And it can be delivered to the application with the
specified file name that is set by the startVideo method.
1316 Unified POS, v1.16.1

Only one call to startVideo method can be in progress at a time. An attempt to nest taking video operations will
result in an UPOSException being thrown.

If Error occurs during the execution of the startVideo method, application may call the stopVideo method to
terminate the taking video process or cancel the taking video process by calling the clearInput method before
ending the ErrorEvent processing. After this when the stopVideo method is called, the video file data until just
before the ErrorEvent occur is stored to the host and targeted storage device that is specified by the Storage
property, if CapStorage property value is VCAP_CST_HARDTOTALS_ONLY or VCAP_CST_ALL, and can be
delivered to the application.

If ErrorEvent response is ER_RETRY, the process of recorded data storing was retired. However, as long as the
cause of the error is not resolved, the ErrorEvent will occur again immediately.

If ErrorEvent is ER_CLEAR, all of the device buffered data is cleared and the error state is exited and the taking
video capturing process is discarded.

An ErrorEvent event (or events) is enqueued if an error occurs while gathering or processing the data.

If there is no error during the execution of startVideo method, it is possible to terminate the taking video process
and can stop the taking video anytime. When the stopVideo method is called, the video data until just before the
method is called, may be recorded in the host and targeted storage device that is specified by the Storage property if
CapStorage property is VCAP_CST_HARDTOTALS_ONLY or VCAP_CST_ALL, and can deliver it to the
application.

All enqueued data may be deleted by calling clearInput method. See the clearInput method description for more
details.

39.4.5 Device Sharing

Video capture is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing many video capture-specific properties.

• The application must claim and enable the device before calling methods that manipulate the device.

• See the “Summary” table for precise usage prerequisites.
Unified POS, v1.16.1 1317

39.5 Properties (UML attributes)

39.5.1 AutoExposure Property

Syntax AutoExposure: .boolean {read-write, access after open-claim-enable}

Remarks If true, auto exposure of camera is enabled. Otherwise, it is false. 
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16. 
Some possible values of the exception’s ErrorCode property are:

 Value Meaning

 E_ILLEGAL An invalid value was specified. 
 Or it does not support this function.

See Also “Events” on page 15, directIO Method.

39.5.2 AutoFocus Property

 Syntax AutoFocus: boolean {read-write, access after open-claim-enable}

 Remarks If true, auto focus of camera is enabled. Otherwise, it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16. 

Some possible values of the exception’s ErrorCode property are:

 Value Meaning

 E_ILLEGAL An invalid value was specified. 
 Or it does not support this function.

See also CapAutoFocus Property

39.5.3 AutoGain Property

Syntax AutoGain: boolean {read-write, access after open-claim-enable}

Remarks If true, auto gain of camera is enabled. Otherwise, it is false.

When this property is true, it is possible to read the value of Gain property. However, it is not possible
to write and change the value of Gain property.

If AutoGain property is false, then, it is possible to read, write and change the value of Gain property.

This property is initialized by the open method.

 Errors A UposException may be thrown when this property is accessed.
 For further information, see “Errors” on page 16.
1318 Unified POS, v1.16.1


Some possible values of the exception’s ErrorCode property are:

Value Meaning

 E_ILLEGAL An invalid value was specified. 
 Or it does not support this function.

See also CapAutoGain Property Gain Property

39.5.4 AutoWhiteBalance Property

 Syntax AutoWhiteBalance: boolean {read-write, access after open-claim-enable}

 Remarks If true, auto white balance of camera is enabled. Otherwise, it is false.

This property is initialized by the open method.

 Errors A UposException may be thrown when this property is accessed. 
 For further information, see “Errors” on page 16. 
 Some possible values of the exception’s ErrorCode property are:

 Value Meaning

 E_ILLEGAL An invalid value was specified. 
 Or it does not support this function.

 See also CapAutoWhiteBalance Property

39.5.5 Brightness Property

 Syntax Brightness: int32 {read-write, access after open-claim-enable}
 Remarks Indicate the brightness of camera. 

 Valid values range from 0 to 100.
 This property is initialized by the open method.

 Error A UposException may be thrown when this property is accessed. 

 For further information, see “Errors” on page 16. 

Some possible values of the exception’s ErrorCode property are:
 Value Meaning 

 E_ILLEGAL An invalid value was specified. 
 Or it does not support this function.

 See Also CapBrightness Property
Unified POS, v1.16.1 1319

39.5.6 CapAssociatedHardTotalsDevice Property

Syntax CapAssociatedHardTotalsDevice: string {read-only, access after open}

Remarks Indicate that the device is able to store the recorded data into the Associated Hard Totals device and holds
its open name, if CapStorage is either VCAP_CST_ALL or VCAP_CST_HARDTOTALS_ONLY. If
CapStorage is VCAP_CST_HOST_ONLY, the device is not able to store the data into the Associated
Hard Totals device and this property value must be the empty string. This property is initialized by the
open method.

Errors UposException may be thrown when this property is accessed. For further information, see “Errors” on
page 16.

See Also CapStorage Property

39.5.7 CapAutoExposure Property

Syntax CapAutoExposure: boolean {read-only, access after open}

Remarks If true, the auto exposure of camera can be changed.
Otherwise, it is false. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

See also AutoExposure Property

39.5.8 CapAutoFocus Property

Syntax CapAutoFocus: boolean {read-only, access after open}

Remarks If true, can change the auto focus of camera. Otherwise, it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

See also AutoFocus Property

39.5.9 CapAutoGain Property

Syntax CapAutoGain: boolean {read-only, access after open}

Remarks If true, automatic gain change of the camera is possible. Otherwise, it is false. This property is initialized
by the open method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

See also AutoGain Property

1320 Unified POS, v1.16.1

39.5.10 CapAutoWhiteBalance Property

Syntax CapAutoWhiteBalance: boolean {read-only, access after open}

Remarks If true, auto white balance of camera is possible. Otherwise, it is false. This property is initialized by the
open method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

See also AutoWhiteBalance Property

39.5.11 CapBrightness Property

Syntax CapBrightness: boolean {read-only, access after open}

Remarks If true, the brightness of camera can be changed. Otherwise, it is false. This property is initialized by the
open method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

See also Brightness Property

39.5.12 CapContrast Property

Syntax CapContrast: boolean {read-only, access after open}

Remarks If true, can change the contrast of camera. Otherwise, it if false. This property is initialized by the open
method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

See also Contrast Property

39.5.13 CapExposure Property

Syntax CapExposure: boolean {read-only, access after open}

Remarks If true, can change the exposure of camera. Otherwise, it is false. This property is initialized by the open
method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

See also Exposure Property

Unified POS, v1.16.1 1321

39.5.14 CapGain Property

Syntax CapGain: boolean {read-only, access after open}

Remarks If true, can change the gain of camera. Otherwise, it is false. This property is initialized by the open
method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

See also Gain Property

39.5.15 CapHorizontalFlip Property

Syntax CapHorizontalFlip: boolean {read-only, access after open}

Remarks If true, can change the horizontal flip of camera. Otherwise, it is false. This property is initialized by the
open method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

See also HorizontalFlip Property

39.5.16 CapHue Property

Syntax CapHue: boolean {read-only, access after open}

Remarks If true, the hue of the camera can be changed. Otherwise, it is false. This property is initialized by the
open method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

See also Hue Property

39.5.17 CapPhoto Property

Syntax CapPhoto: boolean {read-only, access after open}

Remarks If true, it supports the photo function and can take a photo. And to activate the photo mode, the
VideoCaptureMode property value needs to set VCAP_VCMODE_PHOTO. If false, it is not
supporting the photo function. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

See also takePhoto Method, VideoCaptureMode Property
1322 Unified POS, v1.16.1

39.5.18 CapPhotoColorSpace Property

Syntax CapPhotoColorSpace: boolean {read-only, access after open}

Remarks If true, can handle and change the photo color space. Otherwise, it is false. This property is initialized by
the open method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16

See also PhotoColorSpace Property

39.5.19 CapPhotoFrameRate Property

Syntax CapPhotoFrameRate: boolean {read-only, access after open}

Remarks If true, can handle and change the capture frame rate. Otherwise, it is false. This property is initialized
by the open method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

See also PhotoFrameRate Property

39.5.20 CapPhotoResolution Property

Syntax CapPhotoResolution: boolean {read-only, access after open}　 　

Remarks If true, taking photo resolution is handled and can be changed. Otherwise, it is false. This property is
initialized by the open method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

See also PhotoResolution Property

39.5.21 CapPhotoType Property

Syntax CapPhotoType: boolean {read-only, access after open}

Remarks If true, photo image format type can be changed. Otherwise, it is false. This property is initialized by the
open method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

See also PhotoType Property 

39.5.22 CapSaturation Property

Syntax CapSaturation: boolean {read-only, access after open}

Remarks If true, can change the saturation of camera. Otherwise, it is false. This property is initialized by the open
method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

See also Saturation Property
Unified POS, v1.16.1 1323

39.5.23 CapStorage Property

Syntax CapStorage: int32 {read-only, access after open}

Remarks This is an enumeration and announces where the device is able to write the recorded video or photo data 
file to.

It holds one of the following values.

 Value Meaning

 VCAP_CST_HARDTOTALS_ONLY　　　
 Only an associate Hard Totals device is supported.

 VCAP_CST_HOST_ONLY
 Only the host’s file system is supported.

 VCAP_CST_ALL Both, the associated Hard Totals device 
 and the host’s file system is supported.

 This property is initialized by the open method.

 If a Hard Totals device is supported the Storage, the property value should be
VCAP_CST_HARDTOTALS_ONLY or VCAP_CST_ALL, and the property
CapAssociatedHardTotalsDevice holds the open name of the associated
Hard Totals device.

Errors UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

See Also Storage Property, CapAssociatedHardTotalsDevice Property

39.5.24 CapVerticalFlip Property

Syntax CapCameraVerticalFlip: boolean {read-only, access after open}

Remarks If true, can change the vertical flip of camera. Otherwise, it is false. This property is initialized by the
open method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

See also VerticalFlip Property

39.5.25 CapVideo Property

Syntax CapVideo: boolean {read-only, access after open}

Remarks If true, video function is supported. Otherwise, it is false. If this property is true, taking video and
recording can be done by calling the startVideo method. And to activate the video mode, the
VideoCaptureMode property value needs to set VCAP_VCMODE_VIDEO. If false, taking video and
recording cannot be performed. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

See also StartVideo Method, VideoCaptureMode Property

39.5.26 CapVideoColorSpace Property

 Syntax CapVideoColorSpace: boolean {read-only, access after open}
1324 Unified POS, v1.16.1

 Remarks If true, can change the color space when taking the video. Otherwise, it is false. This property is
initialized by the open method.

 Errors A UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

 See also VideoColorSpace Property

39.5.27 CapVideoFrameRate Property

Syntax CapVideoFrameRate: boolean {read-only, access after open}

Remarks If true, can change the video frame rate from 1 to up to VideoMaxFrameRate property value.
Otherwise, it is false. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

See also VideoMaxFrameRate Property, VideoFrameRate Property

39.5.28 CapVideoResolution Property

Syntax CapVideoResolution: boolean {read-only, access after open}

Remarks If true, taking video resolution can be changed and all of possible values are listed in the
VideoResolutionList property values. If false, taking video resolution cannot be changed. This property
is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

See also VideoResolutionList Property, VideoResolution Property

39.5.29 CapVideoType Property

Syntax CapVideoType: boolean {read-only, access after open}

Remarks If true, taking video type can be changed, and all of possible values are listed in the VideoTypeList
values. Otherwise, it is false. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

See also VideoTypeList Property, VideoType Property

39.5.30 Contrast Property

Syntax Contrast: int32 {read-write, access after open-claim-enable}

Remarks Indicate the contrast of the camera. Valid values range from 0 to 100. This property is initialized by the
open method.
Unified POS, v1.16.1 1325

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

 Value Meaning 
 E_ILLEGAL An invalid value was specified. 
 Or it does not support this function.

See Also CapContrast Property

39.5.31 Exposure Property

Syntax Exposure: int32 {read-write, access after open-claim-enable}

Remarks Indicate the exposure of camera. Valid values range from 0 to 100. This property is initialized by the
open method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

 
Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid value was specified. 
 Or it does not support this function.

See also CapExposure Property

39.5.32 Gain Property

Syntax Gain: int32 {read-write, access after open-claim-enable}

Remarks Indicate the gain of camera. Valid values range from 0 to 100. If AutoGain property is true, it is possible
to read the value of Gain property. However, it is not possible to write and change the value of Gain
property. If AutoGain property is false, then, it is possible to read, write and change the value of Gain
property. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

 
Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid value was specified. 
 Or it does not support this function.

See also CapGain Property, AutoGain Property

39.5.33 HorizontalFlip Property

Syntax HorizontalFlip: boolean {read-write, access after open-claim-enable}

Remarks If true, horizontal flip of camera is enabled and it is possible to reverse the camera captured image
horizontally. Otherwise, it is false. There is a similar property called VerticalFlip property. However,
each VerticalFlip property and HorizontalFlip property value can be set independently. This property
is initialized by the open method.
1326 Unified POS, v1.16.1

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16. Some possible values of the exception’s ErrorCode property are:
Value Meaning

E_ILLEGAL An invalid value was specified. 
 Or it does not support this function.

See Also CapHorizontalFlip property, VerticalFlip property, CapVerticalFlip property

39.5.34 Hue Property

Syntax Hue: int32 {read-write, access after open-claim-enable}

Remarks Indicate the hue of camera. Valid values range from 0 to 100.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16. 

 Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid value was specified. 
 Or it does not support this function.

See also CapHue Property

39.5.35 PhotoColorSpace Property

Syntax PhotoColorSpace: string {read-write, access after open-claim-enable}

Remarks Indicates the photo color space ID of the frame data to be acquired by the Video Capture Device, if
CapPhotoColorSpace property is true and it is used takePhoto method. Valid values are one of the
values listed in the CapPhotoColorSpaceList property. This property is referred to when
VideoCaptureMode property value is VCAP_VCMODE_PHOTO and CapPhoto is true. This property
is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

 Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid value was specified.

See also PhotoColorSpaceList Property, VideoCaptureMode property, CapPhotoColorSpace Property

CapPhoto Property, CapPhotoColorSpace Property, takePhoto Method
Unified POS, v1.16.1 1327

39.5.36 PhotoColorSpaceList Property

Syntax PhotoColorSpaceList: string {read-only, access after open}

Remarks Photo Color space information supported by the device is indicated in a
comma-separated list. Each color space information is composed 
of the following information and is shown in the following order 
separated by a colon (":").

This property is initialized by the open method.

Parameter Description

 Color space ID ID for identifying the color space of RGB, YUV 422, etc. Then if RGB
 Depth was 16 bits, YUV422 Depth was 32 bits, they are indicating like
 “RGB:16, YUV422:32,…..”

Depth Number of bits per 1 pixel

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

See also CapPhotoColorSpace Property, PhotoColorSpace Property, VideoCaptureMode Property

39.5.37 PhotoFrameRate Property

Syntax PhotoFrameRate: int32 {read-write, access after open-claim-enable}

Remarks Indicates the frame rate of frame data recorded by the Video Capture Device and the photo image
capturing and recorded with the takePhoto method. This property is only applied when
VideoCaptureMode property is set to VCAP_VCMODE_PHOTO. Valid values range from 1 to
PhotoMaxFrameRate property and CapPhoto property is true. This property is initialized by the open
method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

Value Meaning

E_ILLEGAL An invalid value was specified.

See also CapPhoto Property, CapPhotoFrameRate Property, PhotoMaxFrameRate Property,
VideoCaptureMode Property, takePhoto method.

39.5.38 PhotoMaxFrameRate Property

Syntax PhotoMaxFrameRate: int32 {read-only, access after open}

Remarks Indicates the maximum frame rate that can be set for 
the PhotoFrameRate property.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. 
For further Information, see “Errors” on page 16.

See also PhotoFrameRate Property, VideoCaptureMode Property
1328 Unified POS, v1.16.1

39.5.39 PhotoResolution Property

Syntax PhotoResolution: string {read-write, access after open-claim-enable}

Remarks It shows the resolution of the frame data acquired by the Video Capture 
Device and the photo taken and recorded with the takePhoto method. 
Valid values are one of those listed in PhotoResolutionList property. This property is only applied when
VideoCaptureMode property is set to VCAP_VCMODE_PHOTO and if CapPhoto is true. 
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16. 

Some possible values of the exception’s ErrorCode property are:

 Value Meaning 
E_ILLEGAL An invalid value was specified.

See also CapPhoto Property, PhotoResolutionList Property, VideoCaptureMode Property, takePhoto Method

39.5.40 PhotoResolutionList Property

Syntax PhotoResolutionList: string {read-only, access after open}

Remarks Indicating the comma-separated list of possible resolutions for the 
PhotoResolution property. Resolution is indicated in "horizontal x height" 
format. For example, when you support 320x240, 640x480, 640x360, it is 
the following: "320x240,640x480,640x360".

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. 
 For further information, see “Errors” on page 16.

See also CapPhotoResolution Property, PhotoResolution Property, VideoCaptureMode property

39.5.41 PhotoType Property

Syntax PhotoType: string {read-write, access after open-claim-enable}

Remarks Indicates the data format of photo taken with the takePhoto method. 
Valid values are one of the values listed in the PhotoTypeList property. 
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

 Value Meaning 
E_ILLEGAL An invalid value was specified.

See also CapPhoto Property, PhotoTypeList Property, takePhoto Method, VideoCaptureMode Property

39.5.42 PhotoTypeList Property

Syntax PhotoTypeList: string {read-only, access after open}
Unified POS, v1.16.1 1329

Remarks A comma-separated list of photo image format values that can be set for 
the PhotoType property.
For example, when supporting BMP and JPEG, it is the following. 
“BMP,JPEG.”

Note: The notation contents may be different depending on the device.
This property is initialized by the open method.

 Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

See also PhotoType Property, VideoCaptureMode property

39.5.43 RemainingRecordingTimeInSec Property

Syntax RemainingRceordingTimeInSec: 
 int32 {read-only, access after open-claim-enable}

Remarks This property holds the remaining recording time in seconds if a video 
recording is ongoing. If no video recording is ongoing its value is 0. When a 
call to method startVideo returns, this property initially holds the time passed 
as argument recordingTime to that call. If this argument value is FOREVER 
(-1), this property also holds this value unchanged until stopVideo method has 
been called. This property is initialized during device set DeviceEnabled 
method to 0.

Errors UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

See Also startVideo Method, stopVideo Method

39.5.44 Saturation Property

Syntax Saturation: int32 {read-write, access after open-claim-enable}

Remarks Indicate the saturation of camera. Valid values range from 0 to 100. 
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16. 

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid value was specified. 
 Or it does not support this function.

See also CapSaturation Property

39.5.45 Storage Property

Syntax Storage: int32 {read-write, access after open-claim-enable}

Remarks This is an enumeration and defines where the device writes the recorded video 
or photo data file to. Should be set before a call to startVideo or takePhoto 
method. It holds one of the following values.
1330 Unified POS, v1.16.1

 Value Meaning

 VCAP_ST_HARDTOTALS
 The video or photo data file is written to the 
 associated Hard Totals device. The property
 CapAssociatedHardTotalsDevice holds the
 open name of the associated Hard Totals device.

 VCAP_ST_HOST The vide or photo data file is written to the host’s 
 file system.

 VCAP_ST_HOST_HARDTOTALS

 The video or photo data file is written to the 
 associated Hard Totals device and host’s file system. 
 The property CapAssociatedHardTotalsDevice holds 
 the open name of the associated Hard Totals device.

 This property is initialized by the open method according to the value hold by 
 CapStorage. If CapStorage has the value VCAP_CST_ALL, it is initialized to 
 VCAP_ST_HOST_HARDTOTALS.

Errors UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

 Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid value was specified. 
 Or recording is ongoing.

See Also CapStorage Property
Unified POS, v1.16.1 1331

39.5.46 VerticalFlip Property

Syntax VerticalFlip: boolean {read-write, access after open-claim-enable}

Remarks　 If true, vertical flipping of the video is enabled and it is possible to reverse 
the video or photo image capturing vertically. Otherwise, it is false. There 
is a similar property called HorizontalFlip property and each VerticalFlip 
property and HorizontalFlip property value can be set independently. 
This property is initialized by the open method.

 Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16. 

Some possible values of the exception’s ErrorCode property are:

Value Meaning

 E_ILLEGAL An invalid value was specified. 
 Or it does not support this function.

See also CapVerticalFlip Property, HorizontalFlip Property, CapHorizontalFlip Property

39.5.47 VideoCaptureMode Property

Syntax VideoCaptureMode: int32 {read-write, access after open-claim-enable}

Remarks Indicate the operation mode of video capture device.
Valid values are as follows:

Parameter Description

VCAP_VCMODE_PHOTO 
 This mode is for taking photo. and their data 
 recording. Can be set when CapPhoto property is true.
 The values of the PhotoType property, 
 PhotoColorSpace property, PhotoResolution property 
 PhotoFrameRate property are applied to the taking
 photo image formats list in the PhotoTypeList property, 
 the color space values list in the PhotoColorSpaceList 
 property, the resolution values list in the PhotoResolutionList 
 property, and the frame rate values within the values of 
 PhotoMaxFrameRate property. 
 And taking photo is executed by the takePhoto method. 
VCAP_VCMODE_VIDEO

 This mode is for taking the videos and their data recording. 
 Can be set when CapVideo property is true. The value of the 
 VideoType property, VideoColorSpace property, VideoResolution 
 property and VideoFrameRate property are applied to the taking 
 video image format list in the VideoTypeList property, the color space 
 values list in the VideoColorSpaceList property, the resolution values 
 list in the VideoResolutionList property and frame rate values within 
 the values of VideoMaxFrameRate property. Taking the videos and 
 their data recording will be executed by the startVideo method and ends 
 taking the video by using the stopVideo method.

This property is initialized by the open method. The default value of this property is
VCAP_VCMODE_PHOTO.
1332 Unified POS, v1.16.1

 Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

 Some possible values of the exception’s ErrorCode property are:

Value Meaning

 E_ILLEGAL An invalid value was specified. 

See also PhotoColorSpace Property, VideoColorSpace Property, PhotoResolution Property,
VideoResolution Property, VideoFrameRate Property, PhotoFrameRate Property,
CapPhotoColorSpace Property, CapVideoColorSpace Property, CapPhotoResolution Property,
CapVidoeResolution Property, VideoMaxFrameRate Property,
PhotoMaxFrameRate Property, CapPhoto Property, CapVideo Property, VideoType Property,
VideoTypeList Property PhotoType Property, PhotoTypeList Property, takePhoto Method,
startVideo Method, stopVideo Method

39.5.48 VideoColorSpace Property

Syntax VideoColorSpace: string {read-write, access after open-claim-enable}

Remarks Indicates the video color space ID of the frame data to be acquired by the Video Capture Device, if
CapVideoColorSpace property is true and it is used by startVideo method. Valid values are one of the
values listed in the VideoColorSpaceList property. 
This property is referred to when VideoCaptureMode property value is 
VCAP_VCMODE_PHOTO and CapVideo is true. 
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.
 
Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid value was specified.

See also CapVideoColorSpace Property, VideoColorSpaceList Property, VideoCaptureMode Property,
startVideo Method

39.5.49 VideoColorSpaceList Property

Syntax VideoColorSpaceList: string {read-only, access after open}

Remarks Video Color space information supported by the device is indicated in a 
comma-separated list. Each color space information is composed 
of the following information and is shown in the following order 
separated by a colon (":").

This property is initialized by the open method.
Unified POS, v1.16.1 1333

Parameter Description 
Color space ID ID for identifying the color space of RGB, YUV 
 422, etc. Then if RGB Depth was 16 bits, they are indicating like
 “RGB:16, YUV422:32, ...”

Depth Number of bits per 1 pixel

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

See also CapVideoColorSpace Property, VideoCaptureMode Property, VideoColorSpace Property

39.5.50 VideoFrameRate Property

Syntax VideoFrameRate; int32 {read-write, access after open-claim-enable}

Remarks Indicates the frame rate of the frame data recorded by the Video Capture Device and the video image
capturing and recorded with the startVideo method. Valid values range from 1 to VideoMaxFrameRate
property and CapVideo property is true. This property is only applied when VCAP_VCMODE_VIDEO
is set in VideoCaptureMode property. This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16. 
 
Some possible values of the exception’s ErrorCode property are:

 Value Meaning 
 E_ILLEGAL An invalid value was specified.

See also CapVideo Property, CapVideoFrameRate Property, VideoCaptureMode Property,
VideoMaxFrameRate Property, startVideo Method

39.5.51 VideoMaxFrameRate Property

Syntax VideoMaxFrameRate: int32 {read-only, access after open}

Remarks Indicates the maximum video recording frame rate that can be set in VideoFrameRate property. This
property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

See also VideoFrameRate Property, VideoCaptureMode Property

39.5.52 VideoResolution Property

Syntax VideoResolution: string {read-write, access after open-claim-enable}

Remarks Indicates the resolution of video image data acquired by the Video Capture Device and recorded with the
execution of startVideo method. Valid values are one of the values listed in the VideoResolutionList
property. This property is only applied when VCAP_VCMODE_VIDEO is set in 
VideoCaptureMode property and if CapVideo property is true. 
This property is initialized by the open method.

Errorrs A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16. 

Some possible values of the exception’s ErrorCode property are:
1334 Unified POS, v1.16.1

Value Meaning 
 E_ILLEGAL An invalid value was specified.

See also VideoResolutionList Property, CapVideo Property, VideoCaptureMode Property, startVideo
Method

39.5.53 VideoResolutionList Property

Syntax VideoResolutionList: string {read-only, access after open}

Remarks A comma-separated list of possible resolutions for the VideoResolution property. Resolution is
indicated by “Horizontal resolution number x Vertical resolution number” format. For example, when it
supports 320x240, 640x480, 640x360, it is the following: “320x240,640x480,640x360” 
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

See also CapVideoResolution Property, VideoResolution Property

39.5.54 VideoType Property

Syntax VideoType; string {read-write, access after open-claim-enable}

Remarks Indicate the shape of the taking video and recorded with the startVideo method. Valid values are one of
those listed in VideoTypeList property. This property is applied when VCAP_VCMODE_VIDEO is set
in VideoCaptureMode property and if CapVideo property is true. This property is initialized by the
open method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16. 

Some possible values of the exception’s ErrorCode property are:

 Value Meaning 
 E_ILLEGAL An invalid value was specified.

See also VideoCaptureMode Property, CapVideo Property, VideoTypeList Property, startVideo Method

39.5.55 VideoTypeList Property

Syntax VideoTypeList: string {read-only, access after open}

Remarks A comma-separated list of video image format values that can be set for the VideoType property.*1For
example, when AVI_IYUV, AVI_MJPG is supported, it is the following “AVI_IYUV, AVI_MJPG.”
Note: The notation contents may be different depending on the device. This property is initialized by the
open method.

Errors A UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

 See also VideoType Property, VideoCaptureMode Property

Note *1: The Video type related information are listed in here as the reference.

AVI : Digital container format : 
https://en.wikipedia.org/wiki/Digital_container_format 

MJPG : Motion JPEG : 
Unified POS, v1.16.1 1335

https://en.wikipedia.org/wiki/Digital_container_format

https://en.wikipedia.org/wiki/Motion_JPEG 

IYUV : 4:2:0 Video Pixel Formats : 
https://docs.microsoft.com/en-us/windows-hardware/drivers/display/4-2-0-video-pixel-formats 

4:2:2 Video Pixel Formats : 
https://docs.microsoft.com/en-us/windows-hardware/drivers/display/4-2-2-video-pixel-formats 

Video Formats and their Abbreviation : 
 http://technewzbd.blogspot.com/2013/05/video-formats-and-their-abbreviation.html

39.6 Note: Video Capture Device Property Value Relationship

Properties listed below are related within each Photo / Video Mode group, and if any value change occurs, other
values may change accordingly.

Photo Mode Group Properties

PhotoType, PhotoColorSpace, PhotoColorSpaceList, PhotoFrameRate, 
PhotoMaxFrameRate, PhotoResolution, PhotoResolutionList

Video Mode Group Properties

VideoType, VideoColorSpace, VideoColorSpaceList, VideoFrameRate, 
VideoMaxFrameRate, VideoResolution, VideoResolutionList

39.7 Methods (UML operations)

39.7.1 startVideo Method

Syntax startVideo (fileName : string, overwrite: boolean, 
 recordingTime: int32): 
 void{raises-exception, use after open-claim-enable}
Parameter Description

 filename Specify the name of the video file to be recorded. 
Overwrite Specify the behavior when the same name file exists. 
 If true, it is overwritten. 
 If false, it will raise the UposException. 
recordingTime Specify the time for video recording in seconds.
 If FOREVER (-1) is specified, recording will continue 
 until the stopVideo method is called.
1336 Unified POS, v1.16.1

https://en.wikipedia.org/wiki/Motion_JPEG
https://docs.microsoft.com/en-us/windows-hardware/drivers/display/4-2-0-video-pixel-formats
https://docs.microsoft.com/en-us/windows-hardware/drivers/display/4-2-2-video-pixel-formats
http://technewzbd.blogspot.com/2013/05/video-formats-and-their-abbreviation.html

Remarks Before calling this method, it needs to set the VideoCaptureMode property to
VCAP_VCMODE_VIDEO and CapVideo property needs to be true. Video capturing and recording
starts with the setting contents of the VideoColorSpace property, VideoResolution property,
VideoFrameRate property and VideoType property. This method is executed synchronously. During
the video image capturing, the recorded data storing is processed asynchronously and when the start and
stop states are changed, StatusUpdateEvents are delivered to the application.When the time specified
in recordingTime has elapsed, or by calling the stopVideo method, recording is completed and the video
file specified by fileName is recorded and can deliver to the application.
Also, S_BUSY is set in the Status property during video capturing and recording. The place where video
files are recorded is controlled through the Storage Property.

Errors A UposException may be thrown when this method is invoked.
For further information, see “Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning 
E_ILLEGAL fileName is too long or contains characters that cannot be used, 
 or 0 is specified for recordingTime. VideoCaptureMode property is
 not VCAP_VCMODE_VIDEO and CapVideo is not true.

E_EXISTS fileName already exists. (If overwrite is false)

E_BUSY Cannot execute because it is recording.

See also VideoColorSpace Property, VideoResolution Property, 
VideoFrameRate Property, VideoType Property, stopVideo Method, 
StatusUpdateEvent Event, VideoCaptureMode Property

39.7.2 stopVideo Method

Syntax stopVideo (): 
void {raises-exception, use after open-claim-enable}

Remarks The video capturing and recording process started by the startVideo 
method has been ended and the taking video is completed. This method 
processed synchronously. StatusUpdateEvent is delivered to notify the application that the device video
capturing and recording were stopped.

Errors A UposException may be thrown when this method is invoked. 
For further information, see “Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E_ILLEGAL It is not recorded.

See also startVideo Method, StatusUpdateEvent Event

39.7.3 takePhoto Method

 Syntax takePhoto (fileName: string, 
 overwrite: boolean, timeout: int32): 
 void{raises-exception, use after open-claim-enable}
Unified POS, v1.16.1 1337

 Parameter Description

 fileName Specify the image file name to be recorded.
 overwrite Specify the behavior when the same name file exists. If true it overwrites. If false,
 UposException is thrown. 
 timeout Allowed execution time in milliseconds, before the method fails and a timeout
 ErrorEvent is sent to the application. If FOREVER (-1), the service will wait until 
 a photograph is taken or an application error occurs.

Remarks Take photo and record with setting contents of PhotoColorSpace property, PhotoResolution property,
PhotoFrameRate Property and PhotoType property. Before calling this method, it needs to set the 
VideoCaptureMode property to VCAP_VCMODE_PHOTO and this method can be executed if
CapPhoto property is true. This method is executed synchronously. The process of recorded data storing
is performed asynchronously. StatusUpdateEvents are delivered to the application when the start and
the end states were changed. The location where photo files are recorded is controlled through the
Storage Property. The timeout specifies the number of milliseconds.

Errors A UposException may be thrown when this method is invoked.
For further information, see “Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning

 E_ILLEGAL One of the following occurred. 
 FileName is too long or contains unusable characters. 
 VideoCaptureMode property is not
 VCAP_VCMODE_PHOTO and CapPhoto property is not true.

 E_EXISTS fileName already exist. (When overwrite=false)

See also VideoCaptureMode Property, PhotoColorSpace Property, PhotoResolution Property, CapPhoto
Property, PhotoType Property, PhotoFrameRate Property, StatusUpdateEvent Event
1338 Unified POS, v1.16.1

39.8 Events (UML interfaces)

39.8.1 DirectIOEvent

 <<event>> upos::events::DirectIOEvent

 EventNumber : int32 {read-only}
 Data : int32 {read-write}
 Obj : object {read-write}

Description Provides Service information directly to the application. This event provides a 
 means for a vendor-specific Video Capture Service to provide events to the 
 application that are not otherwise supported by the device control.

Attributes This event contains the following attributes:

 Attribute Type Description

 EventNumber int32 Event number whose specific values are assigned by 
 the Service.

 Data int32 Additional numeric data. Specific values vary by the 
 EventNumber and the Service. This attribute is settable.

 Obj object Additional data whose usage varies by the 
 EventNumber and the Service. This attribute is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.

Use of this event may restrict the application program program form being used 
with other vendor’s devices which may not have any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO method
Unified POS, v1.16.1 1339

39.8.2 ErrorEvent

 <<event>> upos::events::ErrorEvent

 ErrorCode : int32 {read-only}
 ErrorCodeExtended : int32 {read-only}
 ErrorLocus : int32 {read-only}
 ErrorResponse : int32 {read-write}

Description Notifies the application that a Video Capture Device error has been detected 
 and suitable response by the application is necessary to process the error condition.

Attributes This event contains the following attributes:

 Attributes Type Description

 ErrorCode int32 Error code causing the error event. 
 See a list of Error Codes on page 20.

 ErrorCodeExtended int32 Extended Error code causing the error event. 
 If ErrorCode is E_EXTENDED, then see 
 values below. Otherwise, it may contain a 
 Service-specific value.

 ErrorLocus int32 Location of the error. If EL_INPUT is 
 specified. An error occurred during 
 asynchronous process.

 ErrorResponse int32 Error Response, whose default value may be 
 overridden by the application. (i.e., this 
 attribute is settable). See ErrorResponse 
 below for values.

 If ErrorCode is E_EXTENDED, then ErrorCodeExtended has one of the following values:

 Value Meaning

 EVCAP_NOROOM The image data storage area does not have enough room to store.

 The ErrorLocus attribute has the following values:

 Value Meaning

 EL_INPUT Error occurred while processing asynchronous input.

 The application’s error event handler can set the ErrorResponse attribute to one of the following values:

 Value Meaning

 ER_RETRY Retry sending the recorded data or storing it. The error state is exited.
 Typically valid for asynchronous data storing when the locus is 
 EL_INPUT, which case the asynchronous recorded data storing is retried,
 and the error state is exited. This is the default response.

 ER_CLEAR Clear all buffered captured input or stored data. 
 The error state is exited.

Remarks This event is enqueued when an error is detected, and the Device’s State 
transitions into the error state.

See Also “Error Handling,” “Device Information Reporting Model” in Chapter 1.
1340 Unified POS, v1.16.1

39.8.3 StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent

Status: int32 {read-only}

Description Notifies the application that there is a change in the power status or a state change of the Video Capture
device.

Attributes This event contains the following attribute:

Attributes Type Description

 Status int32 Indicates a change in the power status or a sate 
 change of the unit.

Note that Release 1.3 added Power State Reporting with additional Power reporting
StatusUpdateEvent values.

The Update Firmware capability added additional Status values for 
communicating the status/progress of an asynchronous update firmware process.

Value Meaning

VCAP_SUE_START_VIDEO
 It will be notified when video recording starts.

VCAP_SUE_STOP_VIDEO
 It will be notified when video recording stops.

 VCAP_SUE_START_PHOTO 
 It will be notified when photo capturing starts.

 VCAP_SUE_END_PHOTO 
 It will be notified when photo capturing ends.

Remarks Enqueued when the Video Capture Device detects a power state change or 
a status change.

See Also “Events (UML Interfaces)” on page 11 

Unified POS, v1.16.1 1341

1342 Unified POS, v1.16.1

40 Individual Recognition

40.1 General

This Chapter defines the Individual Recognition device category.

40.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.16 open

CapCompareFirmwareVersion: boolean { read-only } 1.16 open

CapPowerReporting: int32 { read-only } 1.16 open

CapStatisticsReporting: boolean { read-only } 1.16 open

CapUpdateFirmware: boolean { read-only } 1.16 open

CapUpdateStatistics: boolean { read-only } 1.16 open

CheckHealthText: string { read-only } 1.16 open

Claimed: boolean { read-only } 1.16 open

DataCount: int32 { read-only } 1.16 open

DataEventEnabled: boolean { read-write } 1.16 open

DeviceEnabled: boolean { read-write } 1.16 open & claim

FreezeEvents: boolean { read-write } 1.16 open

OutputID: int32 { read-only } 1.16 Not supported

PowerNotify: int32 { read-write } 1.16 open

PowerState: int32 { read-only } 1.16 open

State: int32 { read-only } 1.16 --

DeviceControlDescription: string { read-only } 1.16 --

DeviceControlVersion: int32 { read-only } 1.16 --

DeviceServiceDescription: string { read-only } 1.16 open

DeviceServiceVersion: int32 { read-only } 1.16 open

PhysicalDeviceDescription: string { read-only } 1.16 open

PhysicalDeviceName: string { read-only } 1.16 open
Unified POS, v1.16.1 1343

Properties (Continued)

Specific Type Mutability Version May Use After

CapIndividualList: string { read-only } 1.16 open

IndividualIDs: string { read-only } 1.16 open, claim & enable

IndividualRecognitionFilter: string { read-write } 1.16 open

IndividualRecognitionInformation string { read-only } 1.16 open

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.16

close ():
void { raises-exception, use after open }

1.16

claim (timeout: int32):
void { raises-exception, use after open }

1.16

release ():
void { raises-exception, use after open, claim }

1.16

checkHealth (level: int32):
void { raises-exception, use after open, enable }

1.16

clearInput ():
void { raises-exception, use after open, claim }

1.16

clearInputProperties ():
void { raises-exception, use after open, claim }

1.16

clearOutput ():
void { }

Not supported

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.16

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.16

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.16

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.16

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.16

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.16
1344 Unified POS, v1.16.1

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent
 
 Status: int32

{read-only}

 1.16

upos::events::DirectIOEvent

 EventNumber:

 Data:

Obj:

int32

int32

object

{read-only}
{read-write}
{read-write}

1.16

upos::events::ErrorEvent
 ErrorCode:
 ErrorCodeExtended:
 ErrorLocus:
 ErrorResponse:

int32
int32
int32
int32

{read-only}
{read-only}
{read-only}
{read-write}

1.16

upos::events::OutputCompleteEvent
 OutputID: int32 Not supported

1.16

upos::events::StatusUpdateEvent
 Status:


int32 {read-only}

1.16

upos::events::TransitionEvent Not supported
Unified POS, v1.16.1 1345

40.3 General Information

The Individual Recognition programmatic name is “Individual Recognition”.

40.3.1 Capabilities

The Individual Recognition has the following set of capabilities:

Analyzes the image of the camera and recognizes individuals such as people and listed goods.

40.3.2 Individual Recognition Class Diagram

The following diagram shows the relationships between the Individual Recognition classes.
1346 Unified POS, v1.16.1

40.3.3 Model

The Individual Recognition follows the general “Device Input Model” for event-driven input:

Input Model

• When an individual is recognized by this device, a DataEvent is delivered to the application after the
IndividualIDs property was set to indicate the recognized individuals.

• Identifiable individuals are indicated by the CapIndividualList property.

• Check the functions supported by the device, set validity / invalidity, etc. with the
IndividualRecognitionInformation property.

• How to recognize the individuals depends on the IndividualRecognitionFilter function, therefore, please refer
to the IndividualRecognitionFilter section.

• Other device behavior about this device supports the general device input model as listed below.

• If the AutoDisable property is true, then the device automatically disables itself when a DataEvent is
enqueued.

• An enqueued DataEvent can be delivered to the application when the DataEventEnabled property is true and
other event delivery requirements are met. Just before delivering this event, data is copied into corresponding
properties, and further data events are disabled by setting DataEventEnabled to false. This causes subsequent
input data to be enqueued while the application processes the current input and associated properties. When the
application has finished processing the current input and is ready for more data, it reenables events by setting
DataEventEnabled to true.

• An ErrorEvent (or events) is enqueued if an error occurs while gathering or processing input and is delivered to
the application when DataEventEnabled is true and other event delivery requirements are met.

• The DataCount property may be read to obtain the total number of enqueued DataEvents.

• All enqueued input may be deleted by calling clearInput method. See the clearInput method description for
more details.

• All data properties that are populated, as a result of firing a DataEvent or ErrorEvent can be set back to their
default values by calling the clearInputProperties method.

• The application will be informed about any status change with a StatusUpdateEvent, also all corresponding
status properties will be updated before event delivery.

Device Sharing

The Individual Recognition is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before the device begins reading input.

• See the “Summary” table for precise usage prerequisites.

40.3.4 IndividualRecognitionFilter

The IndividualRecognitionFilter property defines the following data as information for the individual
recognition function of Individual Recognition Device.The application must claim the device before enabling it.
Unified POS, v1.16.1 1347

• Various support function existence or not.
(Supported functions are defined by the device)

• Enable, disable status of various functions.

• Types handled by various functions (examples: “male”, “female” of gender recognition)

• Filter setting of various functions.

The following data is defined in the IndividualRecognitionInformation property:

• Individual Recognition input data

The device defines the individual recognition function information and the individual recognition input data.

The application refers to these contents to determine the support range and so on.
In addition, the application changes the enabled / disabled state of various functions, the filter setting, and
controls each function.
The enabled / disabled state of the various functions set by the application, and the filter settings are applied by
setting the DeviceEnabled property to true and enabling the individual recognition function. 
When the application set various functions, it is possible to specify and set only the target ones.
The device fires a DataEvent based on the content set by the application and stores the input data in
IndividualRecognitionInformation property.

40.3.5 IndividualRecognitionFilter Property Example Format

The IndividualRecognitionFilter property of the individual recognition device may define various information.
Here is the example described by using the JSON format.

• Basic Items

Key Value Value
change
capability

Explanation

IndividualRecognitionFilter object N Information for the various individual
recognition. Target device define the supporting
individual recognition object.
1348 Unified POS, v1.16.1

[IndividualRecognitionID] object N Recognizable individual recognition
information. Key name is the ID of recognized
individual

Enabled boolean Y Enable or disable state of target individual
recognition.
Application can control the target individual
recognition by referring or changing.

Properties object N Property information of the target individual
recognition.
Application control the target individual
recognition by referring or changing the defined
property value.

[Property01] - -
[Property02] - -

Filters object N Input data filter setting information. Application
filter the target individual recognition input data
by changing the defined value.

[Filter01] - -
[Filter02] - -
Unified POS, v1.16.1 1349

• Face Recognition device example

Key Value Value
change
capability

Explanation

IndividualRecognitionFilter object N
Face object N

Enabled boolean Y
Properties object N

FaceImageNamePrefix string Y Output image file prefix for face recognition
Gender object N Information on gender recognition

Enabled boolean Y Gender recognition enable, disable state
CapTypeList array N Type list (“female”, “male”)

Age object N Information on age recognition.
Enabled boolean Y Age recognition enable, disable state

Facial Expression object N Information on facial expression recognition
Enabled boolean Y Facial expression recognition enable, disable

state.
CapTypeList array N Type list (“smile”, “angry”,…)

Gaze object N Information on gaze recognition
Enabled boolean Y Gaze recognition enable, disable state.
CapTypeList array N Type list (“gaze”, “nogaze”)

Distance object N Information on distance recognition
Enabled boolean Y Distance recognition enable, disable state
CapTypeList array N Type list (“near”, “far”, “very far”,…)
NearLength number Y Distance to recognize as “near”. A

recognition event is fired when a person is
recognized in the range from 0 to Near
Length.

FarLength number Y Distance to recognize as “far”, “very far”. A
recognition event is fired when a person is
recognized in the range from Near Length to
Far Length. A recognition event is fired when
a person is recognized in the range more than
Far Length.

Authentication object N Information on face authentication
Enabled boolean Y Face authentication enable, disable state.
ImageList array Y Image file name list for comparison. Event is

fired when it matches the image specified
here. (Wild card can be specified)
1350 Unified POS, v1.16.1

Filters object N
Gender object N Information on gender recognition filter.

TypeList array Y Target Filter TypeList. Valid values are
defined by
CapTypeList. Recognition target is specified.
To disable the filter, null should be assigned
in its value.

Score number Y Recognition score. Valid values are from 0 to
100. The range of the score specified here is
the recognition target. To disable the filter, -1
should be assigned in its value.

Age object N Information on age recognition.
Min number Y Minimum age. The age below the specified is

not a recognition target. To disable the filter -
1 should be specified in its value.

Max number Y Maximum age. The age above the specified
is not a recognition target. To disable the
filter -1 should be specified in its value.

Expression object N Information on facial expression recognition
filter.

TypeList array Y Filter target type list. Valid values are
defined in CapTypeList.
Recognition target type is specified. To
disable the filter null should be assigned in its
value.

Score number Y Recognition score. Valid values are from 0 to
100. The range of the score specified here is
to be recognized. To disable the filter -1
should be assigned in its value.

Gaze object N Information on gaze recognition filter
TypeList array Y Filter target type list. Valid values are

defined by CapTypeList.
Recognition target is specified. To disable
the filter, null should be assigned in its value.

Distance object N Information on distance recognition filter
TypeList array Y Filter target type list. Valid values are

defined by CapTypeList.
Recognition target is specified. To disable
the filter, null should be assigned in its value.
Unified POS, v1.16.1 1351

40.3.6 IndividualRecognition Information Property Example Format

IndividualRecognitionInformation property of individual recognition device may define various information and
here is the example format described by JSON.

• Basic Items

• Face Recognition Device Example

Key Value Value
change
capability

Explanation

IndividualRecognitionInformation object N Various Individual recognition input data.
[IndividualRecognitionID] object N Store the input data of individual

recognition.
Key name is ID of individual recognition.

Properties Array
<object>

N Input data list of target individual
recognition.
The content of the data is different for each
device or function.

[Data01] - -
[Data02] - -

Key Value Value
change
capability

Explanation

IndividualRecognitionInformation object N
Face object N

DataLists array
<object>

N

FaceID string N ID assigned to the recognized face
FaceImageName string N Recognized face image file name
Gender object N Recognized gender information

Type string N Recognized type
Score number N Confidence score of recognized type.

Age object N Recognized age information
Age number N Recognized age

Expression object N Recognized facial expression information
Type string N Recognized type.

One of CapTypeList items is set.
Score number N Confidence score of recognized type.

Gaze object N A gaze list for each recognized face ID.
Type string N Recognized type

Distance object N Recognized distance information
Type string N Recognized type.

One of CapTypeList items is set.
Authentication object N Authentication result information

ImageName string N Matched image file name
1352 Unified POS, v1.16.1

40.4 Properties (UML attributes)

40.4.1 CapIndividualList Property

Syntax CapIndividualList: string {read-only, access after open}

Remarks Recognizable individual information is indicated by the list separated by a separator ",".

Each Individual information consists of the following information and is shown in the following order,
separated with a colon (":").

Parameter Meaning
IndividualID An ID indicated an identifiable Individual
IndividualName A Name of an Individual.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further 
information, see “Errors” on page 16.

See Also IndividualIDs Property

40.4.2 IndividualIDs Property

Syntax IndividualIDs: string {read-only, access after open}

Remarks Set the IndividualIDs recognizable Individual recognition device.

IndividualIDs values are indicated by separated with a colon (":").

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

See Also CapIndividualList Property

40.4.3 IndividualRecognitionFilter Property

Syntax IndividualRecognitionFilter: string {read-write, access after open-claim-enable}

Remarks Individual Recognition Function Information:

• Supporting the various functions (Refer to the Individual Recognition Filter Example Format written by JSON
and supported function examples).

• Various Valid / Invalid State functions.

• Various handled function types. (e.g., "male" "female" in gender recognition, etc.).

• Various filter function settings. All Individual Recognition function data information is defined by the device.
By referring to these contents, the application can determine the supporting scope. Thereby, the application
can control each function by changing the valid / invalid state and / or the various filter function settings. This
property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further 
 information, see “Errors” on page 16.
Unified POS, v1.16.1 1353

Some possible values of the exception’s ErrorCode property are:

 Value Meaning

 E_ILLEGAL An invalid value was specified.

Syntax IndividualRecognitionInformation: string {read-only, access after open}

Remarks Holds data indicating the following. Individual recognition input data. All Individual recognition input
data is defined by the device.

Errors A UposException may be thrown when this property is accessed.
 For further information, see “Errors” on page 16.

40.5 Events (UML interfaces)

40.5.1 DataEvent

<<event>> upos::events::DataEvent

Status : int32{read-only}

Description Notifies the application when data from the Individual Recognition device is 
available to be read.

Attributes This event contains the following attributes:

Attribute Type Description
Status int32 Set to 0.

Remarks Before this event is delivered, the data is copied into corresponding properties.

See Also “Events” on page 11.

40.5.2 DirectIOEvent

<<event>> upos::events::DirectIOEvent

 EventNumber : int32 {read-only}
 Data : int32 {read-write}
 Obj : object {read-write}

Description Provides Service information directly to the application. This event provides a
 means for a vendor-specific Individual Recognition Service to provide events 
 to the application that are not otherwise supported by the device control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by 

the Service.
Data int32 Additional numeric data. Specific values vary by the 

EventNumber and the Service. This attribute is settable.

 Obj object Additional data whose usage varies by the 
 EventNumber and the Service. This attribute is settable.
1354 Unified POS, v1.16.1

Remarks This event is to be used only for those types of vendor specific functions that 
are not otherwise described.

Use of this event may restrict the application program programform being used 
with other vendor’s devices which may not have any knowledge of the 
Service’s need for this event.

See Also “Events (UML Interfaces)” on page 11, directIO method.

40.5.3 ErrorEvent

<<event>> upos::events:: ErrorEvent

ErrorCode: int32 {read-only}
ErrorCodeExtended: int32 {read-only}
ErrorLocus: int32 {read-only}
ErrorResponse: int32{read-write}

Description Notifies the application that an Individual Recognition Device error has been detected and suitable
response by the application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. 

 See a list of Error Codes on page 20.
ErrorCodeExtended int32 Extended Error code causing the error event.

If ErrorCode is E_EXTENDED, then see values below. 
Otherwise, it may contain a Service-specific value.

ErrorLocus int32 Location of the error. See values below.
ErrorResponse int32 Error Response, whose default value may be overridden by the

application. (i.e., this attribute is settable). See ErrorResponse
below for values.

The ErrorLocus attribute has one of the following values:

Value Meaning
EL_INPUT Error occurred while gathering or processing event-driven input. 

No previously buffered input data is available.

EL_INPUT_DATA Error occurred while gathering or processing event-driven input, 
and some previously buffered data is available.

The application’s error event handler can set the ErrorResponse attribute to one
 of the following values:

Value Meaning
ER_CLEAR Valid for all locus: EL_INPUT, EL_INPUT_DATA. Clear all buffered input

or output data (including all asynchronous output). The error state is exited.
This is the default response when the locus is EL_INPUT.

ER_CONTINUEINPUT 
Only valid when the locus is EL_INPUT_DATA.
Acknowledges that a data error has occurred and directs the Device 
to continue input processing. The Device remains in the error state 
and will deliver additional DataEvents as directed by the
Unified POS, v1.16.1 1355

DataEventEnabled property. When all input has been delivered and
DataEventEnabled is again set to true, then another ErrorEvent is
delivered with locus EL_INPUT.
This is the default response when the locus is EL_INPUT_DATA.

Remarks This event is enqueued when an error is detected, and the Device’s State transitions into 
the error state. Input error events are not delivered until DataEventEnabled is true, so that 
proper application sequencing occurs.

Unlike a DataEvent, the Device does not disable further DataEvents or input ErrorEvents; 
it leaves the DataEventEnabled property value at true. Note that the application may set
DataEventEnabled to false within its event handler if subsequent input events need to be 
disabled for a period of time.

See Also “Device Input Model,” “Error Handling,” in Chapter 1.

40.5.4 StatusUpdateEvent

<<event>>upos::events:: StatusUpdateEvent
Status : int32 {read-only}

Description Notifies the application that there is a change in the power status or a status
of the Individual Recognition device.

Attributes This event contains the following attribute:

Attribute Type Description

Status int32 Indicates a change in the power status of the unit.

 Note that Release 1.3 added Power State Reporting with additional Power 
reporting StatusUpdateEvent values.

The Update Firmware capability added additional Status values.

For communicating the status/progress of an asynchronous update firmware process.

 Remarks Enqueued when the Individual Recognition Device detects a power state change or a status change.

 See Also “Events (UML Interfaces)” on page 11
1356 Unified POS, v1.16.1

41 Sound Recorder

41.1 General

This Chapter defines the Sound Recorder device category.

41.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.16 open

CapCompareFirmwareVersion: boolean { read-only } 1.16 open

CapPowerReporting: int32 { read-only } 1.16 open

CapStatisticsReporting: boolean { read-only } 1.16 open

CapUpdateFirmware: boolean { read-only } 1.16 open

CapUpdateStatistics: boolean { read-only } 1.16 open

CheckHealthText: string { read-only } 1.16 open

Claimed: boolean { read-only } 1.16 open

DataCount: int32 { read-only } 1.16 open

DataEventEnabled: boolean { read-write } 1.16 open

DeviceEnabled: boolean { read-write } 1.16 open & claim

FreezeEvents: boolean { read-write } 1.16 open

OutputID: int32 { read-only } 1.16 Not supported

PowerNotify: int32 { read-write } 1.16 open

PowerState: int32 { read-only } 1.16 open

State: int32 { read-only } 1.16 open

DeviceControlDescription: string { read-only } 1.16 --

DeviceControlVersion: int32 { read-only } 1.16 --

DeviceServiceDescription: string { read-only } 1.16 open

DeviceServiceVersion: int32 { read-only } 1.16 open

PhysicalDeviceDescription: string { read-only } 1.16 open

PhysicalDeviceName: string { read-only } 1.16 open
Unified POS, v1.16.1 1357

Properties (Continued)

Specific Type Mutability Version May Use After

CapAssociatedHardTotalsDevice: string {read-only} 1.16 open

CapChannel: boolean {read-only} 1.16 open

CapRecordingLevel: boolean {read-only} 1.16 open

CapSamplingRate: boolean {read-only} 1.16 open

CapSoundType: boolean {read-only} 1.16 open

CapStorage int32 {read-only} 1.16 open

Channel: string {read-write} 1.16 open, claim & enable

ChannelList: string {read-only} 1.16 open

RecordingLevel: int32 {read-write} 1.16 open, claim & enable

RemainingRecordingTimeInSec: int32 {read-only} 1.16 open, claim & enable

SamplingRate: string {read-write} 1.16 open, claim & enable

SamplingRateList: string {read-only} 1.16 open

SoundData: binary {read-only} 1.16 open

SoundType: string {read-write} 1.16 open, claim & enable

SoundTypeList: string {read-only} 1.16 open

Storage int32 {read-write} 1.16 open, claim & enable

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.16

close ():
void { raises-exception, use after open }

1.16

claim (timeout: int32):
void { raises-exception, use after open }

1.16

release ():
void { raises-exception, use after open, claim }

1.16

checkHealth (level: int32):
void { raises-exception, use after open, enable }

1.16

clearInput ():
void {raises exception, use after open, claim}

1.16

clearInputProperties ():
void {raises exception, use after open, claim}

1.16

clearOutput ():
void { }

Not supported
1358 Unified POS, v1.16.1

Methods (UML operations) (continued)

Common

Name Version

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void {raises-exception, use after open, claim, enable}

1.16

directIO (command: int32, inout data: int32, inout obj: object):
void {raises-exception, use after open}

1.16

resetStatistics (statisticsBuffer: string):
void {raises-exception, use after open, claim, enable}

1.16

retrieveStatistics (inout statisticsBuffer: string):
void {raises-exception, use after open, claim, enable}

1.16

updateFirmware (firmwareFileName: string):
void {raises-exception, use after open, claim, enable}

1.16

updateStatistics (statisticsBuffer: string):
 void {raises-exception, use after open, claim, enable}

1.16

Specific

Name Version

startRecording (FileName: string, OverWrite: boolean,
RecordingTime:int32):

 void {raises-exception, use after open, claim, enable}

1.16

stopRecording ():
 Void {raises-exception, use after open, claim, enable}

1.16
Unified POS, v1.16.1 1359

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent
 Status:

int32 {read-only}

 1.16

upos::events::DirectIOEvent

EventNumber:

Data:

Obj:

int32

int32

object

{read-only}
{read-write}
{read-write}

1.16

upos::events::ErrorEvent
 ErrorCode:
 ErrorCodeExtended:
 ErrorLocus:
 *pErrorResponse:

int32
int32
int32
int32

{read-only}
{read-only}
{read-only}
{read-write}

1.16

upos::events::OutputCompleteEvent

Not supported 1.16

upos::events::StatusUpdateEvent
 Status:


int32 {read-only}

1.16

upos::events::TransitionEvent Not supported 1.16
1360 Unified POS, v1.16.1

41.3 General Information

The Sound Recorder programmatic name is "Sound Recorder".

41.3.1 Capabilities

The Sound Recorder has the following capability:

Record the real-time audio to a file, deliver the recorded sound data to the property that application may read and /
or retrieve, and save the recorded sound data file to device memory and / or other storage devices.

41.3.2 Sound Recorder Class Diagram

The following diagram shows the relationships between the Sound Recorder classes.
Unified POS, v1.16.1 1361

<<exception>> <<interface>> <<utility>>
UposException BaseControl UposConst

<<event>>
DataEvent

+Status: int32

<<event>>
DirectIOEvent

+EventNumber: int32
+Data: int32
+Obj: object

<<event>>
ErrorEvent

+ErrorCode: int32
+ErrorCodeExtended: int32
+ErrorLocus: int32
+ErrorResponse: int32

<<event>>
StatusUpdateEvent

+Status: int32

<<property>> +Storage:int32
+startRecording (fileName: string, overwrite: boolean, recordingTime: int32): void
+stopRecording (): void

<<capability>> +CapChannel:boolean

<<property>> +SoundData:binary
<<property>> +SoundType:string
<<property>> +SoundTypeList:string

<<property>> +RemainingRecordingTimeInSec:int32
<<property>> +SamplingRate:string

<<capability>> +CapSamplingRate:boolean

<<property>> +Channel:string
<<property>> +ChannelList:string
<<property>> +RecordingLevel:int32

<<property>> +SamplingRateList:string

<<interface>>

<<capability>> +CapAssociatedHardTotalsDevice:string

<<capability>> +CapRecordingLevel:boolean

Sound Recoder Device Control

<<capability>> +CapSoundType:boolean
<<capability>> +CapStorage:int32

<<sends>>

<<uses>><<sends>>

<<uses>>

<<fires

<<fires

<<fires

<<fires
1362 Unified POS, v1.16.1

41.3.3 Model

Sound Recorder Control follows a general “Device Input Model” in a broad sense. One point of difference is that
the Sound Recorder device required the execution of methods to start and stop the sound recording process and
creates a sound data file in real time, deliver the data to the property and save the file in device and / or
associated storage device.

The Sound Recorder Model defines the following behavior: Sound Recorder device controls the Sound Recorder
device to set the input (recording) conditions, specifies the start / end of input data acquisition by the method.
And makes the sound data file in real time from the acquired audio and delivers the data to the appropriate
property. At the same time, saves the recorded data file in device and /or associated storage devices.

“Sound Recorder” device control starts recording with the startRecording method. Prior to execute the
startRecording method each value setting of Channel property, SamplingRate property, and RecordingLevel
property are required, if each of CapChannel property CapSamplingRate property is true. And also need to set
the DataEventEnabled property to true. At the same time, the recording format setting starts with the
SoundType property value, if CapSoundType property is true.

The recording ends after the specified time has elapsed or when stopRecording method is called or when
clearInput method is called. The generated sound data file will be recorded for either the host file or the Hard
Totals device or both, after the end of recording. And generated sound data will be delivered to the SoundData
property. Just after the delivery of sound data to the property, when the DataEventEnabled property is true, the
DataEvent is enqueued and delivered to the application.

If the AutoDisable property is true, the device will automatically disable itself after the DataEvent is enqueued.

The remaining recording time in seconds can be obtained from the property RemainingRecordingTimeInSec

StatusUpdateEvent with status SERC_SUE_START_SOUND_RECORDING is evoked when startRecording
method is executed to notify the application that recording state with has started.

When the sound recording is finished, if the specified time of startRecording method has elapsed or
stopRecording method has been called, a StatusUpdateEvent with status
SERC_SUE_START_SOUND_RECORDING is evoked to notify the application that recording has been
stopped.

An enqueued DataEvent can be delivered to the application when the DataEventEnabled property is true and
other event delivery requirements are met. Just before enqueuing this event, the device provides the recorded
data to the SoundData property and disables further data events by setting the DataEventEnabled property to
false. This causes subsequent input data to be buffered by the device while the application processes the current
input and associated properties. When the application has finished processing the current input and is ready for
more data, it re-enables events by setting DataEventEnabled to true.

If ErrorEvent response is ER_CONTINUEINPUT, the process of input processing continues. However, as long
as the cause of the error is not resolved, the ErrorEvent will occur again immediately.

If ErrorEvent is ER_CLEAR, the input processing process is terminated, and the record is discarded.

If the time specified by the startRecording method is FOREVER (-1), execution will continue until the
stopRecording method is called in the application. When stopRecording is called, the previous recording data
is recorded to the host file, the Hard Totals device, or both, with the specified file name, and the sound data will
be delivered to the SoundData property. When DataEventEnabled property is true, the DataEvent is enqueued
and delivered to the application.
Unified POS, v1.16.1 1363

Only one call to startRecording method can be in progress at a time. An attempt to nest sound recorder
operations will result in an UposException being thrown.　

If Error occurs during the execution of the startRecording method, application should call the stopRecording
method to terminate the recording process or cancel the recording process by calling the clearInput method
before ending the ErrorEvent processing. After this when the stopRecording method is called, the recording
data until just before the ErrorEvent occurs is recorded to the host file, the Hard Totals device, or both. When
DataEventEnabled property is true, the DataEvent is enqueued and delivered to the application.

If there is no Error during the execution of startRecording method can terminate the recording process and can
stop the recording at any time. When the stopRecording method is called, the recording data until just before the
method call is recorded to the host file, the Hard Totals or both. When DataEventEnabled property is true, the
DataEvent is enqueued and delivered to the application.

All input data enqueued by the device may be deleted by calling the clearInput method．All data properties that
are populated as a result of a DataEvent or Error Event can be set back to their default values by calling the
clearInputProperties method.

The device may have the ability to write encoded sound data files to either the Hard Totals devices or the host
file system, or both, and the CapStorage property will show the device’s data storage location capability.

If device supports either or both Hard Totals devices and the host file system, the application should set the
Storage property accordingly to tell where to write the encoded sound data file.

If device needs to be able to write the encoded sound data to an associated Hard Totals device, the
CapAssociatedHardTotalsDevice property holds the open name of the associated Hard Totals device.

41.3.4 Device Sharing

The Sound Recorder is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing some properties or calling methods that
update the device.

• See the “Summary” table for precise usage prerequisites.

• The image display mode of the graphics device control is as follows.
1364 Unified POS, v1.16.1

41.4 Properties (UML attributes)

41.4.1 CapAssociatedHardTotalsDevice Property

Syntax CapAssociatedHardTotalsDevice: string {read-write, access after open}

Remarks Holds the open name of the associated Hard Totals device, if the device is able to write to such devices
which is the case if CapStorage is either SREC_CST_ALL or SREC_CST_HARDTOTALS_ONLY.
If CapStorage is SREC_CST_HOST_ONLY this property value must be the empty string. This
property is initialized by the open method.

Errors UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

See Also CapStorage Property

41.4.2 CapChannel Property

Syntax CapChannel: boolean {read-only, access after open}

Remarks If true, the application can change the channel.
If false, the application cannot change the channel.
This property is initialized by the open method.

Errors UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

See Also Channel Property

41.4.3 CapSamplingRate Property

Syntax CapSamplingRate: boolean {read-only, access after open}

Remarks If true, the application can change the sampling rate.
If false, the application cannot change the sampling rate.
This property is initialized by the open method.

Errors UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

See Also SamplingRate Property.

41.4.4 CapSoundType Property

Syntax CapSoundType: boolean {read-only, access after open}

Remarks If true, the application can change the sound file type.
If false, the application cannot change the sound file type.
This property is initialized by the open method.

Errors UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

See Also SoundType Property.
Unified POS, v1.16.1 1365

41.4.5 CapVolume Property

Syntax CapVolume: boolean {read-only, access after open}

Remarks If true, the application can change the volume. If false, the application cannot change the volume.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also Volume Property

41.4.6 CapStorage Property

Syntax CapStorage: int32 {read-only, access after open}

Remarks This is an enumeration and announces where the device is able to write the recorded sound data file to.
It holds one of the following values.

Value Meaning

SREC_CST_HARDTOTALS_ONLY 
Only an associate Hard Totals device is supported.

SREC_CST_HOST_ONLY Only the host’s file system is supported.

SREC_CST_ALL Both, the associated Hard Totals device and the host’s file
system is supported.

This property is initialized by the open method.

If a Hard Totals device is supported the Storage the property value should be
SREC_CST_HARDTOTALS_ONLY or SREC_CST_ALL, and the property
CapAssociatedHardTotalsDevice holds the open name of the associated Hard Totals device.

Errors UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

See Also Storage Property, CapAssociatedHardTotalsDevice Property

41.4.7 CapRecordingLevel Property

Syntax CapRecordingLevel: boolean {read-only, access after open}

Remarks If true, the application can change the recording level.
If false, the application cannot change the recording level.
This property is initialized by the open method.

Errors UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

See Also CapRecordingLevel Property.
1366 Unified POS, v1.16.1

41.4.8 Channel Property

Syntax Channel: string {read-write, access after open-claim-enable}

Remarks Holds the channel during recording.
Valid values are one of the values listed in the ChannelList property.
This property is initialized by the open method.

Errors UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

 Some possible values of the exception’s ErrorCode property are:

 Value Meaning

 E_ILLEGAL An invalid value was specified.

See Also CapChannel Property, ChannelList Property

41.4.9 ChannelList Property

Syntax ChannelList: string {read only, access after open}

Remarks Contains the comma-delimited list of channels that is supported by the device.

For example, if the device only supports channel1and channel2 and channel4, then this property should
be set to "1,2,4".
This property is initialized by the open method.

Errors UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

See Also Channel Property.

41.4.10 RecordingLevel Property

Syntax RecordingLevel: int32 {read-write, access after open- claim-enable}

Remarks Holds the recording level during recording.
Legal values range from zero through 100.
This property is initialized by the open method.

Errors UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

Value Meaning
E_ILLEGAL An invalid value was specified.

See Also CapRecordingLevel Property
Unified POS, v1.16.1 1367

41.4.11 RemainingRecordingTimeInSec Property

Syntax RemainingRceordingTimeInSec: 
int32 {read-only, access after open-claim-enable}

Remarks This property holds the remaining recording time in seconds if a recording is ongoing. If no recording is
ongoing its value is 0. When a call to method startRecording returns, this property initially holds the
time passed as argument recordingTime to that call. If this argument value is FOREVER, this property
also holds this value unchanged until stopRecording has been called.

This property is initialized during device setDeviceEnbaled method to 0.

Errors UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

See Also startRecording Method, stopRecording Method

41.4.12 SamplingRate Property

Syntax SamplingRate: string {read-write, access after open-claim-enable}

Remarks Holds the sampling rate during recording.
Valid values are one of the values listed in the SamplingRateList property.
This property is initialized by the open method.

Errors UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

 Some possible values of the exception’s ErrorCode property are:

 Value Meaning

 E_ILLEGAL An invalid value was specified.

See Also CapSamplingRate Property, SamplingRateList Property

41.4.13 SamplingRateList Property

Syntax SamplingRateList: string {read only, access after open}

Remarks Contains the comma-delimited list of sampling rate that are supported by the device.
For example, if the device only supports 44.1kHz and 48kHz and 96kHz, then this 
property should be set to "44100,48000,96000".
This property is initialized by the open method.

Errors UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

See Also SamplingRate Property.
1368 Unified POS, v1.16.1

41.4.14 SoundData Property

Syntax SoundData: binary { read-only, access after open }

Remarks　 This property is used to store the sound data after the recording time elapse of startRecording 
method or stopRecording method is called. If no recorded sound data was available, the 
SoundData property will be set to zero length (or empty). Its value is set prior to a DataEvent 
to be enqueued. This property is initialized to zero length by the open method.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

See Also startRecording Method, stopRecording Method, DataEvent.

41.4.15 SoundType Property

Syntax SoundType: string {read-write, access after open-claim-enable}

Remarks Holds the audio file format to be recorded.
Valid values are one of the values listed in the CapSoundTypeList property.
This property is initialized by the open method.

Errors UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

 Some possible values of the exception’s ErrorCode property are:

 Value Meaning

 E_ILLEGAL An invalid value was specified.

See Also CapSoundType Property, CapSoundTypeList Property.

41.4.16 SoundTypeList Property

Syntax SoundTypeList: string {read only, access after open}

Remarks Contains the comma-delimited list of sound file type that is supported by the device.
For example, if the device only supports WAV and OGG, then this property should be set to
"WAV,OGG".
This property is initialized by the open method.

Errors UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

See Also SoundType Property.
Unified POS, v1.16.1 1369

41.4.17 Storage Property

Syntax Storage: int32 {read-write, access after open-claim-enable}

Remarks This is an enumeration and defines where the device writes the recorded sound data file to. Should be
set before a call to startRecording.

It holds one of the following values.

Value Meaning

SREC_ST_HARDTOTALS 
The encoded data file is written to the associated 
Hard Totals device. The property CapAssociatedHardTotalsDevice
holds the open name of the associated Hard Totals device.

SREC_ST_HOST The encoded data file is written to the host’s file system.

SREC_ST_HOST_HARDTOTALS

The encoded data file is written to the associated Hard Totals 
device and host’s file system. The property
CapAssociatedHardTotalsDevice holds the open name of the 
associated Hard Totals device.

This property is initialized by the open method according to the value hold by CapStorage. If
CapStorage has the value SREC_CST_ALL, it is initialized to SREC_ST_HOST_HARDTOTALS.

Errors UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

Value Meaning

E_ILLEGAL An invalid value was specified, or recording is ongoing.

See Also CapStorage Property, CapAssociatedHardTotalsDevice Property
1370 Unified POS, v1.16.1

41.5 Methods (UML operations)

41.5.1 startRecording Method

Syntax startRecording (fileName: string, overWrite: boolean, recordingTime: int32):
 void {raises-exception, use after open-claim-enable}

Parameter Description
fileName Specify the file name of the sound to be recorded.
overWrite Specify the behavior when the same name file exists. 

If it is true, it will be overwritten and if false, it will raise 
the UPOSException.

recordingTime Specify the time for recording in seconds. If FOREVER (-1) 
is specified, recording will continue until the stopRecording method is
called.

Remarks Sound recording starts with the settings of the Channel property, SamplingRate property, and
RecordingLevel property and need to set DataEventEnabled property to true. At the same time,
recording format setting starts with the SoundType property. When this method is called, if specified
recording time is elapsed, recording process will be ended and recorded sound data is provided at the
SoundData property that the application may read it and / or process the stored sound data file given as
filename argument. When the DataEventEnabled property is true, the DataEvent is enqueued and
delivered to the application. StatusUpdateEvent with state
SREC_SUE_START_SOUND_RECORDING is evoked when startRecording method is executed to
notify the application, the recording has started. When the sound recording is finished, if the specified
time of startRecording method has elapsed or stopRecording method has been called, the value of
StatusUpdateEvent with state SREC_SUE_START_SOUND_RECORDING is evoked to notify the
application, the recording has stopped

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL FileName is too long or contains characters that cannot

 be used, or 0 is specified for RecordingTime.
E_EXISTS FileName already exists. (When OverWrite is FALSE)
E_BUSY It cannot be executed as it is recording.

See Also Channel Property, SamplingRate Property, SoundData Property, SoundType Property,
RecordingLevel Property, stopRecording Method, StatusUpdateEvent Event
Unified POS, v1.16.1 1371

41.5.2 stopRecording Method

Syntax stopRecording ():
void {raises-exception, use after open-claim-enable}

Remarks When this method is called the sound recording process that started by startRecording 
method is ended and the recording is finished. This method is processed synchronously. 
After recording and decoding process has been finished, the recorded sound data will be 
provided at the SoundData property prior to the Data Event is enqueued, when 
DataEventEnabled property is true. When stopRecording method is called, a 
StatusUpdateEvent with status SREC_SUE_START_SOUND_RECORDING is 
evoked to notify the application, the recording has stopped.

Errors A UposException may be thrown when this method is invoked. For further information, 
see “Errors” on page 16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL It is not recorded.

See Also StartRecording Property, SoundData Property, StatusUpdateEvent. Event
1372 Unified POS, v1.16.1

41.6 Events (UML interfaces)

41.6.1 DataEvent

<<event>> upos::events::DataEvent

Status :int32{read-only}

Description Notifies the application when data from the Sound Recorder device is 
available to be read.

Attributes This event contains the following attributes:

Attribute Type Description
Status int32 Set to 0.

Remarks Before this event is delivered, the Sound Recorder information is enqueued 
into the area that is indicated by the startRecording method. Since the stored 
sound recorder device information might be managed by the associated “Hard 
Totals” device service, therefore, the application might also support the “Hard 
Totals” service.

See Also Channel Property, SamplingRate Property, SoundType property, RecordingLevel Property,
stopRecording Method, startRecording Method

41.6.2 DirectIOEvent

<<event>> upos::events::DirectIOEvent

EventNumber: int32 {read-only}
Data : int32 {read-write}
Obj : object {read-write}

Description Provides Service information directly to the application. This event provides a 
means for a vendor-specific Individual Recognition Service to provide events to 
the application that are not otherwise supported by the device control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned 

by the Service.
Data int32 Additional numeric data. Specific values vary by the 

EventNumber and the Service. This attribute is settable.
Obj object Additional data whose usage varies by the EventNumber 

and the Service. This attribute is settable.

Remarks This event is to be used only for those types of vendor specific functions that are 
not otherwise described.

Use of this event may restrict the application program programform being used 
with other vendor’s devices which may not have any knowledge of the Service’s 
need for this event.

See Also “Events (UML Interfaces)” on page 11, directIO method.
Unified POS, v1.16.1 1373

41.6.3 ErrorEvent

<<event>> upos::events:: ErrorEvent
ErrorCode :int32{read-write}
ErrorCodeExtended : int32{read-write}
ErrorLocus : int32{read-write}
*pErrorResponse : int32{read-write}

Description Notifies the application that a Sound Recorder Device error has been detected 
and suitable response by the application is necessary to process the error condition.

Attributes This event contains following attributes.

Attributes Type Description
Error Code int32 Error Code causing the error event. 

 See the list of Error Code.
ErrortCodeExtended int32 Error Code causing the error event. 

 These values are device category specific.
ErrorLocus int32 Location of the error. See values below.
pErrorResponse int32 Pointer to the error event response.

 See ErrorResponse values below.

The ErrorLocus attribute has one of the following values:

Value Meaning
EL_INPUT Error occurred while gathering or Processing event-driven input. 

No previously buffered input data is available.

EL_INPUT_DATA Error occurred while gathering or processing
event-driven input, and some previously buffered
data is available.

If ResultCode is E_EXTENDED, ResultCodeExtended is set to one of the following values.

Value Meaning
ESREC_NOROOM There is not enough space to store the data file.
The application’s error event handler can set the ErrorResponse attribute to one of the following
values:
Value Meaning
ER_CLEAR I will try its asynchronous output again.
 The error condition is exited.
ER_CONTINUEINPUT
 Only valid when the locus is EL_INPUT_DATA.

 Acknowledges that a data error has occurred and directs 
 the Device to continue input processing. The Device remains 

 in the error state and will deliver additional DataEvents as directed 
 by the DataEventEnabled property. When all input has been delivered 
 and DataEventEnabled is again set to true, then another ErrorEvent 
 is delivered with locus EL_INPUT. This is the default response when the
 locus is EL_INPUT_DEL_IATA.

Remarks It notifies you when an error is detected during recording. Input error events are not delivered until
 DataEventEnabled is true, so that proper application sequencing occurs.

See Also “Device Input Model,” on page 18, “Error Handling” on page 16.
1374 Unified POS, v1.16.1

41.6.4 StatusUpdateEvent

<<event>> upos::events:: StatusUpdateEvent
Status : int32 {read-only}

Description Notifies the application that there is a change in the power status or a status of the Sound
Recorder device.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Indicates a change in the power status or a status of the unit.

Note that Release 1.3 added Power State Reporting with additional Power reporting
StatusUpdateEvent values.

 The Update Firmware capability added additional Status values for communicating 
the status/progress of an asynchronous update firmware process.

Value Meaning

SREC_SUE_START_SOUND_RECORDING 
 It will be notified when sound recording starts.

SREC_SUE_STOP_SOUND_RECORDING 
 It will be notified when sound recording stops.

Remarks Enqueued when the Sound Recorder Device detects a power state change 
 or a status change.

See Also “Events (UML Interfaces)” on page 11.
Unified POS, v1.16.1 1375

1376 Unified POS, v1.16.1

42 Voice Recognition

42.1 General

This Chapter defines the Voice Recognition device category.

42.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.16 open

CapCompareFirmwareVersion: boolean { read-only } 1.16 open

CapPowerReporting: int32 { read-only } 1.16 open

CapStatisticsReporting: boolean { read-only } 1.16 open

CapUpdateFirmware: boolean { read-only } 1.16 open

CapUpdateStatistics: boolean { read-only } 1.16 open

CheckHealthText: string { read-only } 1.16 open

Claimed: boolean { read-only } 1.16 open

DataCount: int32 { read-only } 1.16 open

DataEventEnabled: boolean { read-write } 1.16 open

DeviceEnabled: boolean { read-write } 1.16 open & claim

FreezeEvents: boolean { read-write } 1.16 open

OutputID: int32 { read-only } 1.16 Not supported

PowerNotify: int32 { read-write } 1.16 open

PowerState: int32 { read-only } 1.16 open

State: int32 { read-only } 1.16 --

DeviceControlDescription: string { read-only } 1.16 --

DeviceControlVersion: int32 { read-only } 1.16 --

DeviceServiceDescription: string { read-only } 1.16 open

DeviceServiceVersion: int32 { read-only } 1.16 open

PhysicalDeviceDescription: string { read-only } 1.16 open

PhysicalDeviceName: string { read-only } 1.16 open
Unified POS, v1.16.1 1377

Properties (Continued)

Specific Type Mutability Version May Use After

CapLanguage: boolean {read-only} 1.16 open

HearingDataPattern: string {read-only} 1.16 open, claim & enable

HearingDataWord: string {read-only} 1.16 open, claim & enable

HearingDataWordList: string {read-only} 1.16 open, claim & enable

HearingResult: int32 {read-only} 1.16 open, claim & enable

HearingStatus: int32 {read-only} 1.16 open, claim & enable

LanguageList: string {read-only} 1.16 open

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.16

close ():
void { raises-exception, use after open }

1.16

claim (timeout: int32):
void { raises-exception, use after open }

1.16

release ():
void { raises-exception, use after open, claim }

1.16

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.16

clearInput ():
void { raises-exception, use after open, claim }

1.16

clearInputProperties ():
void { raises-exception, use after open, claim}

1.16

clearOutput ():
void { }

Not supported

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void {raises-exception, use after open, enable}

1.16

directIO (command: int32, inout data: int32, inout obj: object):
void {raises-exception, use after open}

1.16

resetStatistics (statisticsBuffer: string):
void {raises-exception, use after open, claim, enable}

1.16

retrieveStatistics (inout statisticsBuffer: string):
void {raises-exception, use after open, claim, enable}

1.16

updateFirmware (firmwareFileName: string):
void {raises-exception, use after open, claim, enable}

1.16

updateStatistics (statisticsBuffer: string):
void {raises-exception, use after open, claim, enable}

1.16
1378 Unified POS, v1.16.1

Specific

Name Version

startHearingFree (language: string):
void {raises-exception, use after open, claim, enable}

1.16

startHearingSentence (language: string, wordList: string, patternList:
string):
void {raises-exception, use after open, claim, enable}

1.16

startHearingWord (language: string, wordList: string):
void {raises-exception, use after open, claim, enable}

1.16

startHearingYesNo (language: string):
void {raises-exception, use after open, claim, enable}

1.16

stopHearing ():
void {raises-exception, use after open, claim, enable}

1.16

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent

Status:
 int32 {read-only}

 1.16

upos::events::DirectIOEvent

EventNumber:

Data:

Obj:

int32

int32

object

{read-only}
{read-write}
{read-write}

1.16

upos::events::ErrorEvent
 ErrorCode:
 ErrorCodeExtended:
 ErrorLocus:
 ErrorResponse:

int32
int32
int32
int32

{read-only}
{read-only}
{read-only}
{read-write}

1.16

upos::events::OutputCompleteEvent

Not supported

upos::events::StatusUpdateEvent
 Status:


int32 {read-only}

1.16

upos::events::TransitionEvent Not supported 1.16
Unified POS, v1.16.1 1379

42.3 General Information

The Voice Recognition programmatic name is "Voice Recognition."

42.3.1 Capabilities

The Voice Recognition has the following capability:

• Convert spoken words to strings.

42.3.2 Voice Recognition Class Diagram

The following diagram shows the relationships between the Voice Recognition classes.

42.4 Model

The Voice Recognition follows the general “Device Input Model” for event-driven input:

Device control starts voice recognition with the startHearingYesNo method, startHearingSentence method,
etc., and generates DataEvent when recognizing voice.

If the AutoDisable property is true, then the device automatically disables itself when a DataEvent is enqueued.

An enqueued DataEvent can be delivered to the application when the DataEventEnabled property is true and
other event delivery requirements are met. Just before delivering this event, data is copied into corresponding
properties, and further data events are disabled by setting DataEventEnabled to false. This causes subsequent
1380 Unified POS, v1.16.1

input data to be enqueued while the application processes the current input and associated properties. When the
application has finished processing the current input and is ready for more data, it reenables events by setting
DataEventEnabled to true.

An ErrorEvent (or events) is enqueued if an error occurs while gathering or processing input, and is delivered
to the application when DataEventEnabled is true and other event delivery requirements are met.

The DataCount property may be read to obtain the total number of enqueued DataEvents.

All enqueued input may be deleted by calling clearInput method. See the clearInput method description for
more details.

All data properties that are populated as a result of firing a DataEvent or ErrorEvent can be set back to their
default values by calling the clearInputProperties method.

The application will be informed about any status change with a StatusUpdateEvent, also all corresponding
status properties will be updated before event delivery.

Types of voice recognition

Voice recognition is mainly a method of specifying word candidates to be recognized and waiting for those
words.

There are the following four types of voice recognition.

Yes/No/Cancel recognition

It listens to the sound of words classified as Yes / No / Cancel defined by the device.

For example, the voice ""OK."" is classified as Yes.

The recognized content is set in the HearingDataWord property.

For details, refer to the startHearingYesNo method.

Word recognition

The application specifies a list of words and listens for the voice of that word.

The recognized content is set in the HearingDataWord property.

For details, refer to the startHearingWord method.

Sentence recognition

The application specifies a word and a list of patterns of the sentences using it and awaits the sound of the
sentence.

The recognized content is set in the HearingDataWordList property, HearingDataPattern property.

For details, see the startHearingSentence method.

Free recognition

Voice recognition leave to the device is performed without specifying the word to wait.

It does not specify waiting words and performs voice recognition entrusted to the device.
Unified POS, v1.16.1 1381

The recognized content is set in the HearingDataWord property.

For details, see the startHearingFree method.

When recognizing voice, the kind of recognition was stored in the HearingResult property.

42.5 Device Sharing

The Voice Recognition is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing some properties or calling methods that
update the device.

See the “Summary” table for precise usage prerequisites.

42.6 Properties (UML attributes)

42.6.1 CapLanguage Property

Syntax CapLanguage: boolean {read-only, access after open}

Remarks If true, the application can change the language. If false, the application cannot change the language.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

42.6.2 HearingDataPattern Property

Syntax HearingDataPattern: string {read-only, access after open-claim-enable}

Remarks The pattern ID recognized by the startHearingSentence method is set. This property is set by the device
control just before the DataEvent is enqueued.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also startHearingSentence Method
1382 Unified POS, v1.16.1

42.6.3 HearingDataWordList Property

Syntax HearingDataWord: string {read-only, access after open-claim-enable}

Remarks The content of voice recognition is set.
This property is set as input data of the following method. To know which 
method it is for, check the HearingResult property.

 Methods Meaning

 startHearingYesNo Method
 The recognized word is set.

 startHearingWord Method
 Recognized words are set among the word candidates
 specified by the startHearingWord method.

 startHearingFree Method
 Recognized words and sentences are set.

 The alphabet 's uppercase letters, Japanese kanji,
 hiragana, katakana, etc., the contents to be set varies
 depending on the device.

This property is set by the device control just before the DataEvent is enqueued.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

See Also HearingResult Property, startHearingYesNo Method, startHearingWord Method,
startHearingFree Method
Unified POS, v1.16.1 1383

42.6.4 HearingDataWordList Property

Syntax HearingDataWordList: string {read-only, access after open-claim-enable}

Remarks Comma-separated list of word information recognized by the startHearingSentence method.
Each word information consists of the following information and is shown in the following order
separated by a colon (":").

 Parameter Description

 WordGoupID Recognized word group ID

 Word Recognized words. The content defined in the word group is set.

 For example, in the startHearingSentence method, set candidates as follows, 
 Word list:"item:coffee:tea, count:a:two:three"

 Pattern list: "P1:[count] cup of [item], P2:[item]"
 startHearingSentence ("en-US", "item:coffee:tea, count:a:two", "P1:[count] 
 cup of [item],P2:[item]")

 If you speak "Give me two cups of coffee", device recognize “Pattern” as "P1"
 and “WordList” as "item:coffee, count:two".

 The properties are set as follows, 
 HearingDataPattern="P1"; 
 HearingDataWordList="item:coffee, count:two";

This property is set by the device control just before the DataEvent is enqueued.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also startHearingSentence Method
1384 Unified POS, v1.16.1

42.6.5 HearingResult Property

Syntax HearingResult: int32 {read-only, access after open-claim-enable}

Remarks A value indicating the voice recognition result is set.
The parameters to be set are as follows.

 Value Meaning

 VRCG_HRESULT_YESNO_YES

 Voice recognition result of StartHearingYesNo 
 methods. Also, Device got an answer that is 
 classified as YES. The recognized content is set in the 
 HearingDataWord property.

 VRCG_HRESULT_YESNO_NO

 Voice recognition result of startHearingYesNo 
 method. Also, Device got an answer that is classified 
 as NO. The recognition content is set in the 
 HearingDataWord property.

 VRCG_HRESULT_YESNO_CANCEL

 Voice recognition result of startHearingYesNo
 method. Also, Device got responses that are classified
 as CANCEL. The recognition content is set in the
 HearingDataWord property.

 VRCG_HRESULT_WORD

 Recognition result of startHearingWord 
 method. The recognition content is set in the 
 HearingDataWord property.

 VRCG_HRESULT_SENTENCE

 Recognition result of startHearingSentence 
 method.The recognition content is set in the
 HearingDataWordList property and
 HearingDataPattern property.

 VRCG_HRESULT_FREE

 Recognition result of startHearingFree method. The
 recognition content is set in the HearingDataWord
 property.

 This property is set by the device control just before the DataEvent is enqueued.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also HearingDataWord Property, HearingDataWordList Property, HearingDataPattern Property,
startHearingYesNo Method, startHearingWord Method, startHearingSentence Method, 
startHearingFree Method.

Unified POS, v1.16.1 1385

42.6.6 HearingStatus Property

Syntax HearingStatus: int32 {read-only, access after open-claim-enable}

Remarks A value indicating the voice recognition status is set.

 Value Meaning

 VRCG_HSTATUS_NONE

 Voice recognition is not running.

 VRCG_HSTATUS_YESNO

 Voice recognition by the startHearingYesNo method is in progress.

 VRCG_HSTATUS_WORD

 Voice recognition by the startHearingWord method is in progress.

 VRCG _HSTATUS_SENTENCE

 Voice recognition by the startHearingSentence method is in progress.

 VRCG _HSTATUS_FREE

 Voice recognition by the startHearingFree method is in progress.

 This property is initialized by the open method. Also, it is set by the device control just before the voice
recognition state changes.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also startHearingYesNo Method, startHearingWord Method, startHearingSentence Method,
startHearingFree Method

42.6.7 LanguageList Property

Syntax LanguageList: string {read-only, access after open}

Remarks Contains the comma-delimited list of language that are supported by the device.
The value representing the language is a value consisting of the language and 
country code defined in RFC 4664.
 For example, when the device supports US / English, Japan / Japanese, it will be as follows.
 "en-US, ja-JP"
 This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also startHearingYesNo Method, startHearingWord Method, startHearingSentence Method,
startHearingFree Method
1386 Unified POS, v1.16.1

42.7 Methods (UML operations)

42.7.1 startHearingFree Method

Syntax startHearingFree (language: string):
void {raises-exception, use after open-claim-enable}

 Parameter Description

Language Specify the language to recognize. Specify one of the
 values listed in the LanguageList property.

Remarks This method can make a voice recognition from the listed language in the 
 LanguageList property. In addition, this method can be called without specifying the word candidate to
be recognized from the application, however recognized word depends on the word recognizing device
capability. When this method is called, proper values are set in the HearingDataWord property, 
HearingResult property and HearingStatus property just before the DataEvent issuing. This method
is executed asynchronously. Voice recognition ends when stopHearing method is called.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

 Some possible values of the exception’s ErrorCode property are:

 Value Meaning

 E_ILLEGAL An invalid value was specified. Or an unsupported language was specified.

 E_BUSY Voice recognition in progress so it cannot be executed.

See Also HearingDataWord Property, HearingResult Property, HearingStatus Property, 
LanguageList Property, stopHearing Method.
Unified POS, v1.16.1 1387

42.7.2 startHearingSentence Method

Syntax startHearingSentence (language: string, wordList: string, 
patternList: string):
 void {raises-exception, use after open-claim-enable}

 Parameter Description

 language Specify the language to recognize. Specify one of the values listed in the
 LanguageList property.

 wordList Specify word candidates to be waited on in a comma-separated list.

 patternList Specify the sentence pattern information to be waited for in a comma-separated
 list.

 Each word information specified in wordList consists of the following information and is shown in the
following order, separated by a colon (":").

 Parameter Description

 wordGroupIDID to identify word list

 wordList A word candidate to be waited for being separated by a colon (":")

 For example, to specify word candidates "one" and "two" for word candidate’s "coffee" "tea" and word
group "number" in the single item group "product", specify as follows. "item:coffee:tea,
number:one:two"

 Each word information specified in patternList consists of the following information, and it is shown in
the following order separated by a colon (":").

 Parameter Description

 patternIDID to identify the pattern

 patternA sentence pattern to wait. To add the word list specified in wordList to the
 candidate, enclose the word group ID with "[" and "]". Example: "[word 
 group ID1]" [word group ID2] "

 Example: You can order coffee or tea. You can also specify how many cups you need. If you want to
recognize it by voice, do as follows.

 Set the startHearingSentence method parameter as follows:
 WordList:"item:coffee:tea, count:a:two:three" 
 Coffee, Tea -> item:coffee:tea
 How many cups -> count:a:two:three

 Invoke the method.
 startHearingSentence ("en-US", "item:coffee:tea,count:a:two", "P1:[count] 
 cup of [item],P2:[item]")
 HearingStatus=VRCG_HSTATUS_SENTENCE;

 People talk to "Give me two cups of coffee"
1388 Unified POS, v1.16.1

 Speech recognition is performed, properties are set, and an event is notified.
 HearingResult=VRCG_HRESULT_SENTENCE;
 HearingDataPattern="P1";
 HearingDataWordList="item:coffee,count:two";
 raise DataEvent(0);

Remarks This method can make a voice recognition from the listed language in the 
 LanguageList property. In addition, this method can recognize the words and 
 sentences that are defined in wordList and patternList as parameter. When this 
 method is called, proper values are set in the HearingDataWord property. 
 HearingResult property and HearingStatus property, just before DataEvent 
 issuing. This method is executed asynchronously. Voice recognition ends when 
 stopHearing method is called.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

 Some possible values of the exception’s ErrorCode property are:

 Value Meaning

 E_ILLEGAL An invalid value was specified. Or an unsupported language was specified.

 E_BUSY Voice recognition in progress so it cannot be executed.

See Also HearingDataWord Property, HearingResult Property, HearingStatus Property, LanguageList
Property, stopHearing Method

Unified POS, v1.16.1 1389

42.7.3 startHearingWord Method

Syntax startHearingWord (language: string, wordList: string):

 void {raises-exception, use after open-claim-enable}


Parameter Description

language Specify the language to recognize. Specify one of the values listed in the
LanguageList property.

wordList Specify word candidates to be waited on in a comma-separated list.
Example: "word1, word2, word3"

Remarks This method can make a voice recognition from the listed language in the LanguageList property. In
addition, this method can recognize the words that are defined in wordList as parameter. When this
method is called, proper values are set in the HearingDataWord property, HearingResult property and
HearingStatus property just before DataEvent issuing. 

This method is executed asynchronously. 

Voice recognition ends when stopHearing method is called.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid value was specified. Or an unsupported

language was specified.
E_BUSY Voice recognition in progress so it cannot be executed.

See Also HearingDataWord Property, HearingResult Property, HearingStatus Property, LanguageList Property,
stopHearing Method.
1390 Unified POS, v1.16.1

42.7.4 StartHearingYesNo Method

Syntax startHearingYesNo (language: string):
 void {raises-exception, use after open-claim-enable}


Parameter Description

language Specify the language to recognize. Specify one of the 
values listed in the LanguageList property.

Remarks This method can make a voice recognition from the listed language in the LanguageList property. In
addition, this method can recognize the words that are defined in the device as the recognition candidate
corresponding to "Yes" "No" "Cancel". When this method is called, proper values are set in the
HearingDataWord property, HearingResult property and HearingStatus property, just before
DataEvent issuing. This method is executed asynchronously. Voice recognition ends when
stopHearing method is called.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid value was specified. Or an unsupported

language was specified.
 E_BUSY Voice recognition in progress so it cannot be executed.

See Also LanguageList Property, HearingDataWord Property, Hearing Result Property, LanguageList
Property, stopHearing Method.

42.7.5 stopHearing Method

Syntax stopHearing ():
void {raises-exception, use after open-claim-enable}

 Remarks Voice Recognition ends when this property called.

 This method is executed synchronously.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid value was specified. Or an unsupported
 language was specified.
Unified POS, v1.16.1 1391

42.8 Events (UML interfaces)

42.8.1 DataEvent

<<event>> upos::events::DataEvent

Status :int32{read-only}

Description Notifies the application when data from the Voice Recognition device is 
available to be read.

Attributes This event contains the following attributes:

Attribute Type Description
Status int32 Set to 0.

Remarks Before this event is delivered, the Voice Recognition information is enqueued 
into the area that is indicated by the startHearingXXX kinds of method.

See Also HearingResult Property, “Events" on page 15, StartHearingYesNo Method, StartHearingWord
Method, StartHearingSentence Method, StartHearingFree Method, directIO Method.

42.8.2 DirectIOEvent

<<event>> upos::events::DirectIOEvent

EventNumber: int32 {read-only}
Data : int32 {read-write}
Obj : object {read-write}

Description Provides Service information directly to the application. This event provides a 
means for a vendor-specific Voice Recognition Service to provide events to 
the application that are not otherwise supported by the device control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned 

by the Service.
Data int32 Additional numeric data. Specific values vary by the 

EventNumber and the Service. This attribute is settable.
Obj object Additional data whose usage varies by the EventNumber 

and the Service. This attribute is settable.

Remarks This event is to be used only for those types of vendor specific functions that are 
not otherwise described.

Use of this event may restrict the application program programform being used 
with other vendor’s devices which may not have any knowledge of the Service’s 
need for this event.

See Also “Events (UML Interfaces)” on page 11, directIO method.
1392 Unified POS, v1.16.1

42.8.3 ErrorEvent

<<event>> upos::events:: ErrorEvent

ErrorCode: int32 {read-only}
ErrorCodeExtended: int32 {read-only}
ErrorLocus: int32 {read-only}
ErrorResponse: int32{read-write}

Description Notifies the application that a Voice Recognition Device error has been detected and suitable response
by the application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. 

 See a list of Error Codes on page 20.
ErrorCodeExtended int32 Extended Error code causing the error event.

If ErrorCode is E_EXTENDED, then see values below. 
Otherwise, it may contain a Service-specific value.

ErrorLocus int32 Location of the error. See values below.
ErrorResponse int32 Error Response, whose default value may be overridden by the

application. (i.e., this attribute is settable). See values below.

The ErrorLocus attribute has one of the following values:

Value Meaning
EL_INPUT Error occurred while gathering or processing event-driven input. 

No previously buffered input data is available.

EL_INPUT_DATA Error occurred while gathering or processing event-driven input, 
and some previously buffered data is available.

The application’s error event handler can set the ErrorResponse attribute to one
 of the following values:

Value Meaning
ER_RETRY Retry sending the data. The error state is exited. May be valid for some input

devices when the locus is EL_INPUT or EL_INPUT_DATA, which case the
input is re-tried, and the error state is exited.

ER_CLEAR Valid for all locus: EL_INPUT, EL_INPUT_DATA. Clear all buffered input
data. The error state is exited. This is the default response when the locus is
EL_INPUT.

ER_CONTINUEINPUT 
Only valid when the locus is EL_INPUT_DATA.
Acknowledges that a data error has occurred and directs the Device 
to continue input processing. The Device remains in the error state 
and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and
DataEventEnabled is again set to true, then another ErrorEvent is
Unified POS, v1.16.1 1393

delivered with locus EL_INPUT.
This is the default response when the locus is EL_INPUT_DATA.

Remarks This event is enqueued when an error is detected, and the Device’s State transitions into 
the error state. Input error events are not delivered until DataEventEnabled is true, so that 
proper application sequencing occurs.

Unlike a DataEvent, the Device does not disable further DataEvents or input ErrorEvents; 
it leaves the DataEventEnabled property value at true. Note that the application may set
DataEventEnabled to false within its event handler if subsequent input events need to be 
disabled for a period of time.

See Also “Device Input Model,” “Error Handling,” in Chapter 1.

42.8.4 StatusUpdateEvent

<<event>> upos::events:: StatusUpdateEvent
Status : int32 {read-only}

Description Notifies the application that there is a change in the power status or a status of the Voice
Recognition device.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Indicates a change in the power status or a status of the unit.

Note that Release 1.3 added Power State Reporting with additional Power reporting
StatusUpdateEvent values.

 The Update Firmware capability added additional Status values for communicating 
the status/progress of an asynchronous update firmware process. See “Status EventDescription” on
page 1-34.

Value Meaning

VRCG_SUE_START_HEARING_FREE
 It will be notified when hearing free starts.

VRCG_SUE_START_HEARING_SENTENCE
 It will be notified when hearing sentence starts.

VRCG_SUE_START_HEARING_WORD
 It will be notified when hearing word starts.

VRCG_SUE_START_HEARING_YESNO
 It will be notified when hearing yesno starts.

VRCG_SUE_STOP_HEARING
 It will be notified when hearing stops.

Remarks Enqueued when the Voice Recognition Device detects a power state change 
 or a status change.

See Also “Events (UML Interfaces)” on page 11.
1394 Unified POS, v1.16.1

43 Sound Player

43.1 General

This Chapter defines the Sound Player device category.

43.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.16 Not supported

CapCompareFirmwareVersion: boolean { read-only } 1.16 open

CapPowerReporting: int32 { read-only } 1.16 open

CapStatisticsReporting: boolean { read-only } 1.16 open

CapUpdateFirmware: boolean { read-only } 1.16 open

CapUpdateStatistics: boolean { read-only } 1.16 open

CheckHealthText: string { read-only } 1.16 open

Claimed: boolean { read-only } 1.16 open

DataCount: int32 { read-only } 1.16 Not supported

DataEventEnabled: boolean { read-write } 1.16 Not supported

DeviceEnabled: boolean { read-write } 1.16 open & claim

FreezeEvents: boolean { read-write } 1.16 open

OutputID: int32 { read-only } 1.16 open

PowerNotify: int32 { read-write } 1.16 open

PowerState: int32 { read-only } 1.16 open

State: int32 { read-only } 1.16 --

DeviceControlDescription: string { read-only } 1.16 --

DeviceControlVersion: int32 { read-only } 1.16 --

DeviceServiceDescription: string { read-only } 1.16 open

DeviceServiceVersion: int32 { read-only } 1.16 open

PhysicalDeviceDescription: string { read-only } 1.16 open

PhysicalDeviceName: string { read-only } 1.16 open
Unified POS, v1.16.1 1395

Properties (Continued)

Specific Type Mutability Version May Use After

CapAssociatedHardTotalsDevice string { read-only} 1.16 open

CapMultiPlay: boolean { read-only } 1.16 open

CapSoundTypeList: string { read-only } 1.16 open

CapStorage int32 { read-only } 1.16 open

CapVolume: boolean { read-only } 1.16 open

DeviceSoundList: string { read-only } 1.16 open

OutputIDList: string { read-only } 1.16 open, claim & enable

Storage int32 { read-write } 1.16 open, claim & enable

Volume: int32 { read-write } 1.16 open, claim & enable

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.16

close ():
void { raises-exception, use after open }

1.16

claim (timeout: int32):
void { raises-exception, use after open }

1.16

release ():
void { raises-exception, use after open, claim }

1.16

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.16

clearInput ():
void { raises-exception, use after open, claim }

1.16

clearInputProperties ():
void { raises-exception, use after open, claim }

1.16

clearOutput ():
void { }

Not supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.16

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void {raises-exception, use after open, claim, enable}

1.16

resetStatistics (statisticsBuffer: string):
void {raises-exception, use after open, claim, enable}

1.16

retrieveStatistics (inout statisticsBuffer: string):
void {raises-exception, use after open, claim, enable}

1.16
1396 Unified POS, v1.16.1

Methods (UML operations) (continued)

Common

Name Version

updateFirmware (firmwareFileName: string):
void {raises-exception, use after open, claim, enable}

1.16

updateStatistics (statisticsBuffer: string):
 void {raises-exception, use after open, claim, enable}

1.16

Specific

Name Version

playSound (fileName: string, loop: boolean):
 void {raises-exception, use after open, claim, enable}

1.16

stopSound(outputID:int32):
 void {raises-exception, use after open, claim, enable}

1.16
Unified POS, v1.16.1 1397

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent

Not supported 1.16

upos::events::DirectIOEvent

 EventNumber:

 Data:

Obj:

int32

int32

object

{read-only}
{read-write}
{read-write}

1.16

upos::events::ErrorEvent
 ErrorCode:
 ErrorCodeExtended:
 ErrorLocus:
 ErrorResponse:

int32
int32
int32
int32

{read-only}
{read-only}
{read-only}
{read-write}

1.16

upos::events::OutputCompleteEvent
 OutputID: int32 {read-only}

1.16

upos::events::StatusUpdateEvent
 Status:


int32 {read-only}

1.16

upos::events::TransitionEvent Not supported 1.16
1398 Unified POS, v1.16.1

43.3 General Information

The Sound Player programmatic name is "Sound Player".

43.3.1 Capabilities

The Sound Player has the following capability:

• Play audio file.

43.3.2 Sound Player Class Diagram

The following diagram shows the relationships between the Sound player classes.

<<exception> <<interface> <<utility>>
UposExceptio BaseControl UposConst

<<event>>
DirectIOEvent

+EventNumber: int32
+Data: int32
+Obj: object

<<event>>
ErrorEvent

+ErrorCode: int32
+ErrorCodeExtended: int32
+ErrorLocus: int32
+ErrorResponse: int32

<<event>>
OutputCompleteEvent

+OutputID: int32

<<event>>
StatusUpdateEvent

+Status: int32

<<property>> +Volume:int32
+playSound (fileName: string, loop: boolean): void
+stopSound (outputID: int32): void

<<interface>>

<<capability>> +CapAssociatedHardTotalsDevice:string

<<capability>> +CapVolume:boolean

<<property>> +Storage:string

Sound Player Device Control

<<capability>> +CapSoundTypeList:string
<<capability>> +CapStorage:int32

<<property>> +DeviceSoundList:string
<<property>> +OutputIDList:string

<<capability>> +CapMultiPlay:boolean

<<sends>>

<<fires>

<<fires

<<fires

<<fires>

<<uses>><<sends>>

<<uses>>
Unified POS, v1.16.1 1399

43.3.3 Model

The Sound Player follows the general device behavior model for asynchronous output devices:

• The Device validates the method parameters and produces an error condition immediately if necessary. If the
validation is successful, the Device does the following:

• Audio files will be played sequentially. When playSound method is called, device starts the playing sound that
is specified by the method parameters and the requested sound file data placed in a queue and corresponding
OutputID is stored at OutputID property and added to the OutputIDList property as a listed value. And sets
the OutputID property to a unique integer identifier for this request.

• When the sound playing starts StatusUpdateEvent is evoked as the value of
SPLY_SUE_START_PLAY_SOUND. When the sound playing is finished an OutputCompleteEvent is
enqueued for the delivery to the application and corresponding OutputID is stored in OutputID property. At
the same time, StatusUpdateEvent is evoked as the value of SPLY_SUE_STOP_PLAY_SOUND. The
application should compare the returned OutputCompleteEvent property OutputID value with the
OutputID value set by the asynchronous process method call used to send the data in order to track what data
has been successfully sent to the device.

• When stopSound method is called, device stop the playing sound according to the OutputID property value
and the current playing sound is terminated and enqueued sound file data is cleared. After this method is
executed, corresponding OutputID property and OutputIDList values are not changed. No
OutputCompleteEvent is fired and only StatusUpdateEvent will be evoked the value of
SPLY_SUE_STOP_PLAY_SOUND.

• If an error occurs while processing a request, an ErrorEvent is enqueued which will be delivered to the
application after the events already enqueued, including OutputCompleteEvent. No further asynchronous
output will occur until the event has been delivered to the application. If the response is ER_CLEAR, then
outstanding asynchronous output is cleared. If the response is ER_RETRY, then output is retried; note that if
several outputs were simultaneously in progress at the time that the error was detected, then the Service may
need to retry all of these outputs.

• Asynchronous output is always performed on a first-in first-out basis. If the device supports concurrent
playback, the request will be executed simultaneously. To check if the device supports simultaneous playback,
check the CapMultiPlay property.

• If the request is terminated before completion, due to reasons such as the application calling the clearOutput
method, then no OutputCompleteEvent is delivered.

• Application can also delete the output individually by calling the stopSound method. Also, in this case
OutputCompleteEvent will not be notified.”

• The CapSoundTypeList property lists audio file types that the device can play.

• The application will be informed about any status change with a StatusUpdateEvent, also all corresponding
status properties will be updated before event delivery.

• If device supports either or both of Hard Totals devices and the host file system, the
application should set the Storage property accordingly to tell where to access the data file.

• If device needs to be able to access the audio files played with playSound method from a Hard Totals device,
the CapAssociatedHardTotalsDevice property holds the open name of the associated Hard Totals device.
1400 Unified POS, v1.16.1

Device Sharing

The Sound Player is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing some properties or calling methods that
update the device.

• See the “Summary” table for precise usage prerequisites.

43.4 Properties (UML attributes)

43.4.1 CapAssociatedHardTotalsDevice Property

Syntax CapAssociatedHardTotalsDevice: string {read-only, access after open}

Remarks Holds the open name of the associated Hard Totals device if the device is able to write to such devices
which is the case if CapStorage is either SPLY_ CST_ALL or SPLY_CST_HARDTOTALS_ONLY.
If CapStorage is SPLY_CST_HOST_ONLY this property value must be the empty string. This
property is initialized by the open method.

Errors UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

See Also CapStorage Property

43.4.2 CapMultiPlay Property

Syntax CapMultiPlay: boolean {read-only, access after open}

Remarks If true, the application can play sound simultaneously.

If false, the application cannot play sound simultaneously.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also playSound Method.
Unified POS, v1.16.1 1401

43.4.3 CapSoundTypeList Property

Syntax CapSoundTypeList: string {read-only, access after open}

Remarks Contains the comma-delimited list of file type that is supported by the device.

For example, if the device only supports WAV and OGG, then this property should be set to “WAV,
OGG.” This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also playSound Method

43.4.4 CapStorage Property

Syntax CapStorage: int32 {read-only, access after open}

Remarks This is an enumeration and announces where the device is able to write the recorded sound data file to.
It holds one of the following values.

Value Meaning

SPLY_ CST_HARDTOTALS_ONLY

Only an associate Hard Totals device is supported.

SPLY_CST_HOST CST_ONLY Only the host’s file system is supported.

SPLY_CST_ALL Both, the associated Hard Totals device and the host’s file
system is supported.

This property is initialized by the open method.

If a Hard Totals device is supported the Storage, the property value should be SPLY_CST_HARDTOTALS_ONLY
or SPLY_CST_ALL and the property CapAssociatedHardTotalsDevice holds the open name of the associated
Hard Totals device.

See Also Storage Property, CapAssociatedHardTotalsDevice Property

43.4.5 CapVolume Property

Syntax CapVolume: boolean {read-only, access after open}

Remarks If true, the application can change the volume during playback.

If false, the application cannot change the volume during playback.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also Volume Property.

1402 Unified POS, v1.16.1

43.4.6 DeviceSoundList Property

Syntax DeviceSoundList: string {read-only, access after open}

Remarks Contains the comma-delimited list of device sound ID that is supported by the device. This property is
initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also playSound Method

43.4.7 OutputIDList Property

Syntax OutputIDList: string {read-only, access after open-claim-enable}

Remarks Contains the comma-delimited list of OutputID that is output by the playSound method. This property
is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also playSound Method

43.4.8 Storage Property

Syntax Storage: int32 {read-write, access after open-claim-enable}

Remarks It holds one of the following values.

Value Meaning

SPLY_ST_HARDTOTALS

The encoded data file is written to the associated Hard Totals device. The
property CapAssociatedHardTotalsDevice holds the open name of the
associated Hard Totals device.

SPLY_ST_HOST The encoded data file is written to the host’s file system.

SPLY_ST_HOST_HARDTOTALS

The encoded data file is written to the associated Hard Totals device and
host’s file system. The property CapAssociatedHardTotalsDevice holds
the open name of the associated Hard Totals device.

This property is initialized by the open method according to the value hold by CapStorage. If
CapStorage has the value SPLY_CST_ALL, it is initialized to SPLY_ST_HOST_HARDTOTALS.

Errors UposException may be thrown when this property is accessed. For further information, see “Errors” on
page 16. For further information, see “Errors” on page 16. Some possible values of the exception’s
ErrorCode property are:
Unified POS, v1.16.1 1403

Value Meaning
E_ILLEGAL An invalid value was specified or recording is ongoing.

See Also CapStorage Property

43.4.9 Volume Property

Syntax Volume : int32 {read-write, access after open-claim-enable}

Remarks Holds the volume at playing sound.

 Legal values range from zero through 100.

 This property is initialized by the open method. 

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Value Meaning
E_ILLEGAL An invalid value was specified.

See Also playSound Method

1404 Unified POS, v1.16.1

43.5 Methods (UML operations)

43.5.1 playSound Method

Syntax playSound (fileName : string, loop : boolean):
void{raises-exception, use after open-claim-enable}

Parameter Description
fileName Specifies the file name of audio file. Or, specifies one of the sound ID

defined by DeviceSoundList.
loop When true is specified, loop playback is performed, and if false is specified,

loop playback will not be performed.
Remarks Play audio file specified by fileName or device definition sound.

Audio files might be located in the area managed by “Hard Totals” service.

This method will be performed asynchronously. To stop playback, call the stopSound method.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16. Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid value was specified. Or an unsupported sound file was specified.
E_NOEXIST File does not exist.

See Also CapSoundType Property, DeviceSoundList Property, stopSound Method

43.5.2 stopSound Method

Syntax stopSound(outputID: int32):
void{raises-exception, use after open-claim-enable}

Parameter Description
outputID Specify the outputID of the sound to stop.

Remarks Terminates specified audio playback according to the OutputID property value.

Errors A UposException may be thrown when this method is invoked. For further information, see 
“Errors” on page 16. Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL The specified sound is not being played.

See Also OutputID Property, startSound MethodSyntaxIndividualIDs: string {read-only, access after open}

Remarks Set the IndividualIDs recognizable Individual recognition device.

IndividualIDs values are indicated by separated with a colon (":").

Its value is set prior to a DataEvent being delivered to the application.

Errors A UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

See Also CapIndividualList Property

Unified POS, v1.16.1 1405

43.6 Events (UML interfaces)

43.6.1 DirectIOEvent

<<event>> upos::events::DirectIOEvent

EventNumber : int32 {read-only}
Data : int32 {read-write}
Obj : object {read-write}

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Sound Player Service to provide events to the application that are not otherwise supported by the
device control.

Attributes This event contains the following attributes:
Attribute Type Description

EventNumber int 32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and 
 the Service. This attribute is settable.

Obj object Additional data whose usage varies by the EventNumber and the Service.
 This attribute is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described.
Use of this event may restrict the application program programform being used with other vendor’s
devices which may not have any knowledge of the Service’s need for this event.

See Also “Errors” on page 16, directIO Method
1406 Unified POS, v1.16.1

43.6.2 ErrorEvent

<<event>> upos::events:: ErrorEvent
 ErrorCode: int32{read-write}
 ErrorCodeExtended: int32{read-write}
 ErrorLocus : int32{read-write}
 ErrorResponse: int32{read-write}

Description Notifies the application that a Sound Player Device error has been detected and 
 suitable response by the application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. 

 See a list of Error Codes on page 16.
ErrorCodeExtended int32 Extended Error code causing the error event.

 If ErrorCode is E_EXTENDED, then see values below. 
 Otherwise, it may contain a Service-specific value.

ErrorLocus int32 Location of the error. If EL_OUTPUT is specified.
ErrorResponse int32 Error response, whose default value may be overridden by the

 application (i.e., this attribute is settable). See values below.

If ErrorCode is E_EXTENDED, then ErrorCodeExtended has one of the following values:

Value Meaning

ESPLY_NOROOM The encoded data storage area does not have enough room to store. The
 ErrorLocus attribute has the following attribute:

Value Meaning
EL_OUTPUT Error occurred while processing asynchronous output.

The application’s error event handler can set the ErrorResponse attribute to one of the
following values:

Value Meaning
ER_RETRY Retry the asynchronous output data. The error state is exited. This is the

default response.

ER_CLEAR Clear all buffered output data including all asynchronous output. (The effect
is the same as when clearOutput method is called.) The error state is exited.

Remarks This event is enqueued when an error is detected, and the Device’s State transitions into the error state.

See Also “Errors” on page 16, “Device Output Models” on page 20.　
Unified POS, v1.16.1 1407

43.6.3 OutputCompleteEvent

<<event>> upos::events::OutputCompleteEvent 
OutputID: int32{read-only}

Description Notify the application that the queued output request associated with the outputID property has
completed successfully.

Attributes This event contains the following attributes:

Attribute Type Description
OutputID int32 The ID number of the asynchronous output request 

 that is complete.

Remarks This event is enqueued after the request’s data has been both sent, and the Service 
has confirmation that it was processed by the device successfully.

See Also Device Output Models on page 20

43.6.4 StatusUpdateEvent

<<event>> upos::events:: StatusUpdateEvent
 Status : int32 {read-only}

Description Notifies the application that there is an operation status change or a status of 
the sound player device.

Attributes This event contains the following attribute:

Attributes Type Description

 Status int32 Indicates a change of operation status of sound 
 player device.

Note that Release 1.3 added Power State Reporting with additional Power 
reporting StatusUpdateEvent values.

The Update Firmware capability added additional Status values for 
communicating the status/progress of an asynchronous update firmware 
process. 　

Value Meaning

 SPLY_SUE_START_PLAY_SOUND
 It will be notified when sound playing start.

SPLY_SUE_STOP_PLAY_SOUND
 It will be notified when sound playing stop.

Remarks Enqueued when the Sound Player Device detects a power state change or 
a status change.

See Also “Events (UML Interfaces)” on page 11.
1408 Unified POS, v1.16.1

44 Speech Synthesis

44.1 General

This Chapter defines the Speech Synthesis device category.

44.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.16 Not supported

CapCompareFirmwareVersion: boolean { read-only } 1.16 open

CapPowerReporting: int32 { read-only } 1.16 open

CapStatisticsReporting: boolean { read-only } 1.16 open

CapUpdateFirmware: boolean { read-only } 1.16 open

CapUpdateStatistics: boolean { read-only } 1.16 open

CheckHealthText: string { read-only } 1.16 open

Claimed: boolean { read-only } 1.16 open

DataCount: int32 { read-only } 1.16 Not supported

DataEventEnabled: boolean { read-write } 1.16 Not supported

DeviceEnabled: boolean { read-write } 1.16 open & claim

FreezeEvents: boolean { read-write } 1.16 open

OutputID: int32 { read-only } 1.16 open

PowerNotify: int32 { read-write } 1.16 open

PowerState: int32 { read-only } 1.16 open

State: int32 { read-only } 1.16 --

DeviceControlDescription: string { read-only } 1.16 --

DeviceControlVersion: int32 { read-only } 1.16 --

DeviceServiceDescription: string { read-only } 1.16 open

DeviceServiceVersion: int32 { read-only } 1.16 open

PhysicalDeviceDescription: string { read-only } 1.16 open

PhysicalDeviceName: string { read-only } 1.16 open
Unified POS, v1.16.1 1409

Properties (Continued)

Specific Type Mutability Version May Use After

CapLanguage: boolean {read-only} 1.16 open

CapPitch: boolean {read-only} 1.16 open

CapSpeed: boolean {read-only} 1.16 open

CapVoice: boolean {read-only} 1.16 open

CapVolume: boolean {read-only} 1.16 open

Language: string {read-write} 1.16 open, claim & enable

LanguageList: string {read-only} 1.16 open

OutputIDList: string {read-only} 1.16 open, claim & enable

Pitch: int32 {read-write} 1.16 open, claim & enable

Speed: int32 {read-write} 1.16 open, claim & enable

Voice: string {read-write} 1.16 open, claim & enable

VoiceList: string {read-only} 1.16 open

Volume: int32 {read-write} 1.16 open, claim & enable

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.16

close ():
void { raises-exception, use after open }

1.16

claim (timeout: int32):
void { raises-exception, use after open }

1.16

release ():
void { raises-exception, use after open, claim }

1.16

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.16

clearInput ():
void { raises-exception, use after open, claim }

1.16

clearInputProperties ():
void { raises-exception, use after open, claim }

1.16

clearOutput ():
 void { raises-exception, use after open, claim }

1.16
1410 Unified POS, v1.16.1

Methods (UML operations) (continued)

Common

Name Version

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void {raises-exception, use after open, claim, enable}

1.16

directIO (command: int32, inout data: int32, inout obj: object):
void {raises-exception, use after open}

1.16

resetStatistics (statisticsBuffer: string):
void {raises-exception, use after open, claim, enable}

1.16

retrieveStatistics (inout statisticsBuffer: string):
void {raises-exception, use after open, claim, enable}

1.16

updateFirmware (firmwareFileName: string):
void {raises-exception, use after open, claim, enable}

1.16

updateStatistics (statisticsBuffer: string):
 void {raises-exception, use after open, claim, enable}

1.16

Specific

Name Version

speak (text: string):
void {raises-exception, use after open, claim, enable}

1.16

speakImmediate (text: string):
void {raises-exception, use after open, claim, enable}

1.16

stopCurrentSpeaking ():
void {raises-exception, use after open, claim, enable}

1.16

stopSpeaking (outputID: int32):
void {raises-exception, use after open, claim, enable}

1.16
Unified POS, v1.16.1 1411

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent

Not supported

upos::events::DirectIOEvent

EventNumber:

Data:

Obj:

int32

int32

object

{read-only}
{read-write}
{read-write}

1.16

upos::events::ErrorEvent
 ErrorCode:
 ErrorCodeExtended:
 ErrorLocus:
 *pErrorResponse:

int32
int32
int32
int32

{read-only}
{read-only}
{read-only}
{read-write}

1.16

upos::events::OutputCompleteEvent
 OutputID: int32 {read-only}

1.16

upos::events::StatusUpdateEvent
 Status:


int32 {read-only}

1.16

upos::events::TransitionEvent Not supported 1.16
1412 Unified POS, v1.16.1

44.3 General Information

The Speech Synthesis programmatic name is "Speech Synthesis".

44.3.1 Capabilities

The Speech Synthesis has the following capability:

• Convert text to speech and read it aloud.

44.3.2 Speech Synthesis Class Diagram

The following diagram shows the relationships between the Speech Synthesis classes.
Unified POS, v1.16.1 1413

44.3.3 Model

The Speech Synthesis follows the general device behavior model for output devices with some enhancements.

The application calls a speak method or speakImmediate method to speech.

The speak method acts to start speaking from the words specified by text, while the speakImmediate method
ends immediately previous speak method, and starts speaking the word specified by text asynchronously and
immediately.

When speak or speakImmediate method is called device start the speaking based on the setting value of
Language, Volume, Pitch and Speed properties. And requested utterance written by text data placed in a queue
and corresponding OutputID is stored at OutputID property and added to the OutputIDList property as listed
value. And sets the OutputID property to a unique integer identifier for this request.

When an utterance of speak method or speakImmediate method starts, StatusUpdateEvent is evoked as the
value of SPSY_SUE_START_SPEAK. When the utterance is finished an OutputCompleteEvent is enqueued
for the delivery to the application and corresponding OutputID is stored in OutputID property. At the same time
StatusUpdateEvent is evoked as the value of SPSY_SUE_STOP_SPEAK. The application should compare the
returned OutputCompleteEvent property OutputID value with OutputID value set by the asynchronous process
method call used to send the data in order to track what data has been successfully sent to the device

When speakImmediate method is called during the utterance of speak method or speakImmediate method call,
utterance will be stopped immediately. And StatusUpdateEvent is evoked as the value of
SPSY_SUE_STOP_SPEAK. However, OutputCompleteEvent is not fired. And current speak method or
speakImmediate method corresponding OutputID property and OutputIDList property values are not changed.

When stopCurrentSpeaking method is called, current utterance generated by speak method or speakImmediate
method will be stopped and StatusUpdateEvent is evoked as the value of SPSY_SUE_STOP_SPEAK. And no
OutputCompleteEvent is fired. And current speak method or speakImmediate method corresponding
OutputID property and OutputIDList property values are not changed.

When stopSpeaking method is called, specified OutputID valued utterance is stopped and deleted. And
OutputID property value in the OutputIDList property is eliminated.

When utterance is stopped StatusUpdateEvent is evoked as the value of SPSY_SUE_STOP_SPEAK. And no
OutputCompleteEvent is fired.

If an error occurs while processing a request, an ErrorEvent is enqueued which will be delivered to the
application after the events already enqueued, including OutputCompleteEvent. No further asynchronous output
will occur until the event has been delivered to the application. If the response is ER_CLEAR, then outstanding
asynchronous output is cleared. If the response is ER_RETRY, then output is retried; note that if several outputs
were simultaneously in progress at the time that the error was detected, then the service may need to retry all of
these outputs.

Asynchronous output is always performed on a first-in first-out basis.

If the request is terminated before completion, due to reasons such as the application calling the clearOutput
method, then no OutputCompleteEvent is delivered.

The application will be informed about any status change with a StatusUpdateEvent, also all corresponding
status properties will be updated before event delivery.
1414 Unified POS, v1.16.1

44.3.4 Device Sharing

The Speech Synthesis is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing some properties or calling methods that
update the device.

• See the “Summary” table for precise usage prerequisites.

44.4 Properties (UML attributes)

44.4.1 CapLanguage Property

Syntax CapLanguage: boolean {read-only, access after open}

Remarks If true, the application can change the language. If false, the application cannot change the language.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16

See Also Language Property

44.4.2 CapPitch Property

Syntax CapPitch: boolean {read-only, access after open}

Remarks If true, the application can change the pitch. If false, the application cannot change the pitch.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also Pitch Property

44.4.3 CapSpeed Property

Syntax CapSpeed: boolean {read-only, access after open}

Remarks If true, the application can change the speed. If false, the application cannot change the speed.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also Speed Property
Unified POS, v1.16.1 1415

44.4.4 CapVoice Property

Syntax CapVoice: boolean {read-only, access after open}

Remarks If true, the application can change the voice. If false, the application cannot change the voice.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, 
see “Errors” on page 16.

See Also Voice Property

44.4.5 CapVolume Property

Syntax CapVolume: boolean {read-only, access after open}

Remarks If true, the application can change the volume. If false, the application cannot change the volume.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also Volume Property

44.4.6 Language Property

Syntax Language: string {read-write, access after open-claim-enable}

Remarks Indicates the language to speak. Valid values are one of the values listed in the LanguageList property.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid value was specified. Or an unsupported

language was specified.

See Also speak Method, speakImmediate Method
1416 Unified POS, v1.16.1

44.4.7 LanguageList Property

Syntax LanguageList: string {read-only, access after open}

Remarks Contains the comma-delimited list of language that are supported by the device. The value representing
the language is a value consisting of the language and country code defined in RFC 4664. For example,
when the device supports US / English, Japan / Japanese, it will be as follows.
"en-US, ja-JP"

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also Language Property

44.4.8 OutputIDList Property

Syntax OutputIDList: string {read-only, access after open-claim-enable}

Remarks Comma-separated list of OutputID property values of audio being played by speak 
method or speakImmediate method. This list indicates the capability how many and 
what kinds of utterance can be done by the targeted Speech Synthesis device

This property is initialized by the open method. It will also be updated as the speech 
request increases or decreases.

Errors A UposException may be thrown when this property is accessed. For further information, 
see “Errors” on page 16.

See Also speak Method, speakImmediate Method

44.4.9 Pitch Property

Syntax Pitch: int32 {read-write, access after open-claim-enable}

Remarks Holds the pitch at speech. Legal values range from 50% through 200%.

This property is initialized to 100% by the open method.

Errors A UposException may be thrown when this property is accessed. For further 
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid value was specified.

See Also speak Method, speakImmediate Method
Unified POS, v1.16.1 1417

44.4.10 Speed Property

Syntax Speed: int32 {read-write, access after open-claim-enable}

Remarks Holds the speed at speech. Legal values range from 50% through 200%.

This property is initialized to 100% by the open method.

Errors A UposException may be thrown when this property is accessed. For further 
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid value was specified.

See Also speak Method, speakImmediate Method

44.4.11 Voice Property

Syntax Voice : string {read-write, access after open-claim-enable }

Remarks Indicates the voice tone to speak. Valid values are one of the values listed in the VoiceList property.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid value was specified. Or an unsupported

voice was specified.

See Also speak Method, speakImmediate Method

44.4.12 VoiceList Property

Syntax VoiceList: string {read-only, access after open}

Remarks A list of speech able voices is shown in a comma-separated list. For example, 
when the device supports male and female voice tones, it looks like the following.
“MALE_VOICE, FEMALE_VOICE”
(The content of the value depends on the device)

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further 
information, see “Errors” on page 16.

See Also Voice Property
1418 Unified POS, v1.16.1

44.4.13 Volume Property

Syntax Volume: int32 {read-write, access after open-claim-enable}

Remarks Holds the volume at speech. Legal values range from zero through 100.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further 
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid value was specified.

See Also speak Method, speakImmediate Method
Unified POS, v1.16.1 1419

44.5 Methods (UML operations)

44.5.1 speak Method

Syntax speak (text: string):
void {raises-exception, use after open-claim-enable}

Parameter Description

Text Specify the text to speak.

Remarks Device utters after converting the specified string into speech.

The utterance is executed according to the setting contents of Language property, Volume property,
Pitch property, Speed property, but by inserting the following tag in the text, it is possible to change the
utterance after the tag.

Content written in text is uttered with the following parameter settings.

If dialogue is “Hello. Today, it’s nice weather.”

Then if you would like to use the default setting of speed, volume, pitch for the “Hello”. And would like
to put a pose between “Hello” and “Today” 1000 milliseconds and would like to change the speaking
pith of “Today” to 150 and increase the volume to 80. Then for the “It’s nice weather” would like return
to the default value by using the reset. It is described as follows

 Hello.{pause=1000,pitch=150,volue=80}Today,{reset}It's nice weather.

Tag Description Value

(decimal integer)

Default Value

(decimal integer)
volume Specify the volume

of the uttered voice.
1 to 100 50

pitch Specify the high or
low of the uttered

voice.

50 to 200 100

speed Specify the speed of
the uttered voice.

50 to 200 100

pause Specify the time to
pause in

milliseconds.

1 to 50000 1

reset Rest the effect of
volume, pitch, speed
to the default value.

- -
1420 Unified POS, v1.16.1

When this method is called by the application, device validate the method parameters, 
and if validation is successful buffer the request in program memory and deliver it to the 
device and process it. And device sets the unique integer identifier into the OutputID property. 
When device successfully complete a request an OutputCompleteEvent is enqueued for delivery
 to the application.

If the device does not support volume change etc., that tag will be ignored. This method is executed
asynchronously. To end an utterance halfway, call the stopCurrentSpeaking method or the
stopSpeaking method.

Errors A UposException may be thrown when this method is invoked. For further information, 
see “Errors” on page 16. Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid value was specified. The language set in the Language property
 and the language specified by Text do not match.

See Also Language Property, Volume Property, Pitch Property, OutputID Property, Speed Property,
stopCurrentSpeaking Method, stopSpeaking Method

Name Data Remarks
Utterance written by text
with the speak method
parameter. Text will be
spoken under the assigned
parameter condition.

{#=f}XXXX{#=f}YYY
Y

#:Tag names
It is volume,
pitch, speed,
pause and reset.

f:Tag values
It is described
in the Tag
Value Table.
Unified POS, v1.16.1 1421

44.5.2 speakimmediate Method

Syntax speakImmediate (text: string):
void {raises-exception, use after open-claim-enable}


Parameter Description

text Specify the text to speak.

Remarks The speak method acts to start speaking the words specified by text, while the 
speakImmediate method ends immediately previous speak method, and starts 
speaking the word specified by text asynchronously and immediately.

After executing the same processing as the clearOutput method, speak the wording 
specified by text.

Like this speak method, this method can also change a specific wording by inserting a tag. 
For details, refer to the description of speak method.

This method is executed asynchronously. To end an utterance halfway, call the 
stopCurrentSpeaking method or the stopSpeaking method.

Errors A UposException may be thrown when this method is invoked. For further information, 
see “Errors” on page 16. Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid value was specified. The language set in the 

Language property and the language specified by Text 
do not match.

See Also Language Property, Volume Property, Pitch Property, Speed Property, speak Method,
stopCurrentSpeaking Method, stopSpeaking Method

44.5.3 stopCurrentSpeaking Method

Syntax stopCurrentSpeaking ():
void {raises-exception, use after open-claim-enable}

Remarks The speak method and speakImmediate method start the speaking words 
specified by text and ends when stopCurrentSpeaking method is called. 
This method handles asynchronously.

Errors A UposException may be thrown when this method is invoked. For further information, 
see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL Speech is not running.

See Also speak Method, speakImmediate Method
1422 Unified POS, v1.16.1

44.5.4 stopSpeaking Method

Syntax stopSpeaking (outputID: int32):
void {raises-exception, use after open-claim-enable}

Parameter Description

outputID Specify the value of the OutputID property you wish 
to terminate.

Remarks Stop and delete the utterance specified in OutputID.

Errors A UposException may be thrown when this method is invoked. For further information, 
see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid value was specified.

See Also OutputID Property, speak Method, speakImmediate Method
Unified POS, v1.16.1 1423

44.6 Events (UML interfaces)

44.6.1 DirectIOEvent

<<event>> upos::events::DirectIOEvent

EventNumber : int32 {read-only}
Data : int32 {read-write}
Obj : object {read-write}

Description Provides Service information directly to the application. This event provides a 
means for a vendor-specific Sound Player Service to provide events to the application 
that are not otherwise supported by the device control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber 

and the Service. This attribute is settable.
Obj object Additional data whose usage varies by the EventNumber and the 

Service. This attribute is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not 
otherwise described.

Use of this event may restrict the application program programform being used with 
other vendor’s devices which may not have any knowledge of the Service’s need for 
this event.

See Also “Errors” on page 16, directIO method
1424 Unified POS, v1.16.1

44.6.2 ErrorEvent

<<event>> upos::events:: ErrorEvent
ErrorCode: int32{read-write}
ErrorCodeExtended: int32{read-write}
ErrorLocus : int32{read-write}
ErrorResponse: int32{read-write}

Description Notifies the application that a Speech Synthesis Device error has been detected and suitable response by
the application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes on 

 page 16.
ErrorCodeExtended int32 Extended Error code causing the error event.

If ErrorCode is E_EXTENDED, then see values below. Otherwise,
it may contain a Service-specific value.

ErrorLocus int32 Location of the error. If EL_OUTPUT is specified. It is indicating
that an error occurred while processing asynchronous output.

ErrorResponse int32 Error response, whose default value may be overwritten by the
application (i.e., this attribute is settable). 
See values below.

The ErrorLocus attribute has one of the following values:

Value Meaning
EL_OUTPUT Error occurred while processing asynchronous output.

The application’s error event handler can set the ErrorResponse attribute to one of 
the following values:

Value Meaning
ER_RETRY Retry the asynchronous output. The error state is exited. This is the default

response.

ER_CLEAR Clear all buffered output data including all asynchronous output. (The effect
is the same as when clearOutput method is called.) The error state is exited.

Remarks This event is enqueued when an error is detected, and the Device’s State transitions into the 
error state.

See Also “Errors” on page 16, “Device Output Model” on page 20.
Unified POS, v1.16.1 1425

44.6.3 OutputComplete Event

<<event>> upos::events::OutputCompleteEvent
OutputID: int32{read-only}

Description Notify the application that the queued output request associated with the 
outputID property has completed successfully.

Attributes This event contains the following attributes:

Attribute Type Description
OutputID int32 The ID number of the asynchronous output request 

that is complete.

Remarks This event is enqueued after the request’s data has been both sent, and the Service 
has confirmation that it was processed by the device successfully.

See Also ”Device Output Model” on page 20

44.6.4 StatusUpdateEvent

<<event>> upos::events:: StatusUpdateEvent
Status : int32 {read-only}

Description Notifies the application that there is an operation status change or a status of the Speech Synthesis
device.

Attributes This event contains the following attribute:

Attribute Type Description

 Status int32 Indicates a change of operation status of sound player device.

Note that Release 1.3 added Power State Reporting with additional Power reporting
StatusUpdateEvent values.

The Update Firmware capability added additional Status values for communicating the status/progress
of an asynchronous update firmware process.

Value Meaning

SPCH_SUE_START_SPEAK It will be notified when speech synthesis starts.

SPCH_SUE_STOP_SPEAK It will be notified when speech synthesis stops.

Remarks Enqueued when the Speech Synthesis Device detects a power state change or a status change.

See Also “Errors” on page 16.
1426 Unified POS, v1.16.1

45 Gesture Control

45.1 General

This Chapter defines the Gesture Control device category.

45.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } Not supported

CapCompareFirmwareVersion: boolean { read-only } 1.16 open

CapPowerReporting: int32 { read-only } 1.16 open

CapStatisticsReporting: boolean { read-only } 1.16 open

CapUpdateFirmware: boolean { read-only } 1.16 open

CapUpdateStatistics: boolean { read-only } 1.16 open

CheckHealthText: string { read-only } 1.16 open

Claimed: boolean { read-only } 1.16 open

DataCount: int32 { read-only } --- Not supported

DataEventEnabled: boolean { read-write } --- Not supported

DeviceEnabled: boolean { read-write } 1.16 open & claim

FreezeEvents: boolean { read-write } 1.16 open

OutputID: int32 { read-only } 1.16 open

PowerNotify: int32 { read-write } 1.16 open

PowerState: int32 { read-only } 1.16 open

State: int32 { read-only } 1.16 --

DeviceControlDescription: string { read-only } 1.16 --

DeviceControlVersion: int32 { read-only } 1.16 --

DeviceServiceDescription: string { read-only } 1.16 open

DeviceServiceVersion: int32 { read-only } 1.16 open

PhysicalDeviceDescription: string { read-only } 1.16 open

PhysicalDeviceName: string { read-only } 1.16 open
Unified POS, v1.16.1 1427

Properties (Continued)

Specific Type Mutability Version May Use After

CapAssociatedHardTotalsDevice: string { read-only } 1.16 open

CapMotion: boolean { read-only } 1.16 open

CapMotionCreation: boolean { read-only } 1.16 open

CapPose: boolean { read-only } 1.16 open

CapPoseCreation: boolean { read-only } 1.16 open

CapStorage: int32 { read-only } 1.16 open

AutoMode: string { read-write } 1.16 open, claim & enable

AutoModeList: string { read-only } 1.16 open

JointList: string { read-only } 1.16 open

MotionList: string { read-only } 1.16 open

PoseCreationMode: boolean { read-write } 1.16 open, claim & enable

PoseList: string { read-only } 1.16 open

Storage: int32 { read-write } 1.16 open, claim & enable

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.16

close ():
void { raises-exception, use after open }

1.16

claim (timeout: int32):
void { raises-exception, use after open }

1.16

release ():
void { raises-exception, use after open, claim }

1.16

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.16

clearInput ():
void { raises-exception, use after open, claim }

1.16

clearInputProperties ():
void { raises-exception, use after open, claim }

1.16

clearOutput ():
void { raises-exception, use after open, claim }

1.16

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.16

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.16

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.16

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.16
1428 Unified POS, v1.16.1

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.16

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.16

Specific

Name Version

createMotion (fileName: string, poseList: string): 
void { raises-exception, use after open, claim, enable }

1.16

createPose (fileName: string, time: int32):
void { raises-exception, use after open, claim, enable }

1.16

getPosition (jointID: string, out position: int32):
void { raises-exception, use after open, claim, enable }

1.16

setPosition (positionList: string, time: int32 , absolute: boolean): 
void { raises-exception, use after open, claim, enable }

1.16

setSpeed (speedList: string, time: int32): 
void { raises-exception, use after open, claim, enable }

1.16

startMotion (fileName: string): 
void { raises-exception, use after open, claim, enable }

1.16

startPose (fileName: string): 
void { raises-exception, use after open, claim, enable }

1.16

stopControl (outputID: int32): 
void { raises-exception, use after open, claim, enable }

1.16

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent
Not supported

upos::events::DirectIOEvent
 EventNumber:
 Data:
Obj:

int32

int32

object

{read-only}
{read-write}
{read-write}

1.16

upos::events::ErrorEvent
 ErrorCode:
 ErrorCodeExtended:
 ErrorLocus:
 ErrorResponse:

int32
int32
int32
int32

{read-only}
{read-only}
{read-only}
{read-write}

upos::events::OutputCompleteEvent
 OutputID: int32

1.16
Unified POS, v1.16.1 1429

upos::events::StatusUpdateEvent
 Status:


int32 {read-only}

1.16

upos::events::TransitionEvent Not supported

Events (UML interfaces)

Name Type Mutability Version
1430 Unified POS, v1.16.1

45.3 General Information

The Gesture Control device programmatic name is “Gesture Control.”

45.3.1 Capabilities

The Gesture Control device has the following capabilities:

• It controls the behavior of various joint components and parts.

• The operation is automatically controlled by interlocking various joints and other devices.

• Register and play the defined pose and motion.

45.3.2 Gesture Control Class Diagram

The following diagram shows the relationships between the Gesture Control classes.

<<exception> <<interface> <<utility>>
UposExceptio BaseControl UposConst

<<event>>
DirectIOEvent

+EventNumber: int32
+Data: int32
+Obj: object

<<event>>
ErrorEvent

+ErrorCode: int32
+ErrorCodeExtended: int32
+ErrorLocus: int32
+ErrorResponse: int32

<<event>>
OutputCompleteEvent

+OutputID: int32

<<event>>
StatusUpdateEvent

+Status: int32

<<property>> +JointList:string
<<property>> +Strage:int32

<<interface>>

<<capability>> +CapMotion:boolean

<<property>> +AutoMode:string

<<capability>> +CapAssociatedHardTotalsDevice:string

<<capability>> +CapStrage:int32

+stopControl (outputID: int32): void

Gesture Control Device Control

<<capability>> +CapPose:boolean
<<capability>> +CapPoseCreation:boolean

+getPosition (jointID: string, out position: int32): void

+createMotion (fileName: string, poseList: string): void

<<capability>> +CapMotionCreation:boolean

<<property>> +AutoModeList:string
<<property>> +MotionList:string
<<property>> +PoseCreationMode:boolean
<<property>> +PoseList:string

+setPosition (positionList: string, time: int32, absolute: boolean): void
+setSpeed (speedList: string, time: int32) : void
+startMotion (fileName: string): void
+startPose (fileName: string): void

+createPose (fileName: string, time: int32): void

<<fires>

<<fires

<<fires>

<<fires>

<<send

<<uses>><<sends>>

<<uses>>
Unified POS, v1.16.1 1431

45.3.3 Model

The Gesture Control follows the general device behavior model for asynchronous output devices:

• The application calls a setPosition, setSpeed, startPose, startMotion method to start output. The Device
validates the method parameters and produces an error condition immediately if necessary. If the validation is
successful, the Device does the following:

• Buffers the request in program memory, for delivery to the Physical Device as soon as the Physical Device
can receive and process it.

• Sets the OutputID property to a unique integer identifier for this request.

• Returns as soon as possible.

• When the Device successfully completes a request, an OutputCompleteEvent is enqueued for delivery to the
application. A property of this event contains the outputID of the completed request. The application should
compare the returned OutputCompleteEvent property OutputID value with the OutputID value set by the
asynchronous process method call used to send the data, in order to track what data has been successfully sent
to the device.

• If an error occurs while processing a request, an ErrorEvent is enqueued which will be delivered to the
application after the events already enqueued, including OutputCompleteEvent. No further asynchronous
output will occur until the event has been delivered to the application. If the response is ER_CLEAR, then
outstanding asynchronous output is cleared. If the response is ER_RETRY, then output is retried; note that if
several outputs were simultaneously in progress at the time that the error was detected, then the Service may
need to retry all of these outputs.

• Asynchronous output is always performed on a first-in first-out basis.

• If the request is terminated before completion, due to reasons such as the application calling the clearOutput
method, then no OutputCompleteEvent is delivered.

• Application can also delete the output individually by calling the stopControl method. Also, in this case
OutputCompleteEvent will not be notified.

• The application will be informed about any status change with a StatusUpdateEvent, also all corresponding
status properties will be updated before event delivery.

45.3.4 Automatic control

Automatic control of a joint means to automatically control a joint on the device side, such as tracking according to the
movement of a person's face, in cooperation with a camera or the like connected to the device.

The automatic control function is device dependent. For possible automatic control, it is enabled by confirming with the
AutoModeList property and setting a value in the AutoMode property.

45.3.5 Pose/Motion

Pose refers to setting the position of one or more defined joints.

For example, it is an action that lifts a hand.

To execute a pose, specify the pose file name by the startPose method or the pose name defined in the device.
1432 Unified POS, v1.16.1

Create the pose file with the createPose method described later. Pose defined in the device will be checked in the value
of PoseList property.

To execute motion, specify the motion file name or the motion name defined in the device with the startMotion method.

Motion files are created by the createMotion method to be described later. Motion defined in the device can be checked
with the value of MotionList property.

To create a pose file, first set the PoseCreationMode property to TRUE and enable the pose registration function. When
pose registration function is enabled, each joint is set to the default position. At this time, if the automatic control mode
is enabled, the automatic control mode is temporarily invalidated.

Then, application can create a pose file by setting the value defined as a pose with the setPosition method and calling the
createPose method.

A motion file can be created and recorded by specifying the pose defined in the created pose file or the pose defined in
the device and creating it as a series of continuously changing actions and calling the createMotion method.

Since the created pose and motion files are recorded in the area may store in either the “Hard Totals” devices or the host
file system, or both, and the CapStorage property will show the device’s data file storage location capability.

If device supports either of both Hard Totals devices and the host file system, the application should set the Storage
property accordingly to tell where to write the data file.

If device needs to be able to write the pose and motion files to a Hard Totals device, the CapAssociatedHardTotalsDevice
property holds the open name of the associated Hard Totals device.

45.3.6 Device Sharing

The Gesture Control device is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing some properties or calling methods that
update the device.

• See the “Summary” table for precise usage prerequisites.
Unified POS, v1.16.1 1433

45.4 Properties (UML attributes)

45.4.1 AutoMode Property

Syntax AutoMode: string {read-write, access after open-claim-enable}

Remarks Indicates automatic control mode ID. Valid values are the empty string "" or one of the AutoModeList
properties listed.

 If one of the properties described in the AutoModeList property is set, the automatic control mode will
be enabled in the set mode.

Setting the empty character "" disables the automatic control mode.

 This property is initialized to the empty string "" by the open method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid value was specified.

See Also AutoModeList Property

45.4.2 AutoModeList Property

Syntax AutoModeList: string {read-only, access after open}

Remarks Comma-separated list of joint automatic control IDs supported by the device.

For example, in conjunction with the camera, if the mode of tracking the face of a person by moving
only the joint of Joint01, this is “FaceTrack_Joint01.”

 Another example, in conjunction with the camera, if the mode of tracking the face of a person by
moving all joints are supported, this is “FaceTrack_ALL.”

 (Content and order are dependent on the device.)

This property is initialized by the open method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also AutoMode Property.

1434 Unified POS, v1.16.1

45.4.3 CapAssociatedHardTotalsDevice Property

Syntax CapAssociatedHardTotalsDevice: string {read-only, access after open}

Remarks Holds the open name of the associated Hard Totals device if the device is able to write to such devices
which is the case if CapStorage is either GCTL_CST_ALL or GCTL_CST_HARDTOTALS_ONLY.
If CapStorage is GCTL_CST_HOST_ONLY this property value must be the empty string. This
property is initialized by the open method.

Errors UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

See Also CapStorage Property

45.4.4 CapMotion Property

Syntax CapMotion: boolean {read-only, access after open}

Remarks If true, the device supports making the motion function. Otherwise, it is false. When this property is
false, startMotion method, createMotion method is not available. This property is initialized by the
open method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also startMotion Method, createMotion Method.

45.4.5 CapMotionCreation Property

Syntax CapMotionCreation: boolean {read-only, access after open}

Remarks If true, the device supports motion registration function.

If false, the device does not support motion registration function.

If this property is FALSE, the createMotion method is not available.

This property is initialized by the open method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also createMotion Method.

45.4.6 CapPose Property

Syntax CapPose: boolean {read-only, access after open}

Remarks If true, the device supports pose function. Otherwise, it is false.

When this property is FALSE, PoseCreationMode property value cannot be changed, in addition,
startPose method, and createPose method are not available.

This property is initialized by the open method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also PoseCreationMode Property, startPose Method, createPose Method.
Unified POS, v1.16.1 1435

45.4.7 CapPoseCreation Property

Syntax CapPoseCreation: boolean {read-only, access after open}

Remarks If true, the device supports pose registration function.

If false, the device does not support pose registration function.

When this property is FALSE, the createPose method that can change the PoseCreationMode property
is not available.

This property is initialized by the open method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also PoseCreationMode Property, createPose Method.

45.4.8 CapStorage Property

Syntax CapPoseCreation: boolean {read-only, access after open}

Remarks If true, the device supports pose registration function.

If false, the device does not support pose registration function.

When this property is FALSE, the createPose method that can change the PoseCreationMode property
is not available.

This property is initialized by the open method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also PoseCreationMode Property, createPose Method.
1436 Unified POS, v1.16.1

45.4.9 JointList Property

Syntax JointList: string {read-only, access after open}

Remarks Comma-separated list of joint information supported by the device.

Each piece of joint information consists of the following information and is shown in the following
 order, separated by a colon (":").

Parameter Description
JointID Indicates a unique ID in the service that identifies the

joint.
Position range availability:
If position range is 0, the Joint does not have the

 position range.
If position range is 1, the joint holds the position range.
For example, arm joint has a range of rotation width
but wheel for movement does not have the range of
movement amount.
If there is a device with joints that supports pitch, roll,
yaw and wheels that supports rotating and moving back

 and forth.
In this case they are indicated as follows:
"Joint01_Pitch:1, Joint01_Roll:1, Joint01_Yaw:1,
Wheel_Turn:0, Wheel_Move:0"

This property is initialized by the open method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

45.4.10 MotionList Property

Syntax MotionList: string {read-only, access after open}

Remarks Comma-separated list of motion IDs defined on the device.

For example, “bowing, welcoming, clapping,…”

This property is initialized by the open method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Unified POS, v1.16.1 1437

45.4.11 PoseCreationMode Property

Syntax PoseCreationMode: boolean {read-write, access after open-claim-enable}

Remarks If true, pose registration function is enabled.

If false, pose registration function is invalid.

When this property is set to true, pose registration function is enabled. When false is set, the pose
registration function is disabled.

This property is initialized to false when you first enable the device after calling the open method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid value was specified.

See Also CapPose Property, CapPoseCreation Property.

45.4.12 PoseList Property

Syntax PoseList: string {read-only, access after open}

Remarks A comma-separated list of pose IDs defined on the device.

For example, “surprise, bow, think,….”

This property is initialized by the open method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.
1438 Unified POS, v1.16.1

45.4.13 Storage Property

Syntax Storage: int32 {read-write, access after open-claim-enable}

Remarks This is an enumeration and defines where the device writes the recorded motion and/or pose data file to.
Should be set before an appropriate method call.
It holds one of the following values.

Value Meaning

GCTL_ST_HARDTOTALS

 The motion and/or pose data file is written to the associated Hard Totals
device. The property CapAssociatedHardTotalsDevice holds the open
name of the associated Hard Totals device.

GCTL_ST_HOST The motion and/or pose data file is written to the host’s file system.

GCTL_ST_HOST_HARDTOTALS

The motion and/or pose data file is written to the associated Hard Totals
device and host’s file system. The property
CapAssociatedHardTotalsDevice holds the open name of the associated
Hard Totals device.

This property is initialized by the open method according to the value hold by CapStorage. If
CapStorage has the value GCTL_CST_ALL, it is initialized to GCTL_ST_HOST_HARDTOTALS.

Errors UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

Value Meaning

E_ILLEGAL An invalid value was specified, or recording is ongoing.

See Also CapStorage Property, CapAssociatedHardTotalsDevice Property
Unified POS, v1.16.1 1439

45.4.14 Table of Gesture Control Device Listed Items in Property

Property Name Item ID, File Name, Name Parameter

AutoModeList
Face Track

Joint01
Joint_ALL

Chase
Joint01, Wheel01, Wheel02
Joint_ALL, Wheel_ALL,

MotionList
Bowing, Welcoming, Clapping,
Farewelling01, Farewelling02,
Greeting01, Greeting02 ,

PoseList
Surprise, Bow01, Bow02,
Think01, Think02
Doubt01, Doubt02

JointList

Joint
Pitch
Roll
Yaw

Wheel
Turn
Move Back
Move Forth
1440 Unified POS, v1.16.1

45.5 Methods (UML operations)

45.5.1 createMotion Method

Syntax createMotion (fileName: string, poseList: string): 
void {raises-exception, use after open-claim-enable}

Parameter Description

fileName Specify the motion file name recorded as motion.

poseList Specify the comma-separated list of pose information to be registered.

Remarks A motion file can be created and recorded by specifying the pose defined in the created pose file or the
 pose defined in the device and creating it as a series of continuously changing actions.

The place where the motion file is recorded is the area value of the Storage property.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL fileName is too long or contains unusable characters.

 E_EXISTS fileName already exists.

45.5.2 createPose Method

Syntax createPose (fileName: string, time: int32): 
 void {raises-exception, use after open-claim-enable}

Parameter Description

fileName Specify the pose file name to record the pose.

time Specify the time to reach the pose position.

Remarks Record the position of each joint in the pose file.

Before calling this method, it needs to set the PoseCreationMode property to TRUE and to make
enabling pose registration mode.

The place where the motion file is recorded is the area value of the Storage property.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL FileName is too long or contains unusable characters. Or PoseCreationMode
is FALSE.

E_EXISTS FileName already exists.

See Also PoseCreationMode Property.
Unified POS, v1.16.1 1441

45.5.3 getPosition Method

Syntax getPosition (jointID: string, out position: int32): 
void {raises-exception, use after open-claim-enable}

Parameter Description
jointID Specify the one of the joint ID values that are listed in the JointList property.

And specified JointList property should be the position range present one.
position Store the specified value as the position associated with jointID.

Remarks It acquires the position specified by jointID and stores it in position.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid value was specified.

See Also JointList Property.

45.5.4 setPosition Method

Syntax setPosition (positionList: string, time: int32, absolute: boolean): 
void {raises-exception, use after open-claim-enable}

Parameter Description

positionList Specify the position information in a comma-
 separated list.

time Specify the time of device control completion in 
 seconds. If this value is too small, it will be changed 
 to an appropriate value depending on the service.

absolute If true, the specified position indicates the absolute value. 
 If false, the specified position indicates relative value.

Each position information specified in the positionList consists of the following information and is
shown in the following order separated by a colon (":").
1442 Unified POS, v1.16.1

Parameter Description
jointID Specify the joint ID. Specify one of the values listed in 

the JointList property. However, it must be an ID whose 
position range is present.

position Specify the position to be set. Valid values range from -100 to 100.
100 represents the limit value in the positive direction of the target 
joint, and -100 represents the limit value in the negative direction.
If absolute is a relative value (false) and the value specified here 
exceeds the limit value, it will be changed to an appropriate value by 
the service.

 For example, to move Yow of Joint01 up to the limit of the positive 
direction and move Pitch of Joint02to the middle, specify as follows.

 "Joint01_Yaw:100,Joint02:Pitch:0"

Remarks The joint position is set with the contents specified in PositionList and device control is started so that
device control is completed at the time specified by Time.

Joints that can be specified with this method are only those that have a position range.

Check the JointList property for the presence or absence of the position range.

This method is executed asynchronously. To terminate the operation prematurely, call the stopControl
method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid value was specified. 

See Also JointList Property, stopControl Method.
Unified POS, v1.16.1 1443

45.5.5 setSpeed Method

Syntax setSpeed (speedList: string, time: int32): 
void {raises-exception, use after open-claim-enable}

Parameter Description
speedList Specify speed information in a comma-separated list.

time Specify the time to device control in seconds. If the value of
 FOREVER(-1) is specified, it will continue to operate until you call the
 stopControl method.

Each speed information specified in the SpeedList consists of the following information, and it is shown
in the following order separated by a colon (":").

Parameter Description
jointID Specify the joint ID. Specify one of the values listed in the
 JointList property.

speed Specify the speed to set. Valid values range from
 -100 to 100. 100 represents the maximum speed in the
 positive direction of the target joint, and -100 represents the
 maximum speed in the negative direction.

For example, to move Wheel's X at the maximum speed in the positive direction and Y at the Wheel at
half the speed in the negative direction, specify as follows.
"Wheel_X:100, Wheel_Y:-50"

Remarks It sets the speed of the joint with the contents specified by speedList and performs device control for the
time specified by time.

This method is executed asynchronously. To terminate the operation prematurely, call the stopControl
method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid value was specified.

See Also JointList Property, stopControl Method.
1444 Unified POS, v1.16.1

45.5.6 startMotion Method

Syntax startMotion (fileName: string): 
void {raises-exception, use after open-claim-enable}

Parameter Description

fileName Prior to start this method, need to specify the name of the motion file or the
motion ID value that is listed in the MotionList property.

Remarks Start the motion defined by fileName or motion defined by the device. This method is executed
asynchronously and when the device successfully completes a request, an OutputCompleteEvent is
enqueued and a property of corresponding event’s OutputID is placed into the OutputID property.
The application should compare the returned OutputCompleteEvent property outputID value set by
this method to track what data has been sent to device.

Motion files are placed in the area as the value of Storage property.

To terminate motion control prematurely, call the stopControl method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid value was specified.
E_NOEXIST File does not exist.

See Also MotionList Property.
Unified POS, v1.16.1 1445

45.5.7 startPose Method

Syntax startPose (fileName: string): 
void {raises-exception, use after open-claim-enable}

Parameter Description

fileName Specify the name of the pose file to start. Or one of the pose ID lists listed in
the PoseList property.

Remarks Start the pose defined by the pose file or device specified by fileName. This method is executed
asynchronously and when the device successfully completes a request, an OutputCompleteEvent is
enqueued and a property of corresponding event’s OutputID is placed into the OutputID property. The
application should compare the returned OutputCompleteEvent property OutputID value set by this
method to track what data has been sent to device. Pose files are placed in the area as the values of
Storage property. To terminate pause control prematurely, call the stopControl method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid value was specified.
E_NOEXISTS File does not exist.

See Also PoseList Property, stopControl Method.

45.5.8 stopControl Method

Syntax stopControl (outputID: int32): 
void {raises-exception, use after open-claim-enable}

Parameter Description

outputID Specify the value of the OutputID property to be terminated.

Remarks Stop the control specified for outputID. When device successfully complete the request, and
OutputCompleteEvent is enqueued. A property of this event contains the outputID of the completed
request. The application should compare the returned OutputCompleteEvent property OutputID value
with OutputID value set by this method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid value was specified.

See Also setPosition Method, setSpeed Method, startPose Method, startMotion Method.

1446 Unified POS, v1.16.1

45.6 Events (UML interfaces)

45.6.1 DirectIOEvent

<<event>> upos::events::DirectIOEvent

EventNumber: int32 {read-only}
Data : int32 {read-write}
Obj : object {read-write}

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Sound Player Service to provide events to the application that are not otherwise supported by
the device control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.

Data int32 Additional numeric data. Specific values vary by the EventNumber and the
Service. This attribute is settable.

Obj object Additional data whose usage varies by the EventNumber and the Service.
This attribute is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described.

Use of this event may restrict the application program program form being used with other vendor’s
devices which may not have any knowledge of the Service’s need for this event. 

See Also “Errors” on page 16, directIO method
Unified POS, v1.16.1 1447

45.6.2 ErrorEvent

<<event>> upos::events:: ErrorEvent
ErrorCode : int32{read-write}
ErrorCodeExtended : int32{read-write}
ErrorLocus : int32{read-write}
ErrorResponse : int32{read-write}

Description Notifies the application that a Gesture Control Device error has been detected and suitable response by
the application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. 

 See a list of Error Codes on page 20.
ErrorCodeExtended int32 Extended Error code causing the error event.

If ErrorCode is E_EXTENDED, then see values below. 
Otherwise, it may contain a Service-specific value.

ErrorLocus int32 Location of the error. If EL_OUTPUT is specified, it is indicating
that error occurred while processing asynchronous output.

ErrorResponse int32 Error response, whose default value may be overridden by the
application (i.e., this attribute is settable). See values below.

If ErrorCode is E_EXTENDED, then ErrorCodeExtended has one of the following values:

Value Meaning

EGCTL_NOROOM There is not enough room for the targeted data file storage area.

The ErrorLocus attribute has the following value:

Value Meaning
EL_OUTPUT Error occurred while processing asynchronous output.

The application’s error event handler can set the ErrorResponse attribute to one of the following values:

Value Meaning
ER_RETRY Retry the asynchronous output. The error state is exited. This is the default

response.

ER_CLEAR Clear all buffered input or output data including all asynchronous output.
(The effect is the same as when clearOutput method is called.) The error
state is exited.

Remarks This event is enqueued when an error is detected, and the Device’s State transitions into the error state.

See Also “Errors” on page 16, “Device Output Model” on page 20.

45.6.3 OutputCompleteEvent

<<event>> upos::events::OutputCompleteEvent
OutputID: int32{read-only}

Description Notify the application that the queued output request associated with the outputID property has
completed successfully.
1448 Unified POS, v1.16.1

Attributes This event contains the following attributes:

Attribute Type Description
OutputID int32 The ID number of the asynchronous output request that is complete.

Remarks This event is enqueued after the request’s data has been both sent, and the Service has confirmation that
it was processed by the device successfully.

See Also “Device Output Model” on page 20.

45.6.4 StatusUpdateEvent

<<event>> upos::events:: StatusUpdateEvent
Status : int32 {read-only}

Description Notifies the application that there is an operation status change or a status of the Gesture Control
device.

Attributes This event contains the following attribute:

Attributes Type Description

 Status int32 Indicates a change of operation status of sound player device

. Note that Release 1.3 added Power State Reporting with additional Power reporting
StatusUpdateEvent values.

The Update Firmware capability added additional Status values for communicating 
the status/progress of an asynchronous update firmware process. 

Value Meaning

 GCTL_SUE_START_MOTION 
 It will be notified when Gesture Motion start.

GCTL_SUE_STOP_MOTION 
 It will be notified when Gesture Motion stop.

Remarks Enqueued when the Gesture Control Device detects a power state change or a 
 status change.

See Also “Events (UML Interfaces)” on page 11.
Unified POS, v1.16.1 1449

1450 Unified POS, v1.16.1

46 Device Monitor

46.1 General

This Chapter defines the Device Monitor device category.

46.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.16 open

CapCompareFirmwareVersion: boolean { read-only } 1.16 open

CapPowerReporting: int32 { read-only } 1.16 open

CapStatisticsReporting: boolean { read-only } 1.16 open

CapUpdateFirmware: boolean { read-only } 1.16 open

CapUpdateStatistics: boolean { read-only } 1.16 open

CheckHealthText: string { read-only } 1.16 open

Claimed: boolean { read-only } 1.16 open

DataCount: int32 { read-only } 1.16 open

DataEventEnabled: boolean { read-write } 1.16 open

DeviceEnabled: boolean { read-write } 1.16 open & claim

FreezeEvents: boolean { read-write } 1.16 open

OutputID: int32 { read-only } 1.16 Not supported

PowerNotify: int32 { read-write } 1.16 open

PowerState: int32 { read-only } 1.16 open

State: int32 { read-only } 1.16 --

DeviceControlDescription: string { read-only } 1.16 --

DeviceControlVersion: int32 { read-only } 1.16 --

DeviceServiceDescription: string { read-only } 1.16 open

DeviceServiceVersion: int32 { read-only } 1.16 open

PhysicalDeviceDescription: string { read-only } 1.16 open

PhysicalDeviceName: string { read-only } 1.16 open
Unified POS, v1.16.1 1451

Properties (Continued)

Specific Type Mutability Version May Use After

DeviceData: string { read-only } 1.16 open, claim & enable

DeviceList: string { read-only } 1.16 open

MonitoringDeviceList: string { read-only } 1.16 open, claim & enable

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.16

close ():
void { raises-exception, use after open }

1.16

claim (timeout: int32):
void { raises-exception, use after open }

1.16

release ():
void { raises-exception, use after open, claim }

1.16

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.16

clearInput ():
void { raises-exception, use after open, claim}

1.16

clearInputProperties ():
void { raises-exception, use after open, claim }

1.16

clearOutput ():
void { }

Not supported

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.16

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.16

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.16

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.16

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.16

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.16

Specific

addMonitoringDevice (deviceID: string, monitoringMode: int32, bound-
ary:
 int32, subBoundary: int32, intervalTime: int32):
 void {raises-exception, use after open, claim, enable}

1.16

clearMonitoringDevices ():
 void {raises-exception, use after open, claim, enable}

1.16
 1452 Unified POS, v1.16.1

deleteMonitoringDevice (deviceID: string):
 void {raises-exception, use after open, claim, enable}

1.16

getDeviceValue (deviceID: string, pValue: int32)
 void {raises-exception, use after open}

1.16

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent
 Status: int32 {read-only}

 1.16

upos::events::DirectIOEvent
 Data:
 EventNumber:
 Obj:

int32

int32

object

{read-write}
{read-only}
{read-write}

1.16

upos::events::ErrorEvent
 ErrorCode:
 ErrorCodeExtended:
 ErrorLocus:
 ErrorResponse:

int32
int32
int32
int32

{read-only}
{read-only}
{read-only}
{read-write}

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent
 Status:


int32 {read-only}

upos::events::TransitionEvent Not supported
Unified POS, v1.16.1 1453

46.3 General Information

The Device Monitor programmatic name is "Device Monitor".

46.3.1 Capabilities

The Device Monitor has the following capabilities:

• Get values measured by various devices.

• Notify the application of changes in values measured by various devices.

46.3.2 Device Monitor Class Diagram

The following diagram shows the relationships between the Device Monitor classes.
 1454 Unified POS, v1.16.1

46.3.3 Model

The Device Monitor follows the general “Device Input Model” for event-driven input:

• The Device Monitor supports monitoring of values measured by multiple devices connected to the device. A
device that can be monitored and its type / value unit is listed in the DeviceList property.

• Device Monitor receives a change in the value measured by the device set as the monitoring target and
generates a DataEvent when it matches the specified condition.

• To add a device to be monitored, specify the monitoring mode with the addMonitoringDevice method and
add it. For details on monitoring mode, see the description of addMonitoringDevice method.

• If the AutoDisable property is true, the device will automatically disable itself when a DataEvent is
enqueued.

• An enqueued DataEvent can be delivered to the application when the DataEventEnabled property is true and
other event delivery requirements are met. Just before delivering this event, data is copied into corresponding
properties, and further data events are disabled by setting DataEventEnabled to false. This causes subsequent
input data to be enqueued while the application processes the current input and associated properties. When the
application has finished processing the current input and is ready for more data, it reenables events by setting
DataEventEnabled to true.

• An ErrorEvent (or events) is enqueued if an error occurs while gathering or processing input and is delivered
to the application when DataEventEnabled is true and other event delivery requirements are met.

• The DataCount property can be read to obtain the total number of enqueued DataEvents.

• All enqueued input may be deleted by calling ClearInput method. See the ClearInput method description for
more details.

• All data properties that are populated as a result of firing a DataEvent or ErrorEvent can be set back to their
default values by calling the clearInputProperties method.

• The notified data is stored in the DeviceData property.

• In the Device Monitor device control, the measured values of the devices are managed most of cases with the
int32 type integers, but some are decimals.

• In that case, the decimals are implicit, and the actual value can be calculated by dividing the measured value by
the coefficient of each device that can be obtained in the DeviceList property.

The application will be informed about any status change with a StatusUpdateEvent, also, all corresponding status
properties will be updated before event delivery.

46.3.4 Device Sharing

The Device Monitor is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before the device begins reading input, or before calling
methods that manipulate the device.

See the “Summary” table for precise usage prerequisites.
Unified POS, v1.16.1 1455

46.4 Properties (UML attributes)

46.4.1 DeviceData Property

Syntax DeviceData: string {read-only, access after open-claim-enable}

Remarks Measurement information of the device that matches the condition registered by 
addMonitoringDevice method is set.

Each measurement information consists of the following information and is shown 
in the following order, separated by a colon (":").

 Parameter Description

 DeviceID The target device ID.

 Measured value Measurement value of the device. The measured 
 value is represented by an integer type. To convert it to 
 an actual value, divide the measured value by the coefficient 
 acquired by the DeviceList property.

 For example,"Device01:365"

 Its value is set prior to a DataEvent being delivered 
 to the application.

Errors A UposException may be thrown when this property is accessed. 
For further information, see “Errors” on page 16.

46.4.2 DeviceList Property

Syntax DeviceList: string {read-only, access after open}

Remarks Contains the comma-delimited list of device information that are supported by the device.

Each object information consists of the following information and is shown in the following order,
separated by a colon (":").

Parameter Description

DeviceID Indicates a unique ID in the service that identifies the device.

TypeIndicates the device type. For example, if it is a touch sensor it is expressed as “Touch Sensor” and
so on. However, this value depends on the service.

UnitIndicates the unit of value held by various devices. For example, it is expressed as “on / off” for a
touch sensor, “rad / s” for a gyroscope. However, this value depends on the service.

CoefficientIndicates the coefficient for calculating the actual measured value held by various devices.
The DeviceData property and the measured value of the device that can be obtained with the
GetDeviceValue method are expressed as integers, but by dividing this value by the coefficient it is the
actual value. Example: Device value = 365, coefficient = 10, actual value = 36.5 For example, if one
device supports one touch sensor and one gyroscope, it will be as follows. “Touch 01: Touch Sensor:
ON/OFF: 1, GyroX: Gyroscope: rad/s: 100000, GyroY: Gyroscope: rad/s: 100000, GyroZ: Gyroscope: 
rad/s: 100000.”

This property is initialized by the open method.
 1456 Unified POS, v1.16.1

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also DeviceData Property, addMonitoringDevice Method, getDeviceValue Method.

46.4.3 MonitoringDeviceList Property

Syntax MonitoringDeviceList: string {read-only, access after open-claim-enable}

Remarks Contains the comma-delimited list of monitoring information on registered devices that are supported by
the device. Each monitoring information consists of the following information and is shown in the
following order, separated by a colon (":").

Parameter Description

DeviceID Registered devices ID.

Monitoring mode Registered monitoring mode.

BoundaryRegistered boundary value. 
 This value is set to 0 when the monitoring mode does not require a 
 boundary value.

Sub boundaryRegistered sub boundary value. 
 This value is set to 0 when the monitoring mode does not require a sub
 boundary value.

 IntervalRegistered interval. (millisecond)

 For example, if you set monitoring targets as follows,

 [Monitor target 1]
 Device ID = Device 01, monitoring mode = DMON_MM_UPDATE, 
 boundary line = 0, sub boundary line = 0, interval time = 0

 [Monitor target 2]
 Device ID = Device 02, monitoring mode = DMON_MM_STRADDLED, 
 boundary line = 365, sub boundary line = 0, interval time = 500

 The values shown are as follows.

 “Device01:0:0:0:0, Device02:1:365:0:500”

 This property is initialized by the open method. It is also updated by calling addMonitoringDevice
 method, deleteMonitoringDevice method, clearMonitoringDevice method.

Errors A UposException may be thrown when this property is accessed. For further information, see “Errors”
on page 16.

See Also addMonitoringDevice Method, deleteMonitoringDevice Method, clearMonitoringDevice Method.
Unified POS, v1.16.1 1457

46.5 Methods (UML operations)

46.5.1 addMonitoringDevice Method

Syntax addMonitoringDevice (deviceID:string, monitoringMode:int32, boundary:int32,
subBoundary:int32, intervalTime:int32):
void{raises-exception, use after open-claim-enable}

 Parameter Description

 deviceID The deviceID of the monitored device. Valid values
 are one of the device ID lists listed in the DeviceList
 property.

 monitoringMode Specify the monitoring mode for monitoring.

 boundary Specify the boundary value to be monitored.

 subBoundary Specify the sub boundary value to be monitored.
 This value must be less than Boundary.

 intervalTime Specify the interval in milliseconds between the 
 occurance of the event and the start of the next monitoring.

 The monitoring modes specified for MonitoringMode are as follows.

 Value Description

 DMON_MMODE_UPDATE
 Every time the measured value of the target device is
 updated, an event is notified. When set to this mode,
 the values of the argument boundary and
 subBoundary are ignored.

 DMON_MMODED_STRADDLED
 When the measured value of the target device
 crosses the value of the argument boundary,
 it notifies the event. In addition, when the measured
 value matches the value of boundary, it notifies the 
 event even when it changes from the matched state.
 When set to this moded, the value of the argument
 subBoundary is ignored.

 DMON_MMODE_HIGH
 When the measured value of the target device
 becomes equal to or larger than the value of the
 argument Boundary, it notifies the event.
 Even if the measured value is updated and it was
 again equal to or greater than the value of
 boundary, the event will be notified in
 each time. When it is set to this mode, the value of
 the argument subBoundary is ignored.
 1458 Unified POS, v1.16.1

 DMON_MMODE_LOW 
 Notifies the event when the measured value of the
 target device becomes less than or equal to the
 value of the argument boundary. Even when the
 measured value is updated and it was again less
 than the value of boundary, the event will be
 notified in each time.

 DMON_MMODE_WITHIN
 It notifies the event while the measured value of
 the target device is within the range specified by
 the argument boundary and subBoundary.
 Even if the measured value is updated and its value
 is within the range again, the event is notified in
 each time.

 DMON_MMODE_OUTSIDE
 It notifies the event while the measured value of
 the target device is outside the range specified
 by the argument boundary and subBoundary.
 Even if the measured value is updated and its value
 was out of range again, the event will be notified in each time.

 DMON_MMODE_POLLING
 It notifies the measured value of the target device
 at the interval specified by intervalTime.
 When it is set to this mode, the values of the 
 argument boundary and subBoundary are ignored.

Remarks Add the device specified by deviceID to the monitoring target.
The monitoring mode is specified for monitoringMode, but there are monitoring modes not supported
by some devices. In that case, E_ILLEGAL is raised as the UPOS exception.
Devices added by this method will be added to the list of MonitoringDeviceList properties. If a device
to be monitored is specified, it will be changed to a new condition. To exclude the added device from
the monitoring target, call deleteMonitoringDevice method or clearMonitoringDevice method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16. 
Some possible values of the exception’s ErrorCode property are:

Value Description

 E_ILLEGAL An invalid value was specified, or unsupported operation with the Device

See Also DeviceList Property, MonitoringDeviceList Property, deleteMonitoringDevice Method,
clearMonitoringDevice Method, DataEvent.

46.5.2 clearMonitoringDevices Method

Syntax clearMonitoringDevices ():
void {raises-exception, use after open-claim-enable}

Remarks Exclude all devices to be monitored.

Errors A UposException may be thrown when this method is invoked.
For further information, see “Errors” on page 16.

See Also addMonitoringDevice Method.
Unified POS, v1.16.1 1459

46.5.3 deleteMonitoringDevice Method

Syntax deleteMonitoringDevice (deviceID: string):
void {raises-exception, use after open-claim-enable}

Parameter Description

deviceID Specify the device ID of the device to be excluded from monitoring targets.

Remarks Exclude the device specified by deviceID from monitoring targets.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Description

E_ILLEGAL An invalid value was specified, or unsupported operation with the
 Device.

 An invalid value was specified, or unsupported operation with the
 Device.

See Also AddMonitoringDevice Method.

46.5.4 getDeviceValue method

Syntax getDeviceValue (deviceID: string, pValue: *int32):
void {raises-exception, use after open}

Parameter Description

deviceID Specify the device ID of the device from which the measurement
 value is to be acquired. Specify one of the device ID lists listed in
 the DeviceList property.

pValue Pointer that stores measurement values obtained from the device.

Remarks Get the measured value of the device specified by deviceID. The retrieved value is stored in pValue.

 Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.
Some possible values of the exception’s ErrorCode property are:

Value Description

E_ILLEGAL An invalid value was specified, or unsupported operation with the Device.

See Also DeviceList Property.

 1460 Unified POS, v1.16.1

46.6 Events (UML interfaces)

46.6.1 DataEvent

<<event>> upos::events::DataEvent

Status : int32{read-only}

Description Notifies the application when data from the Device Monitor device is available to be read.

Attributes This event contains the following attributes:

Attribute Type Description
Status int32 Set to 0.

Remarks Before this event is delivered, the individual recognition information is enqueued into the area that is
indicated by the addMonitoringDevice method.

See Also addMonitoringDevice method.

46.6.2 DirectIOEvent

<<event>> upos::events::DirectIOEvent

EventNumber: int32 {read-only} Data: int32 {read-write}
Obj : object {read-write}

Description Provides Service information directly to the application. This event provides a means for a vendor-
specific Device Monitor Device Service to provide events to the application that are not otherwise
supported by the device control.

Attributes This event contains the following attributes:

Attribute Type Description
EventNumber int32 Event number whose specific values are assigned by the Service.
Data int32 Additional numeric data. Specific values vary by the EventNumber and the

Service. This attribute is settable.
Obj object Additional data whose usage varies by the EventNumber and the Service.

This attribute is settable.

Remarks This event is to be used only for those types of vendor specific functions that are not otherwise
described.

Use of this event may restrict the application program programform being used with other vendor’s
devices which may not have any knowledge of the Service’s need for this event.

See Also “Errors” on page 16, directIO method
Unified POS, v1.16.1 1461

46.6.3 ErrorEvent

<<event>> upos::events:: ErrorEvent
ErrorCode: int32{read-write}
ErrorCodeExtended: int32{read-write}
ErrorLocus : int32{read-write}
ErrorResponse: int32{read-write}

Description Notifies the application that a Device Monitor Device error has been detected and suitable response by
the application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes on page

20.
ErrorCodeExtended int32 Extended Error code causing the error event.

If ErrorCode is E_EXTENDED, then see values below. Otherwise,
it may contain a Service-specific value.

ErrorLocus int32 Location of the error.
ErrorResponse int32 Error response, whose default value may be overridden by the

application (i.e., this attribute is settable). See values below.

The ErrorLocus attribute has one of the following values:

Value Meaning
EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.

EL_INPUT_DATA Error occurred while gathering or processing event-driven input, and some
previously buffered data is available.

The application’s error event handler can set the ErrorResponse attribute to one of the following values:

Value Meaning
ER_CLEAR Valid for all locus: EL_INPUT and EL_INPUT_DATA. Clear all buffered

input data. The error state is exited. This is the default response when the
locus is EL_INPUT.

ER_CONTINUEINPUT 
Only valid when the locus is EL_INPUT_DATA.
Acknowledges that a data error has occurred and directs the Device to
continue input processing. The Device remains in the error state and will
deliver additional DataEvents as directed by the DataEventEnabled
property. When all input has been delivered and DataEventEnabled is
again set to true, then another ErrorEvent is delivered with locus
EL_INPUT. This is the default response when the locus is
EL_INPUT_DATA.

Remarks This event is enqueued when an error is detected, and the Device’s State transitions into the error state.
Input error events are not delivered until DataEventEnabled is true, so that proper application
sequencing occurs.

Unlike a DataEvent, the Device does not disable further DataEvents or input ErrorEvents; it leaves
the DataEventEnabled property value at true. Note that the application may set DataEventEnabled
to false within its event handler if subsequent input events need to be disabled for a period of time.

See Also “Device Input Model” on page 18, “Error Handling” on page 18
 1462 Unified POS, v1.16.1

46.6.4 StatusUpdateEvent

<<event>> upos::events:: StatusUpdateEvent
 Status: int32 {read-only}

Description Notifies the application that there is an operation status change or a status of the Device Monitor
device.

Attributes This event contains the following attribute:

 Attributes Type Description

 Status int32 Indicates a change in the Device Monitor status of the unit.

Note that Release 1.3 added Power State Reporting with additional Power reporting
StatusUpdateEvent values.

The Update Firmware capability added additional Status values for communicating the status/progress
of an asynchronous update firmware process.

Value Meaning

DMON_SUE_START_MONITERING
 It will be notified when Device Monitoring start.

DMON_SUE_STOP_MONITORING
 It will be notified when Device Monitoring stop.

 Remarks Enqueued when the Device Monitor Device detects a power state change or a status change.

 See Also “Errors” on page 16.
Unified POS, v1.16.1 1463

 1464 Unified POS, v1.16.1

47 Graphic Display

47.1 General

This Chapter defines the Graphic Display device category.

47.2 Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.16 Not supported

CapCompareFirmwareVersion: boolean { read-only } 1.16 open

CapPowerReporting: int32 { read-only } 1.16 open

CapStatisticsReporting: boolean { read-only } 1.16 open

CapUpdateFirmware: boolean { read-only } 1.16 open

CapUpdateStatistics: boolean { read-only } 1.16 open

CheckHealthText: string { read-only } 1.16 open

Claimed: boolean { read-only } 1.16 open

DataCount: int32 { read-only } 1.16 Not supported

DataEventEnabled: boolean { read-write } 1.16 Not supported

DeviceEnabled: boolean { read-write } 1.16 open & claim

FreezeEvents: boolean { read-write } 1.16 open

OutputID: int32 { read-only } 1.16 open

PowerNotify: int32 { read-write } 1.16 open

PowerState: int32 { read-only } 1.16 open

State: int32 { read-only } 1.16 --

DeviceControlDescription: string { read-only } 1.16 --

DeviceControlVersion: int32 { read-only } 1.16 --

DeviceServiceDescription: string { read-only } 1.16 open

DeviceServiceVersion: int32 { read-only } 1.16 open

PhysicalDeviceDescription: string { read-only } 1.16 open

PhysicalDeviceName: string { read-only } 1.16 open
Unified POS, v1.16.1 1465

Properties (Continued)

Specific Type Mutability Version May Use After

CapAssociatedHardTotalsDevice: string { read-only } 1.16 open

CapBrightness: boolean { read-only } 1.16 open

CapImageType: boolean { read-only } 1.16 open

CapStorage: int32 { read-only } 1.16 open

CapURLBack: boolean { read-only } 1.16 open

CapURLForward: int32 { read-only } 1.16 open

CapVideoType: boolean { read-only } 1.16 open

CapVolume: boolean { read-only } 1.16 open

Brightness: int32 { read-write } 1.16 open, claim & enable

DisplayMode: int32 { read-write } 1.16 open, claim & enable

ImageType: string { read-write } 1.16 open, claim & enable

ImageTypeList: string { read-only } 1.16 open

LoadStatus: int32 { read-only } 1.16 open

Storage: int32 { read-write } 1.16 open, claim & enable

URL: string {read-only} 1.16 open

VideoType: string {read-write} 1.16 open, claim & enable

VideoTypeList: string {read-only} 1.16 open

Volume: int32 {read-write} 1.16 open, claim & enable

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.16

close ():
void { raises-exception, use after open }

1.16

claim (timeout: int32):
void { raises-exception, use after open }

1.16

release ():
void { raises-exception, use after open, claim }

1.16

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.16

clearInput ():
void { raises-exception, use after open, claim }

1.16

clearInputProperties ():
void { raises-exception, use after open, claim }

1.16

clearOutput ():
void { raises-exception, use after open, claim }

1.16

compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open, claim, enable }

1.16
1466 Unified POS, v1.16.1

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.16

resetStatistics (statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.16

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception, use after open, claim, enable }

1.16

updateFirmware (firmwareFileName: string):
void { raises-exception, use after open, claim, enable }

1.16

updateStatistics (statisticsBuffer: string):
 void { raises-exception, use after open, claim, enable }

1.16

Specific

Name Version

CancelURLLoading ():
 void {raises-exception, use after open, claim, enable}

1.16

goURLBack ():
 void {raises-exception, use after open, claim, enable}

1.16

goURLForward (): 
 void {raises-exception, use after open, claim, enable}

1.16

loadImage (fileName: string):
 void {raises-exception, use after open, claim, enable}

1.16

loadURL (uRL: string):
 void {raises-exception, use after open, claim, enable}

1.16

playVideo (fileName: string, loop: boolean):
 void {raises-exception, use after open, claim, enable}

1.16

stopVideo ():
 void {raises-exception, use after open, claim, enable}

1.16

updateURLPage ():
 void {raises-exception, use after open, claim, enable}

1.16

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent
 
 Status: Not supported

upos::events::DirectIOEvent

 EventNumber:

 Data:

Obj:

int32

int32

object

{read-only}
{read-write}
{read-write}

1.16
Unified POS, v1.16.1 1467

upos::events::ErrorEvent
 ErrorCode:
 ErrorCodeExtended:
 ErrorLocus:
 ErrorResponse:

int32
int32
int32
int32

{read-only}
{read-only}
{read-only}
{read-write}

1.16

upos::events::OutputCompleteEvent
 OutputID: int32 {read-only}

1.16

upos::events::StatusUpdateEvent
 Status:


int32 {read-only}

1.16

upos::events::TransitionEvent Not supported

Events (UML interfaces)

Name Type Mutability Version
1468 Unified POS, v1.16.1

47.3 General Information

The Graphic Display programmatic name is “Graphic Display.”

47.3.1 Capabilities

The Graphic Display has the following capability:

Displays the specified image files.

Play the specified video.

Display the specified web page.

Notify the application of changes in the load status of the web page.

47.3.2 Graphics Display Class Diagram

The following diagram shows the relationships between the Graphic Display classes.

<<exception> <<interface> <<utility>>
UposExceptio BaseControl UposConst

<<event>>
DirectIOEvent

+EventNumber: int32
+Data: int32
+Obj: object

<<event>>
ErrorEvent

+ErrorCode: int32
+ErrorCodeExtended: int32
+ErrorLocus: int32
+ErrorResponse: int32

<<event>>
OutputCompleteEvent

+OutputID: int32

<<event>>
StatusUpdateEvent

+Status: int32

<<capability>> +CapAssociatedHardTotalsDevice:string

<<property>> +LoadStatus:int32
<<property>> +Storage:int32

<<interface>>

<<capability>> +CapBrightness:boolean

+updateURLPage (): void

Graphic Display Device Control

<<capability>> +CapStorage:int32
<<capability>> +CapURLBack:boolean
<<capability>> +CapURLForward:boolean

<<capability>> +CapImageType:boolean

+stopVideo (): void

<<capability>> +CapVideoType:boolean
<<capability>> +CapVolume:boolean
<<property>> +Brightness:int32
<<property>> +DisplayMode:int32
<<property>> +ImageType:int32
<<property>> +ImageTypeList:string

+playVideo (fileName: string, loop: boolean): void

+cancelLoading (): void
+goURLBack (): void
+goURLForward (): void
+loadImage (fileName: string): void
+loadURL (uRL: string): void

<<property>> +URL:string
<<property>> +VideoType:int32
<<property>> +VideoTypeList:string
<<property>> +Volume:int32

<<sends

<<fires>

<<fires

<<fires>

<<fires>

<<uses>><<sends>>

<<uses>>
Unified POS, v1.16.1 1469

47.3.3 Model

The following display modes exist in the graphics control, and the model differs depending on the display mode:

• Image display mode

• Video display mode.

• Web display mode.

The application can change the display mode by changing the value of the DisplayMode property.

Image Display Mode

The image display mode of the graphics control is as follows.

The application calls the loadImage method to display the image. The ImageTypeList property lists image files
that the device can display. Applications need to support “hard total” services as image files displaying with
loadImage method must be placed in the area managed by the “hard total” service.

Prior to start this mode, need to set the appropriate image type file value in the ImageType property from the
listed values in the ImageTypeList property, if CapImageType property is true. Then the application can call
the loadImage method to display the image. Raises StatusUpdateEvent at the status change timing of image
load start with status GDSP_SUE_START_IMAGE_LOAD and image load end with status
GDSP_SUE_END_IMAGE_LOAD.

Applications may need to support “Hard Totals” services as image files displaying with loadImage method
might be placed in the area managed by the associated “Hard Totals” service device. If the CapStorage is either
GDSP_CST_ALL or GDSP_CST_HARDTOTALS_ONLY, it is possible to store it in the Associated Hard Totals
device and storage device’s open name is held in the CapAssociatedHardTotalsDevice property.

If device supports both Hard Totals device and the host file system, the application should set the Storage
property accordingly to tell where to write the image data file.

Video Display Mode

The video display mode of Graphic Display follows the general device behavior model for asynchronous output
devices. The graphics control of video display modes are as follows.

Prior to start this mode, need to set the appropriate video type file value in the VideoType property from the
listed values in the VideoTypeList property, if CapVideoType property is true. Then the application can call the
playVideo method to display the video. Also, the video being displayed is stopped by calling the stopVideo
method.

Raises StatusUpdateEvent at the status change timing of start play video with status GDSP_SUE_START
PLAY_VIDEO, and stop play video with status GDSP_SUE_STOP_PLAY_VIDEO.

The Device validates the method parameters an error condition immediately if necessary. If the validation is
successful, the Device does the following:

• Buffers the request in program memory, for delivery to the Physical Device as soon as the Physical Device can
receive and process it.

• Sets the OutputID property to a unique integer identifier for this request.

• Returns as soon as possible.
1470 Unified POS, v1.16.1

When the Device successfully completes a request, an OutputCompleteEvent is enqueued for delivery to the
application. 
A property of this event contains the output ID of the completed request.

The application should compare the returned OutputCompleteEvent property OutputID value with the
OutputID value set by the asynchronous process method call used to send the data in order to track what data
has been successfully sent to the device.

If an error occurs while processing a request, an ErrorEvent is enqueued which will be delivered to the
application after the events already enqueued, including OutputCompleteEvents. No further asynchronous
output will occur until the event has been delivered to the application. If the response is ER_CLEAR, then
outstanding asynchronous output is cleared.

If the response is ER_RETRY, then output is retried; note that if several outputs were simultaneously in progress
at the time that the error was detected, then the Service may need to retry all of these outputs.

Asynchronous output is always performed on a first-in first-out basis. If the device supports concurrent playback,
the request will be executed simultaneously.

If the request is terminated before completion, due to reasons such as the application calling the clearOutput
method, then no OutputCompleteEvent is delivered. It can also delete the output individually by calling the
stopVideo method. Also, in this case OutputCompleteEvent will not be notified.

The video files that the device can display are listed in the VideoTypeList property. Since video files to be
displayed using the playVideo method must be placed in an area managed by the associated “Hard Totals"
service device. If the CapStorage is either GDSP_CST_ALL or GDSP_CST_HARDTOTALS_ONLY, it is
possible to store it in the Associated Hard Totals device and storage device’s open name is held in the
CapAssociatedHardTotalsDevice property.

If device supports either or both Hard Totals device and the host file system, the application should set the
Storage property accordingly to tell where to write the image data file.

The video display mode of graphics control follows an asynchronous output model. Raises StatusUpdateEvent
if Graphic Display device power status or a device status changes are occurred during the video displaying.

Web Display Mode

The web display mode of graphics control is as follows.

The application calls the loadURL method to display the web page.

Raises StatusUpdateEvent at the timing of Web page load start with status
GDSP_SUE_START_LOAD_WEBPAGE, load finish with status GDSP_SUE_FINISH_LOAD_WEBPAGE,
and load cancel with status GDSP_SUE_CANCEL_LOAD_WEBPAGE. And application can detect the web
page loading status.

The latest loading status of the web page is stored in the LoadStatus property when loadURL method is
called, and its URL information is stored in the URL property.

In case when cancelURLLoading method is called during the loading process, current accessed URL
information will be stored in the URL property.

The graphics control web display mode follows an asynchronous output model.
Unified POS, v1.16.1 1471

47.3.4 Device Sharing

The Graphic Display Device is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing some properties or calling methods that
update the device.

See the “Summary” table for precise usage prerequisites.
1472 Unified POS, v1.16.1

47.4 Properties (UML Attributes)

47.4.1 Brightness Property

Syntax Brightness: int32 {read-write, access after open-claim-enable}

Remarks Holds the brightness of screen. Legal values range from zero through 100.
This property is initialized by the open method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid value was specified.

See Also CapBrightness Property.

47.4.2 CapAssociatedHardTotalsDevice Property

Syntax CapAssociatedHardTotalsDevice: string {read-only, access after open}

Remarks Holds the open name of the associated Hard Totals device if the device is able to write to such devices
which is the case if CapStorage is either GDSP_CST_ALL or GDSP_CST_HARDTOTALS_ONLY.
If CapStorage is GDSP_CST_HOST_ONLY, this property value must be the empty string. This
property is initialized by the open method.

Errors UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

See Also CapStorage Property

47.4.3 CapBrightness Property

Syntax CapBrightness: boolean {read-only, access after open}

Remarks If true, the application can change the screen brightness.
If false, the application cannot change the screen brightness.
This property is initialized by the open method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also Brightness Property.

47.4.4 CapImageType Property

Syntax CapImageType: boolean {read-only, access after open}

Remarks If true, indicate the image type file to be used in this target device as the value of the ImageType
property. Otherwise, it is false. This property is initialized by the open method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.
Unified POS, v1.16.1 1473

See Also ImageType Property, ImageTypeList Property

47.4.5 CapStorage Property

Syntax CapStorage: int32 {read-only, access after open}

Remarks This is an enumeration and announces where the device is able to write the image data file to.
It holds one of the following values.

Value Meaning

GDSP_CST_HARDTOTALS_ONLY Only an associate Hard Totals device is supported.

GDSP_CST_HOST_ONLY Only the host’s file system is supported.

GDSP_CST_ALL Both, the associated Hard Totals device and the host’s file
system is supported.

This property is initialized by the open method.

If a Hard Totals device is supported the Storage the property value should be
GDSP_CST_HARDTOTALS_ONLY or GDSP_CST_ALL, and the property
CapAssociatedHardTotalsDevice holds the open name of the associated Hard Totals device.

Errors UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

See Also Storage Property, CapAssociatedHardTotalsDevice Property

47.4.6 CapURLBack Property

Syntax CapURLBack: boolean {read-only, access after open}

Remarks If true, the previous page exists in the browsing history. Application can return to the previous page
with goURLBack method.

If false, there is no previous page in the browsing history.

This property is initialized to false by the open method. Also, as the web page loading state changes, it
is set by the device control.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also goURLBack Method.

47.4.7 CapURLForward Property

Syntax CapURLForward: boolean {read-only, access after open}

Remarks If true, the next page exists in the browsing history. Application can go to the next page with the
goURLForward method.
If false, there is no next page in the browsing history.
This property is initialized to false by the open method. Also, as the web page loading state changes, it
is set by the device control.
1474 Unified POS, v1.16.1

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also goURLForward Method.

47.4.8 CapVideoType Property

Syntax CapVideoType: boolean {read-only, access after open}

Remarks If true, indicate the vide type value that can be used in this targeted graphics display device as the value
of VideoType Property. Otherwise, it is false. This property is initialized by the open method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also VideoType Property, VideoTypeList Property

47.4.9 CapVolume Property

Syntax CapVolume: boolean {read-only, access after open}

Remarks If true, the application can change the volume of video.
If false, the application cannot change the volume of video.
This property is initialized by the open method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also Volume Property.

47.4.10 DisplayMode Property

Syntax DisplayMode: int32 {read-write, access after open-claim-enable}

Remarks Holds the image and/or video displaying mode.

Value Meaning
GDSP_DMODE_HIDDEN

It is a mode to hide images and/or video
GDSP_DMODE_IMAGE_FIT

It is a mode to display images. The displayed image is enlarged / reduced to
the size that maintains the aspect and fits on the screen.

GDSP_DMODE_IMAGE_FILL
It is a mode to display images.
The displayed image is scaled to the size that
maintains the aspect and covers the entire screen.

GDSP_DMODE_IMAGE_CENTER
It is a mode to display images.
The displayed image is displayed in the center of the screen without
changing the size.

GDSP_DMODE_VIDEO_NORMAL
It is a mode to display video. The displayed video will be displayed in the
center of the screen without resizing.
Unified POS, v1.16.1 1475

GDSP_DMODE_VIDEO_FULL
It is a mode to display video.
The displayed video will be displayed in full screen.

GDSP_DMODE_WEB

Display the web screen.

If application hide other modes and screens while displaying images, videos, or web, all displayed
contents will be cleared. The video will be stopped while the video is playing.

This property is initialized by the open method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid value was specified.

See Also loadImage Method, playVideo Method

47.4.11 ImageType Property

Syntax ImageType: string {read-write, access after open-claim-enable}

Remarks Contains the image file type that are support by the device, if CapImageType property is true. For
example, if the device supports BMP, then this property should be set to “BMP”. This property value
should be set prior to execute the loadImage method. All of the capable image file types are listed in the
ImageTypeList property. *Notation contents may be different depending on the device. This property is
initialized by the open method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid value was specified.

See Also CapImageType Property, ImageTypeList Property, loadImage Method.

47.4.12 ImageTypeList Property

Syntax ImageTypeList: string {read-only, access after open}

Remarks Contains the comma-delimited list of image file type that are support by the device. For example, if the
device only supports BMP and JPEG, then this property should be set to “BMP,JPEG”. One of value in
the property should be set in the ImageType property, if CapImageType property is true, prior to
execute the loadImage method.

*Notation contents may be different depending on the device.

This property is initialized by the open method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.
1476 Unified POS, v1.16.1

See Also CapImageType Property, ImageType Property, loadImage Method.

47.4.13 LoadStatus Property

Syntax LoadStatus: int32 {read-only, access after open}

Remarks Holds loading state of web page.

The parameters to be set are as follows.

Value Meaning
GDSP_LSTATUS_START

Start loading the web page.

GDSP_LSTATUS_FINISH
It has finished loading the web page.

GDSP_LSTATUS_CANCEL 
It has canceled loading the web page

Its value is set prior to a StatusUpdateEvent being delivered to the application.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

47.4.14 Storage Property

Syntax Storage: int32 {read-write, access after open-claim-enable}

Remarks This is an enumeration and defines where the device writes the recorded image data file to. Should be
set before an appropriate method call.
It holds one of the following values.

Value Meaning

GDSP_SST_HARDTOTALS

The image data file is written to the associated Hard Totals device. The
property CapAssociatedHardTotalsDevice holds the open name of the
associated Hard Totals device.

GDSP_SST_HOST The image data file is written to the host’s file system.

GDSP_SST_HOST_HARDTOTALS

The encoded data file is written to the associated Hard Totals device and
host’s file system. The property CapAssociatedHardTotalsDevice holds
the open name of the associated Hard Totals device.

This property is initialized by the open method according to the value hold by CapStorage. If
CapStorage has the value GDSP_CST_ALL, it is initialized to GDSP_ST_HOST_HARDTOTALS.
Unified POS, v1.16.1 1477

Errors UposException may be thrown when this property is accessed.
For further information, see “Errors” on page 16.

Value Meaning

E_ILLEGAL An invalid value was specified, or recording is ongoing.

See Also CapStorage Property, CapAssociatedHardTotalsDevice Property

47.4.15 URL Property

Syntax URL: string {read-only, access after open-claim-enable}

Remarks When the LoadStatus property is GDSP_LSTATUS_START, the URL of the Web page that starts
loading is set.

When the LoadStatus property is GDSP_LSTATUS_FINISH, the URL of the loaded Web page is set.

When the LoadStatus property is GDSP_STATUS_CANCEL, the URL of the canceled Web page is
set.

Its value is set prior to a StatusUpdateEvent being delivered to the application.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also loadStatus Property.

47.4.16 VideoType Property

Syntax VideoType: string {read-write, access after open-claim-enable}

Remarks Contains the video file type that are support by the device, if CapVideoType property is true. For
example, if the device supports AVI MJPG, then this property should be set to “AVI MJPG”. This
property value should be set prior to execute the playVideo method. All of the capable video file types
are listed in the VideoTypeList property. 　
*Notation contents may be different depending on the device.

This property is initialized by the open method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

 Some possible values of the exception’s ErrorCode property are:

Value Meaning

 E_ILLEGAL An invalid value was specified.

See Also CapVideoType Property, VideoTypeList Property, playVideo Method.

47.4.17 VideoTypeList Property

Syntax VideoTypeList: string {read-only, access after open}

Remarks Contains the comma-delimited list of video file type that are support by the device. if the device only
supports AVI_IYUV and AVI_MJPG, then this property should be set to “AVI_IYUV, AVI_MJPG.”
1478 Unified POS, v1.16.1

One of value in the property should be set in the VideoType property, if CapImageType property is
true, prior to execute the playVideo method.

*Notation contents may be different depending on the device.

This property is initialized by the open method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

See Also CapVideoType Property, VideoType Property, playVideo Method.

47.4.18 Volume Property

Syntax Volume: int32 {read-write, access after open-claim-enable}

Remarks Holds the volume at playing video. Legal values range from zero through 100.
This property is initialized by the open method.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL An invalid value was specified.

See Also CapVolume Property, playVideo Method.
Unified POS, v1.16.1 1479

47.5 Methods (UML operations)

47.5.1 cancelURLLoading Method

Syntax cancelURLLoading (): 
void {raises-exception, use after open-claim-enable}

Remarks Cancel loading web page.
This method is executed asynchronously. The load status is reported by StatusUpdateEvent and
OutputCompleteEvent or ErrorEvent.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL It is not loading.

47.5.2 goURLBack Method

Syntax goURLForward ():
void {raises-exception, use after open-claim-enable}

Remarks Go to the next page of browsing history.

This method is executed asynchronously. The load status is 
reported by StatusUpdateEvent and OutputCompleteEvent or ErrorEvent.

Errors A UposException may be thrown when this method is invoked. For further information, 
see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

 Value Meaning

 E_ILLEGAL There is no next page in the browsing history.

See Also CapURLForward Property.
1480 Unified POS, v1.16.1

47.5.3 goURLForward Method

Syntax goURLForward ():
void {raises-exception, use after open-claim-enable}

Remarks Go to the next page of browsing history.

This method is executed asynchronously. The load status is reported by StatusUpdateEvent and
OutputCompleteEvent or ErrorEvent.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E_ILLEGAL There is no next page in the browsing history.

See Also CapURLForward Property.

47.5.4 loadImage Method

Syntax loadImage (fileName: string): 
void {raises-exception, use after open-claim-enable}

 Parameter Description

 fileName Specify the file name of the image to be loaded.

Remarks Load the specified image.

 This method fails if the value of the DisplayMode Property is not set to 
GDSP_DMODE_IMAGE_FIT, GDSP_DMODE_IMAGE_FILL, or GDSP
_DMODE_IMAGE_CENTER.

 Image files are located in the area as the stored values of the Storage property.

 This method is executed asynchronously. Image file loading status is reported by 
StatusUpdateEvent and OutputCompleteEvent or ErrorEvent.

Errors A UposException may be thrown when this method is invoked. For further information, 
see “Errors” on page 16.

 Some possible values of the exception’s ErrorCode property are:

 Value Meaning

 E_ILLEGAL An invalid value was specified. Or an unsupported 
 image file was specified.

 E_NOEXIST File does not exist.

See Also DisplayMode Property.
Unified POS, v1.16.1 1481

47.5.5 loadURL Method

Syntax loadURL (uRL: string): 
void {raises-exception, use after open-claim-enable}

 Parameter Description

 uRL Specify the uRL of the web page to load.

Remarks Load the web page with the specified URL.

 This method is executed asynchronously. The load status is reported 
by StatusUpdateEvent and OutputCompleteEvent or ErrorEvent.

Errors A UposException may be thrown when this method is invoked. For 
further information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

 Value Meaning

 E_ILLEGAL An invalid value was specified.

47.5.6 playVideo Method

Syntax playVideo (fileName: string, loop: boolean): 
void {raises-exception, use after open-claim-enable}

 Parameter Description

 fileName Specify the file name of the video to be played.

 loop If true, loop playback is performed, and if false, 
 loop playback is not performed.

Remarks Play the video type file content that is specified using VideoType property. All of the video file values
are listed in the VideoTypeList property, if CapVideoType property is true.

 If the value of the DisplayMode property is not set to 
GDSP_DMODE_VIDEO_NORMAL, GDSP_DMODE_VIDEO_FULL, 
this method will fail.

 This method is executed asynchronously. To stop video displaying in the middle, 
call the stopVideo method.

 Video files are located in the area as the stored values of the Storage property.

 The video file playing status will be informed by the StatusUpdateEvent.

 This method is executed asynchronously. Image file loading status and video file playing 
status are reported by StatusUpdateEvent and OutputCompleteEvent or ErrorEvent.

Errors A UposException may be thrown when this method is invoked. For further information, 
see “Errors” on page 16.

 Some possible values of the exception’s ErrorCode property are:

 Value Meaning

 E_ILLEGAL An invalid value was specified. Or an unsupported video file was specified.

 E_NOEXIST File does not exist.
1482 Unified POS, v1.16.1

See Also DisplayMode Property.

47.5.7 stopVideo Method

Syntax stopVideo (): 
void {raises-exception, use after open-claim-enable}

Remarks Stop the video being displayed.

This method is executed asynchronously. Video file loading status is reported by StatusUpdateEvent
and OutputCompleteEvent or ErrorEvent.

Errors A UposException may be thrown when this method is invoked. For further information, see “Errors” on
page 16.

 Some possible values of the exception’s ErrorCode property are:

 Value Meaning

 E_ILLEGAL The Video is not playing.

See Also playVideo Method.

47.5.8 updateURLPage Method

 Syntax updateURLPage (): 
void {raises-exception, use after open-claim-enable}

Remarks Reload the current web page.

 This method is executed asynchronously. The load status is reported by 
StatusUpdateEvent and OutputCompleteEvent or ErrorEvent.

Errors A UposException may be thrown when this method is invoked. For further information, 
see “Errors” on page 16.

 Some possible values of the exception’s ErrorCode property are:

 Value Meaning

 E_ILLEGAL Web page loading.
Unified POS, v1.16.1 1483

47.6 Events (UML interfaces)

47.6.1 DirectIOEvent

<<event>> upos::events::DirectIOEvent

EventNumber : int32 {read-only}
Data : int32 {read-write}
Obj : object {read-write}

Description Provides Service information directly to the application. 
This event provides a means for a vendor-specific Sound Player Service 
to provide events to the application that are not otherwise supported by the device control.

Attributes This event contains the following attributes:

 Attribute Type Description

 EventNumber int32 Event number whose specific values 
 are assigned by the Service.

 Data int32 Additional numeric data. Specific values vary by the 
 EventNumber and the Service. This attribute is settable.

 Obj object Additional data whose usage varies by the EventNumber 
 and the Service. This attribute is settable.

Remarks This event is to be used only for those types of vendor specific functions that 
are not otherwise described.

Use of this event may restrict the application program programform being used 
with other vendor’s devices which may not have any knowledge of the Service’s 
need for this event.

See Also “Errors” on page 16, directIO method
1484 Unified POS, v1.16.1

47.6.2 ErrorEvent

<<event>> upos::events:: ErrorEvent
ErrorCode : int32{read-write}
ErrorCodeExtended : int32{read-write} 
ErrorLocus : int32{read-write}
ErrorResponse : int32{read-write}

Description Notifies the application that a Graphic Display Device error has been 
detected and suitable response by the application is necessary to process 
the error condition.

Attributes This event contains the following attributes:

Attributes Type Description
ErrorCode int32 Error code causing the error event. See a list of Error Codes 

on page 20.
ErrorCodeExtended int32 Extended Error code causing the error event.

If ErrorCode is E_EXTENDED, then see values below. Otherwise,
it may contain a Service-specific value.

ErrorLocus int32 Location of the error. If EL_OUTPUT is specified, it is indicating
that the error occurred while processing asynchronous output.

ErrorResponse int32 Error response, whose default value may be overridden by the
application (i.e., this attribute is settable). 
See values below.

If ErrorCode is E_EXTENDED, then ErrorCodeExtended has one of the following values:

Value　　　　　 Meaning

EGDSP_NOROOM　　There is not enough room to store the targeted device for the image data file.

The ErrorLocus attribute has the following value:

Value Meaning
EL_OUTPUT Error occurred while processing asynchronous output.

The application’s error event handler can set the ErrorResponse attribute to one of the following values:

Value Meaning
ER_RETRY Retry the asynchronous output. The error state is exited. This is the default

response.

ER_CLEAR Clear all buffered output data including all asynchronous output. (The effect
is the same as when clearOutput method is called.) The error state is exited.

Remarks This event is enqueued when an error is detected, and the Device’s State 
transitions into the error state.

See Also “Errors” on page 16, “Device Output Models” on page 20.

Unified POS, v1.16.1 1485

47.6.3 OutputCompleteEvent

<<event>> upos::events::OutputCompleteEvent 
OutputID : int32{read-only}

Description Notify the application that the queued output request associated with the outputID 
property has completed successfully.

Attributes This event contains the following attributes:

Attributes Type Description 

OutputID int32 The ID number of the asynchronous output request 
 that is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Service 
has confirmation that it was processed by the device successfully.

See Also “Device Output Models” on page 20.

47.6.4 StatusUpdateEvent

<<event>> upos::events:: StatusUpdateEvent
Status : int32 {read-only}

Description Notifies the application that there is an operation status change or a status 
of the Graphic Display device.

Attributes This event contains the following attribute:

Attributes Type Description 

Status int32 Indicates a change of operation status of graphic 
 display device.

Note that Release 1.3 added Power State Reporting with additional Power reporting
StatusUpdateEvent values.

The Update Firmware capability added additional Status values for 
communicating the status/progress of an asynchronous update firmware process. 

Value Meaning

GDSP_SUE_START_IMAGE_LOAD 
 It will be notified when image loading start.

GDSP_SUE_END_IMAGE_LOAD 
 It will be notified when image loading end.

 GDSP_SUE_START_LOAD_WEBPAGE 
 Start loading the web page.

 GDSP_SUE_FINISH_LOAD_WEBPAGE 
 It has finished loading the web page.

 GDSP_SUE_CANCEL_LOAD_WEBPAGE 
 It has canceled loading the web page.
1486 Unified POS, v1.16.1

 GDSP_SUE_START_PLAY_VIDEO

 Start playing video.

 GDSP_SUE_STOP_PLAY_VIDEO

 Stop playing video.

Remarks Enqueued when the Graphic Display Device detects a power state change or a status change.

See Also “Errors” on page 16.
Unified POS, v1.16.1 1487

1488 Unified POS, v1.16.1

Annex A

OLE for Retail POS - OPOS
Implementation Reference

A.1 What is OLE for Retail POS?

OLE for Retail POS provides an open device driver architecture that allows Point-of-Sale (“POS”)1 hardware to
be easily integrated into POS systems based on Microsoft Windows family of Operating Systems2. It is an
implementation of the UnifiedPOS Standard based upon the Microsoft Operating System Software and the OLE
2.x architecture.

The goals of OLE for Retail POS (or “OPOS”) include:

• Defining an architecture for Win32-based POS device access.

• Defining a set of POS device interfaces sufficient to support a range of POS solutions.

Deliverables available for OPOS are:

• UnifiedPOS Programmer’s Guide – this document: For application developers and hardware providers.

• Header files with OPOS constants.

• No complete software components: Hardware providers or third-party providers develop and distribute these
components.

• Reference Control Objects are available which incorporate the required functionality. These Control Objects,
along with other helpful information may be found at the following web sites:


Reference implementation – Common Control Objects:

http://monroecs.com/opos.htm

ARTS OMG Retail Domain Task Force Standards Body:

http://retail.omg.org/

1. POS may also refer to Point-of-Service – a somewhat broader category than Point-of-Sale

2. Excludes Windows 3.x. Other future operating systems that support OLE Controls may also support OLE for Retail
 POS, depending upon software support by the hardware manufacturers or third-party developers.
Unified POS, v1.16.1 1487

http://retail.omg.org/

A.2 Who Should Read This Section

This Section is targeted at an application developer who requires access to POS-specific peripheral devices and
wishes to implement the UnifiedPOS Standard on a Microsoft Windows operating system platform. It is also
targeted for the system developer who will write an OPOS Control, a vendor who wishes to write a OPOS
Service Object, or an application developer who desires a better understanding of how to interface with OPOS
under UnifiedPOS.

This guide assumes that the reader is familiar with the following:

• The UnifiedPOS Device chapters in this document.

• General characteristics of POS peripheral devices.

• ActiveX and Automation terminology and architecture.

• Familiarity with an ActiveX Control Container development environment, such as Microsoft Visual Basic or
Microsoft Visual C++, will be useful.

A.3 General OLE for Retail POS Control Model

OLE for Retail POS Controls adhere to the ActiveX Control specifications. They expose properties, methods,
and events to a containing Application. The controls are invisible at run time, and rely exclusively upon the
containing application for requests through methods and sometimes properties. Responses are given to the
application through method return values and parameters, properties, and events.

The OLE for Retail POS software is implemented using the layers shown in the following diagram:
1488 Unified POS, v1.16.1

A.4 OPOS Definitions

A.4.1 Device Class

A device class is a category of POS devices that share a consistent set of properties, methods, and events.
Examples are Cash Drawer and POS Printer.

Some devices support more than one device class. For example, some POS Printers include a Cash Drawer
kickout. Also, some Bar Code Scanners include an integrated Scale.

A.4.2 Control Object or CO

A Control Object exposes a set of properties, methods, and events to an application for its device class. This
guide describes these APIs.

A CO is a standard ActiveX (that is, OLE 32-bit) Control that is invisible at runtime. The CO interfaces have
been designed so that all implementations of a class' Control Object will be compatible. This allows the CO to be
developed independently of the SO's for the same class – including development by different companies.

A.4.3 Service Object or SO

A Service Object is called by a Control Object to implement the OPOS-prescribed functionality for a specific
device.

An SO is implemented as an Automation server. It exposes a set of methods that are called by a CO. It can also
call special methods exposed by the CO to cause events to be delivered to the application.

A Service Object may include multiple sets of methods in order to support devices with multiple device classes.

A Service Object is typically implemented as a local in-proc server (in a DLL). In theory, it may also be
implemented as a local out-proc server (in a separate executable process). However, we have found that, in
practice, out-proc servers do not work well for OPOS Service Objects, and do not recommend their use.

A.4.4 OPOS Control or Control

An OPOS Control consists of a Control Object for a device class – which provides the application interface, plus
a Service Object – which implements the APIs. The Service Object must support a device of the Control Object's
class.

Usually, this guide will refer to “Control.” On occasion, we must distinguish between the actions performed by
the Control Object and Service Object. Then the explicit layer is specified.
Unified POS, v1.16.1 1489

A.5 How an Application Uses an OPOS Control

The first action the application must take on the Control is to call its Open method. The parameter of this method
selects a device name to associate with the Control. The Open method performs the following steps:

• Establishes a link to the device name.

• Initializes the properties OpenResult, Claimed, DeviceEnabled, DataEventEnabled, FreezeEvents,
AutoDisable, DataCount, and BinaryConversion, as well as descriptions and version numbers of the OPOS
Control layers. Additional class-specific properties may also be initialized.

Several applications may have an OPOS Control open at the same time. Therefore, after the device is opened, the
application will often need to call the ClaimDevice method to gain exclusive access to the device. Many devices
must be claimed before the Control allows access to its methods and properties. Claiming the device ensures that
other applications do not interfere with the use of the device. The application may call the ReleaseDevice
method when the device can be shared by other applications – for instance, at the end of a transaction.

Before using the device, the application must set the DeviceEnabled property to TRUE. This value brings the
device to an operational state, while FALSE disables the device. For example, if a scanner Control is disabled,
then the device will be physically disabled (when possible). Whether physically disabled or not, any input from
the device will be discarded until the device is enabled.

After the application has finished using the device, the Close method should be called to release the device and
associated resources. If the DeviceEnabled property is TRUE, then Close disables the device. If the Claimed
property is TRUE, then Close releases the lock. Before exiting, an application should close all open OPOS
Controls.

In summary, the application follows this general sequence:

• Open method: Call to link the Control Object to the Service Object.

• ClaimDevice method: Call to gain exclusive access to the device. Required for exclusive-use devices; optional
for some sharable devices. (See “Device Sharing Model” on page 1496 for more information).

• DeviceEnabled property: Set to TRUE to make the device operational. (For sharable devices, the device may
be enabled without first claiming it.)

• Use the device.

• DeviceEnabled property: Set to FALSE to disable the device.

• ReleaseDevice method: Call to release exclusive access to the device.

• Close method: Call to release the Service Object from the Control Object.
1490 Unified POS, v1.16.1

A.6 When Methods and Properties May Be Accessed

A.6.1 Methods

Before a successful Open, no other methods may be invoked. Doing so will do nothing but return a status of
OPOS_E_CLOSED.

Exclusive-use devices require the application to call the ClaimDevice method and to set the DeviceEnabled
property to TRUE before most other methods may be called.

Sharable devices require the application to set the DeviceEnabled property to TRUE before most other methods
may be called.

The “Summary” section of each device class’ chapter should be consulted for the specific prerequisites for each
method.

A.6.2 Properties

Before a successful Open, the values of most properties are not initialized. An attempt to set writable properties
will be ignored.

The following properties are always initialized:

Capability properties are initialized after the Open is successfully called.

Exclusive use devices require the application to call the ClaimDevice method and to set the DeviceEnabled
property to TRUE before some other properties are initialized or may be written.

Sharable devices require the application to set the DeviceEnabled property to TRUE before some other
properties are initialized or may be written.

To determine when a property is initialized or writable, refer to the Summary section of each device class plus
the property’s Remarks section.

Setting writable properties before the prerequisites are met will cause the write to be ignored, and will set the
ResultCode property to either OPOS_E_NOTCLAIMED or OPOS_E_DISABLED.

Reading an uninitialized property returns the following values, unless otherwise specified in the device class
documentation:

Property Value

State OPOS_S_CLOSED

ResultCode OPOS_E_CLOSED

ControlObjectDescription Control Object dependent string.

ControlObjectVersion Control Object dependent number.
Unified POS, v1.16.1 1491

After properties have been initialized, subsequent claims and enables do not re-initialize the properties. They
remain initialized until the Close method is called.

Property Type Value

Boolean FALSE

Long 0

String “[Error]” – include the brackets.
1492 Unified POS, v1.16.1

A.7 Status, Result Code, and State Model Updated in Release 1.11

The status, result code, and state models are built around several common properties, events, and methods,
described in the following table, and are supported by additional class-specific components.

Name Meaning
State A property containing the current state of the Control:

OPOS_S_CLOSED
OPOS_S_IDLE
OPOS_S_BUSY
OPOS_S_ERROR

ResultCode A property containing the status of the most recent method or the most
recently changed writable property:
OPOS_SUCCESS
OPOS_E_CLOSED
OPOS_E_CLAIMED
OPOS_E_NOTCLAIMED
OPOS_E_NOSERVICE
OPOS_E_DISABLED
OPOS_E_ILLEGAL
OPOS_E_NOHARDWARE
OPOS_E_OFFLINE
OPOS_E_NOEXIST
OPOS_E_EXISTS
OPOS_E_FAILURE
OPOS_E_TIMEOUT
OPOS_E_BUSY
OPOS_E_EXTENDED
OPOS_E_DEPRECATED

ResultCodeExtended A property containing the extended status of the most recent method or
the most recently changed writable property. Value varies by
ResultCode and by device class.

StatusUpdateEvent An event fired when some class-specific state or status variable has
changed.
Release 1.3 and later: All devices may be able to report device power
state. See “Device Power Reporting Model” in Annex D.

ErrorEvent An event fired when the State is changed to Error.
Unified POS, v1.16.1 1493

A.7.1 Status Model

The rules of the status model are as follows:

• The only aspect of the status model that is common to all device classes is the means of alerting the
application, which is through the firing of the StatusUpdateEvent.

• Each device class specifies the status changes that cause it to fire the event. Examples of device class-specific
status changes are:

• A change in the cash drawer position (for example, a transition from open to closed).

• A change in a POS printer sensor (for example, activation of a “form present” sensor, indicating that a slip 
has been inserted).

A.7.2 Result Code Model

The rules of the result code model are as follows:

• Every method returns a result code. This code is also placed into ResultCode.

• Setting a writable property causes a result code to be placed into ResultCode.

• The ResultCode OPOS_SUCCESS is assigned the value of zero. Non-zero values indicate an error or
warning.

• The Control must select one of the result codes listed below. If the Control sets ResultCode to
OPOS_E_EXTENDED, then it must set ResultCodeExtended to one of the values specified in the device
class documentation. (That is, when this ResultCode value is selected, then ResultCodeExtended may only
contain one of the values listed in this document for the device class, in the appropriate method or property
section.)

• If the Control sets ResultCode to a value other than OPOS_E_EXTENDED, then the Service Object may set
the ResultCodeExtended property to any SO-specific value. If an application uses these values, it will, of
course, need to add Service Object-specific code. (If the application needs to add such code, then the
ServiceObjectDescription, DeviceDescription, or DeviceName property may be interrogated to determine
the Service Object with which it is dealing.)
1494 Unified POS, v1.16.1

A.7.3 State Model Updated in Release 1.7

The rules of the state model are as follows:

• The Control’s State is initially OPOS_S_CLOSED.

• The State is changed to OPOS_S_IDLE when the Open method is called and its result is OPOS_SUCCESS.

• The State is set to OPOS_S_BUSY when OPOS is processing output. The State is restored to OPOS_S_IDLE
when these complete successfully.

• The State is changed to OPOS_S_ERROR when:

• An asynchronous output encounters an error condition.

• An error is encountered during the gathering or processing of event-driven input.

After OPOS changes the State property to OPOS_S_ERROR, it invokes ErrorEvent. The parameters to this
event are the result code and extended result code, the locus of the error, and a pointer to the application’s
response to the error. The locus can indicate one of three error locations:

• Output – The error occurred while processing previously queued output.

• InputWithData – The error occurred while gathering or processing event-driven input. Some
previously gathered input data is available for the application. When this error locus is given, then the
application can continue to process input until a second ErrorEvent is received with the InputNoData
locus, or it can clear the input.

• InputNoData – The error occurred while gathering or processing event-driven input, and either all
previously gathered input data has been processed or there is no input data available.

When the application returns from the ErrorEvent, it may change the response parameter. The response values are:

• Retry – If the locus is Output: Retry the asynchronous output and exit the error state. If an error occurs
while retrying, then another ErrorEvent will be generated.
If the locus is Input: Some devices support retrying the input, if retry can be controlled by the Service
Object.
“Retry” is the default response when the locus is “Output.”

• Clear – Clear all buffered output data (including all asynchronous output) or buffered input data and
exit the error state.
“Clear” is the default response when the locus is “InputNoData.”

• Continue – Use only if the locus is InputWithData. This response acknowledges the error and directs
the Control to continue processing. The Control remains in the error state, and will deliver additional
data events as directed by the DataEventEnabled property. When all input has been delivered and the
DataEventEnabled property is again set to TRUE, then another ErrorEvent is delivered with locus
“InputNoData.”
“Continue” is the default response when the locus is “InputNoData.”

The Control ensures that while the application is processing an ErrorEvent, it will not deliver any other 
ErrorEvents.
Unified POS, v1.16.1 1495

A.8 Device Sharing Model

The OLE for Retail POS device sharing model supports devices that are to be used exclusively by one
application3 at a time, as well as devices that may be partially or fully shared by multiple applications. (See
“When Methods and Properties May Be Accessed,” in Annex A, for other details.) All OPOS Controls may be
opened by more than one application at a given time. Some or many of the activities that an application can
perform with the Control, however, may be restricted to an application that claims access to the device.

A.8.1 Exclusive-Use Devices

The most common device type is called an “exclusive-use device.” An example is the POS printer. Due to
physical or operational characteristics, this device can only be used by one application at a time. The application
must call the ClaimDevice method to gain exclusive access to the device before most methods, properties, or
events are legal. Until the device is claimed, calling methods or setting properties cause an
OPOS_E_NOTCLAIMED error, and events are not fired to the application.

Should two closely cooperating applications want to treat an exclusive-use device in a shared manner, then one
application may claim the device for a short sequence of operations, then release it so that the other application
may use it.

When the ClaimDevice method is called again, settable device characteristics are restored to their condition at
ReleaseDevice. Examples of restored characteristics are the line display’s brightness, the MSR’s tracks to read,
and the printer’s characters per line. State characteristics are not restored, such as the printer’s sensor properties.
Instead, these are updated to their current values.

A.8.2 Sharable Devices

Some devices are “sharable devices.” An example is the keylock. A sharable device allows multiple applications
to call its methods and access its properties. Also, it may fire its events to all applications that have opened it. A
sharable device may still limit access to some methods or properties to an application that has claimed it, or may
fire some events only to this application.

Note: One might argue that all devices should be defined as sharable to allow maximum flexibility to
applications. In practical use, this flexibility is unlikely to be useful. The downside is an implementation that
may be significantly more complex and less likely to be accurate. In the interest of a specification that is both
sufficiently robust for application development, plus implementable by hardware manufacturers, this document
defines most devices as exclusive-use, and defines as sharable only those devices that have a significant potential
for simultaneous use by multiple applications.

3. This document assumes that an application consists of only one process. Multi-process applications are possible to
 create but uncommon. Technically, device sharing is performed on a process basis. However, with single-process
 applications we can view sharing as application-level.
1496 Unified POS, v1.16.1

A.9 Events Updated in Release 1.12

OLE for Retail POS uses events to inform an application of various activities or changes with the OPOS Control.
The five event types follow. Subsequent sections will clarify their definitions.

• DataEvent: Input data has been placed into device class-specific properties.

• ErrorEvent: An error has occurred during event-driven input or asynchronous output.

• StatusUpdateEvent: Reports a change in the device’s status.

• OutputCompleteEvent: An asynchronous output has successfully completed.

• DirectIOEvent: This event may be defined by a Service Object provider for purposes not covered by the
specification.

The Service Object enqueues events as they occur. Often these events will be enqueued by worker threads, rather
than the application’s thread. Enqueued events are delivered to the application when conditions are correct.
Conditions which delay the delivery of events include:

• The application thread is busy processing other messages.
OPOS Controls are to follow the OLE Apartment Threading model. According to OLE Apartment Threading
rules, events are to be delivered on the thread that created the COM object, which will usually be the
application’s main thread. If the application is processing another message, then event delivery must wait until
this processing has finished.

• The application has set the property FreezeEvents to TRUE.

• The event type is DataEvent or an input ErrorEvent, but the property DataEventEnabled is FALSE. (See
“Input Model” in Annex D).

If the oldest enqueued event is blocked for one of these reasons, then all newer events may also be blocked. That
is, the delivery of enqueued events is typically in a strict first in, first out order. Priority is not given to any event
types on the queue.

Unless specified otherwise, properties that convey device state information (e.g., JrnEmpty and
DrawerOpened) are kept current while the device is enabled, regardless of the setting of the FreezeEvents
property.
Unified POS, v1.16.1 1497

Note – Terminology

The following event terminology is used rather consistently in this document. Some implementations may vary
from the model described here, but the net effect is similar:

• Enqueue: When the Service Object determines that an event needs to be fired to the Application, it enqueues
the event on an internal event queue. Event queuing typically occurs from one or more internal Service Object
worker threads.

• Deliver: When the event queue is non-empty and all conditions are met for the top event on the queue, this
event is removed from the queue and delivered to the Application. Event delivery is typically managed by a
dedicated internal Service Object worker thread. This thread ensures that events are delivered in the context of
the thread that created the Control, in order to adhere to the Apartment Threading model.

• Fire: The combination of enqueuing and delivering an event. Sometimes, the term is used more loosely and
may only refer to one of these steps. The reader should differentiate these cases by context.

Rules on the management of the queue of events are:

• The Control may only enqueue new events while the device is enabled.

• The Control may deliver enqueued events until the application calls the ReleaseDevice method (for exclusive-
use devices) or the Close method (for any device), at which time any remaining events are deleted.

• For input devices, the ClearInput method clears data and error events.

While within an event handler, the application may access properties and call methods. However, the application
must not call the ReleaseDevice or Close methods from an event handler, since ReleaseDevice may shut down
event handling (possibly including a thread that caused the event to be delivered) and Close must shut down
event handling before returning.
1498 Unified POS, v1.16.1

A.10 OPOS Event Registration Sequence Diagram Added in Release 1.7

The following sequence diagram depicts the typical OPOS event registration process.

NOTE: this diagram shows the typical event registration process for a Service Object in OPOS. Various details are omitted on
purpose to make the diagram clearer. Also, DevCat == POSPrinter, CashDrawer, ... and other UnifiedPOS device categories.

:ClientApp :<DevCat> :<DevCat>Service:<OPOSEvent>

We are assuming that
the OpenService() call
is successful and that
the control is bound
with its service

Some devices (exclusive-use) need to be
claimed before being enabled (this is not
shown here).

No more events will be delivered by the
Service Object. For sharable devices this
is true after Disable, for exclusive-use
devices, this is true after Release. This
diagram depicts a sharable device.

For DataEvent you also need the
DataEventEnabled property to be true

register to receive events

Open(logicalName)

SetDeviceEnabled(TRUE)

unregister for events

SetDeviceEnabled(FALSE)

Close()

OpenService(DeviceClass, logicalName, pDispatch)

SetPropertyNumber(PIDX_DeviceEnabled, TRUE)

deliver :<OPOSEvent> to control [DeviceEnabled == TRUE &&
FreezeEvents == FALSE] through SOXxxx call

SetPropertyNumber(PIDX_DeviceEnabled, FALSE)

Close()

new

Depending on the
development environment,
registering for events is
done implicitly or
explicitly.

create :<DevCat> Control

deliver :<OPOSEvent> to
:ClientApp
Unified POS, v1.16.1 1499

A.11 Input Model Updated in Release 1.12

The OLE for Retail POS input model supports event-driven input. Event-driven input allows input data to be
received after DeviceEnabled is set to TRUE. Received data is enqueued as a DataEvent, which is delivered to
the application when preconditions are correct. If the AutoDisable property is TRUE when data is received, then
the control will automatically disable itself, setting DeviceEnabled to FALSE. This will inhibit the Control from
enqueuing further input and, when possible, physically disable the device.

When the application is ready to receive input from the device, it sets the DataEventEnabled property to TRUE.
Then, when input is received (usually as a result of a hardware interrupt), the Control enqueues and delivers a
DataEvent. (If input has already been enqueued, the DataEvent will be delivered.) This event may include input
status information through a numeric parameter. The Control places the input data plus other information as
needed into device specific-specific properties just before the event is fired.

Just before delivering this event, the Control disables further data events by setting the DataEventEnabled
property to FALSE. This causes subsequent input data to be enqueued by the Control while the application
processes the current input and associated properties. When the application has finished the current input and is
ready for more data, it re-enables events by setting DataEventEnabled to TRUE.

If the input device is an exclusive-use device, the application must both claim and enable the device before the
device begins reading input.

For sharable input devices, one or more applications must open and enable the device before the device begins
reading input. An application must call the ClaimDevice method to request exclusive access to the device before
the Control will send data to it using the DataEvent. If event-driven input is received, but no application has
claimed the device, then the input is buffered until an application claims the device (and the DataEventEnabled
property is TRUE). This behavior allows orderly sharing of the device between multiple applications, effectively
passing the input focus between them.

If the Control encounters an error while gathering or processing event-driven input, then the Control changes its
state to Error, and enqueues one or two ErrorEvents to alert the application of the error condition. This event (or
events) is not delivered until the DataEventEnabled property is TRUE, so that orderly application sequencing
occurs.

Unlike a DataEvent, the Control does not disable further DataEvents or input ErrorEvents; it leaves the
DataEventEnabled property value at TRUE. Note that the application may set DataEventEnabled to FALSE
within its event handler if subsequent input events need to be disabled for a period of time.

Error events are delivered with the following loci:

• InputWithData (OPOS_EL_INPUT_DATA) – Only enqueued if the error occurred while one or more
DataEvents are enqueued. It is enqueued ahead of all DataEvents. (A typical implementation would place it
at the head of the event queue.) This event gives the application the ability to immediately clear the input, or to
optionally alert the user to the error and process the buffered input.

The latter case may be useful with a Scanner Control: The user can be immediately alerted to the error so that
no further items are scanned until the error is resolved. Any previously scanned items can then be successfully
processed before error recovery is performed.

• InputNoData (OPOS_EL_INPUT) – Delivered when an error has occurred and there is no data available. (A
typical implementation would place it at the tail of the event queue.) If some input data was already enqueued
when the error occurred, then an ErrorEvent with the locus “InputWithData” was enqueued and delivered
first, and then this error event is delivered after all DataEvents have been fired. (If an “InputWithData” event
1500 Unified POS, v1.16.1

was delivered and the application event handler responded with a “Clear”, then this “InputNoData” event is
not delivered.)

The Control exits the Error state when one of the following occurs:

• The application returns from the InputNoData ErrorEvent.

• The application returns from the InputWithData ErrorEvent with OPOS_ER_CLEAR.

• The application calls the ClearInput method.

For some Controls, the Application must call a method to begin event driven input. After the input is received by
the Control, then typically no additional input will be received until the method is called again to reinitiate input.
Examples are the MICR and Signature Capture devices. This variation of event driven input is sometimes called
“asynchronous input.”

The DataCount property may be read to obtain the number of DataEvents enqueued by the Control.

All input enqueued by a Control may be deleted by calling the ClearInput method. ClearInput may be called
after Open for sharable devices and after ClaimDevice for exclusive-use devices.

Calling the ClearInputProperties method sets all data properties, that were populated as a result of firing a
DataEvent or ErrorEvent, back to their default values. This call does not reset the DataCount or State
properties.

The general event-driven input model does not specifically rule out the definition of device classes containing
methods or properties that return input data directly. Some device classes will define such methods and properties
in order to operate in a more intuitive or flexible manner. An example is the Keylock device. This type of input is
sometimes called “synchronous input.”
Unified POS, v1.16.1 1501

A.12 Output Model

The OLE for Retail POS output model consists of two output types: synchronous and asynchronous. A device
class may support one or both types, or neither type.

Synchronous Output

This type of output is preferred when device output can be performed quickly. Its merit is simplicity.

The application calls a class-specific method to perform output. The Control does not return until the output is
completed.

Asynchronous Output Updated in Release 1.12

This type of output is preferred when device output requires slow hardware interactions. Its merit is perceived
responsiveness, since the application can perform other work while the device is performing the output.

The application calls a class-specific method to start the output. The Control buffers the request in program
memory, for delivery to the Physical Device as soon as the Physical Device can receive and process it, sets the
OutputID property to an identifier for this request, and returns as soon as possible. When the device completes
the request successfully, OPOS fires an OutputCompleteEvent. A parameter of this event contains the
OutputID of the completed request.

If an error occurs while performing an asynchronous request, an ErrorEvent is fired. The application’s event
handler can either retry the outstanding output or clear it. The Control is in the Error state while the ErrorEvent
is in progress. (Note that if the condition causing the error was not corrected, then the Control may immediately
reenter the Error state and fire another ErrorEvent.)

Asynchronous output is performed on a first-in first-out basis.

All buffered output data, including all asynchronous output, may be deleted by calling ClearOutput.
OutputCompleteEvents will not be fired for cleared output. This method also stops any output that may be in
progress (when possible).

If an error occurs while processing a request, an ErrorEvent is enqueued which will be delivered to the
application after the events already enqueued, including OutputCompleteEvents (according to the normal Event
delivery rules Introductory Chapter). No further asynchronous output will occur until the event has been
delivered to the application. If the response is OPOS_ER_CLEAR, then outstanding asynchronous output is
cleared. If the response is OPOS_ER_RETRY, then output is retried; note that if several outputs were
simultaneously in progress at the time that the error was detected, then the Service may need to retry all of these
outputs.
1502 Unified POS, v1.16.1

A.13 Device Power Reporting Model
 Added in OPOS Release 1.3, Updated in Release 1.8

Applications frequently need to know the power state of the devices they use. Earlier versions of OPOS had no
consistent method for reporting this information. Note: This model is not intended to report PC or POS Terminal
power conditions (such as “on battery” and “battery low”). Reporting of these conditions is now managed by the
POSPower device category, see Chapter 30.

A.13.1 Model

OPOS segments device power into three states:

• ONLINE: The device is powered on and ready for use. This is the “operational” state.

• OFF: The device is powered off or detached from the terminal. This is a “non-operational” state.

• OFFLINE: The device is powered on but is either not ready or not able to respond to requests. It may need to
be placed online by pressing a button, or it may not be responding to terminal requests. This is a “non-
operational” state.

In addition, one combination state is defined:

• OFF_OFFLINE: The device is either off or offline, and the Service Object cannot distinguish these states.

Power reporting only occurs while the device is open, claimed (if the device is exclusive-use), and enabled.
__
Note – Enabled/Disabled vs. Power States

These states are different and usually independent. OPOS defines “disabled” / “enabled” as a logical state, whereas
the power state is a physical state. A device may be logically “enabled” but physically “offline”. It may also be
logically “disabled” but physically “online”. Regardless of the physical power state, OPOS only reports the state
while the device is enabled. (This restriction is necessary because a Service Object typically can only communicate
with the device while enabled.)

If a device is “offline”, then a Service Object may choose to fail an attempt to “enable” the device. However, once
enabled, the Service Object may not disable a device based on its power state.
__
Unified POS, v1.16.1 1503

A.13.2 Properties

The OPOS device power reporting model adds the following common elements across all device classes:

• CapPowerReporting property: Identifies the reporting capabilities of the device. This property may be one
of:

• OPOS_PR_NONE: The Service Object cannot determine the state of the device. Therefore, no power
reporting is possible.

• OPOS_PR_STANDARD: The Service Object can determine and report two of the power states –
OFF_OFFLINE (that is, off or offline) and ONLINE.

• OPOS_PR_ADVANCED: The Service Object can determine and report all three power states –
ONLINE, OFFLINE, and OFF.

• PowerState property: Maintained by the Service Object at the current power condition, if it can be determined.
This property may be one of:

• OPOS_PS_UNKNOWN

• OPOS_PS_ONLINE

• OPOS_PS_OFF

• OPOS_PS_OFFLINE

• OPOS_PS_OFF_OFFLINE

• PowerNotify property: The Application may set this property to enable power reporting via
StatusUpdateEvents and the PowerState property. This property may only be set before the device is enabled
(that is, before DeviceEnabled is set to TRUE). This restriction allows simpler implementation of power
notification with no adverse effects on the application. The application is either prepared to receive
notifications or does not want them, and has no need to switch between these cases. This property may be one
of:

• OPOS_PN_DISABLED

• OPOS_PN_ENABLED
1504 Unified POS, v1.16.1

A.13.3 Power Reporting Requirements for DeviceEnabled

The following semantics are added to DeviceEnabled when
CapPowerReporting is not OPOS_PR_NONE, and
PowerNotify is OPOS_PN_ENABLED:

• When the Control changes from DeviceEnabled FALSE to TRUE, then begin monitoring the power state:

• If the device is ONLINE, then:

PowerState is set to OPOS_PS_ONLINE.

A StatusUpdateEvent is fired with Status parameter set to OPOS_SUE_POWER_ONLINE.

• If the device power state is OFF, OFFLINE, or OFF_OFFLINE, then the Control may choose to fail
the enable, setting ResultCode to OPOS_E_NOHARDWARE or OPOS_E_OFFLINE.

However, if there are no other conditions that cause the enable to fail, and the Control chooses to
return success for the enable, then:

PowerState is set to OPOS_PS_OFF, OPOS_PS_OFFLINE, or OPOS_PS_OFF_OFFLINE.

A StatusUpdateEvent is fired with Status parameter set to OPOS_SUE_POWER_OFF,
OPOS_SUE_POWER_OFFLINE, or OPOS_SUE_POWER_OFF_OFFLINE.

• When the Control changes from DeviceEnabled TRUE to FALSE, then OPOS assumes that the
Control is no longer monitoring the power state. Therefore: PowerState is set to
OPOS_PS_UNKNOWN.
Unified POS, v1.16.1 1505

A.14 Device Information Reporting Model Added in Release 1.8

POS Applications, as well as System Management agents, frequently need to monitor the current configuration
and usage metrics of the various POS devices that are attached to the POS terminal.

Examples of configuration data are the device’s Serial Number, Firmware Version, and Connection Type.
Examples of usage data for the POSPrinter device are the Number of Lines Printed, Number of Hours Running,
Number of paper cuts, etc. Examples of usage data for the Scanner device are the Number of scans, Number of
Hours Running, etc. Examples of usage data for the MSR device are the Number of successful swipes, Number of
swipes resulting in errors, Number of Hours Running, etc. See Introduction chapter for examples of XML
definitions of the device statistics accumulated per POS device category.

In some cases, the data may be accumulated and stored within the device itself. In other cases, the data may be
accumulated by the Service and stored, possibly on the POS terminal or store controller.

In order for multiple applications (for example a POS application and a System Management application) to
obtain statistics from the same device, proper care must be taken by both applications so that the device can be
made accessible when required. This is done by using the ClaimDevice method and by setting DeviceEnabled to
TRUE when access to a device is required and then setting DeviceEnabled to FALSE and using the
ReleaseDevice method when access to the device is no longer needed. Coordination of device access via this
mechanism is the responsibility of the applications themselves.

A.14.1 Statistics Reporting Properties and Methods

The UnifiedPOS device information reporting model adds the following common properties and methods across
all device classes.

• CapStatisticsReporting property. Identifies the reporting capabilities of the device. When
CapStatisticsReporting is FALSE, then no statistical data regarding the device is available. This is equivalent
to Services compatible with prior versions of the specification. When CapStatisticsReporting is TRUE, then
some statistical data for the device is available.

• CapUpdateStatistics property. Defines whether gathered statistics (or some of them) can be reset/updated by
the application. This property is only valid if CapStatisticsReporting is TRUE. When CapUpdateStatistics
is FALSE, then none of the statistical data can be reset/updated by the application. Otherwise, when
CapUpdateStatistics is TRUE, then (some of) the statistical data can be reset/updated by the application.

• ResetStatistics method. Can only be called if both CapStatisticsReporting and CapUpdateStatistics are
TRUE. This method resets one, some, or all of the resettable device statistics to zero.

• RetrieveStatistics method. Can only be called if CapStatisticsReporting is TRUE. This method retrieves
one, some, or all of the accumulated statistics for the device.

• UpdateStatistics method. Can only be called if both CapStatisticsReporting and CapUpdateStatistics are
TRUE. This method updates one, some, or all of the resettable device statistics to the supplied values.
1506 Unified POS, v1.16.1

A.15 Update Firmware Device Model Added in Release 1.9

POS Applications frequently require the ability to update the firmware in the various POS devices that are
attached to the POS terminal. This model defines a consistent application interface for updating the firmware in
a device controlled by an OPOS control.

This model has the following capabilities:

• A property, CapUpdateFirmware, that indicates whether a device supports firmware updating.

• A property, CapCompareFirmwareVersion, that indicates whether a firmware file’s version can be
compared against the firmware version of the device.

• A method, UpdateFirmware, to perform an asynchronous update of the firmware in a device.

• A method, CompareFirmwareVersion, to compare the firmware file’s version against the firmware version
of the device.

• Additional StatusUpdateEvent Status values to report the progress of an asynchronous update firmware
process.

The update firmware process is an asynchronous operation that reports its progress via StatusUpdateEvents.
This update firmware process applies to all device categories defined in UnifiedPOS. The means by which a
Service actually updates the firmware in the device is not covered by this document, only the means by which the
update firmware process is started and progress is reported.
Unified POS, v1.16.1 1507

A.16 OPOS Component Descriptions

The following sections are arranged as follows and provide detailed information on how an Application is
expected to interface with a device covered under OPOS.

Section 1:
Describes the specific characteristics of the data types that OPOS uses as they relate to the Windows OPOS
implementation.

Section 2:
Provides interface descriptions for the properties, methods, and events specific to OPOS. For thorough
description of these, one should consult the applicable chapters located in this document.

Section 3:
Details the OPOS use of the system registry specific to Windows.

Section 4:
Contains the list of the C++ OPOS application header files.

Section 5:
Provides some miscellaneous additional technical information to help the Application Developer understand
some of the finer details of a Windows OPOS implementation.

Section 6:
Provides additional information on ClaimDevice and ReleaseDevice methods which became necessary as a
result of Microsoft’s ActiveX changes that affected the Claim and Release method naming convention that was
used in OPOS 1.4 and earlier editions.

Section 7:
Provides the Change History previously contained in the OPOS Application Programmer’s Guide (OPOS APG).

Section 8:
Provides information previously contained in the OPOS Control Programmer’s Guide (OPOS CPG). Targeted at
system developers who intend to write an OPOS Control.
1508 Unified POS, v1.16.1

A.17 Section 1: OPOS Data Types Updated in Release 1.12

The parameter and return types specified in the OPOS descriptions are as follows:

Type Meaning
BOOL An integer with the legal values TRUE (non-zero) and FALSE (zero).

COM IDL type: VARIANT_BOOL (short). Values
VARIANT_TRUE (-1) and VARIANT_FALSE (0).
VARIANT type: VT_BOOL

BOOL* A pointer to a mutable integer with the legal values TRUE (non-zero) and
FALSE (zero).

COM IDL type: VARIANT_BOOL* (short*). Values
VARIANT_TRUE (-1) and VARIANT_FALSE (0).
VARIANT type: VT_BYREF | VT_BOOL

BSTR A character string. Consists of a length component followed by the string
and a terminating NUL (0) character. See “System Strings (BSTR)” (page A-
1206) for more information.

COM IDL type: BSTR (unsigned short*)
VARIANT type: VT_BSTR

BSTR* A pointer to a mutable character string.

COM IDL type: BSTR* (unsigned short**)
VARIANT type: VT_BYREF | VT_BSTR

LONG An integer with a size of 32 bits.

COM IDL type: long
VARIANT type: VT_I4

LONG* A pointer to a mutable 32-bit integer.

COM IDL type: long*
VARIANT type: VT_BYREF | VT_I4

Supported in Release 1.3 and later

CURRENCY A monetary value. An integer with a size of 64 bits. The value assumes four
decimal places. For example, if the integer is “1234567”, then the value is
“123.4567”.

COM IDL type: CURRENCY (union tagCY)
 “union tagCY” is declared as
 {
 struct { long Hi; long Lo; };
 __int64 int64;
 };
VARIANT type: VT_CY

CURRENCY* A pointer to a mutable CURRENCY value.

COM IDL type: CURRENCY* (union tagCY*)
VARIANT type: VT_BYREF | VT_CY
Unified POS, v1.16.1 1509

Supported in Release 1.10 and later

SAFEARRAY of BSTR An array of binary data; may be used as an in parameter.

COM IDL type: VARIANT
VARIANT type: VT_BSTR | VT_ARRAY or VT_BYREF | VT_BSTR
| VT_ARRAY

SAFEARRAY of LONG An array of 32-bit integers; may be used as an in parameter.

COM IDL type: VARIANT
VARIANT type: VT_I4 | VT_ARRAY or VT_BYREF | VT_I4 |
VT_ARRAY

SAFEARRAY* of LONG A pointer to a mutable array of 32-bit integers; may be used as an out or
in-out parameter.

COM IDL type: VARIANT
VARIANT type: VT_EMPTY or
VT_I4 | VT_ARRAY or
VT_BYREF | VT_I4 | VT_ARRAY

Notice that the IDL type for all arrays is “VARIANT”, and that the VARIANT type for all arrays
includes “VT_ARRAY”. In addition, the following requirements are imposed on the VARIANT type:

• Immutable (in) arrays must include the type of the data (VT_BSTR or VT_I4) plus optional by-
reference (VT_BYREF).
Before calling the Service Object, the Common Control Objects (a) ensure that the VARIANT type
is valid, and (b) convert by-reference arrays into by-value arrays.

• Mutable (out or in-out) arrays must either have the type (a) VT_EMPTY or (b) the type of the data
(VT_BSTR or VT_I4) plus optional by-reference (VT_BYREF).
Before calling the Service Object, the Common Control Objects (a) ensure that the VARIANT type
is valid, and (b) convert by-reference arrays into by-value arrays.
After calling the Service Object, the Common Control Objects try to update the VARIANT with the
value set by the Service Object, converting by-reference arrays into by-value arrays. (The current
CCOs do not check the type of the returned value. The Service Object must ensure that it is either
empty or an array of the proper type.)
1510 Unified POS, v1.16.1

A.18 Section 2: OPOS Interface Descriptions

Information in this section further defines the requirements of the UnifiedPOS for a Windows OS environment
implementation. The common Properties, Methods, and Events are included to help transition from the UML
given in Chapter 2 to the specifics for the Windows environment.

Next, tables are included that outline the specific programmatic examples for each of the device classifications
and reference back to the UML for the respective devices.

The examples have been provided in Visual Basic and Visual C++ as the Windows OS reference programming
platforms. Other programming languages written for the Windows OS environment may be supported as long as
they comply to the Microsoft OLE 2.x.

A.19 OPOS Common Properties, Methods, and Events

A.20 Common Properties Updated in Release 1.9

OPOS implementation specific definitions of the Common Properties.

Properties (UML attributes)

Name Type Mutability Version
Usage
Notes

AutoDisable Boolean { read-write } 1.2 1

BinaryConversion Long { read-write } 1.2

CapCompareFirmwareVersion Boolean { read-only } 1.9

CapPowerReporting Long { read-only } 1.3

CapStatisticsReporting Boolean { read-only } 1.8

CapUpdateFirmware Boolean { read-only } 1.9

CapUpdateStatistics Boolean { read-only } 1.8

CheckHealthText String { read-only } 1.0

Claimed Boolean { read-only } 1.0

DataCount Long { read-only } 1.2 1

DataEventEnabled Boolean { read-write } 1.0 1

DeviceEnabled: Boolean { read-write } 1.0

FreezeEvents Boolean { read-write } 1.0

OpenResult Long { read-only } 1.5

OutputID Long { read-only } 1.0 2

PowerNotify Long { read-write } 1.3

PowerState Long { read-only } 1.3

ResultCode Long { read-only } 1.0

ResultCodeExtended Long { read-only } 1.0

State Long { read-only } 1.0
Unified POS, v1.16.1 1511

Usage Notes:
1.Used only with Devices that have Event Driven Input.
2.Used only with Asynchronous Output Devices.

A.21 Common Methods Updated in Release 1.10

OPOS implementation specific definitions of the Common Methods.

ControlObjectDescription String { read-only } 1.0

ControlObjectVersion Long { read-only } 1.0

ServiceObjectDescription String { read-only } 1.0

ServiceObjectVersion Long { read-only } 1.0

DeviceDescription String { read-only } 1.0

DeviceName String { read-only } 1.0

Methods (UML operations)

Name Version

LONG Open (BSTR DeviceName); 1.0

LONG Close (); 1.0

LONG ClaimDevicea (LONG Timeout); 1.0

LONG ReleaseDevicea ();

a. Note: In the OPOS environment starting with Release 1.5, the Claim and Release methods are
also defined as ClaimDevice and ReleaseDevice due to Release being a reserved
method name used by Microsoft’s Component Object Model (COM).

1.0

LONG CheckHealth (LONG Level); 1.0

LONG ClearInput (); 1.0

LONG ClearInputProperties (); 1.10

LONG ClearOutput (); 1.0

LONG DirectIO (LONG Command, LONG* pData, BSTR* pString); 1.0

LONG CompareFirmwareVersion (BSTR FirmwareFileName, LONG* pResult
);

1.9

LONG ResetStatistics (BSTR StatisticsBuffer); 1.8

LONG RetrieveStatistics (BSTR* pStatisticsBuffer); 1.8

LONG UpdateFirmware (BSTR FirmwareFileName); 1.9

LONG UpdateStatistics (BSTR StatisticsBuffer); 1.8
1512 Unified POS, v1.16.1

A.22 OPOS Programmatic Names Updated in Release 1.12

OPOS implementation specific definitions of the POS Device Categories’ programmatic IDs.

UnifiedPOS Device
Programmatic Names

OPOS Programmatic IDs

Belt OPOS.Belt

BillAcceptor OPOS.BillAcceptor

BillDispenser OPOS.BillDispenser

Biometrics OPOS.Biometrics

BumpBar OPOS.BumpBar

CashChanger OPOS.CashChanger

CashDrawer OPOS.CashDrawer

CAT OPOS.CAT

CheckScanner OPOS.CheckScanner

CoinAcceptor OPOS.CoinAcceptor

CoinDispenser OPOS.CoinDispenser

ElectronicJournal OPOS.ElectronicJournal

ElectronicValueRW OPOS.ElectronicValueR

FiscalPrinter OPOS.FiscalPrinter

Gate OPOS.Gate

HardTotals OPOS.HardTotals

ImageScanner OPOS.ImageScanner

ItemDispenser OPOS.ItemDispenser

Keylock OPOS.Keylock

Lights OPOS.Lights

LineDisplay OPOS.LineDisplay

MICR OPOS.MICR

MotionSensor OPOS.MotionSensor

MSR OPOS.MSR

PINPad OPOS.PINPad

PointCardRW OPOS.PointCardRW

POSKeyboard OPOS.POSKeyboard

POSPower OPOS.POSPower

POSPrinter OPOS.POSPrinter

RemoteOrderDisplay OPOS.RemoteOrderDispl

RFIDScanner OPOS.RFIDScanner

Scale OPOS.Scale

Scanner OPOS.Scanner

SignatureCapture OPOS.SignatureCapture

SmartCardRW OPOS.SmartCardRW

ToneIndicator OPOS.ToneIndicator
Unified POS, v1.16.1 1513

A.23 Properties

AutoDisable Property R/W Added in Release 1.2
Syntax BOOL AutoDisable;

Remarks This property applies to event-driven input devices. It provides the application with an additional option
for controlling the receipt of input data. If an application wants to receive and process only one input, or
only one input at a time, then this property may be set to TRUE.

When TRUE, then as soon as the Service Object receives and enqueues data to be fired as a DataEvent,
then it sets DeviceEnabled = FALSE. Before any additional input can be received, the application must
set DeviceEnabled = TRUE.

When FALSE, the Service Object does not automatically disable the device when data is received. This
is the behavior of OPOS controls prior to Release 1.2.

This property is initialized to FALSE by the Open method.

Return When this property is set, the following value is placed in the ResultCode property:

Value Meaning
OPOS_SUCCESS The property was set successfully.

BinaryConversion Property R/W Updated in Release 1.14.1
Syntax LONG BinaryConversion;

Remarks OPOS passes multi-character input and output using BStrings. BStrings may be safely used for text data.
As the BStrings are passed between the application and the OPOS Control, OLE may perform language-
specific translations to or from Unicode.

When BStrings are used to pass binary data, then these translations may alter the data such that the data
byte in a BString character at the application does not match the corresponding byte at the Control. This
mismatch is more likely when BString pointers are used, since the Unicode characters are presented to
the application and/or Control, and a language difference between them may cause misinterpretation.
(This was first reported with Japanese, which uses the MBCS Code Page 932, but can occur with other
languages, also.)

Characters between 0x00 and 0x7F may be sent without fear of language-specific translation. Only
characters between 0x80 and 0xFF sometimes cause incorrect translations.

This document specifies those properties and method parameters that are affected by
BinaryConversion in the individual property and method descriptions. The following line is added to
their description:

“In the OPOS environment, the format of this data depends upon the value of the BinaryConversion
property. See BinaryConversion property in Annex A.”

The following table defines the affected device categories and affected Properties, Methods and events.
1514 Unified POS, v1.16.1

Device Category Property/Method/Event Name Reference

Common PME directIO
DirectIOEvent See Chapter 2

Biometrics

BIR
RawSensorData
beginEnrollCapture (2 parameters)
identify (1 parameter)
identifyMatch (2 parameters)
processPrematchData (3 parameters)
verify (3 parameters)
verifyMatch (4 parameters)

See Chapter 5

CAT AdditionalSecurityInformation
DailyLog See Chapter 9

CheckScanner ImageData See Chapter 10

ElectronicValueRW AdditionalSecurityInformation
TransitionEvent See Chapter 14

FiscalPrinter printNormal See Chapter 15

HardTotals read
write See Chapter 17

ImageScanner FrameData See Chapter 18

Keylock ElectronicKeyValue See Chapter 20

LineDisplay
defineGlyph
displayText
displayTextAt

See Chapter 22

MSR

AdditionalSecurityInformation
CardAuthenticationData
Track1Data
Track1DiscretionaryData
Track1EncryptedData
Track2Data
Track2DiscretionaryData
Track2EncryptedData
Track3Data
Track3EncryptedData
Track4Data
Track4EncryptedData
authenticateDevice
deauthenticateDevice
retrieveDeviceAuthenticationData
writeTracks

See Chapter 25

PINPad

Track1Data
Track2Data
Track3Data
Track4Data
computeMAC (2 parameters)

See Chapter 26

PointCardRW printWrite
validateData See Chapter 27
Unified POS, v1.16.1 1515

The binary conversion values are:
Value Meaning
OPOS_BC_NONE Data is placed one byte per BString character, with no conversion.

(This is the default, and is the behavior of OPOS Service Objects prior to
1.2.)

OPOS_BC_NIBBLE Each byte is converted into two characters.
(This option provides for the fastest conversion between binary and ASCII
characters.)
Each data byte is converted as follows:
 First character = 0x30 + bits 7-4 of the data byte.
 Second character = 0x30 + bits 3-0 of the data byte.
Example: Byte value 154 = 0x9A is converted into the characters 0x39 0x3A
(= the string “9:”). Note that this conversion is not the more common
hexadecimal ASCII, which would have converted 154 to 0x39 0x41 (= the
string “9A”).

OPOS_BC_DECIMAL Each byte is converted into three characters.
(This option provides for the easiest conversion between binary and ASCII
characters for Visual Basic and similar languages.)

VAL(string) may be used on each 3 characters to convert from ASCII to
binary.
RIGHT(“^^”+STR(byte), 3) may be used to produce 3 ASCII characters
from each byte, where '^' represents the space character.

POSPrinter

printBarCode
printImmediate
printMemoryBitmap
printNormal
printTwoNormal (2 parameters)
setLogo
validateData

See Chapter 30

RemoteOrderDisplay displayData See Chapter 31

RFIDScanner

CurrentTagID
CurrentTagUserData
disableTag (2 parameters)
lockTag (2 parameters)
readTags (3 parameters)
startReadTags (3 parameters)
stopReadTags
writeTagData (3 parameters)
writeTagID (3 parameters)

See Chapter 32

Scale displayText See Chapter 33

Scanner ScanData
ScanDataLabel See Chapter 34

SignatureCapture PointArray
RawData See Chapter 35

SmartCardRW readData
writeData See Chapter 36

Device Category Property/Method/Event Name Reference
1516 Unified POS, v1.16.1



Example 1: Byte value 154 = 0x9A becomes the characters 0x31 0x35 0x34
(= the string “154”).

Example 2: Byte value 8 becomes the characters 0x30 0x30 0x38 (= the
string “008”).

Requirements for a Service Object are:
(1) When the Service Object converts from ASCII to binary, it must allow
either leading spaces or ASCII zeros, since STR(byte) produces a leading
space. (For example, the application may pass “^^8^27”, where '^' represents
the space character, which will be interpreted as the two bytes 8 (0x08) and
27 (0x1B).)
(2) When the Service Object converts from binary to ASCII, is must always
convert each byte into exactly three ASCII decimal characters (range 0x30
to 0x39).

When BinaryConversion is on (that is, not OPOS_BC_NONE) and the property or method parameter
description specifies that BinaryConversion applies, then the application has the following
responsibilities:
• Before setting the property or passing the method parameter, convert the string data into the format

specified by the BinaryConversion value.
• If XMLPOS is used to transmit binary data, the “ARTSBinary” conversion shall be used to process

the data to and from XMLPOS. See “Taxonomy for Converting XML Data to UnifiedPOS” 
in Annex D.

• After getting the property or receiving the method parameter, convert the string data from the format
specified by the BinaryConversion value.

To better understand the “direction” of the conversion, determine if the data flow follows the Output
Model or the Input Model. If the flow follows the Output Model, then the application must adhere to the
first responsibility listed above. If the flow follows the Input Model, then the application must adhere to
the second responsibility listed above.

This property is initialized to OPOS_BC_NONE by the Open method.

Return When this property is set, one of the following values is placed in the ResultCode property:

Value Meaning
OPOS_SUCCESS The property was set successfully.
OPOS_E_ILLEGAL An illegal value was specified.

CapCompareFirmwareVersion Property Added in Release 1.9

Syntax BOOL CapCompareFirmwareVersion;

Remarks If TRUE, then the Service/device supports comparing the version of the firmware in the physical device
against that of a firmware file.

See Also CompareFirmwareVersion Method.
Unified POS, v1.16.1 1517

CapPowerReporting Property Added in Release 1.3

Syntax LONG CapPowerReporting;

Remarks Identifies the reporting capabilities of the device.

The power reporting values are:

Value Meaning
OPOS_PR_NONE The Service Object cannot determine the state of the device. Therefore, no

power reporting is possible.
OPOS_PR_STANDARD

The Service Object can determine and report two of the power states –
OFF_OFFLINE (that is, off or offline) and ONLINE.

OPOS_PR_ADVANCED
The Service Object can determine and report all three power states – OFF,
OFFLINE, and ONLINE.

This property is initialized by the Open method.

CapStatisticsReporting Property Added in Release 1.8

Syntax BOOL CapStatisticsReporting;

Remarks If TRUE, the device accumulates and can provide various statistics regarding usage; otherwise no usage
statistics are accumulated. The information accumulated and reported is device specific, and is retrieved
using the RetrieveStatistics method.

This property is initialized by the Open method.

See Also RetrieveStatistics Method.

CapUpdateFirmware Property Added in Release 1.9

Syntax BOOL CapUpdateFirmware;

Remarks If TRUE, then the device’s firmware can be updated via the UpdateFirmware method.

See Also UpdateFirmware Method.

CapUpdateStatistics Property Added in Release 1.8
Syntax BOOL CapUpdateStatistics;

Remarks If TRUE, the device statistics, or some of the statistics, can be reset to zero using the ResetStatistics
method, or updated using the UpdateStatistics method.

If CapStatisticsReporting is FALSE, then CapUpdateStatistics is also FALSE.

This property is initialized by the Open method.

See Also CapStatisticsReporting Property, ResetStatistics Method, UpdateStatistics Method.
1518 Unified POS, v1.16.1

CheckHealthText Property

Syntax BSTR CheckHealthText;

Remarks Holds the results of the most recent call to the CheckHealth method. The following examples illustrate
some possible diagnoses:

• “Internal HCheck: Successful”

• “External HCheck: Not Responding”

• “Interactive HCheck: Complete”

Before the first CheckHealth method call, its value is uninitialized.

Claimed Property

Syntax BOOL Claimed;

Remarks If TRUE, the device is claimed for exclusive access.
If FALSE, the device is released for sharing with other applications.

Many devices must be claimed before the Control will allow access to many of its methods and
properties, and before it will fire events to the application.

The value of Claimed is initialized to FALSE by the Open method.

ControlObjectDescription Property
Syntax BSTR ControlObjectDescription;

Remarks String identifying the Control Object and the company that produced it.

The property identifies the Control Object. A sample returned string is:

“POS Printer OLE Control, (C) 1995 Epson”

This property is always readable.

ControlObjectVersion Property

Syntax LONG ControlObjectVersion;

Remarks Control Object version number.

This property holds the Control Object version number. Three version levels are specified, as follows:

Version Level Description
Major The “millions” place.

A change to the OPOS major version level for a device class reflects
significant interface enhancements, and may remove support for obsolete
interfaces from previous major version levels.

Minor The “thousands” place.
A change to the OPOS minor version level for a device class reflects minor
interface enhancements, and must provide a superset of previous interfaces
at this major version level.

Build The “units” place.
Internal level provided by the Control Object developer. Updated when
corrections are made to the CO implementation.
Unified POS, v1.16.1 1519

A sample version number is:

1002038

This value may be displayed as version “1.2.38”, and interpreted as major version 1, minor version 2,
build 38 of the Control Object.

This property is always readable.

Note:
A Control Object for a device class will operate with any Service Object for that class, as long as its
major version number matches the Service Object’s major version number. If they match, but the
Control Object’s minor version number is greater than the Service Object’s minor version number, then
the Control Object may support some new methods or properties that are not supported by the Service
Object’s release.
The following rules apply to APIs supported by the Control Object’s release but not supported by the
Service Object’s older release:
• Reading an unsupported property: The Control Object returns the property’s uninitialized value.

(See “When Methods and Properties May Be Accessed” in Annex D for uninitialized property de-
fault values.)

• Writing an unsupported property: The Control Object returns, but must remember that an unsupport-
ed property write or method call occurred. Then, if the application reads the ResultCode property,
the Control Object must return a value of OPOS_E_NOSERVICE (rather than reading the current
ResultCode from the Service Object). It must do this until the next property write or method call, at
which time ResultCode is set by that API.

• Calling an unsupported method: The Control Object returns a value of OPOS_E_NOSERVICE, and
must remember that an unsupported property write or method call occurred. Then, if the application
reads the ResultCode property, the Control Object must return a value of OPOS_E_NOSERVICE
(rather than reading the current ResultCode from the Service Object). It must do this until the next
property write or method call, at which time ResultCode is set by that API.

DataCount Property Added in Release 1.2

Syntax LONG DataCount;

Remarks Holds the number of enqueued DataEvents at the control.

The application may interrogate DataCount to determine whether additional input is enqueued from a
device, but has not yet been delivered because of other application processing, freezing of events, or
other causes.

This property is initialized to zero by the Open method.
1520 Unified POS, v1.16.1

DataEventEnabled Property R/W

Syntax BOOL DataEventEnabled;

Remarks When TRUE, a DataEvent will be delivered as soon as input data is enqueued. If changed to TRUE and
some input data is already queued, then a DataEvent is delivered immediately. (Note that other, less
likely, conditions may delay “immediate” delivery: If FreezeEvents is TRUE or another event is already
being processed at the application, the DataEvent will remain enqueued at the Service Object until the
condition is corrected.)

When FALSE, input data is queued for later delivery to the application. Also, if an input error occurs,
the ErrorEvent is not delivered while DataEventEnabled is FALSE.

This property is initialized to FALSE by the Open method.

Return When this property is set, the following value is placed in the ResultCode property:

Value Meaning
OPOS_SUCCESS The property was set successfully.

DeviceDescription Property
Syntax BSTR DeviceDescription;

Remarks String identifying the device.

The property identifies the device and any pertinent information about it. A sample returned string is:

“NCR 7192-0184 Printer, Japanese Version”

This property is initialized by the Open method.
Unified POS, v1.16.1 1521

DeviceEnabled Property R/W

Syntax BOOL DeviceEnabled;

Remarks When TRUE, the device has been placed in an operational state. If changed to TRUE, then the device is
brought to an operational state.

When FALSE, the device has been disabled. If changed to FALSE, then the device is physically
disabled when possible, any subsequent input will be discarded, and output operations are disallowed.

Changing this property usually does not physically affect output devices. For consistency, however, the
application must set this property to TRUE before using output devices.

Release 1.3 and later: The device’s power state may be reported while DeviceEnabled is TRUE.

This property is initialized to FALSE by the Open method.

Return When this property is set, one of the following values is placed in the ResultCode property:

Value Meaning
OPOS_SUCCESS The property was set successfully.

OPOS_E_NOTCLAIMED
An exclusive use device must be claimed before the device may be enabled.

Other Values See ResultCode.

DeviceName Property
Syntax BSTR DeviceName;

Remarks Short string identifying the device.

The property identifies the device and any pertinent information about it. This is a short version of
DeviceDescription and should be limited to 30 characters.

DeviceName will typically be used to identify the device in an application message box, where the full
description is too verbose. A sample returned string is:

“NCR 7192 Printer, Japanese”

This property is initialized by the Open method.
1522 Unified POS, v1.16.1

FreezeEvents Property R/W Updated in Release 1.12

Syntax BOOL FreezeEvents;

Remarks When TRUE, the application has requested that the Control not deliver events. Events will be held by
the Control until events are unfrozen.

When FALSE, the application allows events to be delivered. If some events have been held while events
were frozen and all other conditions are correct for delivering the events, then changing FreezeEvents

to FALSE will cause these events to be delivered.4

An application may choose to freeze events for a specific sequence of code where interruption by an
event is not desirable.

Unless specified otherwise, properties that convey device state information (e.g., JrnEmpty and
DrawerOpened) are kept current while the device is enabled, regardless of the setting of the
FreezeEvents property.

This property is initialized to FALSE by the Open method.

Return When this property is set, the following value is placed in the ResultCode property:

Value Meaning
OPOS_SUCCESS The property was set successfully.

OpenResult Property Added in Release 1.5
Syntax LONG OpenResult;

Remarks Holds additional details about the most recent Open method.

The open result values are:

Value Meaning
OPOS_SUCCESS Successful open.
OPOS_OR_ALREADYOPEN

Control already open.
OPOS_OR_REGBADNAME

The registry does not contain a key for the specified device name.
OPOS_OR_REGPROGID

Could not read the device name key's default value, or could not convert the
Programmatic ID it holds into a valid Class ID.

OPOS_OR_CREATE Could not create a service object instance, or could not get its IDispatch
interface.

OPOS_OR_BADIF The service object does not support one or more of the methods required by
its release.

4. Firing of events can also be deferred by the containing application. A control container may request controls to
freeze event firing. For example, this feature is utilized by Visual Basic when modal dialog boxes are active.
Therefore, events are fired when both FreezeEvents is FALSE and the container has not requested event freezing.
Container-initiated event freezing is not referenced elsewhere in this document, since an Application will seldom
if ever notice it and cannot directly control it.
Unified POS, v1.16.1 1523

OPOS_OR_FAILEDOPEN
The service object returned a failure status from its open call, but does not
have a more specific failure code.

OPOS_OR_BADVERSION
The service object major version number does not match the control object
major version number.
The following values can be returned by the Service Object if it returns a
failure status from its open call. The Service Object can choose to return one
of these, if applicable, or define additional values. (See the Control
Programmer's Guide's GetOpenResult description for details on how the
Service Object returns these values. If the Service Object does not
implement GetOpenResult, then OpenResult returns
OPOS_OR_FAILEDOPEN.)

OPOS_ORS_NOPORT The Service Object tried to access an I/O port (for example, an RS232 port)
during Open processing, but the port that is configured for the DeviceName
is invalid or inaccessible.
As a general rule, an SO should refrain from accessing the physical device
until the DeviceEnabled property is set to TRUE. But in some cases, it may
require some access at Open; for instance, to dynamically determining the
device type in order to set the DeviceName and DeviceDescription
properties.

OPOS_ORS_NOTSUPPORTED
The Service Object does not support the specified device.

The SO has determined that it does not have the ability to control the device
it is opening. This determination may be due to an inspection of the registry
entries for the device, or dynamic querying of the device during open
processing.

OPOS_ORS_CONFIG Configuration information error.

Usually this is due to incomplete configuration of the registry, such that the
SO does not have sufficient or valid data to open the device.

OPOS_ORS_SPECIFIC Errors greater than this value are service object-specific.

If the previous return values do not apply, then the SO may define additional
OpenResult values. These values are Service Object-specific, but may be of
value in these cases:

 1) The Application logs or reports this error during debug and testing.

 2) The Application adds SO-specific logic, to attempt to report more error
conditions or to recover from them.

This property is initialized by the Open method.
1524 Unified POS, v1.16.1

OutputID Property

Syntax LONG OutputID;

Remarks Holds the identifier of the most recently started asynchronous output.

When a method successfully initiates an asynchronous output, the Control assigns an identifier to the
request. When the output completes, the Control will fire an OutputCompleteEvent passing this
output ID as a parameter.

The output ID numbers are assigned by the Control and are guaranteed to be unique among the set of
outstanding asynchronous outputs. No other facts about the ID should be assumed.

PowerNotify Property R/W Added in Release 1.3

Syntax LONG PowerNotify;

Remarks Contains the type power notification selection made by the Application.

The power notification values are:

Value Meaning
OPOS_PN_DISABLED The Control will not provide any power notifications to the application. No

power notification StatusUpdateEvents will be fired, and PowerState may
not be set.

OPOS_PN_ENABLED The Control will fire power notification StatusUpdateEvents and update
PowerState, beginning when DeviceEnabled is set to TRUE. The level of
functionality depends upon CapPowerReporting.

PowerNotify may only be set while the device is disabled; that is, while DeviceEnabled is FALSE.

This property is initialized to OPOS_PN_DISABLED by the Open method. This value provides
compatibility with earlier releases.

Return When this property is set, one of the following values is placed in the ResultCode property:

Value Meaning
OPOS_SUCCESS The property was set successfully.
OPOS_E_ILLEGAL One of the following occurred:

• The device is already enabled.
• PowerNotify = OPOS_PN_ENABLED but CapPowerReporting =

OPOS_PR_NONE.

Other Values See ResultCode.
Unified POS, v1.16.1 1525

PowerState Property Added in Release 1.3

Syntax LONG PowerState;

Remarks Contains the current power condition, if it can be determined.

The power reporting values are:

Value Meaning
OPOS_PS_UNKNOWN Cannot determine the device's power state, for one of the following reasons:

• CapPowerReporting = OPOS_PR_NONE. Device does not support
power reporting.

• PowerNotify = OPOS_PN_DISABLED. Power notifications are
disabled.

• DeviceEnabled = FALSE. Power state monitoring does not occur until
the device is enabled.

OPOS_PS_ONLINE The device is powered on and ready for use.
Can be returned if CapPowerReporting = OPOS_PR_STANDARD or
OPOS_PR_ADVANCED.

OPOS_PS_OFF The device is off or detached from the terminal.
Can only be returned if CapPowerReporting = OPOS_PR_ADVANCED.

OPOS_PS_OFFLINE The device is powered on but is either not ready or not able to respond to
requests.
Can only be returned if CapPowerReporting = OPOS_PR_ADVANCED.

OPOS_PS_OFF_OFFLINE
The device is either off or offline.
Can only be returned if CapPowerReporting = OPOS_PR_STANDARD.

This property is initialized to OPOS_PS_UNKNOWN by the Open method. When PowerNotify is set
to enabled and DeviceEnabled is TRUE, then this property is updated as the Service Object detects
power condition changes.

ResultCode Property Updated in Release 1.11

Syntax LONG ResultCode;

Remarks This property is set by each method. It is also set when a writable property is set.

This property is always readable. Before the Open method is called, it returns the value
OPOS_E_CLOSED.

It is conceivable that more than one of the following result codes could be valid for a particular failure.
The order of error reporting precedence for such scenarios is the following:

• OPOS_E_CLAIMED
• OPOS_E_NOTCLAIMED
• OPOS_E_DISABLED

The result code values are:

Value Meaning
OPOS_SUCCESS Successful operation.
OPOS_E_CLOSED Attempt was made to access a closed device.
OPOS_E_CLAIMED Attempt was made to access a device that is claimed by another process. The

other process must release the device before this access may be made. For
exclusive-use devices, the application will also need to claim the device
before the access is legal.
1526 Unified POS, v1.16.1

OPOS_E_NOTCLAIMED
Attempt was made to access an exclusive-use device that must be claimed
before the method or property set action can be used.
If the device is already claimed by another process, then the status
OPOS_E_CLAIMED is returned instead.

OPOS_E_NOSERVICE The Control cannot communicate with the Service Object. Most likely, a
setup or configuration error must be corrected.

OPOS_E_DISABLED Cannot perform operation while device is disabled.
OPOS_E_ILLEGAL Attempt was made to perform an illegal or unsupported operation with the

device, or an invalid parameter value was used.
OPOS_E_NOHARDWARE

The device is not connected to the system or is not powered on.
OPOS_E_OFFLINE The device is off-line.
OPOS_E_NOEXIST The file name (or other specified value) does not exist.
OPOS_E_EXISTS The file name (or other specified value) already exists.
OPOS_E_FAILURE The device cannot perform the requested procedure, even though the device

is connected to the system, powered on, and on-line.
OPOS_E_TIMEOUT The Service Object timed out waiting for a response from the device, or the

Control timed out waiting for a response from the Service Object.
OPOS_E_BUSY The current Service Object state does not allow this request. For example, if

asynchronous output is in progress, certain methods may not be allowed.
OPOS_E_EXTENDED A class-specific error condition occurred. The error condition code is

available in the ResultCodeExtended property.
OPOS_E_DEPRECATED

The requested operation can not be performed since it has been deprecated.
See “Version Handling” on page 29 for additional information.

ResultCodeExtended Property

Syntax LONG ResultCodeExtended;

Remarks When the ResultCode is set to OPOS_E_EXTENDED, this property is set to a class-specific value, and
must match one of the values given in this document under the appropriate device class section.

When the ResultCode is set to any other value, this property may be set by the Service Object to any
SO-specific value. These values are only meaningful if the application adds Service Object-specific
code to handle them.

ServiceObjectDescription Property

Syntax BSTR ServiceObjectDescription;

Remarks String identifying the Service Object supporting the device and the company that produced it.

A sample returned string is:

“TM-U950 Printer OPOS Service Driver, (C) 1995 Epson”

This property is initialized by the Open method.
Unified POS, v1.16.1 1527

ServiceObjectVersion Property

Syntax LONG ServiceObjectVersion;

Remarks Service object version number.

This property holds the Service Object version number. Three version levels are specified, as follows:

Version Level Description
Major The “millions” place.

A change to the OPOS major version level for a device class reflects
significant interface enhancements, and may remove support for obsolete
interfaces from previous major version levels.

Minor The “thousands” place.
A change to the OPOS minor version level for a device class reflects minor
interface enhancements, and must provide a superset of previous interfaces
at this major version level.

Build The “units” place.
Internal level provided by the Service Object developer. Updated when
corrections are made to the SO implementation.

A sample version number is:

1002038

This value may be displayed as version “1.2.38”, and interpreted as major version 1, minor version 2,
build 38 of the Service Object.

This property is initialized by the Open method.

Note:
A Service Object for a device class will operate with any Control Object for that class, as long as its
major version number matches the Control Object’s major version number. If they match, but the
Service Object’s minor version number is greater than the Control Object’s minor version number, then
the Service Object may support some methods or properties that cannot be accessed from the Control
Object’s release.

If the application requires such features, then it will need to be updated to use a later version of the
Control Object.

State Property
Syntax LONG State;

Remarks Contains the current state of the Control.

Value Meaning
OPOS_S_CLOSED The Control is closed.
OPOS_S_IDLE The Control is in a good state and is not busy.
OPOS_S_BUSY The Control is in a good state and is busy performing output.
OPOS_S_ERROR An error has been reported, and the application must recover the Control to a

good state before normal I/O can resume.
This property is always readable.
1528 Unified POS, v1.16.1

A.24 Methods

CheckHealth Method
Syntax LONG CheckHealth (LONG Level);

The Level parameter indicates the type of health check to be performed on the device. The following
values may be specified:

Value Meaning
OPOS_CH_INTERNAL

Perform a health check that does not physically change the device. The
device is tested by internal tests to the extent possible.

OPOS_CH_EXTERNAL
Perform a more thorough test that may change the device. For example, a
pattern may be printed on the printer.

OPOS_CH_INTERACTIVE
Perform an interactive test of the device. The supporting Service Object will
typically display a modal dialog box to present test options and results.

Remarks Called to test the state of a device.

A text description of the results of this method is placed in the CheckHealthText property.

The CheckHealth method is always synchronous.

Return One of the following values is returned by the method and also placed in the ResultCode property.

Value Meaning
OPOS_SUCCESS Indicates that the health checking procedure was initiated properly and,

when possible to determine, indicates that the device is healthy. However,
the health of many devices can only be determined by a visual inspection of
the test results.

OPOS_E_ILLEGAL The specified health check level is not supported by the Service Object.
OPOS_E_BUSY Cannot perform while output is in progress.
Other Values See ResultCode.
Unified POS, v1.16.1 1529

ClaimDevice Method Added in Release 1.5

Syntax LONG ClaimDevice (LONG Timeout);

The Timeout parameter gives the maximum number of milliseconds to wait for exclusive access to be
satisfied.
If zero, the method attempts to claim the device, then returns the appropriate status immediately.
If OPOS_FOREVER (-1), the method waits as long as needed until exclusive access is satisfied.

Remarks Call this method to request exclusive access to the device. Many devices require an application to claim
them before they can be used.

When successful, the Claimed property is changed to TRUE.

Release 1.0 – 1.4 In releases prior to 1.5, this method is named Claim.

Release 1.5 and later 5

ClaimDevice must be used by early-bound applications. For compatibility with late-bound applications,
the Control Object’s IDispatch interface supports both ClaimDevice and Claim. It is recommended that
applications written to the 1.5 specification use ClaimDevice, not Claim.

Early bound applications acquire Control Object calling details at development time, including Class
IDs, Interface IDs, and method, property, and event calling details. They then can build in static
sequences to call methods and properties and receive events. Microsoft Visual C++ and Visual Basic
plus most compiled languages support early binding.

Late bound applications acquire calling details at run time. They then dynamically build code sequences
to call methods and properties plus receive events. Scripting languages usually support late binding.
Late binding can be implemented with many compiled languages, too, but often require additional
programmer effort, especially to receive events.

Return One of the following values is returned by the method and also placed in the ResultCode property:

Value Meaning
OPOS_SUCCESS Exclusive access has been granted. The Claimed property is now TRUE.

Also returned if this application has already claimed the device.
OPOS_E_ILLEGAL This device cannot be claimed for exclusive access, or an invalid Timeout

parameter was specified.
OPOS_E_TIMEOUT Another application has exclusive access to the device, and did not

relinquish control before Timeout milliseconds expired.

5. For further details, see Annex A.24 - Section 6.
1530 Unified POS, v1.16.1

ClearInput Method

Syntax LONG ClearInput ();

Remarks Called to clear all device input that has been buffered.

Any data events or input error events that were enqueued – usually waiting for DataEventEnabled to
be set to TRUE and FreezeEvents to be set to FALSE – are also cleared.

Return One of the following values is returned by the method and also placed in the ResultCode property:

Value Meaning
OPOS_SUCCESS Input has been cleared.
OPOS_E_CLAIMED The device is claimed by another process.
OPOS_E_NOTCLAIMED

The device must be claimed before this method can be used.

ClearInputProperties Method

Added in Release 1.10

Syntax LONG ClearInputProperties ();

Remarks Sets all data properties, that were populated as a result of firing a DataEvent or ErrorEvent, back to
their default values. This does not reset the DataCount or State properties.

Return One of the following values is returned by the method and also placed in the ResultCode property:

Value Meaning
OPOS_SUCCESS Properties have been rest.
OPOS_E_CLAIMED The device is claimed by another process.
OPOS_E_NOTCLAIMED

The device must be claimed before this method can be used.

ClearOutput Method Updated in Release 1.7
Syntax LONG ClearOutput ();

Remarks Called to clear all buffered output data, including all asynchronous output. Also, when possible, halts
outputs that are in progress.

Any output error events that were enqueued – usually waiting for FreezeEvents to be set to FALSE –
are also cleared.

Return One of the following values is returned by the method and also placed in the ResultCode property:

Value Meaning
OPOS_SUCCESS Output has been cleared.
OPOS_E_CLAIMED The device is claimed by another process.
OPOS_E_NOTCLAIMED

The device must be claimed before this method can be used.

Close Method
Syntax LONG Close ();

Remarks Called to release the device and its resources.

If the DeviceEnabled property is TRUE, then the device is first disabled.

If the Claimed property is TRUE, then exclusive access to the device is first released.
Unified POS, v1.16.1 1531

Return One of the following values is returned by the method and also placed in the ResultCode property:

Value Meaning
OPOS_SUCCESS Device has been disabled and closed.
Other Values See ResultCode.

CompareFirmwareVersion Method Added in Release 1.9

Syntax LONG CompareFirmwareVersion (BSTR FirmwareFileName, LONG* pResult);

Parameter Description
FirmwareFileName Specifies either the name of the file containing the firmware or a file

containing a set of firmware files whose versions are to be compared against
those of the device.

pResult Location in which to return the result of the comparison.

Remarks This method determines whether the version of the firmware contained in the specified file is newer than,
older than, or the same as the version of the firmware in the physical device.

The Service should check that the specified firmware file exists and that its contents are valid for this
device before attempting to perform the comparison operation.

The result of the comparison is returned in the pResult parameter and will be one of the following values:

Value Meaning
OPOS_CFV_FIRMWARE_OLDER

Indicates that the version of one or more of the firmware files is older
than the firmware in the device and that none of the firmware files is
newer than the firmware in the device.

OPOS_CFV_FIRMWARE_SAME
Indicates that the versions of all of the firmware files are the same as
the firmware in the device.

OPOS_CFV_FIRMWARE_NEWER
Indicates that the version of one or more of the firmware files is
newer than the firmware in the device and that none of the firmware
files is older than the firmware in the device.

OPOS_CFV_FIRMWARE_DIFFERENT
Indicates that the version of one or more of the firmware files is
different than the firmware in the device, but either:
• The chronological relationship cannot be determined, or
• The relationship is inconsistent -- one or more are older while one

or more are newer.
OPOS_CFV_FIRMWARE_UNKNOWN

Indicates that a relationship between the two firmware versions
could not be determined. A possible reason for this result could be
an attempt to compare Japanese and US versions of firmware.

If the FirmwareFileName parameter specifies a file list, all of the component firmware files should reside
in the same directory as the firmware list file. This will allow for distribution of the updated firmware
without requiring a modification to the firmware list file.

Return One of the following values is returned by the method and also placed in the ResultCode property:

Value Meaning
OPOS_SUCCESS Compare firmware successful.
OPOS_E_ILLEGAL CapCompareFirmwareVersion is false.
OPOS_E_NOEXIST The file specified by FirmwareFileName does not exist or, if

FirmwareFileName specifies a file list, one or more of the component
firmware files are missing.
1532 Unified POS, v1.16.1

OPOS_E_EXTENDED ResultCodeExtended = OPOS_EFIRMWARE_BAD_FILE:
The specified firmware file or files exist, but one or more are either not in
the correct format or are corrupt.

Other Values See ResultCode.

See Also CapCompareFirmwareVersion Property.

DirectIO Method
Syntax LONG DirectIO (LONG Command, LONG* pData, BSTR* pString);

Parameter Description
Command Command number. Specific values assigned by the Service Object.
pData Pointer to additional numeric data. Specific values vary by Command and

Service Object.
pString Pointer to additional string data. Specific values vary by Command and

Service Object.
The format of this data depends upon the value of the BinaryConversion
property. See Annex A - Properties.

Remarks Call to communicate directly with the Service Object.

This method provides a means for a Service Object to provide functionality to the application that is not
otherwise supported by the standard Control Object for its device class. Depending upon the Service
Object’s definition of the command, this method may be asynchronous or synchronous.

Use of DirectIO will make an application non-portable. The application may, however, maintain
portability by performing DirectIO calls within conditional code. This code may be based upon the
value of the ServiceObjectDescription, DeviceDescription, or DeviceName property.

Return One of the following values is returned by the method and also placed in the ResultCode property:

Value Meaning
OPOS_SUCCESS Direct I/O successful.
Other Values See ResultCode.

Open Method
Syntax LONG Open (BSTR DeviceName);

The DeviceName parameter specifies the device name to open.

Remarks Call to open a device for subsequent I/O.

The device name specifies which of one or more devices supported by this Control Object should be
used. The DeviceName must exist in the system registry for this device class. The relationship between
the device name and physical devices is determined by entries within the operating system registry;
these entries are maintained by a setup or configuration utility.

When the Open method is successful, it sets the properties Claimed, DeviceEnabled,
DataEventEnabled, and FreezeEvents, as well as descriptions and version numbers of the OPOS
software layers. Additional class-specific properties may also be initialized.

Release 1.5 and later

The value of the OpenResult property is set by the Open method.
Unified POS, v1.16.1 1533

Return One of the following values is returned by the method:

Value Meaning
OPOS_SUCCESS Open successful.
OPOS_E_ILLEGAL The Control is already open.
OPOS_E_NOEXIST The specified DeviceName was not found.
OPOS_E_NOSERVICE Could not establish a connection to the corresponding Service Object.

Other Values See ResultCode.

Note:

The value of the ResultCode property after calling the Open method may not be the same as the Open
method return value for the following two cases:

• The Control was closed and the Open method failed: The ResultCode property will continue to 
return OPOS_E_CLOSED.

• The Control was already opened: The Open method will return OPOS_E_ILLEGAL, but the 
ResultCode property may continue to return the value it held before the Open method.
1534 Unified POS, v1.16.1

ReleaseDevice Method Added in Release 1.5

Syntax LONG ReleaseDevice ();

Remarks Call this method to release exclusive access to the device.

If the DeviceEnabled property is TRUE, and the device is an exclusive-use device, then the device is
first disabled. (ReleaseDevice does not change the device enabled state of sharable devices.)

Release 1.0 – 1.4

In releases prior to 1.5, this method is named Release.

Release 1.5 and later 6

ReleaseDevice must be used by early-bound applications. For compatibility with late-bound
applications, the Control Object’s IDispatch interface supports both ReleaseDevice and Release. It is
recommended that applications written to the 1.5 specification use ReleaseDevice, not Release.

Early bound applications acquire Control Object calling details at development time, including Class
IDs, Interface IDs, and method, property, and event calling details. They then can build in static
sequences to call methods and properties and receive events. Microsoft Visual C++ and Visual Basic
plus most compiled languages support early binding.

Late bound applications acquire calling details at run time. They then dynamically build code sequences
to call methods and properties plus receive events. Scripting languages usually support late binding.
Late binding can be implemented with many compiled languages, too, but often require additional
programmer effort, especially to receive events.

Return One of the following values is returned by the method and also placed in the ResultCode property:

Value Meaning
OPOS_SUCCESS Exclusive access has been released. The Claimed property is now FALSE.
OPOS_E_ILLEGAL The application does not have exclusive access to the device.

6. For further details, see Annex A.24 - Section 6.
Unified POS, v1.16.1 1535

ResetStatistics Method Added in Release 1.8

Syntax LONG ResetStatistics (BSTR StatisticsBuffer);

Parameter Description
StatisticsBuffer The data buffer defining the statistics that are to be reset.

This is a comma-separated list of name(s), where an empty string (“”) means ALL resettable statistics
are to be reset, “U_” means all UnifiedPOS defined resettable statistics are to be reset, “M_” means all
manufacturer defined resettable statistics are to be reset, and “actual_name1, actual_name2” (from the
XML file definitions) means that the specifically defined resettable statistic(s) are to be reset.

Remarks Resets the defined resettable statistics in a device.

Both CapStatisticsReporting and CapUpdateStatistics must be TRUE in order to successfully use this
method.

This method is always executed synchronously.

Return One of the following values is returned by the method and also placed in the ResultCode property:

Value Meaning
OPOS_SUCCESS The statistics have been reset.
OPOS_E_ILLEGAL CapStatisticsReporting or CapUpdateStatistics is FALSE, or the named

statistic is not defined/resettable.
Other Values See ResultCode.

See Also CapStatisticsReporting Property, CapUpdateStatistics Property.

RetrieveStatistics Method Added in Release 1.8
Syntax LONG RetrieveStatistics (BSTR* pStatisticsBuffer);

Parameter Description
pStatisticsBuffer The data buffer defining the statistics to be retrieved and in which the

retrieved statistics are placed.

This is a comma-separated list of name(s), where an empty string (“”) means ALL statistics are to be
retrieved, “U_” means all UnifiedPOS defined statistics are to be retrieved, “M_” means all manufacturer
defined statistics are to be retrieved, and “actual_name1, actual_name2” (from the XML file definitions)
means that the specifically defined statistic(s) are to be retrieved.

Remarks Retrieves the statistics from a device.

CapStatisticsReporting must be TRUE in order to successfully use this method.

This method is always executed synchronously.

All calls to RetrieveStatistics will return the following XML as a minimum:

<?xml version=’1.0’ ?>
<UPOSStat version=”1.13.0” xmlns:xsi=”http://www.w3.org/2001/XMLSchema-
instance” xmlns=”http://www.omg.org/UnifiedPOS/namespace/”
xsi:schemaLocation=”http://www.omg.org/UnifiedPOS/namespace/
UPOSStat.xsd”>
 <Event>
 <Parameter>
 <Name>RequestedStatistic</Name>
 <Value>1234</Value>
 </Parameter>
 </Event>
 <Equipment>
<UnifiedPOSVersion>1.13</UnifiedPOSVersion>
<DeviceCategory UPOS=”CashDrawer”/>
<ManufacturerName>Cashdrawers R Us</ManufacturerName>
<ModelName>CD-123</ModelName>
1536 Unified POS, v1.16.1

<SerialNumber>12345</SerialNumber>
<FirmwareRevision>1.0 Rev. B</FirmwareRevision>
<Interface>RS232</Interface>
<InstallationDate>2000-03-01</InstallationDate>
 </Equipment>
</UPOSStat>

If the application requests a statistic name that the device does not support, the <Parameter> entry will
be returned with an empty <Value>. e.g.,

<Parameter>
 <Name>RequestedStatistic</Name>
 <Value></Value>
</Parameter>
All statistics that the device collects that are manufacturer specific (not defined in the schema) will be
returned in a <ManufacturerSpecific> tag instead of a <Parameter> tag. e.g.,

<ManufacturerSpecific>
 <Name>TheAnswer</Name>
 <Value>42</Value>
</ManufacturerSpecific>

When an application requests all statistics from the device, the device will return a <Parameter> entry
for every defined statistic for the device category as defined by the XML schema version specified by
the version attribute in the <UPOSStat> tag. If the device does not record any of the statistics, the
<Value> tag will be empty.

Return One of the following values is returned by the method and also placed in the ResultCode property:
Value Meaning
OPOS_SUCCESS The statistics have been retrieved and placed into the supplied buffer.
OPOS_E_ILLEGAL CapStatisticsReporting is FALSE or the named statistic is not defined.
Other Values See ResultCode.

See Also CapStatisticsReporting Property.

The most up-to-date files defining the XML tag names and example schemas for the
statistics for all device categories can be downloaded from the ARTS web site at
http://retail.omg.org.
Unified POS, v1.16.1 1537

http://retail.omg.org
http://retail.omg.org

UpdateFirmware Method Added in Release 1.9

Syntax LONG UpdateFirmware (BSTR FirmwareFileName);

Parameter Description
FirmwareFileName Specifies either the name of the file containing the firmware or a file

containing a set of firmware files that are to be downloaded into the device.

Remarks This method updates the firmware of a device with the version of the firmware contained or defined in
the file specified by the FirmwareFileName parameter regardless of whether that firmware’s version is
newer than, older than, or the same as the version of the firmware already in the device. If the
FirmwareFileName parameter specifies a file list, all of the component firmware files should reside in
the same directory as the firmware list file. This will allow for distribution of the updated firmware
without requiring a modification to the firmware list file.

When this method is invoked, the Service should check that the specified firmware file exists and that its
contents are valid for this device. If so, this method should return immediately and the remainder of the
update firmware process should continue asynchronously. The Service should notify the application of
the status of the update firmware process by firing StatusUpdateEvents with values of
OPOS_SUE_UF_PROGRESS + an integer between 1 and 100 indicating the completion percentage of
the update firmware process. For application convenience, the StatusUpdateEvent value
OPOS_SUE_UF_COMPLETE is defined to be the same value as OPOS_SUE_UF_PROGRESS + 100.

For consistency, the update firmware process is complete after the new firmware has been downloaded
into the physical device, any necessary physical device reset has completed, and the Service and the
physical device have been returned to the state they were in before the update firmware process began.

For consistency, a Service must always fire at least one StatusUpdateEvent with an incomplete progress
completion percentage (i.e., a percentage between 1 and 99), even if the device cannot physically report
the progress of the update firmware process. If the update firmware process completes successfully, the
Service must fire a StatusUpdateEvent with a progress of 100 or use the special constant
OPOS_SUE_UF_COMPLETE, which has the same value. These Service requirements allow
applications using this method to be designed to always expect some level of progress notification.

If an error is detected during the asynchronous portion of a update firmware process, one of the following
StatusUpdateEvents will be fired:

Value Meaning
OPOS_UF_FAILED_DEV_OK The update firmware process failed but the device is still

operational.
OPOS_UF_FAILED_DEV_UNRECOVERABLE

The update firmware process failed and the device is neither usable
nor recoverable through software. The device requires service to be
returned to an operational state.

OPOS_UF_FAILED_DEV_NEEDS_FIRMWARE
The update firmware process failed and the device will not be
operational until another attempt to update the firmware is
successful.

OPOS_UF_FAILED_DEV_UNKNOWN
The update firmware process failed and the device is in an
indeterminate state.
1538 Unified POS, v1.16.1

Return One of the following values is returned by the method and also placed in the ResultCode property:

Value Meaning
OPOS_SUCCESS The device firmware has been updated.
OPOS_E_ILLEGAL CapUpdateFirmware is false.
OPOS_E_NOEXIST The file specified by FirmwareFileName does not exist or, if

FirmwareFileName specifies a file list, one or more of the component
firmware files are missing.

OPOS_E_EXTENDED ResultCodeExtended = OPOS_EFIRMWARE_BAD_FILE:
The specified firmware file or files exist, but one or more are either not in
the correct format or are corrupt.

See Also CapUpdateFirmware Property.

UpdateStatistics Method Added in Release 1.8

Syntax LONG UpdateStatistics (BSTR StatisticsBuffer);

Parameter Description
StatisticsBuffer The data buffer defining the statistics with values that are to be updated.

This is a comma-separated list of name-value pair(s), where an empty string name (““”=value1”) means
ALL resettable statistics are to be set to the value “value1”, “U_=value2” means all UnifiedPOS defined
resettable statistics are to be set to the value “value2”, “M_=value3” means all manufacturer defined
resettable statistics are to be set to the value “value3”, and “actual_name1=value4,
actual_name2=value5” (from the XML file definitions) means that the specifically defined resettable
statistic(s) are to be set to the specified value(s).

Remarks Updates the defined resettable statistics in a device.

Both CapStatisticsReporting and CapUpdateStatistics must be TRUE in order to successfully use this
method.

This method is always executed synchronously.

Return One of the following values is returned by the method and also placed in the ResultCode property:

Value Meaning
OPOS_SUCCESS The statistics have been reset.

OPOS_E_ILLEGAL CapStatisticsReporting or CapUpdateStatistics is FALSE, or the named
statistic is not defined/updatable.

Other Values See ResultCode.

See Also CapStatisticsReporting Property, CapUpdateStatistics Property.
Unified POS, v1.16.1 1539

A.25 Events

DataEvent Event
Syntax void DataEvent (LONG Status);

The Status parameter contains the input status. Its value is Control-dependent, and may describe the
type or qualities of the input.

Remarks Fired to present input data from the device to the application. The DataEventEnabled property is
changed to FALSE, so that no further data events will be generated until the application sets this property
back to TRUE. The actual input data is placed in one or more device-specific properties.

If DataEventEnabled is FALSE at the time that data is received, then the data is queued in an internal
OPOS buffer, the device-specific input data properties are not updated, and the event is not delivered.
(When this property is subsequently changed back to TRUE, the event will be delivered immediately if
input data is queued and FreezeEvents is FALSE.)

DirectIOEvent Event

Syntax void DirectIOEvent (LONG EventNumber, LONG* pData, BSTR* pString);

Parameter Description
EventNumber Event number. Specific values are assigned by the Service Object.

pData Pointer to additional numeric data. Specific values vary by EventNumber
and the Service Object.

pString Pointer to additional string data. Specific values vary by EventNumber and
the Service Object.
The format of this data depends upon the value of the BinaryConversion
property. See Annex A - Properties.

Remarks Fired by a Service Object to communicate directly with the application.

This event provides a means for a Service Object to provide events to the application that are not
otherwise supported by the Control Object.
1540 Unified POS, v1.16.1

ErrorEvent Event Updated in Release 1.12

Syntax void ErrorEvent (LONG ResultCode, LONG ResultCodeExtended,
LONG ErrorLocus, LONG* pErrorResponse);

Parameter Description
ResultCode Result code causing the error event. See ResultCode for values.
ResultCodeExtended Extended result code causing the error event. See ResultCodeExtended for

values.
ErrorLocus Location of the error. See values below.
pErrorResponse Pointer to the error event response. See values below.

The ErrorLocus parameter may be one of the following:

Value Meaning
OPOS_EL_OUTPUT Error occurred while processing asynchronous output.
OPOS_EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.
OPOS_EL_INPUT_DATA

Error occurred while gathering or processing event-driven input, and some
previously buffered data is available.

The contents at the location pointed to by the pErrorResponse parameter are preset to a default value,
based on the ErrorLocus. The application may change them to one of the following:

Value Meaning
OPOS_ER_RETRY Typically valid only when locus is OPOS_EL_OUTPUT.

Retry the asynchronous output. The error state is exited.
May be valid when locus is OPOS_EL_INPUT.
Default when locus is OPOS_EL_OUTPUT.

OPOS_ER_CLEAR Clear all buffered output data (including all asynchronous output) or
buffered input data. The error state is exited.
Default when locus is OPOS_EL_INPUT.

OPOS_ER_CONTINUEINPUT
Use only when locus is OPOS_EL_INPUT_DATA. Acknowledges the error
and directs the Control to continue processing. The Control remains in the
error state and will deliver additional DataEvents as directed by the
DataEventEnabled property. When all input has been delivered and the
DataEventEnabled property is again set to TRUE, then another
ErrorEvent is delivered with locus OPOS_EL_INPUT.
Default when locus is OPOS_EL_INPUT_DATA.

Remarks Fired when an error is detected and the Control’s State transitions into the error state.

Input error events are not delivered until the DataEventEnabled property is TRUE, so that proper
application sequencing occurs.

Unlike a DataEvent, the Control does not disable further DataEvents or input ErrorEvents; it leaves
the DataEventEnabled property value at TRUE. Note that the application may set DataEventEnabled
to FALSE within its event handler if subsequent input events need to be disabled for a period of time.
Unified POS, v1.16.1 1541

OutputCompleteEvent Event

Syntax void OutputCompleteEvent (LONG OutputID);

The OutputID parameter indicates the ID number of the asynchronous output request that is complete.

Remarks Fired when a previously started asynchronous output request completes successfully.

StatusUpdateEvent Event Updated in Release 1.9

Syntax void StatusUpdateEvent (LONG Status);

The Status parameter is for device class-specific data, describing the type of status change.

Remarks Fired when a Control needs to alert the application of a device status change.

Examples are a change in the cash drawer position (open vs. closed) or a change in a POS printer sensor
(form present vs. absent).

When a device is enabled, then the Control may fire initial StatusUpdateEvents to inform the
application of the device state. This behavior, however, is not required.

Release 1.3 and later – Power State Reporting

All device classes may fire StatusUpdateEvents with at least the following Status parameter values, if
PowerNotify = OPOS_PN_ENABLED:

Value Meaning
OPOS_SUE_POWER_ONLINE

The device is powered on and ready for use.
Can be returned if CapPowerReporting = OPOS_PR_STANDARD or
OPOS_PR_ADVANCED.

OPOS_SUE_POWER_OFF
The device is off or detached from the terminal.
Can only be returned if CapPowerReporting = OPOS_PR_ADVANCED.

OPOS_SUE_POWER_OFFLINE
The device is powered on but is either not ready or not able to respond to
requests.
Can only be returned if CapPowerReporting = OPOS_PR_ADVANCED.

OPOS_SUE_POWER_OFF_OFFLINE
The device is either off or offline.
Can only be returned if CapPowerReporting = OPOS_PR_STANDARD.

The common property PowerState is also maintained at the current power state of the device.
1542 Unified POS, v1.16.1

Release 1.9 and later – Update Firmware Reporting

The Update Firmware capability, added in Release 1.9, adds the following Status values for
communicating the status/progress of an asynchronous update firmware process:

Value Meaning
OPOS_SUE_UF_PROGRESS + 1 to 100

The update firmware process has successfully completed 1 to 100 percent of
the total operation.

OPOS_SUE_UF_COMPLETEThe update firmware process has completed successfully. The value of
this constant is identical to OPOS_SUE_UF_PROGRESS + 100.

OPOS_SUE_UF_COMPLETE_DEV_NOT_RESTORED
The update firmware process succeeded, however the Service and/or the
physical device cannot be returned to the state they were in before the update
firmware process started. The Service has restored all properties to their
default initialization values.
To ensure consistent Service and physical device states, the application needs
to Close the Service, then Open, Claim, and enable again, and also restore
all custom application settings.

OPOS_SUE_UF_FAILED_DEV_OK
The update firmware process failed but the device is still operational.

OPOS_SUE_UF_FAILED_DEV_UNRECOVERABLE
The update firmware process failed and the device is neither usable nor
recoverable through software. The device requires service to be returned to an
operational state.

OPOS_SUE_UF_FAILED_DEV_NEEDS_FIRMWARE
The update firmware process failed and the device will not be operational
until another attempt to update the firmware is successful.

OPOS_SUE_UF_FAILED_DEV_UNKNOWN
The update firmware process failed and the device is in an indeterminate
state.

See Also CapPowerReporting Property, CapUpdateFirmware Property, PowerNotify Property.

A.26 Peripheral Interfaces

Note:

The following are two examples that attempt to show how a Visual Basic program and a VC++
program would use the commands in a typical MFC implementation. Where possible the tables are
arranged to show the sequence of the commands for proper operation of the peripheral device.

The Cash Drawer and the MICR devices were chosen because they represent a simple output device
and a more complex input device. The other peripheral devices would follow similar command
usage and flow.
Unified POS, v1.16.1 1543

A.27 OPOS: Cash Drawer
Visual Basic Command Examples.

Initializing Properties, Methods, and Events

Capabilities, Assignments and Descriptions Properties, Methods, and Events

OPERATION T
Y
P
E

VISUAL BASIC SAMPLE R
E
A
D

W

R

I

T

E

A
R
G
S

R
T
N
V

R
C

R

C

E

Open * M lResult = CashDrawer.Open(“Standard”)   1 LONG  

ClaimDevice * M lResult = CashDrawer.ClaimDevice(“1000”)   1 LONG  

Claimed P bResult = CashDrawer.Claimed  BOOL

DeviceEnabled * P CashDrawer.DeviceEnabled = True  1 -

DeviceEnabled P bResult = CashDrawer.DeviceEnabled  BOOL  

DirectIO M lResult= CashDrawer.DirectIO(0,lval,”[[“)   3 LONG  

CheckHealth M lResult = CashDrawer.CheckHealth(OPOS_CH_INTERNAL)   1 LONG  

DirectIOEvent E Private Sub CashDrawer_DirectIOEvent(ByVal EventNumber
As Long, pData As Long, pString As String)

3 CMF

StatusUpdateEvent E Private Sub CashDrawer_StatusUpdateEvent(ByVal Status As
Long)

1 CMF

BinaryConversion P CashDrawer.BinaryConversion = OPOS_BC_DECIMAL  1 -  

BinaryConversion P lResult = CashDrawer.BinaryConversion  LONG

CapPowerReporting P lResult = CashDrawer.CapPowerReporting  LONG

CheckHealthText P sResult = CashDrawer.CheckHealthText  BSTR

FreezeEvents P CashDrawer.FreezeEvents = True  1 -  

FreezeEvents P bResult = CashDrawer.FreezeEvents  BOOL

PowerNotify P CashDrawer.PowerNotify = OPOS_PN_ENABLED  1 -  

PowerNotify P lResult = CashDrawer.PowerNotify  LONG

PowerState P lResult = CashDrawer.PowerState  LONG
1544 Unified POS, v1.16.1

Cash Drawer Operations Properties and Methods

Terminating Methods

Notes:

* Required for basic Cash Drawer operations

Legends:
TYPE = (P)roperty, (M)ethod, or (E)vent
ARGS = Number of Arguments Expected
RTNV = Return Value
‘CMF’ = Class Member Function
RC = Result Code
RCE = Result Code Extended
Ref Page = Page Number of UnifiedPOS Reference Description

OPERATION T
Y
P
E

VISUAL BASIC SAMPLE R
E
A
D

W

R

I

T

E

A
R
G
S

R
T
N
V

R
C

R

C

E

ResultCode P lResult = CashDrawer.ResultCode  LONG

ResultCodeExtended P lResult = CashDrawer.ResultCodeExtended  LONG

State P lResult = CashDrawer.State  LONG

ControlObject
Description

P sResult = CashDrawer.ControlObjectDescription  BSTR

ControlObject
Version

P lResult = CashDrawer.ControlObjectVersion  LONG

ServiceObject
Description

P sResult = CashDrawer.ServiceObjectDescription  BSTR

ServiceObject
Version

P lResult = CashDrawer.ServiceObjectVersion  LONG

DeviceDescription P sResult = CashDrawer.DeviceDescription  BSTR

DeviceName P sResult = CashDrawer.DeviceName  BSTR

CapStatus P bResult = CashDrawer.CapStatus  BOOL

CapStatusMultiDrawerDetect P bResult = CashDrawer.CapStatusMultiDrawerDetect  BOOL

DrawerOpened P bResult = CashDrawer.DrawerOpened  BOOL

OpenDrawer * M lResult = CashDrawer.OpenDrawer   LONG  

WaitForDrawerClose M lResult = CashDrawer.WaitForDrawerClose(2500, 1000, 10, 5)   4 LONG  

ReleaseDevice M lResult = CashDrawer.ReleaseDevice   LONG  

Close * M lResult = CashDrawer.Close   LONG  
Unified POS, v1.16.1 1545

Visual C++ Command Examples.

Initializing Properties, Methods, and Events

Capabilities, Assignments and Descriptions Properties, Methods, and Events

OPERATION T
Y
P
E

VISUAL C++ SAMPLE R
E
A
D

W

R

I

T

E

A
R
G
S

R
T
N
V

R
C

R

C

E

Open * M lResult = m_CashDrawer.Open(“Standard”);   1 LONG  

ClaimDevice * M lResult = m_CashDrawer.ClaimDevice(“1000”);   1 LONG  

Claimed P bResult = m_CashDrawer.GetClaimed();  BOOL

DeviceEnabled * P m_CashDrawer.SetDeviceEnabled(TRUE);  1 -

DeviceEnabled P bResult = m_CashDrawer.GetDeviceEnabled();  BOOL  

DirectIO M lResult = m_CashDrawer.DirectIO(0,&lval,”[[“)   3 LONG  

CheckHealth M lResult = m_CashDrawer.CheckHealth(OPOS_CH_INTERNAL);   1 LONG  

DirectIOEvent E void COCashDrawerDlg::OnDirectIOEventCashDrawerctrl(long
EventNumber, long FAR* pData, BSTR FAR* pString)

3 CMF

StatusUpdateEvent E void COCashDrawerDlg::OnStatusUpdateEventCashDrawerctrl
(long Status)

1 CMF

BinaryConversion P m_CashDrawer.SetBinaryConversion(OPOS_BC_DECIMAL);  1 -  

BinaryConversion P lResult = m_CashDrawer.GetBinaryConversion();  LONG

CapPowerReporting P lResult = m_CashDrawer.GetCapPowerReporting();  LONG

CheckHealthText P sResult = m_CashDrawer.GetCheckHealthText();  BSTR

FreezeEvents P m_CashDrawer.SetFreezeEvents(TRUE);  1 -  

FreezeEvents P bResult = m_CashDrawer.GetFreezeEvents();  BOOL

PowerNotify P m_CashDrawer.SetPowerNotify(OPOS_PN_ENABLED);  1 -  

PowerNotify P lResult = m_CashDrawer.GetPowerNotify();  LONG

PowerState P lResult = m_CashDrawer.GetPowerState();  LONG

ResultCode P lResult = m_CashDrawer.GetResultCode();  LONG

ResultCodeExtended P lResult = m_CashDrawer.GetResultCodeExtended();  LONG
1546 Unified POS, v1.16.1

Cash Drawer Operations Properties and Methods

Terminating Methods

Notes:

* Required for basic Cash Drawer operations

Legends:
TYPE = (P)roperty, (M)ethod, or (E)vent
ARGS = Number of Arguments Expected
RTNV = Return Value
‘CMF’ = Class Member Function
RC = Result Code
RCE = Result Code Extended
Ref Page = Page Number of UnifiedPOS Reference Description

OPERATION T
Y
P
E

VISUAL C++ SAMPLE R
E
A
D

W

R

I

T

E

A
R
G
S

R
T
N
V

R
C

R

C

E

State P lResult = m_CashDrawer.GetState ();  LONG

ControlObject
Description

P sResult = m_CashDrawer.GetControlObjectDescription();  BSTR

ControlObject
Version

P lResult = m_CashDrawer.GetControlObjectVersion();  LONG

ServiceObject
Description

P sResult = m_CashDrawer.GetServiceObjectDescription();  BSTR

ServiceObject
Version

P lResult = m_CashDrawer.GetServiceObjectVersion();  LONG

DeviceDescription P sResult = m_CashDrawer.GetDeviceDescription();  BSTR

DeviceName P sResult = m_CashDrawer.GetDeviceName();  BSTR

CapStatus P bResult = m_CashDrawer.GetCapStatus();  BOOL

CapStatusMultiDrawerDetect P bResult = m_CashDrawer.GetCapStatusMultiDrawerDetect();  BOOL

DrawerOpened P bResult = m_CashDrawer.GetDrawerOpened();  BOOL

OpenDrawer * M lResult = m_CashDrawer.OpenDrawer();   LONG  

WaitForDrawerClose M lResult = m_CashDrawer.WaitForDrawerClose(2500, 1000,
10, 5);

  4 LONG  

ReleaseDevice M lResult = m_CashDrawer.ReleaseDevice();   LONG  

Close * M lResult = m_CashDrawer.Close();   LONG  
Unified POS, v1.16.1 1547

A.28 OPOS: MICR
Visual Basic Command Examples.

Initializing Properties, Methods, and Events

Capabilities, Assignments and Descriptions Properties, Methods, and Events

OPERATION T
Y
P
E

VISUAL BASIC SAMPLE R
E
A
D

W

R

I

T

E

A
R
G
S

R
T
N
V

R
C

R

C

E

Open * M lResult = Micr.Open(“M101”)   1 LONG  

ClaimDevice * M lResult = Micr.ClaimDevice(“1000”)   1 LONG  

Claimed P bResult = Micr.Claimed  BOOL

DeviceEnabled * P Micr.DeviceEnabled = True  1 -  

DeviceEnabled P bResult = Micr.DeviceEnabled  BOOL

AutoDisable P Micr.AutoDisable = True  1 -  

AutoDisable P bResult = Micr.AutoDisable  1 BOOL

DirectIO M lResult= Micr.DirectIO(0,lval,”0x1b“)   3 LONG  

CheckHealth M lResult = Micr.CheckHealth(OPOS_CH_INTERNAL)   1 LONG  

DirectIOEvent E Private Sub Micr_DirectIOEvent(ByVal EventNumber As Long,
pData As Long, pString As String)

3 CMF

ErrorEvent E Private Sub Micr_ErrorEvent(ByVal ResultCode As Long, ByVal
ResultCodeExtended As Long, ByVal ErrorLocus As Long,
pErrorResponse As Long)

4 CMF

StatusUpdateEvent E Private Sub Micr_StatusUpdateEvent(ByVal Status As Long) 1 CMF

BinaryConversion P Micr.BinaryConversion = OPOS_BC_DECIMAL  1 -  

BinaryConversion P lResult = Micr.BinaryConversion  LONG

CapPowerReporting P lResult = Micr.CapPowerReporting  LONG

CheckHealthText P sResult = Micr.CheckHealthText  BSTR

DataCount P lResult = Micr.DataCount  LONG

FreezeEvents P Micr.FreezeEvents = True  1 -  

FreezeEvents P bResult = Micr.FreezeEvents  BOOL
1548 Unified POS, v1.16.1

MICR Operations Properties, Methods, and Events

OPERATION T
Y
P
E

VISUAL BASIC SAMPLE R
E
A
D

W

R

I

T

E

A
R
G
S

R
T
N
V

R
C

R

C

E

PowerNotify P Micr.PowerNotify = OPOS_PN_ENABLED  1 -  

PowerNotify P lResult = Micr.PowerNotify  LONG

PowerState P lResult = Micr.PowerState  LONG

ResultCode P lResult = Micr.ResultCode  LONG

ResultCodeExtended P lResult = Micr.ResultCodeExtended  LONG

State P lResult = Micr.State  LONG

ControlObject
Description

P sResult = Micr.ControlObjectDescription  BSTR

ControlObject
Version

P lResult = Micr.ControlObjectVersion  LONG

ServiceObject
Description

P sResult = Micr.ServiceObjectDescription  BSTR

ServiceObject
Version

P lResult = Micr.ServiceObjectVersion  LONG

DeviceDescription P sResult = Micr.DeviceDescription  BSTR

DeviceName P sResult = Micr.DeviceName  BSTR

CapValidationDevice P bResult = Micr.CapValidationDevice  BOOL

ClearInput M lResult = Micr.ClearInput   LONG  

DataEventEnabled * P Micr.DataEventEnabled = True  1 -  

DataEventEnabled P bResult = Micr.DataEventEnabled  BOOL

BeginInsertion * M lResult = Micr.BeginInsertion   LONG  

EndInsertion * M lResult = Micr.EndInsertion   LONG  

DataEvent E Private Sub Micr_DataEvent(ByVal Status As Long) 1 CMF

BeginRemoval * M lResult = Micr.BeginRemoval   LONG  

EndRemoval * M lResult = Micr.EndRemoval   LONG  

RawData P sResult = Micr.RawData  BSTR

AccountNumber P sResult = Micr.AccountNumber  BSTR
Unified POS, v1.16.1 1549

Terminating Methods

Notes:

* Required for basic MICR operations

Legends:
TYPE = (P)roperty, (M)ethod, or (E)vent
ARGS = Number of Arguments Expected
RTNV = Return Value
‘CMF’ = Class Member Function
RC = Result Code
RCE = Result Code Extended
Ref Page = Page Number of UnifiedPOS Reference Description

Visual C++ Command Examples.

Initializing Properties, Methods, and Events

OPERATION T
Y
P
E

VISUAL BASIC SAMPLE R
E
A
D

W

R

I

T

E

A
R
G
S

R
T
N
V

R
C

R

C

E

Amount P sResult = Micr.Amount  BSTR

BankNumber P sResult = Micr.BankNumber  BSTR

EPC P sResult = Micr.EPC  BSTR

SerialNumber P sResult = Micr.SerialNumber  BSTR

TransitNumber P sResult = Micr.TransitNumber  BSTR

CheckType P lResult = Micr.CheckType  LONG

CountryCode P lResult = Micr.CountryCode  LONG

ReleaseDevice M lResult = Micr.ReleaseDevice   LONG  

Close * M lResult = Micr.Close   LONG  

OPERATION T
Y
P
E

VISUAL C++ SAMPLE R
E
A
D

W

R

I

T

E

A
R
G
S

R
T
N
V

R
C

R

C

E

Open * M lResult = m_Micr.Open(“M101”);   1 LONG  

ClaimDevice * M lResult = m_Micr.ClaimDevice(“1000”);   1 LONG  

Claimed P bResult = m_Micr.GetClaimed();  BOOL

DeviceEnabled * P m_Micr.SetDeviceEnabled(TRUE);  1 -  
1550 Unified POS, v1.16.1

Capabilities, Assignments and Descriptions Properties, Methods, and Events

DeviceEnabled P bResult = m_Micr.GetDeviceEnabled();  BOOL

AutoDisable P m_Micr.SetAutoDisable(TRUE);  1 -  

AutoDisable P bResult m_Micr.GetAutoDisable();  1 BOOL

DirectIO M lResult = m_Micr.DirectIO(0,&lval,”0x1b“)   3 LONG  

CheckHealth M lResult = m_Micr.CheckHealth(OPOS_CH_INTERNAL);   1 LONG  

DirectIOEvent E void COMicrDlg::OnDirectIOEventMicrctrl(long EventNumber,
long FAR* pData, BSTR FAR* pString)

3 CMF

ErrorEvent E void COMicrDlg::OnErrorEventMicrctrl(long ResultCode, long
ResultCodeExtended, long ErrorLocus, long FAR*
pErrorResponse)

4 CMF

StatusUpdateEvent E void COMicrDlg::OnStatusUpdateEventMicrctrl
(long Status)

1 CMF

BinaryConversion P m_Micr.SetBinaryConversion(OPOS_BC_DECIMAL);  1 -  

BinaryConversion P lResult = m_Micr.GetBinaryConversion();  LONG

CapPowerReporting P lResult = m_Micr.GetCapPowerReporting();  LONG

CheckHealthText P sResult = m_Micr.GetCheckHealthText();  BSTR

DataCount P lResult = m_Micr.GetDataCount();  LONG

FreezeEvents P m_Micr.SetFreezeEvents(TRUE);  1 -  

FreezeEvents P bResult = m_Micr.GetFreezeEvents();  BOOL

OPERATION T
Y
P
E

VISUAL C++ SAMPLE R
E
A
D

W

R

I

T

E

A
R
G
S

R
T
N
V

R
C

R

C

E

PowerNotify P m_Micr.SetPowerNotify(OPOS_PN_ENABLED);  1 -  

PowerNotify P lResult = m_Micr.GetPowerNotify();  LONG

PowerState P lResult = m_Micr.GetPowerState();  LONG

ResultCode P lResult = m_Micr.GetResultCode();  LONG

ResultCodeExtended P lResult = m_Micr.GetResultCodeExtended();  LONG

State P lResult = m_Micr.GetState();  LONG

ControlObject
Description

P sResult = m_Micr.GetControlObjectDescription();  BSTR

ControlObject
Version

P lResult = m_Micr.GetControlObjectVersion();  LONG
Unified POS, v1.16.1 1551

MICR Operations Properties, Methods, and Events

ServiceObject
Description

P sResult = m_Micr.GetServiceObjectDescription();  BSTR

ServiceObject
Version

P lResult = m_Micr.GetServiceObjectVersion();  LONG

DeviceDescription P sResult = m_Micr.GetDeviceDescription();  BSTR

DeviceName P sResult = m_Micr.GetDeviceName();  BSTR

CapValidationDevice P bResult = m_Micr.GetCapValidationDevice();  BOOL

ClearInput M lResult = m_Micr.ClearInput();   LONG  

DataEventEnabled * P m_Micr.SetDataEventEnabled(TRUE);  1 -  

DataEventEnabled P bResult = m_Micr.GetDataEventEnabled();  BOOL

BeginInsertion * M lResult = m_Micr.BeginInsertion();   LONG  

EndInsertion * M lResult = m_Micr.EndInsertion();   LONG  

DataEvent E void COMicrDlg::OnDirectIOEventMicrctrl(long Status) 1 CMF

BeginRemoval * M lResult = m_Micr.BeginRemoval();   LONG  

EndRemoval * M lResult = m_Micr.EndRemoval();   LONG  

RawData P sResult = m_Micr.GetRawData();  BSTR

AccountNumber P sResult = m_Micr.GetAccountNumber();  BSTR

OPERATION T
Y
P
E

VISUAL C++ SAMPLE R
E
A
D

W

R

I

T

E

A
R
G
S

R
T
N
V

R
C

R

C

E

Amount P sResult = m_Micr.GetAmount();  BSTR

BankNumber P sResult = m_Micr.GetBankNumber();  BSTR

EPC P sResult = m_Micr.GetEPC();  BSTR

SerialNumber P sResult = m_Micr.GetSerialNumber();  BSTR

TransitNumber P sResult = m_Micr.GetTransitNumber();  BSTR

CheckType P lResult = m_Micr.GetCheckType();  LONG

CountryCode P lResult = m_Micr.GetCountryCode();  LONG
1552 Unified POS, v1.16.1

Terminating Methods

Notes:

* Required for basic MICR operations

Legends:
TYPE = (P)roperty, (M)ethod, or (E)vent
ARGS = Number of Arguments Expected
RTNV = Return Value
‘CMF’ = Class Member Function
RC = Result Code
RCE = Result Code Extended
Ref Page = Page Number of UnifiedPOS Reference Description

ReleaseDevice M lResult = m_Micr.ReleaseDevice();   LONG  

Close * M lResult = m_Micr.Close();   LONG  
Unified POS, v1.16.1 1553

A.29 Section 3: OPOS Registry Usage Updated in Release 1.12

OPOS Controls require some data in the system registry in order for the Control Objects to locate the proper
Service Object and initialize it for the device.
The registry is organized in a hierarchical structure, in which each level is named a “key.” Each key may contain:

• Additional keys (sometimes called “subkeys”).

• Zero or more named “values.” A value is assigned “data” of type string, binary, or double-word.

• One “default value” that may be assigned data of type string.

OPOS only defines string data.

Service Object Root Registry Key
All OPOS Service Object entries should be placed under the following main key:

 HKEY_LOCAL_MACHINE\SOFTWARE\OLEforRetail\ServiceOPOS

The “HKEY_LOCAL_MACHINE\SOFTWARE” key is the recommended key for software configuration local to
the PC. The “OLEforRetail” key will group all OLE for Retail related configuration information. The
“ServiceOPOS” key maintains configuration information for OPOS Service Objects.

Device Class Keys
Each class has an identifying Device Class subkey under the main OPOS key. The following key names have been
established:

Key Name Key Name

Belt Keylock

BillAcceptor Lights

BillDispenser LineDisplay

Biometrics MICR

BumpBar MotionSensor

CashChanger MSR

CashDrawer PINPad

CAT PointCardRW

CoinAcceptor POSKeyboard

CoinDispenser POSPower

CheckScanner POSPrinter

ElectronicJournal
RemoteOrderDispla
y

ElectronicValueRW RFIDScanner

FiscalPrinter Scale
1554 Unified POS, v1.16.1

Device Name Keys and Values

Each device within a class is assigned a Device Name subkey under the class’s key. This should be performed by a
Service Object installation procedure. This Device Name key is passed to the Control Object’s Open method by the
application. The Device Name is not constrained, except that it must be unique among the names under the device
class.

The default value of the Device Name key is the programmatic ID7 of the Service Object. This string is needed by the
Control Object, so that the Service Object may be loaded and the OLE Automation interfaces established between the
CO and the SO.

The device unit key’s values and their data describe the characteristics of the actual device on the terminal or PC. The
following values are strongly recommended for use by installation and support personnel:

Other values may be defined as needed by the Service Object. Values might contain information such as:

Communications Port
Baud Rate
Serial Line Characteristics
Interrupt Request (IRQ) Values
Input/Output (I/O) Ports

Gate Scanner

HardTotals SignatureCapture

ImageScanner SmartCardRW

ItemDispenser ToneIndicator

7. A Programmatic ID, or “Prog ID”, is the name of a key that must appear in the “HKEY_CLASSES_ROOT” section of the registry.
This key must have a subkey named “CLSID”, which is the Class ID associated with the Prog ID. The Class ID must be a key
within the “HKEY_CLASSES_ROOT\CLSID” registry section. This key contains subkeys that specify the OLE Automation
Server type and that instruct OLE how to start the Server.

Value – Required Data

(Default) Service Object’s OLE Programmatic ID.

Value – Recommended Data

Service Filename of the Service Object.

Description String describing the Service Object.

Version
String containing the Service Object version number.

General format is:
MajorVersion.MinorVersion.BuildVersion.

Key Name Key Name
Unified POS, v1.16.1 1555

Logical Device Name Values

An application may open a Control by passing the Device Name key to the Open method. In many cases, however,
the application will want a level of isolation where the application specifies a “Logical Device Name” that is
translated into a Device Name.

A Logical Device Name is added to the registry as a value contained in the Device Class key. The value name is set to
the Logical Device Name, and its data must match a Device Name key contained in the same Device Class.

The application integrator is responsible for adding Logical Device Names to the registry. (They are not added by the
Service Object install procedure.)

Service Provider Root Registry Key

The SO service providers may need to store some information in the registry that is common to some or all of its
Service Objects. This data could include installation directories, installation date, and de-install information. Service
provider information should be placed under the following main key:

HKEY_LOCAL_MACHINE\SOFTWARE\OLEforRetail\ServiceInfo

The subkeys under this key should be the names of service provider companies. Subkeys and values within each
service provider company subkey are provider-dependent.

Example

In this example, keys are listed in italics. Comments appear as comment.

Two device classes are given: POSPrinter and CashDrawer.

The POSPrinter class contains two Device Names. Also, two Logical Device Names are present, which point to the
Device Names.

The CashDrawer class contains one Device Name and one Logical Device Name. The Service Object has a unique
ProgID but uses the same executable as one of the printers. This Service Object could use the example value “Uses”
to point to some registry values of the printer device that can be used for the cash drawer parameters.
1556 Unified POS, v1.16.1

\HKEY_LOCAL_MACHINE


\SOFTWARE

 
 \OLEforRetail

  
 \ServiceOPOS

  
 \POSPrinter Device Class Key

  
  \NCR7156=NCR.Ptr7156.1 Device Name Key

   Service=C:\OPOS\NCR\PTR7156.DLL

   Description=NCR 7156 Serial Printer

   Version=1.0.12

   ...Service Object-specific values. Might include:

   Port=COM3

   BaudRate=9600

  
  \Epson950=Epson.PtrTMU950.1 Device Name Key

   Service=TMU950.EXE

   Description=Epson TM-U950 Printer

   Version=1.0.7

   ...Service Object-specific values could go here.

  
  PSI.Ptr.1=NCR7156 Logical Device Name

  
  PSI.Ptr.2=Epson950 Logical Device Name

 

 \CashDrawer Device Class Key

 
 \EpsonCash=Epson.CD.1 Device Name Key

  Service=TMU950.EXE

  Description=Epson Cash Drawer Kickout on TM-U950

  Version=1.0.7

  ...Service Object-specific values. Might include:

  Uses=POSPrinter\Epson950

 
 PSI.CD.1=EpsonCash Logical Device Name


\ServiceInfo


 \EPSON

 InstallDir=C:\OPOS\EPSON

 InstallDate=1995/11/13



Unified POS, v1.16.1 1557

A.30 Section 4: OPOS Application Header Files Updated in Release 1.12

The header files are listed in alphabetical order. The mapping of device class name to header file
name is as follows:
General Opos.h
Belt OposBelt.h
Bill Acceptor OposBacc.h
Bill Dispenser OposBdsp.h
Biometrics OposBio.h
Bump Bar OposBb.h
Cash Changer OposChan.h
Cash Drawer OposCash.h
CAT OposCat.h
Check Scanner OposChk.h
Coin Acceptor OposCacc.h
Coin Dispenser OposCoin.h
Electronic Journal OposEj.h
Electronic Value R / W OposEvrw.h
Fiscal Printer OposFptr.h
Gate OposGate.h
Hard Totals OposTot.h
Image Scanner OposImg.h
Item Dispenser OposItem.h
Keylock OposLock.h
Lights OposLgt.h
Line Display OposDisp.h
MICR OposMicr.h
Motion Sensor OposMotion.h
MSR OposMsr.h
PIN Pad OposPpad.h
Point Card Reader Writer OposPcrw.h
POS Keyboard OposKbd.h
POS Power OposPwr.h
POS Printer OposPtr.h
Remote Order Display OposRod.h
RFID Scanner OposRfid.h
Scale OposScal.h
Scanner OposScan.h
Signature Capture OposSig.h
Smart Card Reader Writer OposScrw.h
Tone Indicator OposTone.h

The most up-to-date header files can be downloaded from the following web site:

 http://monroecs.com/oposccos_current.htm
1558 Unified POS, v1.16.1

http://monroecs.com/oposccos_current.htm

A.31 Section 5: Technical Details

A.31.1 System Strings (BSTR)

System String Characteristics

OPOS uses OLE system strings to pass and return data of variable length. System strings are often referred to as
BStrings, and are assigned the type BSTR by Microsoft Visual C++.

A system string consists of a sequence of Unicode characters, which are each 16-bits wide. Thus, they are also
referred to as “wide” characters. The string is followed by a NUL, or zero, character. The string is preceded by
an unsigned long count of the bytes in the string, not including the NUL. Divide this count by two to obtain the
number of characters in the string.

Most of the time, OPOS uses system strings to pass character data back and forth among the Application, Control
Object, and System Object. A system string (BSTR) is used to pass string parameters by methods and to return
string properties. A pointer to a system string (BSTR*) is used as a method parameter when the method must
return string data.

System String Usage

Visual Basic both receives and sends system strings without any complications. The internal representation of
VB strings is as wide characters with a length component. A BSTR may be passed using a variable, a string
expression, or a literal. A BSTR* requires use of a variable, so that the data may be modified by the method.

Similarly, Visual C++ using ATL is straightforward. BSTR and BSTR* data is passed and received using these
types. Any translation to or from Unicode is the developer’s responsibility.

Visual C++ with MFC, however, requires more consideration.

BSTR is handled as follows:

• BSTR Method Parameters

• Calling Function: Calling an automation method with a BSTR parameter is treated by MFC as a
pointer to a character string, LPCTSTR. If the VC++ ANSI option is used, MFC automatically
converts from ANSI to Unicode.

• Called Function: The function implementing an automation method receives a BSTR parameter as a
pointer to a character string, LPCTSTR. If the VC++ ANSI option is used, then MFC performs an
automatic conversion from Unicode into ANSI before passing control to the function. The string
length immediately precedes the string pointer.

• BSTR Return Type (used for getting properties)

• Calling Function: An automation method returning a BSTR result is automatically converted by MFC
into a CString.

• Called Function: An automation method returns a BSTR result by placing the data into an MFC
CString object, and returning the result of the CString's “AllocSysString” member function. If the
VC++ ANSI option is used, then this function automatically converts the string from ANSI into
Unicode.
Unified POS, v1.16.1 1559

BSTR* is passed and received by MFC as BSTR*, so the developer handling is the same as with ATL. Some
MFC macros and classes may be helpful:

• If the VC++ ANSI option is used, then conversion between Unicode and MBCS is required. Some macros are
available that make this conversion easier, such as T2OLE and OLE2T. (These do not handle NUL characters
embedded in the string, however.)

• To set the string, place the data into an MFC CString object, and use CString's “SetSysString” member
function.

A.31.2 System Strings and Binary Data

Sometimes OPOS uses BSTR and BSTR* to pass binary data.

These cases may return byte data in the range 00-hex to FF-hex. Each 16-bit character of the system string
contains one byte of binary data in the lower 8 bits. The upper 8 bits are zero. This can lead to two problematic
areas:

• The NUL character, or zero. Although system strings have a length component, some software still relies upon
the NUL character to determine the end of the string.

• Characters in the range 0x80 – 0xFF. The translation between ANSI and Unicode formats may yield incorrect
data, especially for eastern languages.

In order to avoid these translation and transmission problems, an Application should employ the
BinaryConversion feature if data outside the range of 0x01 – 0x7F may be sent or received by a method
parameter or a property. BinaryConversion, added in Release 1.2, supports two means of converting data
between binary and ASCII formats.
1560 Unified POS, v1.16.1

A.31.3 Mapping of CharacterSet Updated in Release 1.10

This section provides some details for proper use of the MapCharacterSet property that is provided for some
devices such as the LineDisplay, POSPrinter, PointCardReaderWriter, and RemoteOrderDisplay. First, the
application must select an appropriate device character set in the CharacterSet property of the Service Object.
Next, the application must pass strings to the Service Object using the Unicode character set. Then, the Service
Object is responsible for mapping these Unicode characters to the device-side code page when necessary.

A special case occurs for applications and/or service objects written in Microsoft C++ using Microsoft
Foundation Classes, when building in MBCS (and not Unicode) mode. The effects of MFC are described in the
earlier section on System Strings (BSTR). When MFC perform conversions between “narrow” strings and
Unicode strings, it does so using the system ANSI Code Page, or “ACP”. The ACP may be found in the
Windows registry at the key “HKLM\System\CurrentControlSet\Control\Nls\Codepage”, value “ACP”.

The following code snippet should assist Service Object providers in adding the mapping mechanism into their
Services. It assumes that the data transferred to the Service for output to the device is already transformed from
BSTR to LPCTSTR, as with MFC. (If the data is still in Unicode, then adjust the snippet to only perform the
second conversion.)

BOOL AnsiToOEMCodePage(
UINT CodePage, // the desired destination code page like 858
LPCTSTR src, // source string assumed to be ACP (default

// system code page)
INT srcLength, // the length of the source string
LPTSTR dest, // destination String; when called ’dest’

// shows to a reserved area of ’destLength’-
INT *destLength) // bytes length of the destination string

{
LPWSTR lpWideCharStr = NULL;
INT WideCharStrLen = (srcLength+1)* sizeof(lpWideCharStr[0]);
lpWideCharStr = (LPWSTR) malloc (WideCharStrLen);
if (lpWideCharStr == NULL)

return FALSE;
// convert to Unicode
WideCharStrLen = MultiByteToWideChar (CP_ACP, 0, src, srcLength,

lpWideCharStr, WideCharStrLen);
if (WideCharStrLen<=0)
{

free (lpWideCharStr);
return FALSE;

}
// convert Unicode back to desired codepage;
// non mappable characters are mapped to space character
const char defaultChar = 0x20;
*destLength = WideCharToMultiByte (CodePage, 0, lpWideCharStr,

WideCharStrLen, dest, *destLength, &defaultChar, NULL);
free (lpWideCharStr);
if (*destLength == 0 && WideCharStrLen != 0)// cp does not exist

return FALSE;
return TRUE;

}

Note:
• The code page currently selected in the system can be found in the Registry under: HKLM\Sys-

tem\CurrentControlSet\Control\Nls\Codepage\ACP.
• The destination code page must of course be installed when using the system API calls for 

mapping.
Unified POS, v1.16.1 1561

A.32 Section 6: Release 1.5 API Change: ClaimDevice and ReleaseDevice

The common methods Claim and Release were defined in the very first OPOS release. Since that time, an
increased number of conflicts have occurred between the OPOS Release method and the COM Release method,
which is a required method of every COM object. This conflict has required some development restrictions:

• Control Objects and Service Objects must define their interfaces as pure dispatch interfaces. This has
precluded the use of the Microsoft Visual C++ Active Template Library, since ATL only supports IDispatch
via a dual interface implementation.

• Some development environments assume that ActiveX Controls will not define a dispatch method that
conflicts with COM. For example, users of Delphi have had to work around the Release conflict. Future tools
may be even less tolerant of this conflict.

Therefore, these methods have been renamed to ClaimDevice and ReleaseDevice in Release 1.5.

Several steps have been taken to provide a maximal migration of Applications and Service Objects. These have
been implemented in the reference set of Control Objects known as the “Common Control Objects”:

• Application.

Both the ClaimDevice and Claim methods and the ReleaseDevice and Release methods are supported by the
Control Object’s IDispatch interface. The IDispatch interface is used by an application to implement late
binding. By doing this, full backward compatibility is provided for current late bound Applications.

If an application using a development environment that performs early binding (including Microsoft Visual
C++ and Visual Basic) changes from a 1.4 or earlier Control Object to a 1.5 or later Control Object, then it will
also have to update all Claim calls to ClaimDevice, and Release calls to ReleaseDevice.

• Service Object.

A Service Object may expose either the Claim or ClaimDevice method and either the Release or
ReleaseDevice method through its IDispatch interface. Note that if the Service Object is implemented using
ATL, then it must use ReleaseDevice, since Release is reserved for COM’s IUnknown reference counting.

When the Application calls ClaimDevice or Claim, the Control Object calls the Service Object method
ClaimDevice if present; otherwise it calls Claim. When the Application calls ReleaseDevice or Release, the
Control Object calls the Service Object method ReleaseDevice if present; otherwise it calls Release. By doing
this, full backward compatibility is provided for current Service Objects while allowing new Service Objects
to be implemented using ATL.
1562 Unified POS, v1.16.1

A.33 Section 7: OPOS APG Change History
 　　　　　　　　　　　　　　　　　　　　　　　　　　　　

　　　 Release 1.01

Release 1.01 mostly adds clarifications and corrections, but the Line Display and Signature Capture
chapters received substantive changes to correct deficiencies in their definition.

Release 1.01 replaces Release 1.0. The ControlObjectVersion for a compliant Control Object is
1000xxx, where xxx is a vendor-specific build number. The ServiceObjectVersion for a compliant
Service Object is 1000xxx, where xxx is a vendor-specific build number.

Section Change

Second Page Add name of Microsoft Web site for OPOS information.

Introduction When … Properties May Be Accessed
Update to say that capabilities are initialized at Open, others may not be
initialized until DeviceEnabled = TRUE, and properties remain initialized
until the Control is closed.

Introduction Device Sharing Model
If an exclusive device is Released, then reClaimed, settable device
characteristics are restored to their state at Release.

Common Release method
If device is enabled, then disable before releasing.

Cash Drawer WaitForDrawerClose method
BeepFrequency is in hertz.

Hard Totals General Information
Recommend claiming necessary files before a BeginTrans, to ensure that
CommitTrans does not fail.

Keylock General Information
Claim will return OPOS_E_ILLEGAL, not success.

Line Display General Information
Major clarification of line display usage modes; including intercharacter
wait and marquees.

Line Display MarqueeFormat property
Add this property.

Line Display MarqueeType property
Add DISP_MT_INIT value.

Line Display ClearText and RefreshWindow methods
Clarify their functionality.

POS Printer XxxLetterQuality properties
Add initialization information.

POS Printer XxxLineWidth properties
Clarify these properties.
Unified POS, v1.16.1 1563

POS Printer CapConcurrentXxxXxx properties
Clarify that if a “concurrent” capability is false, then the application should
print to only one of the stations at a time, and not alternate print lines
between them.

POS Printer CapXxxNearendSensor properties
Rename to CapXxxNearEndSensor for consistency with XxxNearEnd
properties.

POS Printer CapXxxBarcode properties
Rename to CapXxxBarCode for consistency with PrintBarCode method.

Scale Summary Change ClearInput method to Not Supported. Scale input is not event-
driven.

Scale WeightUnit property
Change to read-only property.

Signature Capture MaximumX and MaximumY properties
Clarify that maximum value is 65,535.

Signature Capture TotalVectors and VectorArray properties
Rename to TotalPoints and PointArray. Update the General Information
and the property remarks sections for consistency.

Signature Capture PointArray property
Clarify that each point is represented by four characters: x (low 8 bits), x
(high 8 bits), y (low 8 bits), y (high 8 bits).

Throughout Update the property initialization details.

OposDisp.h header file
Add DISP_MT_INIT constant and MarqueeFormat constants.

Appendix C Technical Details
Add this appendix, with the sections:
 - System strings and binary data.
 - Event Handler Restrictions.

 Release 1.1
Release 1.1 adds APIs based on requirements from OPOS-J, the Japanese OPOS consortium.

Release 1.1 is a superset of Release 1.01.

Section Change
POS Keyboard New device: Add information in several locations, plus POS Keyboard

chapter and header file.
Second Page Remove CompuServe reference.
Line Display CapCharacterSet property

Add values for Kana and Kanji.

Line Display CharacterSet property
Add Windows code page information.

POS Printer Data Characters and Escape Sequences
Add new sequences for:
1564 Unified POS, v1.16.1

Feed and Paper cut
Feed, Paper cut, and Stamp
Feed lines
Feed units
Feed reverse
Font typeface selection
Reverse video
Shading
Scale horizontally
Scale vertically

Add width selection for underline sequence.
POS Printer: Add the following properties and methods:

CapCharacterSet property
CapTransaction property
ErrorLevel property
ErrorString property
FontTypefaceList property
RecBarCodeRotationList property
RotateSpecial property
SlpBarCodeRotationList property
TransactionPrint method
ValidateData method

POS Printer CharacterSet property
Add Windows code page information.

POS Printer PrintBarCode method
Add information on effects of the RotateSpecial property.

POS Printer PrintImmediate and PrintNormal methods
Clarify the effects of Carriage Return and Line Feed.

Scanner ScanData property
Clarify the data that is present in this property.

OposDisp.h header file
Add CapCharacterSet values for Kana and Kanji.

OposPtr.h header file
Add CapCharacterSet values.
Add ErrorLevel values.
Add TransactionPrint Control values.
Unified POS, v1.16.1 1565

 Release 1.2
Release 1.2 adds additional device classes, plus additional APIs based on requirements from various
OPOS-US, OPOS-Japan, and OPOS-Europe members.

Release 1.2 is a superset of Release 1.1.

Section Change

Cash Changer New device: Add information in several locations, plus Cash Changer
chapter and header file.

Tone Indicator New device: Add information in several locations, plus Tone Indicator
chapter and header file.

Several places When a method has a Timeout parameter, added the constant
OPOS_FOREVER as a value, and noted that OPOS_E_ILLEGAL can be
returned.

First Two Pages Update company names.
Update copyright notices.
Update web reference.

Introduction How an Application Uses an OPOS Control and
Device Sharing Model
Explicitly state that a control may be simultaneously opened by many
applications, but may be restricted in its functionality based on the Claim
method.

Introduction Events Add this section.

Introduction Input Model
Clarify the handling of error conditions.
Add usage of AutoDisable and DataCount.
Clarify the Error state exit conditions.
Clarify when ClearInput is legal.

Introduction Output Model
Clarify the Error state conditions.

Introduction Result Code Model
Clarify the setting of ResultCodeExtended.

Common BinaryConversion, AutoDisable, and DataCount properties
Add these new properties.
Throughout document, add to Summary sections for each device class.
Throughout document, specify the BString properties and method
parameters that are affected by BinaryConversion.

Common ControlObjectVersion and ServiceObjectVersion properties
Add compliance information when versions don’t match.

Common FreezeEvents property
Clarify FreezeEvents role in delaying event firing.

Common ResultCodeExtended property
Clarify the setting of ResultCodeExtended.
1566 Unified POS, v1.16.1

Common ClearInput and ClearOutput methods
Correct return value information: May return one of three statuses.

Common Open method Correct return value information: ResultCode may not match method return
value.

Common Release method
Correct DeviceEnabled side effects: Only exclusive use devices are disabled
during the Release.

Common StatusUpdateEvent event
Clarify the initial firing of events at device enable.

MICR BankNumber Correct definition to digits 4-8 of the TransitNumber.

MSR ErrorReportingType
Add this new property.

MSR ParseDecodeData
Clarify inconsistency: Both ParseDecodeData and ParseDecodedData
were used for this property.

MSR ErrorEvent Update for track level error notification.

POS Keyboard General Information
Clarify the type of keyboards that may be a POS Keyboard.

POS Keyboard POSKeyData property
Update definition of this property: A logical key value.

POS Keyboard CapKeyUp, EventTypes, and POSKeyEventType properties
Add these new properties.

POS Printer Escape Sequences
Clarify that escape sequences that are not OPOS sequences are passed
through to the printer.

POS Printer CapConcurrentXxxYyy
Clarify the interpretation of a FALSE value.

POS Printer XxxLineSpacing
Clarify that line spacing includes the printed line height. Could have been
interpreted as only the whitespace between each pair of lines.

POS Printer PrintBarCode
Add list of symbologies.

POS Printer MapMode and XxxLetterQuality
Clarified legal handling of MapMode when the printer supports half-dots.
Clarified potential impact on metrics when XxxLetterQuality is changed
and MapMode is dots.

POS Printer SetBitmap Extend the bitmap number usage to allow the same bitmap to be used for
both receipt and slip.

POS Printer TransactionPrint
Clarify when Busy and Extended statuses may be returned.

POS Printer ValidateData
Add “Underline” to the Illegal status section.

Scale Model Correct to state the weight unit is defined by the device, and not settable by
the application.

Scale CapDisplay Add this new property.
Unified POS, v1.16.1 1567

Scale WeightUnit Clarify inconsistency: Both WeightUnit and WeightUnits were used for
this property.

Scanner ScanDataLabel and ScanDataType
Add these new properties.

Signature Capture “Real Time” feature
Add the new properties CapRealTimeData and RealTimeDataEnabled.
Update various sections for real time operation.

Change History Release 1.1
Remove the compliance requirements for 1.1 Control Objects. This
information was corrected and added to the common ControlObjectVersion
and ServiceObjectVersion properties.

Opos.h header file Add OPOS_FOREVER constant.
Add BinaryConversion values.

OposMsr.h header file
Add ErrorReportingType values.

OposKbd.h header file
Add EventTypes values.

OposPtr.h header file
Remove PTR_RP_NORMAL_ASYNC.
Add symbologies to match scanner.

OposScan.h header file
Add symbologies for ScanDataType.

Technical Details “Event Handlers”
Delete section. Much of the information was inaccurate, and the rest was
merged into the new “Events” section in the first chapter.

Throughout Correct various editing errors.
1568 Unified POS, v1.16.1

 Release 1.3
Release 1.3 adds additional device classes, a few additional APIs, and some corrections.

Release 1.3 is a superset of Release 1.2.

Section Change

First Two Pages Update copyright notices.

Update web reference.

General Modify the use of the term event “firing.” Use “enqueue” and “deliver”
appropriately to describe event firing.

Bump Bar New device: Add information in several locations, plus Bump Bar chapter
and header file.

Fiscal Printer New device: Add information in several locations, plus Fiscal Printer
chapter and header file.

PIN Pad New device: Add information in several locations, plus PIN Pad chapter and
header file.

Remote Order Display New device: Add information in several locations, plus Remote Order
Display chapter and header file.

Several places Relax ErrorEvent “retry” response to allow its use with some input devices.

Introduction Events Clarify effect of the top event being blocked.

Introduction Input Model
Add details concerning enqueuing and delivery of ErrorEvents.

Add description of asynchronous input.

Introduction Device Power Reporting Model
Add this section.

Introduction OPOS Control Descriptions
Add CURRENCY data type.

Common CapPowerReporting, PowerNotify, PowerState properties
Add these properties here, plus…
Add to the Summary section of each device.

Common ResultCode property
Generalize the meaning of OPOS_E_BUSY.

Common StatusUpdateEvent
Add power state reporting information.

Change parameter name from Data to Status.

Every Device Add power reporting properties to Summary section.

Add StatusUpdateEvent support (if previously not reported.

Add power reporting reference to existing StatusUpdateEvent descriptions.

MSR DecodeData Add “raw format” description and column to track data table.

MSR ExpirationDate Specify the format.

MSR TrackxData Specify that data excludes the sentinels and LRC.
Add that decoding occurs when DecodeData is TRUE.

MSR ErrorEvent Clarify that DataCount and AutoDisable are not relevant for MSR error
events.
Unified POS, v1.16.1 1569

POSPrinter XxxLineChars
Add implementation recommendations.

POSPrinter PrintTwoNormal
Clarify the meaning of the Stations parameter, including the addition of new
constants.

Scale Add the following features:

• Asynchronous input. Property AsyncMode. Method ClearInput, updates
to ReadWeight. Events DataEvent and ErrorEvent.

• Display of text. Properties CapDisplayText, MaxDisplayTextChars.
Method DisplayText.

• Price calculation. Properties CapPriceCalculating, SalesPrice,
UnitPrice.

• Tare weight. Properties CapTareWeight, TareWeight.
• Scale zeroing. Property CapZeroScale. Method ZeroScale.

Tone Indicator Summary and General Information’s Device Sharing
Consistently specify that Tone Indicator is a sharable device.

Opos.h header file Add CapPowerReporting, PowerState, and PowerNotify properties.
Add StatusUpdateEvent power reporting values.

OposPtr.h header file Add new PrintTwoNormal station constants.

Throughout Correct some editing errors.

 Release 1.4
Release 1.4 adds one additional device class.

Release 1.4 is a superset of Release 1.3.

Section Change
CAT Added new device class, Credit Authorization Terminal which includes CAT

chapter and header file. This device class was added at the request of OPOS-
J and is used primarily in Japan. No other revisions were made to the version
1.3 of the OPOS specification.
1570 Unified POS, v1.16.1

 Release 1.5
Release 1.5 is a superset of Release 1.4.

Release 1.5 adds 2 additional device classes.

Section Change
First Two Pages Update copyright notices.

Update web references.

General Replace Claim with ClaimDevice and Release with ReleaseDevice.

Introduction Update references to OLE to ActiveX where appropriate.

Common OpenResult property
Add new property, plus add to the Summary section of each device.

Common ClaimDevice and ReleaseDevice
Name change plus update remarks.

Cash Changer Added support for receipt of money functionality.

Cash Drawer Added multi-drawer handling.

CAT Added PaymentMedia property.

The TransactionNumber property summary was changed to correctly show
the type as String.

Fiscal Printer Properties CountryCode, ErrorOutID, PrinterState,
QuantityDecimalPlaces and QuantityLength have been updated to reflect
the fact that they should be initialized after Open instead of Open, Claim
and Enable.

DuplicateReceipt: Corrected to show that is R/W. Added return values.

Line Display Added DISP_CCS_UNICODE to CapCharacterSet and
DISP_CS_UNICODE to CharacterSet to allow for devices that support the
Unicode character set.

MSR Added Track4Data, CapTransmitSentinels and TransmitSentinels
properties. Clarified support for JIS-II track data.

DataEvent status: Added meaning for the high byte.

ErrorEvent's ResultCodeExtended when
ResultCode=OPOS_E_EXTENDED: Added meaning for the high byte.

PINPad Added Track4Data property.
Point Card Reader Writer

New device: Add information in several locations, plus Point Card Reader
Writer chapter and header file.

POS Keyboard CapKeyUp: Corrected type from LONG to BOOL.

POS Power New device: Add information in several locations, plus POS Power chapter
and header file.

POS Printer Added support for color printing (ink jet technology), printing both sides on
the slip station and mark feed paper.
Added PTR_CCS_UNICODE to CapCharacterSet and
PTR_CS_UNICODE to CharacterSet to allow for devices that support the
Unicode character set.

Remote Order Display Added ROD_CCS_UNICODE to CapCharacterSet and
ROD_CS_UNICODE to CharacterSet to allow for devices that support the
Unified POS, v1.16.1 1571

Unicode character set.

Scale Properties SalesPrice, TareWeight and UnitPrice have been updated to
reflect the fact that they should be initialized after Open instead of Open,
Claim and Enable.

ErrorEvent: Added OPOS_ER_RETRY as a value response.

Signature Capture Update Model to discuss AutoDisable implications.

RealTimeDataEnabled: Clarify when this takes effect.

DataEvent: Correct conditions when this event may be fired to include real-
time data.

Tone Indicator Properties AsyncMode, Tone1Pitch, Tone1Volume, Tone1Duration,
Tone2Pitch, Tone2Volume, Tone2Duration and InterToneWait have been
updated to reflect the fact that they should be initialized after Open instead
of Open, Claim and Enable.

Clarified handling of the Sound method when another application claims the
device and calls the Sound method.

Opos.h header file Add OpenResult property values.

Appendix C Added header files for Point Card Reader Writer and POS Power. Updated
other header files for devices modified in this specification.

Appendix D Update System String information to include ATL usages.

Appendix E Added this appendix for details on ClaimDevice and ReleaseDevice.

 Release 1.6
Release 1.6 is a superset of Release 1.5.

Section Change
Line Display Added the CapBlinkRate, CapCursorType, CapCustomGlyph,

CapReadBack, CapReverse, BlinkRate, CursorType,
CustomGlyphList, GlyphHeight and GlyphWidth properties.

Added DefineGlyph and ReadCharacterAtCursor methods.

Many updates in the General Information section.

Updated the DisplayText and DisplayTextAt methods to include support for
new attribute types for reverse video, DISP_DT_REVERSE and
DISP_DT_BLINK_REVERSE.

Fiscal Printer Added the CapAdditionalHeader, CapAdditionalTrailer,
CapChangeDue, CapEmptyReceiptIsVoidable,
CapFiscalReceiptStation, CapFiscalReceiptType, CapMultiContractor,
CapOnlyVoidLastItem, CapPackageAdjustment, CapPostPreLine,
CapSetCurrency, CapTotalizerType, ActualCurrency, AdditionHeader,
AdditionalTrailer, ChangeDue, ContractorId, DateType,
FiscalReceiptStation, FiscalReceiptType, MessageType, PostLine,
PreLine and TotalizerType properties.

Added the SetCurrency, PrintRecCash, PrintRecItemFuel,
PrintRecItemFuelVoid, PrintRecPackageAdjustment,
PrintRecPackageAdjustVoid, PrintRecRefundVoid,
PrintRecSubtotalAdjustVoid and PrintRecTaxID methods.

Added country support for Bulgaria and Romania.
1572 Unified POS, v1.16.1

Many updates in the General Information section.

Clarified the description of the CapPositiveAdjustment property.

Updated the CountryCode, DayOpened and DescriptionLength properties
to reflect additions to the specification.

Updated the EndFiscalReceipt, GetData, GetDate, PrintRecItem,
PrintRecMessage, PrintRecNotPaid, PrintRecRefund,
PrintRecSubtotal, PrintRecSubtotalAdjustment, PrintRecTotal,
PrintRecVoid, PrintRecVoidItem, PrintZReport and SetHeaderLine
methods to reflect additions to the specification.

Updated the ErrorEvent event to reflect additions to the specification.

Properties CountryCode, ErrorOutID, PrinterState,
QuantityDecimalPlaces and QuantityLength have been updated to tone
down strong language in the 1.5 revision that changes the “Initialized After”
text.

Scale Properties SalesPrice, TareWeight and UnitPrice have been updated to
tone down strong language in the 1.5 revision that changes the “Initialized
After” text

Tone Indicator Properties AsyncMode, Tone1Pitch, Tone1Volume, Tone1Duration,
Tone2Pitch, Tone2Volume, Tone2Duration and InterToneWait have been
updated to tone down strong language in the 1.5 revision that changes the
“Initialized After” text.

Appendix C Added new constants for Fiscal Printer and Line Display updates.

 Release 1.7
The change history above has been maintained to this point for historical reference.

No specific change history relative to the OPOS APG is maintained from this release forward. Refer to
Appendix D for the change history details (if any) relative to this section.
Unified POS, v1.16.1 1573

A.34 Section 8: OPOS Control Programmer’s Guide

A.34.1 Who Should Read This Section

This Section of the OPOS Annex is targeted for the system developer who will write an OPOS Control.

This Section assumes that the reader understands the following:

• The POS peripheral device to be supported.

• ActiveX Control and Automation terminology and architecture.

• ActiveX Control Container development environments, such as Microsoft Visual Basic or Microsoft Visual
C++. These will be required for testing the OPOS Control.

• A thorough knowledge of the OPOS models and APIs presented in the other sections of Annex A, The OPOS
Implementation Reference.

See the following Web sites for additional OPOS information:
Microsoft Retail Industry Page:

http://www.microsoft.com/business/industry/ret/retoposoverview.asp


Reference implementation – Common Control Objects:

http://monroecs.com/opos.htm

ARTS OMG Retail Domain Task Force Standards Body:
http://retail.omg.org/
1574 Unified POS, v1.16.1

http://www.microsoft.com/business/industry/ret/retoposoverview.asp
http://monroecs.com/opos.htm
http://retail.omg.org/

A.34.2 General OLE for Retail POS Control Model

OLE for Retail POS Controls adhere to the ActiveX Control specifications. They expose properties, events, and
methods to a containing application. They specifically do not include a user interface, but rather rely exclusively
upon the containing application for requests through methods and sometimes properties. Responses are given to
the application through method return values and parameters, events, and properties.

The OLE for Retail POS software is implemented using the layers shown in the following diagram:
Unified POS, v1.16.1 1575

A.34.3 OPOS Definitions

Device Class

A device class is a category of POS devices that share a consistent set of properties, methods, and events.
Examples are Cash Drawer and POS Printer.

Some devices support more than one device class. For example, some POS Printers include a Cash Drawer
kickout. Also, some Bar Code Scanners include an integrated Scale.

Control Object or CO

A Control Object exposes a set of properties, methods, and events to an application for its device class. The
OPOS Application Programmer’s Guide describes these APIs.

A CO is a standard ActiveX (that is, OLE 32-bit) Control that is invisible at runtime. The CO interfaces have
been designed such that all implementations of a class' Control Object will be compatible. This allows the CO to
be developed independently of the SO's for the same class – including development by different companies.

Service Object or SO

A Service Object is called by a Control Object to implement the OPOS-prescribed functionality for a specific
device.

An SO is implemented as an Automation server. It exposes a set of methods that are called by a CO. It can also
call special methods exposed by the CO to cause events to be fired to the application.

A Service Object may include multiple sets of methods in order to support devices with multiple device classes.

A Service Object is typically implemented as a local in-proc server (in a DLL). In theory, it may also be
implemented as a local out-proc server (in a separate executable process). However, we have found that, in
practice, out-proc servers do not work well for OPOS Service Objects, and do not recommend their use.

OPOS Control or Control

An OPOS Control consists of a Control Object for a device class – which provides the application interface, plus
a Service Object – which implements the APIs. The Service Object must support a device of the Control Object's
class.

Note - Service Object Implementation: Out-of-Process vs. In-Process Servers

In general, the primary difficulty in using out-proc automation servers arises when either of the two possible
scenarios may occur:

(A) The server is processing a COM function for the client application (such as when the client has called a
Control’s method) when another server calls a COM function in the client (such as when a Control’s event is
fired).

(B) The server has called a COM function in a client application (such as when a Control’s event is fired) when
another client application calls a COM function in the server (such as when this client calls a Control’s method).

The likelihood of these scenarios, especially (A), is greater for OPOS Service Objects since:
1576 Unified POS, v1.16.1

• Some OPOS methods require an indeterminately long time to be processed, such as the Cash Drawer
WaitForDrawerClose.

• Some OPOS events may require an indeterminately long time to be processed, such as an ErrorEvent whose
application handler waits for a user response to a dialog box.

The case where an OPOS event occurs from one service object while another service object is processing a
method call or a property access then becomes probable.

These scenarios could be handled if both the client application and the out-proc server installed message filters
(using the function CoRegisterMessageFilter), and the code for these filters dealt with these scenarios in an
OPOS-prescribed manner. However, the default message filters for client environments such as Visual Basic and
Visual C++ do not adequately handle the scenarios. Behavior varies from displaying a dialog and waiting for a
user response (which is unacceptable for many POS operations) to generating an exception that terminates the
client application (which is certainly unacceptable for POS applications). In addition, some environments do not
provide a mechanism that easily allows an application to set up its custom message filter.

These issues simply do not exist when in-proc servers are used. Therefore, we recommend that they be used to
implement service objects. This does, however, somewhat complicate sharing a Control between applications.
Interprocess communication mechanisms, such as shared memory and named mutexes and events, may be used
for this sharing.

If out-proc servers are used, then both the service object developer and the application developer will need to
carefully implement message filters. The service object vendor should properly document this requirement to its
application writers.

A.34.4 Interface Overview

A major OPOS objective is to provide general peripheral device APIs that can be applied to many vendors’
peripherals. This leads to a requirement that any implementation of a Control Object be able to communicate
with any vendor’s Service Object. A straightforward example is with printers: Suppose a fast-food restaurant
requires a local printer by one vendor and a remote kitchen printer by another vendor. Two instances of the
printer CO will be required where each instance communicates with a different SO. The single CO must work
with both vendors’ SOs.

In order to define Control Objects that work across many vendors’ Service Objects, the Control Object interfaces
should be as generic and simple as possible. Therefore, the CO will maintain very little information and will, in
general, perform the following three duties:

• Service Object coupling: Supervises a dispatch interface with a Service Object for the device.

• Methods and properties: Performs a pass-through of the application's method and property requests to the
Service Object.

• Events: When a Service Object calls one of the special event request methods in the Control Object, the CO
fires an appropriate event to the application.

The various paths of communication between the application, Control Object, and Service Object are shown in
the following sections.
Unified POS, v1.16.1 1577

A.34.5 Methods

An application initiates method calls to the OPOS Control.

Open Method

The Open method is processed as follows:

Close Method

The Close method is processed as follows:

Other Methods

All other methods are processed as follows, where Method represents the name of the method:

Application

1. App calls CO's Open method.

Control Object

2. CO calls SO's OpenService method.

Service Object

Application

1. App calls CO's Close method.

Control Object

2. CO calls SO's CloseService method, if
present; otherwise calls Close method.

Service Object

Application

1. App calls CO's Method method.

Control Object

2. CO calls SO's Method method.

Service Object
1578 Unified POS, v1.16.1

A.34.6 Properties

An application initiates property accesses to the OPOS Control.

String Properties

Gets and sets of string properties are processed as follows, where StringProp represents the name of the property:

LONG and BOOL Properties

Gets and sets of long and boolean properties are processed as follows, where NumericProp represents the name
of the property:

Application

1. App accesses CO's StringProp property.

Control Object

2. If get, CO calls SO's GetPropertyString
method, with an index that represents
StringProp.
If set, CO calls SO's SetPropertyString
method, with an index that represents
StringProp.
The index values are specified in header
files.

Service Object

Application

1. App accesses CO's NumericProp property.

Control Object

2. If get, CO calls SO's GetPropertyNumber
method, with an index that represents
NumericProp.
If set, CO calls SO's SetPropertyNumber
method, with an index that represents
NumericProp.
The index values are specified in header
files.

Service Object
Unified POS, v1.16.1 1579

Other Property Types

Gets and sets of properties of any other type are processed as follows, where Property represents the name of the
property:

Application

1. App accesses CO's Property property.

Control Object

2. If get, CO calls SO's GetProperty method.
If set, CO calls SO's SetProperty method.

Service Object
1580 Unified POS, v1.16.1

A.34.7 Events

See “Events” in this Annex for an overview of event handling.

The Service Object enqueues events, which are delivered to an application handler for the event.

The Service Object delivers events as follows:

Architecture: Firing an Event

A Service Object may need to fire an event for the following reasons:

• Method call or property set. A side effect of an application request to the control may cause an event to be
fired.

Example: Assume that some data has been read and enqueued by the SO. When the application changes the
DataEventEnabled property to TRUE, then the SO needs to deliver a DataEvent.

• Asynchronous activity. The Service Object will usually create one or more worker threads to monitor the
device's input or output. The SO cannot rely upon the application to call OPOS methods or access OPOS
properties on a regular basis to gain some processing time, so independently scheduled worker threads are a
good solution. These threads may determine that an event needs to be fired.

Example: Assume that the DataEventEnabled property is TRUE, and that a worker thread is managing device
input through a serial port. When the thread receives a data message, then the SO enqueues and needs to
deliver a DataEvent.

When the SO needs to deliver an event, it calls a special event request method within the CO. The CO then
delivers the event to the application.

Application

2. CO event request method delivers a
Data, DirectIO, Error, OutputComplete,
or StatusUpdate event to the App.

Control Object

1. SO calls a CO event request method.
The methods SOData, SODirectIO,
SOError, SOOutputComplete, and
SOStatusUpdate are exposed
specifically to cause events to be
delivered to the App.

Service Object
Unified POS, v1.16.1 1581

Architectural Issue: Freezing Events by the Container

ActiveX control containers may freeze and unfreeze events by calling the IOleControl::FreezeEvents function.
This is presented to a control written with MFC via the COleControl::OnFreezeEvents member function, or to
an control written with ATL via the IOleControlImpl::FreezeEvents member function. (One use of this feature
is by the Visual Basic Common Dialog functions, which freeze events while the dialog is up.) When events have
been frozen, a control should not deliver events. The Visual C++ documentation notes that the control may either
discard events that occur during the freeze period, or it may buffer them for later delivery.

For OPOS Controls, enqueued events must be retained but not delivered while the container has frozen them.
Then, when events are unfrozen by the container, the events may be delivered.

Each Service Object must support the method COFreezeEvents. The Control Object will call this method to
freeze and unfreeze events.

Architectural Feature: Freezing Events by the Application

The application may wish to disable the arrival of events for a period of time. They may do this by setting the
common boolean property FreezeEvents to TRUE.

The event freezing mechanism implemented for container-requested freezing is utilized to remember requests
while the application has frozen them. Then, when the application sets the property to FALSE to unfreeze events,
the events are delivered.

Summary of Event Firing

When a Service Object needs to deliver an event, it calls the appropriate event request method within the Control
Object.

However, if events have been frozen due to a Control Object call to COFreezeEvents or due to the application
setting the FreezeEvents property to TRUE, then the SO keep the event on its event queue. If the event is to be
delivered from a worker thread, then this typically will be implemented by blocking the thread until events are
unfrozen.
1582 Unified POS, v1.16.1

A.34.8 Control Object Responsibilities

The following sections describe the responsibilities of the Control Object. The Common Control Object is a
reference implementation, whose source is available on the web.

A.34.9 Methods

The following sections describe the responsibilities of the Control Object methods.

If a device class does not support a common method (as specified by the device class Summary section in this
document), then the Control Object should not define that method.

Since a Control Object must perform properly with any version of Service Object, as long as the major version
numbers match, some bookkeeping must be performed in the Control Object. Specifically, the Control Object
must not call methods that are not defined by a Service Object, or access properties that it does not define. In
addition, it must perform additional management with the return values and ResultCode. (See “OPOS Common
Properties, Methods, and Events” on page 1511, “ControlObjectVersion” section for additional information.) The
processing steps below assume that the Control Object defines a ResultCode flag to help manage version
mismatch conditions.

Open Method

• If the Control Object is already open, then set OpenResult to OPOS_OR_ALREADYOPEN return
OPOS_E_ILLEGAL.

• If an empty device name has been passed, then set OpenResult to OPOS_OR_REGBADNAME and return
OPOS_E_NOEXIST.

• Query the registry to find the Service Object that corresponds to this device class and device name. If the
device class or device name is not found in the registry, then set OpenResult to OPOS_OR_REGBADNAME
and return OPOS_E_NOEXIST.

• Load the Service Object for the device name. This requires (a) reading the device’s Programmatic ID from the
registry, (b) converting it to a Class ID, (c) creating an instance of the Service Object, and (d) getting its
IDispatch interface. If any of these are unsuccessful, then return OPOS_E_NOSERVICE. Set OpenResult to
OPOS_OR_REGPROGID if (a) or (b) fails, or OPOS_OR_CREATE if (c) or (d) fails.

MFC (a) Use RegQueryValueEx. (b) Use CLSIDFromProgID.
(c)-(d) Calling the CreateDispatch member function of an instance of the Service Object class, passing the
Class ID from (b).

The Service Object class is generated by using the Visual C++ Class Wizard:

• Within the “OLE Automation” tab, push the “Add Class from an OLE TypeLib...” button. Then choose the
.TLB file generated by a Service Object project.

• The Class Wizard will generate a COleDispatchDriver derivative, with member functions matching the OLE
Automation methods exposed by the Service Object.

The Class Wizard will also generate an implementation of the member functions, which call InvokeHelper
with fixed dispatch IDs. Since dispatch IDs depend upon the definition order of the automation methods, this
implementation must be updated by the next step to allow for Service Objects that define the methods in a
different order.
Unified POS, v1.16.1 1583


ATL (a) Use RegQueryValueEx. (b) Use CLSIDFromProgID.
(c) Use CoCreateInstance. (d) Use QueryInterface on the interface pointer returned by (c).

• Look up the dispatch IDs for all of the Service Object methods defined by the device class.

If any of the dispatch IDs defined in the initial version of the device class are not found in the Service Object,
then close the dispatch interface, set OpenResult to OPOS_OR_BADIF, and return OPOS_E_NOSERVICE.
(This ensures that the Service Object supports at least the minimum methods of a valid Service Object for the
device class, before calling any of its methods.)

MFC Look up the dispatch IDs by calling the Service Object instance’s m_lpDispatch  GetIDsOfNames
function. Update the generated Service Object methods to pass these dispatch IDs to the InvokeHelper
member function.

ATL Look up the dispatch IDs by calling the Service Object instance’s GetIDsOfNames function. Save them
for later use – they must be passed to the Service Object dispatch’s Invoke function.

• Call the OpenService method of the Service Object, passing a device class string, a device name string, and
the IDispatch pointer to the Control Object. If OpenService returns any result except OPOS_SUCCESS, then
close the dispatch interface and return the OpenService result to the application. If the Service Object supports
the method GetOpenResult, then call it and set OpenResult to its returned value; otherwise set OpenResult
to OPOS_OR_FAILEDOPEN.

MFC The Control Object’s dispatch pointer is accessed through its GetIDispatch(FALSE) member function.

ATL The Control Object’s dispatch pointer is accessed by calling its QueryInterface function, requesting an
IDispatch interface.

• Call the GetPropertyNumber(PIDX_ServiceObjectVersion) method of the Service Object to retrieve its
version number. If the major version number is not one (1), then set OpenResult to
OPOS_OR_BADVERSION and return OPOS_E_NOSERVICE.

• If any of the dispatch IDs for the methods that should be defined by the Service Object’s version are not found,
then:
 - call the Service Object’s CloseService method if present, otherwise call
 its Close method,
 - close the dispatch interface,
 - set OpenResult to OPOS_OR_BADIF,
 - and return OPOS_E_NOSERVICE.
(This ensures that the Service Object supports all of the methods of a valid Service Object for the device class
and version it claims to support. If the Service Object’s version is newer than the Control Object, then the
Control Object ensures that all of the methods for the Control Object’s version are supported.)

• If all of the steps above are successful, then set an internal variable that shows that the Control Object is open,
set OpenResult to OPOS_SUCCESS, and return OPOS_SUCCESS. Otherwise, the Control Object remains
closed.
1584 Unified POS, v1.16.1

Close Method

• If the Control Object is closed, then return OPOS_E_CLOSED.

• If the Service Object supports the CloseService method, then call it. Otherwise, call its Close method.

• Set an internal variable that shows that the Control Object is closed.

• Release the Service Object.

• MFC Call the ReleaseDispatch member function of the Service Object class.

• ATL Call the Service Object dispatch pointer’s Release member function.

• Return the result of the Service Object’s Close method.

Other method calls

• If the Control Object is closed, then return OPOS_E_CLOSED.

• If the method was not defined in the Service Object’s version of the device class, then:

• Set the special ResultCode flag to show “version violation state”.

• Return OPOS_E_NOSERVICE.

• If the method is defined in the Service Object, then:

• Pass the request down to the Service Object by calling the identically named Service Object method,
using an identical list of parameters.

• Set the special ResultCode flag to show “normal state.”

• Return the result of the Service Object method.
Unified POS, v1.16.1 1585

A.34.10 Properties

The Control Object processes property accesses as follows:

• The Control Object only maintains the properties ControlObjectDescription, ControlObjectVersion, and
OpenResult. The Control Object will handle accesses to these properties directly, and return their value.

• If the Control Object is closed, then:

• If setting a property, then return. (There is no means of informing the application that the set failed.)

• If getting a property, then:

• If the property is State, return OPOS_S_CLOSED.

• If the property is ResultCode, return OPOS_E_CLOSED.

• Otherwise, return a default property value:
FALSE for boolean.
Zero for numeric.
“[Error]” for string.

• If getting the property ResultCode and the special ResultCode flag is “version violation state”, then return
OPOS_E_NOSERVICE.

• If the property is not supported by the version of the Service Object, then:

• If setting a property, then set the special ResultCode flag to show “version violation state” and return.

• If getting a property, then return the default property value.

If not one of the cases above...

• Set the internal ResultCode flag to show “normal state”.

• Pass down the request to the Service Object as follows.

• If the property type is a 4-byte numeric value, including boolean and long, then call the Service Object's
GetPropertyNumber or SetPropertyNumber. A parameter specifies the index of the property. These
indices are established in the OPOS internal header files. In order to supply control objects for new devices,
the writers of new device chapters may be requested to prepare the approximately 2-page data file used to
define some of the key attributes of the device to the generator.In order to supply control objects for new
devices, the writers of new device chapters may be requested to prepare the approximately 2-page data file
used to define some of the key attributes of the device to the generator.

• If the property type is string, then call the Service Object’s GetPropertyString or
SetPropertyString. A parameter specifies the index of the property. These indices are established in the
OPOS internal header files.

• If the property is any other type, then call the Service Object’s get or set method for that property.
1586 Unified POS, v1.16.1

A.34.11 Events

The Service Object initiates events. The SO calls an event request method exposed by the Control Object.

The mapping of event request methods called by the Service Object into OPOS events is:

Upon receiving one of these event request methods, the Control Object delivers the appropriate event to the
application. The Service Object thread will not regain control until the application event handler has completed.

Warning: These methods are only for use by the Service Object. Though accessible to the application, the application
should not call them.

These five event request methods are defined on the following pages.

SOData
Syntax void SOData (LONG Status);

The Status parameter contains the input status. Its value is control-dependent and may describe the type
of or qualities of the input.

Remarks Requests the Control Object to deliver the event:

void DataEvent (LONG Status);

Called by the Service Object to deliver input data from the device to the application. The SO must not
call SOData unless the DataEventEnabled property is TRUE. Just before calling SOData, the SO
must change this property to FALSE, so that no further data events will be generated until the
application sets this property back to TRUE. The actual input data is placed in one or more device class-
specific properties.

Event Request Methods OPOS Event

SOData DataEvent

SODirectIO DirectIOEvent

SOError ErrorEvent

SOOutputComplete OutputCompleteEvent

SOStatusUpdate StatusUpdateEvent
Unified POS, v1.16.1 1587

SODirectIO

Syntax void SODirectIO (LONG EventNumber, LONG* pData, BSTR* pString);

Parameter Description
EventNumber Event number. Specific values assigned by the Service Object.

pData Pointer to additional numeric data. Specific values vary by EventNumber
and the Service Object.

pString Pointer to additional string data. Specific values vary by EventNumber and
the Service Object.

Remarks Requests the Control Object to deliver the event:

void DirectIOEvent (LONG EventNumber, LONG* pData,
BSTR* pString);

Called by the Service Object to communicate information directly to the application.

This event provides a means for a Service Object to deliver events to the application that are not
otherwise supported by the Control Object.

The Service Object must ensure that pString points to a valid system string, and then must free this
string after SODirectIO returns.
1588 Unified POS, v1.16.1

SOError Updated in Release 1.10

Syntax void SOError (LONG ResultCode, LONG ResultCodeExtended,
LONG ErrorLocus, LONG* pErrorResponse);

Parameter Description
ResultCode Result code causing the error event. See “ResultCode Property” in this

Annex for values.

ResultCodeExtended Extended result code causing the error event. See “ResultCodeExtended
Property” in this Annex for values.

ErrorLocus Location of the error. See values below.

pErrorResponse Pointer to the error event response. See values below.

The ErrorLocus parameter may be one of the following:

Value Meaning
OPOS_EL_OUTPUT Error occurred while processing asynchronous output.

OPOS_EL_INPUT Error occurred while gathering or processing event-driven input. No
previously buffered input data is available.

OPOS_EL_INPUT_DATA
Error occurred while gathering or processing event-driven input, and some
previously buffered data is available.

The contents at the location pointed to by the pErrorResponse parameter are preset to a default value,
based on the ErrorLocus. The application may change the value to one of the following:

Value Meaning
OPOS_ER_RETRY Typically valid only when locus is OPOS_EL_OUTPUT.

Retry the asynchronous output. The error state is exited.
May be valid when locus is OPOS_EL_INPUT.
Default when locus is OPOS_EL_OUTPUT.

OPOS_ER_CLEAR Clear all buffered output data (including all asynchronous output) or
buffered input data. The error state is exited.
Default when locus is OPOS_EL_INPUT.

OPOS_ER_CONTINUEINPUT
Use only when locus is OPOS_EL_INPUT_DATA. Acknowledges the error
and directs the Control to continue processing. The Control remains in the
error state and will fire additional DataEvents as directed by the
DataEventEnabled property. When all input has been fired and the
DataEventEnabled property is again set to TRUE, then another
ErrorEvent is fired with locus OPOS_EL_INPUT.
Default when locus is OPOS_EL_INPUT_DATA.
Unified POS, v1.16.1 1589

Remarks Requests the Control Object to deliver the event:

void ErrorEvent (LONG ResultCode, LONG ResultCodeExtended,
LONG ErrorLocus, LONG* pErrorResponse);

Once SOError has been called, the Service Object must not request another error event until the error has
been cleared. However, if an error with locus
OPOS_EL_INPUT_DATA is fired and the event handler responds with
OPOS_ER_CONTINUEINPUT, then the SO may fire another error event with
OPOS_EL_INPUT after the enqueued input has been delivered.

SOOutputComplete

Syntax void SOOutputComplete (LONG OutputID);

The OutputID parameter indicates the number of the asynchronous output request that has completed.

Remarks Requests the Control Object to deliver the event:

void OutputCompleteEvent (LONG OutputID);

Called by the Service Object when a previously started asynchronous output request completes
successfully.

SOStatusUpdate
Syntax void SOStatusUpdate (LONG Data);

The Data parameter is for device class-specific data describing the type of status change.

Remarks Requests the Control Object to deliver the event:

void StatusUpdateEvent (LONG Data);

Called by the Service Object when the SO needs to alert the application of a device status change.

Examples include a change in the cash drawer position (open vs. closed) and a change in a POS printer
sensor (form present vs. absent).

The following method is not related to event firing, but is a special purpose support
method.OPOS_EL_INPUT after the enqueued input has been delivered.
1590 Unified POS, v1.16.1

SOProcessID

Syntax LONG SOProcessID();

Remarks Return the process ID of the application in which the Control Object exists.

The following method is provided to support local out-proc Service Objects. As noted in the
introduction chapter, out-proc servers are not recommended for OPOS Service Objects. However, if a
vendor successfully designs and implements such a Service Object, this method may be useful.

For example, if a Service Object which supports Printer with MICR has allowed an application to
Claim the printer, then it will want to restrict Claim of the MICR to the same application, since it is not
reasonable for two applications to share such a device with such closely interacting classes.
Unified POS, v1.16.1 1591

A.34.12 Service Object Responsibilities and Implementation

Methods

The following common Service Object methods are defined for implementing corresponding Control Object
methods. If a device class does not support a common method (as specified by the device class Summary section
in the this document), then the Service Object should not define that method.

For each device class, additional methods are defined for each device specific method.

The general rules used to define the Service Object methods are:

• The Service Object method name is the same as the Control Object’s method name.

• The parameters match those of the Control Object, both in order and type.

The only exceptions to these rules are the OpenService, CloseService (optional – may use Close instead),
GetOpenResult (optional), and COFreezeEvents methods.

Note that these methods are always called through the Service Object’s IDispatch interface.

For each of the methods below, syntax is shown for MFC as entered into the control’s “Add Method” dialog, and
for ATL as entered into the COM object’s “Add Method to Interface” dialog.

CheckHealth
Syntax MFC long CheckHealth(long Level);

ATL HRESULT CheckHealth(long Level, [out, retval] long* pRC);

Remarks Called to test the state of a device.

ClaimDevice / Claim
Syntax MFC long ClaimDevice(long Timeout);

long Claim(long Timeout);

ATLHRESULT ClaimDevice(long Timeout, [out, retval] long* pRC);
HRESULT Claim(long Timeout, [out, retval] long* pRC);

Remarks Called to request exclusive access to the device.

Release 1.0 – 1.4

Control Objects for these releases will only look for the Claim method.

Release 1.5 and later

A Control Object for this release will first look for the ClaimDevice method. If ClaimDevice is not
present, then the Control Object looks for Claim.
1592 Unified POS, v1.16.1

ClearInput

Syntax MFC long ClearInput();
ATL HRESULT ClearInput([out, retval] long* pRC);

Remarks Called to clear all device input that has been enqueued.

ClearInputProperties

Syntax MFC long ClearInputProperties();
ATL HRESULT ClearInputProperties([out, retval] long* pRC);

Remarks Called to clear all input properties that have been populated by the last DataEvent or ErrorEvent.

ClearOutput Updated in Release 1.7

Syntax MFC long ClearOutput();
ATL HRESULT ClearOutput([out, retval] long* pRC);

Remarks Called to clear all buffered output data, including all asynchronous output. Also, when possible, halts
outputs that are in progress.

Close

Syntax MFC long CloseService();
long Close();

ATL HRESULT CloseService([out, retval] long* pRC);
HRESULT Close([out, retval] long* pRC);

Remarks Called to release the device and its resources.

Release 1.0 – 1.4

Control Objects for these releases will only look for the Close method.

Release 1.5 and later

A Control Object for this release will first look for the CloseService method. If CloseService is not
present, then the Control Object looks for Close.

COFreezeEvents Internal Control/Service Object Method

Syntax MFC long COFreezeEvents(BOOL Freeze);
ATL HRESULT COFreezeEvents(VARIANT_BOOL Freeze,

[out, retval] long* pRC);

The Freeze parameter is TRUE / VARIANT_TRUE when event firing must be frozen, and FALSE /
VARIANT_FALSE when event firing is reenabled.

Remarks This method is for internal use by the Control Object.

The CO calls it in response to a container event freeze request to inform the SO of a change in the state
of event firing. See “Architectural Issue: Freezing Events by the Container” in this Annex for more
information.
Unified POS, v1.16.1 1593

CompareFirmwareVersion Added in Release 1.9

Syntax MFC long CompareFirmwareVersion(BSTR FirmwareFileName, LONG* pResult);
ATL HRESULT CompareFirmwareVersion(BSTR FirmwareFileName, [out] long* pResult, [out,
retval] long* pRC);

Remarks This method determines whether the version of the firmware contained in the specified file is newer than,
older than, or the same as the version of the firmware in the physical device.

DirectIO
Syntax MFC long DirectIO(long Command, long* pData, BSTR* pString);

ATL HRESULT DirectIO(long Command, [in, out] long* pData,
[in, out] BSTR* pString, [out, retval] long* pRC);

Remarks Call to communicate directly with the Service Object.

GetOpenResult Internal Control/Service Object Method
 Added in Release 1.5

Syntax MFC long GetOpenResult();
ATL HRESULT GetOpenResult([out, retval] long* pRC);

Remarks This method is for internal use by the Control Object. It is optional.

If a Service Object’s OpenService method returns a status other than OPOS_SUCCESS, and it has
implemented this method, then the Control Object calls this method to set its OpenResult property.

The Service Object may select one of the values given in the OPOS.H header file, or return a Service
Object-specific value.

Return For MFC implementations, return one of the following values. For ATL implementations, store one of
the following values at pRC, and return S_OK.

Value Meaning
OPOS_ORS_NOPORT The Service Object tried to access an I/O port (for example, an RS232 port)

during Open processing, but the port that is configured for the DeviceName
is invalid or inaccessible.

As a general rule, an SO should refrain from accessing the physical device
until the DeviceEnabled property is set to TRUE. But in some cases, it may
require some access at Open; for instance, to dynamically determining the
device type in order to set the DeviceName and DeviceDescription
properties.

OPOS_ORS_NOTSUPPORTED
The Service Object does not support the specified device.
The SO has determined that it does not have the ability to control the device
it is opening. This determination may be due to an inspection of the registry
entries for the device, or dynamic querying of the device during Open
processing.
1594 Unified POS, v1.16.1

OPOS_ORS_CONFIG Configuration information error.
Usually this is due to incomplete configuration of the registry, such that the
SO does not have sufficient or valid data to open the device.

OPOS_ORS_SPECIFIC Errors greater than this value are service object-specific.
If the previous return values do not apply, then the SO may define additional
OpenResult values. These values are Service Object-specific, but may be of
value in these cases:
 1) The Application logs or reports this error during debug and testing.
 2) The Application adds SO-specific logic, to attempt to report more error

conditions or to recover from them.

OpenService Internal Control/Service Object Method

Syntax MFC long OpenService(LPCTSTR DeviceClass, LPCTSTR DeviceName,
LPDISPATCH pDispatch);

ATL HRESULT OpenService(BSTR DeviceClass, BSTR DeviceName,
IDispatch* pDispatch, [out, retval] long* pRC);

Parameter Description
DeviceClass Contains the requested device class, which are given in the header file

OPOS.HI. Examples are “CashDrawer” and “POSPrinter.”
DeviceName Contains the Device Name to be managed by this Service Object. The

relationship between the device name and physical devices is determined by
entries within the operating system registry; a setup or configuration utility
maintains these entries. (See the “Application Programmer’s Guide” annex
“OPOS Registry Usage.”)

pDispatch Points to the Control Object’s dispatch interface, which contains the event
request methods.

Remarks Call to open a device for subsequent I/O. The Control Object calls this method as part of its Open method
processing.

The Service Object will use the DeviceClass and DeviceName parameters in inquiring the registry for
additional device specific information.

The following steps assume that the Control Object is written using Visual C++ with MFC. Modify
appropriately if another development environment is selected.

For MFC implementations, the pDispatch parameter may be used as follows:

• Attach to the Control Object’s IDispatch interface by passing the pDispatch IDispatch pointer to
the AttachDispatch member function of an instance of a class that defines the Control Object’s
event request methods.

This class is generated by using the Visual C++ Class Wizard:

• Within the “OLE Automation” tab, push the “Add Class from an OLE TypeLib...” button. Then
choose the .TLB file generated by a Control Object project.

• The Class Wizard will generate a COleDispatchDriver derivative, with member functions
matching the OLE Automation methods exposed by the Control Object.

• The Class Wizard will also generate an implementation of the member functions, which call In-
vokeHelper with fixed dispatch IDs. Since dispatch IDs depend upon the definition order of the
automation methods, this implementation must be updated by the next step to allow for Control
Objects that define the methods in a different order.

• The class definition and implementation should be updated to remove all of the non-event re-
quest methods.
Unified POS, v1.16.1 1595

• Look up the event request methods (such as SOData) by calling the Control Object instance’s
m_lpDispatch  GetIDsOfNames function. Update the generated Control Object methods to pass
these dispatch IDs to the InvokeHelper member function.

For ATL implementations, the pDispatch parameter may be used directly to call IDispatch’s
GetIDsOfNames and Invoke functions. Alternatively, a CComDispatchDriver class instance may
be created; its Invoke1 and InvokeN functions may be used to call the event functions.

Note
The Service Object attaches back to the Control Object’s dispatch pointer in order to access the event
request methods within the CO. This implies the following two points:
• When the Control Object exposes the event request methods for access by the Service Object, these

methods also become accessible by the application. The application, of course, should not call these
methods.

• The Service Object can access other methods and properties within the Control Object. This is not
usually beneficial; however, the SO may wish to access the ControlObjectDescription or
ControlObjectVersion to validate compatibility between itself and the CO.

Return For MFC implementations, return one of the following values. For ATL implementations, store one of
the following values at pRC, and return S_OK.

Value Meaning
OPOS_SUCCESS The Service Object is open.

This does not tell the Control Object or Application that the device is online
and functional. Rather, it states that the Service Object software is
initialized, and ready to attempt device interaction when the DeviceEnabled
property is set to TRUE.

Other Values See “ResultCode Property” in this Annex.

Any return value except OPOS_SUCCESS is an Open failure, and will
result in the Control Object shutting down the Service Object (by releasing
its COM pointer) and passing this status to the Application.

Since the APG defines meanings for OPOS_E_ILLEGAL and
OPOS_E_NOEXIST, a Service Object should return one of these only if the
failure is similar to one of these meanings. Otherwise, the Application may
be misled.

Release 1.5 and later

On a failure, the Control Object will call the Service Object’s
GetOpenResult method, if present, to retrieve an additional status value.
1596 Unified POS, v1.16.1

ReleaseDevice / Release

Syntax MFC long ReleaseDevice();
long Release();

ATL HRESULT ReleaseDevice([out, retval] long* pRC);

Remarks Called to release exclusive access to the device.

Release 1.0 – 1.4

Control Objects for these releases will only look for the Release method.

Release 1.5 and later

A Control Object for this release will first look for the ReleaseDevice method. If ReleaseDevice is not
present, then the Control Object looks for Release.

Note that ATL implementations cannot support the Release method (at least not without updating/
overriding ATL classes).

ResetStatistics Added in Release 1.8
Syntax MFC long ResetStatistics(BSTR StatisticsBuffer);

ATL HRESULT ResetStatistics(BSTR StatisticsBuffer, [out, retval] long* pRC);

Remarks Resets the defined resettable statistics in a device.

RetrieveStatistics Added in Release 1.8

Syntax MFC long RetrieveStatistics(BSTR* pStatisticsBuffer);
ATL HRESULT RetrieveStatistics([in, out] BSTR* pStatisticsBuffer, [out, retval] long* pRC);

Remarks Retrieves the statistics from a device.

UpdateFirmware Added in Release 1.9
Syntax MFC long UpdateFirmware(BSTR FirmwareFileName);

ATL HRESULT UpdateFirmware(BSTR FirmwareFileName, [out, retval] long* pRC);

Remarks Updates the firmware of a device with the version of the firmware contained or defined in the file
specified by the FirmwareFileName parameter.

UpdateStatistics Added in Release 1.8

Syntax MFC long UpdateStatistics(BSTR StatisticsBuffer);
ATL HRESULT UpdateStatistics(BSTR StatisticsBuffer, [out, retval] long* pRC);

Remarks Updates the defined resettable statistics in a device.
Unified POS, v1.16.1 1597

A.34.13 Properties

The following methods are defined for getting and setting properties of the following types: 4-byte numeric and
string.

For each method, the first parameter is:
LONG PropIndex
The values of PropIndex are specified in Opos.hi for the common properties. The values of class-specific
properties are specified in the class-specific header files.

For robustness, the Service Object should validate the PropIndex. If an invalid value is found, then it could
display a message box specifying the error, generate a debug exception, or produce another alert to the developer.
This type of error should be found during development, testing, or staging prior to rollout to a customer, so the
method of informing the user may be rather terse.

Note that these methods are always called through the Service Object’s IDispatch interface.

GetPropertyNumber

Syntax MFC long GetPropertyNumber(long PropIndex);
ATL HRESULT GetPropertyNumber(long PropIndex,

[out, retval] long* pNumber);

Return The current value of the LONG or BOOL / VARIANT_BOOL property.

For BOOL properties - VARIANT_BOOL COM IDL type - the Common Control Objects return a zero
value as VARIANT_FALSE and a non-zero value as VARIANT_TRUE.

GetPropertyString

Syntax MFC BSTR GetPropertyString(long PropIndex);
ATL HRESULT GetPropertyString(long PropIndex,

[out, retval] BSTR* pString);

Return The current value of the string property.

SetPropertyNumber

Syntax MFC void SetPropertyNumber(long PropIndex, long Number);
ATL HRESULT SetPropertyNumber(long PropIndex, long Number);

Remarks Sets the LONG or BOOL property to Number.

For BOOL properties - VARIANT_BOOL COM IDL type - the Common Control Objects pass a zero
value as zero (0) and a non-zero value as one (1).

SetPropertyString
Syntax MFC void SetPropertyString(long PropIndex, LPCTSTR String);

ATL HRESULT SetPropertyString(long PropIndex, BSTR String);

Remarks Sets the string property to String.

Note – Rationale for property get and set methods

Instead of using the four methods above, the Service Object interface could have defined distinct get
methods for every property, plus set methods for writable properties.
1598 Unified POS, v1.16.1

Due to the large number of properties present in several Control Objects, however, the four methods
above were chosen to reduce the amount of overhead and Service Object code.

Other Types: Not BSTR, LONG, or BOOL

If the Control defines properties of types that are not BStrings, LONGs, or BOOLeans, then the Service
Object must define additional get and set methods for these properties.

If using Visual C++ with MFC, this is most easily accomplished through the Class Wizard by adding an
Automation property.

Getting Other Property Types

Syntax MFC Type GetPropertyName();
ATL HRESULT GetPropertyName([out, retval] Type* pProp);

Where Type is replaced by the property’s type,
and PropertyName is replaced by the property’s name.

Return The current value of the property.

Example: If a property

CURRENCY SomeMoney;
is defined by the control, then the Service Object must define the method

MFC CURRENCY GetSomeMoney();
 ATL HRESULT GetSomeMoney([out, retval] CURRENCY* pCY);

Setting Other Property Types

Syntax MFC void SetPropertyName(Type value);
ATL HRESULT SetPropertyName(Type value);

Where Type is replaced by the property’s type,
and PropertyName is replaced by the property’s name.

Remarks Sets the property to value.

This method is only defined if the property PropertyName is a writable property.

Example: If a read/write property

CURRENCY SomeMoney;
is defined by the control, then the Service Object must define the method

MFC void SetSomeMoney(CURRENCY NewMoneyValue);
ATL HRESULT SetSomeMoney(CURRENCY NewMoneyValue);
Unified POS, v1.16.1 1599

A.34.14 Events

A Service Object causes events to be fired by calling event methods in the Control Object. These methods are
named:

SOData
SODirectIO
SOError
SOOutputComplete
SOStatusUpdate

They are described in “Control Object Responsibilities” in this Annex.

See the OpenService description in Annex D for information about how to get the dispatch interface and
dispatch IDs necessary for calling these functions.
1600 Unified POS, v1.16.1

A.34.15 OPOS CPG Change History

 Release 1.01
Release 1.01 mostly adds clarifications and corrections, but the Line Display and Signature Capture
chapters received substantive changes to correct deficiencies in their definition.

Section Change
Second Page Add name of Microsoft Web site for OPOS information.

Opos.hi header file
Remove HKEY_LOCAL_MACHINE from the root keys.

OposPtr.hi header file
Change ...Nearend to ...NearEnd.
Change ...Barcode to ...BarCode.

OposScal.hi header file
Correct WeightUnits value from 1 to 2.

OposSig.hi header file
Change TotalVectors to TotalPoints.
Change VectorArray to PointArray.

 Release 1.1
Release 1.1 adds APIs based on requirements from OPOS-J, the Japanese OPOS consortium.

Section Change

Second Page Remove CompuServe reference.

Opos.hi header file Add POS Keyboard values.

OposKbd.hi header file New header file for POS Keyboard.

OposPtr.hi header file Add the following properties:
CapCharacterSet
CapTransaction
ErrorLevel
ErrorString
FontTypefaceList
RecBarCodeRotationList
RotateSpecial
SlpBarCodeRotationList
Unified POS, v1.16.1 1601

 Release 1.2
Release 1.2 adds additional device classes, plus additional APIs based on requirements from various
OPOS-US, OPOS-Japan, and OPOS-Europe members.

Release 1.2 is a superset of Release 1.1.

Section Change
First Two Pages Update company names.

Update copyright notices.
Update web reference.

Introduction Add discussion of out-proc and in-proc service objects.

Control Object Chapter Update to include handling of version mismatch between the Control Object
and Service Object.

Add the method SOProcessID.

Opos.hi header file Add Cash Changer and Tone Indicator.
Add the following properties:

AutoDisable
BinaryConversion
DataCount

OposChan.hi header file
New header file for Cash Changer.

OposMsr.hi header file
Add the property ErrorReportingType.
Add the property ParseDecodedData, with value set the same as
ParseDecodeData.

OposKbd.hi header file
Add the following properties:

CapKeyUp
EventTypes
POSKeyEventType properties

OposScal.hi header file
Add the following properties:

CapDisplay
WeightUnit.

OposScan.hi header file
Add the following properties:

ScanDataLabel
ScanDataType

OposSig.hi header file
Add the following properties:

CapRealTimeData
RealTimeDataEnabled.

OposTone.hi header file
New header file for Tone Indicator.

 Release 1.3
Release 1.3 adds additional device classes, a few additional APIs, and some corrections.

Release 1.3 is a superset of Release 1.2.
1602 Unified POS, v1.16.1

Section Change
First Two Pages Update copyright notices.

Update web reference.

General Modify the use of the term event “firing.” Use “enqueue” and “deliver”
appropriately to describe event firing.

Control Object Chapter SOError: Allow OPOS_ER_RETRY to be returned on input events if the
Control supports it.

Service Object Chapter Add descriptions of property methods that don’t fall into “4-byte number” or
“string” types.

Opos.hi header file Add Bump Bar, Fiscal Printer, PIN Pad, and Remote Order Display. Add the
following properties:

CapPowerReporting
PowerNotify
PowerState

OposBb.hi header file New header file for Bump Bar

OposChan.hi header file Correct the string indices to use PIDX_STRING instead of
PIDX_NUMBER.

OposFptr.hi header file New header file for Fiscal Printer

OposPPad.hi header file New header file for PIN Pad

OposROD.hi header file New header file for Remote Order Display

OposScal.hi header file
Add the following properties:

CapDisplayText
CapPriceCalculating
CapTareWeight
CapZeroScale
AsyncMode
MaxDisplayTextChars
TareWeight

Several header files Add validation functions for the first release containing the device.

 Release 1.4
Release 1.4 adds 1 additional device class.

Release 1.4 is a superset of Release 1.3.

Section Change

Opos.hi header file Add CAT.

OposCat.hi header file New header file for CAT.

 Release 1.5
Release 1.5 adds 2 additional device classes.

Release 1.5 is a superset of Release 1.4.
Unified POS, v1.16.1 1603

Section Change
First Two Pages Update copyright notices.

Update web references.

General Update Claim and Release references to include ClaimDevice and
ReleaseDevice information.

Update references to OLE to ActiveX where appropriate.

Generalize some references to MFC implementations, and add some ATL
implementation information.

Control Object Responsibilities
Remove implementation details, and refer to the Common Control Objects.

Service Object GetOpenResult method
Add new method.

Opos.hi header file Added Point Card Reader Writer and POS Power device categories.

OposCash.hi header file
Add CapMultiDrawerDetect property.

OposCat.hi header file
Add PaymentMedia property

OposCash.hi header file
Add DepositAmount, DepositStatus, DeviceStatus, CapDeposit,
CapDepositDataEvent, CapPauseDeposit, CapRepayDeposit,
DepositCashList, DepositCodeList and DepositCounts properties.

OposMSR.hi header file
Add CapTransmitSentinels, Track4Data and TransmitSentinels
properties.

OposPcrw.hi header file
New header file for Point Card Reader Writer.

OposPpad.hi header file Update to match the released 1.3 header file, then 
Remove the Amount property index – it isn’t a string.

Add Track4Data property.

OposPtr.hi header file
Add CapJrnCartridgeSensor, CapJrnColor, CapRecCartrdigeSensor,
CapRecColor, CapRecMarkFeed, CapSlpBothSidesPrint,
CapSlpCartridgeSensor, CapSlpColor, CartridgeNotify,
JrnCartridgeState, JrnCurrentCartridge, RecCartridgeState,
RecCurrentCartridge, SlpPrintSide, SlpCartridgeState, and
SlpCurrentCartridge properties.

OposPwr.hi header file New header file for POS Power.

 Release 1.6
Release 1.6 is a superset of Release 1.5.

Section Change
OposDisp.hi header file

Added CapBlinkRate, CapCursorType, CapCustomGlyph,
CapReadBack, CapReverse, BlinkRate, CursorType,
CustomGlyphList, GlyphHeight and GlyphWidth properties.
1604 Unified POS, v1.16.1

OposFptr.hi header file
Added CapAdditionalHeader, CapAdditionalTrailer, CapChangeDue,
CapEmptyReceiptIsVoidable, CapFiscalReceiptStation,
CapFiscalReceiptType, CapMultiContractor, CapOnlyVoidLastItem,
CapPackageAdjustment, CapPostPreLine, CapSetCurrency,
CapTotalizerType, ActualCurrency, AdditionHeader, AdditionalTrailer,
ChangeDue, ContractorId, DateType, FiscalReceiptStation,
FiscalReceiptType, MessageType, PostLine, PreLine and TotalizerType
properties.

 Release 1.7
The change history above has been maintained to this point for historical reference.

No specific change history relative to the OPOS CPG is maintained from this release forward. Refer to
Appendix D for the change history details (if any) relative to this section.

 Common Control Objects
As a combination of the personal effort of Curtiss Monroe plus as part of the commitment of his
employer, NCR (formerly Research Computer Services, Inc. in Dayton, Ohio) to the retail community, a
complete set of OPOS control objects have been developed for public use. These have been dubbed the
“Common Control Objects.”

These control objects are delivered as a reference implementation, believed to be correct and suitable
for direct use by applications, but not warranted to be correct or to work with any vendor's Service
Objects.
Unified POS, v1.16.1 1605

 Features
• All OPOS controls are supported.

• ATL-based, using dual interfaces so that the app can access them via IDispatch or COM interfaces
(of the form IOPOSCashDrawer, etc.).

• Built using Microsoft Visual C++. (Currently at Version 6.0, 
Service Pack 4.)

• Backward compatible with all releases of service objects. This means that they check for older SOs,
and return the proper errors to the application if it accesses unsupported properties or methods.

• They have been tested with several major hardware vendors’ Service Objects.

• Event firing logic supports well-behaved service objects that fire events from the thread that created
the control, plus other service objects that fire them from other threads.

• Self-contained, requiring only standard OS DLLs. Specifically, they do not require MFC or ATL
DLLs.

• Both MBCS and Unicode versions have been built and given limited testing. At this time, only the
MBCS versions are being posted.

• Source code for all control objects is available.

• For future additions, it is easy to add new control objects or update old ones. A custom generator
was developed that reads a data file for each control to be built. To add properties or methods, the
procedure is (a) update the data files, (b) regenerate, and (c) build the resulting projects.

 Availability and Future
Curtiss intends to maintain the control objects, and post corrections plus new releases at the site http://
www.monroecs.com as needed, for as long as he is affiliated with OPOS. Should he not be able to
perform this function, then the OPOS Core Committee is authorized to do so.

In order to supply control objects for new devices, the writers of new device chapters may be requested
to prepare the approximately 2-page data file used to define some of the key attributes of the device to
the generator.
1606 Unified POS, v1.16.1

 OPOS Internal Header Files Updated in Release 1.12

The header files are listed in alphabetical order. The mapping of device class name to header file
name is as follows:
– General – Opos.hi
Belt OposBelt.hi
Bill Acceptor OposBacc.hi
Bill Dispenser OposBdsp.hi
Biometrics OposBio.hi
Bump Bar OposBb.hi
Cash Changer OposChan.hi
Cash Drawer OposCash.hi
CAT OposCat.hi
Check Scanner OposChk.hi
Coin Acceptor OposCacc.hi
Coin Dispenser OposCoin.hi
Electronic Journal OposEj.hi
Electronic Value R / W OposEvrw.hi
Fiscal Printer OposFptr.hi
Gate OposGate.hi
Hard Totals OposTot.hi
Image Scanner OposImg.hi
Item Dispenser OposItem.hi
Keylock OposLock.hi
Lights OposLgt.hi
Line Display OposDisp.hi
MICR OposMicr.hi
Motion Sensor OposMotion.hi
MSR OposMsr.hi
PIN Pad OposPpad.hi
Point Card Reader Writer OposPcrw.hi
POS Keyboard OposKbd.hi
POS Power OposPwr.hi
POS Printer OposPtr.hi
Remote Order Display OposRod.hi
RFID Scanner OposRfid.hi
Scale OposScal.hi
Scanner OposScan.hi
Signature Capture OposSig.hi
Smart Card Reader Writer OposScrw.hi
Tone Indicator OposTone.hi

The most up-to-date header files can be downloaded from the following web site:

http://monroecs.com/oposccos_current.htm
Unified POS, v1.16.1 1607

http://monroecs.com/oposccos_current.htm

1608 Unified POS, v1.16.1

Annex B

Java for Retail POS - JavaPOS
Implementation Reference

B.1 What is Java for Retail POS?

Java for Retail POS (JavaPOS) provides for open POS device solutions for applications based on Java
development technology. It is an implementation of the UnifiedPOS architecture that defines:

• An architecture for Java-based POS (Point-Of-Service or Point-Of-Sale) device access.

• A set of POS device interfaces (APIs) sufficient to support a range of POS solutions.

The Java for Retail POS standards committee was formed by a collection of retail vendors and end users, with a
primary goal of providing device interfaces for the retail applications written in Java. Prior to version 1.7 of the
UnifiedPOS and JavaPOS standards these documents were separate sets of documentation. This Annex has been
added to this UnifiedPOS Standard to provide guidance on how to implement services in a Java environment.

The JavaPOS committee will produce the following:

• UnifiedPOS Programmer’s Guide (this document).

• Java source files, including:

• Definition files. Various interface and class files described in the standard.

• jpos.config/loader (JCL), configuration and service loader example.

• Example files. These will include a set of sample Device Control classes, to illustrate the interface presented to
an application.

The JavaPOS committee will not provide the following:

• Complete software components. Hardware providers or third-party providers develop and distribute these
components.

B.2 Benefits

The benefits of JavaPOS include:

• The opportunity for reduced POS terminal costs, through the use of thinner clients.

• Platform-independent applications, where the application is separated from both hardware and operating
system specifics.

• Reduced administration costs, because an application and supporting software may be maintained on a server
and loaded on demand by Java.
Unified POS, v1.16.1 1609

B.3 Dependencies

Deployment of JavaPOS depends upon the following software components:

• Java Communications Port API (COM/API) or optionally some other Java communications API that supports
hardware device connectivity.

• jpos.config/loader (JCL)

• For more information concerning the availability and any other up-to-date information about these
components, see http://www.javapos.com/.

B.4 Relationship to OPOS

The OLE for Retail POS (OPOS) standards committee developed device interfaces for Win32-based terminals
using ActiveX technologies. The OPOS standard was used as the starting point for JavaPOS, due to:

• Similar purposes. Both standards involve developing device interfaces for a segment of the software
community.

• Reuse of device models. The majority of the OPOS documentation specifies the properties, methods, events,
and constants used to model device behavior. These behaviors are in large part independent of programming
language.

• Reduced learning curve. Many application and hardware vendors are already familiar with using and
implementing the OPOS APIs.

• Early deployment. By sharing device models, JavaPOS “wrappers” or “bridges” may be built to migrate
existing OPOS device software to JavaPOS.

Therefore, most of the OPOS APIs were mapped into the Java language. The general translation rules are given
in Section 3 of this Annex.

B.5 Who Should Read This Section

This section is targeted to both the application developer who will use JavaPOS Devices and the system
developer who will write JavaPOS Devices.

This section assumes that the application developer is familiar with the following:

• General characteristics of POS peripheral devices.

• Java terminology and architecture.

• A Java development environment, such as Javasoft's JDK, Sun's Java Workshop, IBM's VisualAge for Java, or
others.

A system developer must understand the above, plus the following:

• The POS peripheral device to be supported.

• The host operating system, if the JavaPOS Device will require a specific operating system.

• A thorough knowledge of the JavaPOS models and the APIs of the device.
1610 Unified POS, v1.16.1

http://www.javapos.com

B.6 Appendix Overview

This annex contains the following major sections:

B.7 Architectural Overview

JavaPOS defines a multi-layered architecture in which a POS Application interacts with the Physical or Logical
Device through the JavaPOS Device.

Section Name Developer Audience

What Is “Java for Retail POS?” Application and System

“Architectural Overview” on page 1611 Application and System

Device Behavior Models “Device
Behavior Models” on page 1614 Application and System

Classes and Interfaces “Classes and
Interfaces” on page 1636 Application and System

Device Controls “Device Controls” on
page 1652

System

Device Services “Device Services” on
page 1661 System

POS
Application

JavaPOS Device
Control

JavaPOS Device
Service

Physical (or Logical)
Device

JavaPOS
Device

JavaPOS
Device
Service

Interface

JavaPOS
Device

Interface
Unified POS, v1.16.1 1611

B.8 Architectural Components

The POS Application (or Application) is either a Java Application or applet that uses one or more JavaPOS
Devices. An application accesses the JavaPOS Device through the JavaPOS Device Interface, which is
specified by Java interfaces.

JavaPOS Devices are divided into categories called Device Categories, such as Cash Drawer and POS Printer.

Each JavaPOS Device is a combination of these components:

• JavaPOS Device Control (or Device Control) for a device category. The Device Control class provides the
interface between the Application and the device category. It contains no graphical component and is therefore
invisible at runtime, and conforms to the JavaBeans API.

The Device Control has been designed so that all implementations of a device category’s control will be
compatible. Therefore, the Device Control can be developed independently of a Device Service for the same
device category (they can even be developed by different companies).

• JavaPOS Device Service (or Device Service), which is a Java class that is called by the Device Control
through the JavaPOS Device Service Interface (or Service Interface). The Device Service is used by the
Device Control to implement JavaPOS-prescribed functionality for a Physical Device. It can also call special
event methods provided by the Device Control to deliver events to the Application.

A set of Device Service classes can be implemented to support Physical Devices with multiple Device
Categories.

The Application manipulates the Physical Device (the hardware unit or peripheral) by calling the JavaPOS
Device APIs. Some Physical Devices support more than one device category. For example, some POS Printers
include a Cash Drawer kickout, and some Bar Code Scanners include an integrated Scale. However with
JavaPOS, an application treats each of these device categories as if it were an independent Physical Device. The
JavaPOS Device writer is responsible for presenting the peripheral in this way.

Note: Occasionally, a Device may be implemented in software with no user-exposed hardware, in which case it
is called a Logical Device.
1612 Unified POS, v1.16.1

B.8.1 Additional Layers and APIs

The JavaPOS architecture contains additional layers and APIs in order to integrate well with the Java
development environment.

Note: Comm Port API refers to the Java Communications Port API (COM/API) or optionally some other Java
communications API that supports hardware device connectivity.

JavaPOS Development Environment

JavaPOS will use these packages:

• JavaPOS Configuration / Loader (JCL) Added in Release 1.5
The jpos.config/loader (JCL) is a simple binding (configuration and loading) API which enables a JavaPOS
control to bind to the correct JavaPOS service in a manner independent of the actual configuration mechanism.
For POS applications, it represents a somewhat minimum (however, extensible) functional equivalent of the
“NT Registry,” JposEntryRegistry. 
All JavaPOS Device Controls should use this API.

• Communications Port API (for example, JavaComm v2.0 API), so that Applications can make standard
access to devices that may use serial (RS-232), parallel, USB, and other future communication methods.

POS
Application

JavaPOS Device
Control

JavaPOS Device
Service

Serial
Driver

Parallel
Driver

USB Proprietary

Service
Loader

System
 Database

JDK 1.2 Comm Port API

Physical (or Logical)
Device

JDK

JavaPOS
Device
Service

Interface

JavaPOS
Device

Interface

Java
Device

Interface

JavaPOS
Device
Unified POS, v1.16.1 1613

B.9 Device Behavior Models

B.10 Introduction to Properties, Methods, and Events

An application accesses a JavaPOS Device via the JavaPOS APIs.

The three elements of JavaPOS APIs are:

• Properties. Properties are device characteristics or settings. A type is associated with each property, such as
boolean or String. An application may retrieve a property’s value, and it may set a writable property’s value.
JavaPOS properties conform to the JavaBean property design pattern.


To read a property value, use the method:

Type getSampleProperty() throws JposException;

where Type is the data type of the property and SampleProperty is the property name.

To write a property value (assuming that the property is writable), use the method:

void setSampleProperty(Type value) throws JposException;

where Type is the data type of the property and SampleProperty is the property name.

• Methods. An application calls a method to perform or initiate some activity at a device. Some methods require
parameters of specified types for sending and/or returning additional information.


A JavaPOS method has the form:

void sampleMethod(parameters) throws JposException;

where sampleMethod is the method name and parameters is a list of zero or more parameters.

Since JavaPOS uses Method names that are consistent with OPOS some Methods may appear to be Property
getters/setters (for example, setDate page 15-140 in Fiscal Printer). BeanInfo classes are used to properly
describe the Properties and Methods to provide clarification so that various vendors builder tools will properly
function.

• Events. A JavaPOS Device may call back into the application via events. The application must specifically
register for each event type that it needs to receive. JavaPOS events conform to the JavaBean event design
pattern.


See “Events” in this Annex for further details.
1614 Unified POS, v1.16.1

B.11 Device Initialization and Finalization

B.11.1 Initialization

The first actions that an application must take to use a JavaPOS Device are:

• Obtain a reference to a JavaPOS Device Control, either by creating a new instance or by accessing an existing
one.

• Call Control methods to register for the events that the application needs to receive. (See “Events” in this
Annex)

To initiate activity with the Physical Device, an application calls the Control’s open method:
void open(String logicalDeviceName) throws JposException;

The logicalDeviceName parameter specifies a logical device to associate with the JavaPOS Device. The open
method performs the following steps:

1. Creates and initializes an instance of the proper Device Service class for the specified name.

2. Initializes many of the properties, including the descriptions and version numbers of the JavaPOS Device.

More than one instance of a Device Control may have a Physical Device open at the same time. Therefore, after
the Device is opened, an application might need to call the claim method to gain exclusive access to it. Claiming
the Device ensures that other Device instances do not interfere with the use of the Device. An application can
release the Device to share it with another Device Control instance– for example, at the end of a transaction.

Before using the Device, an application must set the DeviceEnabled property to true. This value brings the
Physical Device to an operational state, while false disables it. For example, if a Scanner JavaPOS Device is
disabled, the Physical Device will be put into its non-operational state (when possible). Whether physically
operational or not, any input is discarded until the JavaPOS Device is enabled.

B.11.2 Finalization

After an application finishes using the Physical Device, it should call the close method. If the DeviceEnabled
property is true, close disables the Device. If the Claimed property is true, close releases the claim.

Before exiting, an application should close all open JavaPOS Devices to free device resources in a timely
manner, rather than relying on the Java garbage collection mechanism to free resources at some indeterminate
time in the future.
Unified POS, v1.16.1 1615

B.11.3 Summary

In general, an application follows this general sequence to open, use, and close a Device:

• Obtain a Device Control reference.

• Register for events (add listeners).

• Call the open method to instantiate a Device Service and link it to the Device Control.

• Call the claim method to gain exclusive access to the Physical Device. Required for exclusive-use Devices;
optional for some sharable Devices. (See “Device Sharing Model” on page B-1261 for more information).

• Set the DeviceEnabled property to true to make the Physical Device operational. (For sharable Devices, the
Device may be enabled without first claiming it.)

• Use the device.

• Set the DeviceEnabled property to false to disable the Physical Device.

• Call the release method to release exclusive access to the Physical Device.

• Call the close method to unlink the Device Service from the Device Control.

• Unregister from events (remove listeners).

B.12 Device Sharing Model

JavaPOS Devices fall into two sharing categories:

• Devices that are to be used exclusively by one JavaPOS Device Control instance.

• Devices that may be partially or fully shared by multiple Device Control instances.

Any Physical Device may be open by more than one Device Control instance at a time. However, activities that
an application can perform with a Device Control may be restricted to the Device Control instance that has
claimed access to the Physical Device.

Note: Currently, device exclusivity and sharing can only be guaranteed within an application’s Java Virtual
Machine. This is because the Java language and environment does not directly support inter-virtual machine
communication or synchronization mechanisms. At some time in the future, this restriction may be lifted. Until
then, the sharing model will typically be of little benefit because a single application will seldom find value in
opening a Physical Device through multiple Device Control instances.
1616 Unified POS, v1.16.1

B.12.1 Exclusive-Use Devices

The most common device type is called an exclusive-use device. An example is the POS printer. Due to physical
or operational characteristics, an exclusive-use device can only be used by one Device Control at a time. An
application must call the Device’s claim method to gain exclusive access to the Physical Device before most
methods, properties, or events are legal. Until the Device is claimed and enabled, calling methods or accessing
properties may cause a JposException with an error code of JPOS_E_NOTCLAIMED, JPOS_E_CLAIMED, or
JPOS_E_DISABLED. No events are delivered until the Device is claimed.

An application may in effect share an exclusive-use device by calling the Device Control’s claim method before
a sequence of operations, and then calling the release method when the device is no longer needed. While the
Physical Device is released, another Device Control instance can claim it.

When an application calls the claim method again (assuming it did not perform the sequence of close method
followed by open method on the device), some settable device characteristics are restored to their condition at
the release. Examples of restored characteristics are the line display’s brightness, the MSR’s tracks to read, and
the printer’s characters per line. However, state characteristics are not restored, such as the printer’s sensor
properties. Instead, these are updated to their current values.

B.12.2 Sharable Devices

Some devices are “sharable devices.” An example is the keylock. A sharable device allows multiple Device
Control instances to call its methods and access its properties. Also, it may deliver its events to all Device
Controls that have registered listeners. A sharable device may still limit access to some methods or properties to
the Device Control that has claimed it, or it may deliver some events only to the Device Control that has claimed
it.
Unified POS, v1.16.1 1617

B.13 Data Types Updated in Release 1.11

JavaPOS uses the following data types:

The convention of type[1] (an array of size 1) is used to pass a mutable basic type. This is required since Java’s
primitive types, such as int and boolean, are passed by value, and its primitive wrapper types, such as Integer
and Boolean, do not support modification.

For strings and arrays, do not use a null value to report no information. Instead use an empty string (“”) or an
empty array (zero length).

In some chapters, an integer may contain a “bit-wise mask”. That is, the integer data may be interpreted one or
more bits at a time. The individual bits are numbered beginning with Bit 0 as the least significant bit.

B.14 Exceptions

Every JavaPOS method and property accessor may throw a JposException upon failure, except for the properties
DeviceControlVersion, DeviceControlDescription, and State. No other types of exceptions will be thrown.

Type Usage

boolean Boolean true or false.

boolean[
1]

Mutable boolean.

byte 8-bit integer.

byte[] Immutable array of bytes.

byte[][] Immutable array of binary objects (themselves presented as arrays of
bytes).

byte[1][]
Mutable array of bytes. The [0] element contains the array of bytes that
can be modified, both in size and/or contents.

int 32-bit integer.

int[] 32-bit integer array.

int[1] Mutable 32-bit integer.

int[1][]
Mutable 32-bit integer array. The [0] element contains the array of 32-
bit integers that can be modified, both in size and/or contents.

long
64-bit integer. Sometimes used for currency values, where 4 decimal
places are implied. For example, if the integer is “1234567”, then the
currency value is “123.4567”.

long[1] Mutable 64-bit integer.

String Text character string.

String[1] Mutable text character string.

Point[] Array of points. Used by Signature Capture.

Object
An object. This will usually be subclassed to provide a Device Service-
specific parameter.
1618 Unified POS, v1.16.1

JposException is in the package jpos, and extends java.lang.Exception. The constructor variations are:
public JposException(int errorCode);

public JposException(int errorCode, int errorCodeExtended);

public JposException(int errorCode, String description);

public JposException(int errorCode, int errorCodeExtended, 
String Description);

public JposException(int errorCode, String description, 
Exception origException);

public JposException(int errorCode, int errorCodeExtended,
String description, Exception origException)

The parameters are:

Parameter Description
errorCode The JavaPOS error code. Access is through the getErrorCode method.

errorCodeExtended May contain an extended error code. If not provided by the selected
constructor, then is set to zero. Access is through the
getErrorCodeExtended method.

description A text description of the error. If not provided by the selected constructor,
then one is formed from the errorCode and errorCodeExtended parameters.
Access is through the superclass’ methods getMessage or toString.

origException Original exception. If the JavaPOS Device caught a non-JavaPOS exception,
then an appropriate errorCode is selected and the original exception is
referenced by this parameter. Otherwise, it is set to null. Access is through
the getOrigException method.
Unified POS, v1.16.1 1619

B.14.1 ErrorCode Updated in Release 1.11

This section lists the general meanings of the error code property of an ErrorEvent or a JposException. In
general, the property and method descriptions in later chapters list error codes only when specific details or
information are added to these general meanings.

The error code is set to one of the following values:
Value Meaning 

JPOS_E_CLOSED An attempt was made to access a closed JavaPOS Device.

JPOS_E_CLAIMED An attempt was made to access a Physical Device that is claimed by another
Device Control instance. The other Control must release the Physical Device
before this access may be made. For exclusive-use devices, the application
will also need to claim the Physical Device before the access is legal.

JPOS_E_NOTCLAIMED 
An attempt was made to access an exclusive-use device that must be claimed
before the method or property set action can be used.
If the Physical Device is already claimed by another Device Control
instance, then the status JPOS_E_CLAIMED is returned instead.

JPOS_E_NOSERVICE The Control cannot communicate with the Service, normally because of a
setup or configuration error.

JPOS_E_DISABLED Cannot perform this operation while the Device is disabled.

JPOS_E_ILLEGAL An attempt was made to perform an illegal or unsupported operation with
the Device, or an invalid parameter value was used.

JPOS_E_NOHARDWARE
The Physical Device is not connected to the system or is not powered on.

JPOS_E_OFFLINE The Physical Device is off-line.

JPOS_E_NOEXIST The file name (or other specified value) does not exist.

JPOS_E_EXISTS The file name (or other specified value) already exists.

JPOS_E_FAILURE The Device cannot perform the requested procedure, even though the
Physical Device is connected to the system, powered on, and on-line.

JPOS_E_TIMEOUT The Service timed out waiting for a response from the Physical Device, or
the Control timed out waiting for a response from the Service.

JPOS_E_BUSY The current Device Service state does not allow this request. For example, if
asynchronous output is in progress, certain methods may not be allowed.

JPOS_E_EXTENDED A device category-specific error condition occurred. The error condition
code is available by calling getErrorCodeExtended.

JPOS_E_DEPRECATED
The requested operation can not be performed since it has been deprecated.
See Deprecation Handling in this Annex for additional information.
1620 Unified POS, v1.16.1

B.14.2 ErrorCodeExtended

The extended error code is set as follows:

• When errorCode is JPOS_E_EXTENDED, errorCodeExtended is set to a device category-specific value, and
must match one of the values given in this document under the appropriate device category chapter.

• When errorCode is any other value, errorCodeExtended may be set by the Service to any Device Service-
specific value. These values are only meaningful if an application adds Service-specific code to handle them.

B.15 Events Updated in Release 1.12

Java for Retail POS uses events to inform the application of various activities or changes with the JavaPOS
Device. The five event types follow.

Each of these events contains the following properties:
Property Type Description
Source Object Reference to the Device Control delivering the event. If the application

defines a class that listens for events from more than one Device, then it uses
this property to determine the Device instance that delivered the event.

SequenceNumber long JavaPOS event sequence number. This number is a sequence number that is
global across all JavaPOS Devices. Each JavaPOS event increments the
global sequence number, then places its value in this property.

When long An event timestamp; value is set to System.currentTimeMillis().

Event Class Description
Supported When A

Device Category
Supports...

DataEvent Input data has been placed into device
class-category properties.

Event-driven input

ErrorEvent An error has occurred during event-
driven input or asynchronous output.

Event-driven input
-or-

Asynchronous output

OutputCompleteEvent An asynchronous output has
successfully completed.

Asynchronous output

StatusUpdateEvent

A change in the Physical Device’s
status has occurred.
Release 1.3 and later: All
devices may be able to report device
power state. See “Device Power
Reporting Model” on page B-1274.

Status change notification

DirectIOEvent
This event may be defined by a
Device Service provider for purposes
not covered by the specification.

Always, for Service-
specific use
Unified POS, v1.16.1 1621

Chapter 2, “Events (UML interfaces)” provides details about each of these events, including additional
properties.

The Device Service must enqueue these events on an internally created and managed queue. All
JavaPOS events are delivered in a first-in, first-out manner. (The only exception is that a special input
error event is delivered early if some data events are also enqueued. See “Device Input Model” in this
Annex.) Events are delivered by an internally created and managed Device Service thread. The Device
Service causes event delivery by calling an event firing callback method in the Device Control, which
then calls each registered listener's event method in the order in which they were added.

The following conditions cause event delivery to be delayed until the condition is corrected:

• The application has set the property FreezeEvents to true.

• The event type is a DataEvent or an input ErrorEvent, but the property
DataEventEnabled is false. (See “Device Input Model” in this Annex.)

Unless specified otherwise, properties that convey device state information (e.g., JrnEmpty and
DrawerOpened) are kept current while the device is enabled, regardless of the setting of the
FreezeEvents property.

Rules for event queue management are:

• The JavaPOS Device may only enqueue new events while the Device is enabled.

• The Device delivers enqueued events until the application calls the release method (for
exclusive-use devices) or the close method (for any device), at which time any remaining
events are deleted.

• For input devices, the clearInput method clears data and input error events.

• For output devices, the clearOutput method clears output error events.

• The application returns from the JPOS_EL_INPUT_DATA ErrorEvent with
ErrorResponse set to JPOS_ER_CLEAR.

B.15.1 Registering for Events

JavaPOS events use the event delegation model first outlined in JDK 1.1. With this model, an application
registers for events by calling a method supplied by the event source, which is the Device Control. The method
is supplied a reference to an application class that implements a listener interface extended from
java.util.EventListener.

The following table specifies the event interfaces and methods for each event class:

Event Class

Listener Interface and
Methods

Implemented in an
application class

Source Methods

Implemented in the Device Control

DataEvent
DataListener
dataOccurred (DataEvent e)

addDataListener (DataListener l)
removeDataListener (DataListener l)
1622 Unified POS, v1.16.1

Although more than one listener may be registered for an event type, the typical case is for only one listener, or
at least only one primary listener. This listener takes actions such as processing data events and direct I/O events,
and responding to error events.

B.15.2 Event Delivery

A Device delivers an event by calling the listener method of each registered listener. The listener processes the
event, then returns to the Device Control.

An application must not assume that events are delivered in the context of any particular thread. The JavaPOS
Device delivers events on a privately created and managed thread. It is an application’s responsibility to
synchronize event processing with its threads as needed.

While an application is processing an event within its listener method, no additional events will be delivered by
the Device.

While within a listener method, an application may access properties and call methods of the Device. However,
an application must not call the release or close methods from an event method, because the release method may
shut down event handling (possibly including a thread on which the event was delivered) and close must shut
down event handling before returning.

ErrorEvent
ErrorListener
errorOccurred (ErrorEvent e)

addErrorListener (ErrorListener l)
removeErrorListener (ErrorListener l)

StatusUpdateEvent
StatusUpdateListener
statusUpdateOccurred
(StatusUpdateEvent e)

addStatusUpdateListener
(StatusUpdateListener l)
removeStatusUpdateListener
(StatusUpdateListener l)

OutputCompleteEvent
OutputCompleteListener
outputCompleteOccurred
(OutputCompleteEvent e)

addOutputCompleteListener
(OutputCompleteListener l)
removeOutputCompleteListener
(OutputCompleteListener l)

DirectIOEvent
DirectIOListener
directIOOccurred
(DirectIOEvent e)

addDirectIOListener (DirectIOListener l)
removeDirectIOListener (DirectIOListener
l)
Unified POS, v1.16.1 1623

B.16 JavaPOS Event Registration Sequence Diagram
 Added in Release 1.7

The following sequence diagram shows how applications register for events with JavaPOS Controls, via classes
implementing the JavaPOS event listener interface.

The delivery of events from a JavaPOS Service is almost always performed asynchronously to calls by clients;
that is, once the clients have registered their <JposEvent>Listener objects with the Control, these listener
objects will be called back – appropriate <jposEvent>Occurred() method – in a separate thread than the
application thread. The event thread is usually a service thread that operates on an event queue, delivering all
posted events from the queue to the Controls depending on whether the FreezeEvents property is true.

NOTE: this diagram shows the typical event registration process for a device service in JavaPOS. Various details are omitted on
purpose to make the diagram clearer. Also, DevCat == POSPrinter, CashDrawer, Keylock ... and other UnifiedPOS device categories.

:ClientApp :<JposEvent>
Listener

:<DevCat> :<DevCat>Service:<JposEvent>

<JposEvent>Listener is a generic moniker for a class
implementing one of the jpos.events.<JposEvent>Listener
interfaces. This can be the application class or some
inner class or other class.

1: new

2: add<JposEvent>Listener(:<JposEventListener)

3: maintains a list of registered listeners

4: open(logicalName)
5: open(logicalName)

We are assuming that
the open() call is
successful and that the
control is bound with its
service

6: setDeviceEnabled(true) 7: setDeviceEnabled(true)

Some devices (exclusive-use) need to be
claimed before being enabled (this is not
shown here)

8: some hardware event occurred causing a JposEvent

9: new

10: deliver :<JposEvent> to control [FreezeEvents == false]11: deliver events to all listeners

12: appropriate listener method is called

At this point some
application code executes
in the listener class or by
having the listener object
call some other method
on some application
object [the details are
implied and not shown]

17: remove<JposEvent>Listener(:<JposEventListener>)

18: update list

No more events will be delivered to the
listener object

For DataEvent you also need the
DataEventEnabled property to be true. It will
be set to false once the event is delivered.

13: setDeviceEnabled(false)
14: setDeviceEnabled(false)

15: close() 16: close()
1624 Unified POS, v1.16.1

B.17 Device Input Model

The standard JavaPOS input model for exclusive-use devices is event-driven input. Event-driven input allows
input data to be received after DeviceEnabled is set to true. Received data is enqueued as a DataEvent, which
is delivered to an application as detailed in the “Events” section in this Annex. If the AutoDisable property is
true when data is received, then the JavaPOS Device will automatically disable itself, setting DeviceEnabled to
false. This will inhibit the Device from enqueuing further input and, when possible, physically disable the device.

When the application is ready to receive input from the JavaPOS Device, it sets the DataEventEnabled property
to true. Then, when input is received (usually as a result of a hardware interrupt), the Device delivers a
DataEvent. (If input has already been enqueued, the DataEvent will be delivered immediately after
DataEventEnabled is set to true.) The DataEvent may include input status information through its Status
property. The Device places the input data plus other information as needed into device category-specific
properties just before the event is delivered.

Just before delivering this event, the JavaPOS Device disables further data events by setting the
DataEventEnabled property to false. This causes subsequent input data to be enqueued by the Device while an
application processes the current input and associated properties. When an application has finished the current
input and is ready for more data, it enables data events by setting DataEventEnabled to true.

Error Handling Updated in Release 1.12

If the JavaPOS Device encounters an error while gathering or processing event-driven input, then the Device:

• Changes its state to JPOS_S_ERROR.

• Enqueues an ErrorEvent with locus JPOS_EL_INPUT to alert an application of the error condition. This
event is added to the end of the queue

• If one or more DataEvents are already enqueued for delivery, an additional ErrorEvent with locus
JPOS_EL_INPUT_DATA is enqueued before the DataEvents, as a pre-alert.

This event (or events) is not delivered until the DataEventEnabled property is true, so that orderly application
sequencing occurs.

Unlike a DataEvent, the Device does not disable further DataEvents or input ErrorEvents; it leaves the
DataEventEnabled property value at true. Note that the application may set DataEventEnabled to false within
its event handler if subsequent input events need to be disabled for a period of time.
Unified POS, v1.16.1 1625

The application’s event listener method can set the ErrorResponse property to one of the following:

The Device exits the Error state when one of the following occurs:

• The application returns from the JPOS_EL_INPUT ErrorEvent.

• The application returns from the JPOS_EL_INPUT_DATA ErrorEvent.

• The application calls the clearInput method.

ErrorLocus Description

JPOS_EL_INPUT_DATA

Only delivered if the error occurred when one or more DataEvents are
already enqueued.
This event gives the application the ability to immediately clear the input,
or to optionally alert the user to the error before processing the buffered
input. This error event is enqueued before the oldest DataEvent, so that an
application is alerted of the error condition quickly.
This locus was created especially for the Scanner: When this error event is
received from a Scanner JavaPOS Device, the operator can be immediately
alerted to the error so that no further items are scanned until the error is
resolved. Then, the application can process any backlog of previously
scanned items before error recovery is performed.

JPOS_EL_INPUT

Delivered when an error has occurred and there is no data available.
If some input data was buffered when the error occurred, then an
ErrorEvent with the locus JPOS_EL_INPUT_DATA was delivered first,
and then this error event is delivered after all DataEvents have been
delivered.
Note: This JPOS_EL_INPUT event is not delivered if: an
JPOS_EL_INPUT_DATA event was delivered and the application event
handler responded with a JPOS_ER_CLEAR.

ErrorResponse Description

JPOS_ER_CLEAR
Clear the buffered DataEvents and ErrorEvents and exit the error
state, changing State to JPOS_S_IDLE.
This is the default response for locus JPOS_EL_INPUT.

JPOS_ER_CONTINUEINPUT

This response acknowledges the error and directs the Device to
continue processing. The Device remains in the error state, and will
deliver additional data events as directed by the
DataEventEnabled property. When all input has been delivered
and the DataEventEnabled property is again set to true, another
ErrorEvent is delivered with locus JPOS_EL_INPUT.
This is the default response when the locus is
JPOS_EL_INPUT_DATA, and is legal only with this locus.

JPOS_ER_RETRY

This response directs the Device to retry the input. The error state
is exited, and State is changed to JPOS_S_IDLE.
This response may only be selected when the device chapter
specifically allows it and when the locus is JPOS_EL_INPUT. An
example is the scale.
1626 Unified POS, v1.16.1

Miscellaneous

For some Devices, the Application must call a method to begin event driven input. After the input is received by
the Device, then typically no additional input will be received until the method is called again to re-initiate input.
Examples are the MICR and Signature Capture devices. This variation of event driven input is sometimes called
“asynchronous input.”

The DataCount property contains the number of DataEvents enqueued by the JavaPOS Device.

Calling the clearInput method deletes all input enqueued by a JavaPOS Device. clearInput may be called after
open for sharable devices and after claim for exclusive-use devices.

Calling the clearInputProperties method sets all data properties, that were populated as a result of firing a
DataEvent or ErrorEvent, back to their default values. This call does not reset the DataCount or State
properties.

The general event-driven input model does not specifically rule out the definition of device categories containing
methods or properties that return input data directly. Some device categories define such methods and properties
in order to operate in a more intuitive or flexible manner. An example is the Keylock Device. This type of input
is sometimes called “synchronous input.”
Unified POS, v1.16.1 1627

B.18 Device Output Models

The Java for Retail POS output model consists of two output types: synchronous and asynchronous. A device
category may support one or both types, or neither type.

B.18.1 Synchronous Output

The application calls a category-specific method to perform output. The JavaPOS Device does not return until
the output is completed.

This type of output is preferred when device output can be performed relatively quickly. Its merit is simplicity.

B.18.2 Asynchronous Output Updated in Release 1.12

The application calls a category-specific method to start the output. The JavaPOS Device validates the method
parameters and throws an exception immediately if necessary. If the validation is successful, the JavaPOS Device
does the following:

1. Buffers the request in program memory, for delivery to the Physical Device as soon as the Physical Device
can receive and process it.

2. Sets the OutputID property to an identifier for this request.

3. Returns as soon as possible.

When the JavaPOS Device successfully completes a request, an OutputCompleteEvent is enqueued for delivery
to the application. A property of this event contains the output ID of the completed request. If the request is
terminated before completion, due to reasons such as the application calling the clearOutput method or
responding to an ErrorEvent with a JPOS_ER_CLEAR response, then no OutputCompleteEvent is delivered.

If an error occurs while processing a request, an ErrorEvent is enqueued which will be delivered to the
application after the events already enqueued, including OutputCompleteEvents (according to the normal Event
delivery rules in this Annex). No further asynchronous output will occur until the event has been delivered to the
application. If the response is JPOS_ER_CLEAR, then outstanding asynchronous output is cleared. If the
response is JPOS_ER_RETRY, then output is retried; note that if several outputs were simultaneously in progress
at the time that the error was detected, then the Service may need to retry all of these outputs.

This type of output is preferred when device output requires slow hardware interactions. Its merit is perceived
responsiveness, since the application can perform other work while the device is performing the output.

Note: Asynchronous output is always performed on a first-in first-out basis.
1628 Unified POS, v1.16.1

Error Handling

If an error occurs while performing an asynchronous request, the error state JPOS_S_ERROR is entered and an
ErrorEvent is enqueued with the ErrorLocus property set to JPOS_EL_OUTPUT. The application is
guaranteed that the request in error is the one following the request whose output ID was most recently reported
by an OutputCompleteEvent. An application’s event listener method can set the ErrorResponse property to
one of the following:

Miscellaneous Updated in Release 1.7

Calling the clearOutput method deletes all buffered output data, including all asynchronous output, buffered by
the JavaPOS Device. This method also stops any output that may be in progress (when possible).

Note: Currently, only the POS printer uses the complete Asynchronous Output model described here. Other
device categories use portions of the model.

ErrorResponse Description

JPOS_ER_CLEAR Clear the outstanding output and exit the error state (to
JPOS_S_IDLE).

JPOS_ER_RETRY

Exit the error state (to JPOS_S_BUSY) and retry the outstanding
output. If the condition that caused the error was not corrected, then
the Device may immediately reenter the error state and enqueue
another ErrorEvent.
This is the default response.
Unified POS, v1.16.1 1629

B.19 Device Power Reporting Model
 Added in JavaPOS Release 1.3, Updated in Release 1.8.

Applications frequently need to know the power state of the devices they use. Earlier Releases of JavaPOS had
no consistent method for reporting this information. Note: This model is not intended to report Workstation or
POS Terminal power conditions (such as “on battery” and “battery low”). Reporting of these conditions is now
managed by the POSPower device category, see Chapter 30.

B.19.1 Model

JavaPOS segments device power into three states:

• ONLINE. The device is powered on and ready for use. This is the “operational” state.

• OFF. The device is powered off or detached from the terminal. This is a “non-operational” state.

• OFFLINE. The device is powered on but is either not ready or not able to respond to requests. It may need to
be placed online by pressing a button, or it may not be responding to terminal requests. This is a “non-
operational” state.

In addition, one combination state is defined:

• OFF_OFFLINE. The device is either off or offline, and the Device Service cannot distinguish these states.

Power reporting only occurs while the device is open, claimed (if the device is exclusive-use), and enabled.

Note - Enabled/Disabled vs. Power States

These states are different and usually independent. JavaPOS defines “disabled” /
“enabled” as a logical state, whereas the power state is a physical state. A device may
be logically “enabled” but physically “offline”. It may also be logically “disabled” but
physically “online”. Regardless of the physical power state, JavaPOS only reports the
state while the device is enabled. (This restriction is necessary because a Device Service
typically can only communicate with the device while enabled.)
If a device is “offline”, then a Device Service may choose to fail an attempt to “enable”
the device. However, once enabled, the Device Service may not disable a device based
on its power state.
1630 Unified POS, v1.16.1

B.19.2 Properties

The JavaPOS device power reporting model adds the following common elements across all device classes:

• CapPowerReporting property. Identifies the reporting capabilities of the device. This property may be one of:

•JPOS_PR_NONE. The Device Service cannot determine the state of the device. Therefore, no power
reporting is possible.

•JPOS_PR_STANDARD. The Device Service can determine and report two of the power states -
OFF_OFFLINE (that is, off or offline) and ONLINE.

•JPOS_PR_ADVANCED. The Device Service can determine and report all three power states -
ONLINE, OFFLINE, and OFF.

• PowerState property. Maintained by the Device Service at the current power condition, if it can be
determined. This property may be one of:

•JPOS_PS_UNKNOWN

•JPOS_PS_ONLINE

•JPOS_PS_OFF

•JPOS_PS_OFFLINE

•JPOS_PS_OFF_OFFLINE

• PowerNotify property. The application may set this property to enable power reporting via
StatusUpdateEvents and the PowerState property. This property may only be set before the device is enabled
(that is, before DeviceEnabled is set to true). This restriction allows simpler implementation of power
notification with no adverse effects on the application. The application is either prepared to receive
notifications or doesn't want them, and has no need to switch between these cases. This property may be one
of:

•JPOS_PN_DISABLED

•JPOS_PN_ENABLED
Unified POS, v1.16.1 1631

B.19.3 Power Reporting Requirements for DeviceEnabled

The following semantics are added to DeviceEnabled when CapPowerReporting is not JPOS_PR_NONE, and
PowerNotify is JPOS_PN_ENABLED:

• When the Control changes from DeviceEnabled false to true, then begin monitoring the power state:

• If the Physical Device is ONLINE, then:

 PowerState is set to JPOS_PS_ONLINE.

 A StatusUpdateEvent is enqueued with its Status property set to JPOS_SUE_POWER_ONLINE.

• If the Physical Device’s power state is OFF, OFFLINE, or OFF_OFFLINE, then the
Device Service may choose to fail the enable by throwing a JposException with error code
JPOS_E_NOHARDWARE or JPOS_E_OFFLINE.

However, if there are no other conditions that cause the enable to fail, and the Device
Service chooses to return success for the enable, then:

 PowerState is set to JPOS_PS_OFF, JPOS_PS_OFFLINE, or JPOS_PS_OFF_OFFLINE.

 A StatusUpdateEvent is enqueued with its Status property set to JPOS_SUE_POWER_OFF,
JPOS_SUE_POWER_OFFLINE, or JPOS_SUE_POWER_OFF_OFFLINE.

• When the Device changes from DeviceEnabled true to false, JavaPOS assumes that the
Device is no longer monitoring the power state and sets the value of PowerState to
JPOS_PS_UNKNOWN.
1632 Unified POS, v1.16.1

B.20 Device Information Reporting Model Added in Release 1.8.

POS Applications, as well as System Management agents, frequently need to monitor the current configuration
and usage metrics of the various POS devices that are attached to the POS terminal.

Examples of configuration data are the device’s Serial Number, Firmware Version, and Connection Type.
Examples of usage data for the POSPrinter device are the Number of Lines Printed, Number of Hours Running,
Number of paper cuts, etc. Examples of usage data for the Scanner device are the Number of scans, Number of
Hours Running, etc. Examples of usage data for the MSR device are the Number of successful swipes, Number of
swipes resulting in errors, Number of Hours Running, etc. See Chapter 1 for examples of XML definitions of the
device statistics accumulated per POS device category.

In some cases, the data may be accumulated and stored within the device itself. In other cases, the data may be
accumulated by the Service and stored, possibly on the POS terminal or store controller.

In order for multiple applications (for example a POS application and a System Management application) to
obtain statistics from the same device, proper care must be taken by both applications so that the device can be
made accessible when required. This is done by using the claim and setDeviceEnabled(true) methods when
access to a device is required and using the setDeviceEnabled(false) and release methods when access to the
device is no longer needed. Coordination of device access via this mechanism is the responsibility of the
applications themselves.

B.20.1 Statistics Reporting Properties and Methods

The UnifiedPOS device information reporting model adds the following common properties and methods across
all device classes.

• CapStatisticsReporting property. Identifies the reporting capabilities of the device. When
CapStatisticsReporting is false, then no statistical data regarding the device is available. This is equivalent to
Services compatible with prior versions of the specification. When CapStatisticsReporting is true, then
statistical data for the device is available.

• CapUpdateStatistics property. Defines whether gathered statistics (or some of them) can be reset/updated by
the application. This property is only valid if CapStatisticsReporting is true. When CapUpdateStatistics is
false, then none of the statistical data can be reset/updated by the application. Otherwise, when
CapUpdateStatistics is true, then (some of) the statistical data can be reset/updated by the application.

• resetStatistics method. Can only be called if both CapStatisticsReporting and CapUpdateStatistics are true.
This method resets one, some, or all of the resettable device statistics to zero.

• retrieveStatistics method. Can only be called if CapStatisticsReporting is true. This method retrieves one,
some, or all of the accumulated statistics for the device.

• updateStatistics method. Can only be called if both CapStatisticsReporting and CapUpdateStatistics are
true. This method updates one, some, or all of the resettable device statistics to the supplied values.
Unified POS, v1.16.1 1633

B.21 Update Firmware Device Model Added in Release 1.9

POS Applications frequently require the ability to update the firmware in the various POS devices that are
attached to the POS terminal. This model defines a consistent application interface for updating the firmware in
a device controlled by a UnifiedPOS control.

This model has the following capabilities:

• A property, CapUpdateFirmware, that indicates whether a device supports firmware updating.

• A property, CapCompareFirmwareVersion, that indicates whether a firmware file’s version can be
compared against the firmware version of the device.

• A method, UpdateFirmware, to perform an asynchronous update of the firmware in a device.

• A method, CompareFirmwareVersion, to compare the firmware file’s version against the firmware version
of the device.

• Additional StatusUpdateEvent Status values to report the progress of an asynchronous update firmware
process.

The update firmware process is an asynchronous operation that reports its progress via StatusUpdateEvents.
This update firmware process applies to all device categories defined in UnifiedPOS.

The means by which a Service actually updates the firmware in the device is not covered by this document, only
the means by which the update firmware process is started and progress is reported.

B.22 Device States

JavaPOS defines a property State with the following values:
JPOS_S_CLOSED
JPOS_S_IDLE
JPOS_S_BUSY
JPOS_S_ERROR

The State property is set as follows:

• State is initially JPOS_S_CLOSED.

• State is changed to JPOS_S_IDLE when the open method is successfully called.

• State is set to JPOS_S_BUSY when the Device Service is processing output. The State is restored to
JPOS_S_IDLE when the output has completed.

• The State is changed to JPOS_S_ERROR when an asynchronous output encounters an error condition, or
when an error is encountered during the gathering or processing of event-driven input.

After the Device Service changes the State property to JPOS_S_ERROR, it enqueues an ErrorEvent. The
properties of this event are the error code and extended error code, the locus of the error, and a mutable
response to the error. See Input Model Error Handling and Output Model Error Handling in this Annex for
further details.
1634 Unified POS, v1.16.1

B.23 Threads

The Java language directly supports threads, and an application may create additional threads to perform
different jobs. The use of threads can add complexity, however, often requiring synchronization to arbitrate
sharing of resources. For applications that share a control instance among multiple threads, actions of one thread
may have undesirable effects on the other thread(s). For example, cancelled I/O (e.g., clearOutput) can result in
any pending synchronous requests of other threads being completed with a JPOS exception with an error code of
JPOS_E_FAILURE. These situations can be avoided by insuring a control instance is managed by a single
thread.

An application must be aware of multiple threads in the following cases:

• Properties and Methods. Calling some JavaPOS methods or setting some properties can cause other property
values to be changed. When an application needs to access these properties, it must either access the properties
and methods from only one thread, or ensure that its threads synchronize these sequences as required.

• Events. An application must not assume that events are delivered in the context of any particular thread. The
JavaPOS Device typically will deliver events on a privately created and managed thread. It is an application’s
responsibility to synchronize event processing with its threads if necessary.

B.24 Version Handling

As JavaPOS evolves, additional releases will introduce enhanced versions of some Devices. JavaPOS imposes
the following requirements on Device Control and Service versions:

• Device Control requirements. A Device Control for a device category must operate with any Device Service
for that category, as long as its major version number matches the Service's major version number. If they
match, but the Control's minor version number is greater than the Service’s minor version number, the Control
may support some new methods or properties that are not supported by the Service’s release. If an application
calls one of these methods or accesses one of these properties, a JposException with error code
JPOS_E_NOSERVICE will be thrown.

• Device Service requirements. A Device Service for a device category must operate with any Device Control
for that category, as long as its major version number matches the Control's major version number. If they
match, but the Service's minor version number is greater than the Control's minor version number, then the
Service may support some methods or properties that cannot be accessed from the Control.

When an application wishes to take advantage of the enhancements of a version, it must first determine that the
Device Control and Device Service are at the proper major version and at or greater than the proper minor
version. The versions are reported by the properties DeviceControlVersion and DeviceServiceVersion.
Unified POS, v1.16.1 1635

B.25 Classes and Interfaces

B.26 Synopsis

This section lists the JavaPOS classes and interfaces used by applications, Device Controls and Device Services.
Further details about their usage appear later in this document.

In the tables that follow, the following substitutions should be made for italic type:

The classes and interfaces defined or used by JavaPOS are summarized in the following tables, organized by the
software entity that implements them.

B.26.1 Application

Substitution
Name

Description

Event
Replace with one of the five event types:
Data, Error, OutputComplete, StatusUpdate, DirectIO

event Replace with one of the five event types:
data, error, outputComplete, statusUpdate, directIO

Devcat

Replace with one of the device categories:
BumpBar, CashChanger, CashDrawer, CAT, CoinDispenser, FiscalPrinter,
HardTotals, Keylock, LineDisplay, MICR, MSR, PINPad, PointCardRW,
POSKeyboard, POSPower, POSPrinter, RemoteOrderDisplay, Scale, Scanner,
SignatureCapture, ToneIndicator

Rr
Replace with the JavaPOS release number. For example, Release 1.2 is shown as 12.
When an interface or class uses a release number, interfaces for later releases at the
same major version number extend the previous release's interface or class.

Pp Replace with the JavaPOS release number prior to Rr. For example, if Rr is 13, then
Pp is 12.

Class or
Interface

Name Description Extends / Implements

Interface
jpos.EventListener
(Ex: DataListener)

Application defines and registers a
class that implements this interface.
Events are delivered by calling the
eventOccurred (ex: dataOccurred)
method of this interface with an
EventEvent (ex: DataEvent)
instance.

Extends:
java.util.EventListener
1636 Unified POS, v1.16.1

B.26.2 Device Control

B.26.3 Device Service

Class or
Interface

Name Description Extends / Implements

Class
jpos.Devcat
(ex: Scanner,
POSPrinter)

Device Control Class.
One fixed name per device
category.

Implements:
jpos.DevcatControlRr
(ex: ScannerControl12,
POSPrinterControl13)
Implements (as an Inner
Class): jpos.services.
EventCallbacks

Interface
jpos.DevcatControlRr

(ex: ScannerControl12,
POSPrinterControl13)

Contains the methods and
properties specific to Device
Controls for this device category
and release.

Extends either:
jpos.BaseControl
(for first release) or
jpos.DevcatControlPp
(for later releases) (ex:
POSPrinterControl13)

Interface jpos.BaseControl
Contains the methods and
properties common to all Device
Controls.

--

Interface jpos.services.
EventCallbacks

Includes one callback method per
event type. The Device Service
calls these methods to cause
events to be delivered to the
application.

--

Class or
Interface

Name Description Extends / Implements

Class Vendor-defined name Device Service Class.

Implements:
jpos.services.
DevcatServiceRr
(ex: ScannerService12,
POSPrinterService13)

Interface

jpos.services.
DevcatServiceRr
(ex: ScannerService12,
POSPrinterService13)

Contains the methods and
properties specific to Device
Services for this device category
and release.

Extends either:
jpos.services.
BaseService
(for first release) or
jpos.services.
DevcatServicePp
(for later releases) (ex:
POSPrinterService13)

Interface jpos.services.
BaseService

Contains the methods and
properties common to all Device
Services.

--
Unified POS, v1.16.1 1637

B.26.4 Helper Classes

Class or
Interface

Name Description Extends / Implements

Interface jpos.JposConst
Interface containing the JavaPOS
constants that are common to
several device categories.

--

Interface
jpos.DevcatConst
(ex: ScannerConst,
POSPrinterConst)

Interface containing the JavaPOS
constants specific to a device
category.

--

Class jpos.JposEvent
Abstract class from which all
JavaPOS event classes are
extended.

Extends:
java.util.EventObject

Class
jpos.EventEvent
(ex: DataEvent)

The Device Service creates Event
event instances of this class and
delivers them through the Device
Control’s event callbacks to the
application.

Extends:
jpos.JposEvent

Class jpos.JposException

Exception class. The Device
Control and Device Service create
and throw exceptions on method
and property access failures.

Extends:
java.lang.Exception
1638 Unified POS, v1.16.1

B.27 Sample Class and Interface Hierarchies

The following example class hierarchies are given for the scanner Release 1.2 (the initial Release) and for the
printer (Release 1.3). Assume that neither Device Service generates any DirectIO events in which the application
is interested.

B.27.1 Application Sample

“MyApplication” class hierarchy:

• DataListener. Implement to receive Scanner data events.

• ErrorListener. Implement to receive Scanner and POSPrinter error events.

• OutputCompleteListener. Implement to receive POSPrinter output complete events.

• StatusUpdateListener. Implement to receive POSPrinter status update events.

(Frequently, an application will define additional classes that implement one or more of the listener interfaces.)

The “MyApplication” Application class also uses the following:

• Scanner and POSPrinter. Instances of the Device Controls.

• JposConst, ScannerConst, and POSPrinterConst. Use constants, either by fully qualified package names or
by adding to the “implements” clause of an application class.

• DataEvent. Instance of this class received by the DataListener's method dataOccurred.

• ErrorEvent. Instance of this class received by the ErrorListener's method errorOccurred.

• OutputCompleteEvent. Instance of this class received by the OutputCompleteListener's method
outputCompleteOccurred.

• StatusUpdateEvent. Instance of this class received by the StatusUpdateListener's method
statusUpdateOccurred.

• JposException. Instance of this class is caught when a Scanner or POSPrinter method or property access fails.
Unified POS, v1.16.1 1639

B.27.2 Device Control Sample

Scanner

Scanner class hierarchy:

• ScannerControl12. Implement scanner’s methods and properties.

• EventCallbacks. Derive an inner class to pass to Service so that it may generate events.

The Scanner Control class also uses the following:

• JposConst and ScannerConst. Use constants, either by fully qualified package names or
by adding to the “implements” clause of the Device Control.

• JposException. Instance of this class is thrown when a method or property access fails.

POSPrinter

POSPrinter class hierarchy:

• POSPrinterControl13. Implement printer’s methods and properties and extends
POSPrinterControl12.

• EventCallbacks. Derive an inner class to pass to Service so that it may generate events.

The POSPrinter Control class also uses the following:

• JposConst and POSPrinterConst. Use constants, either by fully qualified package names
or by adding to the “implements” clause of the Device Control.

• JposException. Instance of this class is thrown when a method or property access fails.
1640 Unified POS, v1.16.1

B.27.3 Device Service Sample

“MyScannerService”

“MyScannerService” class hierarchy:

• ScannerService12. Implement scanner’s methods and properties.

The “MyScannerService” Service class also uses the following:

• JposConst and ScannerConst. Use constants, either by fully qualified package names or by
adding to the “implements” clause of the Device Service.

• DataEvent. Instance of this class created as data is received. It is delivered to an application
when the event delivery preconditions are met by calling the fireDataEvent method of the
Control's derived EventCallbacks class.

• ErrorEvent. Instance of this class created when an error is detected while reading scanner data.
It is delivered to an application when the event delivery preconditions are met by calling the
fireErrorEvent method of the Control's derived EventCallbacks class.

• JposException. Instance of this class is thrown when a method or property access fails.

“MyPrinterService”

“MyPrinterService” class hierarchy:

• POSPrinterService13. Implement printer’s methods and properties and extends
POSPrinterService12.

The “MyPrinterService” Service class also uses the following:

• JposConst and POSPrinterConst. Use constants, either by fully qualified package names or
by adding to the “implements” clause of the Device Service.

• ErrorEvent. Instance of this class created when an error is detected while printing
asynchronous data. It is delivered to an application when the event delivery preconditions are
met by calling the fireErrorEvent method of the Control's derived EventCallbacks class.

• OutputCompleteEvent. Instance of this class created when an asynchronous output request
completes. It is delivered to an application when the event delivery preconditions are met by
calling the fireOutputCompleteEvent method of the Control's derived EventCallbacks class.

• StatusUpdateEvent. Instance of this class created when a printer status change is detected. It
is delivered to an application when the event delivery preconditions are met by calling the
fireStatusUpdateEvent method of the Control's derived EventCallbacks class.

• JposException. Instance of this class is thrown when a method or property access fails.
Unified POS, v1.16.1 1641

B.28 Sample Application Code

The following code snippet shows how to use a scanner.
//import ...;
import jpos.*;
import jpos.events.*;

public class MyApplication implements DataListener
{
 // Data listener’s method to process incoming scanner data.
 public void dataOccurred(DataEvent e)
 {
 jpos.Scanner dc = (jpos.Scanner) e.getSource();
 String Msg = “Scanner DataEvent (Status=” + e.getStatus() +
 “) received.”;
 System.out.println (Msg);
 try {
 dc.setDataEventEnabled(true);
 } catch (JposException e){}
 }

 // Method to initialize the scanner.
 public void initScanner(String openName) throws jpos.JposException
 {
 // Create scanner instance and register for data events.
 jpos.Scanner myScanner1 = new jpos.Scanner();
 myScanner1.addDataListener(this);
 // Initialize the scanner. Exception thrown if a method fails.
 myScanner1.open(openName);
 myScanner1.claim(1000);
 myScanner1.setDeviceEnabled(true);
 myScanner1.setDataEventEnabled(true);
 //...Success! Continue doing work...
 }

 //...Other methods, including main...
}

1642 Unified POS, v1.16.1

B.29 Package Structure Updated in Release 1.13

The JavaPOS packages and files are as follows:

Note: The only difference between Release 1.3 and Release 1.4 of JavaPOS is the inclusion of the
CAT device. No other technical changes were made. Therefore the JavaPOS packages and files for
devices covered under Release 1.3 may be used for Release 1.4.

Additional device classifications of Point Card Reader Writer and POSPower were added in Release
1.5.

No new devices were added for Release 1.6, however additional functionality was added to some
devices.

Additional device classifications of Check Scanner and Motion Sensor were added in Release 1.7.

Additional device classification of Smart Card Reader Writer was added in Release 1.8 and additional
functionality was added to all devices.

No new devices were added for Release 1.9, however additional functionality was added to all devices.

Additional device classifications of Biometrics and Electronic Journal were added in Release 1.10
and additional functionality was added to all devices.

Additional device classifications of Bill Acceptor, Bill Dispenser, Coin Acceptor, and Image Scanner
were added in Release 1.11, and additional functionality was added to some devices.

Additional device classifications of Belt, Electronic Value Reader Writer, Gate, ItemDispenser,
Lights, and RFIDScanner were added in Release 1.12, and additional functionality was added to
some devices.

No new devices were added for Release 1.13, however additional functionality was added to some
devices as well as additional verbiage added to the standard for clarification purposes.
Unified POS, v1.16.1 1643

jpos

New Peripheral Device Classes Added in Release 1.3

New Interfaces for existing Device Classes for Release 1.3

New Peripheral Device Class Added in Release 1.4

BaseControl.java
JposConst.java
JposException.java

CashChanger.java MSR.java
CashChangerBeanInfo.java MSRBeanInfo.java
CashChangerConst.java MSRConst.java
CashChangerControl12.java MSRControl12.java

CashDrawer.java POSKeyboard.java
CashDrawerBeanInfo.java POSKeyboardBeanInfo.java
CashDrawerConst.java POSKeyboardConst.java
CashDrawerControl12.java POSKeyboardControl12.java

CoinDispenser.java POSPrinter.java
CoinDispenserBeanInfo.java POSPrinterBeanInfo.java
CoinDispenserConst.java POSPrinterConst.java
CoinDispenserControl12.java POSPrinterControl12.java

HardTotals.java Scale.java
HardTotalsBeanInfo.java ScaleBeanInfo.java
HardTotalsConst.java ScaleConst.java
HardTotalsControl12.java ScaleControl12.java

Keylock.java Scanner.java
KeylockBeanInfo.java ScannerBeanInfo.java
KeylockConst.java ScannerConst.java
KeylockControl12.java ScannerControl12.java

LineDisplay.java SignatureCapture.java
LineDisplayBeanInfo.java SignatureCaptureBeanInfo.java
LineDisplayConst.java SignatureCaptureConst.java
LineDisplayControl12.java SignatureCaptureControl12.java

MICR.java ToneIndicator.java
MICRBeanInfo.java ToneIndicatorBeanInfo.java
MICRConst.java ToneIndicatorConst.java
MICRControl12.java ToneIndicatorControl12.java

BumpBar.java PINPad.java
BumpBarBeanInfo.java PINPadBeanInfo.java
BumpBarConst.java PINPadConst.java
BumpBarControl13.java PINPadControl13.java

FiscalPrinter.java RemoteOrderDisplay.java
FiscalPrinterBeanInfo.java RemoteOrderDisplayBeanInfo.java
FiscalPrinterConst.java RemoteOrderDisplayConst.java
FiscalPrinterControl13.java RemoteOrderDisplayControl13.java

CashChangerControl13.java MSRControl13.java
CashDrawerControl13.java POSKeyboardControl13.java
CoinDispenserControl13.java POSPrinterControl13.java
HardTotalsControl13.java ScaleControl13.java
KeylockControl13.java ScannerControl13.java
LineDisplayControl13.java SignatureCaptureControl13.java
MICRControl13.java ToneIndicatorControl13.java

CAT.java
CATBeanInfo.java
CATConst.java
CATControl14.java
1644 Unified POS, v1.16.1

New Interfaces for existing Device Classes for Release 1.4

 New Peripheral Device Classes Added in Release 1.5

New Interfaces for existing Device Classes for Release 1.5

New Interfaces for existing Device Classes for Release 1.6

New Peripheral Device Classes Added in Release 1.7

New Interfaces for existing Device Classes for Release 1.7

BumpBarControl14.java MSRControl14.java
CashChangerControl14.java PINPadControl14.java
CashDrawerControl14.java POSKeyboardControl14.java
CoinDispenserControl14.java POSPrinterControl14.java
FiscalPrinterControl14.java RemoteOrderDisplayControl14.java
HardTotalsControl14.java ScaleControl14.java
KeylockControl14.java ScannerControl14.java
LineDisplayControl14.java SignatureCaptureControl14.java
MICRControl14.java ToneIndicatorControl14.java

PointCardRW.java POSPower.java
PointCardRWBeanInfo.java POSPowerBeanInfo.java
PointCardRWConst.java POSPowerConst.java
PointCardRWControl15.java POSPowerControl15.java

BumpBarControl15.java MSRControl15.java
CashChangerControl15.java PINPadControl15.java
CashDrawerControl15.java POSKeyboardControl15.java
CATControl15.java POSPrinterControl15.java
CoinDispenserControl15.java RemoteOrderDisplayControl15.java
FiscalPrinterControl15.java ScaleControl15.java
HardTotalsControl15.java ScannerControl15.java
KeylockControl15.java SignatureCaptureControl15.java
LineDisplayControl15.java ToneIndicatorControl15.java
MICRControl15.java

BumpBarControl16.java PINPadControl16.java
CashChangerControl16.java PointCardRWControl16.java
CashDrawerControl16.java POSKeyboardControl16.java
CATControl16.java POSPowerControl16.java
CoinDispenserControl16.java POSPrinterControl16.java
FiscalPrinterControl16.java RemoteOrderDisplayControl16.java
HardTotalsControl16.java ScaleControl16.java
KeylockControl16.java ScannerControl16.java
LineDisplayControl16.java SignatureCaptureControl16.java
MICRControl16.java ToneIndicatorControl16.java
MSRControl16.java

CheckScanner.java MotionSensor.java
CheckScannerBeanInfo.java MotionSensorBeanInfo.java
CheckScannerConst.java MotionSensorConst.java
CheckScannerControl17.java MotionSensorControl17.java

BumpBarControl17.java PINPadControl17.java
CashChangerControl17.java PointCardRWControl17.java
CashDrawerControl17.java POSKeyboardControl17.java
CATControl17.java POSPowerControl17.java
CoinDispenserControl17.java POSPrinterControl17.java
FiscalPrinterControl17.java RemoteOrderDisplayControl17.java
HardTotalsControl17.java ScaleControl17.java
KeylockControl17.java ScannerControl17.java
LineDisplayControl17.java SignatureCaptureControl17.java
MICRControl17.java ToneIndicatorControl17.java
MSRControl17.java
Unified POS, v1.16.1 1645

New Peripheral Device Class Added in Release 1.8

New Interfaces for existing Device Classes for Release 1.8

New Interfaces for existing Device Classes for Release 1.9

New Peripheral Device Classes Added in Release 1.10

New Interfaces for existing Device Classes for Release 1.10

SmartCardRW.java
SmartCardRWBeanInfo.java
SmartCardRWConst.java
SmartCardRWControl18.java

BumpBarControl18.java MSRControl18.java
CashChangerControl18.java PINPadControl18.java
CashDrawerControl18.java PointCardRWControl18.java
CATControl18.java POSKeyboardControl18.java
CheckScannerControl18.java POSPowerControl18.java
CoinDispenserControl18.java POSPrinterControl18.java
FiscalPrinterControl18.java RemoteOrderDisplayControl18.java
HardTotalsControl18.java ScaleControl18.java
KeylockControl18.java ScannerControl18.java
LineDisplayControl18.java SignatureCaptureControl18.java
MICRControl18.java ToneIndicatorControl18.java
MotionSensorControl18.java

BumpBarControl19.java MSRControl19.java
CashChangerControl19.java PINPadControl19.java
CashDrawerControl19.java PointCardRWControl19.java
CATControl19.java POSKeyboardControl19.java
CheckScannerControl19.java POSPowerControl19.java
CoinDispenserControl19.java POSPrinterControl19.java
FiscalPrinterControl19.java RemoteOrderDisplayControl19.java
HardTotalsControl19.java ScaleControl19.java
KeylockControl19.java ScannerControl19.java
LineDisplayControl19.java SignatureCaptureControl19.java
MICRControl19.java SmartCardRWControl19.java
MotionSensorControl19.java ToneIndicatorControl19.java

Biometrics.java ElectronicJournal.java
BiometricsBeanInfo.java ElectronicJournalBeanInfo.java
BiometricsConst.java ElectronicJournalConst.java
BiometricsControl110.java ElectronicJournalControl110.java

BumpBarControl110.java MSRControl110.java
CashChangerControl110.java PINPadControl110.java
CashDrawerControl110.java PointCardRWControl110.java
CATControl110.java POSKeyboardControl110.java
CheckScannerControl110.java POSPowerControl110.java
CoinDispenserControl110.java POSPrinterControl110.java
FiscalPrinterControl110.java RemoteOrderDisplayControl110.java
HardTotalsControl110.java ScaleControl110.java
KeylockControl110.java ScannerControl110.java
LineDisplayControl110.java SignatureCaptureControl110.java
MICRControl110.java SmartCardRWControl110.java
MotionSensorControl110.java ToneIndicatorControl110.java
1646 Unified POS, v1.16.1

New Peripheral Device Classes Added in Release 1.11

New Interfaces for existing Device Classes for Release 1.11

New Peripheral Device Classes Added in Release 1.12

New Interfaces for existing Device Classes for Release 1.12

BillAcceptor.java CoinAcceptor.java
BillAcceptorBeanInfo.java CoinAcceptorBeanInfo.java
BillAcceptorConst.java CoinAcceptorConst.java
BillAcceptorControl111.java CoinAcceptorControl111.java

BillDispenser.java ImageScanner.java
BillDispenserBeanInfo.java ImageScannerBeanInfo.java
BillDispenserConst.java ImageScannerConst.java
BillDispenserControl111.java ImageScannerControl111.java

BiometricsControl111.java MotionSensorControl111.java
BumpBarControl111.java MSRControl111.java
CashChangerControl111.java PINPadControl111.java
CashDrawerControl111.java PointCardRWControl111.java
CATControl111.java POSKeyboardControl111.java
CheckScannerControl111.java POSPowerControl111.java
CoinDispenserControl111.java POSPrinterControl111.java
ElectronicJournalControl111.java RemoteOrderDisplayControl111.java
FiscalPrinterControl111.java ScaleControl111.java
HardTotalsControl111.java ScannerControl111.java
KeylockControl111.java SignatureCaptureControl111.java
LineDisplayControl111.java SmartCardRWControl111.java
MICRControl111.java ToneIndicatorControl111.java

Belt.java ItemDispenser.java
BeltBeanInfo.java ItemDispenserBeanInfo.java
BeltConst.java ItemDispenserConst.java
BeltControl112.java ItemDispenserControl112.java

ElectronicValueRW.java Lights.java
ElectronicValueRWBeanInfo.java LightsBeanInfo.java
ElectronicValueRWConst.java LightsConst.java
ElectronicValueRWControl112.java LightsControl112.java

Gate.java RFIDScanner.java
GateBeanInfo.java RFIDScannerBeanInfo.java
GateConst.java RFIDScannerConst.java
GateControl112.java RFIDScannerControl112.java

BillAcceptorControl112.java LineDisplayControl112.java
BillDispenserControl112.java MICRControl112.java
BiometricsControl112.java MotionSensorControl112.java
BumpBarControl112.java MSRControl112.java
CashChangerControl112.java PINPadControl112.java
CashDrawerControl112.java PointCardRWControl112.java
CATControl112.java POSKeyboardControl112.java
CheckScannerControl112.java POSPowerControl112.java
CoinAcceptorControl112.java POSPrinterControl112.java
CoinDispenserControl112.java RemoteOrderDisplayControl112.java
ElectronicJournalControl112.java ScaleControl112.java
FiscalPrinterControl112.java ScannerControl112.java
HardTotalsControl112.java SignatureCaptureControl112.java
ImageScannerControl112.java SmartCardRWControl112.java
KeylockControl112.java ToneIndicatorControl112.java
Unified POS, v1.16.1 1647

New Interfaces for existing Device Classes for Release 1.13

jpos.events

jpos.services

BeltControl113.java KeylockControl113.java
BillAcceptorControl113.java LightsControl113.java
BillDispenserControl113.java LineDisplayControl113.java
BiometricsControl113.java MICRControl113.java
BumpBarControl113.java MotionSensorControl113.java
CashChangerControl113.java MSRControl113.java
CashDrawerControl113.java PINPadControl113.java
CATControl113.java PointCardRWControl113.java
CheckScannerControl113.java POSKeyboardControl113.java
CoinAcceptorControl113.java POSPowerControl113.java
CoinDispenserControl113.java POSPrinterControl113.java
ElectronicJournalControl113.java RemoteOrderDisplayControl113.java
ElectronicValueRWControl113.java RFIDScannerControl113.java
FiscalPrinterControl113.java ScaleControl113.java
GateControl113.java ScannerControl113.java
HardTotalsControl113.java SignatureCaptureControl113.java
ImageScannerControl113.java SmartCardRWControl113.java
ItemDispenserControl113.java ToneIndicatorControl113.java

JposEvent.java

DataEvent.java
DataListener.java
DirectIOEvent.java
DirectIOListener.java
ErrorEvent.java
ErrorListener.java
OutputCompleteEvent.java
OutputCompleteListener.java
StatusUpdateEvent.java
StatusUpdateListener.java

BaseService.java EventCallbacks.java

CashChangerService12.java MSRService12.java
CashDrawerService12.java POSKeyboardService12.java
CoinDispenserService12.java POSPrinterService12.java
HardTotalsService12.java ScaleService12.java
KeylockService12.java ScannerService12.java
LineDisplayService12.java SignatureCaptureService12.java
MICRService12.java ToneIndicatorService12.java

New Peripheral Device Classes Added in Release 1.3

BumpBarService13.java PINPadService13.java
FiscalPrinterService13.java RemoteOrderDisplayService13.java

New Interfaces for Existing Device Classes for Release 1.3

CashChangerService13.java MSRService13.java
CashDrawerService13.java POSKeyboardService13.java
CoinDispenserService13.java POSPrinterService13.java
HardTotalsService13.java ScaleService13.java
KeylockService13.java ScannerService13.java
LineDisplayService13.java SignatureCaptureService13.java
MICRService13.java ToneIndicatorService13.java
1648 Unified POS, v1.16.1

New Peripheral Device Classes Added in Release 1.4

CATService14.java

New Interfaces for Existing Device Classes for Release 1.4

BumpBarService14.java MSRService14.java
CashChangerService14.java PINPadService14.java
CashDrawerService14.java POSKeyboardService14.java
CoinDispenserService14.java POSPrinterService14.java
FiscalPrinterService14.java RemoteOrderDisplayService14.java
HardTotalsService14.java ScaleService14.java
KeylockService14.java ScannerService14.java
LineDisplayService14.java SignatureCaptureService14.java
MICRService14.java ToneIndicatorService14.java

New Peripheral Device Classes Added in Release 1.5

PointCardRWService15.java POSPowerService15.java

New Interfaces for Existing Device Classes for Release 1.5

BumpBarService15.java MSRService15.java
CashChangerService15.java PINPadService15.java
CashDrawerService15.java POSKeyboardService15.java
CATService15.java POSPrinterService15.java
CoinDispenserService15.java RemoteOrderDisplayService15.java
FiscalPrinterService15.java ScaleService15.java
HardTotalsService15.java ScannerService15.java
KeylockService15.java SignatureCaptureService15.java
LineDisplayService15.java ToneIndicatorService15.java
MICRService15.java

New Interfaces for Existing Device Classes for Release 1.6

BumpBarService16.java PINPadService16.java
CashChangerService16.java PointCardRWService16.java
CashDrawerService16.java POSKeyboardService16.java
CATService16.java POSPowerService16.java
CoinDispenserService16.java POSPrinterService16.java
FiscalPrinterService16.java RemoteOrderDisplayService16.java
HardTotalsService16.java ScaleService16.java
KeylockService16.java ScannerService16.java
LineDisplayService16.java SignatureCaptureService16.java
MICRService16.java ToneIndicatorService16.java
MSRService16.java

New Peripheral Device Classes Added in Release 1.7

CheckScannerService17.java MotionSensorService17.java

New Interfaces for Existing Device Classes for Release 1.7

BumpBarService17.java PINPadService17.java
CashChangerService17.java PointCardRWService17.java
CashDrawerService17.java POSKeyboardService17.java
CATService17.java POSPowerService17.java
CoinDispenserService17.java POSPrinterService17.java
FiscalPrinterService17.java RemoteOrderDisplayService17.java
HardTotalsService17.java ScaleService17.java
KeylockService17.java ScannerService17.java
LineDisplayService17.java SignatureCaptureService17.java
MICRService17.java ToneIndicatorService17.java
MSRService17.java
Unified POS, v1.16.1 1649

New Peripheral Device Classes Added in Release 1.8

SmartCardRWService18.java

New Interfaces for Existing Device Classes for Release 1.8

BumpBarService18.java MSRService18.java
CashChangerService18.java PINPadService18.java
CashDrawerService18.java PointCardRWService18.java
CATService18.java POSKeyboardService18.java
CheckScannerService18.java POSPowerService18.java
CoinDispenserService18.java POSPrinterService18.java
FiscalPrinterService18.java RemoteOrderDisplayService18.java
HardTotalsService18.java ScaleService18.java
KeylockService18.java ScannerService18.java
LineDisplayService18.java SignatureCaptureService18.java
MICRService18.java ToneIndicatorService18.java
MotionSensorService18.java

New Interfaces for Existing Device Classes for Release 1.9

BumpBarService19.java MSRService19.java
CashChangerService19.java PINPadService19.java
CashDrawerService19.java PointCardRWService19.java
CATService19.java POSKeyboardService19.java
CheckScannerService19.java POSPowerService19.java
CoinDispenserService19.java POSPrinterService19.java
FiscalPrinterService19.java RemoteOrderDisplayService19.java
HardTotalsService19.java ScaleService19.java
KeylockService19.java ScannerService19.java
LineDisplayService19.java SignatureCaptureService19.java
MICRService19.java SmartCardRWService19.java
MotionSensorService19.java ToneIndicatorService19.java

New Peripheral Device Classes Added in Release 1.10

BiometricsService110.java ElectronicJournalService110.java

New Interfaces for Existing Device Classes for Release 1.10

BumpBarService110.java MSRService110.java
CashChangerService110.java PINPadService110.java
CashDrawerService110.java PointCardRWService110.java
CATService110.java POSKeyboardService110.java
CheckScannerService110.java POSPowerService110.java
CoinDispenserService110.java POSPrinterService110.java
FiscalPrinterService110.java RemoteOrderDisplayService110.java
HardTotalsService110.java ScaleService110.java
KeylockService110.java ScannerService110.java
LineDisplayService110.java SignatureCaptureService110.java
MICRService110.java SmartCardRWService110.java
MotionSensorService110.java ToneIndicatorService110.java

New Peripheral Device Classes Added in Release 1.11

BillAcceptorService111.java CoinAcceptorService111.java
BillDispenserService111.java ImageScannerService111.java

New Interfaces for Existing Device Classes for Release 1.11

BiometricsService111.java MotionSensorService111.java
BumpBarService111.java MSRService111.java
CashChangerService111.java PINPadService111.java
CashDrawerService111.java PointCardRWService111.java
CATService111.java POSKeyboardService111.java
CheckScannerService111.java POSPowerService111.java
CoinDispenserService111.java POSPrinterService111.java
ElectronicJournalService111.java RemoteOrderDisplayService111.java
FiscalPrinterService111.java ScaleService111.java
HardTotalsService111.java ScannerService111.java
KeylockService111.java SignatureCaptureService111.java
LineDisplayService111.java SmartCardRWService111.java
MICRService111.java ToneIndicatorService111.java
1650 Unified POS, v1.16.1

New Peripheral Device Classes Added in Release 1.12

BeltService112.java ItemDispenserService112.java
ElectronicValueRWService112.java LightsService112.java
GateService112.java RFIDScannerService112.java

New Interfaces for Existing Device Classes for Release 1.12

BillAcceptorService112.java LineDisplayService112.java
BillDispenserService112.java MICRService112.java
BiometricsService112.java MotionSensorService112.java
BumpBarService112.java MSRService112.java
CashChangerService112.java PINPadService112.java
CashDrawerService112.java PointCardRWService112.java
CATService112.java POSKeyboardService112.java
CheckScannerService112.java POSPowerService112.java
CoinAcceptorService112.java POSPrinterService112.java
CoinDispenserService112.java RemoteOrderDisplayService112.java
ElectronicJournalService112.java ScaleService112.java
FiscalPrinterService112.java ScannerService112.java
HardTotalsService112.java SignatureCaptureService112.java
ImageScannerService112.java SmartCardRWService112.java
KeylockService112.java ToneIndicatorService112.java

New Interfaces for Existing Device Classes Added in Release 1.13

BeltService113.java KeylockService113.java
BillAcceptorService113.java LightsService113.java
BillDispenserService113.java LineDisplayService113.java
BiometricsService113.java MICRService113.java
BumpBarService113.java MotionSensorService113.java
CashChangerService113.java MSRService113.java
CashDrawerService113.java PINPadService113.java
CATService113.java PointCardRWService113.java
CheckScannerService113.java POSKeyboardService113.java
CoinAcceptorService113.java POSPowerService113.java
CoinDispenserService113.java POSPrinterService113.java
ElectronicJournalService113.java RemoteOrderDisplayService113.java
ElectronicValueRWService113.java RFIDScannerService113.java
FiscalPrinterService113.java ScaleService113.java
GateService113.java ScannerService113.java
HardTotalsService113.java SignatureCaptureService113.java
ImageScannerService113.java SmartCardRWService113.java
ItemDispenserService113.java ToneIndicatorService113.java
Unified POS, v1.16.1 1651

B.30 Device Controls
Note: This section is intended primarily for programmers who are creating JavaPOS Device Controls and Services.

B.31 Device Control Responsibilities

• Supporting the JavaPOS Device Interface for its category. This includes a set of properties, methods, and
events.

• Managing the connection and interface to a Device Service.

• Forwarding most property accesses and method calls to the Device Service, and throwing exceptions when a
property access or method call fails.

• Supporting add and remove event listener methods.

• Generating events to registered listeners upon command from the Device Service.

• Downgrading for older Device Service versions.

A Device Control is not responsible for:

• Managing multi-thread access to the Device Control and Service. An application must either access a Control
from only one thread, or ensure that its threads synchronize sequences of requests as required to ensure that
affected state and properties are maintained until the sequences have completed.

• Data buffering, including input and output data plus events. The Device Service manages all buffering and
enqueuing.

• The device behavior/semantics and nuances that are specific to the functional control of the device.

• The loading functions that are to be contained in the jpos.config/loader (JCL).
1652 Unified POS, v1.16.1

B.32 Device Service Management

The Device Control manages the connection to the Device Service. The Control calls upon the jpos.config/loader
(JCL) to accomplish the connection and disconnection.

B.32.1 jpos.config/loader (JCL) and JavaPOS Entry Registry (JER)

The jpos.config/loader (JCL) along with the JavaPOS Entry Registry (JER) is used as the binding (configuration
and loading) API that allows a JavaPOS control to bind to the correct JavaPOS service in a manner independent
of the actual configuration mechanism. For POS applications, it represents a somewhat minimum (but extensible)
functional equivalent of the “NT Registry” called the JposEntryRegistry.

All JavaPOS Device Controls that use this API and additional helpful reference material can be obtained on the
JavaPOS website, http://www.javapos.com. In addition other standards information may be obtained from the
http://www.omg.org website.

A reference open source implementation of the JCL is available on this website and maintained under the control
of the JavaPOS technical committee. Included on the website is a functioning JCL with complete JavaDoc
documentation, examples, sample code, a browser-based configuration editor and additional explanatory
material. 

A brief description of the JCL process is given below. However, for additional detailed information on the JCL
one should consult the referenced web sites for the most up to date information.

B.32.2 jpos.config/loader (JCL) Characteristics

The jpos.config/loader is the name for the minimal set of classes (1) and interfaces (6) which are necessary to
abstract into the JavaPOS specification. They provide for an independent way of configuring, loading and
creating JavaPOS Device Services while maintaining the following important goals.

• Minimize the impact on existing controls

• Allow services to easily support multiple jpos.config/loader implementations

• Abstract as much as possible using Java interfaces to separate the JCL specification from its implementation

• Keep to a minimum the number of necessary classes and interfaces

The jpos.config/loader class/interfaces are added in two packages named jpos.config and jpos.loader. A jpos
implementation is dependent upon the jpos and jpos.loader packages included in the jpos.loader class/interfaces,
the jpos.JposConst interfaces and the jpos.JposException classes.

The jpos.config/loader specification contains 1 class and 6 interfaces. The single class is the
jpos.loader.ServiceLoader which bootstraps the implementation of the jpos.config/loader to be used in the JVM
by creating the manager object (an instance of the jpos.loader.JposServiceManager interface). It also defaults to
the simple jpos.config/loader implementation if no bootstrap is defined. The following table gives the name and
a brief description of the class and interfaces that are involved.
Unified POS, v1.16.1 1653

http://www.javapos.com
http://www.javapos.com
http://www.NRF-ARTS.org
http://www.NRF-ARTS.org
http://www.NRF-ARTS.org
http://www.NRF-ARTS.org

Class

or

Interface

Name Description

class jpos.loader.ServiceLoader

This is the only class in the jpos.config and
jpos.loader packages. It maintains a
JposServiceManager instance (manager) which it
uses to create a JposServiceConnection. The
manager is created by looking for a Java property
“jpos.loader.serviceManagerClass”. If this
property is defined, then the class that it defines will
be loaded and an instance of this class created as the
manager (NOTE: this also assumes that the class
implements JposServiceManager interface and has a
0-argument constructor). If the property is not
defined then the “simple” JCL reference
implementation manager is created
(jpos.loader.simple.SimpleServiceManager).

interface jpos.loader.JposServiceManager
This interface defines a manager used to create
JposServiceConnection and allows access to the
JposEntryRegistry.

interface jpos.loader.JposServiceConnection

 Defines a mediator between the service and the user
of the service. The JavaPOS controls use this
interface to connect to the service and then get the
JposServiceInstance associated with the
connection. Once disconnected the
JposServiceinstance is no longer valid and a re-
connect is necessary.

interface jpos.config.JposEntry

Defines an interface for configuring a service.
Properties can be added, queried, modified and
removed. The JposServiceInstanceFactory uses
the information in the object implementing this
interface to create the current JposServiceInstance
and configure it.

interface jpos.loader.JposEntryRegistry
This interface defines a way to statistically and
dynamically add known JposEntry objects to the
system.

interface jpos.loader.JposServiceInstance

Only interface required to be implemented by all
JavaPOS services. It defines one method that is used
to indicate to the service that the connection has been
disconnected.

interface jpos.loader.JposServiceInstanceFactory

Factory interface to create JposServiceInstance
objects (i.e., the JavaPOS services). It is passed a
JposEntry which it uses to create the correct
service.
1654 Unified POS, v1.16.1

The configuration information is described as a set of properties in the JposEntry. These are entered as <key,
value> pairs. The key is a String and the value is a Java Object of type: String, Integer, Long, Float, Boolean,
Character or Byte (which are the String and primitive wrapper classes provided in the java.lang package). The
following are two properties which must be defined by all the entries in the JposEntry in order for it to be
considered valid.

All other properties are optionally provided or needed for the correct creation and initialization of the JavaPOS
service. Note the service providers will most likely want to define their own set of properties and require them to
be in the JposEntry in order to allow their JposServiceFactory to be used and their Device Service to be
configured and loaded.

Future releases of the reference jpos.config/loader (JCL) might be modified to define a standard set of properties
(in addition to the two mandated above) that all JavaPOS services would need to define.

Property Name Property Type Description

logicalName String
This is the unique name that identifies this
entry. The control uses this name to bind itself
to the service.

serviceInstanceFactoryClass String

Defines the factory class which should be used
to create the service. This class must implement
the jpos.loader.JposServiceInstanceFactory
interface and it must have a default constructor.
Unified POS, v1.16.1 1655

B.33 Property and Method Forwarding

The Device Control must use the Device Service to implement all properties and methods defined by the
JavaPOS Device Interface for a device category, with the following exceptions:

• open method.

• close method.

• DeviceControlDescription property. The Control returns its description.

• DeviceControlVersion property. The Control returns its version.

• State property. The Control forwards the request to the Service as shown in the following paragraphs. Any
exception is changed to a return value of JPOS_S_CLOSED; an exception is never thrown to an application.

For all other properties and methods, the Device Control forwards the request to the identically named method or
property of the Device Service. A template for set property and method request forwarding follows:

 public void name(Parameters) throws JposException
 {
 try
 service.name(Parameters);
 catch(JposException je)
 throw je;
 catch(Exception e)
 throw new JposException(JPOS_E_CLOSED,
 “Control not opened”, e);
 }

Similarly, a template for get property request forwarding is:

 public Type name() throws JposException
 {
 try
 return service.name();
 catch(JposException je)
 throw je;
 catch(Exception e)
 throw new JposException(JPOS_E_CLOSED,
 “Control not opened”, e);
 }

The general forwarding sequence is to call the Service to process the request, and return to the application if no
exception occurs. If an exception occurs and the exception is JposException, rethrow it to the application.

Otherwise wrap the exception in a JposException and throw it. This should only occur if an open has not
successfully linked the Service to the Control, that is, if the service field contains a null reference. (Any
exceptions that occur while in the Service should be caught by it, and the Service should rethrow it as a
JposException.) This allows the Control to set the message text to “Control not opened” with reasonable
certainty.
1656 Unified POS, v1.16.1

B.34 Event Handling

B.34.1 Event Listeners and Event Delivery

An application must be able to register with the Device Control to receive events of each type supported by the
Device, as well as unregister for these events. To conform to the JavaBean naming pattern for events, the
registration methods have the form:

 void addXxxListener(XxxListener l);
 void removeXxxListener(XxxListener l);

where Xxx is replaced by one of the event types: Data, Error, OutputComplete, StatusUpdate, or DirectIO.

An example add listener method is:
 protected Vector dataListeners;
 public void addDataListener(DataListener l)
 {
 synchronized(dataListeners)
 dataListeners.addElement(l);
 }

When the Device Service requests that an event be delivered, the Control calls the event method of each listener
that has registered for that event. (Typically, only one listener will register for each event type. However,
diagnostic or other software may choose to listen, also.) The event methods have the form:

 void xxxOccurred(XxxEvent e)

where xxx is replaced by: data, error, outputComplete, statusUpdate, or directIO.
Unified POS, v1.16.1 1657

B.34.2 Event Callbacks

The Device Service requests that an event be delivered by calling a method in a callback instance. This instance
is created by the Control and passed to the Service in the open method.

The callback instance is typically created as an inner class of the Control. An example callback inner class is:
 protected class ScannerCallbacks implements EventCallbacks
 {
 public BaseControl getEventSource()
 {
 return (BaseControl)Scanner.this;
 }

 public void fireDataEvent(DataEvent e)
 {
 synchronized(Scanner.this.dataListeners)
 // deliver the event to all registered listeners
 for(int x = 0; x < dataListeners.size(); x++)
 ((DataListener)dataListeners.elementAt(x)).
 dataOccurred(e);
 }

 public void fireDirectIOEvent(DirectIOEvent e)
 {
 //…Removed code similar to fireDataEvent…
 }

 public void fireErrorEvent(ErrorEvent e)
 {
 //…Removed code similar to fireDataEvent…
 }

 public void fireOutputCompleteEvent(OutputCompleteEvent e)
 {
 }

 public void fireStatusUpdateEvent(StatusUpdateEvent e)
 {
 }
 }
1658 Unified POS, v1.16.1

B.35 Device Control Version Handling

The Device Control responsibilities given in the preceding sections “Device Service Management” and “Property
and Method Forwarding” are somewhat simplified: They do not take into account version handling.

Both the Device Control and the Device Service have version numbers. Each version number is broken into
three parts: Major, minor, and build. The major and minor portions indicate compliance with a release of the
JavaPOS specifications. For example, release 1.4 compatibility is represented by a major version of one and a
minor version of four. The build portion is set by the JavaPOS Device writer.

The JavaPOS version requirement is that a Device Control for a device category must operate and return
reasonable results with any Device Service for that class, as long as its major version number matches the
Service’s major version number.

In order to support this requirement, the following steps must be taken by the Control:

• open method. The Control must validate and determine the version of the Service, and save this version for
later use (the “validated version”).

The steps are as follows:

1. After connecting to the Device Service and obtaining its reference, determine the level of JavaPOS Service
interface supported by the Service (the “interface version”). This test ensures that the Service complies
with the property and method requirements of the interface.


For example, assume that the Scanner Control is at version 1.3. First attempt to cast the Service reference
to the original release version, ScannerService12. If this succeeds, the “interface version” is at least 1.2;
otherwise fail the open. Next, attempt to cast to ScannerService13. If this succeeds, the “interface 
version” is 1.3.

2. After calling the Service’s open method, get its DeviceServiceVersion property. If the major version does
not match the Control’s major version, then fail the open.

3. At this point we know that some level of Service interface is supported, and that the major Control and
Service versions match. Now determine the “validated version”:
Unified POS, v1.16.1 1659

 if (service_version <= interface_version)
 {
 // The Service version may match the interface
 // version, or it may be less. The latter case may
 // be true for a Service that wraps or bridges to
 // OPOS software, because the Service may be able to
 // support a higher interface version, but
 // downgrades its reported Service version to that of
 // the OPOS software.
 // Remember the Services real version.
 validated_version = service_version;
 }
 else if (service_version > interface_version)
 {
 // The Service is newer than the Control.
 // Look at two subcases.
 if (control_version == interface_version)
 {
 // The Service is newer than the Control, and it
 // supports all the Controls methods and
 // properties (and perhaps more that the Control
 // will not call).
 // Remember the maximum version that the Control
 // supports.
 validated_version = interface_version;
 }
 else if (service_version > interface_version)
 {
 //... Fail the open!
 // The Service is reporting a version for which it
 // does not support all the required methods and
 // properties.
 }
 }

• Properties and other methods. If an application accesses a property or calls a method supported by the
Control’s version but not by the “validated version” of the Service, the Control must throw a JposException
with error code JPOS_E_NOSERVICE.
1660 Unified POS, v1.16.1

B.36 Device Services
Note: This section is intended primarily for programmers creating JavaPOS Device Controls and Services.

B.37 Device Service Responsibilities

A Device Service for a device category is responsible for:

• Supporting the JavaPOS Device Service Interface for its category. This includes a set of properties and
methods, plus event generation and delivery.

• Implementing property accesses and method calls, and throwing exceptions when a property access or method
call fails.

• Enqueuing events and delivering them (through calls to Device Control event callback methods) when the
preconditions for delivering the event are satisfied.

• Managing access to the Physical Device.

The Device Service requires the jpos.config/loader (JCL) JposEntry object which contains all the configuration
information.

B.38 Property and Method Processing

The Device Service performs the actual work for the property access and method processing. If the Service is
successful in carrying out the request, it returns to the application. Otherwise, it must throw a JposException.

At the beginning of property and method processing, the Service will typically need to validate that an
application has properly initialized the device before it is processed. If the device must first be claimed, the
Service throws an exception with the error code JPOS_E_CLAIMED (if the device is already claimed by another
JPOS Device) or JPOS_E_NOTCLAIMED (if the device is available to be claimed). If the device must first be
enabled, then the Service throws an exception with the error code JPOS_E_DISABLED.

Some special cases are:

• open method. The Service must perform additional housekeeping and initialization during this method.
Initialization will often include accessing the Java System Database (Release 1.4 and prior) or
JposEntryRegistry (Release 1.5 and beyond) to obtain parameters specific to the Service and the Physical
Device.

• close method. The Service releases all resources that were acquired during or after open.
Unified POS, v1.16.1 1661

B.39 Event Generation

The Device Service has the responsibility of enqueuing events and delivering them in the proper sequence. The
Service must enqueue and deliver them one at a time, in a first-in, first-out manner. (The only exception is when
a JPOS_EL_INPUT_DATA event must be delivered early on an input error because some data events are also
enqueued.) Events are delivered by an internally created and managed Service thread. They are delivered by
calling an event firing callback method in the Device Control, which then calls each registered listener's event
method. (See “Event Handling” in this Annex.)

The following conditions cause event delivery to be delayed until the condition is corrected:

• The application has set the property FreezeEvents to true.

• The event type is a DataEvent or an input ErrorEvent, but the property DataEventEnabled is false. (See
“Device Input Model” in this Annex).

Rules on the management of the queue of events are:

• The JavaPOS Device may only enqueue new events while the Device is enabled.

• The Device may deliver enqueued events until the application calls the release method (for exclusive-use
devices) or the close method (for any device), at which time any remaining events are deleted.

• For input devices, the clearInput method clears data and input error events.

• For output devices, the clearOutput method clears output error events.

B.40 Physical Device Access

The Device Service is responsible for managing the Physical Device. Often, this occurs by using a
communications Port API (supplied or custom). At other times, the Service may need to use other device drivers
or techniques to control the device.

The Java for Retail POS (JavaPOS) and OLE for Retail POS (OPOS) industry standard initiatives are
intentionally similar in many respects.

Support for Java requires several differences from OPOS in architecture, but the JavaPOS committee agreed that
the general model of OPOS device classes should be reused as much as possible.

In order to reuse as much of the OPOS device models as possible, the following sections detail the general
mapping rules from OPOS to JavaPOS. A later section lists the deviations of JavaPOS APIs from OPOS.

B.41 API Mapping Rules

In most cases, OPOS APIs may be translated in a mechanical fashion to equivalent JavaPOS APIs. The
exceptions to this mapping are largely due to differences in some string parameters.

Areas of data mapping include data types, methods and properties, and events.
1662 Unified POS, v1.16.1

B.42 JavaPOS Component Descriptions

The following sections are arranged as follows and provide detailed information on how an Application is
expected to interface with a device covered under JavaPOS.

Section 1: 
Describes the specific characteristics of the data types that JavaPOS uses as they relate to Java and a OS platform
neutral implementation.

Section 2: 
Provides interface descriptions for the properties, methods, and events specific to JavaPOS. For thorough
description of these, one should consult the applicable chapters located in previous chapters in this document.

Section 3:
Compares the evolution of the JavaPOS from the OPOS standard and briefly describes some of the differences
between the two implementations.

Section 4:
Provides the Change History previously contained in the JavaPOS Programmer’s Guide.
Unified POS, v1.16.1 1663

B.43 Section 1: JavaPOS Data Types

Data Types Updated in Release 1.11

Data types are mapped from OPOS to JavaPOS as follows, with exceptions noted after the table:

OPOS
Type

JavaPOS
Type

Usage

BOOL boolean Boolean true or false.

BOOL * boolean[1] Mutable boolean.

LONG byte 8-bit integer.

LONG int 32-bit integer.

LONG * int[1] Mutable 32-bit integer.

SAFEARRAY of
LONG int[] 32-bit integer array.

SAFEARRAY * of
LONG int[1][]

Mutable 32-bit integer array. The [0] element contains the
array of 32-bit integers that can be modified, both in size
and/or contents.

CURRENCY long
64-bit integer. Used for currency values, with an assumed
4 decimal places.

CURRENCY * long[1] Mutable 64-bit integer.

The string types are usually represented with the follow-
ing mapping:

BSTR String Text character string.

BSTR * String[1] Mutable text character string.

For some APIs, the string types are represented in one of
the following:

BSTR byte[]
Immutable array of bytes. May be modified, but size of ar-
ray cannot be changed. Often used when non-textual data is
possible.

SAFEARRAY of
BSTR

byte[][]
Immutable array of binary objects (themselves presented as
arrays of bytes).

BSTR * byte[1][]
Mutable array of bytes. The [0] element contains the array
of bytes that can be modified, both in size and/or contents.

BSTR Point[] Array of points. Used by Signature Capture.

BSTR * Object
An object. This will usually be subclassed to
provide a Device Service-specific parameter for 
directIO or DirectIOEvent.

nls (LONG) nls (String) Operating System National Language Data type.
1664 Unified POS, v1.16.1

B.44 Section 2: JavaPOS Interface Descriptions

Information in this section further defines the requirements of the UnifiedPOS for Java implementation. The
common Properties, Methods, and Events are included to help transition from the UML given in Chapter 1 to the
specifics for the Java Implementation on an Operating System that supports Java.

Next, tables are included that outline the specific programmatic examples for each of the device classifications
and reference back to the UML for the respective devices.

The examples have been provided in Java and make no requirement of a specific OS in order to run.
Unified POS, v1.16.1 1665

B.45 JavaPOS Common Properties, Methods, and Events

Common Properties Updated in Release 1.9

JavaPOS implementation specific definitions of the Common Properties.

Usage Notes:

1.Used only with Devices that have Event Driven Input.

2.Used only with Asynchronous Output Devices.

Properties (UML attributes)

Name Type Mutability Version Usage Notes

AutoDisable boolean { read-write } 1.2 1

CapCompareFirmwareVersion boolean { read-only } 1.9

CapPowerReporting int { read-only } 1.3

CapStatisticsReporting boolean { read-only } 1.8

CapUpdateFirmware boolean { read-only } 1.9

CapUpdateStatistics boolean { read-only } 1.8

CheckHealthText String { read-only } 1.0

Claimed boolean { read-only } 1.0

DataCount int { read-only } 1.2 1

DataEventEnabled boolean { read-write } 1.0 1

DeviceEnabled boolean { read-write } 1.0

FreezeEvents boolean { read-write } 1.0

OutputID int { read-only } 1.0 2

PowerNotify int { read-write } 1.3

PowerState int { read-only } 1.3

State int { read-only } 1.0

DeviceControlDescription String { read-only } 1.0

DeviceControlVersion int { read-only } 1.0

DeviceServiceDescription String { read-only } 1.0

DeviceServiceVersion int { read-only } 1.0

PhysicalDeviceDescription String { read-only } 1.0

PhysicalDeviceName String { read-only } 1.0
1666 Unified POS, v1.16.1

B.45.1 Common Methods Updated in Release 1.10

JavaPOS implementation specific definitions of the Common Methods.

B.45.2 JavaPOS Class Names Updated in Version 1.12

JavaPOS implementation specific definitions of the POS Device Categories’ Class names.

Methods (UML operations)

Name Version

void open (String logicalDeviceName) throws JposException; 1.4

void close () throws JposException; 1.4

void claim (int timeout) throws JposException; 1.4

void release () throws JposException; 1.4

void checkHealth (int level) throws JposException; 1.4

void clearInput () throws JposException; 1.4

void clearInputProperties () throws JposException; 1.10

void clearOutput () throws JposException; 1.4

void directIO (int command, int[1] data, Object object) throws
JposException;

1.4

void compareFirmwareVersion (String firmwareFileName, int[1] result)
throws JposException;

1.9

void resetStatistics (String statisticsBuffer) throws JposException; 1.8

void retrieveStatistics (String[1] statisticsBuffer) throws JposException; 1.8

void updateFirmware (String firmwareFileName) throws
JposException;

1.9

void updateStatistics (String statisticsBuffer) throws JposException; 1.8

UnifiedPOS Device
Programmatic Names

JavaPOS Class Names

Belt jpos.Belt

BillAcceptor jpos.BillAcceptor

BillDispenser jpos.BillDispenser

Biometrics jpos.Biometrics

BumpBar jpos.BumpBar

CashChanger jpos.CashChanger

CashDrawer jpos.CashDrawer

CAT jpos.CAT

CheckScanner jpos.CheckScanner

CoinAcceptor jpos.CoinAcceptor

CoinDispenser jpos.CoinDispenser

ElectronicJournal jpos.ElectronicJournal

ElectronicValueRW jpos.ElectronicValueRW
Unified POS, v1.16.1 1667

FiscalPrinter jpos.FiscalPrinter

Gate jpos.Gate

HardTotals jpos.HardTotals

ImageScanner jpos.ImageScanner

ItemDispenser jpos.ItemDispenser

Keylock jpos.Keylock

Lights jpos.Lights

LineDisplay jpos.LineDisplay

MICR jpos.MICR

MotionSensor jpos.MotionSensor

MSR jpos.MSR

PINPad jpos.PINPad

PointCardRW jpos.PointCardRW

POSKeyboard jpos.POSKeyboard

POSPower jpos.POSPower

POSPrinter jpos.POSPrinter

RemoteOrderDisplay jpos.RemoteOrderDisplay

RFIDScanner jpos.RFIDScanner

Scale jpos.Scale

Scanner jpos.Scanner

SignatureCapture jpos.SignatureCapture

SmartCardRW jpos.SmartCardRW

ToneIndicator jpos.ToneIndicator

UnifiedPOS Device
Programmatic Names

JavaPOS Class Names
1668 Unified POS, v1.16.1

B.46 Properties

AutoDisable Property R/W
Type boolean

Remarks If true, the Device Service will set DeviceEnabled to false after it receives and enqueues data as a
DataEvent. Before any additional input can be received, the application must set DeviceEnabled to true.

If false, the Device Service does not automatically disable the device when data is received.

This property provides the application with an additional option for controlling the receipt of input data.
If an application wants to receive and process only one input, or only one input at a time, then this
property should be set to true. This property applies only to event-driven input devices.

This property is initialized to false by the open method.

Errors A JposException may be thrown when this property is accessed. For further information, see B.13
Exceptions.

CapCompareFirmwareVersion Property R Added in Release 1.9

Type boolean

Remarks If true, then the Service/device supports comparing the version of the firmware in the physical device
against that of a firmware file.

Errors A JposException may be thrown when this property is accessed. For further information, see B.13
Exceptions.

See Also compareFirmwareVersion Method.

CapPowerReporting Property R Added in Release 1.3

 Type int

Remarks Identifies the reporting capabilities of the Device. It has one of the following values:

Value Meaning
JPOS_PR_NONE The Device Service cannot determine the state of the device. Therefore, no

power reporting is possible.
JPOS_PR_STANDARD The Device Service can determine and report two of the power states -

OFF_OFFLINE (that is, off or offline) and ONLINE.
JPOS_PR_ADVANCED The Device Service can determine and report all three power states - OFF,

OFFLINE, and ONLINE.

This property is initialized by the open method.

Errors None.
Unified POS, v1.16.1 1669

CapStatisticsReporting Property R Added in Release 1.8

Type boolean

Remarks If true, the device accumulates and can provide various statistics regarding usage; otherwise no usage
statistics are accumulated. The information accumulated and reported is device specific, and is retrieved
using the retrieveStatistics method.

This property is initialized by the open method.

Errors A JposException may be thrown when this property is accessed. For further information, see B.13
Exceptions.

See Also retrieveStatistics Method.

CapUpdateFirmware Property R Added in Release1.9

Type boolean

Remarks If true, then the device’s firmware can be updated via the updateFirmware method.

Errors A JposException may be thrown when this property is accessed. For further information, see B.13
Exceptions.

See Also updateFirmware Method.

CapUpdateStatistics Property R Added in Release1.8

Type boolean

Remarks If true, the device statistics, or some of the statistics, can be reset to zero using the resetStatistics method,
or updated using the updateStatistics method.

If CapStatisticsReporting is false, then CapUpdateStatistics is also false.

This property is initialized by the open method.

Errors A JposException may be thrown when this property is accessed. For further information, see B.13
Exceptions.

See Also CapStatisticsReporting Property, resetStatistics Method, updateStatistics Method.
1670 Unified POS, v1.16.1

CheckHealthText Property R

Type string

Remarks Holds the results of the most recent call to the checkHealth method. The following examples illustrate
some possible diagnoses:

• “Internal HCheck: Successful”
• “External HCheck: Not Responding”
• “Interactive HCheck: Complete”

This property is empty (“”) before the first call to the checkHealth method.

Errors A JposException may be thrown when this property is accessed. For further information, see B.13
Exceptions.

Claimed Property R

Type boolean

Remarks If true, the device is claimed for exclusive access. If false, the device is released for sharing with other
applications.

Many devices must be claimed before the Control will allow access to many of its methods and
properties, and before it will deliver events to the application.

This property is initialized to false by the open method.

Errors A JposException may be thrown when this property is accessed. For further information, see B.13
Exceptions.

DataCount Property R

Type int

Remarks Holds the number of enqueued DataEvents.

The application may read this property to determine whether additional input is enqueued from a device,
but has not yet been delivered because of other application processing, freezing of events, or other causes.

This property is initialized to zero by the open method.

Errors A JposException may be thrown when this property is accessed. For further information, see B.13
Exceptions.

DataEventEnabled Property R/W

Type boolean

Remarks If true, a DataEvent will be delivered as soon as input data is enqueued. If changed to true and some
input data is already queued, then a DataEvent is delivered immediately. (Note that other conditions may
delay “immediate” delivery: if FreezeEvents is true or another event is already being processed at the
application, the DataEvent will remain queued at the Device Service until the condition is corrected.)

If false, input data is enqueued for later delivery to the application. Also, if an input error occurs, the
ErrorEvent is not delivered while this property is false.

This property is initialized to false by the open method.

Errors A JposException may be thrown when this property is accessed. For further information, see B.13
Exceptions.
Unified POS, v1.16.1 1671

DeviceControlDescription Property R

Type string

Remarks Holds an identifier for the Device Control and the company that produced it.

A sample returned string is:

“POS Printer JavaPOS Control, (C) 1998 Epson”

This property is always readable.

Errors None.

DeviceControlVersion Property R

Type int

Remarks Holds the Device Control version number.

Three version levels are specified, as follows:

Version Level Description

Major The “millions” place.
A change to the JavaPOS major version level for a device class reflects
significant interface enhancements, and may remove support for obsolete
interfaces from previous major version levels.

Minor The “thousands” place.
A change to the JavaPOS minor version level for a device class reflects minor
interface enhancements, and must provide a superset of previous interfaces at
this major version level.

Build The “units” place.
Internal level provided by the Device Control developer. Updated when
corrections are made to the Device Control implementation.

A sample version number is:

1002038

This value may be displayed as version “1.2.38,” and interpreted as major version 1, minor version 2,
build 38 of the Device Control.

This property is always readable.

Errors None.
1672 Unified POS, v1.16.1

DeviceEnabled Property R/W

Type boolean

Remarks If true, the device is in an operational state. If changed to true, then the device is brought to an operational
state.

If false, the device has been disabled. If changed to false, then the device is physically disabled when
possible, any subsequent input will be discarded, and output operations are disallowed.

Changing this property usually does not physically affect output devices. For consistency, however, the
application must set this property to true before using output devices.

Release 1.3 and later: The Device’s power state may be reported while DeviceEnabled is true; see
“Device Power Reporting Model” in this Annex for details.

This property is initialized to false by the open method. Note that an exclusive use device must be
claimed before the device may be enabled.

DeviceServiceDescription Property R

Type string

Remarks Holds an identifier for the Device Service and the company that produced it.

A sample returned string is:

“TM-U950 Printer JPOS Service Driver, (C) 1998 Epson”

This property is initialized by the open method.

Errors A JposException may be thrown when this property is accessed. For further information, see B.13
Exceptions.
Unified POS, v1.16.1 1673

DeviceServiceVersion Property R

Type int

Remarks Holds the Device Service version number.

Three version levels are specified, as follows:

Version Level Description
Major The “millions” place.

A change to the JavaPOS major version level for a device class reflects
significant interface enhancements, and may remove support for obsolete
interfaces from previous major version levels.

Minor The “thousands” place.
A change to the JavaPOS minor version level for a device class reflects minor
interface enhancements, and must provide a superset of previous interfaces at
this major version level.

Build The “units” place.
Internal level provided by the Device Service developer. Updated when
corrections are made to the Device Service implementation.

A sample version number is:

1002038

This value may be displayed as version “1.2.38”, and interpreted as major version 1, minor version 2,
build 38 of the Device Service.

This property is initialized by the open method.

Errors A JposException may be thrown when this property is accessed. For further information, see B.13
Exceptions.

FreezeEvents Property R/W Updated in Release 1.12
Type boolean

Remarks If true, events will not be delivered. Events will be enqueued until this property is set to false.

If false, the application allows events to be delivered. If some events have been held while events were
frozen and all other conditions are correct for delivering the events, then changing this property to false
will allow these events to be delivered. An application may choose to freeze events for a specific
sequence of code where interruption by an event is not desirable.

Unless specified otherwise, properties that convey device state information (e.g., JrnEmpty and
DrawerOpened) are kept current while the device is enabled, regardless of the setting of the
FreezeEvents property.

This property is initialized to false by the open method.

Errors A JposException may be thrown when this property is accessed. For further information, see
“Exceptions” on page 1618.
1674 Unified POS, v1.16.1

OutputID Property R

Type int

Remarks Holds the identifier of the most recently started asynchronous output.

When a method successfully initiates an asynchronous output, the Device assigns an identifier to the
request. When the output completes, an OutputCompleteEvent will be enqueued with this output ID as
a parameter.

The output ID numbers are assigned by the Device and are guaranteed to be unique among the set of
outstanding asynchronous outputs. No other facts about the ID should be assumed.

Errors A JposException may be thrown when this property is accessed. For further information, see
“Exceptions” on page 1618.

PowerNotify Property R/W Added in Release 1.3

Type int

Remarks Contains the type of power notification selection made by the Application. It has one of the following
values:

Value Meaning

JPOS_PN_DISABLED The Device Service will not provide any power notifications to the
application. No power notification StatusUpdateEvents will be fired, and
PowerState may not be set.

JPOS_PN_ENABLED The Device Service will fire power notification StatusUpdateEvents and
update PowerState, beginning when DeviceEnabled is set to true. The level
of functionality depends upon CapPowerReporting.

PowerNotify may only be set while the device is disabled; that is, while DeviceEnabled is false.

This property is initialized to JPOS_PN_DISABLED by the open method. This value provides
compatibility with earlier releases.

Errors A JposException may be thrown when this property is accessed. For further information, see
“Exceptions” on page 1618.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

JPOS_E_ILLEGAL One of the following occurred:

The device is already enabled.

PowerNotify = JPOS_PN_ENABLED but CapPowerReporting =
JPOS_PR_NONE.
Unified POS, v1.16.1 1675

PowerState Property R Added in Release 1.3

Type int

Remarks Identifies the current power condition of the device, if it can be determined.
It has one of the following values:

Value Meaning

JPOS_PS_UNKNOWN Cannot determine the device’s power state for one of the following reasons:

CapPowerReporting = JPOS_PR_NONE; the device does not support
power reporting.

PowerNotify = JPOS_PN_DISABLED; power notifications are disabled.

DeviceEnabled = false; Power state monitoring does not occur until the
device is enabled.

JPOS_PS_ONLINE The device is powered on and ready for use. Can be returned if
CapPowerReporting = JPOS_PR_STANDARD or
JPOS_PR_ADVANCED.

JPOS_PS_OFF The device is powered off or detached from the POS terminal. Can only be
returned if CapPowerReporting = JPOS_PR_ADVANCED.

JPOS_PS_OFFLINE The device is powered on but is either not ready or not able to respond to
requests. Can only be returned if CapPowerReporting =
JPOS_PR_ADVANCED.

JPOS_PS_OFF_OFFLINE
The device is either off or offline. Can only be returned if
CapPowerReporting = JPOS_PR_STANDARD.

This property is initialized to JPOS_PS_UNKNOWN by the open method. When PowerNotify is set to
enabled and DeviceEnabled is true, then this property is updated as the Device Service detects power
condition changes.

Errors None.

PhysicalDeviceDescription Property R

Type string

Remarks Holds an identifier for the physical device.

A sample returned string is:

“NCR 7192-0184 Printer, Japanese Version”

This property is initialized by the open method.

Errors A JposException may be thrown when this property is accessed. For further information, see B.13
Exceptions.
1676 Unified POS, v1.16.1

PhysicalDeviceName Property R

Type string

Remarks Holds a short name identifying the physical device. This is a short version of
PhysicalDeviceDescription and should be limited to 30 characters.

This property will typically be used to identify the device in an application message box, where the full
description is too verbose. A sample returned string is:

“IBM Model II Printer, Japanese”

This property is initialized by the open method.

Errors A JposException may be thrown when this property is accessed. For further information, see B.13
Exceptions.

State Property R

Type int

Remarks Holds the current state of the Device. It has one of the following values:

Value Meaning
JPOS_S_CLOSED The Device is closed.

JPOS_S_IDLE The Device is in a good state and is not busy.

JPOS_S_BUSY The Device is in a good state and is busy performing output.

JPOS_S_ERROR An error has been reported, and the application must recover the Device to a
good state before normal I/O can resume.

This property is always readable.

Errors None.
Unified POS, v1.16.1 1677

B.47 Methods

checkHealth Method
Syntax void checkHealth (int level) throws JposException;

The level parameter indicates the type of health check to be performed on the device. The following
values may be specified:

Value Meaning
JPOS_CH_INTERNAL 

Perform a health check that does not physically change the device. The device
is tested by internal tests to the extent possible.

JPOS_CH_EXTERNAL 
Perform a more thorough test that may change the device. For example, a
pattern may be printed on the printer.

JPOS_CH_INTERACTIVE 
Perform an interactive test of the device. The supporting Device Service will
typically display a modal dialog box to present test options and results.

Remarks Tests the state of a device.

A text description of the results of this method is placed in the 
CheckHealthText property. The health of many devices can only be determined by a visual inspection
of these test results.

This method is always synchronous.

Errors A JposException may be thrown when this method is invoked. For further information, see “Exceptions”
on page 1618.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
JPOS_E_ILLEGAL The specified health check level is not supported by the Device Service.

claim Method

Syntax void claim (int timeout) throws JposException;

The timeout parameter gives the maximum number of milliseconds to wait for exclusive access to be
satisfied. If zero, then immediately either returns (if successful) or throws an appropriate exception. If
JPOS_FOREVER (-1), the method waits as long as needed until exclusive access is satisfied.

Remarks Requests exclusive access to the device. Many devices require an application to claim them before they
can be used.

When successful, the Claimed property is changed to true.

Errors A JposException may be thrown when this method is invoked. For further information, see “Exceptions”
on page 1618.
1678 Unified POS, v1.16.1

Some possible values of the exception’s ErrorCode property are:

Value Meaning
JPOS_E_ILLEGAL This device cannot be claimed for exclusive access, or an invalid timeout

parameter was specified.

JPOS_E_TIMEOUT Another application has exclusive access to the device, and did not relinquish
control before timeout milliseconds expired.

clearInput Method

Syntax void clearInput () throws JposException;

Remarks Clears all device input that has been buffered.

Any data events or input error events that are enqueued – usually waiting for DataEventEnabled to be
set to true and FreezeEvents to be set to false – are also cleared.

Errors A JposException may be thrown when this method is invoked. For further information, see “Exceptions”
on page 1618.
Unified POS, v1.16.1 1679

clearInputProperties Method Added in Release 1.10

Syntax void clearInputProperties () throws JposException;

Remarks Sets all data properties that were populated as a result of firing a DataEvent or ErrorEvent back to their
default values. This does not reset the DataCount or State properties.

Errors A JposException may be thrown when this method is invoked. For further information, see “Exceptions”
on page 1618.

See Also “Device Input Model” on page 1625.

clearOutput Method Updated in Release 1.7


Syntax void clearOutput () throws JposException;

Remarks Clears all buffered output data, including all asynchronous output. Also, when possible, halts outputs that
are in progress.

Any output error events that are enqueued – usually waiting for FreezeEvents to be set to false – are also
cleared.

Errors A JposException may be thrown when this method is invoked. For further information, see “Exceptions”
on page 1618.

close Method

Syntax void close () throws JposException;

 Remarks Releases the device and its resources.

If the DeviceEnabled property is true, then the device is disabled.

If the Claimed property is true, then exclusive access to the device is released.

Errors A JposException may be thrown when this method is invoked. For further information, see “Exceptions”
on page 1618.
1680 Unified POS, v1.16.1

compareFirmwareVersion Method Added in Release 1.9

Syntax void compareFirmwareVersion (String firmwareFileName, int[1] result) throws JposException;

Parameter Description 

firmwareFileName Specifies either the name of the file containing the firmware or a file
containing a set of firmware files whose versions are to be compared against
those of the device.

result Location in which to return the result of the comparison.

Remarks This method determines whether the version of the firmware contained in the specified file is newer than,
older than, or the same as the version of the firmware in the physical device.

The Service should check that the specified firmware file exists and that its contents are valid for this
device before attempting to perform the comparison operation.

The result of the comparison is returned in the result parameter and will be one of the following values:

Value Meaning 

JPOS_CFV_FIRMWARE_OLDER

Indicates that the version of one or more of the firmware files is older
than the firmware in the device and that none of the firmware files is
newer than the firmware in the device.

JPOS_CFV_FIRMWARE_SAME
Indicates that the versions of all of the firmware filed are the same as the
firmware in the device.

JPOS_CFV_FIRMWARE_NEWER
Indicates that the version of one or more of the firmware files is newer
than the firmware in the device and that none of the firmware files is
older than the firmware in the device.

JPOS_CFV_FIRMWARE_DIFFERENT
Indicates that the version of one or more of the firmware files is different
than the firmware in the device, but either:

• The chronological relationship cannot be determined, or

• The relationship is inconsistent -- one or more are older while one or more are newer.

JPOS_CFV_FIRMWARE_UNKNOWN
Indicates that a relationship between the two firmware versions could not
be determined. A possible reason for this result could be an attempt to
compare Japanese and US versions of firmware.

If the firmwareFileName parameter specifies a file list, all of the component firmware files should reside
in the same directory as the firmware list file. This will allow for distribution of the updated firmware
without requiring a modification to the firmware list file

Errors A JposException may be thrown when this method is invoked. For further information, see “Exceptions”
on page 1618.

Some possible values of the exception’s ErrorCode property are:
Unified POS, v1.16.1 1681

Value Meaning 

JPOS_E_ILLEGAL CapCompareFirmwareVersion is false.
JPOS_E_NOEXIST The file specified by firmwareFileName does not exist or, if

firmwareFileName specifies a file list, one or more of the component
firmware files are missing.

JPOS_E_EXTENDED ErrorCodeExtended = JPOS_EFIRMWARE_BAD_FILE:
The specified firmware file or files exist, but one or more are either not in
the correct format or are corrupt.

See Also CapCompareFirmwareVersion Property.

directIO Method

Syntax void directIO (int command, int[] data, Object object) throws JposException;

Parameter Description
command Command number whose specific values are assigned by the Device Service.
data An array of one mutable integer whose specific values or usage vary by

command and Device Service.
object Additional data whose usage varies by command and Device Service.

Remarks Communicates directly with the Device Service.

This method provides a means for a Device Service to provide functionality to the application that is not
otherwise supported by the standard Device Control for its device category. Depending upon the Device
Service’s definition of the command, this method may be asynchronous or synchronous.

Use of this method will make an application non-portable. The application may, however, maintain
portability by performing directIO calls within conditional code. This code may be based upon the value
of the DeviceServiceDescription, PhysicalDeviceDescription, or PhysicalDeviceName property.

Errors A JposException may be thrown when this method is invoked. For further information, see “Exceptions”
on page 1618.

open Method
Syntax void open(String logicalDeviceName) throws JposException;

The logicalDeviceName parameter specifies the device name to open.

Remarks Opens a device for subsequent I/O.

The device name specifies which of one or more devices supported by this Device Control should be
used. 
In Controls from version 1.4 and prior, The logicalDeviceName must exist in the Java System Database
(JSD) for this device category so that its relationship to the physical device can be determined. Entries
in the JSD are created by a setup or configuration utility.

In Controls from version 1.5 and beyond, The logicalDeviceName must exist in the JposEntryRegistry
for this device category so that its relationship to the physical device can be determined. JposEntry
objects in the registry are created by a populator or some configuration utility like the JCL GUI editor.
1682 Unified POS, v1.16.1

When this method is successful, it initializes the properties Claimed, DeviceEnabled,
DataEventEnabled and FreezeEvents, as well as descriptions and version numbers of the JavaPOS
software layers. Additional category-specific properties may also be initialized.

Errors A JposException may be thrown when this method is invoked. For further information, see “Exceptions”
on page 1618.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 

JPOS_E_ILLEGAL The Control is already open.

JPOS_E_NOEXIST The specified logicalDeviceName was not found.

JPOS_E_NOSERVICE Could not establish a connection to the corresponding Device Service.

release Method
Syntax void release () throws JposException;

Remarks Releases exclusive access to the device.

If the DeviceEnabled property is true, and the device is an exclusive-use device, then the device is also
disabled (this method does not change the device enabled state of sharable devices).

Errors A JposException may be thrown when this method is invoked. For further information, see “Exceptions”
on page 1618.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 

JPOS_E_ILLEGAL The application does not have exclusive access to the device.

resetStatistics Method Added in Release 1.8

Syntax void resetStatistics (String statisticsBuffer) throws JposException;

Parameter Description 

statisticsBuffer The data buffer defining the statistics that are to be reset.

This is a comma-separated list of name(s), where an empty string (“”) means ALL resettable statistics
are to be reset, “U_” means all UnifiedPOS defined resettable statistics are to be reset, “M_” means all
manufacturer defined resettable statistics are to be reset, and “actual_name1, actual_name2” (from the
XML file definitions) means that the specifically defined resettable statistic(s) are to be reset.
Unified POS, v1.16.1 1683

Remarks Resets the defined resettable statistics in a device.

Both CapStatisticsReporting and CapUpdateStatistics must be true in order to successfully use this
method.

This method is always executed synchronously.

Errors A JposException may be thrown when this method is invoked. For further information, see “Exceptions”
on page 1618.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 

JPOS_E_ILLEGAL CapStatisticsReporting or CapUpdateStatistics is false, or the named
statistic is not defined/resettable.

See Also CapStatisticsReporting Property, CapUpdateStatistics Property.

retrieveStatistics Method Added in Release 1.8

Syntax void retrieveStatistics (String[1] statisticsBuffer) throws JposException;

Parameter Description
statisticsBuffer The data buffer defining the statistics to be retrieved and in which the

retrieved statistics are placed.

This is a comma-separated list of name(s), where an empty string (“”) means ALL statistics are to be
retrieved, “U_” means all UnifiedPOS defined statistics are to be retrieved, “M_” means all manufacturer
defined statistics are to be retrieved, and “actual_name1, actual_name2” (from the XML file definitions)
means that the specifically defined statistic(s) are to be retrieved.

Remarks Retrieves the statistics from a device.

CapStatisticsReporting must be true in order to successfully use this method.

This method is always executed synchronously.

All calls to retrieveStatistics will return the following XML as a minimum:
1684 Unified POS, v1.16.1

<?xml version=’1.0’ ?>
<UPOSStat version=”1.13.0” xmlns:xsi=”http://www.w3.org/2001/XMLSchema-
instance” xmlns=”http://www.omg.org/UnifiedPOS/namespace/”
xsi:schemaLocation=”http://www.omg.org/UnifiedPOS/namespace/UPOSStat.xsd”>
 <Event>
 <Parameter>
 <Name>RequestedStatistic</Name>
 <Value>1234</Value>
 </Parameter>
 </Event>
 <Equipment>

<UnifiedPOSVersion>1.13</UnifiedPOSVersion>
<DeviceCategory UPOS=”CashDrawer”/>
<ManufacturerName>Cashdrawers R Us</ManufacturerName>
<ModelName>CD-123</ModelName>
<SerialNumber>12345</SerialNumber>
<FirmwareRevision>1.0 Rev. B</FirmwareRevision>
<Interface>RS232</Interface>
<InstallationDate>2000-03-01</InstallationDate>

 </Equipment>
</UPOSStat>

If the application requests a statistic name that the device does not support, the <Parameter> entry will be
returned with an empty <Value>. e.g.,

<Parameter>
 <Name>RequestedStatistic</Name>
 <Value></Value>
</Parameter>

All statistics that the device collects that are manufacturer specific (not defined in the schema) will be returned in
a <ManufacturerSpecific> tag instead of a <Parameter> tag. e.g.,

<ManufacturerSpecific>
 <Name>TheAnswer</Name>
 <Value>42</Value>
</ManufacturerSpecific>

When an application requests all statistics from the device, the device will return a <Parameter> entry for every
defined statistic for the device category as defined by the XML schema version specified by the version attribute
in the <UPOSStat> tag. If the device does not record any of the statistics, the <Value> tag will be empty.

Errors A JposException may be thrown when this method is invoked. For further information, see B.13
Exceptions.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
JPOS_E_ILLEGAL CapStatisticsReporting is false or the named statistic is not defined.

See Also CapStatisticsReporting Property.

The most up-to-date files defining the XML tag names and example schemas for the
statistics for all device categories can be downloaded from the ARTS web site at http://
retail.omg.org.
Unified POS, v1.16.1 1685

http://www.nrf-arts.org
http://www.nrf-arts.org
http://www.nrf-arts.org
http://www.nrf-arts.org

updateFirmware Method Added in Release 1.9

Syntax void updateFirmware (String firmwareFileName) throws JposException;

Parameter Description 

firmwareFileName Specifies either the name of the file containing the firmware or a file
containing a set of firmware files that are to be downloaded into the device.

Remarks This method updates the firmware of a device with the version of the firmware contained or defined in
the file specified by the firmwareFileName parameter regardless of whether that firmware’s version is
newer than, older than, or the same as the version of the firmware already in the device. If the
firmwareFileName parameter specifies a file list, all of the component firmware files should reside in the
same directory as the firmware list file. This will allow for distribution of the updated firmware without
requiring a modification to the firmware list file.

When this method is invoked, the Service should check that the specified firmware file exists and that its
contents are valid for this device. If so, this method should return immediately and the remainder of the
update firmware process should continue asynchronously. The Service should notify the application of
the status of the update firmware process by firing StatusUpdateEvents with values of
JPOS_SUE_UF_PROGRESS + an integer between 1 and 100 indicating the completion percentage of
the update firmware process. For application convenience, the StatusUpdateEvent value
JPOS_SUE_UF_COMPLETE is defined to be the same value as JPOS_SUE_UF_PROGRESS + 100.

For consistency, the update firmware process is complete after the new firmware has been downloaded
into the physical device, any necessary physical device reset has completed, and the Service and the
physical device have been returned to the state they were in before the update firmware process began.

For consistency, a Service must always fire at least one StatusUpdateEvent with an incomplete progress
completion percentage (i.e. a percentage between 1 and 99), even if the device cannot physically report
the progress of the update firmware process. If the update firmware process completes successfully, the
Service must fire a StatusUpdateEvent with a progress of 100 or use the special constant
JPOS_SUE_UF_COMPLETE, which has the same value. These Service requirements allow
applications using this method to be designed to always expect some level of progress notification.

If an error is detected during the asynchronous portion of a update firmware process, one of the following
StatusUpdateEvents will be fired:

Value Meaning 

JPOS_SUE_UF_FAILED_DEV_OK
The update firmware process failed but the device is still
operational.

JPOS_SUE_UF_FAILED_DEV_UNRECOVERABLE
The update firmware process failed and the device is neither usable
nor recoverable through software. The device requires service to be
returned to an operational state.

JPOS_SUE_UF_FAILED_DEV_NEEDS_FIRMWARE
The update firmware process failed and the device will not be
operational until another attempt to update the firmware is
successful.

JPOS_SUE_UF_FAILED_DEV_UNKNOWN
The update firmware process failed and the device is in an
indeterminate state.
1686 Unified POS, v1.16.1

Errors A JposException may be thrown when this method is invoked. For further information, see B.13
Exceptions.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 

JPOS_E_ILLEGAL CapUpdateFirmware is false.
JPOS_E_NOEXIST The file specified by firmwareFileName does not exist or, if

firmwareFileName specifies a file list, one or more of the component
firmware files are missing.

JPOS_E_EXTENDED ErrorCodeExtended = JPOS_EFIRMWARE_BAD_FILE:
The specified firmware file or files exist, but one or more are either not in
the correct format or are corrupt.

See Also CapUpdateFirmware Property.

updateStatistics Method Added in Release 1.8

Syntax void updateStatistics (String statisticsBuffer) throws JposException;

Parameter Description 

statisticsBuffer The data buffer defining the statistics with values that are to be updated.

This is a comma-separated list of name-value pair(s), where an empty string name (““”=value1”) means
ALL resettable statistics are to be set to the value “value1”, “U_=value2” means all UnifiedPOS defined
resettable statistics are to be set to the value “value2”, “M_=value3” means all manufacturer defined
resettable statistics are to be set to the value “value3”, and “actual_name1=value4,
actual_name2=value5” (from the XML file definitions) means that the specifically defined resettable
statistic(s) are to be set to the specified value(s).

Remarks Updates the defined resettable statistics in a device.

Both CapStatisticsReporting and CapUpdateStatistics must be true in order to successfully use this
method.

This method is always executed synchronously.

Errors A JposException may be thrown when this method is invoked. For further information, see “Exceptions”
on page 1618.

Some possible values of the exception’s ErrorCode property are:

Value Meaning 

JPOS_E_ILLEGAL CapStatisticsReporting or CapUpdateStatistics is false, or the named
statistic is not defined/updatable.

See Also CapStatisticsReporting Property, CapUpdateStatistics Property.
Unified POS, v1.16.1 1687

B.48 Events

DataEvent
Interface jpos.events.DataListener

Method dataOccurred (DataEvent e)

Description Notifies the application that input data is available from the device.

Properties This event contains the following property:

Property Type Description 

Status int The input status with its value dependent upon the device category; it may
describe the type or qualities of the input data.

 Remarks When this event is delivered to the application, the DataEventEnabled property is changed to false, so
that no further data events will be delivered until the application sets DataEventEnabled back to true.
The actual byte array input data is placed in one or more device-specific properties.

If DataEventEnabled is false at the time that data is received, then the data is enqueued in an internal
buffer, the device-specific input data properties are not updated, and the event is not delivered. When
DataEventEnabled is subsequently changed back to true, the event will be delivered immediately if
input data is enqueued and FreezeEvents is false.

DirectIOEvent

Interface jpos.events.DirectIOListener

Method directIOOccurred (DirectIOEvent e);

Description Provides Device Service information directly to the application. This event provides a means for a
vendor-specific Device Service to provide events to the application that are not otherwise supported by
the Device Control.

Properties This event contains the following properties:

Property Type Description 

EventNumber int Event number whose specific values are assigned by the Device Service.

Data int Additional numeric data. Specific values vary by the EventNumber and the
Device Service. This property is settable.

Object Object Additional data whose usage varies by the EventNumber and the Device
Service. This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are not otherwise described
as part of the JavaPOS standard. Use of this event may restrict the application program from being used
with other vendor’s devices which may not have any knowledge of the Device Service’s need for this
event.
1688 Unified POS, v1.16.1

ErrorEvent Updated in Release 1.12

Interface jpos.events.ErrorListener

Method errorOccurred (ErrorEvent e);

Description Notifies the application that an error has been detected and a suitable response is necessary to process
the error condition.

Properties This event contains the following properties:

Property Type Description 

ErrorCode int Error Code causing the error event. See the list of ErrorCodes in Chapter 2.
ErrorCodeExtended

int Extended Error Code causing the error event. These values are device
category specific.

ErrorLocus int Location of the error. See values below.
ErrorResponse int Error response, whose default value may be overridden by the application

(i.e., this property is settable). See values below.

The ErrorLocus parameter has one of the following values:

Value Meaning 

JPOS_EL_OUTPUT Error occurred while processing asynchronous output.
JPOS_EL_INPUT Error occurred while gathering or processing event-driven input. No

previously buffered input data is available.
JPOS_EL_INPUT_DATA 

Error occurred while gathering or processing event-driven input, and some
previously buffered data is available.

The application’s error event listener can set the ErrorResponse property to one of the following values:

Value Meaning 

JPOS_ER_RETRY Retry the asynchronous output. The error state is exited.
May be valid only when locus is JPOS_EL_INPUT. Default when locus is
JPOS_EL_OUTPUT.

JPOS_ER_CLEAR Clear all buffered output data (including all asynchronous output) or buffered
input data. The error state is exited. Default when locus is JPOS_EL_INPUT.

JPOS_ER_CONTINUEINPUT 
Acknowledges the error and directs the Device to continue input processing.
The Device remains in the error state and will deliver additional DataEvents
as directed by the DataEventEnabled property. When all input has been
delivered and DataEventEnabled is again set to true, then another
ErrorEvent is delivered with locus JPOS_EL_INPUT.
Use only when locus is JPOS_EL_INPUT_DATA. Default when locus is
JPOS_EL_INPUT_DATA.
Unified POS, v1.16.1 1689

Remarks This event is enqueued when an error is detected and the Device’s State transitions into the error state.
Input error events are not delivered until DataEventEnabled is true, so that proper application
sequencing occurs.

Unlike a DataEvent, the Device does not disable further DataEvents or input ErrorEvents; it leaves
the DataEventEnabled property value at true. Note that the application may set DataEventEnabled to
false within its event handler if subsequent input events need to be disabled for a period of time.

OutputCompleteEvent

Interface jpos.events.OutputCompleteListener

Method outputCompleteOccurred (OutputCompleteEvent e);

Description Notifies the application that the queued output request associated with the OutputID property has
completed successfully.

Properties This event contains the following property:

Property Type Description 

OutputID int The ID number of the asynchronous output request that is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Device Service has
confirmation that is was processed by the device successfully.

StatusUpdateEvent
Interface jpos.events.StatusUpdateListener

Method statusUpdateOccurred (StatusUpdateEvent e);

Description Notifies the application when a device has detected an operation status change.

Properties This event contains the following property:

Property Type Description 

Status int Device category-specific status, describing the type of status change.

Release 1.3 and later – Power State Reporting

Power State Reporting, added in Release 1.3, adds additional Status values of:

Value Meaning 

JPOS_SUE_POWER_ONLINE
The device is powered on and ready for use. Can be returned if
CapPowerReporting =
JPOS_PR_STANDARD or JPOS_PR_ADVANCED.

JPOS_SUE_POWER_OFF 
The device is off or detached from the terminal. Can only be returned if
CapPowerReporting =
JPOS_PR_ADVANCED.

JPOS_SUE_POWER_OFFLINE
The device is powered on but is either not ready or not able to respond to
requests. Can only be returned if CapPowerReporting =
JPOS_PR_ADVANCED.

JPOS_SUE_POWER_OFF_OFFLINE
The device is either off or offline. Can only be returned if
CapPowerReporting = JPOS_PR_STANDARD.
1690 Unified POS, v1.16.1

The common property PowerState is also maintained at the current power state of the device.

Release 1.9 and later – Update Firmware Reporting

The Update Firmware capability, added in Release 1.9, adds the following Status values for
communicating the status/progress of an asynchronous update firmware process:

Value Meaning 

JPOS_SUE_UF_PROGRESS + 1 to 100
The update firmware process has successfully completed 1 to 100 percent of
the total operation.

JPOS_SUE_UF_COMPLETE
The update firmware process has completed successfully. The value of this
constant is identical to JPOS_SUE_UF_PROGRESS + 100.

JPOS_SUE_UF_COMPLETE_DEV_NOT_RESTORED
The update firmware process succeeded, however the Service and/or the
physical device cannot be returned to the state they were in before the update
firmware process started. The Service has restored all properties to their
default initialization values.
To ensure consistent Service and physical device states, the application needs
to close the Service, then open, claim, and enable again, and also restore all
custom application settings.

JPOS_SUE_UF_FAILED_DEV_OK
The update firmware process failed but the device is still operational.

JPOS_SUE_UF_FAILED_DEV_UNRECOVERABLE
The update firmware process failed and the device is neither usable nor
recoverable through software. The device requires service to be returned to an
operational state.

JPOS_SUE_UF_FAILED_DEV_NEEDS_FIRMWARE
The update firmware process failed and the device will not be operational
until another attempt to update the firmware is successful.

JPOS_SUE_UF_FAILED_DEV_UNKNOWN
The update firmware process failed and the device is in an indeterminate
state.

Remarks This event is enqueued when a Device needs to alert the application of a device status change. Examples
are a change in the cash drawer position (open vs. closed) or a change in a POS printer sensor (form
present vs. absent).
When a device is enabled, this event may be delivered to inform the application of the device state. This
behavior, however, is not required.

See Also CapPowerReporting Property, CapUpdateFirmware Property, PowerNotify Property.
Unified POS, v1.16.1 1691

B.49 Peripheral Interfaces

Note:

The following are two examples of how the proposed sections for each of the peripheral devices would be
constructed. Where possible the tables are arranged to show the sequence of the commands for proper operation
of the peripheral device.

The Cash Drawer and the MICR devices were chosen because they represent a simple output device and a more
complex input device. The other peripheral devices would follow similar command usage and flow.
1692 Unified POS, v1.16.1

JavaPOS: Cash Drawer
Java Command Examples

Initializing Properties, Methods, and Events

Capabilities, Assignments and Descriptions Properties, Methods, and Events

OPERATION T
Y
P
E

JAVA SAMPLE R
E
A
D

W

R

I

T

E

A
R
G
S

R
T
N
V

E
X
C
P

open * M myCashDrawer.open(LogicalDeviceName.CashDrawer);  1 void 

claim * M myCashDrawer.claim(1000);  1 void 

Claimed P bResult = myCashDrawer.getClaimed();  boolean 

DeviceEnabled * P myCashDrawer.setDeviceEnabled(true);  1 - 

DeviceEnabled P bResult = myCashDrawer.getDeviceEnabled();  boolean 

DirectIO M myCashDrawer.directIO(100,int[],byte[])  3 void 

CheckHealth M myCashDrawer.checkHealth(JPOS_CH_INTERNAL);  1 void 

DirectIOEvent E public void directIOOccurred(DirectIOEvent e) 1 CMF

StatusUpdateEvent E public void statusUpdateOccurred(StatusUpdateEvent e) 1 CMF

CapPowerReporting P iResult = myCashDrawer.getCapPowerReporting();  int

CheckHealthText P sResult = myCashDrawer.getCheckHealthText();  String 

FreezeEvents P myCashDrawer.setFreezeEvents(true);  1 - 

FreezeEvents P bResult = myCashDrawer.getFreezeEvents();  boolean 

PowerNotify P myCashDrawer.setPowerNotify(JPOS_PN_ENABLED);  1 - 

PowerNotify P iResult = myCashDrawer.getPowerNotify();  int 

PowerState P iResult = myCashDrawer.getPowerState();  int 

PhysicalDevice
Description

P sResult = myCashDrawer.getPhysicalDeviceDescription();  String 

PhysicalDevice
Name

P sResult = myCashDrawer.getPhysicalDeviceName();  String 
Unified POS, v1.16.1 1693

Cash Drawer Operations Properties, Methods, and Events

Cash Drawer Terminating Methods

Notes:
* Required for basic Cash Drawer operations

OPERATION T
Y
P
E

JAVA SAMPLE R
E
A
D

W

R

I

T

E

A
R
G
S

R
T
N
V

E
X
C
P

State P iResult = myCashDrawer.getState();  int

DeviceControl
Description

P sResult = myCashDrawer.getDeviceControlDescription();  String

DeviceControl
Version

P iResult = myCashDrawer.getDeviceControlVersion();  int

DeviceService
Description

P sResult = myCashDrawer.getDeviceServiceDescription();  String 

DeviceService
Version

P iResult = myCashDrawer.getDeviceServiceVersion();  int 

CapStatus P bResult = myCashDrawer.getCapStatus();  boolean 

CapStatusMultiDrawerDetect P bResult = myCashDrawer.getCapStatusMultiDrawerDetect();  boolean 

DrawerOpened P myCashDrawer.drawerOpened();  boolean 

OpenDrawer * M myCashDrawer.openDrawer();  void 

WaitForDrawerClose M myCashDrawer.waitForDrawerClose(2500, 1000, 10, 5);  4 void 

Release M myCashDrawer.release();  void 

Close * M myCashDrawer.close();  void 
1694 Unified POS, v1.16.1

JavaPOS: MICR
Java Command Examples

Initializing Properties, Methods, and Events

Capabilities, Assignments and Descriptions Properties, Methods, and Events

OPERATION T
Y
P
E

JAVA SAMPLE R
E
A
D

W

R

I

T

E

A
R
G
S

R
T
N
V

E
X
C
P

open * M myMicr.open(LogicalDeviceName.MICR);  1 void 

claim * M myMicr.claim(1000);  1 void 

Claimed P bResult = myMicr.getClaimed();  boolean 

DeviceEnabled * P myMicr.setDeviceEnabled(true);  1 - 

DeviceEnabled P bResult = myMicr.getDeviceEnabled();  boolean 

AutoDisable P myMicr.setAutoDisable(true);  1 - 

AutoDisable P bResult = myMicr.getAutoDisable();  boolean 

DirectIO M myMicr.directIO(100,int[],byte[])  3 void 

CheckHealth M myMicr.checkHealth(JPOS_CH_INTERNAL);  1 void 

DirectIOEvent E public void directIOOccurred(DirectIOEvent e) 1 CMF

ErrorEvent E public void errorOccurred(ErrorEvent e) 1 CMF

StatusUpdateEvent E public void statusUpdateOccurred(StatusUpdateEvent e) 1 CMF

CapPowerReporting P iResult = myMicr.getCapPowerReporting();  int

CheckHealthText P sResult = myMicr.getCheckHealthText();  String 

DataCount P iResult = myMicr.getDataCount();  int 

FreezeEvents P myMicr.setFreezeEvents(true);  1 - 

FreezeEvents P bResult = myMicr.getFreezeEvents();  boolean 

PowerNotify P myMicr.setPowerNotify(JPOS_PN_ENABLED);  1 - 

PowerNotify P iResult = myMicr.getPowerNotify();  int 
Unified POS, v1.16.1 1695

OPERATION T
Y
P
E

JAVA SAMPLE R
E
A
D

W

R

I

T

E

A
R
G
S

R
T
N
V

E
X
C
P

PowerState P iResult = myMicr.getPowerState();  int 

PhysicalDevice
Description

P sResult = myMicr.getPhysicalDeviceDescription();  String 

PhysicalDevice
Name

P sResult = myMicr.getPhysicalDeviceName();  String 

State P iResult = myMicr.getState();  int

DeviceControl
Description

P sResult = myMicr.getDeviceControlDescription();  String

DeviceControl
Version

P iResult = myMicr.getDeviceControlVersion();  int

DeviceService
Description

P sResult = myMicr.getDeviceServiceDescription();  String 

DeviceService
Version

P iResult = myMicr.getDeviceServiceVersion();  int 
1696 Unified POS, v1.16.1

MICR Operations Properties, Methods, and Events

MICR Terminating Methods

* Required for basic MICR operations

OPERATION T
Y
P
E

JAVA SAMPLE R
E
A
D

W

R

I

T

E

A
R
G
S

R
T
N
V

E
X
C
P

CapValidationDevice P bResult = myMicr.getCapValidationDevice();  boolean 

ClearInput M myMicr.clearInput();  void 

DataEventEnabled * P myMicr.setDataEventEnabled(true);  1 - 

DataEventEnabled P bResult = myMicr.getDataEventEnabled();  boolean 

BeginInsertion * M myMicr.beginInsertion(2000);  1 void 

EndInsertion * M myMicr.endInsertion();  void 

DataEvent E public void dataOccurred(DataEvent e) 1 CMF

BeginRemoval * M myMicr.beginRemoval(1000);  void 

EndRemoval * M myMicr.endRemoval();  void 

RawData P sResult = myMicr.getRawData();  String 

AccountNumber P sResult = myMicr.getAccountNumber();  String 

Amount P sResult = myMicr.getAmount();  String 

BankNumber P sResult = myMicr.getBankNumber();  String 

EPC P sResult = myMicr.getEPC();  String 

SerialNumber P sResult = myMicr.getSerialNumber();  String 

TransitNumber P sResult = myMicr.getTransitNumber();  String 

CheckType P iResult = myMicr.getCheckType();  int 

CountryCode P iResult = myMicr.getCountryCode();  int 

Release M myMicr.release();  void 

Close * M myMicr.close();  void 
Unified POS, v1.16.1 1697

B.50 Section 3: Technical Details - OPOS and JavaPOS

The Java for Retail POS (JavaPOS) and OLE for Retail POS (OPOS) industry standard initiatives are
intentionally similar in many respects since the UnifiedPOS architecture is the basis from which JavaPOS and
OPOS implementations are derived. The most up to date information can be downloaded from the web site,
https://retail.omg.org, under the JavaPOS Standard files section.

Support for Java requires several differences from OPOS in architecture, but the JavaPOS committee agreed that
the general model of OPOS device classes should be reused as much as possible.

In order to reuse as much of the OPOS device models as possible, the following sections detail the general
mapping rules from OPOS to JavaPOS. A later section lists the deviations of JavaPOS APIs from OPOS.

B.51 OPOS to JavaPOS - API Mapping Rules

In most cases, OPOS APIs may be translated in a mechanical fashion to equivalent JavaPOS APIs. The
exceptions to this mapping are largely due to differences in some string parameters.

Areas of data mapping include data types, methods and properties, and events.

Data Types Updated in Release 1.11

Data types are mapped from OPOS to JavaPOS as shown in the table, with exceptions noted after the table.

Property and Method Names

Property and method names are mapped from OPOS to JavaPOS as follows:

Type OPOS Examples JavaPOS Examples Mapping Rule

Property
Read

Claimed
DeviceEnabled
OutputID

getClaimed()
getDeviceEnabled()
getOutputID()

Prepend “get” to the property name to
form the property accessor method.

No parameters.
Return value is the property.

Property
Write

AutoDisable
DeviceEnabled

setAutoDisable(...)
setDeviceEnabled(...)

Prepend “set” to the property name to
form the property mutator method.

One parameter, which is of the
property's type.
No return value.

Method
Open
CheckHealth
DirectIO

open
checkHealth
directIO

Change first letter to lowercase.
Other characters are unchanged.
1698 Unified POS, v1.16.1

http://www.nrf-arts.org
http://www.nrf-arts.org

Events

JavaPOS events use the Java Development Kit 1.1 event delegation model, whereby the application registers for
events, supplying a class instance that implements an interface extended from EventListener.

For each Event type which the Application wishes to receive, the Application must implement the corresponding
jpos.events.EventListener interface and handle its event method. Events are delivered by the JavaPOS Device
by calling this event method.

Constants

Constants are mapped from OPOS to JavaPOS as follows:

• If the constant begins with “OPOS”, then change “OPOS” to “JPOS.”

• Otherwise, make no changes to the constant name.

All constant interface files are available in the package “jpos.” All constants are of type “static final int.”

B.52 API Deviations

The following OPOS APIs do not follow the above mapping rules:

• BinaryConversion property
Not needed by JavaPOS. This OPOS property was used to overcome a COM-specific issue with passing binary
data in strings. JavaPOS uses more appropriate types for these cases, such as byte arrays.

• OpenResult property
Not supported by JavaPOS.

• ResultCode and ResultCodeExtended properties
Not needed by JavaPOS. These OPOS properties are used for reporting failures on method calls and property
sets. In JavaPOS, these failures (plus property get failures) cause a JposException. This exception includes
the properties ErrorCode and ErrorCodeExtended, with values that match the OPOS properties.

• ClaimDevice method
In OPOS, this method was introduced in Release 1.5. Previous releases defined the Claim method. This
method is claim in all releases of JavaPOS.

• ReleaseDevice method
In OPOS, this method was introduced in Release 1.5. Previous releases defined the Release method. This
method is release in all releases of JavaPOS.

• DirectIO method and DirectIOEvent
The BSTR* parameter is mapped to Object.

• Cash Drawer WaitForDrawerClosed method
The tone function of this method may not work on non-PCs, since it depends on the availability of a speaker.

• Hard Totals Read method
The BSTR* parameter is mapped to byte[], with its size set to the requested number of bytes.

• Hard Totals Write method
The BSTR parameter is mapped to byte[].
Unified POS, v1.16.1 1699

• MSR Track1Data, Track1DiscretionaryData, Track2Data, Track2DiscretionaryData, Track3Data
properties
These BSTR properties are mapped to byte[].

• PINPad PromptLanguage property
This LONG property is mapped to String.

• Scanner ScanData and ScanDataLabel properties
These BSTR properties are mapped to byte[].

• Signature Capture PointArray property
This BSTR property is mapped to Point[].

• Signature Capture RawData property
This BSTR property is mapped to byte[].

• Signature Capture TotalPoints property
Not needed by JavaPOS. This property is equivalent to “PointArray.length,” so TotalPoints is redundant.

B.53 Mapping of CharacterSet Updated in Release 1.10

This section provides some details for proper use of the MapCharacterSet property that is provided for some
devices such as the LineDisplay, POSPrinter, PointCardReaderWriter, and RemoteOrderDisplay. First, the
application must select an appropriate device character set in the CharacterSet property of the Service. Next,
the application must pass strings to the Service using the Unicode character set. Then, the Service is responsible
for mapping these Unicode characters to the device-side code page when necessary.

The following code snippet allows Device Service providers to easily add the mapping mechanism into their
Services. For mapping of the characters, the encoding capabilities of the Java Runtime Environment (JRE) are
used. (It is assumed that the data transferred to the Service for output to the device is a String, and that the lower
software layers, such as comm.api, use byte arrays.)

/** converts a string with the appropriate code page to a byte array.
@param codePage the desired code page to which

the characters should be mapped - such as 1252 or 850...
@param src the source string to be mapped.
@return the mapped character as byte array.

Returns null if mapping to this codepage is not supported.
*/
static byte[] UnicodeToOEMCodePage (int codePage, String src)
{

try { return src.getBytes (“Cp” + codePage);}
catch (java.io.UnsupportedEncodingException e) {}
return null;

}

Note:
• The used (extended) encoding set of the Java Runtime Environment must be installed. Usually, the

i18n package is required.
• Refer to the Java SDK documentation for the term Internationalization.
1700 Unified POS, v1.16.1

B.54 Handling Binary Data inside Strings Added in Release 1.12
Sometimes there is a need to pass binary data as a Java string, e.g., the data parameter of the readData and
writeData methods of the SmartCard R/W when used in the APDU programming mode. The main challenge in this
case is to avoid the use of the default charset conversion for the binary values stored in the passed Java string when
they are processed.

This paragraph describes a technique to avoid the default charset conversion while processing binary data inside Java
strings.

 It is clear that code such as...

 char binaryChar = '\u00fc'; // german ü
 byte binaryData = (byte)binaryChar;

would be converted differently depending on the configured default charset in the underlying Java environment.

However, the following code always handles binary data stored inside a Java string object in the same way and the
default charset conversion does not take place. The only limitation is that strings containing binary data should not
contain Unicode characters > 0x00ff. Otherwise, only the lower byte of the two byte Unicode value is used. But this
should not be a problem due to the fact that only binary data should be inside of these strings (see the note below).

// Define hex values 0x01 0x02 0xff as String
String binaryDataString = “\u0001\u0002\u00ff”;
byte[] binaryData = new byte[binaryDataString.length];
for (int i = 0; i < binaryData.length; i++) {
 binaryData[i]=(byte)(binaryDataString.charAt(i) & 0xFF);
}

The idea behind the code is, that the '&' operator automatically converts the Unicode character into its integer
representation to match the requested operator types. For the integer representation the Unicode value of the Unicode
character is used. The conversion to an integer value before casting it to a byte type ensures that no default charset
conversion takes place. To ensure that only the lower byte of the Unicode two byte value is used, the Unicode value is
ANDed with 0xff.

Note: All human readable characters in the binary data have to be converted to their corresponding
OEM codepage codes before the conversion algorithm shown above can be applied.
Unified POS, v1.16.1 1701

B.55 Section 4: JavaPOS Change History

Release 1.3
Release 1.3 adds additional device classes, a few additional APIs, and some corrections. Release 1.3 is a
superset of Release 1.2.

Section Change

General Modify the use of the term event “firing.” Use “enqueue” and “deliver”
appropriately to describe event firing.

Bump Bar New device: Add information in several locations, plus Bump Bar chapter
and interface files.

Fiscal Printer New device: Add information in several locations, plus Fiscal Printer
chapter and interface files.

PIN Pad New device: Add information in several locations, plus PIN Pad chapter and
interface files.

Remote Order Display New device: Add information in several locations, plus Remote Order
Display chapter and interface files.

Several places Relax ErrorEvent “retry” response to allow its use with some input devices.

Introduction Events Clarify effect of the top event being blocked.

Introduction Input Model
Add details concerning enqueuing and delivering ErrorEvents.
Add description of asynchronous input.

Introduction Device Power Reporting Model
Add this section.

Common CapPowerReporting, PowerNotify, PowerState properties
Add these sections.

Common ErrorCode property
Generalize the meaning of JPOS_E_BUSY.

Common StatusUpdateEvent
Add power state reporting information.
Change parameter name from Data to Status.

Every Device Add power reporting properties to Summary section.
Add StatusUpdateEvent support (if previously not reported).
Add power reporting reference to existing StatusUpdateEvent descriptions.

MSR DecodeData Add “raw format” description and column to track data table.

MSR ExpirationDate Specify the format.

MSR TrackxData Specify that data excludes the sentinels and LRC.
Add that decoding occurs when DecodeData is true.

MSR ErrorEvent Clarify that DataCount and AutoDisable are not relevant for MSR error
events.

POSPrinter XxxLineChars
Add implementation recommendations.

POSPrinter printTwoNormal
Clarify the meaning of the stations parameter, including the addition of new
constants.
1702 Unified POS, v1.16.1

Scale Add the following features:

• Asynchronous input. Property AsyncMode. Method clearInput,
updates to readWeight. Events DataEvent and ErrorEvent.

• Display of text. Properties CapDisplayText, MaxDisplayTextChars.
Method displayText.

• Price calculation. Properties CapPriceCalculating, SalesPrice,
UnitPrice.

• Tare weight. Properties CapTareWeight, TareWeight.
• Scale zeroing. Property CapZeroScale. Method zeroScale.

Tone Indicator Summary and General Information’s Device Sharing
Consistently specify that Tone Indicator is a sharable device.

JposConst.java interface files
Add CapPowerReporting, PowerState, and PowerNotify properties.
Add StatusUpdateEvent power reporting values.

POSPrinterConst.java interface files
Add new printTwoNormal station constants.

Throughout Correct some editing errors.

Release 1.4
Release 1.4 added the additional peripheral device, Credit Authorization Terminal (CAT). This device,
as specified, is currently only used in the Japanese POS markets.

Addition of this device required re-ordering the chapters and modifications to the Table of Contents.
Other minor changes to the standard are as noted below.

Release 1.4 is a superset of Release 1.3.

Section Change

General Update the Package Structure on page B-1285 to include CAT device;
update the files to correct some erroneous references to OPOS.

Fiscal Printer Add clarification to when the ErrorStation property is valid.

POS Printer Add clarification to when the ErrorStation property is valid.

Appendix B Add clarification to the “Events” section description.

Throughout Correct interface name to jpos.events.OutputCompleteListener.
Correct minor spelling errors.

Release 1.5
Release 1.5 adds two additional peripheral devices: Pointcard Reader Writer and POSPower,
incorporates additional clarifications to the standard, adds a few new additional APIs for some of the
existing devices, and makes some corrections to insure consistency in the device descriptions. Release
1.5 is a superset of Release 1.4.

Section Change

Throughout Correct notation for Java Unicode to “\uxxxx”

General Add clarification to when the Device exits the Error state.

Remove the JPS documentation from the standard. The JPS implementation
has been replaced with the JCL mechanism for locating and maintaining the
Unified POS, v1.16.1 1703

Java Device Services. Updated the tables and diagrams as necessary to
reflect these changes.

Update the Standard and the Package Structure to reflect the additional new
devices added to this version.

Common Properties, Methods, and Events
Modified General section to reflect JDK version dependencies.

Bump Bar Add clarification that this Device can be both an input and an output device.

Cash Changer Add the necessary properties (DataCount, DataEventEnabled,
CapDeposit, CapDepositDataEvent, CapPauseDeposit,
CapRepayDeposit, DepositAmount, DepositCashList, DepositCodeList,
DepositCounts, DepositStatus), methods (beginDeposit, endDeposit,
fixDeposit, pauseDeposit) and events (DataEvent) for this device to
optionally be able to handle cash acceptance.

Cash Drawer Added new property, CapStatusMultiDrawerDetect to improve status
reporting in multiple cash drawer environments.

CAT Correct the properties section to reflect the correct data type for
TransactionType (an integer) and TransactionNumber (a String); other
minor corrections to fix typographical errors.

Coin Dispenser No Changes

Fiscal Printer Added Russia to list of countries in the CountryCode property.

Added note to clarify that Currency value is specified to be four decimal
places.

Changed the properties CountryCode, ErrorOutID, PrinterState,
QuantityDecimalPlaces, and QuantityLength to clarify when the
parameters are Initialized.

Corrected DuplicateReceipt to show that it is 
a R/W Property.

Hard Totals No Changes

Keylock No Changes

Line Display Clarify properties CharacterSet and CharacterSetList to indicate when
they are initialized and to what values they may be set.

MICR Added clarification to description of Model concerning the availability of
parsed data.

Clarify number of digits for BankNumber as specified by ABA Standard,
Thomson Financial Publishing Inc.

MSR Added properties CapTransmitSentinels, Track4Data, and
TransmitSentinels to enhance the features that may be available in a global
MSR device.

Updated the status byte definitions for the DataEvent event.

Pin Pad Added the Track4Data property.
Clarify that Track1Data, Track2Data, Track3Data, and Track4Data are
assumed to be decoded data if a successful read takes place.

Pointcard Reader Writer
New device classification added to the standard. This device is used
primarily in Asian markets.
1704 Unified POS, v1.16.1

POS Keyboard CapKeyUp property type corrected from Long to boolean

POS Power New device classification added to the standard to allow for systems that
have the capability to report and manage alternative mains power (UPS type
devices).

POS Printer Revise this device classification to include properties, methods, and events
to add multi-color printing, both side printing for documents such as checks,
and marked paper and sensing capability for special POS printer forms
handling. This section had significant changes to the General Information
section as well to help clarify standard to reduce the possibility of creating a
Device Service that does not meet the intent of the standard.

ROD Clarify model remarks to indicate that this device can be both an output
device and an input device.

Clarify General Model description explaining how Applications can manage
and control the Remote Order Displays.

Clarify to indicate that ErrorUnits and ErrorString are updated instead by
synchronous broadcast method.

Clarify what value the CurrentUnitID property is initialized.

Scale Clarify the properties SalesPrice, TareWeight, and UnitPrice to indicate
when the values are initialized and can be expected to remain stable and
valid.

Scanner (Bar Code Reader)
No Changes

Signature Capture Update Model to discuss AutoDisable implications; clarify when
RealTimeDataEnabled takes effect; correct DataEvent to indicate when
this event may be fired to include real-time data.

Tone Indicator Clarify all the specific properties to indicate when the values are initialized
and can be expected to remain stable and valid. Also clarify handling of the
Sound method when another application claims the device and calls the
Sound method.

Release 1.6
Release 1.6 does not add any new devices to the standard but does make significant changes to the
Fiscal Printer and Line Display devices. Additional minor clarification and correction changes are
added as noted below. Release 1.6 is a superset of Release 1.5.

Section Change

Fiscal Printer Added the CapAdditionalHeader, CapAdditionalTrailer,
CapChangeDue, CapEmptyReceiptIsVoidable,
CapFiscalReceiptStation, CapFiscalReceiptType, CapMultiContractor,
CapOnlyVoidLastItem, CapPackageAdjustment, CapPostPreLine,
CapSetCurrency, CapTotalizerType, ActualCurrency,
AdditionHeader, AdditionalTrailer, ChangeDue, ContractorId,
DateType, FiscalReceiptStation, FiscalReceiptType, MessageType,
PostLine, PreLine, and TotalizerType properties.

Added the setCurrency, printRecCash, printRecItemFuel,
printRecItemFuelVoid, printRecPackageAdjustment,
printRecPackageAdjustVoid, printRecRefundVoid,
Unified POS, v1.16.1 1705

printRecSubtotalAdjustVoid, and printRecTaxID methods.

Clarified the description of the CapPositiveAdjustment property.

Added country support for Bulgaria and Romania.

Updated the CountryCode, DayOpened, and DescriptionLength
properties to reflect additions to the specification.

Updated the endFiscalReceipt, getData, getDate, printRecItem,
printRecMessage, printRecNotPaid, printRecRefund,
printRecSubtotal, printRecSubtotalAdjustment, printRecTotal,
printRecVoid, printRecVoidItem, printZReport, and setHeaderLine
methods to reflect additions to the specification.

Updated ErrorEvent to reflect additions to the specification.

Properties CountryCode, ErrorOutputID, PrinterState,
QuantityDecimalPlaces, and QuantityLength have been updated to reflect
the fact that they should be initialized after open instead of open, claim, and
enable.

Many updates in the General Information section.

Line Display Added CapBlinkRate, CapCursorType, CapCustomGlyph,
CapReadBack, CapReverse, BlinkRate, CursorType,
CustomGlyphList, GlyphHeight, and GlyphWidth properties.

Added defineGlyph and readCharacterAtCursor methods.

Updated the displayText and displayTextAt methods to support new
attributes for reverse video, DISP_DT_REVERSE and
DISP_DT_BLINK_REVERSE.

Scale Properties SalesPrice, TareWeight, and UnitPrice have been updated when
the parameters are initialized following an open method.

Tone Indicator Properties AsyncMode, Tone1Pitch, Tone1Volume, Tone1Duration,
Tone2Pitch, Tone2Volume, Tone2Duration, and InterToneWait have
been updated to reflect the fact that they should be initialized after open
instead of open, claim, and enable.

Clarified handling of the sound method when another application claims the
device and calls the sound method.

Release 1.7

The change history above has been maintained to this point for historical reference.

No specific change history relative to the JavaPOS Programming Guide is maintained from this release
forward. Refer to Appendix E - Change History for the change history details (if any) relative to this
section.
1706 Unified POS, v1.16.1

Annex C

POS for .NET Implementation Reference

C.1 What is POS for .NET? Updated in Release 1.15

POS for .NET is a class library implementation of the UnifiedPos Standard that provides an open device driver
architecture for applications utilizing the .NET Framework to easily integrate Point-of-Service (“POS”) hardware
on Microsoft Windows Operating Systems.

Note: Beginning with POS for .NET 1.0 , the POS for .NET version number reflects the version of the version of
the UnifiedPOS Specification that it conforms to. Earlier versions of POS for .NET such as POS for .NET 1.0
and POS for .NET 1.1 conform to UnifiedPOS Version 1.8 and UnifiedPOS Version 1.9 respectfully.

Microsoft will not break backwards compatibility with any documented API. Undocumented functionality,
including undocumented APIs, file locations, and schemas are subject to change at any time.

The goals of POS for .NET include:

• Defining an architecture for Win32-based POS device access for the .NET Framework, while maintaining a
close relationship to certain aspects of the existing OPOS implementation of the UnifiedPOS specification.

• Defining a set of POS device interfaces to support a range of POS applications that incorporate the
UnifiedPOS device abstraction. The benefits of the .NET Framework extensions aid in the management of
these devices.

• Provide for a migration path for legacy (existing) OPOS device services to function under the .NET
Framework, albeit without the feature rich functionality that the .NET Framework potentially offers.

Deliverables available for POS for .NET in addition to this document include:

• POS for .NET SDK Documentation: https://aka.ms/p4dn-docs

• POS for .NET Runtime and SDK: https://aka.ms/p4dn-dl
Includes: Class libraries, runtime and code samples

Additional resources for creating POS for .NET service objects from legacy OPOS services:
 Updated in Release 1.11

• A set of software middleware documentation and code, known as a “Shim”, is available that allows for
developers to port their legacy OPOS service objects to run under the .NET framework, using existing OPOS
naming conventions. The “Shim” is not a Microsoft supported product, does not allow for all the .NET
framework benefits, but does allow for an alternative way to migrate to the POS for .NET platform with
minimal code changes. A brief description is included in this annex.
Unified POS, v1.16.1 1707

www.microsoft.com/downloads/details.aspx?FamilyID=ADAA1129-5CB1-415E-B339-E508FCA55CA0&displaylang=en
www.microsoft.com/downloads/details.aspx?FamilyID=ADAA1129-5CB1-415E-B339-E508FCA55CA0&displaylang=en
www.microsoft.com/downloads/details.aspx?FamilyID=ADAA1129-5CB1-415E-B339-E508FCA55CA0&displaylang=en
www.microsoft.com/downloads/details.aspx?FamilyID=ADAA1129-5CB1-415E-B339-E508FCA55CA0&displaylang=en

C.2 Who Should Read This Section Updated in Release 1.15

This section is intended for application developers who require access to POS-specific peripheral devices and
want to implement the UnifiedPOS Standard on a POS for .NET supported Microsoft Windows Operating
System like Microsoft Windows Embedded for Point of Service (WEPOS). This section is also intended for a
programmer who wants to write a POS for .NET Service Object (usually the device manufacturer), or an
application developer who desires a better understanding of how to interface with POS for .NET.

This guide assumes that the reader is familiar with the following:

• The UnifiedPOS Device chapters in this document.

• The typical characteristics of POS peripheral devices.

• Microsoft’s .NET Framework terminology and architecture.

• A working knowledge of the OPOS Implementation Reference found in Appendix A in this document. This is
helpful to give the reader special insight into the Windows based nuances of peripheral devices implemented
under UnifiedPOS.

Familiarity with Microsoft Developer Integration tools including the latest version of Visual Studio and at least
one of the .NET Application Development languages. Note that as there is no Control Programmer’s Guide
(CPG) for POS for .NET, code samples can be found by searching for “POS for .NET SDK” located at: https://
aka.ms/p4dn-docs. 

Note: Examples in this Annex use the Visual C# .NET syntax if method signatures are provided.

C.3 Overview of POS for .NET

The following diagram shows the high level architecture of POS for .NET. An application calls into the
PosExplorer API to enumerate available POS peripherals and to instantiate service objects for them. Once a
service object is instantiated by the PosExplorer API, the application then directly communicates to it. Device-
dependent service objects represent state and behavior of the physical peripheral via properties, methods, and
events.

Unlike the behavior of an OPOS implementation, in POS for .NET there is no notion of control objects. Instead,
the PosExplorer API acts, in some sense, as a sole control object for all device classes. There is a global
configuration store where the configuration of POS for .NET is persisted. PosExplorer API reads what logical
devices are defined in the system and other related information from the store. Also, configuration of the service
objects and physical devices is persisted in the configuration store. Service objects can read and write their
properties from and to the store.
1708 Unified POS, v1.16.1

www.microsoft.com/downloads/details.aspx?FamilyID=ADAA1129-5CB1-415E-B339-E508FCA55CA0&displaylang=en
www.microsoft.com/downloads/details.aspx?FamilyID=ADAA1129-5CB1-415E-B339-E508FCA55CA0&displaylang=en

It is important to note that provision is made for both legacy OPOS CO/SO’s software code and new .NET base
class dependent software code to be used. However, the full rich features of a .NET based service cannot be
expected using an OPOS legacy service object scenario. It is fully expected that over time, full-featured .NET
enabled devices with full featured .NET designed services will become the preferred implementation for .NET
POS applications.

Like OPOS Controls, .NET SO base classes expose properties, methods, and events to a containing Application.
The Service Object is a class that implements a device class interface defined by POS for .NET. The Microsoft
supplied interfaces provide the class interfaces that serve as the basis for the Applications to interact with a POS
peripheral device using properties, methods, and events as defined by the UnifiedPOS standard. Responses are
given to the application through method return values and parameters, properties, and events.

C.4 POS for .NET Definitions

C.4.1 Device Class

A device class is a category of POS devices that share a consistent set of properties, methods, and events.
Examples are CashDrawer and POSPrinter. Some devices support more than one device class. For example, some
POS Printers include a Cash Drawer kickout. Also, some Bar Code Scanners include an integrated Scale.

Application

Service ObjectService Object

Operating System & Drivers

PosExplorer API

Enumerates devices
and instantiates
Service Objects

Hardware

Configuration
Store
Unified POS, v1.16.1 1709

C.4.2 Service Object or SO

A Service Object is a class that implements a device class interface defined by POS for .NET. It exposes
properties and methods that are called by an application.

C.5 Key POS for .NET Features

.NET Interfaces Classes for POS Peripherals

POS for .NET supplies interface classes for peripheral devices defined in the UnifiedPOS specification. The
interface classes provide the entry points as specified in the UnifiedPOS specification, but offer minimal
functionality.

Base Classes for Service Objects

POS for .NET supplies fully functional Base classes that extend their corresponding Basic classes with device-
specific members for nine primary UnifiedPOS device types. You could think of these classes as enhanced or
extended Basic classes. Because Base classes provide a nearly complete implementation, Service Object
developers should derive from these classes whenever possible.

Basic Classes for Service Objects

POS for .NET Basic classes contain basic functional support for peripheral devices defined in the UnifiedPOS
specification. Basic classes provide generic support for opening, claiming, and enabling the device, device
statistics, and management of delivering events to the application. In addition, each Basic class contains a set of
inherited and protected methods that can be implemented by the Service Object.

Plug and Play

POS for .NET helps to bring retail peripherals to the same parity as standard PC desktop peripherals which can
use the Plug and Play (PnP) Windows architecture. PnP is a feature of Windows that, with little or no user
intervention, automatically installs drivers when their corresponding hardware peripherals are plugged into a PC.
Currently PnP is not a feature of a UnifiedPOS implementation but usage of PnP devices is supported along with
UnifiedPOS devices. For more information about supporting PnP, see https://msdn.microsoft.com/library/
default.asp?url=/library/en-us/dnwue/html/ch11j.asp.

Standardized Setup

A standard installation and uninstall procedure support of POS for .NET Service Objects is provided, which
negates the requirement for a special service loader install program (as is required in OPOS).

Device Enumeration

The ability to enumerate all the POS Peripheral devices installed on the system is provided in the POS for .NET
services.
1710 Unified POS, v1.16.1

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwue/html/ch11j.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwue/html/ch11j.asp

Software-Based Device Statistics

Additional native support for hardware-specific device statistics is available in addition to device statistics that
are provided for under UnifiedPOS.

Support for OPOS Service Objects Updated in Release 1.15

POS for .NET provides for full .NET to COM interoperability as part of the library to avoid depreciating the
investment in COM-based Service Objects. See Device Category Support Level table later in this chapter for
specific device types supported through legacy OPOS inter-op.

Service Object Verification Program Updated in Release 1.15

The Service Object Verification Program has been retired. It is the responsibility of the third party authoring POS
for .NET service objects to ensure compatibility.

Device Category Support Level Updated in Release 1.15

The following table shows the various classes and the POS for .NET version in which they were initially
supported.

Device Category OPOS

Inter-op

Interface

Class

Basic

Class

Base

Class

Belt 1.12 1.12

BillAcceptor 1.11 1.11

BillDispenser 1.11 1.11

Biometrics 1.11 1.11

BumpBar 1.14 1.0 1.0

CashChanger 1.14 1.0 1.0

CashDrawer 1.0 1.0 1.0 1.0

CAT (Credit Auth Terminal) 1.12 1.0 1.0

CheckScanner 1.0 1.0 1.0 1.0

CoinAcceptor 1.11 1.11

CoinDispenser 1.1 1.0 1.0

ElectronicJournal 1.11 1.11

ElectronicValueRW 1.12 1.12

FiscalPrinter 1.14 1.0 1.0

Gate 1.12 1.12

HardTotals 1.14 1.0 1.0

ImageScanner 1.11 1.11

ItemDispenser 1.12 1.12

Keylock 1.1 1.0 1.0

Lights 1.12 1.12

LineDisplay 1.0 1.0 1.0 1.0

MICR (Magnetic Ink Char Recognition) 1.1 1.0 1.0

MotionSensor 1.14 1.0 1.0
Unified POS, v1.16.1 1711

C.6 Key Programming Construct Differences from OPOS

C.6.1 Naming Conventions

The library uses Pascal naming conventions for .NET classes and parameters of methods are camel-case. These
conventions are consistent with .NET Guidelines for Class Library Developers. For more information on .NET
Guidelines for Class Library Developers, see: https://msdn.microsoft.com/library/default.asp?url=/library/en-us/
cpgenref/html/cpconnetframeworkdesignguidelines.asp

 Updated in Release 1.13

POS for .NET makes extensive use of enumerations, which serves several purposes. Enumerations force both the
application and its Device Service Object to use in-bounds parameters. This method of type checking helps avoid
bugs that result from out-of-bounds parameters or from passing return values.

In addition, the use of enumerations eliminates the need for a large list of constants in the name space. Best
practices for a library development require range validation for constant data types, something that is
automatically provided by using enumerations.

Note that there are cases where the range of acceptable enumeration values is bound; however, the individual
number of choices can be quite large. An example is the timeout parameter. The possible values are -1 through
the size of an Int32. The value of -1 is interpreted as “wait forever” and all values from 0 through the size of an
Int32 represent the number of milliseconds before a timeout error occurs. Best practices in this case would be to
use a constant (such as -1) to define “wait forever” and to use an Int32 value for the non-wait condition.

The following pages contain a table showing the current OPOS reference implementation constant definitions
and the corresponding POS for .NET enumerations.

MSR (Magnetic Stripe Reader) 1.0 1.0 1.0 1.0

PINPad 1.0 1.0 1.0 1.0

PointCardRW 1.14 1.0 1.0

POSKeyboard 1.0 1.0 1.0 1.0

POSPower 1.1 1.0 1.0

POSPrinter 1.0 1.0 1.0 1.0

RemoteOrderDisplay 1.14 1.0 1.0

RFIDScanner 1.12 1.12 1.12

Scale 1.1 1.0 1.0

Scanner (Bar Code Reader) 1.0 1.0 1.0 1.0

SignatureCapture 1.1 1.0 1.0

SmartCardRW 1.14 1.0 1.0

ToneIndicator 1.1 1.0 1.0
1712 Unified POS, v1.16.1

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconnetframeworkdesignguidelines.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconnetframeworkdesignguidelines.asp

UnifiedPOS Name
POS for .NET

ClassName
Parameter

Type Name
S_CLOSED ControlState enum Constant Closed
S_IDLE ControlState enum Constant Idle
S_BUSY ControlState enum Constant Busy
S_ERROR ControlState enum Constant Error

SUCCESS ErrorCode enum Constant Success
No_Equivalent_Defined0000 ErrorCode enum Constant Unspecified
E_CLOSED ErrorCode enum Constant Closed
E_CLAIMED ErrorCode enum Constant Claimed
E_NOTCLAIMED ErrorCode enum Constant NotClaimed
E_NOSERVICE ErrorCode enum Constant NoService
E_DISABLED ErrorCode enum Constant Disabled
E_ILLEGAL ErrorCode enum Constant Illegal
E_NOHARDWARE ErrorCode enum Constant NoHardware
E_OFFLINE ErrorCode enum Constant Offline
E_NOEXIST ErrorCode enum Constant NoExist
E_EXISTS ErrorCode enum Constant Exists
E_FAILURE ErrorCode enum Constant Failure
E_TIMEOUT ErrorCode enum Constant Timeout
E_BUSY ErrorCode enum Constant Busy
E_EXTENDED ErrorCode enum Constant Extended

ESTATS_ERROR PosCommon System.Int32 ExtendedErrorStatistics

CH_INTERNAL HealthCheckLevel enum Constant Internal
CH_EXTERNAL HealthCheckLevel enum Constant External
CH_INTERACTIVE HealthCheckLevel enum Constant Interactive

PR_NONE PowerReporting enum Constant None
PR_STANDARD PowerReporting enum Constant Standard
PR_ADVANCED PowerReporting enum Constant Advanced

PN_DISABLED PowerNotification enum Constant Disabled
PN_ENABLED PowerNotification enum Constant Enabled

PN_PS_UNKNOWN PowerState enum Constant Unknown
PS_ONLINE PowerState enum Constant Online
PS_OFF PowerState enum Constant Off
PS_OFFLINE PowerState enum Constant Offline
PS_OFF_OFFLINE PowerState enum Constant OffOffline

EL_OUTPUT ErrorLocus enum Constant Output
EL_INPUT ErrorLocus enum Constant Input
EL_INPUT_DATA ErrorLocus enum Constant InputData

ER_RETRY ErrorResponse enum Constant Retry
ER_CLEAR ErrorResponse enum Constant Clear
ER_CONTINUEINPUT ErrorResponse enum Constant ContinueInput

SUE_POWER_ONLINE PosCommon System.Int32 StatusPowerOnline
SUE_POWER_OFF PosCommon System.Int32 StatusPowerOff
SUE_POWER_OFFLINE PosCommon System.Int32 StatusPowerOffline
SUE_POWER_OFF_OFFLINE PosCommon System.Int32 StatusPowerOffOffline

CFV_FIRMWARE_DIFFERENT CompareFirmwareResult enum Constant Different
CFV_FIRMWARE_NEWER CompareFirmwareResult enum Constant Newer
CFV_FIRMWARE_OLDER CompareFirmwareResult enum Constant Older
CFV_FIRMWARE_SAME CompareFirmwareResult enum Constant Same
CFV_FIRMWARE_UNKNOWN CompareFirmwareResult enum Constant Unknown

SUE_UF_FAILED_DEV_OK PosCommon System.Int32 StatusUpdateFirmwareFailedDeviceOk
SUE_UF_FAILED_DEV_UNRECOVERA
BLE

PosCommon System.Int32 StatusUpdateFirmwareFailedDeviceUnrecovera
ble

SUE_UF_FAILED_DEV_NEEDS_FIRM
WARE

PosCommon System.Int32 StatusUpdateFirmwareFailedDeviceNeedsFirm
ware

SUE_UF_FAILED_DEV_UNKNOWN PosCommon System.Int32 StatusUpdateFirmwareFailedDeviceUnknown
SUE_UF_COMPLETE PosCommon System.Int32 StatusUpdateFirmwareComplete
SUE_UF_COMPLETE_DEV_NOT_RES
TORED

PosCommon System.Int32 StatusUpdateFirmwareCompleteDeviceNotRest
ored

SUE_UF_PROGRESS + 1 to 100 PosCommon System.Int32 StatusUpdateFirmwareProgress

FOREVER PosCommon System.Int32 WaitForever
Unified POS, v1.16.1 1713

UnifiedPOS Name
POS for .NET

ClassName
Parameter

Type Name
BB_UID_1 DeviceUnits enum Constant Unit1
BB_UID_2 DeviceUnits enum Constant Unit2
BB_UID_3 DeviceUnits enum Constant Unit3
BB_UID_4 DeviceUnits enum Constant Unit4
BB_UID_5 DeviceUnits enum Constant Unit5
BB_UID_6 DeviceUnits enum Constant Unit6
BB_UID_7 DeviceUnits enum Constant Unit7
BB_UID_8 DeviceUnits enum Constant Unit8
BB_UID_9 DeviceUnits enum Constant Unit9
BB_UID_10 DeviceUnits enum Constant Unit10
BB_UID_11 DeviceUnits enum Constant Unit11
BB_UID_12 DeviceUnits enum Constant Unit12
BB_UID_13 DeviceUnits enum Constant Unit13
BB_UID_14 DeviceUnits enum Constant Unit14
BB_UID_15 DeviceUnits enum Constant Unit15
BB_UID_16 DeviceUnits enum Constant Unit16
BB_UID_17 DeviceUnits enum Constant Unit17
BB_UID_18 DeviceUnits enum Constant Unit18
BB_UID_19 DeviceUnits enum Constant Unit19
BB_UID_20 DeviceUnits enum Constant Unit20
BB_UID_21 DeviceUnits enum Constant Unit21
BB_UID_22 DeviceUnits enum Constant Unit22
BB_UID_23 DeviceUnits enum Constant Unit23
BB_UID_24 DeviceUnits enum Constant Unit24
BB_UID_25 DeviceUnits enum Constant Unit25
BB_UID_26 DeviceUnits enum Constant Unit26
BB_UID_27 DeviceUnits enum Constant Unit27
BB_UID_28 DeviceUnits enum Constant Unit28
BB_UID_29 DeviceUnits enum Constant Unit29
BB_UID_30 DeviceUnits enum Constant Unit30
BB_UID_31 DeviceUnits enum Constant Unit31
BB_UID_32 DeviceUnits enum Constant Unit32

BB_DE_KEY BumpBar System.Int32 DataEventKey

CASH_SUE_DRAWERCLOSED CashDrawerStatus enum Constant Closed
CASH_SUE_DRAWEROPEN CashDrawerStatus enum Constant Open

CAT_PAYMENT_LUMP PaymentCondition enum Constant Lump
CAT_PAYMENT_BONUS_1 PaymentCondition enum Constant Bonus1
CAT_PAYMENT_BONUS_2 PaymentCondition enum Constant Bonus2
CAT_PAYMENT_BONUS_3 PaymentCondition enum Constant Bonus3
CAT_PAYMENT_BONUS_4 PaymentCondition enum Constant Bonus4
CAT_PAYMENT_BONUS_5 PaymentCondition enum Constant Bonus5
CAT_PAYMENT_INSTALLMENT_1 PaymentCondition enum Constant Installment1
CAT_PAYMENT_INSTALLMENT_2 PaymentCondition enum Constant Installment2
CAT_PAYMENT_INSTALLMENT_3 PaymentCondition enum Constant Installment3
CAT_PAYMENT_BONUS_COMBINATION_1 PaymentCondition enum Constant BonusCombination1
CAT_PAYMENT_BONUS_COMBINATION_2 PaymentCondition enum Constant BonusCombination2
CAT_PAYMENT_BONUS_COMBINATION_3 PaymentCondition enum Constant BonusCombination3
CAT_PAYMENT_BONUS_COMBINATION_4 PaymentCondition enum Constant BonusCombination4
CAT_PAYMENT_REVOLVING PaymentCondition enum Constant Revolving
CAT_PAYMENT_DEBIT PaymentCondition enum Constant Debit

CAT_TRANSACTION_SALES CreditTransactionType enum Constant Sales
CAT_TRANSACTION_VOID CreditTransactionType enum Constant Void
CAT_TRANSACTION_REFUND CreditTransactionType enum Constant Refund
CAT_TRANSACTION_VOIDPRESALES CreditTransactionType enum Constant VoidPreSales
CAT_TRANSACTION_COMPLETION CreditTransactionType enum Constant Completion
CAT_TRANSACTION_PRESALES CreditTransactionType enum Constant PreSales
CAT_TRANSACTION_CHECKCARD CreditTransactionType enum Constant CheckCard

CAT_MEDIA_UNSPECIFIED PaymentMedia enum Constant Unspecified
CAT_MEDIA_NONDEFINE PaymentMedia No_Equivalent_Defined
CAT_MEDIA_CREDIT PaymentMedia enum Constant Credit
CAT_MEDIA_DEBIT PaymentMedia enum Constant Debit

ECAT_CENTERERROR Cat System.Int32 ExtendedErrorCenterError
ECAT_COMMANDERROR Cat System.Int32 ExtendedErrorCommandError
ECAT_RESET Cat System.Int32 ExtendedErrorReset
ECAT_COMMUNICATIONERROR Cat System.Int32 ExtendedErrorCommunicationErro

r
ECAT_DAILYLOGOVERFLOW Cat System.Int32 ExtendedErrorDailyLogOverflow
1714 Unified POS, v1.16.1

UnifiedPOS Name
POS for .NET

ClassName
Parameter

Type Name
CAT_DL_NONE CatLogs enum Constant None
CAT_DL_REPORTING CatLogs enum Constant Reporting
CAT_DL_SETTLEMENT CatLogs enum Constant Settlement
CAT_DL_REPORTING_SETTLEMENT CatLogs enum Constant ReportingAndSettlement

CHAN_STATUS_OK CashChangerStatus enum Constant OK
CHAN_STATUS_EMPTY CashChangerStatus enum Constant Empty
CHAN_STATUS_NEAREMPTY CashChangerStatus enum Constant NearEmpty
CHAN_STATUS_EMPTYOK CashChangerStatus No_Equivalent_Defined

No_Equivalent_Defined CashChangerFullStatus enum Constant OK
CHAN_STATUS_FULL CashChangerFullStatus enum Constant Full
CHAN_STATUS_NEARFULL CashChangerFullStatus enum Constant NearFull
CHAN_STATUS_FULLOK CashChangerFullStatus No_Equivalent_Defined

CHAN_STATUS_JAM CashChangerStatus enum Constant Jam
CHAN_STATUS_JAMOK CashChangerStatus No_Equivalent_Defined

CHAN_STATUS_ASYNC CashChanger System.Int32 StatusAsync

CHAN_STATUS_DEPOSIT_START CashDepositStatus enum Constant Start
CHAN_STATUS_DEPOSIT_END CashDepositStatus enum Constant End
CHAN_STATUS_DEPOSIT_NONE CashDepositStatus enum Constant None
CHAN_STATUS_DEPOSIT_COUNT CashDepositStatus enum Constant Count
CHAN_STATUS_DEPOSIT_JAM CashDepositStatus enum Constant Jam

CHAN_DEPOSIT_CHANGE CashDepositAction enum Constant Change
CHAN_DEPOSIT_NOCHANGE CashDepositAction enum Constant NoChange
CHAN_DEPOSIT_REPAY CashDepositAction enum Constant Repay

CHAN_DEPOSIT_PAUSE CashDepositPause enum Constant Pause
CHAN_DEPOSIT_RESTART CashDepositPause enum Constant Restart

ECHAN_OVERDISPENSE CashChanger System.Int32 ExtendedErrorOverDispense

CHK_CCL_MONO CheckColors enum Constant Mono
CHK_CCL_GRAYSCALE CheckColors enum Constant GrayScale
CHK_CCL_16 CheckColors enum Constant Color16
CHK_CCL_256 CheckColors enum Constant Color256
CHK_CCL_FULL CheckColors enum Constant Full

CHK_CIF_NATIVE CheckImageFormats enum Constant Native
CHK_CIF_TIFF CheckImageFormats enum Constant Tiff
CHK_CIF_BMP CheckImageFormats enum Constant Bmp
CHK_CIF_JPEG CheckImageFormats enum Constant Jpeg
CHK_CIF_GIF CheckImageFormats enum Constant Gif

CHK_CL_MONO CheckColors enum Constant Mono
CHK_CL_GRAYSCALE CheckColors enum Constant GrayScale
CHK_CL_16 CheckColors enum Constant Color16
CHK_CL_256 CheckColors enum Constant Color256
CHK_CL_FULL CheckColors enum Constant Full

CHK_IF_NATIVE CheckImageFormats enum Constant Native
CHK_IF_TIFF CheckImageFormats enum Constant Tiff
CHK_IF_BMP CheckImageFormats enum Constant Bmp
CHK_IF_JPEG CheckImageFormats enum Constant Jpeg
CHK_IF_GIF CheckImageFormats enum Constant Gif

CHK_IMS_EMPTY ImageMemoryStatus enum Constant Empty
CHK_IMS_OK ImageMemoryStatus enum Constant OK
CHK_IMS_FULL ImageMemoryStatus enum Constant Full

CHK_MM_DOTS MapMode enum Constant Dots
CHK_MM_TWIPS MapMode enum Constant Twips
CHK_MM_ENGLISH MapMode enum Constant English
CHK_MM_METRIC MapMode enum Constant Metric

CHK_CLR_ALL CheckImageClear enum Constant All
CHK_CLR_BY_FILEID CheckImageClear enum Constant FileId
CHK_CLR_BY_FILEINDEX CheckImageClear enum Constant FileIndex
CHK_CLR_BY_IMAGETAGDATA CheckImageClear enum Constant ImageTagData
Unified POS, v1.16.1 1715

UnifiedPOS Name
POS for .NET

ClassName
Parameter

Type Name
CHK_CROP_AREA_ENTIRE_IMAGE CheckScanner System.Int32 CropEntireImage
CHK_CROP_AREA_RESET_ALL CheckScanner System.Int32 CropResetAll
CHK_CROP_AREA_RIGHT CheckScanner System.Int32 CropRight
CHK_CROP_AREA_BOTTOM CheckScanner System.Int32 CropBottom

CHK_LOCATE_BY_FILEID CheckImageLocate enum Constant FileId
CHK_LOCATE_BY_FILEINDEX CheckImageLocate enum Constant FileIndex
CHK_LOCATE_BY_IMAGETAGDATA CheckImageLocate enum Constant ImageTagData

CHK_SUE_SCANCOMPLETE CheckScannerStatus enum Constant ScanComplete

ECHK_NOCHECK CheckScanner System.Int32 ExtendedErrorNoCheck
ECHK_CHECK CheckScanner System.Int32 ExtendedErrorCheck
ECHK_NOROOM CheckScanner System.Int32 ExtendedErrorNoRoom

COIN_STATUS_OK CoinDispenserStatus enum Constant OK
COIN_STATUS_EMPTY CoinDispenserStatus enum Constant Empty
COIN_STATUS_NEAREMPTY CoinDispenserStatus enum Constant NearEmpty
COIN_STATUS_JAM CoinDispenserStatus enum Constant Jam

DISP_CB_NOBLINK DisplayBlink enum Constant None
DISP_CB_BLINKALL DisplayBlink enum Constant All
DISP_CB_BLINKEACH DisplayBlink enum Constant Each

DISP_CCS_NUMERIC CharacterSetCapability enum Constant Numeric
DISP_CCS_ALPHA CharacterSetCapability enum Constant Alpha
DISP_CCS_ASCII CharacterSetCapability enum Constant Ascii
DISP_CCS_KANA CharacterSetCapability enum Constant Kana
DISP_CCS_KANJI CharacterSetCapability enum Constant Kanji
DISP_CCS_UNICODE CharacterSetCapability enum Constant Unicode

DISP_CCT_NONE DisplayCursors enum Constant None
DISP_CCT_FIXED DisplayCursors enum Constant Fixed
DISP_CCT_BLOCK DisplayCursors enum Constant Block
DISP_CCT_HALFBLOCK DisplayCursors enum Constant HalfBlock
DISP_CCT_UNDERLINE DisplayCursors enum Constant Underline
DISP_CCT_REVERSE DisplayCursors enum Constant Reverse
DISP_CCT_OTHER DisplayCursors enum Constant Other
DISP_CCT_BLINK DisplayCursors enum Constant Blink

DISP_CRB_NONE DisplayReadBack enum Constant None
DISP_CRB_SINGLE DisplayReadBack enum Constant Single

DISP_CR_NONE DisplayReverse enum Constant None
DISP_CR_REVERSEALL DisplayReverse enum Constant All
DISP_CR_REVERSEEACH DisplayReverse enum Constant Each

DISP_CS_UNICODE PosCommon System.Int32 CharacterSetUnicode
DISP_CS_ASCII PosCommon System.Int32 CharacterSetAscii
DISP_CS_WINDOWS PosCommon System.Int32 No_Equivalent_Defined
DISP_CS_ANSI PosCommon System.Int32 CharacterSetAnsi
DISP_CT_NONE DisplayCursors enum Constant None

DISP_CT_FIXED DisplayCursors enum Constant Fixed
DISP_CT_BLOCK DisplayCursors enum Constant Block
DISP_CT_HALFBLOCK DisplayCursors enum Constant HalfBlock
DISP_CT_UNDERLINE DisplayCursors enum Constant Underline
DISP_CT_REVERSE DisplayCursors enum Constant Reverse
DISP_CT_OTHER DisplayCursors enum Constant Other
DISP_CT_BLINK DisplayCursors enum Constant Blink

DISP_MT_NONE DisplayMarqueeType enum Constant None
DISP_MT_UP DisplayMarqueeType enum Constant Up
DISP_MT_DOWN DisplayMarqueeType enum Constant Down
DISP_MT_LEFT DisplayMarqueeType enum Constant Left
DISP_MT_RIGHT DisplayMarqueeType enum Constant Right
DISP_MT_INIT DisplayMarqueeType enum Constant Init

DISP_MF_WALK DisplayMarqueeFormat enum Constant Walk
DISP_MF_PLACE DisplayMarqueeFormat enum Constant Place

DISP_DT_NORMAL DisplayTextMode enum Constant Normal
DISP_DT_BLINK DisplayTextMode enum Constant Blink
DISP_DT_REVERSE DisplayTextMode enum Constant Reverse
DISP_DT_BLINK_REVERSE DisplayTextMode enum Constant BlinkReverse
1716 Unified POS, v1.16.1

UnifiedPOS Name
POS for .NET

ClassName
Parameter

Type Name
DISP_ST_UP DisplayScrollText enum Constant Up
DISP_ST_DOWN DisplayScrollText enum Constant Down
DISP_ST_LEFT DisplayScrollText enum Constant Left
DISP_ST_RIGHT DisplayScrollText enum Constant Right

DISP_SD_OFF DisplaySetDescriptor enum Constant Off
DISP_SD_ON DisplaySetDescriptor enum Constant On
DISP_SD_BLINK DisplaySetDescriptor enum Constant Blink

DISP_BM_ASIS LineDisplay System.Int32 DisplayBitmapAsIs
DISP_BM_LEFT LineDisplay System.Int32 DisplayBitmapLeft
DISP_BM_CENTER LineDisplay System.Int32 DisplayBitmapCenter
DISP_BM_RIGHT LineDisplay System.Int32 DisplayBitmapRight
DISP_BM_TOP LineDisplay System.Int32 DisplayBitmapTop
DISP_BM_BOTTOM LineDisplay System.Int32 DisplayBitmapBottom
EDISP_TOOBIG LineDisplay System.Int32 ExtendedErrorTooBig
EDISP_BADFORMAT LineDisplay System.Int32 ExtendedErrorBadFormat

FPTR_S_JOURNAL FiscalPrinterStations enum Constant Journal
FPTR_S_RECEIPT FiscalPrinterStations enum Constant Receipt
FPTR_S_SLIP FiscalPrinterStations enum Constant Slip
FPTR_S_JOURNAL_RECEIPT FiscalPrinterStations enum Constant JournalReceipt
No_Equivalent_Defined FiscalPrinterStations enum Constant JournalSlip
No_Equivalent_Defined FiscalPrinterStations enum Constant ReceiptSlip

FPTR_AC_BRC FiscalCurrency enum Constant BrazilianCruceiro
FPTR_AC_BGL FiscalCurrency enum Constant BulgarianLev
FPTR_AC_EUR FiscalCurrency enum Constant Euro
FPTR_AC_GRD FiscalCurrency enum Constant GreekDrachma
FPTR_AC_HUF FiscalCurrency enum Constant HungarianForint
FPTR_AC_ITL FiscalCurrency enum Constant ItalianLira
FPTR_AC_PLZ FiscalCurrency enum Constant PolishZloty
FPTR_AC_ROL FiscalCurrency enum Constant RomanianLeu
FPTR_AC_RUR FiscalCurrency enum Constant RussianRouble
FPTR_AC_TRL FiscalCurrency enum Constant TurkishLira

FPTR_CID_FIRST FiscalContractorId enum Constant First
FPTR_CID_SECOND FiscalContractorId enum Constant Second
FPTR_CID_SINGLE FiscalContractorId enum Constant Single

FPTR_CC_BRAZIL FiscalCountryCodes enum Constant Brazil
FPTR_CC_GREECE FiscalCountryCodes enum Constant Greece
FPTR_CC_HUNGARY FiscalCountryCodes enum Constant Hungary
FPTR_CC_ITALY FiscalCountryCodes enum Constant Italy
FPTR_CC_POLAND FiscalCountryCodes enum Constant Poland
FPTR_CC_TURKEY FiscalCountryCodes enum Constant Turkey
FPTR_CC_RUSSIA FiscalCountryCodes enum Constant Russia
FPTR_CC_BULGARIA FiscalCountryCodes enum Constant Bulgaria
FPTR_CC_ROMANIA FiscalCountryCodes enum Constant Romania

FPTR_DT_CONF FiscalDateType enum Constant Configuration
FPTR_DT_EOD FiscalDateType enum Constant EndOfDay
FPTR_DT_RESET FiscalDateType enum Constant Reset
FPTR_DT_RTC FiscalDateType enum Constant RealTimeClock
FPTR_DT_VAT FiscalDateType enum Constant VatChange

FPTR_EL_NONE FiscalErrorLevel enum Constant None
FPTR_EL_RECOVERABLE FiscalErrorLevel enum Constant Recoverable
FPTR_EL_FATAL FiscalErrorLevel enum Constant Fatal
FPTR_EL_BLOCKED FiscalErrorLevel enum Constant Blocked

FPTR_PS_MONITOR FiscalPrinterState enum Constant Monitor
FPTR_PS_FISCAL_RECEIPT FiscalPrinterState enum Constant FiscalReceipt
FPTR_PS_FISCAL_RECEIPT_TOTAL FiscalPrinterState enum Constant FiscalReceiptTotal
FPTR_PS_FISCAL_RECEIPT_ENDIN
G

FiscalPrinterState enum Constant FiscalReceiptEnding

FPTR_PS_FISCAL_DOCUMENT FiscalPrinterState enum Constant FiscalDocument
FPTR_PS_FIXED_OUTPUT FiscalPrinterState enum Constant FixedOutput
FPTR_PS_ITEM_LIST FiscalPrinterState enum Constant ItemList
FPTR_PS_LOCKED FiscalPrinterState enum Constant Locked
FPTR_PS_NONFISCAL FiscalPrinterState enum Constant NonFiscal
FPTR_PS_REPORT FiscalPrinterState enum Constant Report

FPTR_RS_RECEIPT FiscalReceiptStation enum Constant Receipt
FPTR_RS_SLIP FiscalReceiptStation enum Constant Slip
Unified POS, v1.16.1 1717

UnifiedPOS Name
POS for .NET

ClassName
Parameter

Type Name
FPTR_RT_CASH_IN FiscalReceiptType enum Constant CashIn
FPTR_RT_CASH_OUT FiscalReceiptType enum Constant CashOut
FPTR_RT_GENERIC FiscalReceiptType enum Constant Generic
FPTR_RT_SALES FiscalReceiptType enum Constant Sales
FPTR_RT_SERVICE FiscalReceiptType enum Constant Service
FPTR_RT_SIMPLE_INVOICE FiscalReceiptType enum Constant SimpleInvoice

FPTR_MT_ADVANCE FiscalMessageType enum Constant Advance
FPTR_MT_ADVANCE_PAID FiscalMessageType enum Constant AdvancePaid
FPTR_MT_AMOUNT_TO_BE_PAID FiscalMessageType enum Constant AmountToBePaid
FPTR_MT_AMOUNT_TO_BE_PAID_B
ACK

FiscalMessageType enum Constant AmountToBePaidBack

FPTR_MT_CARD FiscalMessageType enum Constant Card
FPTR_MT_CARD_NUMBER FiscalMessageType enum Constant CardNumber
FPTR_MT_CARD_TYPE FiscalMessageType enum Constant CardType
FPTR_MT_CASH FiscalMessageType enum Constant Cash
FPTR_MT_CASHIER FiscalMessageType enum Constant Cashier
FPTR_MT_CASH_REGISTER_NUMBE
R

FiscalMessageType enum Constant CashRegisterNumber

FPTR_MT_CHANGE FiscalMessageType enum Constant Change
FPTR_MT_CHEQUE FiscalMessageType enum Constant Cheque
FPTR_MT_CLIENT_NUMBER FiscalMessageType enum Constant ClientNumber
FPTR_MT_CLIENT_SIGNATURE FiscalMessageType enum Constant ClientSignature
FPTR_MT_COUNTER_STATE FiscalMessageType enum Constant CounterState
FPTR_MT_CREDIT_CARD FiscalMessageType enum Constant CreditCard
FPTR_MT_CURRENCY FiscalMessageType enum Constant Currency
FPTR_MT_CURRENCY_VALUE FiscalMessageType enum Constant CurrencyValue
FPTR_MT_DEPOSIT FiscalMessageType enum Constant Deposit
FPTR_MT_DEPOSIT_RETURNED FiscalMessageType enum Constant DepositReturned
FPTR_MT_DOT_LINE FiscalMessageType enum Constant DotLine
FPTR_MT_DRIVER_NUMB FiscalMessageType enum Constant DriverNumber
FPTR_MT_EMPTY_LINE FiscalMessageType enum Constant EmptyLine
FPTR_MT_FREE_TEXT FiscalMessageType enum Constant FreeText
FPTR_MT_FREE_TEXT_WITH_DAY_L
IMIT

FiscalMessageType enum Constant FreeTextWithDayLimit

FPTR_MT_GIVEN_DISCOUNT FiscalMessageType enum Constant GivenDiscount
FPTR_MT_LOCAL_CREDIT FiscalMessageType enum Constant LocalCredit
FPTR_MT_MILEAGE_KM FiscalMessageType enum Constant MileageKilometers
FPTR_MT_NOTE FiscalMessageType enum Constant Note
FPTR_MT_PAID FiscalMessageType enum Constant Paid
FPTR_MT_PAY_IN FiscalMessageType enum Constant PayIn
FPTR_MT_POINT_GRANTED FiscalMessageType enum Constant PointGranted
FPTR_MT_POINTS_BONUS FiscalMessageType enum Constant PointsBonus
FPTR_MT_POINTS_RECEIPT FiscalMessageType enum Constant PointsReceipt
FPTR_MT_POINTS_TOTAL FiscalMessageType enum Constant PointsTotal
FPTR_MT_PROFITED FiscalMessageType enum Constant Profited
FPTR_MT_RATE FiscalMessageType enum Constant Rate
FPTR_MT_REGISTER_NUMB FiscalMessageType enum Constant RegisterNumber
FPTR_MT_SHIFT_NUMBER FiscalMessageType enum Constant ShiftNumber
FPTR_MT_STATE_OF_AN_ACCOUNT FiscalMessageType enum Constant StateOfAnAccount
FPTR_MT_SUBSCRIPTION FiscalMessageType enum Constant Subscription
FPTR_MT_TABLE FiscalMessageType enum Constant Table
FPTR_MT_THANK_YOU_FOR_LOYAL
TY

FiscalMessageType enum Constant ThankYouForLoyalty

FPTR_MT_TRANSACTION_NUMB FiscalMessageType enum Constant TransactionNumber
FPTR_MT_VALID_TO FiscalMessageType enum Constant ValidTo
FPTR_MT_VOUCHER FiscalMessageType enum Constant Voucher
FPTR_MT_VOUCHER_PAID FiscalMessageType enum Constant VoucherPaid
FPTR_MT_VOUCHER_VALUE FiscalMessageType enum Constant VoucherValue
FPTR_MT_WITH_DISCOUNT FiscalMessageType enum Constant WithDiscount
FPTR_MT_WITHOUT_UPLIFT FiscalMessageType enum Constant WithoutUplift

FPTR_SS_FULL_LENGTH FiscalSlipSelection enum Constant FullLength
FPTR_SS_VALIDATION FiscalSlipSelection enum Constant Validation

FPTR_TT_DOCUMENT FiscalTotalizerType enum Constant Document
FPTR_TT_DAY FiscalTotalizerType enum Constant Day
FPTR_TT_RECEIPT FiscalTotalizerType enum Constant Receipt
FPTR_TT_GRAND FiscalTotalizerType enum Constant Grand
1718 Unified POS, v1.16.1

UnifiedPOS Name
POS for .NET

ClassNam
e

Parameter
Type Name

FPTR_GD_CURRENT_TOTAL FiscalData enum Constant CurrentTotal
FPTR_GD_DAILY_TOTAL FiscalData enum Constant DailyTotal
FPTR_GD_RECEIPT_NUMBER FiscalData enum Constant ReceiptNumber
FPTR_GD_REFUND FiscalData enum Constant Refund
FPTR_GD_NOT_PAID FiscalData enum Constant NotPaid
FPTR_GD_MID_VOID FiscalData enum Constant NumberOfVoidedReceipts
FPTR_GD_Z_REPORT FiscalData enum Constant ZReport
FPTR_GD_GRAND_TOTAL FiscalData enum Constant GrandTotal
FPTR_GD_PRINTER_ID FiscalData enum Constant PrinterId
FPTR_GD_FIRMWARE FiscalData enum Constant Firmware
FPTR_GD_RESTART FiscalData enum Constant Restart
FPTR_GD_REFUND_VOID FiscalData enum Constant RefundVoid
FPTR_GD_NUMB_CONFIG_BLOCK FiscalData enum Constant NumberOfConfigurationBlocks
FPTR_GD_NUMB_CURRENCY_BLOCK FiscalData enum Constant NumberOfCurrencyBlocks
FPTR_GD_NUMB_HDR_BLOCK FiscalData enum Constant NumberOfHeaderBlocks
FPTR_GD_NUMB_RESET_BLOCK FiscalData enum Constant NumberOfResetBlocks
FPTR_GD_NUMB_VAT_BLOCK FiscalData enum Constant NumberOfVatBlocks
FPTR_GD_FISCAL_DOC FiscalData enum Constant FiscalDocument
FPTR_GD_FISCAL_DOC_VOID FiscalData enum Constant FiscalDocumentVoid
FPTR_GD_FISCAL_REC FiscalData enum Constant FiscalReceipt
FPTR_GD_FISCAL_REC_VOID FiscalData enum Constant FiscalReceiptVoid
FPTR_GD_NONFISCAL_DOC FiscalData enum Constant NonFiscalDocument
FPTR_GD_NONFISCAL_DOC_VOID FiscalData enum Constant NonFiscalDocumentVoid
FPTR_GD_NONFISCAL_REC FiscalData enum Constant NonFiscalReceipt
FPTR_GD_SIMP_INVOICE FiscalData enum Constant SimplifiedInvoice
FPTR_GD_TENDER FiscalData enum Constant Tender
FPTR_GD_LINECOUNT FiscalData enum Constant LineCount
FPTR_GD_DESCRIPTION_LENGTH FiscalData enum Constant DescriptionLength

FPTR_PDL_CASH FiscalPrinter System.Int32 PaymentDescriptionCash
FPTR_PDL_CHEQUE FiscalPrinter System.Int32 PaymentDescriptionCheque
FPTR_PDL_CHITTY FiscalPrinter System.Int32 PaymentDescriptionChitty
FPTR_PDL_COUPON FiscalPrinter System.Int32 PaymentDescriptionCoupon
FPTR_PDL_CURRENCY FiscalPrinter System.Int32 PaymentDescriptionCurrency
FPTR_PDL_DRIVEN_OFF FiscalPrinter System.Int32 PaymentDescriptionDrivenOff
FPTR_PDL_EFT_IMPRINTER FiscalPrinter System.Int32 PaymentDescriptionEftImprinter
FPTR_PDL_EFT_TERMINAL FiscalPrinter System.Int32 PaymentDescriptionEftTerminal
FPTR_PDL_TERMINAL_IMPRINTER FiscalPrinter System.Int32 PaymentDescriptionTerminalImprinter
FPTR_PDL_FREE_GIFT FiscalPrinter System.Int32 PaymentDescriptionFreeGift
FPTR_PDL_GIRO FiscalPrinter System.Int32 PaymentDescriptionGiro
FPTR_PDL_HOME FiscalPrinter System.Int32 PaymentDescriptionHome
FPTR_PDL_IMPRINTER_WITH_ISSUER FiscalPrinter System.Int32 PaymentDescriptionImprinterWithIssuer
FPTR_PDL_LOCAL_ACCOUNT FiscalPrinter System.Int32 PaymentDescriptionLocalAccount
FPTR_PDL_LOCAL_ACCOUNT_CARD FiscalPrinter System.Int32 PaymentDescriptionLocalAccountCard
FPTR_PDL_PAY_CARD FiscalPrinter System.Int32 PaymentDescriptionPayCard
FPTR_PDL_PAY_CARD_MANUAL FiscalPrinter System.Int32 PaymentDescriptionPayCardManual
FPTR_PDL_PREPAY FiscalPrinter System.Int32 PaymentDescriptionPrepay
FPTR_PDL_PUMP_TEST FiscalPrinter System.Int32 PaymentDescriptionPumpTest
FPTR_PDL_SHORT_CREDIT FiscalPrinter System.Int32 PaymentDescriptionShortCredit
FPTR_PDL_STAFF FiscalPrinter System.Int32 PaymentDescriptionStaff
FPTR_PDL_VOUCHER FiscalPrinter System.Int32 PaymentDescriptionVoucher

FPTR_LC_ITEM FiscalPrinter System.Int32 LineCountItem
FPTR_LC_ITEM_VOID FiscalPrinter System.Int32 LineCountItemVoid
FPTR_LC_DISCOUNT FiscalPrinter System.Int32 LineCountDiscount
FPTR_LC_DISCOUNT_VOID FiscalPrinter System.Int32 LineCountDiscountVoid
FPTR_LC_SURCHARGE FiscalPrinter System.Int32 LineCountSurcharge
FPTR_LC_SURCHARGE_VOID FiscalPrinter System.Int32 LineCountSurchargeVoid
FPTR_LC_REFUND FiscalPrinter System.Int32 LineCountRefund
FPTR_LC_REFUND_VOID FiscalPrinter System.Int32 LineCountRefundVoid
FPTR_LC_SUBTOTAL_DISCOUNT FiscalPrinter System.Int32 LineCountSubtotalDiscount
FPTR_LC_SUBTOTAL_DISCOUNT_VOID FiscalPrinter System.Int32 LineCountSubtotalDiscountVoid
FPTR_LC_SUBTOTAL_SURCHARGE FiscalPrinter System.Int32 LineCountSubtotalSurcharge
FPTR_LC_SUBTOTAL_SURCHARGE_VO
ID

FiscalPrinter System.Int32 LineCountSubtotalSurchargeVoid

FPTR_LC_COMMENT FiscalPrinter System.Int32 LineCountComment
FPTR_LC_SUBTOTAL FiscalPrinter System.Int32 LineCountSubtotal
FPTR_LC_TOTAL FiscalPrinter System.Int32 LineCountTotal
Unified POS, v1.16.1 1719

UnifiedPOS Name
POS for .NET

ClassName
Parameter

Type Name
FPTR_DL_ITEM FiscalPrinter System.Int32 DescriptionLengthItem
FPTR_DL_ITEM_ADJUSTMENT FiscalPrinter System.Int32 DescriptionLengthItemAdjustment
FPTR_DL_ITEM_FUEL FiscalPrinter System.Int32 DescriptionLengthItemFuel
FPTR_DL_ITEM_FUEL_VOID FiscalPrinter System.Int32 DescriptionLengthItemFuelVoid
FPTR_DL_NOT_PAID FiscalPrinter System.Int32 DescriptionLengthNotPaid
FPTR_DL_PACKAGE_ADJUSTMENT FiscalPrinter System.Int32 DescriptionLengthPackageAdjustment
FPTR_DL_REFUND FiscalPrinter System.Int32 DescriptionLengthRefund
FPTR_DL_REFUND_VOID FiscalPrinter System.Int32 DescriptionLengthRefundVoid
FPTR_DL_SUBTOTAL_ADJUSTMENT FiscalPrinter System.Int32 DescriptionLengthSubtotalAdjustment
FPTR_DL_TOTAL FiscalPrinter System.Int32 DescriptionLengthTotal
FPTR_DL_VOID FiscalPrinter System.Int32 DescriptionLengthVoid
FPTR_DL_VOID_ITEM FiscalPrinter System.Int32 DescriptionLengthVoidItem

FPTR_GT_GROSS FiscalTotalizer enum Constant Gross
FPTR_GT_NET FiscalTotalizer enum Constant Net
FPTR_GT_DISCOUNT FiscalTotalizer enum Constant Discount
FPTR_GT_DISCOUNT_VOID FiscalTotalizer enum Constant DiscountVoid
FPTR_GT_ITEM FiscalTotalizer enum Constant Item
FPTR_GT_ITEM_VOID FiscalTotalizer enum Constant ItemVoid
FPTR_GT_NOT_PAID FiscalTotalizer enum Constant NotPaid
FPTR_GT_REFUND FiscalTotalizer enum Constant Refund
FPTR_GT_REFUND_VOID FiscalTotalizer enum Constant RefundVoid
FPTR_GT_SUBTOTAL_DISCOUNT FiscalTotalizer enum Constant SubtotalDiscount
FPTR_GT_SUBTOTAL_DISCOUNT_VOID FiscalTotalizer enum Constant SubtotalDiscountVoid
FPTR_GT_SUBTOTAL_SURCHARGES FiscalTotalizer enum Constant SubtotalSurcharges
FPTR_GT_SUBTOTAL_SURCHARGES_VOID FiscalTotalizer enum Constant SubtotalSurchargesVoid
FPTR_GT_SURCHARGE FiscalTotalizer enum Constant Surcharge
FPTR_GT_SURCHARGE_VOID FiscalTotalizer enum Constant SurchargeVoid
FPTR_GT_VAT FiscalTotalizer enum Constant Vat
FPTR_GT_VAT_CATEGORY FiscalTotalizer enum Constant VatCategory

FPTR_AT_AMOUNT_DISCOUNT FiscalAdjustment enum Constant AmountDiscount
FPTR_AT_AMOUNT_SURCHARGE FiscalAdjustment enum Constant AmountSurcharge
FPTR_AT_PERCENTAGE_DISCOUNT FiscalAdjustment enum Constant PercentageDiscount
FPTR_AT_PERCENTAGE_SURCHARGE FiscalAdjustment enum Constant PercentageSurcharge

FPTR_RT_ORDINAL FiscalReport enum Constant Ordinal
FPTR_RT_DATE FiscalReport enum Constant Date

FPTR_SC_EURO FiscalCurrency enum Constant Euro

FPTR_SUE_COVER_OPEN PrinterStatus enum Constant CoverOpen
FPTR_SUE_COVER_OK PrinterStatus enum Constant CoverOK
FPTR_SUE_JRN_COVER_OPEN PrinterStatus enum Constant JournalCoverOpen
FPTR_SUE_JRN_COVER_OK PrinterStatus enum Constant JournalCoverOK
FPTR_SUE_REC_COVER_OPEN PrinterStatus enum Constant ReceiptCoverOpen
FPTR_SUE_REC_COVER_OK PrinterStatus enum Constant ReceiptCoverOK
FPTR_SUE_SLP_COVER_OPEN PrinterStatus enum Constant SlipCoverOpen
FPTR_SUE_SLP_COVER_OK PrinterStatus enum Constant SlipCoverOK

FPTR_SUE_JRN_EMPTY PrinterStatus enum Constant JournalEmpty
FPTR_SUE_JRN_NEAREMPTY PrinterStatus enum Constant JournalNearEmpty
FPTR_SUE_JRN_PAPEROK PrinterStatus enum Constant JournalPaperOK

FPTR_SUE_REC_EMPTY PrinterStatus enum Constant ReceiptEmpty
FPTR_SUE_REC_NEAREMPTY PrinterStatus enum Constant ReceiptNearEmpty
FPTR_SUE_REC_PAPEROK PrinterStatus enum Constant ReceiptPaperOK

FPTR_SUE_SLP_EMPTY PrinterStatus enum Constant SlipEmpty
FPTR_SUE_SLP_NEAREMPTY PrinterStatus enum Constant SlipNearEmpty
FPTR_SUE_SLP_PAPEROK PrinterStatus enum Constant SlipPaperOK

FPTR_SUE_IDLE PrinterStatus enum Constant Idle
1720 Unified POS, v1.16.1

UnifiedPOS Name
POS for .NET

ClassName
Parameter

Type Name
EFPTR_COVER_OPEN FiscalPrinter System.Int32 ExtendedErrorCoverOpen
EFPTR_JRN_EMPTY FiscalPrinter System.Int32 ExtendedErrorJournalEmpty
EFPTR_REC_EMPTY FiscalPrinter System.Int32 ExtendedErrorReceiptEmpty
EFPTR_SLP_EMPTY FiscalPrinter System.Int32 ExtendedErrorSlipEmpty
EFPTR_SLP_FORM FiscalPrinter System.Int32 ExtendedErrorSlipForm
EFPTR_MISSING_DEVICES FiscalPrinter System.Int32 ExtendedErrorMissingDevices
EFPTR_WRONG_STATE FiscalPrinter System.Int32 ExtendedErrorWrongState
EFPTR_TECHNICAL_ASSISTANCE FiscalPrinter System.Int32 ExtendedErrorTechnicalAssistance
EFPTR_CLOCK_ERROR FiscalPrinter System.Int32 ExtendedErrorClockError
EFPTR_FISCAL_MEMORY_DISCONN
ECTED

FiscalPrinter System.Int32 ExtendedErrorMemoryDisconnected

EFPTR_FISCAL_MEMORY_FULL FiscalPrinter System.Int32 ExtendedErrorMemoryFull
EFPTR_FISCAL_TOTALS_ERROR FiscalPrinter System.Int32 ExtendedErrorTotalsError
EFPTR_BAD_ITEM_QUANTITY FiscalPrinter System.Int32 ExtendedErrorBadItemQuantity
EFPTR_BAD_ITEM_AMOUNT FiscalPrinter System.Int32 ExtendedErrorBadItemAmount
EFPTR_BAD_ITEM_DESCRIPTION FiscalPrinter System.Int32 ExtendedErrorBadItemDescription
EFPTR_RECEIPT_TOTAL_OVERFLO
W

FiscalPrinter System.Int32 ExtendedErrorReceiptTotalOverflow

EFPTR_BAD_VAT FiscalPrinter System.Int32 ExtendedErrorBadVat
EFPTR_BAD_PRICE FiscalPrinter System.Int32 ExtendedErrorBadPrice
EFPTR_BAD_DATE FiscalPrinter System.Int32 ExtendedErrorBadDate
EFPTR_NEGATIVE_TOTAL FiscalPrinter System.Int32 ExtendedErrorNegativeTotal
EFPTR_WORD_NOT_ALLOWED FiscalPrinter System.Int32 ExtendedErrorWordNotAllowed
EFPTR_BAD_LENGTH FiscalPrinter System.Int32 ExtendedErrorBadLength
EFPTR_MISSING_SET_CURRENCY FiscalPrinter System.Int32 ExtendedErrorMissingSetCurrency

KBD_ET_DOWN KeyboardEventType enum Constant Down
KBD_ET_DOWN_UP KeyboardEventType enum Constant DownUp

KBD_KET_KEYDOWN KeyEvent enum Constant Down
KBD_KET_KEYUP KeyEvent enum Constant Up

LOCK_KP_ANY Keylock System.Int32 PositionAny
LOCK_KP_LOCK Keylock System.Int32 PositionLocked
LOCK_KP_NORM Keylock System.Int32 PositionNormal
LOCK_KP_SUPR Keylock System.Int32 PositionSupervisor

MICR_CT_PERSONAL CheckType enum Constant Personal
MICR_CT_BUSINESS CheckType enum Constant Business
MICR_CT_UNKNOWN CheckType enum Constant Unknown

MICR_CC_USA CheckCountryCode enum Constant Usa
MICR_CC_CANADA CheckCountryCode enum Constant Canada
MICR_CC_MEXICO CheckCountryCode enum Constant Mexico
MICR_CC_UNKNOWN CheckCountryCode enum Constant Unknown Check Font E-13B
MICR_CC_CMC7 CheckCountryCode enum Constant Unknown Check Font CMC-7
MICR_CC_OTHER CheckCountryCode enum Constant Unknown Check Font OCR-A or OCR_B

EMICR_NOCHECK Micr System.Int32 ExtendedErrorNoCheck
EMICR_CHECK Micr System.Int32 ExtendedErrorCheck
EMICR_BADDATA Micr System.Int32 ExtendedErrorBadData
EMICR_NODATA Micr System.Int32 ExtendedErrorNoData
EMICR_BADSIZE Micr System.Int32 ExtendedErrorBadSize
EMICR_JAM Micr System.Int32 ExtendedErrorJam
EMICR_CHECKDIGIT Micr System.Int32 ExtendedErrorCheckDigit
EMICR_COVEROPEN Micr System.Int32 ExtendedErrorCoverOpen

MOTION_M_PRESENT MotionSensor System.Int32 StatusMotionPresent
MOTION_M_ABSENT MotionSensor System.Int32 StatusMotionAbsent

MSR_TR_1 MsrTracks enum Constant Track1
MSR_TR_2 MsrTracks enum Constant Track2
MSR_TR_3 MsrTracks enum Constant Track3
MSR_TR_4 MsrTracks enum Constant Track4
MSR_TR_1_2 MsrTracks enum Constant Tracks12
MSR_TR_1_3 MsrTracks enum Constant Tracks13
MSR_TR_1_4 MsrTracks enum Constant Tracks14
MSR_TR_2_3 MsrTracks enum Constant Tracks23
MSR_TR_2_4 MsrTracks enum Constant Tracks24
MSR_TR_3_4 MsrTracks enum Constant Tracks34
MSR_TR_1_2_3 MsrTracks enum Constant Tracks123
MSR_TR_1_2_4 MsrTracks enum Constant Tracks124
MSR_TR_1_3_4 MsrTracks enum Constant Tracks134
MSR_TR_2_3_4 MsrTracks enum Constant Tracks234
MSR_TR_1_2_3_4 MsrTracks enum Constant Tracks1234
Unified POS, v1.16.1 1721

UnifiedPOS Name
POS for .NET

ClassName
Parameter

Type Name
MSR_ERT_CARD MsrErrorReporting enum Constant Card
MSR_ERT_TRACK MsrErrorReporting enum Constant Track

No_Equivalent_Defined Msr System.Int32 ExtendedErrorSuccess
No_Equivalent_Defined Msr System.Int32 ExtendedErrorFailure
EMSR_START Msr System.Int32 ExtendedErrorStart
EMSR_END Msr System.Int32 ExtendedErrorEnd
EMSR_PARITY Msr System.Int32 ExtendedErrorParity
EMSR_LRC Msr System.Int32 ExtendedErrorLrc

No_Equivalent_Defined CharacterSetCapability enum Constant Numeric
PCRW_CCS_ALPHA CharacterSetCapability enum Constant Alpha
PCRW_CCS_ASCII CharacterSetCapability enum Constant Ascii
PCRW_CCS_KANA CharacterSetCapability enum Constant Kana
PCRW_CCS_KANJI CharacterSetCapability enum Constant Kanji
PCRW_CCS_UNICODE CharacterSetCapability enum Constant Unicode

PCRW_STATE_NOCARD PointCardState enum Constant NoCard
PCRW_STATE_REMAINING PointCardState enum Constant Remaining
PCRW_STATE_INRW PointCardState enum Constant Inserted

PCRW_TRACK1 PointCardRWTracks enum Constant Track1
PCRW_TRACK2 PointCardRWTracks enum Constant Track2
PCRW_TRACK3 PointCardRWTracks enum Constant Track3
PCRW_TRACK4 PointCardRWTracks enum Constant Track4
PCRW_TRACK5 PointCardRWTracks enum Constant Track5
PCRW_TRACK6 PointCardRWTracks enum Constant Track6

PCRW_CS_UNICODE PosCommon System.Int32 CharacterSetUnicode
PCRW_CS_ASCII PosCommon System.Int32 CharacterSetAscii
PCRW_CS_WINDOWS PosCommon System.Int32 No_Equivalent_Defined
PCRW_CS_ANSI PosCommon System.Int32 CharacterSetAnsi

PCRW_MM_DOTS MapMode enum Constant Dots
PCRW_MM_TWIPS MapMode enum Constant Twips
PCRW_MM_ENGLISH MapMode enum Constant English
PCRW_MM_METRIC MapMode enum Constant Metric

EPCRW_READ PointCardRW System.Int32 ExtendedErrorRead
EPCRW_WRITE PointCardRW System.Int32 ExtendedErrorWrite
EPCRW_JAM PointCardRW System.Int32 ExtendedErrorJam
EPCRW_MOTOR PointCardRW System.Int32 ExtendedErrorMotor
EPCRW_COVER PointCardRW System.Int32 ExtendedErrorCover
EPCRW_PRINTER PointCardRW System.Int32 ExtendedErrorPrinter
EPCRW_RELEASE PointCardRW System.Int32 ExtendedErrorRelease
EPCRW_DISPLAY PointCardRW System.Int32 ExtendedErrorDisplay
EPCRW_NOCARD PointCardRW System.Int32 ExtendedErrorNoCard

No_Equivalent_Defined PointCardReadWriteState enum Constant Success
EPCRW_START PointCardReadWriteState enum Constant Start
EPCRW_END PointCardReadWriteState enum Constant End
EPCRW_PARITY PointCardReadWriteState enum Constant Parity
EPCRW_ENCODE PointCardReadWriteState enum Constant Encode
EPCRW_LRC PointCardReadWriteState enum Constant LrcError
EPCRW_VERIFY PointCardReadWriteState enum Constant Verify
No_Equivalent_Defined PointCardReadWriteState enum Constant Failure

PCRW_RP_NORMAL PrintRotation enum Constant Normal
PCRW_RP_RIGHT90 PrintRotation enum Constant Right90
PCRW_RP_LEFT90 PrintRotation enum Constant Left90
PCRW_RP_ROTATE180 PrintRotation enum Constant Rotate180

PCRW_SUE_NOCARD PointCardRW System.Int32 StatusNoCard
PCRW_SUE_REMAINING PointCardRW System.Int32 StatusRemaining
PCRW_SUE_INRW PointCardRW System.Int32 StatusInserted

No_Equivalent_Defined PointCardKinds enum Constant PrintingArea
No_Equivalent_Defined PointCardKinds enum Constant MagneticTracks
No_Equivalent_Defined PointCardKinds enum Constant PrintingAreaAndMagneticTracks

PPAD_DISP_UNRESTRICTED PinPadDisplay enum Constant Unrestricted
PPAD_DISP_PINRESTRICTED PinPadDisplay enum Constant PinRestricted
PPAD_DISP_RESTRICTED_LIST PinPadDisplay enum Constant RestrictedList
PPAD_DISP_RESTRICTED_ORDER PinPadDisplay enum Constant RestrictedOrder
PPAD_DISP_NONE PinPadDisplay enum Constant None
1722 Unified POS, v1.16.1

UnifiedPOS Name
POS for .NET

ClassName
Parameter

Type Name
PPAD_MSG_ENTERPIN PinPadMessage enum Constant EnterPin
PPAD_MSG_PLEASEWAIT PinPadMessage enum Constant PleaseWait
PPAD_MSG_ENTERVALIDPIN PinPadMessage enum Constant EnterValidPin
PPAD_MSG_RETRIESEXCEEDED PinPadMessage enum Constant RetriesExceeded
PPAD_MSG_APPROVED PinPadMessage enum Constant Approved
PPAD_MSG_DECLINED PinPadMessage enum Constant Declined
PPAD_MSG_CANCELED PinPadMessage enum Constant Canceled
PPAD_MSG_AMOUNTOK PinPadMessage enum Constant AmountOK
PPAD_MSG_NOTREADY PinPadMessage enum Constant NotReady
PPAD_MSG_IDLE PinPadMessage enum Constant Idle
PPAD_MSG_SLIDE_CARD PinPadMessage enum Constant SlideCard
PPAD_MSG_INSERTCARD PinPadMessage enum Constant InsertCard
PPAD_MSG_SELECTCARDTYPE PinPadMessage enum Constant SelectCardType
PPAD_LANG_NONE PinPadLanguage enum Constant None
PPAD_LANG_ONE PinPadLanguage enum Constant One
PPAD_LANG_PINRESTRICTED PinPadLanguage enum Constant PinRestricted
PPAD_LANG_UNRESTRICTED PinPadLanguage enum Constant Unrestricted

PPAD_TRANS_DEBIT EftTransactionType enum Constant Debit
PPAD_TRANS_CREDIT EftTransactionType enum Constant Credit
PPAD_TRANS_INQ EftTransactionType enum Constant Inquiry
PPAD_TRANS_RECONCILE EftTransactionType enum Constant Reconcile
PPAD_TRANS_ADMIN EftTransactionType enum Constant Admin

PPAD_EFT_NORMAL EftTransactionControl enum Constant Normal
PPAD_EFT_ABNORMAL EftTransactionControl enum Constant Abnormal

PPAD_SUCCESS PinEntryStatus enum Constant Success
PPAD_CANCEL PinEntryStatus enum Constant Cancel
No_Equivalent_Defined PinEntryStatus enum Constant Timeout
No_Equivalent_Defined PinEntryStatus enum Constant BadKey
No_Equivalent_Defined PinPadSystem enum Constant MasterSession
No_Equivalent_Defined PinPadSystem enum Constant Dukpt
No_Equivalent_Defined PinPadSystem enum Constant Apacs40
No_Equivalent_Defined PinPadSystem enum Constant AS2805
No_Equivalent_Defined PinPadSystem enum Constant Hgepos
No_Equivalent_Defined PinPadSystem enum Constant Jdebit2

EPPAD_BAD_KEY PinPad System.Int32 ExtendedErrorBadKey

No_Equivalent_Defined PrinterStation enum Constant None
PTR_S_JOURNAL PrinterStation enum Constant Journal
PTR_S_RECEIPT PrinterStation enum Constant Receipt
PTR_S_SLIP PrinterStation enum Constant Slip

PTR_S_JOURNAL_RECEIPT FiscalPrinterStations enum Constant JournalReceipt
PTR_S_JOURNAL_SLIP FiscalPrinterStations enum Constant JournalSlip
PTR_S_RECEIPT_SLIP FiscalPrinterStations enum Constant ReceiptSlip

PTR_TWO_RECEIPT_JOURNAL PrinterStation enum Constant TwoReceiptJournal
PTR_TWO_SLIP_JOURNAL PrinterStation enum Constant TwoSlipJournal
PTR_TWO_SLIP_RECEIPT PrinterStation enum Constant TwoSlipReceipt

No_Equivalent_Defined CharacterSetCapability enum Constant Numeric
PTR_CCS_ALPHA CharacterSetCapability enum Constant Alpha
PTR_CCS_ASCII CharacterSetCapability enum Constant Ascii
PTR_CCS_KANA CharacterSetCapability enum Constant Kana
PTR_CCS_KANJI CharacterSetCapability enum Constant Kanji
PTR_CCS_UNICODE CharacterSetCapability enum Constant Unicode

PTR_CS_UNICODE PosCommon System.Int32 CharacterSetUnicode
PTR_CS_ASCII PosCommon System.Int32 CharacterSetAscii
PTR_CS_WINDOWS PosCommon System.Int32 No_Equivalent_Defined
PTR_CS_ANSI PosCommon System.Int32 CharacterSetAnsi

PTR_EL_NONE PrinterErrorLevel enum Constant None
PTR_EL_RECOVERABLE PrinterErrorLevel enum Constant Recoverable
PTR_EL_FATAL PrinterErrorLevel enum Constant Fatal

PTR_MM_DOTS MapMode enum Constant Dots
PTR_MM_TWIPS MapMode enum Constant Twips
PTR_MM_ENGLISH MapMode enum Constant English
PTR_MM_METRIC MapMode enum Constant Metric
Unified POS, v1.16.1 1723

UnifiedPOS Name
POS for .NET

ClassName
Parameter

Type Name
No_Equivalent_Defined PrinterColors enum Constant None
PTR_COLOR_PRIMARY PrinterColors enum Constant Primary
PTR_COLOR_CUSTOM1 PrinterColors enum Constant Custom1
PTR_COLOR_CUSTOM2 PrinterColors enum Constant Custom2
PTR_COLOR_CUSTOM3 PrinterColors enum Constant Custom3
PTR_COLOR_CUSTOM4 PrinterColors enum Constant Custom4
PTR_COLOR_CUSTOM5 PrinterColors enum Constant Custom5
PTR_COLOR_CUSTOM6 PrinterColors enum Constant Custom6
PTR_COLOR_CYAN PrinterColors enum Constant Cyan
PTR_COLOR_MAGENTA PrinterColors enum Constant Magenta
PTR_COLOR_YELLOW PrinterColors enum Constant Yellow
PTR_COLOR_FULL PrinterColors enum Constant Full

PTR_CART_UNKNOWN PrinterCartridgeStates enum Constant Unknown
PTR_CART_OK PrinterCartridgeStates enum Constant OK
PTR_CART_REMOVED PrinterCartridgeStates enum Constant Removed
PTR_CART_EMPTY PrinterCartridgeStates enum Constant Empty
PTR_CART_NEAREND PrinterCartridgeStates enum Constant NearEnd
PTR_CART_CLEANING PrinterCartridgeStates enum Constant Cleaning
PTR_CN_DISABLED PrinterCartridgeNotify enum Constant Disabled
PTR_CN_ENABLED PrinterCartridgeNotify enum Constant Enabled

PTR_CP_FULLCUT PosPrinter System.Int32 PrinterCutPaperFullCut
PTR_BC_LEFT PosPrinter System.Int32 PrinterBarCodeLeft
PTR_BC_CENTER PosPrinter System.Int32 PrinterBarCodeCenter
PTR_BC_RIGHT PosPrinter System.Int32 PrinterBarCodeRight

PTR_BC_TEXT_NONE BarCodeTextPosition enum Constant None
PTR_BC_TEXT_ABOVE BarCodeTextPosition enum Constant Above
PTR_BC_TEXT_BELOW BarCodeTextPosition enum Constant Below

No_Equivalent_Defined BarCodeSymbology enum Constant Unknown
PTR_BCS_UPCA BarCodeSymbology enum Constant Upca
PTR_BCS_UPCE BarCodeSymbology enum Constant Upce
PTR_BCS_JAN8 BarCodeSymbology enum Constant EanJan8
PTR_BCS_EAN8 BarCodeSymbology enum Constant No_Equivalent_Defined
PTR_BCS_JAN13 BarCodeSymbology enum Constant EanJan13
PTR_BCS_EAN13 BarCodeSymbology enum Constant No_Equivalent_Defined
PTR_BCS_TF BarCodeSymbology enum Constant TF
PTR_BCS_ITF BarCodeSymbology enum Constant Itf
PTR_BCS_Codabar BarCodeSymbology enum Constant Codabar
PTR_BCS_Code39 BarCodeSymbology enum Constant Code39
PTR_BCS_Code93 BarCodeSymbology enum Constant Code93
PTR_BCS_Code128 BarCodeSymbology enum Constant Code128
PTR_BCS_UPCA_S BarCodeSymbology enum Constant Upcas
PTR_BCS_UPCE_S BarCodeSymbology enum Constant Upces
PTR_BCS_UPCD1 BarCodeSymbology enum Constant Upcd1
PTR_BCS_UPCD2 BarCodeSymbology enum Constant Upcd2
PTR_BCS_UPCD3 BarCodeSymbology enum Constant Upcd3
PTR_BCS_UPCD4 BarCodeSymbology enum Constant Upcd4
PTR_BCS_UPCD5 BarCodeSymbology enum Constant Upcd5
PTR_BCS_EAN8_S BarCodeSymbology enum Constant Ean8S
PTR_BCS_EAN13_S BarCodeSymbology enum Constant Ean13S
PTR_BCS_EAN128 BarCodeSymbology enum Constant Ean128
PTR_BCS_OCRA BarCodeSymbology enum Constant Ocra
PTR_BCS_OCRB BarCodeSymbology enum Constant Ocrb
PTR_BCS_Code128_Parsed BarCodeSymbology enum Constant Code128 Parsed
PTR_BCS_RSS14 BarCodeSymbology enum Constant Rss14 – Deprecated v1.12
PTR_BCS_RSS_EXPANDED BarCodeSymbology enum Constant RssExpanded – Deprecated v1.12
PTR_BCS_GS1DATABAR BarCodeSymbology enum Constant GS1 DataBar Omnidirectional
PTR_BCS_GS1DATABAR_S BarCodeSymbology enum Constant GS1 DataBar Stacked Omnidirectional
PTR_BCS_GS1DATABAR_E BarCodeSymbology enum Constant GS1 DataBar Expanded
PTR_BCS_GS1DATABAR_E_S BarCodeSymbology enum Constant GS1 DataBar Expanded Stacked
No_Equivalent_Defined BarCodeSymbology enum Constant Cca
No_Equivalent_Defined BarCodeSymbology enum Constant Ccb
No_Equivalent_Defined BarCodeSymbology enum Constant Ccc
PTR_BCS_PDF417 BarCodeSymbology enum Constant Pdf417
PTR_BCS_MAXICODE BarCodeSymbology enum Constant Maxicode
PTR_BCS_DATAMATRIX BarCodeSymbology enum Constant Data Matrix
PTR_BCS-QRCODE BarCodeSymbology enum Constant QR Code
PTR_BCS_UQRCODE BarCodeSymbology enum Constant Micro QR Code
PTR_BCS_AXTEC BarCodeSymbology enum Constant Axtec
1724 Unified POS, v1.16.1

PTR_BCS_UPDF417 BarCodeSymbology enum Constant Micro Pdf417
PTR_BCS_OTHER BarCodeSymbology enum Constant Other

UnifiedPOS Name
POS for .NET

ClassName
Parameter

Type Name
PTR_BM_ASIS PosPrinter System.Int32 PrinterBitmapAsIs
PTR_BM_LEFT PosPrinter System.Int32 PrinterBitmapLeft
PTR_BM_CENTER PosPrinter System.Int32 PrinterBitmapCenter
PTR_BM_RIGHT PosPrinter System.Int32 PrinterBitmapRight

PTR_RP_NORMAL PrintRotation enum Constant Normal
PTR_RP_RIGHT90 PrintRotation enum Constant Right90
PTR_RP_LEFT90 PrintRotation enum Constant Left90
PTR_RP_ROTATE180 PrintRotation enum Constant Rotate180
PTR_RP_BARCODE PrintRotation enum Constant Barcode
PTR_RP_BITMAP PrintRotation enum Constant Bitmap

PTR_L_TOP PrinterLogoLocation enum Constant Top
PTR_L_BOTTOM PrinterLogoLocation enum Constant Bottom

PTR_TP_TRANSACTION PrinterTransactionControl enum Constant Transaction
PTR_TP_NORMAL PrinterTransactionControl enum Constant Normal

No_Equivalent_Defined PrinterMarkFeeds enum Constant None
PTR_MF_TO_TAKEUP PrinterMarkFeeds enum Constant Takeup
PTR_MF_TO_CUTTER PrinterMarkFeeds enum Constant Cutter
PTR_MF_TO_CURRENT_TOF PrinterMarkFeeds enum Constant CurrentTopOfForm
PTR_MF_TO_NEXT_TOF PrinterMarkFeeds enum Constant NextTopOfForm

PTR_PS_UNKNOWN PrinterSide enum Constant Unknown
PTR_PS_SIDE1 PrinterSide enum Constant Side1
PTR_PS_SIDE2 PrinterSide enum Constant Side2
PTR_PS_OPPOSITE PrinterSide enum Constant Opposite

PTR_SUE_COVER_OPEN PrinterStatus enum Constant CoverOpen
PTR_SUE_COVER_OK PrinterStatus enum Constant CoverOK
PTR_SUE_JRN_EMPTY PrinterStatus enum Constant JournalEmpty
PTR_SUE_JRN_NEAREMPTY PrinterStatus enum Constant JournalNearEmpty
PTR_SUE_JRN_PAPEROK PrinterStatus enum Constant JournalPaperOK
PTR_SUE_REC_EMPTY PrinterStatus enum Constant ReceiptEmpty
PTR_SUE_REC_NEAREMPTY PrinterStatus enum Constant ReceiptNearEmpty
PTR_SUE_REC_PAPEROK PrinterStatus enum Constant ReceiptPaperOK
PTR_SUE_SLP_EMPTY PrinterStatus enum Constant SlipEmpty
PTR_SUE_SLP_NEAREMPTY PrinterStatus enum Constant SlipNearEmpty
PTR_SUE_SLP_PAPEROK PrinterStatus enum Constant SlipPaperOK
PTR_SUE_JRN_CARTRIDGE_EMPTY PrinterStatus enum Constant JournalCartridgeEmpty
PTR_SUE_JRN_CARTRIDGE_NEAREMPTY PrinterStatus enum Constant JournalCartridgeNearEmpty
PTR_SUE_JRN_HEAD_CLEANING PrinterStatus enum Constant JournalHeadCleaning
PTR_SUE_JRN_CARTRIDGE_OK PrinterStatus enum Constant JournalCartridgeOK
PTR_SUE_REC_CARTRIDGE_EMPTY PrinterStatus enum Constant ReceiptCartridgeEmpty
PTR_SUE_REC_CARTRIDGE_NEAREMPTY PrinterStatus enum Constant ReceiptCartridgeNearEmpty
PTR_SUE_REC_HEAD_CLEANING PrinterStatus enum Constant ReceiptHeadCleaning
PTR_SUE_REC_CARTRIDGE_OK PrinterStatus enum Constant ReceiptCartridgeOK
PTR_SUE_SLP_CARTRIDGE_EMPTY PrinterStatus enum Constant SlipCartridgeEmpty
PTR_SUE_SLP_CARTRIDGE_NEAREMPTY PrinterStatus enum Constant SlipCartridgeNearEmpty
PTR_SUE_SLP_HEAD_CLEANING PrinterStatus enum Constant SlipHeadCleaning
PTR_SUE_SLP_CARTRIDGE_OK PrinterStatus enum Constant SlipCartridgeOK
PTR_SUE_JRN_COVER_OPEN PrinterStatus enum Constant JournalCoverOpen
PTR_SUE_JRN_COVER_OK PrinterStatus enum Constant JournalCoverOK
PTR_SUE_REC_COVER_OPEN PrinterStatus enum Constant ReceiptCoverOpen
PTR_SUE_REC_COVER_OK PrinterStatus enum Constant ReceiptCoverOK
PTR_SUE_SLP_COVER_OPEN PrinterStatus enum Constant SlipCoverOpen
PTR_SUE_SLP_COVER_OK PrinterStatus enum Constant SlipCoverOK
PTR_SUE_IDLE PrinterStatus enum Constant Idle

EPTR_COVER_OPEN PosPrinter System.Int32 ExtendedErrorCoverOpen

EPTR_JRN_EMPTY PosPrinter System.Int32 ExtendedErrorJrnEmpty
EPTR_REC_EMPTY PosPrinter System.Int32 ExtendedErrorRecEmpty
EPTR_SLP_EMPTY PosPrinter System.Int32 ExtendedErrorSlpEmpty
EPTR_SLP_FORM PosPrinter System.Int32 ExtendedErrorSlpForm
EPTR_TOOBIG PosPrinter System.Int32 ExtendedErrorTooBig
EPTR_BADFORMAT PosPrinter System.Int32 ExtendedErrorBadFormat
Unified POS, v1.16.1 1725

UnifiedPOS Name
POS for .NET

ClassName
Parameter

Type Name
EPTR_JRN_CARTRIDGE_REMOVED PosPrinter System.Int32 ExtendedErrorJrnCartridgeRemoved
EPTR_JRN_CARTRIDGE_EMPTY PosPrinter System.Int32 ExtendedErrorJrnCartridgeEmpty
EPTR_JRN_HEAD_CLEANING PosPrinter System.Int32 ExtendedErrorJrnHeadCleaning
EPTR_REC_CARTRIDGE_REMOVED PosPrinter System.Int32 ExtendedErrorRecCartridgeRemoved
EPTR_REC_CARTRIDGE_EMPTY PosPrinter System.Int32 ExtendedErrorRecCartridgeEmpty
EPTR_REC_HEAD_CLEANING PosPrinter System.Int32 ExtendedErrorRecHeadCleaning
EPTR_SLP_CARTRIDGE_REMOVED PosPrinter System.Int32 ExtendedErrorSlpCartridgeRemoved
EPTR_SLP_CARTRIDGE_EMPTY PosPrinter System.Int32 ExtendedErrorSlpCartridgeEmpty
EPTR_SLP_HEAD_CLEANING PosPrinter System.Int32 ExtendedErrorSlpHeadCleaning

PWR_UPS_FULL UpsChargeStates enum Constant Full
PWR_UPS_WARNING UpsChargeStates enum Constant Warning
PWR_UPS_LOW UpsChargeStates enum Constant Low
PWR_UPS_CRITICAL UpsChargeStates enum Constant Critical

PWR_SUE_UPS_FULL PosPower System.Int32 StatusUpsFull
PWR_SUE_UPS_WARNING PosPower System.Int32 StatusUpsWarning
PWR_SUE_UPS_LOW PosPower System.Int32 StatusUpsLow
PWR_SUE_UPS_CRITICAL PosPower System.Int32 StatusUpsCritical
PWR_SUE_FAN_STOPPED PosPower System.Int32 StatusFanStopped
PWR_SUE_FAN_RUNNING PosPower System.Int32 StatusFanRunning
PWR_SUE_TEMPERATURE_HIGH PosPower System.Int32 StatusTemperatureHigh
PWR_SUE_TEMPERATURE_OK PosPower System.Int32 StatusTemperatureOK
PWR_SUE_SHUTDOWN PosPower System.Int32 StatusShutDown

ROD_UID_1 DeviceUnits enum Constant nit1
ROD_UID_2 DeviceUnits enum Constant Unit2
ROD_UID_3 DeviceUnits enum Constant Unit3
ROD_UID_4 DeviceUnits enum Constant Unit4
ROD_UID_5 DeviceUnits enum Constant Unit5
ROD_UID_6 DeviceUnits enum Constant Unit6
ROD_UID_7 DeviceUnits enum Constant Unit7
ROD_UID_8 DeviceUnits enum Constant Unit8
ROD_UID_9 DeviceUnits enum Constant Unit9
ROD_UID_10 DeviceUnits enum Constant Unit10
ROD_UID_11 DeviceUnits enum Constant Unit11
ROD_UID_12 DeviceUnits enum Constant Unit12
ROD_UID_13 DeviceUnits enum Constant Unit13
ROD_UID_14 DeviceUnits enum Constant Unit14
ROD_UID_15 DeviceUnits enum Constant Unit15
ROD_UID_16 DeviceUnits enum Constant Unit16
ROD_UID_17 DeviceUnits enum Constant Unit17
ROD_UID_18 DeviceUnits enum Constant Unit18
ROD_UID_19 DeviceUnits enum Constant Unit19
ROD_UID_20 DeviceUnits enum Constant Unit20
ROD_UID_21 DeviceUnits enum Constant Unit21
ROD_UID_22 DeviceUnits enum Constant Unit22
ROD_UID_23 DeviceUnits enum Constant Unit23
ROD_UID_24 DeviceUnits enum Constant Unit24
ROD_UID_25 DeviceUnits enum Constant Unit25
ROD_UID_26 DeviceUnits enum Constant Unit26
ROD_UID_27 DeviceUnits enum Constant Unit27
ROD_UID_28 DeviceUnits enum Constant Unit28
ROD_UID_29 DeviceUnits enum Constant Unit29
ROD_UID_30 DeviceUnits enum Constant Unit30
ROD_UID_31 DeviceUnits enum Constant Unit31
ROD_UID_32 DeviceUnits enum Constant Unit32

ROD_ATTR_BLINK VideoAttributes enum Constant Blink
ROD_ATTR_BG_BLACK VideoAttributes enum Constant BackgroundBlack
ROD_ATTR_BG_BLUE VideoAttributes enum Constant BackgroundBlue
ROD_ATTR_BG_GREEN VideoAttributes enum Constant BackgroundGreen
ROD_ATTR_BG_CYAN VideoAttributes enum Constant BackgroundCyan
ROD_ATTR_BG_RED VideoAttributes enum Constant BackgroundRed
ROD_ATTR_BG_MAGENTA VideoAttributes enum Constant BackgroundMagenta
ROD_ATTR_BG_BROWN VideoAttributes enum Constant BackgroundBrown
1726 Unified POS, v1.16.1

ROD_ATTR_BG_GRAY VideoAttributes enum Constant BackgroundGray
ROD_ATTR_INTENSITY VideoAttributes enum Constant ntensity
ROD_ATTR_FG_BLACK VideoAttributes enum Constant ForegroundBlack
ROD_ATTR_FG_BLUE VideoAttributes enum Constant ForegroundBlue
ROD_ATTR_FG_GREEN VideoAttributes enum Constant ForegroundGreen
ROD_ATTR_FG_CYAN VideoAttributes enum Constant ForegroundCyan
ROD_ATTR_FG_RED VideoAttributes enum Constant ForegroundRed
ROD_ATTR_FG_MAGENTA VideoAttributes enum Constant ForegroundMagenta
ROD_ATTR_FG_BROWN VideoAttributes enum Constant ForegroundBrown
ROD_ATTR_FG_GRAY VideoAttributes enum Constant ForegroundGray

UnifiedPOS Name
POS for .NET

ClassName
Parameter

Type Name
ROD_BDR_SINGLE BorderType enum Constant Single
ROD_BDR_DOUBLE BorderType enum Constant Double
ROD_BDR_SOLID BorderType enum Constant Solid

ROD_CLK_START ClockFunction enum Constant Start
ROD_CLK_PAUSE ClockFunction enum Constant Pause
ROD_CLK_RESUME ClockFunction enum Constant Resume
ROD_CLK_MOVE ClockFunction enum Constant Move
ROD_CLK_STOP ClockFunction enum Constant Stop

ROD_CRS_LINE VideoCursorType enum Constant Line
ROD_CRS_LINE_BLINK VideoCursorType enum Constant LineBlink
ROD_CRS_BLOCK VideoCursorType enum Constant Block
ROD_CRS_BLOCK_BLINK VideoCursorType enum Constant BlockBlink
ROD_CRS_OFF VideoCursorType enum Constant Off

ROD_CS_UNICODE PosCommon System.Int32 CharacterSetUnicode
ROD_CS_ASCII PosCommon System.Int32 CharacterSetAscii
ROD_CS_WINDOWS PosCommon System.Int32 No_Equivalent_Defined
ROD_CS_ANSI PosCommon System.Int32 CharacterSetAnsi

ROD_TD_TRANSACTION RemoteOderDisplayTransaction enum Constant Transaction
ROD_TD_NORMAL RemoteOderDisplayTransaction enum Constant Normal

ROD_UA_SET VideoAttributeCommand enum Constant Set
ROD_UA_INTENSITY_ON VideoAttributeCommand enum Constant IntensityOn
ROD_UA_INTENSITY_OFF VideoAttributeCommand enum Constant IntensityOff
ROD_UA_REVERSE_ON VideoAttributeCommand enum Constant ReverseOn
ROD_UA_REVERSE_OFF VideoAttributeCommand enum Constant ReverseOff
ROD_UA_BLINK_ON VideoAttributeCommand enum Constant BlinkOn
ROD_UA_BLINK_OFF VideoAttributeCommand enum Constant BlinkOff

ROD_DE_TOUCH_DOWN RemoteOrderDisplayEventTypes enum Constant TouchDown
ROD_DE_TOUCH_MOVE RemoteOrderDisplayEventTypes enum Constant TouchMove
ROD_DE_TOUCH_UP RemoteOrderDisplayEventTypes enum Constant TouchUp

EROD_BADCLK RemoteOrderDisplay System.Int32 ExtendedErrorBadClock
EROD_NOCLOCKS RemoteOrderDisplay System.Int32 ExtendedErrorNoClocks
EROD_NOREGION RemoteOrderDisplay System.Int32 ExtendedErrorNoRegion
EROD_NOROOM RemoteOrderDisplay System.Int32 ExtendedErrorNoRoom
EROD_NOBUFFERS RemoteOrderDisplay System.Int32 ExtendedErrorNoBuffers

SCAL_WU_GRAM WaitUnit enum Constant Gram
SCAL_WU_KILOGRAM WaitUnit enum Constant Kilogram
SCAL_WU_OUNCE WaitUnit enum Constant Ounce
SCAL_WU_POUND WaitUnit enum Constant Pound

ESCAL_OVERWEIGHT Scale System.Int32 ExtendedErrorOverWeight

SCAN_SDT_UNKNOWN BarCodeSymbology enum Constant Unknown
SCAN_SDT_UPCA BarCodeSymbology enum Constant Upca
SCAN_SDT_UPCE BarCodeSymbology enum Constant Upce
SCAN_SDT_JAN8 BarCodeSymbology enum Constant EanJan8
SCAN_SDT_EAN8 BarCodeSymbology enum Constant No_Equivalent_Defined
SCAN_SDT_JAN13 BarCodeSymbology enum Constant EanJan13
SCAN_SDT_EAN13 BarCodeSymbology enum Constant No_Equivalent_Defined
SCAN_SDT_TF BarCodeSymbology enum Constant TF
SCAN_SDT_ITF BarCodeSymbology enum Constant Itf
SCAN_SDT_Codabar BarCodeSymbology enum Constant Codabar
SCAN_SDT_Code39 BarCodeSymbology enum Constant Code39
SCAN_SDT_Code93 BarCodeSymbology enum Constant Code93
SCAN_SDT_Code128 BarCodeSymbology enum Constant Code128
SCAN_SDT_UPCA_S BarCodeSymbology enum Constant Upcas
SCAN_SDT_UPCE_S BarCodeSymbology enum Constant Upces
SCAN_SDT_UPCD1 BarCodeSymbology enum Constant Upcd1
SCAN_SDT_UPCD2 BarCodeSymbology enum Constant Upcd2
SCAN_SDT_UPCD3 BarCodeSymbology enum Constant Upcd3
SCAN_SDT_UPCD4 BarCodeSymbology enum Constant Upcd4
SCAN_SDT_UPCD5 BarCodeSymbology enum Constant Upcd5
SCAN_SDT_EAN8_S BarCodeSymbology enum Constant Ean8S
Unified POS, v1.16.1 1727

SCAN_SDT_EAN13_S BarCodeSymbology enum Constant Ean13S
SCAN_SDT_EAN128 BarCodeSymbology enum Constant Ean128

UnifiedPOS Name
POS for .NET

ClassName
Parameter

Type Name
SCAN_SDT_OCRA BarCodeSymbology enum Constant Ocra
SCAN_SDT_OCRB BarCodeSymbology enum Constant Ocrb
SCAN_SDT_RSS14 BarCodeSymbology enum Constant Rss14 – Deprecated v1.12
SCAN_SDT_RSS_EXPANDED BarCodeSymbology enum Constant RssExpanded – Deprecated b1.12
SCAN_SDT_GS1DATABAR BarCodeSymbology enum Constant GS1DataBar Omnidirectional
SCAN_SDT_GS1DATABAR_E BarCodeSymbology enum Constant GS1 DataBar Expanded
SCAN_SDT_CCA BarCodeSymbology enum Constant Cca
SCAN_SDT_CCB BarCodeSymbology enum Constant Ccb
SCAN_SDT_CCC BarCodeSymbology enum Constant Ccc
SCAN_SDT_PDF417 BarCodeSymbology enum Constant Pdf417
SCAN_SDT_MAXICODE BarCodeSymbology enum Constant Maxicode
SCAN_SDT_OTHER BarCodeSymbology enum Constant Other

SC_CMODE_TRANS SmartCardInterfaceModes enum Constant Transaction
SC_CMODE_BLOCK SmartCardInterfaceModes enum Constant Block
SC_CMODE_APDU SmartCardInterfaceModes enum Constant Apdu
SC_CMODE_XML SmartCardInterfaceModes enum Constant Xml
SC_CMODE_ISO SmartCardIsoEmvModes enum Constant Iso
SC_CMODE_EMV SmartCardIsoEmvModes enum Constant Emv

SC_CTRANS_PROTOCOL_T0 SmartCardTransactionProtocols enum Constant T0
SC_CTRANS_PROTOCOL_T1 SmartCardTransactionProtocols enum Constant T1

SC_MODE_TRANS SmartCardInterfaceModes enum Constant Transaction
SC_MODE_BLOCK SmartCardInterfaceModes enum Constant Block
SC_MODE_APDU SmartCardInterfaceModes enum Constant Apdu
SC_MODE_XML SmartCardInterfaceModes enum Constant Xml
SC_MODE_ISO SmartCardIsoEmvModes enum Constant Iso
SC_MODE_EMV SmartCardIsoEmvModes enum Constant Emv

SC_TRANS_PROTOCOL_T0 SmartCardTransactionProtocols enum Constant T0
SC_TRANS_PROTOCOL_T1 SmartCardTransactionProtocols enum Constant T1

SC_READ_DATA SmartCardReadAction enum Constant ReadData
SC_READ_PROGRAM SmartCardReadAction enum Constant ReadProgram
SC_EXECUTE_AND_READ_DATA SmartCardReadAction enum Constant ExecuteAndReadData
SC_XML_READ_BLOCK_DATA SmartCardReadAction enum Constant XmlReadBlockData
SC_STORE_DATA SmartCardWriteAction enum Constant StoreData
SC_STORE_PROGRAM SmartCardWriteAction enum Constant StoreProgram
SC_EXECUTE_DATA SmartCardWriteAction enum Constant ExecuteData
SC_XML_BLOCK_DATA SmartCardWriteAction enum Constant XmlBlockData
SC_SECURITY_FUSE SmartCardWriteAction enum Constant SecurityFuse
SC_RESET SmartCardWriteAction enum Constant Reset

SC_SUE_NO_CARD No_Equivalent_Defined No_Equivalent_Defin
ed

SC_SUE_CARD_PRESENT No_Equivalent_Defined No_Equivalent_Defin
ed

ESC_READ SmartCardRW System.Int32 ExtendedErrorRead
ESC_WRITE SmartCardRW System.Int32 ExtendedErrorWrite
ESC_TORN SmartCardRW System.Int32 ExtendedErrorTorn
ESC_NO_CARD SmartCardRW System.Int32 ExtendedErrorNoCard

ETOT_NOROOM HardTotals System.Int32 ExtendedErrorNoRoom
ETOT_VALIDATION HardTotals System.Int32 ExtendedErrorValidation

STAT_BarcodePrintedCount PosPrinter System.String StatisticBarcodePrintedCount
STAT_BumpCount BumpBar System.String StatisticBumpCount
STAT_CommunicationErrorCount PosCommon System.String StatisticCommunicationErrorCount
No_Equivalent_Defined PosCommon System.String StatisticDeviceCategory
STAT_DrawerFailedOpenCount CashDrawer System.String StatisticDrawerFailedOpenCount
STAT_DrawerGoodOpenCount CashDrawer System.String StatisticDrawerGoodOpenCount
STAT_FailedDataParseCount Micr System.String StatisticFailedDataParseCount
STAT_FailedPaperCutCount PosPrinter System.String StatisticFailedPaperCutCount
STAT_FailedPrintSideChangeCount PosPrinter System.String StatisticFailedPrintSideChangeCount
STAT_FailedReadCount Micr System.String StatisticFailedReadCount
No_Equivalent_Defined Msr System.String StatisticFailedReadCount
STAT_FailedSignatureReadCount SignatureCapture System.String StatisticFailedSignatureReadCount
No_Equivalent_Defined PosCommon System.String StatisticFirmwareRevision
STAT_FormInsertionCount PosPrinter System.String StatisticFormInsertionCount
STAT_GoodReadCount Micr System.String StatisticGoodReadCount
No_Equivalent_Defined Msr System.String StatisticGoodReadCount
1728 Unified POS, v1.16.1

C.6.2 Structures

POS for .NET defines structure types to aggregate data values that are returned by method calls. This is required
since parameters in POS for .NET are In only. On the other hand, structure types are used in POS for .NET to
provide a more type-safe handling for aggregated data. Structural strings containing several data values that are
returned by a UnifiedPOS property or method are broken into members of a new defined structure type.

Structures are like classes. However, structures have value semantics and they do not require heap allocation. The
language concept of structures is described in the MSDN Library documentation.

The following structures are defined in POS for .NET.

CashCount Structure

The structure CashCount contains the dispensing cash units and counts.

 Structure Properties

STAT_GoodScanCount Scanner System.String StatisticGoodScanCount
STAT_GoodSignatureReadCount SignatureCapture System.String StatisticGoodSignatureReadCount
STAT_GoodWeightReadCount Scale System.String StatisticGoodWeightReadCount
STAT_HomeErrorCount PosPrinter System.String StatisticHomeErrorCount
STAT_HoursPoweredCount PosCommon System.String StatisticHoursPoweredCount

UnifiedPOS Name
POS for .NET

ClassName
Parameter

Type Name
No_Equivalent_Defined PosCommon System.String StatisticInstallationDate
No_Equivalent_Defined PosCommon System.String StatisticInterface
STAT_InvalidPINEntryCount PinPad System.String StatisticInvalidPINEntryCount
STAT_JournalCharacterPrintedCount PosPrinter System.String StatisticJournalCharacterPrintedCount
No_Equivalent_Defined PosPrinter System.String StatisticJournalCoverOpenCount
STAT_JournalLinePrintedCount PosPrinter System.String StatisticJournalLinePrintedCount
STAT_KeyPressedCount PosKeyBoard System.String StatisticKeyPressedCount
STAT_LockPositionChangeCount Keylock System.String StatisticLockPositionChangeCount
No_Equivalent_Defined PosCommon System.String StatisticManufactureDate
No_Equivalent_Defined PosCommon System.String StatisticManufacturerName
STAT_MaximumTempReachedCount PosPrinter System.String StatisticMaximumTempReachedCount
No_Equivalent_Defined PosCommon System.String StatisticMechanicalRevision
No_Equivalent_Defined PosCommon System.String StatisticModelName
STAT_MotionEventCount MotionSensor System.String StatisticMotionEventCount
STAT_NVRAMWriteCount PosPrinter System.String StatisticNVRAMWriteCount
STAT_OnlineTransitionCount LineDisplay System.String StatisticOnlineTransitionCount
STAT_PaperCutCount PosPrinter System.String StatisticPaperCutCount
STAT_PrinterFaultCount PosPrinter System.String StatisticPrinterFaultCount
STAT_PrintSideChangeCount PosPrinter System.String StatisticPrintSideChangeCount
STAT_ReceiptCharacterPrintedCount PosPrinter System.String StatisticReceiptCharacterPrintedCount
STAT_ReceiptCoverOpenCount PosPrinter System.String StatisticReceiptCoverOpenCount
STAT_ReceiptLineFeedCount PosPrinter System.String StatisticReceiptLineFeedCount
STAT_ReceiptLinePrintedCount PosPrinter System.String StatisticReceiptLinePrintedCount
No_Equivalent_Defined PosCommon System.String StatisticSerialNumber
STAT_SlipCharacterPrintedCount PosPrinter System.String StatisticSlipCharacterPrintedCount
STAT_SlipCoverOpenCount PosPrinter System.String StatisticSlipCoverOpenCount
STAT_SlipLineFeedCount PosPrinter System.String StatisticSlipLineFeedCount
STAT_SlipLinePrintedCount PosPrinter System.String StatisticSlipLinePrintedCount
STAT_StampFiredCount PosPrinter System.String StatisticStampFiredCount
STAT_ToneSoundedCount ToneIndicator System.String StatisticToneSoundedCount
No_Equivalent_Defined PosCommon System.String StatisticUnifiedPOSVersion
STAT_UnreadableCardCount Msr System.String StatisticUnreadableCardCount
STAT_ValidPINEntryCount PinPad System.String StatisticValidPINEntryCount

Name Description

Count Holds the number bills or coins.
Unified POS, v1.16.1 1729

Used by

• CashChanger.DepositCounts Property as item type of the returned array, the POS for .NET
method has the following signature:

public abstract CashCount[] DepositCounts

• CashChanger.DispenseCash Method parameter array item type for the parameter CashCounts, the
POS for .NET method has the following signature:

 public abstract void DispenseCash(CashCount[] cashCounts)

CashCounts Structure

The structure CashCounts aggregates an array of items of type CashCount whether a cash discrepancy is given
or not.

Structure Properties

Used by

• CashChanger.ReadCashCounts Method as return value type, the POS for .NET method has the
following signature:

 public abstract CashCounts ReadCashCounts()

CashUnits Structure

Holds the cash units supported in the CashChanger. The cash units are stored in two separate String arrays for
bills and coins.

NominalValue Holds the face value.

Type Defines whether the currency is bills or coins.

Name Description

Counts Holds the CashCount data.

Discrepancy
If TRUE, there is some cash that could not be included in
a CashCount; otherwise FALSE.
1730 Unified POS, v1.16.1

Structure Properties

Used by

• CashChanger.DepositCashList Property as return value type, the POS for .NET method has the
following signature:
 public abstract CashUnits DepositCashList

• CashChanger.CurrenyCashList Property as return value type, the POS for .NET method has the
following signature:
 public abstract CashUnits CurrencyCashList

• CashChanger.ExitCashList Property as return value type, the POS for .NET method has the
following signature:
 public abstract CashUnits ExitCashList

DirectIOData Structure

The structure DirectIOData aggregates values that are returned by the DirectIO method.

Structure Properties

Used by

• PosCommon.DirectIO Method as return value type, the POS for .NET method has the following
signature:
 public abstract DirectIOData DirectIO(int command, int data, object obj)

FiscalDataItem Structure

The structure FiscalDataItem aggregates values that are returned by the GetData method of the FiscalPrinter
category.

Structure Properties

Name Description

Bills Holds the number of each type of bill.

Coins Holds the number of each type of coin.

Name Description

Data Specific values vary by Command and Service Object.

Object Specific object vary by Command and Service Object.

Name Description

Data Character string describing data.

ItemOption
Optional additional parameter. Consult the Service Object
vendor's documentation for more information about how
to use this argument.
Unified POS, v1.16.1 1731

Used by

• FiscalPrinter.GetData Method as return value type, the POS for .NET method has the following
signature:
 public abstract FiscalDataItem GetData(FiscalData dataItem, int itemOption)

TotalsFileInfo Structure

The structure TotalsFileInfo aggregates file information for the HardTotals device category.

Structure Properties

Used by

• Totals.Find Method as return value type, the POS for .NET method has the following signature:
 public abstract TotalsFileInfo Find(string fileName)


VatInfo Structure

The structure VatInfo aggregates VAT information used in the FiscalPrinter category.

Structure Properties

Used by

• FiscalPrinter.PrintRecPackageAdjustVoid Method as array item type of the parameter
vatAdjustments, the POS for .NET method has the following signature:

public abstract void PrintRecPackageAdjustVoid(FiscalAdjustmentType adjustmentType,
VatInfo[] vatAdjustments)

• FiscalPrinter.PrintRecPackageAdjustment Method array item type of the parameter
vatAdjustments, the POS for .NET method has the following signature:

public abstract void PrintRecPackageAdjustment(FiscalAdjustmentType adjustmentType,
string description, VatInfo[] vatAdjustments)

VideoMode Structure

The structure VideoMode holds the video modes supported for the video unit used by the RemoteOrderDisplay
device category.

Name Description

Handle Handle to the totals file.

Size Totals file size.

Name Description

Amount Indicates the VAT amount.

Id VAT identifier.
1732 Unified POS, v1.16.1

Structure Properties

Used by

• RemoteOrderDisplay.VideoModesList Property as item type of the returned array, the POS for
.NET method has the following signature:
 public abstract VideoMode[] VideoModesList

C.6.3 Complete Class Libraries Provided

Interface Classes

• Interface libraries provide no code functionality. They represent the interface to the device class
only. There are Interface classes for each of the device classes defined within UnifiedPOS.

• The interfaces meet or provide extensions to the UnifiedPOS specification standards.

• The interface classes define all the constants needed for management of device statistics, status
reporting via events, and standard error conditions.

• The interface classes define all the enumerations needed for all device classes.

Basic Classes

• Basic classes inherit from the Interface classes and implement the common functionality across
device classes. For example, the Basic classes implement the Open(), Claim(), and Release()
methods. There are Basic classes for each of the device classes defined within UnifiedPOS.

• The Basic classes not only manage all common properties and methods, they manage event delivery
to the application, retrieval and storage of device statistics, manage error handling for all classes of
errors, and provide functionality for notifying the Service Object of hardware state change
conditions.

Base Classes

• Base classes inherit from Basic classes and implement device class specific functionality across
device classes. The Device Service Object provider is left to implement only the hardware-specific
functionality.

• Base classes build on the basic class functionality by providing implementations for all event types
(as well as managing event delivery), increment and manage all device statistics, manage validation
of property and parameter values (and deliver errors, as needed, to the application), update all
device-specific properties according to specification guidelines as part of delivering data events to
the application, plus provide a flexible structure of protected methods and helper classes that the
application can use if it chooses to provide its own hardware-specific functionality.

Name Description

Colors The number of colors.

Columns The number of columns.

IsColor TRUE if video is color; otherwise, FALSE

Rows The number of rows.
Unified POS, v1.16.1 1733

Return Values

Many POS for .NET API calls return a value. For example, the common method

string CheckHealth (HealthCheckLevel level);

returns a string describing the health level. Parameters in POS for .NET are In only.

Returning Properties

Often, an application method call will result in the change of a property value or the method will return
some status value as defined within the UnifiedPOS specification.

For example, assume the following case:

An ISV calls a method that may change the value of a specific property. Further processing is dependent
upon the new value of the property. In the OPOS implementation of UnifiedPOS, the ISV would first
make a method call and then call another method that would return the value of the property.

MethodThatChangesAProperty()
Dim MyProperty as Property
GetPropertyValue(MyProperty)
//GetPropertyValue has a
// byref parameter
Select MyProperty
case ….

In POS for .NET, the ISV would call the method and test the returned value as follows (Visual Basic
.NET):

Select MethodThatChangesAProperty()
Case ….

Returning Lists
Often, a method will return a list of values. In OPOS, methods that return lists do so by returning strings
that are comma-delimited (regardless of the data type of the list item). The application must construct
the string and do any necessary conversion of the data items to a string, adding commas as delimiters.

The application will have to parse the string and cast the data items into the type associated by the list.
Example:

CHAR nChar = “,”;
int x;
int y = 0;
CHAR* pMyElements[];
CHAR* psCurrent;
for(x=0;x<len(sReturn);x++)
{

if(sReturn[x] == nChar)
{

pMyElements[y] = psCurrent;
y++;

}
psCurrent += sReturn[x];

}
//assumes all return types should be strings if not,
//cast to appropriate data type is required
1734 Unified POS, v1.16.1


In POS for .NET, arrays are native data types. There is no need to cast the data elements to a coerced
type. Further, arrays provide their own iterate functions to allow easy access to any and all items in the
list.

//use each item as needed
SomeMethod(ReturnedArray[0]);
SomeOtherMethod(ReturnedArray[1]);

NOTE:
From the SO, the following code demonstrates returning a clone – necessary to preserve data safety.

return SomeArrary.Clone();

The reasons to return arrays instead of compound strings are as follows:

• Arrays are native data types in .NET and they can be enumerated with a FOR EACH statement.

• Building and parsing delimited strings introduces more code that must be maintained and
increases the chance of introducing bugs.

• Clarity of intent of the code is clearer when arrays are used.

EXAMPLE:
To further illustrate the differences between UnifiedPOS, OPOS, and POS for .NET, refer to the
property PosPrinter.CharacterSetList. This property has the following signature in UnifiedPOS:

CharacterSetList: string { read-only, access after open }

The property in UnifiedPOS returns a string with a comma separated list of code page numbers. The
application program has to parse the string to extract the code page numbers and has to convert them to
integer values if needed. In POS for .NET, the property PosPrinter.CharacterSetList has the following
method signature:

public abstract int[] CharacterSetList

This returns the list of code page numbers as an integer array. There is no need for parsing a string and
converting code page numbers to integer values. This approach is more type safe and easier to handle
for application programmers.

C.7 Key Parameter Differences

POS for .NET makes use of enumerations versus OPOS use of constants. POS for .NET makes use of array data
typing versus OPOS use of compound strings. POS for .NET makes use of native integer types. POS for .NET
makes use of “right-sizing” variables (using variables that match the type of data they represent) rather than
OPOS use of data types for values that require more bytes than would ever be necessary to contain the proper
meaning and expected range.

POS for .NET divides a UnifiedPOS method into multiple POS for .NET methods if it contains a parameter that
can contain only 2 or 3 values. For example, the FiscalPrinter method printReport has the following signature
under UnifiedPOS:

printReport(reportType: int32, startNum: string, endNum: string): void

The parameter reportType can have only one of the following values - FPTR_RT_ORDINAL or
FPTR_RT_DATE. For FPTR_RT_DATE the two following parameters have to be interpreted as date strings
otherwise both values have to be used as integer values.
Unified POS, v1.16.1 1735

In POS for .NET the reportType parameter is omitted. Instead two new methods have been introduced defining
printReport() with different signatures. These are more type safe.

void PrintReport(DateTime startDate, DateTime endDate)

 void PrintReport(int startNumber, int endNumber)

The following table lists the method/parameter differences in POS for .NET compared to the corresponding
UnifiedPOS method/parameters. Methods differing only by the usage of an Enumeration type are not listed.

C.8 Key Property Signature Differences

There are several properties which have different POS for .NET signatures compared to UnifiedPOS. They use
arrays or structures instead of comma separated lists inside strings. The following table shows these properties.

UnifiedPOS Method POS for .NET

CashChanger
dispenseCash(cashCounts: string): void void DispenseCash(CashCount[] cashCounts)

FiscalPrinter
getData(dataItem: int32, inout optArgs: int32, inout data: string): void FiscalDataItem GetData(FiscalData dataItem, int

 itemOption)

printPeriodicTotalsReport(date1: string, date2: string): void void PrintPeriodicTotalsReport(DateTime
startingDate, DateTime endingDate)

printRecItem(description: string, price: currency, quantity: int32,
vatInfo: int32, unitPrice: currency, unitName: string): void

void PrintRecItem(string description, decimal
price, decimal quantity, int vatId, decimal
unitPrice, string unitName)

printRecPackageAdjustment(adjustmentType: int32, description:
string, vatAdjustment: string): void

void PrintRecPackageAdjustment(
FiscalAdjustmentType adjustmentType, string
description, VatInfo[] vatAdjustments)

printRecPackageAdjustVoid(adjustmentType: int32, vatAdjustment:
string): void

void PrintRecPackageAdjustVoid(
FiscalAdjustmentType adjustmentType, VatInfo[]
vatAdjustments)

printReport(reportType: int32, startNum: string, endNum: string): void void PrintReport(DateTime startDate, DateTime
endDate)

printReport(reportType: int32, startNum: string, endNum: string): void void PrintReport(int startNumber, int endNumber)

printReport(reportType: int32, startNum: string, endNum: string): void void PrintReport(int startNumber)

setDate(date: string): void void SetDate(DateTime newDate)

setVatValue(vatID: int32, vatValue: string): void void SetVatValue(int vatId, decimal vatRate)

UnifiedPOS Property POS for .NET Signature

CashChanger

CurrencyCodeList public abstract string[] CurrencyCodeList

CurrencyCashList public abstract CashUnits CurrencyCashList

DepositCodeList public abstract string[] DepositCodeList

DepositCounts public abstract CashCount[] DepositCounts
1736 Unified POS, v1.16.1

More Information

Samples are available in the POS for .NET Software Development Kit (SDK) which is available for download at
https://aka.ms/p4dn-dl.

C.9 PosExplorer API

PosExplorer is used by applications to acquire a list of installed POS devices, open—or create instances of—
service objects for those devices, and receive Plug-n-Play events when the devices are connected or disconnected
from the system.

C.9.1 PosExplorer Properties

PosRegistryKey Property
Syntax public static string PosRegistryKey {read-only}

Remarks Holds the POS for .NET configuration root registry key relative to HKEY_LOCAL_MACHINE.

StatisticsFile Property

Syntax public static string StatisticsFile {read-only}

Remarks Holds the path to the file in which device statistics is persisted.

SynchronizingObject Property

Syntax public ISynchronizeInvoke SynchronizingObject {read-write}

Remarks Sets or holds the ISynchronizeInvoke object.

ExitCashList public abstract CashUnits ExitCashList

CheckScanner

QualityList public abstract int[] QualityList

FiscalPrinter

PredefinedPaymentLines public abstract string[] PredefinedPaymentLines

POSPrinter

CharacterSetList public abstract int[] CharacterSetList

FontTypefaceList public abstract string[] FontTypefaceList

RecBarCodeRotationList public abstract Rotation[] RecBarCodeRotationList

RecBitmapRotationList public abstract Rotation[] RecBitmapRotationList

SlpBarCodeRotationList public abstract Rotation[] SlpBarCodeRotationList

SlpBitmapRotationList public abstract Rotation[] SlpBitmapRotationList

RemoteOrderDisplay

VideoModesList public abstract VideoMode[] VideoModesList
Unified POS, v1.16.1 1737

www.microsoft.com/downloads/details.aspx?FamilyID=ADAA1129-5CB1-415E-B339-E508FCA55CA0&displaylang=en
www.microsoft.com/downloads/details.aspx?FamilyID=ADAA1129-5CB1-415E-B339-E508FCA55CA0&displaylang=en
www.microsoft.com/downloads/results.aspx?pocid=&freetext=POS%20for%20.NET%20SDK&displaylang=en
www.microsoft.com/downloads/results.aspx?pocid=&freetext=POS%20for%20.NET%20SDK&displaylang=en
www.microsoft.com/downloads/details.aspx?FamilyID=ADAA1129-5CB1-415E-B339-E508FCA55CA0&displaylang=en

C.9.2 PosExplorer Methods

CreateInstance Method
Syntax public PosDevice CreateInstance(DeviceInfo device)

Remarks Instantiates the device based on the information supplied by the property values of the DeviceInfo object.

Parameter Description
device An object that describes the device you want to create an instance of, and

which is an instance of the DeviceInfo class. DeviceInfo contains properties
such as Compatibility, Description, HardwareID, and so on, for the device.

GetDevice Method (string)

Syntax public DeviceInfo GetDevice(string type)

Remarks Retrieves a device of the specified type.

Parameter Description
type A string that contains one of the UnifiedPOS device types, as defined by the

DeviceType helper class.

There must be only one device of that type currently in the system, or if there is more than one, one
must have been configured as the default device. If there is more than one device of the specified type
and no device has been configured as the default device, a PosLibraryException will be thrown.

This signature of GetDevice represents the simplest case for retrieving and instantiating a device in the
POS for .NET system. To retrieve one device and instantiate its service object, the application must
only:

• Create an instance of PosExplorer;
• Call GetDevice using the above method signature; and
• Call CreateInstance.

POS for .NET initializes the device of the type specified or, if there is more than one device of that type,
the pre-configured default device for that type.

GetDevice Method (string, string)

Syntax public DeviceInfo GetDevice(string type, string logicalName)

Remarks Retrieves a device of the specified type and name (or alias).

Parameter Description
type A string that contains one of the UnifiedPOS device types, as defined by the

DeviceType helper class.
logicalName The logical name or alias of the device.

GetDevices Method

Syntax public DeviceCollection GetDevices()

Remarks Retrieves all POS devices currently installed in the system.
1738 Unified POS, v1.16.1

GetDevices Method (DeviceCompatibilities)

Syntax public DeviceCollection GetDevices(DeviceCompatibilities compatibility)

Remarks Retrieves all POS devices currently installed in the system, based on a compatibility level.

Parameter Description
compatibility DeviceCompatibilities enumeration that indicates compatibility level.

GetDevices Method (string)

Syntax public DeviceCollection GetDevices(string type)

Remarks Retrieves all POS devices of the specified type.

Parameter Description
type A string that contains one of the UnifiedPOS device types, as defined by the

DeviceType helper class.

GetDevices Method (string, DeviceCompatibilities)

Syntax public DeviceCollection GetDevices(string type, DeviceCompatibilities compatibility)

Remarks Retrieves all POS devices of the specified type, based on a compatibility level.

Parameter Description
type A string that contains one of the UnifiedPOS device types, as defined by the

DeviceType helper class.

compatibility DeviceCompatibilities enumeration that indicates compatibility level.

Refresh Method
Syntax public void Refresh()

Remarks Re-enumerates the list of attached POS devices and rebuilds the internal data structures.

C.9.3 PosExplorer Events

DeviceAddedEvent Event

Syntax public event DeviceChangedEventHandler DeviceAddedEvent;

Remarks Notifies the application when a POS device has been added to the system.

DeviceAddedEvent only notifies for POS devices for which there is a service object installed.

The event handler receives an argument of type DeviceChangedEventArgs which contains a
DeviceInfo object for the added device.

DeviceRemovedEvent Event

Syntax public event DeviceChangedEventHandler DeviceRemovedEvent;

Remarks Notifies the application when a POS device has been removed from the system.

DeviceRemovedEvent only notifies for POS devices for which there is a service object installed.

The event handler receives an argument of type DeviceChangedEventArgs which contains a
DeviceInfo object for the removed device.
Unified POS, v1.16.1 1739

C.9.4 Global Configuration

PosExplorer reads the global configuration file (config.xml), which enables application developers to specify
aliases for Plug-n-Play and non Plug-n-Play devices, and to define physical devices for non Plug-n-Play Service
Objects.

The global configuration file also enables application developers to define more than one physical device
associated with a non Plug-n-Play Service Object and to assign aliases and device paths (such as COM ports) to
them. This enables Application Developers to target non Plug-n-Play Service Objects to specific physical
devices.

C.10 Service Object Registry

In OPOS, configuration information for Service Objects is stored in the registry. In POS for .NET, configuration
information is stored in Config.xml. POS for .NET enables seamless access to registry information for COM
Service Objects through PosExplorer; the Common Control Library does the work of gathering registry
configuration information.

C.11 Consuming Service Objects

C.11.1 OPOS

Control Objects represent the application interface to its matching Service Object. The UnifiedPOS standard does
not provide any code for Control Objects. However, it does suggest that the OPOS Control objects located at
http://www.monroecs.com/oposccos.htm be used or at the very least tested against. In addition, the site holds an
ActiveX® Control that is an aggregation of all device classes. This is commonly referred to as the Common
Controls Objects.

Under OPOS it is customary practice for IHVs, ISVs, and OEMs to create their own versions of Control Objects
and to not use or test the referenced Common Control Objects. This has lead to compatibility issues between
hardware, services, and application code.

The OPOS implementation consists of the following steps:

• Instantiate an instance of the Control Object

• Call the Control Objects:

• Open to load the Service Object by name

• Claim

• Enable

Note that on a device-by-device basis, there may be properties that must be read or set before interacting with the
device for device-specific functionality.
1740 Unified POS, v1.16.1

http://www.monroecs.com/oposccos.htm
http://www.monroecs.com/oposccos.htm
http://www.monroecs.com/oposccos.htm

C.11.2 POS for .NET

To instantiate a Service Object in POS for .NET, do the following:

• Instantiate the PosExplorer object.

• Use the PosExplorer.GetDevice or GetDevices method to obtain a list of one or more DeviceInfo objects that
represent devices attached to the machine.

• Call PosExplorer.CreateInstance, passing in the DeviceInfo for the device you want to load.

• Call methods/properties on the Service Object returned by the previous step.

The supplied PosExplorer tool is a helper class that acts as a Service Object Factory. The developer will
instantiate: 
Sample POSExplorer.GetDevice(…);

This approach provides the following benefits:

• Achieves infrastructure required to support feature set (see POS for .NET features).

• Simplifies an application: One section of code can be used to dynamically instantiate a Service Object.

• For most cases it eliminates the need for detailed knowledge of the specific brand of hardware peripheral.

• An application can easily get a list of available POS peripherals actually attached to the device (Available for Plug-
n-Play).

• For an application there is no difference between .NET SOs and OPOS SOs.

C.12 Writing Service Objects

C.12.1 POS for .NET

There are three different approaches available:

• Derive the Service Object from the Interface class

• Derive the Service Object from the Basic class

• Derive the Service Object from the Base class

There are various levels of work required for the Service Object writer for each approach. For example, deriving
from the Interface class requires the most amount of code to be implemented by the service application yet gives
it the most control over the operation of the Service Object. By deriving from the Basic class, the service
application only must implement the core functionality of the device. The Basic class already provides the
common functionality. Deriving from the Base class leaves the service application with only having to implement
the specific hardware functionality; the basic functionality of the device class has already been provided.
Unified POS, v1.16.1 1741

C.13 Status, State Model, and Exceptions

The status, error code, and state models are built around several common enumerations, events, and a property,
described below:

StatusUpdateEvent
An event fired when some class-specific state or status variable has changed.

ControlState
An enumeration containing the current state. Possible values are:

• Closed
• Idle
• Busy
• Error

Exceptions
Every POS for .NET method invocation and property access may throw a PosControlException upon
failure, except for accesses to the properties DeviceControlVersion, DeviceControlDescription, and
State. No other types of exceptions will be thrown.

PosControlException is defined in the namespace Microsoft.PointOfService, and extends
System.Exception.

Public Properties

The constructor variations are defined as follows:

PosControlException (string message, ErrorCode errorCode)

PosControlException (string message, ErrorCode errorCode, Exception innerException)

PosControlException (string message, ErrorCode errorCode, int errorCodeExtended)

 PosControlException (string message, ErrorCode errorCode, int
 errorCodeExtended, Exception innerException)

The parameters are defined as follows:

Name Description

ErrorCode
ErrorCode causing the error exception. See the list of
Error Codes.

ErrorCodeExtended
Extended Error Code causing the error exception. This
may contain a Service-specific value.
1742 Unified POS, v1.16.1

http://msdn.microsoft.com/library/en-us/ccl/html/P_Microsoft_PointOfService_PosControlException_ErrorCode.asp
http://msdn.microsoft.com/library/en-us/ccl/html/P_Microsoft_PointOfService_PosControlException_ErrorCodeExtended.asp

Parameter Description
errorCode The POS for .NET error code. Access is through the ErrorCode getter

method.
errorCodeExtended May contain an extended error code. If not provided by the selected

constructor, then is set to zero. Access is through the ErrorCodeExtended
getter method.

message A text description of the error. If not provided by the selected constructor,
then one is formed from the errorCode and errorCodeExtended parameters.
Access is through the superclass’ getter method Message or method
ToString.

innerException Original exception. If the POS for .NET Service caught a non-POS for .NET
exception, then an appropriate errorCode is selected and the original
exception is referenced by this parameter. Otherwise, it is set to null. Access
is through the inherited getter method InnerException.

C.14 Device Sharing Model

The POS for .NET device sharing model supports devices that are to be used exclusively by one application at a
time, as well as devices that may be partially or fully shared by multiple applications. All POS for .NET service
objects may be opened by more than one application at a given time. Some or many of the activities that an
application can perform with the service object, however, may be restricted to an application that claims access
to the device.

Exclusive-Use Devices

The most common device type is called an “exclusive-use device”. An example is the POSPrinter. Due to
physical or operational characteristics, this device can only be used by one application at a time. The application
must call the Claim method to gain exclusive access to the device before most methods, properties, or events are
legal. Until the device is claimed, calling methods or setting properties cause an Illegal error, and events are not
fired to the application.

Should two closely cooperating applications want to treat an exclusive-use device in a shared manner, then one
application may claim the device for a short sequence of operations, then release it so that the other application
may use it.

When the Claim method is called again, settable device characteristics are restored to their condition at Release.
Examples of restored characteristics are the LineDisplay's brightness, the MSR's tracks to read, and the
POSPrinter's characters per line. State characteristics are not restored, such as the POSPrinter's sensor properties.
Instead, these are updated to their current values.

Sharable Devices

Some devices are “sharable devices.” An example is the Keylock. A sharable device allows multiple applications
to call its methods and access its properties. Also, it may fire its events to all applications that have opened it. A
sharable device may still limit access to some methods or properties to an application that has claimed it, or may
fire some events only to this application.
Unified POS, v1.16.1 1743

C.15 Events Updated in Release 1.12

POS for .NET implements UnifiedPOS events as standard .NET events with multicast delegates.

The events inform an application of various activities or changes with a device, or when a device is added or
removed. The event types are as follows:

The Service Object queues events as they occur. Queued events are delivered to the application when conditions
are correct. Conditions that delay the delivery of events include:

• The application has set the property FreezeEvents to TRUE.

• The event type is DataEvent or an input ErrorEvent, but the property DataEventEnabled is FALSE.

Unless specified otherwise, properties that convey device state information (e.g., JrnEmpty and
DrawerOpened) are kept current while the device is enabled, regardless of the setting of the FreezeEvents
property.

Note: The following event terminology is used in this document.
Queue When the Service Object determines that an event needs to be fired to the

application, it queues the event on an internal event queue.
Deliver When the event queue is non-empty and all conditions are met for the top event

on the queue, this event is removed from the queue and delivered to the
application.

Fire The combination of queuing and delivering an event. Sometimes, the term is
used more loosely and may only refer to one of these steps. The reader should
differentiate these cases by context.

Rules on the management of the queue of events are:

• The Service Object can only queue new events while the device is enabled.

• The Service Object can deliver queued events until the application calls the Release method (for exclusive-use
devices) or the Close method (for any device), at which time any remaining events are deleted.

• For input devices, the ClearInput method clears data and input error events. While within an event handler,
the application may access properties and call methods. However, the application must not call the Release or
Close methods from an event handler, because Release may shut down event handling (possibly including a
thread that caused the event to be delivered) and Close must shut down event handling before returning.

Event Description

DataEvent
Input data has been placed into device
class-specific properties

ErrorEvent
An error has occurred during event-driven
input or asynchronous output.

StatusUpdateEvent Reports a change in the device’s status.

OutputCompleteEvent
An asynchronous output has successfully
completed.

DirectIOEvent
This event may be defined by a Service
Object provider for purposes not covered
by the specification.
1744 Unified POS, v1.16.1

C.16 Input Model Updated in Release 1.12

The POS for .NET input model supports event-driven input. Event-driven input allows input data to be received
after DeviceEnabled is set to TRUE. Received data is queued as a DataEvent, which is delivered to the
application when preconditions are correct. If the AutoDisable property is TRUE when data is received, then the
control will automatically disable itself, setting DeviceEnabled to FALSE. This will inhibit the Service Object
from queuing further input and, when possible, physically disable the device.

When the application is ready to receive input from the device, it sets the DataEventEnabled property to TRUE.
Then, when input is received (usually as a result of a hardware interrupt), the Control enqueues and delivers a
DataEvent. (If input has already been enqueued, the DataEvent will be delivered.) This event may include input
status information through a numeric parameter. The Control places the input data plus other information as
needed into device-specific properties just before the event is fired.

Just before delivering this event, the Control disables further data events by setting the DataEventEnabled
property to FALSE. This causes subsequent input data to be enqueued by the Control while the application
processes the current input and associated properties. When the application has finished the current input and is
ready for more data, it re-enables events by setting DataEventEnabled to TRUE.

If the input device is an exclusive-use device, the application must both claim and enable the device before the
device begins reading input.

For sharable input devices, one or more applications must open and enable the device before the device begins
reading input. An application must call the Claim method to request exclusive access to the device before the
Control will send data to it using the DataEvent. If event-driven input is received, but no application has claimed
the device, then the input is buffered until an application claims the device (and the DataEventEnabled property
is TRUE). This behavior allows orderly sharing of the device between multiple applications, effectively passing
the input focus between them.

If the Control encounters an error while gathering or processing event-driven input, then the Control changes its
state to Error, and enqueues one or two ErrorEvents to alert the application of the error condition. This event (or
events) is not delivered until the DataEventEnabled property is TRUE, so that orderly application sequencing
occurs.

Unlike a DataEvent, the Control does not disable further DataEvents or input ErrorEvents; it leaves the
DataEventEnabled property value at TRUE. Note that the application may set DataEventEnabled to FALSE
within its event handler if subsequent input events need to be disabled for a period of time.

Error events are delivered with the following loci:

InputData – Only queued if the error occurred while one or more DataEvent events are queued. It is enqueued
ahead of all DataEvents. This event gives the application the ability to immediately clear the input, or to
optionally alert the user to the error and process the buffered input.

The latter case may be useful with a Scanner Control. The user can be immediately alerted to the error so that no
further items are scanned until the error is resolved. Any previously scanned items can then be successfully
processed before error recovery is performed.

Input – Delivered when an error has occurred and there is no data available. (A typical implementation would
place it at the tail of the event queue.) If some input data was already enqueued when the error occurred, then an
ErrorEvent with the locus InputData was queued and delivered first, and then this error event is delivered after
all DataEvents have been fired. (If an “InputData” event was delivered and the application event handler
responded with a “Clear”, then this “Input” event is not delivered.)
Unified POS, v1.16.1 1745

The Control exits the Error state when one of the following occurs:

• The application returns from the Input ErrorEvent.

• The application returns from the InputData ErrorEvent with a Clear ErrorResponse.

• The application calls the ClearInput method.

For some Controls, the Application must call a method to begin event-driven input. After the input is received by
the Control, then typically no additional input will be received until the method is called again to reinitiate input.
Examples are the MICR and Signature Capture devices. This variation of event driven input is sometimes called
“asynchronous input.”

The DataCount property can be read to obtain the number of DataEvents queued by the Control.

All input queued by a Control can be deleted by calling the ClearInput method. ClearInput can be called after
Open for sharable devices and after Claim for exclusive-use devices.

The general event-driven input model does not specifically rule out the definition of device classes containing
methods or properties that return input data directly. Some device classes will define such methods and properties
in order to operate in a more intuitive or flexible manner. An example is the Keylock device. This type of input
is sometimes called “synchronous input.”
1746 Unified POS, v1.16.1

C.17 Output Model

The POS for .NET output model consists of two output types: synchronous and asynchronous. A device class can
support one or both types, or neither type.

C.17.1 Synchronous Output

This type of output is preferred when device output can be performed quickly. Its merit is simplicity.

The application calls a class-specific method to perform output. The service object does not return until the
output is completed.

C.17.2 Asynchronous Output Updated in Release 1.12

This type of output is preferred when device output requires slow hardware interactions. Its merit is perceived
responsiveness, because the application can perform other work while the device is performing the output.

The application calls a class-specific method to start the output. The Service Object buffers the request in
program memory, for delivery to the Physical Device as soon as the Physical Device can receive and process it,
sets the OutputId property to an identifier for this request, and returns as soon as possible. When the device
completes the request successfully, POS for .NET fires an OutputCompleteEvent. A parameter of this event
contains the OutputId of the completed request.

If an error occurs while performing an asynchronous request, an ErrorEvent is fired. The application’s event
handler can either retry the outstanding output or clear it. The Service Object is in the Error state while the
ErrorEvent is in progress. (Note that if the condition causing the error was not corrected, then the Service
Object can immediately reenter the Error state and fire another ErrorEvent.) Asynchronous output is performed
on a first-in, first-out basis. All buffered output data, including all asynchronous output, can be deleted by calling
ClearOutput. OutputCompleteEvents are not fired for cleared output. This method also stops any output that
may be in progress (when possible).

If an error occurs while processing a request, an ErrorEvent is enqueued which will be delivered to the
application after the events already enqueued, including OutputCompleteEvents (according to the normal Event
delivery rules in Chapter 1). No further asynchronous output will occur until the event has been delivered to the
application. If the ErrorResponse is Clear, then outstanding asynchronous output is cleared. If the
ErrorResponse is Retry, then output is retried; note that if several outputs were simultaneously in progress at the
time that the error was detected, then the Service may need to retry all of these outputs.
Unified POS, v1.16.1 1747

C.18 Device Power Reporting Model

Applications frequently need to know the power state of the devices they use. This state is managed by the
PowerState enumeration.

Note: This model is not intended to report PC or POS Terminal power conditions (such as “on battery” and
“battery low”). Reporting of these conditions is now managed by the PosPower enumeration.

C.18.1 Model

POS for .NET segments device power into four states:

Online The device is powered on and ready for use. This is the “operational” state.

Off The device is powered off or detached from the terminal. This is a “non-operational” state.

Offline The device is powered on but is either not ready or not able to respond to requests. It may need to be
placed online by pressing a button, or it may not be responding to terminal requests. This is a “non-operational”
state.

In addition, one combination state is defined:

OffOfflineThe device is either off or offline, and the Service Object cannot distinguish these states.

Power reporting only occurs while the device is open, claimed (if the device is exclusive-use), and enabled.

Note – Enabled/Disabled vs. Power States

These states are different and usually independent. POS for .NET defines “disabled” / “enabled” as
a logical state, whereas the power state is a physical state. A device may be logically “enabled” but
physically “offline.” It may also be logically “disabled” but physically “online.” Regardless of the
physical power state, POS for .NET only reports the state while the device is enabled. (This
restriction is necessary because a Service Object typically can only communicate with the device
while enabled.) If a device is “offline,” then a Service Object may choose to fail an attempt to
“enable” the device. However, once enabled, the Service Object may not disable a device based on
its power state.

1748 Unified POS, v1.16.1

C.19 Power Reporting Properties

The POS for .NET device power reporting model adds the following common elements across all device classes:

CapPowerReporting property: Identifies the reporting capabilities of the device. This property is a
PowerReporting enumeration value:

NoneThe Service Object cannot determine the state of the device. Therefore, no power reporting is possible.

StandardThe Service Object can determine and report two of the power states – OffOffline (that is, off or
offline) and Online.

AdvancedThe Service Object can determine and report all three power states – Online, Offline, and Off.

PowerState enumeration: Maintained by the Service Object at the current power condition, if it can be
determined. This value can be one of:

• Unknown

• Online

• Off

• Offline

• OffOffline

PowerNotify property: The Application can set this property to enable power reporting via StatusUpdateEvents
and the PowerState enumeration. This property can only be set before the device is enabled (that is, before
DeviceEnabled is set to TRUE). This restriction allows simpler implementation of power notification with no
adverse effects on the application. The application is either prepared to receive notifications or does not want
them, and has no need to switch between these cases. This property returns a PowerNotification enumeration,
the value of which is either Disabled or Enabled.

C.19.1 Power Reporting Requirements for DeviceEnabled

The following semantics are added to DeviceEnabled when CapPowerReporting is not None, and PowerNotify
is Enabled:

When the Control changes from DeviceEnabled FALSE to TRUE, then begin monitoring the power state:

If the device is Online, then:

• PowerState is set to Online.

• A StatusUpdateEvent is fired with StatusUpdateEventArgs.Status property set to Online.

If the device power state is Off, Offline, or OffOffline, then the Control can choose to fail the enable, throwing a
PosControlException and setting ErrorCode to NoHardware or OffLine.

However, if there are no other conditions that cause the enable to fail, and the Control chooses to return success
for the enable, then:

• PowerState is set to Off, Offline, or OffOffline.

• A StatusUpdateEvent is fired with the StatusUpdateEventArgs.Status property set to PowerOff, Offline, or
OffOffline.
Unified POS, v1.16.1 1749

C.20 Device Information Reporting Model

POS Applications, as well as System Management agents, frequently need to monitor the current configuration
and usage metrics of the various POS devices that are attached to the POS terminal.

Examples of configuration data are the device’s serial number, firmware version, and connection type. Examples
of usage data for the POSPrinter device are the Number of Lines Printed, Number of Hours Running, Number of
paper cuts, and so on. Examples of usage data for the Scanner device are the Number of scans, Number of Hours
Running, etc. Examples of usage data for the MSR device are the Number of successful swipes, Number of
swipes resulting in errors, Number of Hours Running, etc.

In some cases, the data may be accumulated and stored within the device itself. In other cases, the data may be
accumulated by the Service and stored, possibly on the POS terminal or store controller.

In order for multiple applications (for example a POS application and a System Management application) to
obtain statistics from the same device, proper care must be taken by both applications so that the device can be
made accessible when required. This is done by using the Claim method and by setting DeviceEnabled to TRUE
when access to a device is required and then setting DeviceEnabled to FALSE and using the Release method
when access to the device is no longer needed. Coordination of device access via this mechanism is the
responsibility of the applications themselves.

C.20.1 Statistics Reporting Properties and Methods

The UnifiedPOS device information reporting model adds the following common properties and methods across
all device classes.

CapStatisticsReporting property. Identifies the reporting capabilities of the device. When
CapStatisticsReporting is FALSE, then no statistical data regarding the device is available. This is equivalent to
Services compatible with prior versions of the specification. When CapStatisticsReporting is TRUE, then some
statistical data for the device is available.

CapUpdateStatistics property. Defines whether gathered statistics (or some of them) can be reset/updated by the
application. This property is only valid if CapStatisticsReporting is TRUE. When CapUpdateStatistics is
FALSE, then none of the statistical data can be reset/updated by the application. Otherwise, when
CapUpdateStatistics is TRUE, then (some of) the statistical data can be reset/updated by the application.

ResetStatistics method. Can only be called if both CapStatisticsReporting and CapUpdateStatistics are TRUE.
This method resets one, some, or all of the resettable device statistics to zero.

RetrieveStatistics method. Can only be called if CapStatisticsReporting is TRUE. This method retrieves one,
some, or all of the accumulated statistics for the device.

UpdateStatistics method. Can only be called if both CapStatisticsReporting and CapUpdateStatistics are
TRUE. This method updates one, some, or all of the resettable device statistics to the supplied values.
1750 Unified POS, v1.16.1

C.21 POS for .NET Component Descriptions

C.21.1 POS for .NET Data Types Updated in Release 1.11

The parameter and return types specified in the POS for .NET descriptions are as follows:

C# Type VB.NET Type .NET Framework Type Description
UnifiedPOS

Type

bool Boolean System.Boolean A Boolean value (TRUE or
FALSE). boolean

byte Byte System.Byte Arbitrary binary data. byte

byte[] Byte()
System.Array with array
element type System.Byte

Arbitrary binary data array. binary

decimal Decimal System.Decimal A currency value. currency

int Integer System.Int32 Signed 32-bit integer. int32

int[] Integer()
System.Array with array
element type Sys-
tem.Int32

Signed 32-bit integer array. int32 array

CultureInfo CultureInfo
System.
Globalization.
CultureInfo

Provides information about a
specific culture, such as the
names of the culture, the
writing system, the calendar
used, and how to format
dates and sort strings.

nls

object Object System.Object

An object reference. This will
usually be a subclass to the
root of the class hierarchy to
provide a Device Service-
specific parameter for
directIO or DirectIOEvent.

object

Point[] Point()

System.Array with array
element type
System.Drawing.
Point

An array of ordered pairs of
integer x- and y-coordinates
that define a point in a two-
dimensional plane.

array of points

string String System.String An immutable, fixed-length
string of Unicode characters. string
Unified POS, v1.16.1 1751

C.21.2 POS for .NET Common Properties, Methods, Events, Statistics, and Constants

Common Properties Updated in Release 1.11

Name Type

AutoDisable bool

CapCompareFirmwareVersion bool

CapPowerReporting PowerReporting

CapStatisticsReporting bool

CapUpdateFirmware bool

CapUpdateStatistics bool

CheckHealthText string

Claimed bool

Compatibility DeviceCompatibilities

DataCount int

DataEventEnabled bool

DeviceDescription string

DeviceEnabled bool

DeviceName string

DevicePath string

FreezeEvents bool

OutputId int

PowerNotify PowerNotification

PowerState PowerState

ServiceObjectDescription string

ServiceObjectVersion System.version

State ControlState

SynchronizingObject System.ComponentModel.ISynchronizeInvoke
1752 Unified POS, v1.16.1

The common properties are explained in detail further below.

Common Methods Updated in Release 1.11

The following are POS for .NET implementation-specific definitions of Common Methods:

CheckHealth (HealthCheckLevel level);
Claim (int timeout);
ClearInput ();
ClearInputProperties ();
ClearOutput ();
Close ();
CompareFirmwareVersion (string filename);
DeleteConfigurationProperty (string propertyName);
DirectIO (int command, int data, object obj);
GetConfigurationProperty (string propertyName);
Invoke (Delegate method, object[] args);
Open ();
Release ();
ResetStatistics ();
ResetStatistics (StatisticCategories statistics);
ResetStatistics (string[] statistics);
RetrieveStatistics (StatisticCategories statistics);
RetrieveStatistics (string[] statistics);
RetrieveStatistic (string statistic);
UpdateFirmware (string filename);
UpdateStatistic (string name, object value);
UpdateStatistics (Statistic[] statistics);
UpdateStatistics (StatisticCategories statistics, object value);

The common methods are explained in detail further below.

Common Events

Events in the .NET Framework are based on the delegate model. For more information about the
delegate model, on how to consume events in applications, and how to raise events from a class, see
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconevents.asp.

The following are POS for .NET implementation-specific definitions of Common Events:

DataEventHandler DataEvent;
DirectIOEventHandler DirectIOEvent;
DeviceErrorEventHandler ErrorEvent;
OutputCompleteEventHandler OutputCompleteEvent;
StatusUpdateEventHandler StatusUpdateEvent;

The common events are explained in detail further below.

Common Statistics

StatisticUnifiedPOSVersion = “UnifiedPOSVersion”;

StatisticDeviceCategory = “DeviceCategory”;

StatisticManufacturerName = “ManufacturerName”;
Unified POS, v1.16.1 1753

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconevents.asp

StatisticModelName = “ModelName”;

StatisticSerialNumber = “SerialNumber”;

StatisticManufactureDate = “ManufactureDate”;

StatisticMechanicalRevision = “MechanicalRevision”;

StatisticFirmwareRevision = “FirmwareRevision”;

StatisticInterface = “Interface”;

StatisticInstallationDate = “InstallationDate”;

StatisticHoursPoweredCount = “HoursPoweredCount”;

StatisticCommunicationErrorCount = “CommunicationErrorCount”;

Common Constants

int WaitForever= -1;

int StatusPowerOnline= 2001;

int StatusPowerOff= 2002;

int StatusPowerOffline= 2003;

int StatusPowerOffOffline= 2004;

int ExtendedErrorStatistics= 280;
1754 Unified POS, v1.16.1

C.22 Common Properties

AutoDisable Property
Type bool

Remarks If true, the Service will set DeviceEnabled to false after it receives and enqueues data as a DataEvent.
Before any additional input can be received, the application must set DeviceEnabled to true.

If false, the Service does not automatically disable the device when data is received.

This property provides the application with an additional option for controlling the receipt of input data.
If an application wants to receive and process only one input, or only one input at a time, then this
property should be set to true. This property applies only to event-driven input devices.

This property is initialized to false by the open method.

Errors A PosControlException may be thrown when this property is accessed. For further information, see
“Status, State Model, and Exceptions” on page 1742.

CapCompareFirmwareVersion Property Added in Release 1.11

Type bool

Remarks If true, then the Service/device supports comparing the version of the firmware in the physical device
against that of a firmware file.

Errors A PosControlException may be thrown when this property is accessed. For further information, see
“Status, State Model, and Exceptions” on page 1742.

CapPowerReporting Property

Type PowerReporting

Remarks Identifies the reporting capabilities of the device. Possible values are defined by the PowerReporting
enumeration.

The service object should then set PowerReporting based on the capabilities of the device.

The power reporting values are:

Value Meaning
None The Service Object cannot determine the state of the device. Therefore, no

power reporting is possible.
Standard The Service Object can determine and report two of the power states –

OffOffLine (that is, off or offline) and Online.
Advanced The Service Object can determine and report all three power states – Off,

OffLine, and OnLine.

Errors None.

CapStatisticsReporting Property

Type bool

Remarks If set to TRUE, the device accumulates and can provide various statistics regarding usage. The
information accumulated is device-specific, and can be retrieved using the RetrieveStatistic(s) method.

Errors A PosControlException may be thrown when this property is accessed. For further information, see
“Status, State Model, and Exceptions” on page 1742.
Unified POS, v1.16.1 1755

CapUpdateFirmware Property Added in Release 1.11

Type bool

Remarks If true, then the device’s firmware can be updated via the UpdateFirmware method.

Errors A PosControlException may be thrown when this property is accessed. For further information, see
“Status, State Model, and Exceptions” on page 1742.

CapUpdateStatistics Property

Type bool

Remarks If set to TRUE, some or all of the device statistics can be reset to 0 (zero) using the ResetStatistic(s)
methods, or updated using the UpdateStatistic(s) methods.

If the CapStatisticsReporting property is set to FALSE, CapUpdateStatistics will always be FALSE.

Errors A PosControlException may be thrown when this property is accessed. For further information, see
“Status, State Model, and Exceptions” on page 1742.

CheckHealthText Property
Type string

Remarks Contains text indicating the health of the device. Updated by the service object when the application calls
the CheckHealth method.

Errors A PosControlException may be thrown when this property is accessed. For further information, see
“Status, State Model, and Exceptions” on page 1742.

Claimed Property
Type bool

Remarks If TRUE, the device is claimed for exclusive access. If FALSE, the device is released for sharing with
other applications.

Exclusive use devices must be claimed using the Claim method before the service object will allow
access to many of its methods and properties, and before the service object will fire events to the
application.

Errors A PosControlException may be thrown when this property is accessed. For further information, see
“Status, State Model, and Exceptions” on page 1742.

Compatibility Property

Type DeviceCompatibilities

Remarks Indicates the compatibility level of a device.

This property has one of the following values:

Member Name Description
CompatibilityLevel1 Indicates compatibility with any .NET service object.
Opos Indicates compatibility with any COM service object.
OposAndCompatibilityLevel1

Indicates compatibility with any .NET or COM service object.

Errors A PosControlException may be thrown when this property is accessed. For further information, see
“Status, State Model, and Exceptions” on page 1742.
1756 Unified POS, v1.16.1

DataCount Property

Type int

Remarks Holds the number of enqueued DataEvents.

The application may read this property to determine whether additional input is enqueued from a device,
but has not yet been delivered because of other application processing, freezing of events, or other causes.

This property is initialized to zero by the open method.

Errors A PosControlException may be thrown when this property is accessed. For further information, see
“Status, State Model, and Exceptions” on page 1742.

DataEventEnabled Property

Type bool

Remarks If true, a DataEvent will be delivered as soon as input data is enqueued. If changed to true and some
input data is already queued, then a DataEvent is delivered immediately. (Note that other conditions may
delay “immediate” delivery: if FreezeEvents is true or another event is already being processed at the
application, the DataEvent will remain queued at the Service until the condition is corrected.)

If false, input data is enqueued for later delivery to the application. Also, if an input error occurs, the
ErrorEvent is not delivered while this property is false.

This property is initialized to false by the open method.

Errors A PosControlException may be thrown when this property is accessed. For further information, see
“Status, State Model, and Exceptions” on page 1742.

DeviceDescription Property
Type string

Remarks Contains text identifying the device and any pertinent information about it. A sample of the text might be:

“NCR 7192-0184 Printer, Japanese Version”

This property is initialized when the application calls the Open method.

Errors None.

DeviceEnabled Property

Type bool

Remarks When TRUE, the device has been placed in an operational state. If changed to TRUE, then the device is
brought to an operational state.

When FALSE, the device has been disabled. If changed to FALSE, then the device is physically
disabled when possible. Any subsequent input will be discarded, and output operations are disallowed.

Changing DeviceEnabled usually does not physically affect output devices. For consistency, however,
the application must set DeviceEnabled to TRUE before using output devices.

Errors A PosControlException may be thrown when this property is accessed. For further information, see
“Status, State Model, and Exceptions” on page 1742.
Unified POS, v1.16.1 1757

DeviceName Property

Type string

Remarks Contains a short string identifying the device and any pertinent information about it.

This is a short version of DeviceDescription and should be limited to 30 characters.

DeviceName will typically be used to identify the device in an application message box, where the full
description is too verbose. A sample DeviceName string is:

“NCR 7192 Printer, Japanese”

Errors None.

DevicePath Property Updated in Release 1.13

Type string

Remarks Contains the hardware path of a device. Note: This is a common property for .NET service objects but
it is only intended for usage between the .NET service object and the POS for .NET system. The
Application should not access this property. A .NET service object that attempts to change this non-
public DevicePath property to public will result in an exception error.

The PosExplorer class attempts to initialize DevicePath to the hardware path of the physical device
using the following algorithm:

• If the physical hardware supports Plug and Play and the service object is mapped to a specific
hardware ID via the HardwareId custom attribute or a configuration XML file, PosExplorer class
will set DevicePath to the HardwarePath of the physical device. Service objects can typically use
this DevicePath to directly access the device.

• If the device does not support Plug and Play, but has been configured via Posdm.exe or WMI,
DevicePath will be set to the path specified when the device was configured.

• If the device does not support Plug and Play and has not been configured via Posdm.exe or WMI,
DevicePath will be set to empty string (“”) and must be set by the service object before the Open
method in the base/basic class can be called.

Errors A PosControlException may be thrown when this property is accessed. For further information, see
“Status, State Model, and Exceptions” on page 1742.
1758 Unified POS, v1.16.1

FreezeEvents Property Updated in Release 1.12

Type bool

Remarks When set to TRUE, the application has requested that the service object not deliver events. Events will
be queued by the service object but not delivered until the application changes FreezeEvents to FALSE.

When set to FALSE, the application allows events to be delivered. If some events have been held while
events were frozen and all other conditions are correct for delivering the events, changing
FreezeEvents to FALSE will allow these events to be delivered.

An application can choose to freeze events for a specific sequence of code where interruption by an
event is not desirable.

Unless specified otherwise, properties that convey device state information (e.g., JrnEmpty and
DrawerOpened) are kept current while the device is enabled, regardless of the setting of the
FreezeEvents property.

Errors A PosControlException may be thrown when this property is accessed. For further information, see
“Status, State Model, and Exceptions” on page 1742.

OutputId Property

Type int

Remarks Holds the identifier of the most recently started asynchronous output.

When a method successfully initiates an asynchronous output, the Service assigns an identifier to the
request. When the output completes, an OutputCompleteEvent will be enqueued with this output ID as
a parameter.

The output ID numbers are assigned by the Service and are guaranteed to be unique among the set of
outstanding asynchronous outputs. No other facts about the ID should be assumed.

Errors A PosControlException may be thrown when this property is accessed. For further information, see
“Status, State Model, and Exceptions” on page 1742.

PowerNotify Property
Type PowerNotification

Remarks Contains the type of power notification selection made by the application. Possible values are defined by
the PowerNotification enumeration.

PowerNotify can only be set while the device is disabled, that is, while the DeviceEnabled property is
set to FALSE.

Errors A PosControlException may be thrown when this property is accessed. For further information, see
“Status, State Model, and Exceptions” on page 1742.

PowerState Property

Type PowerState

Remarks Contains the current power condition. Possible values are defined by the PowerState enumeration.

When PowerNotify is set to enabled and DeviceEnabled is TRUE, PowerState is updated as the
service object detects power condition changes. When the power state changes, the service object
updates PowerState and queues a StatusUpdateEvent event, notifying the application.

Errors None.
Unified POS, v1.16.1 1759

ServiceObjectDescription Property

Type string

Remarks Contains a string identifying the service object supporting the device and the company that produced it.

A sample ServiceObjectDescription string is:

“TM-T88IV Printer POS for .Net Service Driver, (C) 2005 Epson”

Errors A PosControlException may be thrown when this property is accessed. For further information, see
“Status, State Model, and Exceptions” on page 1742.

ServiceObjectVersion Property

Type System.version

Remarks ServiceObjectVersion holds the service object version number. Version numbers consist of two to four
integers, Major, Minor, Build, and Revision. Build and Revision are optional, but Revision is optional
only if Build is not specified.

The Major and Minor version numbers correspond to the UnifiedPOS version implemented by the
service object. A service object that implements the UnifiedPOS 1.8 specification would set Major=1
and Minor=8. The Build and Revision version numbers are optional and can be used by the service
object to track its internal version.

Errors A PosControlException may be thrown when this property is accessed. For further information, see
“Status, State Model, and Exceptions” on page 1742.

State Property
Type ControlState

Remarks Contains the current state of the device. Possible values are defined by the ControlState enumeration.

State is set to ControlState.Idle by the Open method and is always readable, regardless of the state of
the device.

Errors None.

SynchronizingObject Property

Type System.ComponentModel.ISynchronizeInvoke

Remarks Contains an instance of the ISynchronizeInvoke class. Applications can use this property to specify the
thread events that are to be delivered on. If SynchronizingObject is set to null, events are delivered on
an internal thread owned by the service object. Applications using Windows Forms should set
SynchronizationObject to the this pointer of the main Form class so that events are delivered on the
main application thread ... as required by the Form class.

Errors A PosControlException may be thrown when this property is accessed. For further information, see
“Status, State Model, and Exceptions” on page 1742.
1760 Unified POS, v1.16.1

C.23 Common Methods

CheckHealth Method
Syntax string CheckHealth (HealthCheckLevel level);

Remarks The application calls CheckHealth to test the state of a device. CheckHealth is always performed
synchronously. The service object returns a string indicating the health level and updates the
CheckHealthText property.

The level parameter indicates the type of health check to be performed on the device. Possible values
are defined by the HealthCheckLevel enumeration.

Value Meaning
Internal Perform a health check that does not physically change the device. The device

is tested by internal tests to the extent possible.
External Perform a more thorough test that may change the device. For example, a

pattern may be printed on the printer.
Interactive Perform an interactive test of the device. The supporting Service Object will

typically display a modal dialog box to present test options and results.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 1742.

CheckHealth may throw the following PosControlException:

Claim Method
Syntax void Claim (int timeout);

Remarks The application calls Claim to request exclusive access to the device. Many devices require an
application to claim them before they can be used.

If the timeout parameter is set to 0 (zero), the method attempts to claim the device, then returns the
appropriate status immediately. If timeout is set to WaitForever (-1), Claim waits until exclusive
access is satisfied.

An application can claim a device more than once without generating an error. When Claim is
successful, the Claimed property is set to TRUE.

The timeout parameter contains the maximum number of milliseconds to wait for exclusive access to be
satisfied.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 1742.

ErrorCode Value Description

Illegal The specified health check level is not supported by the
service object.
Unified POS, v1.16.1 1761

Claim may throw the following PosControlExceptions:

ClearInput Method
Syntax void ClearInput ();

Remarks Clears all device input that has been buffered.

Any data events or input error events that are enqueued – usually waiting for DataEventEnabled to be
set to true and FreezeEvents to be set to false – are also cleared.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 1742.

ClearInputProperties Method Added in Release 1.11

Syntax void ClearInputProperties ();

Remarks Sets all data properties that were populated as a result of firing a DataEvent or ErrorEvent back to their
default values. This does not reset the DataCount or State properties.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 1742.

ClearOutput Method

Syntax void ClearOutput ();

Remarks Clears all buffered output data, including all asynchronous output. Also, when possible, halts outputs that
are in progress.

Any output error events that are enqueued – usually waiting for FreezeEvents to be set to false – are also
cleared.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 1742.

Close Method
Syntax void Close ();

Remarks The application calls Close to release the device and its resources.

If the DeviceEnabled property is set to TRUE, the device will be disabled. If the Claimed property is
set to TRUE, the device will be released.

ErrorCode Value Description

Illegal

One of the following conditions has occurred:
The device cannot currently be claimed for exclusive
access; or a value of less than -1 has been specified for the
timeout parameter.

Timeout
Another application has exclusive access to the device
and did not relinquish control before timeout milliseconds
expired.
1762 Unified POS, v1.16.1

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 1742.

Close may throw the following PosControlExceptions:

CompareFirmwareVersion Method Added in Release 1.11

Syntax CompareFirmwareResult CompareFirmwareVersion (
string firmwareFileName);

Remarks This method determines whether the version of the firmware contained in the specified file is newer than,
older than, or the same as the version of the firmware in the physical device.

The Service should check that the specified firmware file exists and that its contents are valid for this
device before attempting to perform the comparison operation.

The result of the comparison is returned in the enumeration CompareFirmwareResult and will be one
of the following values:

Value Meaning 
Older Indicates that the version of one or more of the firmware files is
 older than the firmware in the device and that none of the firmware
files is newer than the firmware in the device.
Same Indicates that the versions of all of the firmware files are the same as

the firmware in the device.

Newer Indicates that the version of one or more of the firmware files is
newer than the firmware in the device and that none of the firmware
files is older than the firmware in the device.

Different Indicates that the version of one or more of the firmware files is
different than the firmware in the device, but either:
•The chronological relationship cannot be determined, or
•The relationship is inconsistent -- one or more are older while one

or more are newer.

Unknown Indicates that a relationship between the two firmware versions
could not be determined.

A possible reason for this enumeration could be an attempt to compare Japanese and US versions of
firmware.

If the firmwareFileName parameter specifies a file list, all of the component firmware files should reside
in the same directory as the firmware list file. This will allow for distribution of the updated firmware
without requiring a modification to the firmware list file.

ErrorCode Value Description

Busy
The State property is set to ControlState.Busy,
indicating that the device is currently in use and cannot be
shut down.

Closed The device is already closed.

Parameter Description

firmwareFileName
Specifies either the name of the file containing the firmware or a file
containing a set of firmware files whose versions are to be compared
against those of the device.
Unified POS, v1.16.1 1763

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 1742.

CompareFirmwareVersion may throw the following PosControlExceptions:

DirectIO Method
Syntax DirectIOData DirectIO (int command, int data, object obj);

Remarks The application calls DirectIO to communicate directly with the service object.

Using DirectIO allows a service object to provide functionality to the application that is not otherwise
supported by the standard service interface for its device class. Depending on the service object’s
definition of the command, DirectIO may be asynchronous or synchronous.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 1742.

DirectIO returns an instance of the DirectIOData structure.

ErrorCode Value Description

Illegal CapCompareFirmwareVersion is false.

NoExist
The file specified by firmwareFileName does not exist or, if firm-
wareFileName specifies a file list, one or more of the component
firmware files are missing.

Extended
ErrorCodeExtended = EFIRMWARE_BAD_FILE:
The specified firmware file or files exist, but one or more are either
not in the correct format or are corrupt.

Parameter Description

command
The command number. Specific values are assigned by
the service object.

data
Additional numeric data. Specific values vary by
command and the service object.

obj
Additional data supplied by the service object. Specific
values vary by command and by what the service object
chooses to transmit.
1764 Unified POS, v1.16.1

Open Method

Syntax void Open ();

Remarks The application calls Open to open a device for subsequent input/output processing. Open initializes the
values of numerous properties, including DataEventEnabled, FreezeEvents, AutoDisable, Claimed,
and so on.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 1742.

Open may throw the following PosControlException:

Release Method

Syntax void Release ();

Remarks The application calls Release to release exclusive access to the device.

If the DeviceEnabled property is set to TRUE, and the device is an exclusive-use device, the device is
first disabled. (Release does not change the device-enabled state of sharable devices.) If Release is
successful, it sets the Claimed property to FALSE.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 1742.

Release may throw the following PosControlExceptions:

ResetStatistic Method (string)

Syntax void ResetStatistic (string statistic);

Remarks statistic specifies the statistic that is to be reset.

The application calls ResetStatistic to reset the specified statistic to 0 (zero). For ResetStatistic to be
successful, both the CapStatisticsReporting and CapUpdateStatistics properties must be set to
TRUE.

ResetStatistic is always executed synchronously.

ErrorCode Value Description

Illegal The device is already opened

ErrorCode Value Description

Busy The device is in use.

Illegal
One of the following conditions has occurred:
The application does not have exclusive access to the device; or the
device is not claimed.
Unified POS, v1.16.1 1765

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 1742.

ResetStatistic may throw the following PosControlExceptions:

ResetStatistics Method ()
Syntax void ResetStatistics ();

Remarks Resets all statistics associated with a device to 0 (zero).

For ResetStatistics to be successful, both the CapStatisticsReporting and CapUpdateStatistics
properties must be set to TRUE.

ResetStatistics is always executed synchronously.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 1742.

ResetStatistics may throw the following PosControlExceptions:

ResetStatistics Method (StatisticsCategories)

Syntax void ResetStatistics (StatisticCategories statistics);

Remarks Resets all statistics for a specified category to 0 (zero).

For ResetStatistics to be successful, both the CapStatisticsReporting and CapUpdateStatistics
properties must be set to TRUE.

ResetStatistics is always executed synchronously.

The statistics parameter contains the category of statistics the application wants to reset for the device.
Possible categories are defined by the StatisticsCategories enumeration.

ErrorCode Value Description

Illegal

One of the following conditions has occurred:
Either the CapStatisticsReporting or CapUpdateStatistics property is
set to FALSE;
The statistic parameter is null; or
The specified statistic does not exist.

Extended ExtendedErrorStatistics. The specified statistic cannot be reset.

ErrorCode Value Description

Illegal
The CapStatisticsReporting or 
CapUpdateStatistics property is set to FALSE.

Extended
ExtendedErrorStatistics. At least one of the specified statistics
could not be reset.
1766 Unified POS, v1.16.1

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 1742.

ResetStatistics may throw the following PosControlExceptions:

ResetStatistics Method (String[])

Syntax void ResetStatistics (string [] statistics);

Remarks Resets the specified statistics to 0 (zero).

For ResetStatistics to be successful, both the CapStatisticsReporting and CapUpdateStatistics
properties must be set to TRUE.

ResetStatistics is always executed synchronously.

The statistics parameter contains a comma-separated string of statistics.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 1742.

ResetStatistics may throw the following PosControlExceptions:

RetrieveStatistic Method (string)
Syntax string RetrieveStatistic (string statistic);

Remarks The application calls RetrieveStatistic to retrieve the specified device statistic.

RetrieveStatistic is always executed synchronously.

The statistic parameter specifies the statistic that is to be retrieved.

RetrieveStatistic returns and XML string of statistics if successful.

ErrorCode Value Description

Illegal
One of the following conditions has occurred:
The CapStatisticsReporting or CapUpdateStatistics property is set
to FALSE; or the specified statistics category is not valid.

Extended
ExtendedErrorStatistics. At least one of the specified statistics
could not be reset.

ErrorCode Value Description

Illegal

One of the following conditions has occurred:
The CapStatisticsReporting or CapUpdateStatistics property is set
to FALSE; or
One of the specified statistics is not defined.

Extended
ExtendedErrorStatistics. At least one of the specified statistics
could not be reset.
Unified POS, v1.16.1 1767

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 1742.

RetrieveStatistic may throw the following PosControlException:

RetrieveStatistics Method ()
Syntax string RetrieveStatistics ();

Remarks The application calls RetrieveStatistics to retrieve all device statistics.

RetrieveStatistics is always executed synchronously.

RetrieveStatistics returns an XML string of statistics if successful.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 1742.

RetrieveStatistics may throw the following PosControlException:

RetrieveStatistics Method (StatisticCategories)
Syntax string RetrieveStatistics (StatisticCategories statistics);

Remarks Retrieves the statistics for the specified category.

RetrieveStatistics is always executed synchronously.

The statistics parameter contains the category of statistics the application wants to retrieve. Possible
values are defined by the StatisticCategories enumeration.

RetrieveStatistics returns an XML string of statistics if successful.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 1742.

RetrieveStatistics may throw the following PosControlException:

ErrorCode Value Description

Illegal

One of the following conditions has occurred:
The CapStatisticsReporting property is set to FALSE, indicating
that the device does not support statistics reporting;
The statistic parameter is null or has a length of 0 (zero); or the spec-
ified statistic does not exist.

ErrorCode Value Description

Illegal
The CapStatisticsReporting property is set to FALSE, indicating
that the device does not support statistics reporting.

ErrorCode Value Description

Illegal

One of the following conditions has occurred:
The CapStatisticsReporting property is set to FALSE, indicating that
the device does not support statistics reporting;
The statistics parameter is null or has a length of 0 (zero); or the
specified statistics category is invalid.
1768 Unified POS, v1.16.1

RetrieveStatistics Method (String[])

Syntax string RetrieveStatistics (string [] statistics);

Remarks Retrieves the statistics for the specified category.

RetrieveStatistics is always executed synchronously.

The statistics parameter contains a comma-separated string of statistics. Retrieves the specified string of
statistics.

RetrieveStatistics returns an XML string of statistics if successful.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 1742.

RetrieveStatistics may throw the following PosControlException:

ErrorCode Value Description

Illegal

One of the following conditions has occurred:
The CapStatisticsReporting property is set to FALSE, indicating
that the device does not support statistics reporting;
The statistics parameter is null or has a length of 0 (zero); or, one or
more of the specified statistics do not exist.
Unified POS, v1.16.1 1769

UpdateFirmware Method Added in Release 1.11

Syntax UpdateFirmware (string firmwareFileName);

Remarks This method updates the firmware of a device with the version of the firmware contained or defined in
the file specified by the firmwareFileName parameter regardless of whether that firmware’s version is
newer than, older than, or the same as the version of the firmware already in the device. If the
firmwareFileName parameter specifies a file list, all of the component firmware files should reside in the
same directory as the firmware list file. This will allow for distribution of the updated firmware without
requiring a modification to the firmware list file.

When this method is invoked, the Service should check that the specified firmware file exists and that its
contents are valid for this device. If so, this method should return immediately and the remainder of the
update firmware process should continue asynchronously.

The Service should notify the application of the status of the update firmware process by firing
StatusUpdateEvents with values of SUE_UF_PROGRESS + an integer between 1 and 100 indicating
the completion percentage of the update firmware process. For application convenience, the
StatusUpdateEvent value SUE_UF_COMPLETE is defined to be the same value as
SUE_UF_PROGRESS + 100.

For consistency, the update firmware process is complete after the new firmware has been downloaded
into the physical device, any necessary physical device reset has completed, and the Service and the
physical device have been returned to the state they were in before the update firmware process began.

For consistency, a Service must always fire at least one StatusUpdateEvent with an incomplete progress
completion percentage (i.e. a percentage between 1 and 99), even if the device cannot physically report
the progress of the update firmware process. If the update firmware process completes successfully, the
Service must fire a StatusUpdateEvent with a progress of 100 or use the special constant
SUE_UF_COMPLETE, which has the same value. These Service requirements allow applications using
this method to be designed to always expect some level of progress notification.

Parameter Description

firmwareFileName
Specifies either the name of the file containing the firmware or a file
containing a set of firmware files that are to be downloaded into the
device.
1770 Unified POS, v1.16.1

If an error is detected during the asynchronous portion of a update firmware process, one of the following
StatusUpdateEvents will be fired:

Value Meaning 
SUE_UF_FAILED_DEV_OK The update firmware process failed but the device is still 
 operational.
SUE_UF_FAILED_DEV_UNRECOVERABLE

The update firmware process failed and the device is neither usable
nor recoverable through software. The device requires service to be
returned to an operational state.

SUE_UF_FAILED_DEV_NEEDS_FIRMWARE
The update firmware process failed and the device will not be
operational until another attempt to update the firmware is
successful.

SUE_UF_FAILED_DEV_UNKNOWN
The update firmware process failed and the device is in an
indeterminate state.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 1742.

UpdateFirmware may throw the following PosControlExceptions:

ErrorCode Value Description

Illegal CapUpdateFirmware is false.

NoExist
The file specified by firmwareFileName does not exist or, if firm-
wareFileName specifies a file list, one or more of the component
firmware files are missing.

Extended
ErrorCodeExtended = EFIRMWARE_BAD_FILE:
The specified firmware file or files exist, but one or more are either
not in the correct format or are corrupt.
Unified POS, v1.16.1 1771

UpdateStatistic Method

Syntax void UpdateStatistic (string name, object value);

Remarks The application calls UpdateStatistic to update the value of a specified device statistic.

 For UpdateStatistic to be successful, both the CapStatisticsReporting and CapUpdateStatistics
 properties must be set to TRUE.

 UpdateStatistic is always executed synchronously.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 1742.

UpdateStatistic may throw the following PosControlExceptions:

UpdateStatistics Method (Statistic[])
Syntax void UpdateStatistics (Statistic [] statistics);

Remarks Updates a list of statistics with the corresponding specified values.

For UpdateStatistics to be successful, both the CapStatisticsReporting and CapUpdateStatistics
properties must be set to TRUE.

UpdateStatistics is always executed synchronously.

The statistics parameter contains an array of Statistic class instances (name-value pairs).

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 1742.

UpdateStatistics may throw the following PosControlExceptions:

Parameter Description

name Name of the statistic to be updated.

value Value to which the statistic should be set.

ErrorCode Value Description

Illegal

One of the following conditions has occurred:
The CapStatisticsReporting or CapUpdateStatistics property is set to
FALSE; or
The specified statistic does not exist.

Extended ExtendedErrorStatistics. The specified statistic could not be updated.

ErrorCode Value Description

Illegal

One of the following conditions has occurred:
The CapStatisticsReporting or CapUpdateStatistics property is set
to FALSE; or
The statistics parameter is null; or
One or more of the specified statistics does not exist.

Extended
ExtendedErrorStatistics. At least one of the specified statistics
could not be updated.
1772 Unified POS, v1.16.1

UpdateStatistics Method (StatisticCategories, Object)

Syntax void UpdateStatistics (StatisticCategories statistics, object value);

Remarks Updates the specified category of statistics with the specified value.

For UpdateStatistics to be successful, both the CapStatisticsReporting and CapUpdateStatistics
properties must be set to TRUE.

UpdateStatistics is always executed synchronously.

Errors A PosControlException may be thrown when this method is invoked. For further information, see
“Status, State Model, and Exceptions” on page 1742.

UpdateStatistics may throw the following PosControlExceptions:

Parameter Description

statistics
Contains the category of statistics the application wants
to update. Possible categories are defined by the
StatisticCategories enumeration.

value
Contains the value to be used to update the statistics in
the specified category.

ErrorCode Value Description

Illegal
One of the following conditions has occurred: The
CapStatisticsReporting or CapUpdateStatistics property is set
to FALSE; or The specified statistics category is invalid.

Extended
ExtendedErrorStatistics. At least one of the specified statistics
could not be updated.
Unified POS, v1.16.1 1773

C.24 Common Events

DataEvent Event
Remarks Fired to present input data from the device to the application. The DataEventEnabled property is

changed to FALSE, so that no further data events will be generated until the application sets this property
back to TRUE. The actual input data is placed in one or more device-specific properties.

If DataEventEnabled is FALSE at the time that data is received, then the data is queued in an internal
buffer, the device-specific input data properties are not updated, and the event is not delivered. (When
this property is subsequently changed back to TRUE, the event will be delivered immediately if input
data is queued and FreezeEvents is FALSE.)

DirectIOEvent Event

Remarks Fired by the service object to communicate information directly to the application. DirectIOEvent
provides a means for a service object to communicate information in the form of an event to the
application that would not otherwise be supported by other events or properties defined for the device.
Use of this event may restrict the application from being used with other vendor’s devices which may
not have any knowledge of the service object’s need for this event.

ErrorEvent Event Updated in Release 1.12
Remarks Fired when an error is detected and the service object's State transitions into the error state.

Input error events are not delivered until the DataEventEnabled property is TRUE, so that proper
application sequencing occurs.

Unlike a DataEvent, the Control does not disable further DataEvents or input ErrorEvents; it leaves
the DataEventEnabled property value at TRUE. Note that the application may set DataEventEnabled
to FALSE within its event handler if subsequent input events need to be disabled for a period of time.

OutputCompleteEvent Event
Remarks Fired when a previously started asynchronous output request completes successfully. The OutputID

property indicates the ID number of the asynchronous output request that is complete.

StatusUpdateEvent Event
Remarks Fired when the service object needs to alert the application of a device status change.

Examples are a change in the cash drawer position (open vs. closed), a change in a POS printer sensor
(form present vs. absent), or a change in the power state of the device.

When a device is enabled, the service object may fire initial StatusUpdateEvents to inform the
application of the device state. This behavior, however, is not required.
1774 Unified POS, v1.16.1

C.25 POS for .NET vs. UnifiedPOS Members

POS for .NET class member names sometimes vary from those in the UnifiedPOS specification. In many cases,
the variance is only in case (.NET uses the Pascal naming convention for methods, properties, and events). For
example, the common property OutputID in the UnifiedPOS specification is OutputId in POS for .NET.

For some devices, POS for .NET introduces several properties and methods not found in the UnifiedPOS
specification.

The table below has examples of some of the property names that vary from the UnifiedPOS specification:

The table below includes some of the method names that vary from the UnifiedPOS specification:

UnifiedPOS Property Corresponding POS for .NET Property

CapMACCalculation CapMacCalculation

DeviceServiceDescription ServiceObjectDescription

DeviceServiceVersion ServiceObjectVersion

OutputID OutputId

POSKeyData PosKeyData

POSKeyEventType PosKeyEventType

PhysicalDeviceDescription DeviceDescription

PhysicalDeviceName DeviceName

N/A Compatibility

N/A DevicePath

N/A SynchronizingObject

UnifiedPOS Method Corresponding POS for .NET Method

beginEFTTransaction BeginEftTransaction

checkHealth CheckHealth

claim Claim

computeMAC ComputeMac

DeviceServiceVersion ServiceObjectVersion

directIO DirectIO

enablePINEntry EnablePinEntry

endEFTTransaction EndEftTransaction

read Read

resetStatistics ResetStatistics

verifyMAC VerifyMac

N/A ResetStatistic

N/A RetrieveStatistic

N/A UpdateStatistic
Unified POS, v1.16.1 1775

The table below includes event names that vary from the UnifiedPOS specification:

C.26 Interim Procedure Available For Legacy OPOS Services...
Shim Code Usage Updated in Release 1.11

The .NET architecture allows for new features and functions that can be invoked using current and future
Windows operating systems. In order to benefit from all the .NET architecture has to offer, new service objects
should be written. However, in order to more quickly leverage existing OPOS service object source code in the
.NET environment, OPOS-Japan (OPOS-J) has created a translation middle layer of software, referred to as the
“Shim”. The “Shim” is a module to develop (or implement) a .NET Service Object by utilizing existing OPOS
based service object naming methodologies. It is freely available for service object providers to use when porting
their existing OPOS service objects to POS for .NET. Some of the reasons behind the strategy in using the Shim
are as follows:

• POS for .NET extends the definitions for the UnifiedPOS methods and requires modifications in the OPOS
service objects to handle these extensions. The Shim handles these extensions and masks any changes that
would otherwise be required to be made to an existing OPOS service object.

• POS for .NET requires enumeration types in its usage, a feature that was not specified in an OPOS service
object implementation. The Shim provides a mechanism to map constants of the parameters to an enumeration
type without changing the name from the existing OPOS service object source code.

• It is important to note that the usage of the Shim does not require any changes to the .NET application; the
Shim hides any OPOS and POS for .NET service object differences from the application. When a POS for
.NET service object is available, it should be able to replace the Shim/OPOS service object with no required
changes to the application.

• The development of the POS Application should be in accordance with the reference material outlined earlier
in this appendix. The only difference is in the development of the service object used to support a UnifiedPOS,
POS for .NET environment. Potentially, usage of the Shim allows for faster generation of POS for .NET
service objects by allowing for greater re-usability of existing OPOS service object source code.

UnifiedPOS Event Attribute
Corresponding POS for .NET EventArg
Class Property

OutputID OutputId

N/A public DateTime TimeStamp {get; }
1776 Unified POS, v1.16.1

C.27 Architecture Structures Added in Release 1.11

The following diagram shows the structures of the OPOS, POS for .NET, and Shim-POS for .NET architectures.

WePOS (WindowsXP Embedded for POS) Operational Environment

OPOS
CO/CCO

WePOS Subsystem

CCL

InterOp Layer

OLE OPOS SO POS for .NET SO

.NET Framework

Win32 Application .NET Application

a dc

I/F Class (24)

Basic Class (24)

Base Class (8)

b

a b c d

Notes:
Route a: Current OLE POS path between Win32 application and OLE OPOS SO
Route b: .NET application and current OLE OPOS SO
Route c: .NET application and POS for .NET SO (Microsoft’s Implementation)
Route d: .NET application and POS for .NET SO (OPOS-J’s SOs w/Shim)

POSExplorer
will be used
instead of
CO & SO

Current
OPOS
Structure

POS for .NET SO

Shim
Unified POS, v1.16.1 1777

C.28 Method of Implementation
Shim Code Naming rules

The Shim code extends the POS for .NET Basic class as described below:

Microsoft.PointOfService.BasicServiceObjects NameSpace.

The names of the Shim classes comply with the following rule:

<DeviceCategoryName>+ShimBasic

For example:
PosPrinterShimBasic

LineDisplayShimBasic

The file name that defines the Shim class complies with the following rule:

<Class Name>.cs

For example:
PosPrinterShimBasic.cs

LineDisplayShimBasic.cs

The shim class is defined in the following NameSpace:

Opos.PointOfService.BasicShimServiceObjects.

The file that defines the specific enumeration type is specified in a separate file associated with its
device category. The file name that defines this takes the same name as the header file of the OPOS
Common Control Object (CCO).

For example:
 Constants definition for POS Printer,
 OposPtr.cs

Constants definition for LineDisplay 
OposDisp.cs

The enumeration type name is derived from the name associated with the function parameter that uses
the constants.

For example, the alignment parameter that is used with the PrintBarCode function supported by a POS
Printer would map as follows:

OposPtr.cs
Enum BarCodeAlignment
{

Left = -1,
Center = -2,
Right = -3

}

The enumeration type is defined in the following NameSpace:

Opos.PointOfService
1778 Unified POS, v1.16.1

Shim Method Redefinition Rules

As noted earlier in this appendix, POS for .NET method calls are handled differently than UnifiedPOS
OPOS implementations. For instance, under POS for .NET return values are used instead of OPOS
requiring a separate method call to obtain the information. The Shim provides the translation code to
allow for the mapping of these operational differences.

The functions of the UnifiedPOS specification that are implemented differently between POS for .NET
and OPOS are redefined using an abstract attribute at the protected level.

For example, the DirectIO method would map as follows:

public override DirectIOData DirectIO (int command, int data, object obj)
{

;
}

protected abstract void DirectIO (int command, ref int data, ref object obj);

Note that the abstract function that UnifiedPOS defined, DirectIO, is called in a way that is consistent
with the POS for .NET Application implementation requirements. However, the Shim code performs
the necessary functions to process the OPOS DirectIO method and any other method calls to obtain the
method functionality and data exchange. The Shim code then responds back to the POS for .NET
Application with the functionality and result codes that are consistent with what it is expecting to see.
Continuing with the example:

public override DirectIOData DirectIO (int command, int data, object obj)
{

this.DirectIO (command, ref data, ref obj);
return new DirectIOData (data, obj);

}

/** The abstract function implements it with Service Object that extends the Shim class.**/

It is possible that the implementation of the function regarded as the object of the translation could be
implemented by the Shim class. In order to prevent that from happening, the sealed attribute is added to
prevent the override in Service Object.

For example:

public sealed override DirectIOData DirectIO (int command, int data, object obj)

Shim Code Rules For In/Out Parameters

Any OPOS parameter that is defined with an In/Out attribute in the UnifiedPOS specification is handled
differently under a POS for .NET implementation. POS for .NET is expecting the data to be provided as
return values. The Shim code facilitates this mapping by using the “ref” attribute to the In/Out
parameter. This translation is handled automatically by the Shim code and is transparent to the calling
application.
Unified POS, v1.16.1 1779

C.29 Method of Administration

The source for the Shim components is managed by the OPOS-J Committee. The Shim source code is currently
available to the public from the following web site:

http://www.monroecs.com/posfordotnet/shim.htm.

C.29.1 Shim Code File Names

The following is a list of the files that are currently available with the Shim Code. The naming convention has
been chosen to provide as much intuitive device usage as possible. As new devices are released, the Shim Code
will be updated to reflect the new devices. In addition, bug fixes and other support issues will be handled by
OPOS-J.

Shim file list
Shim class files Description

CashChangerShimBasic.cs Shim class of CashChanger

CashDrawerShimBasic.cs Shim class of CashDrawer

CatShimBasic.cs Shim class of Cat

CheckScannerShimBasic.cs Shim class of CheckScanner

CoinDispenserShimBasic.cs Shim class of CoinDispenser

HardTotalsShimBasic.cs Shim class of HardTotals

KeylockShimBasic.cs Shim class of Keylock

LineDisplayShimBasic.cs Shim class of LineDisplay

MicrShimBasic.cs Shim class of Micr

MsrShimBasic.cs Shim class of Msr

PinPadShimBasic.cs Shim class of PinPad

PointCardRWShimBasic.cs Shim class of PointCardRW

PosKeyboardShimBasic.cs Shim class of PosKeyboard

PosPowerShimBasic.cs Shim class of PosPower

PosPrinterShimBasic.cs Shim class of PosPrinter

ScaleShimBasic.cs Shim class of Scale

ScannerShimBasic.cs Shim class of Scanner

SmartCardRWShimBasic.cs Shim class of SmartCardRW

ToneIndicatorShimBasic.cs Shim class of ToneIndicator

Enumeration type definition files Description

OposCash.cs Enumeration type for CashDrawer

OposCat.cs Enumeration type for Cat

OposChan.cs Enumeration type for CashChanger

OposChk.cs Enumeration type for CheckScanner
1780 Unified POS, v1.16.1

http://www.monroecs.com/posfordotnet/shim.htm

OposCoin.cs Enumeration type for CoinDispenser

OposDisp.cs Enumeration type for LineDisplay

OposKbd.cs Enumeration type for PosKeyBoard

OposLock.cs Enumeration type for Keylock

OposMicr.cs Enumeration type for Micr

OposMsr.cs Enumeration type for Msr

OposPcrw.cs Enumeration type for PointCardRW

OposPpad.cs Enumeration type for PinPad

OposPtr.cs Enumeration type for PosPrinter

OposPwr.cs Enumeration type for PosPower

OposScal.cs Enumeration type for Scale

OposScan.cs Enumeration type for Scanner

OposScrw.cs Enumeration type for SmartCardRW

OposTone.cs Enumeration type for ToneIndicator

OposTot.cs Enumeration type for HardTotals

Project files Description

AssemblyInfo.cs Assembly information file

Opos.PointOfService.BasicShimServiceObjects.csproj Project file

Class Diagrams
Interface Class

public abstract DirectIOData DirectIO(int command, int data, object obj)

public abstract void ResetStatistic(string statistic)

public abstract void ResetStatistics()

public abstract void ResetStatistics(StatisticCategories statistics)

public abstract void ResetStatistics(string[] statistics)

public abstract string RetrieveStatistic(string statistic)

public abstract string RetrieveStatistics()

public abstract string RetrieveStatistics(StatisticCategories statistics)

public abstract string RetrieveStatistics(string[] statistics)

public abstract void UpdateStatistic(string name, object value)

public abstract void UpdateStatistics(Statistic[] statistics)

public abstract void UpdateStatistics(StatisticCategories statistics, object value)
Unified POS, v1.16.1 1781

:

:

Basic Class

public override void ResetStatistic(string statistic)

public override void ResetStatistics()

public override void ResetStatistics(StatisticCategories statistics)

public override void ResetStatistics(string[] statistics)

public override string RetrieveStatistic(string statistic)

public override string RetrieveStatistics()

public override string RetrieveStatistics(StatisticCategories statistics)

public override string RetrieveStatistics(string[] statistics)

public override void UpdateStatistic(string name, object value)

public override void UpdateStatistics(Statistic[] statistics)

public override void UpdateStatistics(StatisticCategories statistics, object value)

:

:

Shim Class

public sealed override DirectIOData DirectIO(int command, int data, object obj)

public sealed override void ResetStatistic(string statistic)

public sealed override void ResetStatistics()

public sealed override void ResetStatistics(StatisticCategories statistics)

public sealed override void ResetStatistics(string[] statistics)

public sealed override string RetrieveStatistic(string statistic)

public sealed override string RetrieveStatistics()

public sealed override string RetrieveStatistics(StatisticCategories statistics)

public sealed override string RetrieveStatistics(string[] statistics)
1782 Unified POS, v1.16.1

public sealed override void UpdateStatistic(string name, object value)

public sealed override void UpdateStatistics(Statistic[] statistics)

public sealed override void UpdateStatistics(StatisticCategories statistics, object value)

protected abstract void DirectIO(int command, ref int data, ref object obj)

protected abstract void ResetStatistics(string statistics)

protected abstract void RetrieveStatistics(ref string statistics)

protected abstract void UpdateStatistics(string statistics)

:

:

Service Class

protected override void DirectIO(int command, ref int data, ref object obj)

protected override void ResetStatistics(string statistics)

protected override void RetrieveStatistics(ref string statistics)

protected override void UpdateStatistics(string statistics)

:

:

Unified POS, v1.16.1 1783

1784 Unified POS, v1.16.1

Annex D

XMLPOS - XML POS Mapping Reference

D.1 Overview

This annex was added in Release 1.12 of this specification and extensively updated in Release 1.13.

UnifiedPOS is providing a component of the architecture to include Web technologies based on XML. This XML
mapping is called XMLPOS.

XMLPOS essentially extends UnifiedPOS to enable Enterprise Applications access to remote peripherals by
mapping (as much as possible) the UML Property/Method/Event parameters of UnifiedPOS directly into XML
elements, inside XML documents. There are two pieces to XMLPOS, first the mapping of the UnifiedPOS
Property/Method/Events into equivalent XML Tag Names, then grouping these tag names into appropriate W3C
XML Schemata following ARTS, ARTS-XML Best Practices.

D.1.1 XMLPOS requirements

• Application support for remote input devices (e.g., Scanner)

• Application support for remote output devices (e.g., Printer)

• Share output peripherals between multiple applications.

• Minimize changes to existing UnifiedPOS-compliant Applications

• <*Optionally*> Minimize changes to existing UnifiedPOS-compliant Device Services

• Heterogeneous Platform Connectivity

• Interoperability between Enterprise Applications and devices

• Must be (relatively) transparent to existing applications, device services

• Must provide adequate performance despite device remoteness

• No “per device type” translation required

• Efficiently operate in the web services arena

• Efficiently operate in a browser.

• Needs to work in both the single command and aggregated command environments. That is, to issue a single
command in one message or issue a set of commands with one message.

D.1.2 Out of Scope

• Non-universal extensions.
Unified POS, v1.16.1 1785

D.2 Referenced Documents

• ARTS-XML Data Dictionary

• UnifiedPOS, Retail Peripheral Architecture V1.13 or beyond

• ARTS, ARTS-XML Best Practices V2.1.0 or beyond

• [ISO 2382]ISO/IEC 2382-14:1997 Information technology - Vocabulary - Part 14 Reliability, Maintainability
and Availability

D.3 Taxonomy for Conversion from UnifiedPOS to XML
 Updated in Version 1.14.1

This section describes the rules for converting a Property, Method or Event Name to an XML Tag Name.

• Convert all Property, Methods and Event Names to Upper Camel Case following ARTS, “ARTS-XML Best
Practices”.

• To keep consistent, enumerations will follow the existing upper case pattern identified in the UnifiedPOS
Specification.

• Following the pattern set in WAMPOS, buffers and UnifiedPOS objects are passed as repeatable XML
elements in XMLPOS.

• Binary data shall be encoded and decoded using ARTSBinary as defined in “ARTS-XML Best Practices.”

D.4 Changes to XMLPOS Updated in Version 1.13

When creating XMLPOS, first included in Version 1.12 and pending an implementation, UnifiedPOS followed
the XML messaging standards from the ARTS XML committee. The Open Foodservice Systems Consortium
(OFSC) and OPOS-J implemented a proof of concept and discovered several issues that drove modifying the
XMLPOS architecture in Version 1.13.

• The use of attributes limits the ability to reuse an attribute in one message. For example a message might like
to set DeviceEnabled to “true” at the start of the message and reset it to “false” at the end of a message. This
drove the need to migrate all attributes to elements.

• Applications need to be able to issue properties and methods in the order required and in any cardinality to
solve a particular problem. This drove the need to embed all the elements within a repeatable <choice> XML
particle.

• In order to reuse the UnifiedPOS common properties, methods and events and still satisfy 1 & 2 above
required the move to the use of <group> XML model group and accessing it with the ref type code.

• Modern programming practices recommend using get and set methods for accessing embedded properties.
This coupled with the need to keep the property names consistent with UnfiedPOS V1.13 drove the need to
enclose the properties in both a <GetProperty> and <SetProperty> node. All Device Schemas were
changed as a result.
1786 Unified POS, v1.16.1

D.5 XMLPOS Architecture Overview Updated in Release 1.14

D.5.1 UnifiedPOS XML Requirements

To be consistent across ARTS standards, UnifiedPOS has chosen to follow the ARTS-XML Best Practices in
developing XMLPOS. The ARTS-XML Best Practices document identifies the Venetian Blind Design
Methodology for creation of ARTS-XML schemas. Basically, this is a node based methodology where individual
nodes are aggregated as building blocks in the creation of the schema.

For example:
<DirectIO>

<Command>0</Command>
<Data>0</Data>
<Object>String</Object>

</DirectIO>

Converting UnifiedPOS Methods and Events

The method to convert UnifiedPOS Methods and Events to XMLPOS Embedded is to:

• Convert the UnifiedPOS Method/Event Name to an XML Tag name following the Upper Camel Case best
practice.

• The ARTS-XML Data Dictionary is the definition source for these tag names.

• The XML element names use the convention of Upper Camel Case (Pascal style). The ARTS XML committee
developed a set of best practices for use in creating ARTS XML schemas. In the “CR Best Practices V2.1.0
20070515.doc,” under the best practice on Taxonomy section 3.1, the recommendation is to use Upper Camel
Case for all XML elements and attributes.

• Properties may be included in the Event XMLPOS schema. The current UnifiedPOS Event model issues an
event and leaves it up to the receiving application to query those properties that have information about the
event. This works fine for a typical local based POS application but in a remote application this can take some
time. So as a part of the WS-POS standard’s effort, events are allowed to send applicable properties as a part
of the event handling process. The Event XML schema supports both types of methodologies… query for the
properties or directly return the properties as part of the event handling process within the device Event
Schema”

• The XMLPOS Schemas make use of the “xs:nil.” This is a mechanism to indicate an element should be
accepted as valid even if the content is empty and the content type does not allow this condition. ARTS
Standards use this capability to indicate a request to the service to return a value for the referenced property.

• Element definitions may be found in multiple places in the documentation which at first glance may appear to
be a problem. However, the ARTS dictionary committee decided that they need to provide definitions for
every element, complex type and root element levels that all the ARTS standards contain. This allows a search
of the dictionary to return all the places a particular definition is used.

• Events use XXXPropertiesType and not XXXPropertyGroup. The reason for this requirement is that
XXXPropertyGroup defines the specific properties for a particular device. The XXXPropertyGroup combines
with the UnfiedPOS common properties to form the XXXPropertiesType.
Unified POS, v1.16.1 1787

Note: The following XML examples include “namespace references”. These are not actual file locations but
placeholders for the appropriate namespace where the support files can be found. 

For example, in the XMLPOS references to file locations shown... 
“http://www.omg.org/UnifiedPOS/namespace/” are not actual locations for the support files. You must replace these
references with actual locations. 

In summary, when an application uses the XMLPOS schema examples as a basis for their code, it is necessary to
replace the placeholders with valid namespace locations.

D.5.2 UnifiedPOS Synchronous XML Communications

Figure D.1: Synchronous Communications

A synchronous environment is characterized by both ends of the connection having knowledge of each others’
communication requirements. By establishing a session, only commands (representing UnifiedPOS Properties
and Methods) and responses need traverse the connection. In the XML world, each individual command and
response is a message.

To create these XML messages, the tags as defined in the ARTS XML Data Dictionary, and the schemas, as
derived from the UnifiedPOS specification, are brought together in conjunction with the necessary tools to
convert them to well formed XML messages. This conversion of UnifiedPOS Properties, Methods, and Events to
XMLPOS Messages involves wrapping the XMLPOS Embedded Tags in a well formed XML header.

<?xml version=”1.0” encoding=”UTF-8”?>
<DirectIO xmlns=”http://www.omg.org/UnifiedPOS/namespace/” xmlns:xsi=”http://www.w3.org/
2001/XMLSchema-instance” xsi:schemaLocation=”http://www.omg.org/UnifiedPOS/namespace/
\DirectIOV1.14.1.xsd”>

<Command>0</Command>
<Data>0</Data>
<Object>String</Object>

</DirectIO>

Application Driver<?xml version ="1.0" encoding="UTF-8"?>
<DirectIO xmlns="http://www.nrf-arts.org/
UnifiedPOS/namespace /" xmlns:xsi="http://
www.w3.org/2001 /XMLSchema-instance"
xsi:schemaLocation ="http://www.nrf-arts.org/
UnifiedPOS/namespace / \DirectIOV1.0.0.xsd">

<Command>0</Command>
<Data>0</Data>
<Object>String</Object>

</DirectIO>
1788 Unified POS, v1.16.1

D.5.3 UnifiedPOS Asynchronous XML Communications

Asynchronous communications are characterized by messages arriving from an application without prior
knowledge of the source and timing requirements of the message, i.e. a direct connection. Figures 2 and 3 show
examples of how the UnifiedPOS Common Properties, Methods, and Events translate into XML messages using
XMLPOS.

XMLPOS Common Properties Schema Architecture

Figure D.2: XML Common Properties Schema Architecture Sample
Unified POS, v1.16.1 1789

XMLPOS Common Methods Schema Architecture

Figure D.3: XML Common Methods Schema Architecture Sample

NOTE: @ - represents XPath nomenclature for an attribute

This Domain View represents the UnifiedPOS common methods. It is implemented in each device specific XML
schema by the XML Schema methodology of derivation by extension. Conceptually this is very similar to an
abstract base class.

• Create a common data complex type schema which contains the elements from the common Property,
Methods, and Events XML Tag Names.

• Create a node for each UnifiedPOS API for each device that is derived by extension from the common data
complex type schema, XMLPOSCommonData.

Single Commands

Figure D.4: Asynchronous Example

In the first example of sending an asynchronous command, the application transmits multiple individual
XML messages. This is an extension of the synchronous model but requires additional support
information identifying the source of the message with each message transmitted.

Application

Middleware Driver

Application
1790 Unified POS, v1.16.1

Command Sets

Figure D.5: Asynchronous with Intelligent Controller Example

In order to more efficiently utilize the available bandwidth, transmission of a series of aggregated
messages can be utilized. This more complex methodology requires an Intelligent Controller to be
located between the application and the peripheral device driver. It incorporates either using a single
more complex UnifiedPOS command or a collection of simple and/or more complex UnifiedPOS
commands in a single XML message. The Intelligent Controller parses out the message into its
individual UnifiedPOS commands and applies them in the proper order to the appropriate Peripheral
Device Driver.

Application
Intelligent
Controller

Driver

Application Driver
Unified POS, v1.16.1 1791

The following is an example of creating a single XMLPOS Message Command Set to incorporate
multiple UnifiedPOS commands.

<?xml version=”1.0” encoding=”UTF-8”?>
<CashDrawerDevice xmlns=”http://www.omg.org/UnifiedPOS/namespace/” xmlns:xsi=”http://

www.w3.org/2001/XMLSchema-instance” xsi:schemaLocation=”http://www.omg.org/
UnifiedPOS/namespace/ \CashDrawerDeviceV1.14.1.xsd” MessageType=”Request”>

<MessageID>12412341234</MessageID>
<DateTime TypeCode=”Message”>2001-12-17T09:30:47.0Z</DateTime>
<RequestID Name=”String” Timestamp=”2001-12-17T09:30:47.0Z”>String

</RequestID>
<LogicalDeviceName>String</LogicalDeviceName>
<CheckHealth Level=”CH_INTERNAL”/>
<ClaimType Timeout=”0”/>
<ClearInput/>
<ClearOutput/>
<Close/>
<CompareFirmwareVersion Result=”Text” FirmwareFileName=”Text”/>
<DirectIO Command=”0” Object=”String” Data=”0”/>
<Open LogicalDeviceName=”String”/>
<Release/>
<ResetStatistics StatisticsBuffer=”String”/>
<RetrieveStatistics StatisticsBuffer=”String”/>
<UpdateFirmware FirmwareFileName=”String”/>
<UpdateStatistics StatisticsBuffer=”String”/>
<CashDrawerID>String</CashDrawerID>
<OpenDrawer/>
<WaitForDrawerClose BeepFrequency=”0” BeepTimeout=”0” BeepDuration=”0”

BeepDelay=”0”/>
<ClearInputProperties/>

</CashDrawerDevice>

D.6 UnifiedPOS XML Errors

D.6.1 Device Error Codes and Message Severity Codes

It is not a requirement to have a direct mapping between Device Error Codes and Message Severity Codes.
Device Error Codes originate from the Peripheral device or the service to communicate an accessing or operation
problem. Message Severity Codes are assigned to each individual XML Message and describe how the message
should be handled by creating an implicit handling priority. For example, a printer cover open can generate a
Device Error Code. The XML Message which originally delivers this error can have a Message Severity Code of
“Information.” This is just to inform the receiver of the printer condition. After some period of time the Message
can escalate the Device Error to be a Message Severity of “Error” saying the equipment has failed and needs
immediate attention.

Following this logic, most messages transmitting a Device Error Code will start out with one Message Severity
Code then over time escalate to indicate attention is needed if not handled in a timely manner. There is one class
of codes, the Device Failure Codes, which will always start out at a higher Message Severity Code level. Some
examples are shown in the table below.
1792 Unified POS, v1.16.1

Message Severity Codes

The key ISO standard for maintenance activity definitions is section 14 of Information Technology - Vocabulary
- Reliability, Maintainability, and Availability [ISO2382-14]. The following definitions come from that
specification.

Severity Codes identify the priority of the message. Basically there are three types of Severity Codes. They
characterize the effect of normal operation of a piece of equipment. It either has an effect … that is; it results in
a change of state of the equipment, or it can stay in the same state but predict imminent problems that result in
reduced functionality. The final category is simple information, that is neither an error nor a warning but
information about the state of equipment.

• A fatal error that forces a change in state of a piece of equipment. This is often a major or fatal error that
results in the equipment or part of the equipment being inoperative.

• A fault that produces a warning of imminent failure or a breakdown of some functional component that is not
essential to the functionality of the device.

• And finally there is simple information, e.g., chiller temperature, freezer temperature.

These three types can be categorized as a severity, i.e., Error, Warning or Information.

A generic “Severity Code” identifies faults. Each Generic Severity Code can have zero or more manufacturer
specific fault codes, each with their own (optional) description. Although the common name is “Error of Fault
code” in fact this should be the error identification information.
Unified POS, v1.16.1 1793

D.6.2 Standard Error Codes to Severity Codes

Value Severity Meaning

E_CLOSED Warning An attempt was made to access a closed Device

E_CLAIMED Information

An attempt was made to access a Physical Device that is
claimed by another Control instance. The other Control
must release the Physical Device before this access may be
made. For exclusive-use devices, the application will also
need to claim the Physical Device before the access is legal

E_NOTCLAIMED Information

An attempt was made to access an exclusive-use device that
must be claimed before the method or property set action
can be used. If the Physical Device is already claimed by
another Control instance, then the status E_CLAIMED is
returned instead.

E_NOSERVICE Warning
The Control cannot communicate with the Service,
normally because of a setup or configuration error.

E_DISABLED Information Cannot perform this operation while the Device is disabled.

E_ILLEGAL Error
An attempt was made to perform an illegal or unsupported
operation with the Device, or an invalid parameter value
was used.

E_NOHARDWARE Error
The Physical Device is not connected to the system or is not
powered on.

E_OFFLINE Warning The Physical Device is off-line.

E_NOEXIST Error The file name (or other specified value) does not exist.

E_EXISTS Error The file name (or other specified value) already exists.

E_FAILURE Warning
The Device cannot perform the requested procedure, even
though the Physical Device is connected to the system,
powered on, and on-line.

E_TIMEOUT Error
The Service timed out waiting for a response from the
Physical Device, or the Control timed out waiting for a
response from the Service.

E_BUSY Warning
The current Service state does not allow this request. For
example, if asynchronous output is in progress, certain
methods may not be allowed.

E_DEPRECATED Error
The requested operation can not be performed since it has
been deprecated.

E_CLOSED Information The device must be opened.

E_CLAIMED Warning
The device is opened but not claimed. Another application
has the device claimed, so it cannot be claimed at this time.
1794 Unified POS, v1.16.1

D.6.3 Standard Status Codes to Severity Codes

E_NOTCLAIMED Information
The device is opened but not claimed. No other application
has the device claimed, so it can and must be claimed.

E_DISABLED Information
The device is opened and claimed (if this is an exclusive
use device), but not enabled.

Value Severity Meaning

SUE_POWER_ONLINE Information The device is powered on and ready for use.

SUE_POWER_OFF Information The device is off or detached from the terminal.

SUE_POWER_OFFLINE Warning
The device is powered on but is either not ready or
not able to respond to requests.

SUE_POWER_OFF_OFFLINE Warning The device is either off or offline.

SUE_UF_PROGRESS + 1 to
100

Information
The update firmware process has successfully
completed 1 to 100 percent of the total operation.

SUE_UF_COMPLETE Information
The update firmware process has completed
successfully. The value of this constant is identical
to SUE_UF_PROGRESS + 100.

SUE_UF_COMPLETE_
DEV_NOT_RESTORED

Warning

The update firmware process succeeded, however
the Service and/or the physical device cannot be
returned to the state they were in before the update
firmware process started. The Service has restored
all properties to their default initialization values.
To ensure consistent Service and physical device
states, the application needs to close the Service,
then open, claim, and enable again, and also
restore all custom application settings.

SUE_UF_FAILED_DEV_OK Error
The update firmware process failed but the device
is still operational.

SUE_UF_FAILED_DEV_
UNRECOVERABLE

Error

The update firmware process failed and the device
is neither usable nor recoverable through software.
The device requires service to be returned to an
operational state.

SUE_UF_FAILED_DEV_
NEEDS_FIRMWARE

Error
The update firmware process failed and the device
will not be operational until another attempt to
update the firmware is successful.

SUE_UF_FAILED_DEV_
UNKNOWN

Error
The update firmware process failed and the device
is in an indeterminate state.
Unified POS, v1.16.1 1795

D.6.4 UnifiedPOS Synchronous XML Errors

<?xml version=”1.0” encoding=”UTF-8”?>
<CashDrawerDevice xmlns=”http://www.omg.org/UnifiedPOS/namespace/” xmlns:xsi=”http://

www.w3.org/2001/XMLSchema-instance” xsi:schemaLocation=”http://www.omg.org/
UnifiedPOS/namespace/ ..\CashDrawerDeviceV1.14.1.xsd”>

<Error TypeCode=”E_CLOSED”/>
</CashDrawerDevice>

D.6.5 UnifiedPOS Asynchronous XML Errors

<?xml version=”1.0” encoding=”UTF-8”?>
<CashDrawerDevice xmlns=”http://www.omg.org/UnifiedPOS/namespace/” xmlns:xsi=”http://

www.w3.org/2001/XMLSchema-instance” xsi:schemaLocation=”http://www.omg.org/
UnifiedPOS/namespace/ ..\CashDrawerDeviceV1.14.1.xsd” MessageType=”Response”>

<MessageID>1242341234</MessageID>
<DateTime TypeCode=”Message”>2001-12-17T09:30:47.0Z</DateTime>
<RequestID Name=”String” Timestamp=”2001-12-17T09:30:47.0Z”>String</RequestID>
<Response ResponseCode=”OK”>

<RequestID>String</RequestID>
<ResponseTimestamp>2001-12-17T09:30:47.0Z</ResponseTimestamp>
<ResponseDescription Language=”eng”>String</ResponseDescription>
<BusinessError Severity=”Information”>

<ErrorID>String</ErrorID>
<Code>String</Code>
<Description Language=”eng”>String</Description>
<RelatedErrorID>String</RelatedErrorID>

</BusinessError>
<ResponderID/>

</Response>
<LogicalDeviceName>String</LogicalDeviceName>
<Error TypeCode=”E_CLOSED”/>

</CashDrawerDevice>
1796 Unified POS, v1.16.1

D.7 XMLPOS Common Events

Figure D.6: UnifiedPOS XML Events

The process for getting UnifiedPOS Events involves an application first receiving the event and then querying
for which property(s) caused the event.

In order to reduce the time to respond to an event, WAMPOS introduced an alternative way to get the properties.
WAMPOS introduced the idea of having the properties, which changed as a result of the event, be sent with the
event. This results in the reduction of the number of steps to retrieve and respond to an event.

Depending on the needs of the system, XMLPOS is designed to support either alternative.
Unified POS, v1.16.1 1797

D.7.1 UnifiedPOS Synchronous XML Events

<?xml version=”1.0” encoding=”UTF-8”?>
<”DeviceSpecific” Event xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”..\XMLPOSEventV1.14.1.xsd” Severity=”Information”
Mode=”Production” Priority=”-0”>

<SequenceNumber>4294967295</SequenceNumber>
<EventDateTime TypeCode=”Message”>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS=”Scanner”>0</SensorID>
<DirectIOEvent EventNumber=”0” Obj=”String” Data=”0”/>

</”DeviceSpecific”Event>

D.7.2 UnifiedPOS Asynchronous XML Events

Single Events
<?xml version=”1.0” encoding=”UTF-8”?>
<”DeviceSpecific”Event xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”..\XMLPOSEventV1.14.1.xsd” Severity=”Information”
Mode=”Production” Priority=”-0”>

<SequenceNumber>4294967295</SequenceNumber>
<EventDateTime TypeCode=”Message”>2001-12-17T09:30:47.0Z</EventDateTime>
<EventDescription>String</EventDescription>
<SourceName>String</SourceName>
<SourceURI>String</SourceURI>
<Instance>String</Instance>
<BusinessUnit TypeCode=”RetailStore” Name=”String”>String</BusinessUnit>
<OrganizationalHierarchy ID=”String” Level=”Corporation”>String</OrganizationalHierarchy>
<DirectIOEvent EventNumber=”0” Obj=”String” Data=”0”/>

</”DeviceSpecific”Event>

Event Sets
<?xml version=”1.0” encoding=”UTF-8”?>
<”DeviceSpecific”Event xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”..\XMLPOSEventV1.14.1.xsd” Severity=”Information”
Mode=”Production” Priority=”-0”>

<SequenceNumber>4294967295</SequenceNumber>
<EventDateTime TypeCode=”Message”>2001-12-17T09:30:47.0Z</EventDateTime>
<EventDescription>String</EventDescription>
<SourceName>String</SourceName>
<SourceURI>String</SourceURI>
<Instance>String</Instance>
<BusinessUnit TypeCode=”RetailStore” Name=”String”>String</BusinessUnit>
<OrganizationalHierarchy ID=”String” Level=”Corporation”>String</OrganizationalHierarchy>
<DataEvent Status=”0”/>
<DirectIOEvent EventNumber=”0” Obj=”String” Data=”0”/>
<ErrorEvent ErrorLocus=”EL_INPUT” ErrorResponse=”ER_RETRY” ErrorCode=”0”

ErrorCodeExtended=”0”/>
<StatusUpdateEvent Status=”0”/>
<OutputCompleteEvent OutputID=”0”/>

</”DeviceSpecific”Event>
1798 Unified POS, v1.16.1

D.8 XMLPOS Common Properties

Figure D.7: UnifiedPOS XMLPOS Common Properties

XMLPOS Common Properties complex type encapsulates the set of UnifiedPOS properties used by all device
categories. It can then be instantiated by each individual device category using the standard XML schema
extension mechanism. Because of its common nature and to reduce complexity, this complex type is represented
by a box in each individual device domain drawings.
Unified POS, v1.16.1 1799

D.9 XMLPOS Common Data

Figure D.8: UnifiedPOS XMLPOS Common Data

XMLPOS Common Data brings together the XMLPOS Common Properties and ARTS Common Data while
adding in UnifiedPOS Common Methods. Because of its common nature this complex type is also represented by
a box in each individual device domain drawings.
1800 Unified POS, v1.16.1

D.10 ARTS Common Data

Figure D.9: ARTS Common Data

ARTS XML has identified a common set of elements and attributes used across all ARTS XML schemas. This
common header is comprised of a set of complex types and handles situations like a standard request/response
and business error reporting mechanisms. Because of its common nature this complex type is represented by a
box in each individual device domain drawings.
Unified POS, v1.16.1 1801

D.11 UnifiedPOS Devices

Each Device Category’s domain view is represented in the following diagram. The “Device Category” is
replaced by a specific device schema containing the device specific properties and methods.

In the sections that follow describing the details of the Domain View of each Device Category, only the
Properties, Methods, and Events Domain Views specific to each device are depicted.

Figure D.10: “Device Category” Domain View

D.11.1 Belt

Belt ExampleV1.1

Move Belt Forward

<?xml version="1.0" encoding="UTF-8"?>
<Belt xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/Belt/ BeltV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/
Belt/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish" ActionCode="Request">
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="Belt">POS1belt</SensorID>

</ARTSHeader>
<BeltBody>

XMLPOS
Common
Data

XMLPOS
Common
Properties

ARTS
Common
Data

"Device Category"

Specific Methods

Specific Properties
1802 Unified POS, v1.16.1

<MoveForward>
<Speed>10</Speed>
</MoveForward>

</BeltBody>
</Belt>

Belt Domain View

Figure D.11: Belt Domain View
Unified POS, v1.16.1 1803

Belt Properties

Figure D.12: Belt Properties Domain View

Belt Methods

Figure D.13: Belt Methods Domain View
1804 Unified POS, v1.16.1

Belt Events

Figure D.14: Belt Events Domain View

Device Error Codes to Message Severity Codes

This device only has common errors as defined in “Device Error Codes and Message Severity Codes.”

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard Status Codes to
Severity Codes.”

Method Value Severity Meaning

N/A
Unified POS, v1.16.1 1805

Device Specific Status Messages

D.11.2 Bill Acceptor

Bill Acceptor Example

 SetRealTimeDataEvents to true

<?xml version="1.0" encoding="UTF-8"?>
<BillAcceptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/BillAcceptor/
BillAcceptorV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/BillAcceptor/"
MajorVersion="1" MinorVersion="14"FixVersion="1">

<ARTSHeader MessageType="Request" ActionCode="Update">
<MessageID>123412341234143</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="BillAcceptor">1</SensorID>

</ARTSHeader>
<BillAcceptorBody>

<GetProperty>
RealTimeDataEnabled>true</RealTimeDataEnabled>

</GetProperty>
</BillAcceptorBody>

</BillAcceptor>

:BeginDeposit()

<?xml version="1.0" encoding="UTF-8"?>
<BillAcceptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/BillAcceptor/
BillAcceptorV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/BillAcceptor/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request">
<MessageID>asdf2345sdfg</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="BillAcceptor">1</SensorID>

</ARTSHeader>
<BillAcceptorBody>

<BeginDeposit/>
</BillAcceptorBody>

</BillAcceptor>

Value Severity Meaning
1806 Unified POS, v1.16.1

Cash is accepted

 DataEvent is fired

<?xml version=”1.0” encoding=”UTF-8”?>
<BillAcceptorEvent xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=”http://www.omg.org/UnifiedPOS/BillAcceptorEvents/ ../
BillAcceptorEventV1.14.1.xsd” xmlns=”http://www.omg.org/UnifiedPOS/
BillAcceptorEvents/” MajorVersion="1" MinorVersion="14" FixVersion="1">

<DataEvent Severity=”Information”>

<SequenceNumber>4294967295</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS=”BillAcceptor”>1</SensorID>
<Status>0</Status>

</DataEvent>
</BillAcceptorEvent>

 EndDeposit()

<?xml version="1.0" encoding="UTF-8"?>
<BillAcceptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/BillAcceptor/
BillAcceptorV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/BillAcceptor/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request">
<MessageID>asdf2345sdfg</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="BillAcceptor">1</SensorID>

</ARTSHeader>
<BillAcceptorBody>

<EndDeposit>
<Success>BACC_DEPOSIT_COMPLETE</Success>

</EndDeposit>
</BillAcceptorBody>

</BillAcceptor>
Unified POS, v1.16.1 1807

Bill Acceptor Domain

Figure D.15: Bill Acceptor Domain View

Bill Acceptor Properties

Figure D.16: Bill Acceptor Properties Domain View
1808 Unified POS, v1.16.1

Bill Acceptor Methods

Figure D.17: Bill Acceptor Methods Domain View
Unified POS, v1.16.1 1809

Bill Acceptor Events

Figure D.18: Bill Acceptor Events Domain View
1810 Unified POS, v1.16.1

Device Error Codes to Message Severity Codes

This device only has common errors as defined in “Device Error Codes and Message Severity Codes.”

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes.”

Device Specific Status Messages

D.11.3 Bill Dispenser

Bill Dispenser Example

DispenseCash(“;100:4”)Dispense 4 $1.00 bills

<?xml version="1.0" encoding="UTF-8"?>
<BillDispenser xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/BillDispenser/
BillDispenserV1.14.1.xsd"xmlns="http://www.omg.org/UnifiedPOS/BillDispenser/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>123421342134</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="BillDispenser">100</SensorID>

</ARTSHeader>
<BillDispenserBody>

<DispenseCash>
<CashCounts Denomination="100">4</CashCounts>
</DispenseCash>

</BillDispenserBody>
</BillDispenser>

Method Value Severity Meaning

N/A

Value Severity Meaning

BACC_STATUS_FULL Warning Some cash slots are full

BACC_STATUS_NEARFULL Warning Some cash slots are nearly full

BACC_STATUS_FULLOK Information No cash slots are either full or nearly full.

BACC_STATUS_JAM Error A mechanical fault has occurred.

BACC_STATUS_JAMOK Information A mechanical fault has recovered.
Unified POS, v1.16.1 1811

Bill Dispenser Domain

Figure D.19: Bill Dispenser Domain View

Bill Dispenser Properties

Figure D.20: Bill Dispenser Properties Domain View
1812 Unified POS, v1.16.1

Bill Dispenser Methods

Figure D.21: Bill Dispenser Methods Domain View

Bill Dispenser Events

Figure D.22: Bill Dispenser Events Domain View
Unified POS, v1.16.1 1813

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Status Codes to Message Severity Codes

Device Specific Status Messages
This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

D.11.4 Biometrics

Biometrics Example
 SetDataEventEnabled to true

<?xml version="1.0" encoding="UTF-8"?>
<Biometrics xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/Biometrics/ BiometricsV1.14.1.xsd" xmlns="http://
www.omg.org/UnifiedPOS/Biometrics/" MajorVersion="1" MinorVersion="14"
FixVersion="1">

 <ARTSHeader MessageType="Request" ActionCode="Update">
 <MessageID>123412341234</MessageID>
 <DateTime>2001-12-17T09:30:47.0Z</DateTime>
 <SensorID UnifiedPOS="Biometrics">001</SensorID>
 </ARTSHeader>
 <BiometricsBody>
 <SetProperty>
 <DataEventEnabled>true</DataEventEnabled>
 </SetProperty>
 </BiometricsBody>
</Biometrics>

Method Value Severity Meaning

dispenseCash EBDSP_OVERDISPENSE Warning
The specified cash cannot be
dispensed because of a cash
shortage.

Value Severity Meaning
BDSP_STATUS_EMPTY Warning Some cash slots are empty.
BDSP_STATUS_NEAREMPTY Warning Some cash slots are nearly empty

BDSP_STATUS_EMPTYOK Information
No cash slots are either empty or
nearly empty

BDSP_STATUS_JAM Error A mechanical fault has occurred.
BDSP_STATUS_JAMOK Information A mechanical fault has recovered

BDSP_STATUS_ASYNC Information
Asynchronously performed method
has completed.
1814 Unified POS, v1.16.1

:BeginEnrollCapture()

<?xml version="1.0" encoding="UTF-8"?>
<Biometrics xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/Biometrics/ BiometricsV1.14.1.xsd" xmlns="http://
www.omg.org/UnifiedPOS/Biometrics/" MajorVersion="1" MinorVersion="14"
FixVersion="1">

<ARTSHeader MessageType="Request">
 <MessageID>12341234</MessageID>
 <DateTime>2001-12-17T09:30:47.0Z</DateTime>
 <SensorID UnifiedPOS="Biometrics">1</SensorID>
</ARTSHeader>
<BiometricsBody>

<BeginEnrollCapture>
<ReferenceBIR/>
<Payload/>

</BeginEnrollCapture>
</BiometricsBody>

</Biometrics>

Capture Biometric Data

 Data Event is fired

<?xml version="1.0" encoding="UTF-8"?>
<Biometrics xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/Biometrics/ BiometricsV1.14.1.xsd" xmlns="http://
www.omg.org/UnifiedPOS/Biometrics/" MajorVersion="1" MinorVersion="14"
FixVersion="1">

<DataEvent Severity="Information">
<SequenceNumber>4294967295</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS="Biometrics">1</SensorID>
<Status>BIO_DATA_VERIFY</Status>

</DataEvent>
</BiometricsEvent>
Unified POS, v1.16.1 1815

Biometrics Domain

Figure D.23: Biometrics Domain View

Biometrics Properties

Figure D.24: Biometric Properties Domain View
1816 Unified POS, v1.16.1

Biometrics Methods

Figure D.25: Biometric Methods Domain View

Biometrics Events

Figure D.26: Biometrics Events Domain View
Unified POS, v1.16.1 1817

Device Error Codes to Message Severity Codes
This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

Method Value Severity Meaning

beginEnrollCapture E_FAILURE Warning referenceBIR could not be adapted.

endCapture E_ILLEGAL Warning Biometrics capture was not in progress.

identify E_FAILURE Error referenceBIRPopulation was not valid.

identifyMatch E_FAILURE Error referenceBIRPopulation was not valid.

processPrematchData E_FAILURE Error sampleBIR was not valid.

verify E_FAILURE Error referenceBIRPopulation was not valid.

verifyMatch E_FAILURE Error referenceBIRPopulation was not valid.

Value Severity Meaning
BIO_SUE_RAW_DATA Information Raw image data is available
BIO_SUE_MOVE_LEFT Warning The position was too far to the right.
BIO_SUE_MOVE_RIGHT Warning The position was too far to the left
BIO_SUE_MOVE_DOWN Warning The position was too high
BIO_SUE_MOVE_UP Warning The position was too low
BIO_SUE_MOVE_CLOSER Warning The position was too far away
BIO_SUE_MOVE_AWAY Warning The position was too near (close)
BIO_SUE_MOVE_BACKWARD Warning The position was too far forward
BIO_SUE_MOVE_FORWARD Warning The position was too far backward
BIO_SUE_MOVE_SLOWER Warning The motion was too fast, move slower.
BIO_SUE_MOVE_FASTER Warning The motion was too slow, move faster.
BIO_SUE_SENSOR_DIRTY Information The sensor is dirty and requires cleaning
BIO_SUE_FAILED_READ Warning Unable to capture data from sensor
BIO_SUE_SENSOR_READY Information The sensor is ready to scan an object
BIO_SUE_SENSOR_COMPLETE Information The object scan has completed
1818 Unified POS, v1.16.1

D.11.5 Bump Bar

Bump Bar Example

 Set AutoToneDuration to 3000 milliseconds

<?xml version="1.0" encoding="UTF-8"?>
<BumpBar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/BumpBar/ BumpBarV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/BumpBar/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish" ActionCode="Update">
<MessageID>1</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="BumpBar">1</SensorID>

</ARTSHeader>
<BumpBarBody>

<SetProperty>
<AutoToneDuration>3000</AutoToneDuration>

</SetProperty>
</BumpBarBody>

</BumpBar>

Bump Bar Domain

Figure D.27: Bump Bar Domain View
Unified POS, v1.16.1 1819

Bump Bar Properties

Figure D.28: Bump Bar Properties Domain View

Bump Bar Methods

Figure D.29: Bump Bar Methods Domain View
1820 Unified POS, v1.16.1

Bump Bar Events

Figure D.30: Bump Bar Events Domain View
Unified POS, v1.16.1 1821

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

D.11.6 Cash Changer

Cash Changer Example
 SetDataEventEnabled to true

<?xml version=”1.0” encoding=”UTF-8”?>
<CashChanger xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CashChanger/
CashChangerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/CashChanger/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request" ActionCode="Update">
<MessageID Timestamp="2001-12-17T09:30:47.0Z">1234123

 </MessageID>

Method Value Severity Meaning

bumpBarSound

E_ILLEGAL Error

One of the following errors occurred:
numberOfCycles is neither a positive, non-
zero value nor FOREVER.
numberOfCycles is FOREVER when
AsyncMode is false.
A negative interSoundWait was specified.
units is zero or a non-existent unit was
specified.
A unit in units does not support the
CapTone capability.

setKeyTranslation

E_ILLEGAL Error

One of the following errors occurred:
scanCode or logicalKey are out of range.
units is zero or a non-existent unit was
specified.

Value Severity Meaning

N/A
1822 Unified POS, v1.16.1

<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="CashChanger">1</SensorID>

</ARTSHeader>
<CashChangerBody>

<SetProperty>
<DataEventEnabled>true</DataEventEnabled>

</SetProperty>
</CashChangerBody>

</CashChanger>

:BeginDeposit()

<?xml version=”1.0” encoding=”UTF-8”?>
<CashChanger xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CashChanger/
CashChangerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/CashChanger/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1243124</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="CashChanger">1</SensorID>

</ARTSHeader>
<CashChangerBody>

<BeginDeposit/>
</CashChangerBody>

</CashChanger>

Cash Changer Domain

Figure D.31: Cash Changer Domain View
Unified POS, v1.16.1 1823

Cash Changer Properties

Figure D.32: Cash Changer Properties Domain View

Cash Changer Methods

Figure D.33: Cash Changer Methods Domain View
1824 Unified POS, v1.16.1

Cash Changer Events

Figure D.34: Cash Changer Events Domain View
Unified POS, v1.16.1 1825

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Method Value Severity Meaning

beginDeposit

E_ILLEGAL Error
Either the Cash Changer does not support
cash acceptance, or the call sequence is not
correct.

dispenseCash

E_BUSY Warning
Cash cannot be dispensed because an
asynchronous method is in progress.

E_ILLEGAL Error

One of the following errors occurred:
• The cashCounts parameter value was illegal
for the current exit.
• Cash could not be dispensed because cash
acceptance was in progress.

E_EXTENDED Error
ECHAN_OVERDISPENSE:
The specified cash cannot be dispensed
because of a cash shortage.

dispenseChange

E_BUSY Warning
The specified change cannot be dispensed
because an asynchronous method is in
progress.

E_ILLEGAL Error

One of the following errors occurred:
• A negative or zero amount was specified.
• The amount could not be dispensed based
on the values specified in ExitCashList for
the current exit.
• Change could not be dispensed because
cash acceptance was in progress.

E_EXTENDED Error
ECHAN_OVERDISPENSE:
The specified change cannot be dispensed
because of a cash shortage.

endDeposit

E_ILLEGAL Error

One of the following errors occurred:
• Cash acceptance is not supported.
• The call sequence is invalid. beginDeposit
and fixDeposit must be called in sequence
before calling this method.
1826 Unified POS, v1.16.1

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

fixDeposit

E_ILLEGAL Error

One of the following errors occurred:
• Cash acceptance is not supported.
• The call sequence is invalid. beginDeposit
must be called before calling this method.

pauseDeposit

E_ILLEGAL Error

One of the following errors occurred:
• Cash acceptance is not supported.
• The call sequence is invalid. beginDeposit
must be called before calling this method.
• The deposit process is already paused and
control is set to CHAN_DEPOSIT_PAUSE,
or the deposit process is not paused and
control is set to
CHAN_DEPOSIT_RESTART.

readCashCounts

E_BUSY Information
Cash units and counts cannot be read because
an asynchronous method is in process.

Value Severity Meaning

CHAN_STATUS_EMPTY Error Some cash slots are empty

CHAN_STATUS_NEAREMPTY Warning Some cash slots are nearly empty.

CHAN_STATUS_EMPTYOK Information
No cash slots are either empty or nearly
empty.

CHAN_STATUS_FULL Information Some cash slots are full

CHAN_STATUS_NEARFULL Information Some cash slots are nearly full.

CHAN_STATUS_FULLOK Warning No cash slots are either full or nearly full.

CHAN_STATUS_JAM Error A mechanical fault has occurred

CHAN_STATUS_JAMOK Information A mechanical fault has recovered.

CHAN_STATUS_ASYNC Information
Asynchronously performed method has
completed.
Unified POS, v1.16.1 1827

D.11.7 Cash Drawer

Cash Drawer Example
openDrawer()

<?xml version=”1.0” encoding=”UTF-8”?>
<CashDrawer xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CashDrawer/
CashDrawerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/CashDrawer/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1243124</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="CashDrawer">1</SensorID>

</ARTSHeader>
<CashDrawerBody>

<OpenDrawer/>
</CashDrawerBody>

</CashDrawer>

 StatusUpdateEvent fired

<?xml version=”1.0” encoding=”UTF-8”?>
<CashDrawerEvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CashDrawerEvents/
CashDrawerEventV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/CashDrawerEvents/
" MajorVersion="1" MinorVersion="14" FixVersion="1">

<StatusUpdateEvent Severity="Information">
<SequenceNumber>4294967295</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS="CashDrawer">1</SensorID>
<Status>CASH_SUE_DRAWEROPEN</Status>

</StatusUpdateEvent>
</CashDrawerEvent>
1828 Unified POS, v1.16.1

Cash Drawer Domain

Figure D.35: Cash Drawer Domain View

Cash Drawer Properties

Figure D.36: Cash Drawer Properties Domain View
Unified POS, v1.16.1 1829

Cash Drawer Methods

Figure D.37: Cash Drawer Methods Domain View

Cash Drawer Events

Figure D.38: Cash Drawer Events Domain View
1830 Unified POS, v1.16.1

Device Error Codes to Message Severity Codes
This device only has common errors and they are defined in “Device Error Codes and Message Severity
Codes” on page 1792.

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

D.11.8 CAT

CAT Example
set PaymentMedia

<?xml version="1.0" encoding="UTF-8"?>
<CAT xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/CAT/ CATV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/CAT/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request" ActionCode="Update">
<MessageID>1234234</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="CAT">2</SensorID>

</ARTSHeader>
<CATBody>

<SetProperty>
<PaymentMedia>CAT_MEDIA_CREDIT</PaymentMedia>

</SetProperty>
</CATBody>

</CAT>

AuthorizeSales

<?xml version="1.0" encoding="UTF-8"?>
<CAT xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/CAT/ CATV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/CAT/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>2431243</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="CAT">100</SensorID>

</ARTSHeader>

Method Value Severity Meaning

N/A

Value Severity Meaning

CASH_SUE_DRAWERCLOSED Information The drawer is closed.

CASH_SUE_DRAWEROPEN Information The drawer is open.
Unified POS, v1.16.1 1831

<CATBody>
<AuthorizeSales>

<SequenceNumber>1</SequenceNumber>
<Amount>100</Amount>
<TaxOthers>4</TaxOthers>
<Timeout>10</Timeout>

</AuthorizeSales>
</CATBody>

</CAT>

CAT Domain

Figure D.39: CAT Domain View
1832 Unified POS, v1.16.1

CAT Properties

Figure D.40: CAT Properties Domain View

CAT Methods

Figure D.41: CAT Methods Domain View
Unified POS, v1.16.1 1833

CAT Events

Figure D.42: CAT Events Domain View
1834 Unified POS, v1.16.1

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Method Value Severity Meaning
accessDailyLog

E_ILLEGAL Error
Invalid or unsupported type or timeout
parameter was specified, or
CapDailyLog is false.

E_TIMEOUT Error
No response was received from CAT
during the specified timeout time in
milliseconds.

E_BUSY Warning
The CAT device cannot accept any
commands now.

authorizeCompletion

E_ILLEGAL Error
Invalid timeout parameter was specified,
or CapAuthorizeCompletion is false.

E_TIMEOUT Warning
No response was received from CAT
during the specified timeout time in
milliseconds.

E_BUSY Information
The CAT device cannot accept any
commands now.

authorizePreSales

E_ILLEGAL Error
Invalid timeout parameter was specified,
or CapAuthorizePreSales is false.

E_TIMEOUT Warning
No response was received from CAT
during the specified timeout time in
milliseconds.

E_BUSY Information
The CAT device cannot accept any
commands now.

authorizeRefund

E_ILLEGAL Error
Invalid timeout parameter was specified,
or CapAuthorizeRefund is false.

E_TIMEOUT Warning
No response was received from CAT
during the specified timeout time in
milliseconds.

E_BUSY Information
The CAT device cannot accept any
commands now.

authorizeSales
E_ILLEGAL Error Invalid timeout parameter was specified.

E_TIMEOUT Warning
No response was received from CAT
during the specified timeout time in
milliseconds.

E_BUSY Information
The CAT device cannot accept any
commands now.
Unified POS, v1.16.1 1835

authorizeVoid

E_ILLEGAL Error
Invalid timeout parameter was specified,
or CapAuthorizeVoid is false.

E_TIMEOUT Warning
No response was received from CAT
during the specified timeout time in
milliseconds.

E_BUSY Information
The CAT device cannot accept any
commands now.

authorizeVoidPreSales

E_ILLEGAL Error
Invalid timeout parameter was specified,
or CapAuthorizeVoidPreSales is false.

E_TIMEOUT Warning
No response was received from CAT
during the specified timeout time in
milliseconds.

E_BUSY Information
The CAT device cannot accept any
commands now.

cashDeposit

E_ILLEGAL Error
Invalid timeout parameter was specified,
or CapCashDeposit is false.

E_TIMEOUT Warning
No response was received from CAT
during the specified timeout time in
milliseconds.

E_BUSY Information
The CAT device cannot accept any
commands now.

cashCheck

E_ILLEGAL Error
Invalid timeout parameter was specified,
or CapCheckCard is false.

E_TIMEOUT Warning
No response was received from CAT
during the specified timeout time in
milliseconds.

E_BUSY Information
The CAT device cannot accept any
commands now.

lockTerminal

E_ILLEGAL Information
The Electronic Money Device does not
have a security lock function.

E_BUSY Information
The CAT device cannot accept any
commands now.

unlockTerminal

E_ILLEGAL Information
The Electronic Money Device does not
have a security lock function.

E_BUSY Information
The CAT device cannot accept any
commands now.
1836 Unified POS, v1.16.1

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

D.11.9 Check Scanner

Check Scanner Example

beginInsertion

<?xml version=”1.0” encoding=”UTF-8”?>
<CheckScanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CheckScanner/
CheckScannerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/CheckScanner/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>12341234</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="CheckScanner">1</SensorID>

</ARTSHeader>
<CheckScannerBody>

<BeginInsertion>
<Timeout>10</Timeout>

</BeginInsertion>
</CheckScannerBody>

</CheckScanner>

endInsertion

<?xml version=”1.0” encoding=”UTF-8”?>
<CheckScanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CheckScanner/
CheckScannerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/CheckScanner/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>12341234</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="CheckScanner">Front Counter<

 /SensorID>
</ARTSHeader>
<CheckScannerBody>

<EndInsertion/>
</CheckScannerBody>

</CheckScanner>

Value Severity Meaning
CAT_LOGSTATUS_OK Information DealingLog is enough capacity
CAT_LOGSTATUS_NEARFULL Warning DealingLog is nearly full.
CAT_LOGSTATUS_FULL Error DealingLog is full
Unified POS, v1.16.1 1837

 fire StatusUpdateEvent (check detected)

<?xml version=”1.0” encoding=”UTF-8”?>
<CheckScannerEvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CheckScannerEvents/
CheckScannerEventV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/
CheckScannerEvents/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<StatusUpdateEvent>
<SequenceNumber>4</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS="CheckScanner">1</SensorID>
<Status>CHK_SUE_SCANCOMPLETE</Status>

</StatusUpdateEvent>
</CheckScannerEvent>

retrieveImage

<?xml version=”1.0” encoding=”UTF-8”?>
<CheckScanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CheckScanner/
CheckScannerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/CheckScanner/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request">
<MessageID>34563456</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="CheckScanner">1</SensorID>

</ARTSHeader>
<CheckScannerBody>

<RetrieveImage>
<CropAreaID>2</CropAreaID>

</RetrieveImage>
</CheckScannerBody>

</CheckScanner>

fire DataEvent

<?xml version=”1.0” encoding=”UTF-8”?>
<CheckScannerEvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CheckScannerEvents/
CheckScannerEventV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/
CheckScannerEvents/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<DataEvent Severity="Information" Mode="Production" Priority="-0">
<SequenceNumber>4294967295</SequenceNumber>
<EventDateTime TypeCode="Message">2001-12-17T09:30:47.0Z<

 /EventDateTime>
<EventDescription>String</EventDescription>
<SensorID UnifiedPOS="CheckScanner">1</SensorID>
<Status>0</Status>

</DataEvent>
</CheckScannerEvent>

 Retrieve Image

<?xml version=”1.0” encoding=”UTF-8”?>
<CheckScanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CheckScanner/
CheckScannerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/CheckScanner/"
MajorVersion="1" MinorVersion="14" FixVersion="1">
1838 Unified POS, v1.16.1

<ARTSHeader MessageType="Response" ActionCode="Read">
<MessageID>12431234</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<Response>

<RequestID>34563456</RequestID>
<ResponderID>1</ResponderID>

</Response>
<SensorID UnifiedPOS="CheckScanner">1</SensorID>

</ARTSHeader>
<CheckScannerBody>

<GetProperty><ImageData>\u005b\u0029\u003e\u001e\u0030
\u0000\u001d\u0030\u0030\u0030\u0031\u001d\u0032\u001d
\u0033\u001d\u0031\u0032\u0033</ImageData>

</GetProperty>
</CheckScannerBody>

</CheckScanner>

beginRemoval

<?xml version=”1.0” encoding=”UTF-8”?>
<CheckScanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CheckScanner/
CheckScannerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/CheckScanner/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>124379</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="CheckScanner">1</SensorID>

</ARTSHeader>
<CheckScannerBody>

<BeginRemoval>
<Timeout>10</Timeout>

</BeginRemoval>
</CheckScannerBody>

</CheckScanner>

endRemoval

<?xml version=”1.0” encoding=”UTF-8”?>
<CheckScanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CheckScanner/
CheckScannerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/CheckScanner/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>45675674567</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="CheckScanner">1</SensorID>

</ARTSHeader>
<CheckScannerBody>

<EndRemoval/>
</CheckScannerBody>

</CheckScanner>
Unified POS, v1.16.1 1839

Check Scanner Domain

Figure D.43: Check Scanner Domain View

Check Scanner Properties

Figure D.44: Check Scanner Properties Domain View
1840 Unified POS, v1.16.1

Check Scanner Methods

Figure D.45: Check Scanner Methods Domain View

Check Scanner Events

Figure D.46: Check Scanner Events Domain View
Unified POS, v1.16.1 1841

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Method Value Severity Meaning
beginInsertion

E_BUSY Information
If the Check Scanner is a
combination device, the peer
device may be busy.

E_ILLEGAL Error An invalid timeout parameter was
specified.

E_TIMEOUT Warning
The specified time has elapsed
without the check being properly
inserted.

beginRemoval

E_BUSY Information
If the Check Scanner is a
combination device, the peer
device may be busy.

E_ILLEGAL Error An invalid timeout parameter was
specified.

E_TIMEOUT Warning
The specified time has elapsed
without the check being properly
removed.

clearImage

E_ILLEGAL Error

One of the following errors
occurred:
• Device does not support stored
images
• Device does not support clearing
one image

E_NOEXIST Error Image was not found.
endInsertion

E_ILLEGAL Warning The device is not in check
insertion mode.

ECHK_NOCHECK Warning
The device was taken out of
insertion mode without a check
being inserted.

endRemoval

E_ILLEGAL Warning The device is not in check
removal mode.

ECHK_CHECK Warning
The device was taken out of
removal mode while a check is
still present.

retrieveImage

E_ILLEGAL Error
The following error has occurred:
• Cropped area that is specified by
cropAreaID parameter is invalid.
1842 Unified POS, v1.16.1

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

retrieveMemory

E_ILLEGAL Error

One of the following errors
occurred:
• by parameter is invalid.
• The image data file could not be
located due to an invalid value
stored in either the FileID,
FileIndex, or ImageTagData
properties that was being used
with the by value.

storeImage

E_EXIST Warning
Image already exists in the store
location specified by the
FileIndex property.

E_ILLEGAL Error

One of the following errors
occurred:
• Device does not support storing
images
• Cropped area that is specified by
cropAreaID parameter is invalid.

E_FAILURE Error Internal error storing image.

ECHK_NOROOM Error There is no more room for the
image in memory.

Value Severity Meaning

CHK_SUE_SCANCOMPLETE Information
The process of scanning a document image
has been successfully completed
Unified POS, v1.16.1 1843

D.11.10 Coin Acceptor

Coin Acceptor Example

 SetRealTimeDataEvents to true

<?xml version="1.0" encoding="UTF-8"?>
<CoinAcceptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CoinAcceptor/
CoinAcceptorV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/CoinAcceptor/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request" ActionCode="Update">
<MessageID>asf1234</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="CoinAcceptor">1</SensorID>

</ARTSHeader>
<CoinAcceptorBody>

<SetProperty>
<RealTimeDataEnabled>true</RealTimeDataEnabled>

</SetProperty>
</CoinAcceptorBody>

</CoinAcceptor>

:BeginDeposit()

<?xml version="1.0" encoding="UTF-8"?>
<CoinAcceptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CoinAcceptor/
CoinAcceptorV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/CoinAcceptor/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1234568</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="CoinAcceptor">1</SensorID>

</ARTSHeader>
<CoinAcceptorBody>

<BeginDeposit/>
</CoinAcceptorBody>

</CoinAcceptor>

Cash is accepted

 DataEvent is fired

<?xml version="1.0" encoding="UTF-8"?>
<CoinAcceptorEvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CoinAccpetorEvents/
CoinAcceptorEventV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/
CoinAccpetorEvents/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<DataEvent Severity="Information">
<SequenceNumber>1</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS="CoinAcceptor">1</SensorID>
<Status>0</Status>

</DataEvent>
</CoinAcceptorEvent>
1844 Unified POS, v1.16.1

 EndDeposit()

<?xml version="1.0" encoding="UTF-8"?>
<CoinAcceptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CoinAcceptor/
CoinAcceptorV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/CoinAcceptor/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>2134568</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="CoinAcceptor">1</SensorID>

</ARTSHeader>
<CoinAcceptorBody>

<EndDeposit>
<Success>CACC_DEPOSIT_COMPLETE</Success>

</EndDeposit>
</CoinAcceptorBody>

</CoinAcceptor>

Coin Acceptor Domain

Figure D.47: Coin Acceptor Domain View
Unified POS, v1.16.1 1845

Coin Acceptor Properties

Figure D.48: Coin Acceptor Properties Domain View

Coin Acceptor Methods

Figure D.49: Coin Acceptor Methods Domain View
1846 Unified POS, v1.16.1

Coin Acceptor Events

Figure D.50: Coin Acceptor Events Domain View
Unified POS, v1.16.1 1847

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

Method Value Severity Meaning
beginDeposit

E_ILLEGAL Error The call sequence is not
correct.

endDeposit

E_ILLEGAL Error

One of the following errors
occurred:
• The call sequence is invalid.
beginDeposit and fixDeposit
must be called in sequence
before calling this method.

fixDeposit

E_ILLEGAL Error

One of the following errors
occurred:
• The call sequence is invalid.
beginDeposit must be called
before calling this method.

pauseDeposit

E_ILLEGAL Error

One of the following errors
occurred:
• The call sequence is invalid.
beginDeposit must be called
before calling this method.
• The deposit process is already
paused and control is set to
CACC_DEPOSIT_PAUSE, or
the deposit process is not
paused and control is set to
CACC_DEPOSIT_RESTART.

Value Severity Meaning
CACC_STATUS_FULL Error Some cash slots are full.
CACC_STATUS_NEARFULL Warning Some cash slots are nearly full
CACC_STATUS_FULLOK Information No cash slots are either full or nearly full
CACC_STATUS_JAM Error A mechanical fault has occurred.
CACC_STATUS_JAMOK Error A mechanical fault has recovered
1848 Unified POS, v1.16.1

D.11.11 Coin Dispenser

Coin Dispenser Example

DispenseChange(“92”)

<?xml version="1.0" encoding="UTF-8"?>
<CoinDispenser xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/CoinDispenser/
CoinDispenserV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/CoinDispenser/
"MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request">
<MessageID>1</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="CoinDispenser">1</SensorID>

</ARTSHeader>
<CoinDispenserBody>

<DispenseChange>
<Amount>92</Amount>
</DispenseChange>

</CoinDispenserBody>
</CoinDispenser>

Coin Dispenser Domain

Figure D.51: Coin Dispenser Domain View
Unified POS, v1.16.1 1849

Coin Dispenser Properties

Figure D.52: Coin Dispenser Properties Domain View

Coin Dispenser Methods

Figure D.53: Coin Dispenser Methods Domain View
1850 Unified POS, v1.16.1

Coin Dispenser Events

Figure D.54: Coin Dispenser Events Domain View
Unified POS, v1.16.1 1851

Device Error Codes to Message Severity Codes
This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

Method Value Severity Meaning
dispenseChange

E_ILLEGAL Error

An amount parameter value
of zero was specified, or the
amount parameter
contained a negative value
or a value greater than the
device can dispense.

Value Severity Meaning

COIN_STATUS_OK Information

Ready to dispense coinage.
This value is also set when
the dispenser is unable to
detect an error condition

COIN_STATUS_EMPTY Error
Cannot dispense coinage
because the dispenser is
empty.

COIN_STATUS_NEAREMPTY Warning
Can still dispense coinage,
but the dispenser is nearly
empty.

COIN_STATUS_JAM Error A mechanical fault has
occurred.
1852 Unified POS, v1.16.1

D.11.12 Electronic Journal

Electronic Journal Example

queryContent(“data.bin”, 1, 2)

<?xml version="1.0" encoding="UTF-8"?>
<ElectronicJournal xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/ElectronicJournal/
ElectronicJournalV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/ElectronicJournal/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>12341234</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="ElectronicJournal">EJ1</SensorID>

</ARTSHeader>
<ElectronicJournalBody>

<QueryContent>
<FileName>data.bin</FileName>
<FromMarker>1</FromMarker>
<ToMarker>2</ToMarker>
</QueryContent>

</ElectronicJournalBody>
</ElectronicJournal>

 DataEvent fired

<?xml version="1.0" encoding="UTF-8"?>
<ElectronicJournalEvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/ElectronicJournalEvents/
ElectronicJournalEventV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/
ElectronicJournalEvents/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<DataEvent Severity="Information">
<SequenceNumber>4294967295</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS="ElectronicJournal">EJ1</SensorID>
<Status>0</Status>
</DataEvent>

</ElectronicJournalEvent>
Unified POS, v1.16.1 1853

Electronic Journal Domain

Figure D.55: Electronic Journal Domain View

Electronic Journal Properties

Figure D.56: Electronic Journal Properties Domain View
1854 Unified POS, v1.16.1

Electronic Journal Methods

Figure D.57: Electronic Journal Method Domain View

Electronic Journal Events

Figure D.58: Electronic Journal Events Domain View
Unified POS, v1.16.1 1855

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Method Value Severity Meaning

addMarker

E_ILLEGAL Error Characters that cannot be used
as marker are included, or the
character string is too long to
be used as the marker.

E_BUSY Warning Request cannot be performed
while output is in progress.
(This includes when the
POSPrinter or FiscalPrinter is
busy printing.)

EEJ_EXISTING Error The marker name is already
specified in current medium.

EEJ_MEDIUM_F
ULL

Error There is not enough free space
to add a marker in current
medium.

eraseMedium

E_FAILURE Error Failed to erase data.

initializeMedium

E_BUSY Warning Cannot perform while output is
in progress. (This includes
when the POSPrinter or
FiscalPrinter is busy printing.)

printContentFile

E_BUSY Warning Cannot perform while output is
in progress. (This includes
when the POSPrinter or
FiscalPrinter is busy printing.)

E_ILLEGAL Error fileName contains invalid
characters.

E_EXISTS Error The file defined in fileName
already exists.

retrieveCurrentMarker

E_ILLEGAL Error The parameter markerType
contains an invalid value.

E_NOEXIST Error A marker does not exist for the
specified marker type.

retrieveMarker

E_ILLEGAL Error One of the parameters is
invalid. Either the value in
markerType does not exist.
1856 Unified POS, v1.16.1

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

E_NOEXIST Error A marker does not exist for the
specified parameter values.

retrieveMarkerByDateTime

E_ILLEGAL Error One of the parameters is
invalid. The value in
markerType does not exist,
dateTime is invalid, or the
markerNumber does not exist
for the specified time period.

E_NOEXIST Error A marker does not exist for the
specified time period.

EEJ_MULTIPLE_
MARKER

Error More than one marker exists
for the specified time period.

Value Severity Meaning

EJ_SUE_MEDIUM_NEAR_FULL Warning The medium is nearly full (i.e., its free space is
low

EJ_SUE_MEDIUM_FULL Error Storage medium is full.
EJ_SUE_MEDIUM_REMOVED Information Medium was removed from the device.
EJ_SUE_MEDIUM_INSERTED Information Medium was inserted into the device.
EJ_SUE_SUSPENDED Warning Data printing or transfer was suspended
Unified POS, v1.16.1 1857

D.11.13 Electronic Value Reader / Writer

Electronic Value Reader / Writer Example

beginDetection

<?xml version="1.0" encoding="UTF-8"?>
<ElectronicValueRW xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/ElectronicValueRW/
ElectronicValueRWV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/
ElectronicValueRW/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="ElectronicValueReaderWriter">EVR1

 </SensorID>
</ARTSHeader>
<ElectronicValueRWBody>

<BeginDetection Type="EVRW_BD_ANY">
<Timeout>30000</Timeout>

</BeginDetection>
</ElectronicValueRWBody>

</ElectronicValueRW>

endDetection

<?xml version="1.0" encoding="UTF-8"?>
<ElectronicValueRW xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/ElectronicValueRW/
ElectronicValueRWV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/
ElectronicValueRW/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>2</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="ElectronicValueReaderWriter">EVR1

 </SensorID>
</ARTSHeader>
<ElectronicValueRWBody>

<EndDetection/>
</ElectronicValueRWBody>

</ElectronicValueRW>

set DataEventEnabled to true

<?xml version="1.0" encoding="UTF-8"?>
<ElectronicValueRW xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/ElectronicValueRW/
ElectronicValueRWV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/
ElectronicValueRW/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request" ActionCode="Begin">
<MessageID Timestamp="2001-12-17T09:30:47.0Z">1234

 </MessageID>
<DateTime TypeCode="Message">2001-12-17T09:30:47.0Z

 </DateTime>
<SensorID UnifiedPOS="ElectronicValueReaderWriter">EVR1

 </SensorID>
1858 Unified POS, v1.16.1

</ARTSHeader>
<ElectronicValueRWBody>

<SetProperty>
<DataEventEnabled>true</DataEventEnabled>

</SetProperty>
</ElectronicValueRWBody>

</ElectronicValueRW>

Electronic Value Reader / Writer Domain

Figure D.59: Electronic Value Reader / Writer Domain View
Unified POS, v1.16.1 1859

Electronic Value Reader / Writer Properties

Figure D.60: Electronic Value Reader / Writer Properties Domain View
1860 Unified POS, v1.16.1

Electronic Value Reader / Writer Methods

Figure D.61: Electronic Value Reader / Writer Methods Domain View
Unified POS, v1.16.1 1861

Electronic Value Reader / Writer Events

Figure D.62: Electronic Value Reader / Writer Events Domain View
1862 Unified POS, v1.16.1

Device Error Codes to Message Severity Codes
This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

D.11.14 Fiscal Printer

Fiscal Printer Example

Open Request

<?xml version="1.0" encoding="utf-8"?>
<FiscalPrinter xs:schemaLocation="http://www.omg.org/UnifiedPOS/FiscalPrinter/

FiscalPrinterV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/FiscalPrinter/"
MajorVersion="1" MinorVersion="14" FixVersion="1" xmlns:xs="http://www.w3.org/2001/
XMLSchema-instance">

<ARTSHeader MessageType="Request">
<RequestID Name="FiscalPrinterOpen" Timestamp="2001-12-

 17T09:30:45.0Z">String</RequestID>
<LogicalDeviceName>WN_FPTR_THF_COM

 </LogicalDeviceName>
<MessageID>0</MessageID>
<DateTime TypeCode="Message">2001-12-17T09:30:45.0Z

 </DateTime>
</ARTSHeader>
<FiscalPrinterBody>

<GetProperty>
<PrinterState xs:nil="true"/>
<DeviceEnabled>true</DeviceEnabled>
<DayOpened>true</DayOpened>

</GetProperty>
<Claim Timeout="3000"/>
<Open LogicalDeviceName="WN_FPTR_THF_COM"/>

</FiscalPrinterBody>

Method Value Severity Meaning

Value Severity Meaning
Unified POS, v1.16.1 1863

</FiscalPrinter>

Response to Open Request

<?xml version="1.0" encoding="utf-8"?>
<FiscalPrinter xsi:schemaLocation="http://www.omg.org/UnifiedPOS/FiscalPrinter/

FiscalPrinterV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/FiscalPrinter/"
MajorVersion="1" MinorVersion="14" FixVersion="1" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">

<ARTSHeader MessageType="Response">
RequestID Name="FiscalPrinterOpen" Timestamp="2001-12-

 17T09:30:45.0Z">String</RequestID>
<LogicalDeviceName>WN_FPTR_THF_COM

 </LogicalDeviceName>
<MessageID>1</MessageID>
<DateTime TypeCode="Message">2001-12-17T09:30:46.0Z

 </DateTime>
</ARTSHeader>
<FiscalPrinterBody>

<GetProperty>
<PrinterState>FPTR_PS_MONITOR</PrinterState>
<DayOpened>true</DayOpened>
<State>S_BUSY</State>

</GetProperty>
<Open LogicalDeviceName="WN_FPTR_THF_COM"/>

</FiscalPrinterBody>
</FiscalPrinter>

Print Receipt Header Request

<?xml version="1.0" encoding="utf-8"?>
<FiscalPrinter xs:schemaLocation="http://www.omg.org/UnifiedPOS/FiscalPrinter/

FiscalPrinterV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/FiscalPrinter/"
MajorVersion="1" MinorVersion="14" FixVersion="1" xmlns:xs="http://www.w3.org/2001/
XMLSchema-instance">

<ARTSHeader MessageType="Request">
<RequestID Name="FiscalReceiptHeader" Timestamp="2001-12

 -17T09:30:48.0Z">String</RequestID>
<LogicalDeviceName>WN_FPTR_THF_COM

 </LogicalDeviceName>
<MessageID>2</MessageID>
<DateTime TypeCode="Message">2001-12-17T09:30:48.0Z

 </DateTime>
</ARTSHeader>
<FiscalPrinterBody>

<BeginFiscalReceipt PrintHeader="false"/>
<GetProperty>

<PrinterState xs:nil="true"/>
</GetProperty>

</FiscalPrinterBody>
</FiscalPrinter>

Response to Print Receipt Header Request

<?xml version="1.0" encoding="utf-8"?>
<FiscalPrinter xsi:schemaLocation="http://www.omg.org/UnifiedPOS/FiscalPrinter/

FiscalPrinterV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/FiscalPrinter/"
MajorVersion="1" MinorVersion="14" FixVersion="1" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">
1864 Unified POS, v1.16.1

<ARTSHeader MessageType="Response">
<RequestID Name="FiscalReceiptHeader" Timestamp="2001-12-

 17T09:30:48.0Z">String</RequestID>
<LogicalDeviceName>WN_FPTR_THF_COM
</LogicalDeviceName>
<MessageID>3</MessageID>
<DateTime TypeCode="Message">2001-12-17T09:30:49.0Z
</DateTime>

</ARTSHeader>
<FiscalPrinterBody>

<GetProperty>
<PrinterState>FPTR_PS_FISCAL_RECEIPT
</PrinterState>

</GetProperty>
</FiscalPrinterBody>

</FiscalPrinter>

Print Receipt Body Request

<?xml version="1.0" encoding="utf-8"?>
<FiscalPrinter xmlns:xs="http://www.w3.org/2001/XMLSchema-instance" xs:schemaLocation="http://

www.omg.org/UnifiedPOS/FiscalPrinter/ FiscalPrinterV1.14.1.xsd" xmlns="http://
www.omg.org/UnifiedPOS/FiscalPrinter/" MajorVersion="1" MinorVersion="14"
FixVersion="1">

<ARTSHeader MessageType="Request">
<RequestID Name="FiscalReceiptBody" Timestamp="2001-12-

 17T09:30:50.0Z">String</RequestID>
<LogicalDeviceName>WN_FPTR_THF_COM
</LogicalDeviceName>
<MessageID>4</MessageID>
<DateTime TypeCode="Message">2001-12-17T09:30:50.0Z
</DateTime>

</ARTSHeader>
<FiscalPrinterBody>

<GetProperty>
<PrinterState xs:nil="true"/>

</GetProperty>
<PrintRecItem>

<Description>item1</Description>
<Price>100000</Price>
<!-- means 10.00 currency units-->
<Quantity>1000</Quantity>
<!-- means one piece -->
<VatInfo>1</VatInfo>
<UnitPrice>100000</UnitPrice>
<UnitName>pcs</UnitName>

</PrintRecItem>
<PrintRecItem>

<Description>item2</Description>
<Price>200000</Price>
<!-- means 10.00 currency units-->
<Quantity>2000</Quantity>
<!-- means one piece -->
<VatInfo>1</VatInfo>
<UnitPrice>100000</UnitPrice>
<UnitName>pcs</UnitName>
Unified POS, v1.16.1 1865

</PrintRecItem>
<PrintRecTotal>

<Total>300000</Total>
<Payment>300000</Payment>
<Description>cash</Description>

</PrintRecTotal>
</FiscalPrinterBody>

</FiscalPrinter>

Response to Print Receipt Body Request
<?xml version="1.0" encoding="utf-8"?>
<FiscalPrinter xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/FiscalPrinter/
FiscalPrinterV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/FiscalPrinter/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Response">
<LogicalDeviceName>WN_FPTR_THF_COM
</LogicalDeviceName>
<MessageID>5</MessageID>
<DateTime TypeCode="Message">2001-12-17T09:30:51.0Z
</DateTime>
<Response>

<RequestID>4</RequestID>
<ResponderID>WN_FPTR_THF_COM</ResponderID>

</Response>
</ARTSHeader>
<FiscalPrinterBody>

<GetProperty>
<PrinterState>FPTR_PS_FISCAL_RECEIPT_TOTAL
</PrinterState>

</GetProperty>
</FiscalPrinterBody>

</FiscalPrinter>

Print Receipt Footer Request
<?xml version="1.0" encoding="utf-8"?>
<FiscalPrinter xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/FiscalPrinter/
FiscalPrinterV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/FiscalPrinter/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request">
<LogicalDeviceName>WN_FPTR_THF_COM
</LogicalDeviceName>
<MessageID>3456</MessageID>
<DateTime TypeCode="Message">2001-12-17T09:30:52.0Z
</DateTime>

</ARTSHeader>
<FiscalPrinterBody>

<GetProperty>
<!-- PROPERTIES REQUEST -->
<PrinterState xsi:nil="true"/>
1866 Unified POS, v1.16.1

Fiscal Printer Domain

Figure D.63: Fiscal Printer Domain View
Unified POS, v1.16.1 1867

Fiscal Printer Properties

Figure D.64: Fiscal Printer Properties Domain View
1868 Unified POS, v1.16.1

Fiscal Printer Methods

Figure D.65: Fiscal Printer Methods Domain View
Unified POS, v1.16.1 1869

Fiscal Printer Events

Figure D.66: Fiscal Printer Events Domain View
1870 Unified POS, v1.16.1

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Method Value Severity Meaning
beginFiscalDocument

E_ILLEGAL Error
The slip station does not exist or the printer
does not support fiscal output to the slip
station

EFPTR_WRONG_STATE Error The printer’s current state does not allow this
state transition.

EFPTR_SLP_EMPTY Error There is no paper in the slip station
EFPTR_BAD_ITEM_AM
OUNT

Error The documentAmount parameter is invalid.

EFPTR_MISSING_SET_
CURRENCY

Error
The new receipt cannot be opened. the Fiscal
Printer is expecting the current currency to be
changed by calling setCurrency method.

EFPTR_DAY_END_REQ
UIRED

Error

The completion of the fiscal day is required
by calling printZReport. No further fiscal
receipts or documents can be started before
this is done.

beginFiscalReceipt
E_ILLEGAL Error An invalid receipt type was specified.

EFPTR_WRONG_STATE Error The Fiscal Printer’s current state does not
allow this state transition.

EFPTR_MISSING_SET_
CURRENCY

Error
The new receipt cannot be opened, the Fiscal
Printer is expecting the current currency to be
changed by calling setCurrency method.

EFPTR_DAY_END_REQ
UIRED

Error

The completion of the fiscal day is required
by calling printZReport. No further fiscal
receipts or documents can be started before
this is done.

beginFixedOutput

E_ILLEGAL Error

One of the following errors occurred:
• Station does not exist
• Fiscal Printer does not support fixed output.
• station parameter is invalid.
• documentType is invalid.

EFPTR_WRONG_STATE Error The Fiscal Printer’s current state does not
allow this state transition.

EFPTR_SLP_EMPTY Error There is no paper in the slip station
beginInsertion

E_ILLEGAL Error The slip station does not exist or an invalid
timeout parameter was specified.

E_TIMEOUT Warning The specified time has elapsed without the
form being properly inserted

beginItemList
Unified POS, v1.16.1 1871

E_ILLEGAL Error
The Fiscal Printer does not support an item
list report or the Fiscal Printer does not
support VAT tables

EFPTR_WRONG_STATE Error The Fiscal Printer’s current state does not
allow this state transition

EFPTR_BAD_VAT Error The vatID parameter is invalid
beginNonFiscal

E_ILLEGAL Error The Fiscal Printer does not support non-fiscal
output

EFPTR_WRONG_STATE Error The Fiscal Printer’s current state does not
allow this state transition

beginRemoval

E_ILLEGAL Error
The Fiscal Printer does not have a slip station
or an invalid timeout parameter was
specified.

E_TIMEOUT Warning The specified time has elapsed without the
form being properly removed.

beginTraining

E_ILLEGAL Error The Fiscal Printer does not support training
mode

EFPTR_WRONG_STATE Error The Fiscal Printer’s current state does not
allow this state transition.

clearError
E_FAILURE Error Error recovery failed.

endFiscalDocument

E_ILLEGAL Error The Fiscal Printer does not support fiscal
output to the slip station

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Document state

endFiscalReceipt

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt Ending state

endFixedOutput

E_ILLEGAL Error The Fiscal Printer does not support fixed
output

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt Ending state

endInsertion

E_ILLEGAL Error The Fiscal Printer is not in slip insertion
mode.

EFPTR_COVER_OPEN Error The device was taken out of insertion mode
while the Fiscal Printer cover was open.

EFPTR_SLP_EMPTY Error The device was taken out of insertion mode
without a form being inserted.

endItemList
1872 Unified POS, v1.16.1

E_ILLEGAL Error
The Fiscal Printer does not support fixed
output or the Fiscal Printer does not support
VAT tables

EFPTR_WRONG_STATE Error The Fiscal Printer’s current state does not
allow this state transition.

endNonFiscal

E_ILLEGAL Error The Fiscal Printer does not support non-fiscal
output

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the Non-
Fiscal Receipt Ending state

endRemoval

E_ILLEGAL Error The Fiscal Printer is not in slip removal
mode.

EFPTR_SLP_FORM Error The device was taken out of removal mode
while a form was still present.

endTraining

E_ILLEGAL Error The Fiscal Printer does not support training
mode

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Training state.

getData
E_BUSY Warning Cannot perform while output is in progress.

E_ILLEGAL Error The dataItem, optArgs or ContractorId
specified is invalid.

getDate

E_ILLEGAL Warning Retrieval of the date and time is not valid at
this time.

getTotalizer

E_ILLEGAL Error

One of the following errors occurred:
• The vatID parameter is invalid, or
• The ContractorId property is invalid, or
• The specified totalizer is not available.

getVatEntry

E_ILLEGAL Error The vatID parameter is invalid, or
CapHasVatTable is false.

printDuplicateReceipt
E_BUSY Warning Cannot perform while output is in progress.

E_ILLEGAL Error
The Fiscal Printer does not support duplicate
receipts or there is no buffered transaction to
print

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Monitor state

EFPTR_JRN_EMPTY Error The journal station is out of paper.
EFPTR_REC_EMPTY Error The receipt station is out of paper

printFiscalDocumentLine
Unified POS, v1.16.1 1873

E_BUSY Warning Cannot perform while output is in progress.

E_ILLEGAL Error The Fiscal Printer does not support fiscal
documents

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Document state.

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open.

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

printFixedOutput
E_BUSY Warning Cannot perform while output is in progress.

E_ILLEGAL Error The Fiscal Printer does not support fixed
output or the lineNumber is invalid.

EFPTR_WRONG_STATE Error The Fiscal Printer is not in the Fixed Output
state

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open.
EFPTR_JRN_EMPTY Error The journal station is out of paper.

EFPTR_REC_EMPTY Error The receipt station was specified but is out of
paper.

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

printNormal
E_ILLEGAL Error The specified station does not exist.
E_BUSY Warning Cannot perform while output is in progress.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the Non-
Fiscal state.

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open

EFPTR_JRN_EMPTY Error The journal station was specified but is out of
paper

EFPTR_REC_EMPTY Error The receipt station was specified but is out of
paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

printPeriodicTotalsReport

EFPTR_WRONG_STATE Error The Fiscal Printer’s current state does not
allow this state transition

EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper
EFPTR_BAD_DATE Error One of the date parameters is invalid.

printPowerLossReport

E_ILLEGAL Error The Fiscal Printer does not support power
loss reports

EFPTR_WRONG_STATE Error The Fiscal Printer’s current state does not
allow this state transition.

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper
1874 Unified POS, v1.16.1

EFPTR_REC_EMPTY Error The receipt station is out of paper
printRecCash

E_BUSY Error Cannot perform while output is in progress.

E_ILLEGAL Error The Fiscal Printer does not support this
method.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open.
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

printRecItem
E_BUSY Warning Cannot perform while output is in progress.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open.
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

EFPTR_BAD_ITEM_QU
ANTITY

Error The quantity is invalid.

EFPTR_BAD_PRICE Error The unit price is invalid.
EFPTR_BAD_ITEM_DES
CRIPTION

Error The discount description is too long or
contains a reserved word.

EFPTR_BAD_VAT Error The VAT parameter is invalid
EFPTR_RECEIPT_TOTA
L_OVERFLOW

Error The receipt total has overflowed

printRecItemAdjustment
E_BUSY Warning Cannot perform while output is in progress.

E_ILLEGAL Error

One of the following errors occurred:
• The Fiscal Printer does not support fixed
amount adjustments
• The Fiscal Printer does not support
percentage discounts
• The adjustmentType parameter is invalid.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state.

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper.
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted.
Unified POS, v1.16.1 1875

FPTR_BAD_ITEM_AMO
UNT

Error The discount amount is invalid.

EFPTR_BAD_ITEM_DES
CRIPTION

Error The discount description is too long or
contains a reserved word

EFPTR_BAD_VAT Error The VAT parameter is invalid
printRecItemAdjustmentVoid

E_BUSY Warning Cannot perform while output is in progress.

E_ILLEGAL Error

One of the following errors occurred:
• The Fiscal Printer does not support fixed
amount adjustments
• The Fiscal Printer does not support
percentage discounts
• The adjustmentType parameter is invalid.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted.

FPTR_BAD_ITEM_AMO
UNT

Error The discount amount is invalid.

EFPTR_BAD_ITEM_DES
CRIPTION

Error The discount description is too long or
contains a reserved word

EFPTR_BAD_VAT Error The VAT parameter is invalid
printRecItemFuel

E_BUSY Warning Cannot perform while output is in progress.
E_ILLEGAL Error This method is not supported.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper.
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

EFPTR_BAD_ITEM_QU
ANTITY

Error The quantity is invalid

EFPTR_BAD_PRICE Error The unit price is invalid
EFPTR_BAD_ITEM_DES
CRIPTION

Error The discount description is too long or
contains a reserved word

EFPTR_BAD_VAT Error The VAT parameter is invalid
EFPTR_RECEIPT_TOTA
L_OVERFLOW

Error The receipt total has overflowed

printRecItemFuelVoid
E_BUSY Warning Cannot perform while output is in progress.
1876 Unified POS, v1.16.1

E_ILLEGAL Error This method is not supported.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open.
EFPTR_JRN_EMPTY Error The journal station is out of paper.
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

EFPTR_BAD_PRICE Error The price is invalid
EFPTR_BAD_ITEM_DES
CRIPTION

Error The discount description is too long or
contains a reserved word.

EFPTR_BAD_VAT Error The VAT parameter is invalid
printRecItemVoid

E_BUSY Warning Cannot perform while output is in progress.

E_ILLEGAL Error
Cancelling is not allowed at this ticket state.
May be because no item has been sold
previously.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open.
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper.

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

EFPTR_BAD_ITEM_AM
OUNT

Error The price is invalid.

EFPTR_BAD_ITEM_QU
ANTITY

Error The quantity is invalid.

EFPTR_BAD_VAT Error The VAT information is invalid.
EFPTR_BAD_ITEM_DES
CRIPTION

Error The description is too long or contains a
reserved word

EFPTR_NEGATIVE_TOT
AL

Error The computed total is less than zero

printRecMessage
E_BUSY Warning Cannot perform while output is in progress.

EFPTR_WRONG_STATE Error The Fiscal Printer is not in the Fiscal Receipt
Ending state.

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

EFPTR_BAD_ITEM_DES
CRIPTION

Error The message is too long or contains a
reserved word.
Unified POS, v1.16.1 1877

printRecNotPaid
E_BUSY Warning Cannot perform while output is in progress.

EFPTR_WRONG_STATE Error
The Fiscal Printer is not currently in either
the Fiscal Receipt or Fiscal Receipt Total
state.

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open.
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted.

EFPTR_BAD_ITEM_DES
CRIPTION

Error The description is too long or contains a
reserved word

EFPTR_BAD_ITEM_AM
OUNT

Error The amount is invalid.

printRecPackageAdjustment
E_BUSY Warning Cannot perform while output is in progress

E_ILLEGAL Error
The Fiscal Printer does not support package
adjustments or the adjustmentType
parameter is invalid

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state.

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open.
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

EFPTR_BAD_ITEM_DES
CRIPTION

Error The description is too long or contains a
reserved word

printRecPackageAdjustVoid
E_BUSY Warning Cannot perform while output is in progress.

E_ILLEGAL Error
The Fiscal Printer does not support package
adjustments, or the adjustmentType
parameter is invalid.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper.
EFPTR_REC_EMPTY Error The receipt station is out of paper.

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

EFPTR_BAD_ITEM_DES
CRIPTION

Error The description is too long or contains a
reserved word.

printRecRefund
E_BUSY Warning Cannot perform while output is in progress.
1878 Unified POS, v1.16.1

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper.
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted.

EFPTR_BAD_ITEM_DES
CRIPTION

Error The description is too long or contains a
reserved word

EFPTR_BAD_ITEM_AM
OUNT

Error The amount is invalid.

EFPTR_BAD_VAT Error The VAT information is invalid
printRecRefundVoid

E_BUSY Warning Cannot perform while output is in progress.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted.

EFPTR_BAD_ITEM_DES
CRIPTION

Error The description is too long or contains a
reserved word

EFPTR_BAD_ITEM_AM
OUNT

Error The VAT information is invalid

printRecSubtotal
E_BUSY Warning Cannot perform while output is in progress.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state.

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open.
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

EFPTR_BAD_ITEM_AM
OUNT

Error
The subtotal from the application does not
match the subtotal computed by the Fiscal
Printer.

EFPTR_NEGATIVE_TOT
AL

Error The total computed by the Fiscal Printer is
less than zero.

printRecSubtotalAdjustment
E_BUSY Warning Cannot perform while output is in progress.
Unified POS, v1.16.1 1879

E_ILLEGAL Error

One of the following errors occurred:
• Fixed amount discounts are not supported.
• Percentage discounts are not supported
• Surcharges are not supported
• The adjustmentType parameter is invalid.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted.

EFPTR_BAD_ITEM_AM
OUNT

Error The discount amount is invalid

EFPTR_BAD_ITEM_DES
CRIPTION

Error The discount description is too long or
contains a reserved word

printRecSubtotalAdjustVoid
E_BUSY Warning Cannot perform while output is in progress.

E_ILLEGAL Error

One of the following errors occurred:
• Fixed amount discounts are not supported.
• Percentage discounts are not supported.
• The adjustmentType parameter is invalid.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state.

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted.

EFPTR_BAD_ITEM_AM
OUNT

Error The discount amount is invalid

printRecTaxID
E_BUSY Warning Cannot perform while output is in progress.

E_ILLEGAL Error The Fiscal Printer does not support printing
tax identifications.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt Ending state

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

printRecTotal
E_BUSY Warning Cannot perform while output is in progress.
1880 Unified POS, v1.16.1

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state.

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open.
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

EFPTR_BAD_ITEM_AM
OUNT

Error

• The application computed total does not
match the Fiscal Printer computed total, or
• the total parameter is invalid, or
• the payment parameter is invalid

EFPTR_BAD_ITEM_DES
CRIPTION

Error The description is too long or contains a
reserved word

EFPTR_NEGATIVE_TOT
AL

Error The computed total is less than zero

EFPTR_WORD_NOT_AL
LOWED

Error The description contains the reserved word.

printRecVoid
E_BUSY Warning Cannot perform while output is in progress.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

EFPTR_BAD_ITEM_DES
CRIPTION

Error The description is too long or contains a
reserved word

printRecVoidItem
E_BUSY Warning Cannot perform while output is in progress

E_ILLEGAL Error

One of the following errors occurred:
• Fixed amount adjustments are not
supported, or
• Percentage discounts are not supported, or
• The adjustmentType parameter is invalid.

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the
Fiscal Receipt state

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

EFPTR_SLP_EMPTY Warning The slip station was specified, but a form is
not inserted

EFPTR_BAD_ITEM_AM
OUNT

Error The amount is invalid
Unified POS, v1.16.1 1881

EFPTR_BAD_ITEM_QU
ANTITY

Error The quantity is invalid

EFPTR_BAD_VAT Error The VAT information is invalid
EFPTR_BAD_ITEM_DES
CRIPTION

Error The description is too long or contains a
reserved word

EFPTR_NEGATIVE_TOT
AL

Error The computed total is less than zero

printReport
E_BUSY Warning Cannot perform while output is in progress.

E_ILLEGAL Error

One of the following errors occurred:
• The reportType parameter is invalid, or
• One or both of startNum and endNum are
invalid, or
• startNum > endNum

EFPTR_WRONG_STATE Error The Fiscal Printer's current state does not
allow this state transition

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

printXReport
E_ILLEGAL Error The Fiscal Printer does not support X reports

EFPTR_WRONG_STATE Error The Fiscal Printer’s current state does not
allow this state transition

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper.
EFPTR_REC_EMPTY Error The receipt station is out of paper

printZReport

EFPTR_WRONG_STATE Error The Fiscal Printer’s current state does not
allow this state transition

EFPTR_COVER_OPEN Error The Fiscal Printer cover is open
EFPTR_JRN_EMPTY Error The journal station is out of paper
EFPTR_REC_EMPTY Error The receipt station is out of paper

setCurrency

E_ILLEGAL Error

One of the following errors occurred:
• The Fiscal Printer does not support this
method, or
• The Fiscal Printer has already begun the
fiscal day, or
• the specified newCurrency value is not
valid.

setDate

E_ILLEGAL Warning The Fiscal Printer has already begun the
fiscal day

EFPTR_BAD_DATE Error One of the entries of the date parameters is
invalid.
1882 Unified POS, v1.16.1

setHeaderLine

E_ILLEGAL Error

One of the following errors occurred:
• The Fiscal Printer does not support setting
header lines, or
• The Fiscal Printer has already begun the
fiscal day, or
• the lineNumber parameter was invalid

EFPTR_BAD_ITEM_DES
CRIPTION

Error The text parameter is too long or contains a
reserved word.

setPOSID

E_ILLEGAL Error

One of the following errors occurred:
• The Fiscal Printer does not support setting
the POS Identifier, or
• The printer has already begun the fiscal day,
or
• Either the POSID or cashierID parameter
is invalid.

setStoreFiscalID

E_ILLEGAL Error

One of the following errors occurred:
• The Fiscal Printer does not support setting
the store fiscal identifier, or
• The Fiscal Printer has already begun the
fiscal day, or
• The ID parameter was invalid.

setTrailerLine

E_ILLEGAL Error

One of the following errors occurred:
• The Fiscal Printer does not support setting
the receipt trailer lines, or
• The Fiscal Printer has already begun the
fiscal day, or
• the lineNumber parameter was invalid.

EFPTR_BAD_ITEM_DES
CRIPTION

Error The text parameter is too long or contains a
reserved word.

setVatTable

E_ILLEGAL Error

One of the following errors occurred:
• The Fiscal Printer does not support VAT
tables or their setting, or
• The Fiscal Printer has already begun the
fiscal day

setVatValue

E_ILLEGAL Error

One of the following errors occurred:
• The Fiscal Printer does not support VAT
tables, or
• The Fiscal Printer has already begun the
fiscal day, or
• The Fiscal Printer does not support
changing an existing VAT value

verifyItem
Unified POS, v1.16.1 1883

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

E_ILLEGAL Error The Fiscal Printer does not support VAT
tables

EFPTR_WRONG_STATE Error The Fiscal Printer is not currently in the Item
List state.

EFPTR_BAD_ITEM_DES
CRIPTION

Error The item name is too long or contains a
reserved word.

EFPTR_BAD_VAT Error The VAT parameter is invalid.

Value Severity Meaning
FPTR_SUE_COVER_OPEN Error Fiscal Printer cover is open
FPTR_SUE_COVER_OK Information Fiscal Printer cover is closed
FPTR_SUE_JRN_EMPTY Error No journal paper.
FPTR_SUE_JRN_NEAREMPTY Warning Journal paper is low
FPTR_SUE_JRN_PAPEROK Information Journal paper is ready
FPTR_SUE_REC_EMPTY Error No receipt paper
FPTR_SUE_REC_NEAREMPTY Warning Receipt paper is low
FPTR_SUE_REC_PAPEROK Information Receipt paper is ready

FPTR_SUE_SLP_EMPTY Warning
No slip form is inserted, and no slip form has
been detected at the entrance to the slip station.

FPTR_SUE_SLP_NEAREMPTY Warning Almost at the bottom of the slip form
FPTR_SUE_SLP_PAPEROK Information Slip form is inserted

FPTR_SUE_IDLE Information
All asynchronous output has finished, either
successfully or because output has been
cleared.

FPTR_SUE_JRN_COVER_OPEN Error Journal station cover is open
FPTR_SUE_JRN_COVER_OK Information Journal station cover is closed.
FPTR_SUE_REC_COVER_OPEN Error Receipt station cover is open.
FPTR_SUE_REC_COVER_OK Information Receipt station cover is closed.
FPTR_SUE_SLP_COVER_OPEN Error Slip station cover is open.
FPTR_SUE_SLP_COVER_OK Information Slip station cover is closed
1884 Unified POS, v1.16.1

D.11.15 Gate

Gate Example

<?xml version="1.0" encoding="UTF-8"?>
<Gate xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/Gate/ GateV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/Gate/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>12341234</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="Gate">Front Gate</SensorID>

</ARTSHeader>
<GateBody>

<OpenGate/>
</GateBody>

</Gate>

Gate Domain

Figure D.67: Gate Domain View
Unified POS, v1.16.1 1885

Gate Properties

Figure D.68: Gate Properties Domain View

Gate Methods

Figure D.69: Gate Methods Domain View
1886 Unified POS, v1.16.1

Gate Events

Figure D.70: Gate Events Domain View
Unified POS, v1.16.1 1887

Device Error Codes to Message Severity Codes

This device only has common errors as defined in “Device Error Codes and Message Severity Codes”
on page 1792.

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

D.11.16 Hard Totals

Hard Totals Example
 write(1, data, 100, 256)
<?xml version="1.0" encoding="UTF-8"?>
<HardTotals xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/HardTotals/ HardTotalsV1.14.1.xsd" xmlns="http://
www.omg.org/UnifiedPOS/HardTotals/" MajorVersion="1" MinorVersion="14"
FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1234235423452345</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="HardTotals">HT1</SensorID>

</ARTSHeader>
<HardTotalsBody>

<Write>
<HTotalsFile>1</HTotalsFile>
<Data>\u005b\u0029\u003e\u001e\u0030\u0000\u001d

 \u0030\u0030\u0030\u0031\u001d\u0032
 \u001d\u0033\u001d\u0031\u0032\u0033
 </Data>

<Offset>100</Offset>
<Count>256</Count>

</Write>
</HardTotalsBody>

</HardTotals>

Method Value Severity Meaning

N/A

Value Severity Meaning
1888 Unified POS, v1.16.1

Hard Totals Domain

Figure D.71: Hard Totals Domain View

Hard Totals Properties

Figure D.72: Hard Totals Properties Domain View
Unified POS, v1.16.1 1889

Hard Totals Methods

Figure D.73: Hard Totals Methods Domain View
1890 Unified POS, v1.16.1

Hard Totals Events

Figure D.74: Hard Totals Events Domain View
Unified POS, v1.16.1 1891

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Method Value Severity Meaning
beginTrans

E_ILLEGAL Error Transactions are not supported by this
device.

claim
E_ILLEGAL Error An invalid timeout parameter was specified.

E_TIMEOUT Warning

Another application has exclusive access to
the device or one or more of its files and did
not relinquish control before timeout
milliseconds expired.

claimFile

E_ILLEGAL Error The handle is invalid, or an invalid timeout
parameter was specified.

E_TIMEOUT Warning

The timeout value expired before another
application released exclusive access of
either the requested totals file or the entire
totals area.

commitTrans

E_ILLEGAL Error Transactions are not supported by this
device, or no transaction is in progress.

create

E_CLAIMED Warning Cannot create because the entire totals file
area is claimed by another application.

E_ILLEGAL Error The fileName is too long or contains invalid
characters

E_EXISTS Error fileName already exists.

ETOT_NOROOM Error There is insufficient room in the totals area
to create the file.

delete

E_CLAIMED Warning
Cannot delete because either the totals file
or the entire totals area is claimed by another
application.

E_ILLEGAL Error The fileName is too long or contains invalid
characters.

E_NOEXIST Error fileName was not found.
find

E_CLAIMED Warning Cannot find because the entire totals file
area is claimed by another application.

E_ILLEGAL Error The fileName contains invalid characters.
E_NOEXIST Error fileName was not found.

findByIndex
1892 Unified POS, v1.16.1

E_CLAIMED Warning Cannot find because the entire totals file
area is claimed by another application.

E_ILLEGAL Error The index is greater than the largest file
index that is currently defined

read

E_CLAIMED Warning
Cannot read because either the totals file or
the entire totals area is claimed by another
application.

E_ILLEGAL Error
The handle is invalid, part of the data range
is outside the bounds of the totals file, or
data array length is less than count

ETOT_VALIDATION Error A validation error has occurred while
reading data.

recalculateValidationData

E_CLAIMED Warning
Cannot recalculate because either the totals
file or the entire totals area is claimed by
another application.

E_ILLEGAL Error
The handle is invalid, or advanced error
detection is either not supported by the
Service or by this file

release

E_ILLEGAL Warning The application does not have exclusive
access to the device.

releaseFile

E_ILLEGAL Error The handle is invalid, or the specified file is
not claimed by this application.

rename

E_CLAIMED Error
Cannot rename because either the totals file
or the entire totals area is claimed by another
application.

E_ILLEGAL Error
The handle is invalid, the fileName contains
invalid characters, or the CapSingleFile
property is true.

E_EXISTS Error fileName already exists.
rollback

E_ILLEGAL Error Transactions are not supported by this
device, or no transaction is in progress.

setAll

E_CLAIMED Warning
Cannot set because either the totals file or
the entire totals area is claimed by another
application.

E_ILLEGAL Error The handle is invalid.
validateData

E_CLAIMED Warning
Cannot validate because either the totals file
or the entire totals area is claimed by another
application.
Unified POS, v1.16.1 1893

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

E_ILLEGAL Error
The handle is invalid, or advanced error
detection is either not supported by the
Service or by this file.

write

E_CLAIMED Warning
Cannot write because either the totals file or
the entire totals area is claimed by another
application.

E_ILLEGAL Error
The handle is invalid, or part of or all of the
data range is outside the bounds of the totals
file.

ETOT_NOROOM Error
Cannot write because a transaction is in
progress, and there is not enough free space
to prepare for the transaction commit.

ETOT_VALIDATION Error A validation error has occurred while
reading data.

Value Severity Meaning

N/A
1894 Unified POS, v1.16.1

D.11.17 Image Scanner

Image Scanner Example

 set ImageMode to IMG_STILL_ONLY

<?xml version="1.0" encoding="UTF-8"?>
<ImageScanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/ImageScanner/
ImageScannerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/ImageScanner/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish" ActionCode="Update">
<MessageID>asdfasfsdf</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="ImageScanner">IS1</SensorID>

</ARTSHeader>
<ImageScannerBody>

<SetProperty>
<ImageMode>IMG_STILL_ONLY</ImageMode>

</SetProperty>
</ImageScannerBody>

</ImageScanner>

 set DeviceEnabled to true

<?xml version="1.0" encoding="UTF-8"?>
<ImageScanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/ImageScanner/
ImageScannerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/ImageScanner/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish" ActionCode="Update">
<MessageID>sdhgdfg</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="ImageScanner">IS1</SensorID>

</ARTSHeader>
<ImageScannerBody>

<SetProperty>
<DeviceEnabled>false</DeviceEnabled>

</SetProperty>
</ImageScannerBody>

</ImageScanner>

(acquire image)

 fire DataEvent

<?xml version="1.0" encoding="UTF-8"?>
<ImageScannerEvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/ImageScannerEvents/
ImageScannerEventV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/
ImageScannerEvents/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<DataEvent>
<SequenceNumber>4294967295</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS="ImageScanner">IS1</SensorID>
Unified POS, v1.16.1 1895

<Status>0</Status>
</DataEvent>

</ImageScannerEvent>

Application services event

Request:

<?xml version="1.0" encoding="UTF-8"?>
<ImageScanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/ImageScanner/
ImageScannerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/ImageScanner/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request" ActionCode="Read">
<MessageID>1</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="ImageScanner">IS1</SensorID>

</ARTSHeader>
<ImageScannerBody>

<GetProperty>
<FrameData xsi:nil="true"/>
<FrameType xsi:nil="true"/>
<ImageHeight xsi:nil="true"/>
<ImageType xsi:nil="true"/>
<ImageWidth xsi:nil="true"/>

</GetProperty>
</ImageScannerBody>

</ImageScanner>
1896 Unified POS, v1.16.1

Image Scanner Domain

Figure D.75: Image Scanner Domain View

Image Scanner Properties

Figure D.76: Image Scanner Properties Domain View
Unified POS, v1.16.1 1897

Image Scanner Methods

Figure D.77: Image Scanner Methods Domain View

Image Scanner Events

Figure D.78: Image Scanner Events Domain View
1898 Unified POS, v1.16.1

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

Method Value Severity Meaning
startSession

E_ILLEGAL Error

An attempt was made to call
the startSession method when
the CapHostTriggered
property is false.

stopSession

E_ILLEGAL Error

An attempt was made to call
the stopSession method when
the CapHostTriggered
property is false.

Value Severity Meaning

N/A
Unified POS, v1.16.1 1899

D.11.18 Item Dispenser

Item Dispenser Example

<?xml version="1.0" encoding="UTF-8"?>
<ItemDispenser xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/ItemDispenser/
ItemDispenserV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/ItemDispenser/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID/>
<DateTime TypeCode="Message">2001-12-17T09:30:47.0Z
</DateTime>
<SensorID UnifiedPOS="ItemDispenser">100</SensorID>

</ARTSHeader>
<ItemDispenserBody>

<DispenseItem>
<NumItem>4</NumItem>
<SlotNumber>2</SlotNumber>
</DispenseItem>

</ItemDispenserBody>
</ItemDispenser>

Item Dispenser Domain

Figure D.79: Item Dispenser Domain View
1900 Unified POS, v1.16.1

Item Dispenser Properties

Figure D.80: Item Dispenser Properties Domain View

Item Dispenser Methods

Figure D.81: Item Dispenser Methods Domain View
Unified POS, v1.16.1 1901

Item Dispenser Events

Figure D.82: Item Dispenser Events Domain View
1902 Unified POS, v1.16.1

Device Error Codes to Message Severity Codes

This device only has common errors as defined in “Device Error Codes and Message Severity Codes”
on page 1792.

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

Method Value Severity Meaning

N/A

Value Severity Meaning
Unified POS, v1.16.1 1903

D.11.19 Keylock

Keylock Example

 waitForKeylockChange(LOCK_KP_LOCK, 30000)

<?xml version="1.0" encoding="UTF-8"?>
<Keylock xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/Keylock/ KeylockV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/Keylock/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1241234</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="Keylock">1</SensorID>

</ARTSHeader>
<KeylockBody>

<WaitForKeylockChange>
<KeyPosition>LOCK_KP_LOCK</KeyPosition>
<Timeout>30000</Timeout>
</WaitForKeylockChange>

</KeylockBody>
</Keylock>

Keylock Domain

Figure D.83: Keylock Domain View
1904 Unified POS, v1.16.1

Keylock Properties

Figure D.84: Keylock Properties Domain View

Keylock Methods

Figure D.85: Keylock Methods Domain View

Keylock Events

Figure D.86: Keylock Events Domain View
Unified POS, v1.16.1 1905

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

Method Value Severity Meaning
waitForKeylockChange

E_ILLEGAL Error
An invalid parameter value was
specified.

E_TIMEOUT Warning
The timeout period expired
before the requested keylock
positioning occurred.

Value Severity Meaning
LOCK_KP_ELECTRONIC Information Electronic Keylock value.

LOCK_KP_LOCK Information
Keylock is in the “locked”
position.

LOCK_KP_NORM Information
Keylock is in the “normal”
position

LOCK_KP_SUPR Information
Keylock is in the “supervisor”
position.
1906 Unified POS, v1.16.1

D.11.20 Lights

Lights Example

<?xml version="1.0" encoding="UTF-8"?>
<Lights xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/Lights/ LightsV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/Lights/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request">
<DateTime TypeCode="Message">2001-12-17T09:30:47.0Z
</DateTime>
<SensorID UnifiedPOS="Light">Front Door</SensorID>

</ARTSHeader>
<LightsBody>

<SwitchOn>
<LightNumber>10</LightNumber>
<BlinkOnCycle>1</BlinkOnCycle>
<BlinkOffCycle>1</BlinkOffCycle>
<Color>LGT_COLOR_PRIMARY</Color>
<Alarm>0</Alarm>

</SwitchOn>
</LightsBody>

</Lights>

Lights Domain

Figure D.87: Lights Domain View
Unified POS, v1.16.1 1907

Lights Properties

Figure D.88: Lights Properties Domain View

Lights Methods

Figure D.89: Lights Methods Domain View

Lights Events

Figure D.90: Lights Events Domain View
1908 Unified POS, v1.16.1

Device Error Codes to Message Severity Codes

This device only has common errors as defined in “Device Error Codes and Message Severity Codes”
on page 1792.

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

Method Value Severity Meaning

N/A

Value Severity Meaning
Unified POS, v1.16.1 1909

D.11.21 Line Display

Line Display Example

 displayText(“Hello, World”, DISP_DP_NORMAL)

<?xml version="1.0" encoding="UTF-8"?>
<LineDisplay xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/LineDisplay/
LineDisplayV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/LineDisplay/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>asdf1234asfd</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="LineDisplay">1</SensorID>

</ARTSHeader>
<LineDisplayBody>

<DisplayText>
<Data>Hello World</Data>
<Attribute>DISP_DT_NORMAL</Attribute>

</DisplayText>
</LineDisplayBody>

</LineDisplay>

Line Display Domain

Figure D.91: Line Display Domain View
1910 Unified POS, v1.16.1

Line Display Properties

Figure D.92: Line Display Properties Domain View

Line Display Methods

Figure D.93: Line Display Methods Domain View
Unified POS, v1.16.1 1911

Line Display Events

Figure D.94: Line Display Events Domain View
1912 Unified POS, v1.16.1

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Method Value Severity Meaning
clearDescriptors

E_ILLEGAL Error The device does not support descriptors.
clearText

E_ILLEGAL Error In Marquee On Mode
createWindow

E_ILLEGAL Error
One or more parameters are out of their
valid ranges, or all available windows
are already in use.

defineGlyph

E_ILLEGAL Error
CapCustomGlyph is false, or
glyphCode is an unsupported character
code for glyph definition.

destroyWindow

E_ILLEGAL Error The current window is 0. This window
may not be destroyed.

displayBitmap

E_ILLEGAL Error

One of the following errors occurred:
• The LineDisplay does not support
bitmap display.
• The width parameter is invalid or too
big.
• The alignmentX / alignmentY
parameter is invalid or too big.
• The window is not in Immediate
Mode.
• The window size does not match its
viewport size.
• The bitmap is too large to display at
the requested location.

E_NOEXIST Error The fileName was not found.

EDISP_TOO
BIG

Error
The bitmap is either too wide to display
without transformation, or it is too big
to transform.

EDISP_BAD
FORMAT

Error The specified file is either not a bitmap
file or it is an unsupported format.

displayText

E_ILLEGAL Error attribute is illegal, or the display is in
Marquee On Mode.

displayTextAt

E_ILLEGAL Error row or column are out or range, attribute
is illegal, or in Marquee On Mode.
Unified POS, v1.16.1 1913

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

readCharacterAtCursor
E_ILLEGAL Error CapReadBack is DISP_CRB_NONE.

refreshWindow

E_ILLEGAL Error
window is larger than DeviceWindows
or has not been created, or in Marquee
On Mode.

scrollText

E_ILLEGAL Error direction is illegal, or in Teletype Mode
or Marquee Mode.

setBitmap

E_ILLEGAL Error

One of the following errors occurred:
• The bitmapNumber parameter is
invalid.
• The LineDisplay does not support
bitmap display.
• The width parameter is invalid or too
big.
• The alignmentX or alignmentY
parameter is invalid or too big.

E_NOEXIST Error The fileName was not found.

EDISP_TOO
BIG

Error
The bitmap is either too wide to display
without transformation, or it is too big
to transform.

EDISP_BAD
FORMAT

Error The specified file is either not a bitmap
file or it is an unsupported format.

setDescriptor

E_ILLEGAL Error
The device does not support descriptors,
or one of the parameters contained an
illegal value.

Value Severity Meaning

N/A
1914 Unified POS, v1.16.1

D.11.22 MICR

MICR Example
beginInsertion

<?xml version="1.0" encoding="UTF-8"?>
<MICR xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/MICR/ MICRV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/MICR/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1243234</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="MICR">1</SensorID>

</ARTSHeader>
<MICRBody>

<BeginInsertion>
<Timeout>100</Timeout>

</BeginInsertion>
</MICRBody>

</MICR>

endInsertion

<?xml version="1.0" encoding="UTF-8"?>
<MICR xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/MICR/ MICRV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/MICR/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>986968</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="MICR">1</SensorID>

</ARTSHeader>
<MICRBody>

<EndInsertion/>
</MICRBody>

</MICR>

fire DataEvent

<?xml version="1.0" encoding="UTF-8"?>
<MICREvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http:/

/www.omg.org/UnifiedPOS/MICREvents/ MICREventV1.14.1.xsd" xmlns="http://
www.omg.org/UnifiedPOS/MICREvents/" MajorVersion="1" MinorVersion="14"
FixVersion="1">

<DataEvent>
<SequenceNumber>4294967295</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS="MICR">1</SensorID>
<Status>0</Status>

</DataEvent>
</MICREvent>
Unified POS, v1.16.1 1915

beginRemoval

<?xml version="1.0" encoding="UTF-8"?>
<MICR xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/MICR/ MICRV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/MICR/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>asdfsdf</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="MICR">1</SensorID>

</ARTSHeader>
<MICRBody>

<BeginRemoval>
<Timeout>0</Timeout>

</BeginRemoval>
</MICRBody>

</MICR>

endRemoval

<?xml version="1.0" encoding="UTF-8"?>
<MICR xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/MICR/ MICRV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/MICR/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>asdfqwrasfd</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="MICR">1</SensorID>

</ARTSHeader>
<MICRBody>

<EndRemoval/>
</MICRBody>

</MICR>
1916 Unified POS, v1.16.1

MICR Domain

Figure D.95: MICR Domain View

MICR Properties

Figure D.96: MICR Properties Domain View
Unified POS, v1.16.1 1917

MICR Methods

Figure D.97: MICR Methods Domain View

MICR Events

Figure D.98: MICR Events Domain View
1918 Unified POS, v1.16.1

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard
Status Codes to Severity Codes” on page 1795.

Device Specific Status Messages

Method Value Severity Meaning
beginInsertion

E_BUSY Warning
If the MICR is a combination
device, the peer device may be
busy

E_ILLEGAL Error
An invalid timeout parameter
was specified.

E_TIMEOUT Warning
The specified time has elapsed
without the check being properly
inserted.

beginRemoval

E_BUSY Warning
If the MICR is a combination
device, the peer device may be
busy.

E_ILLEGAL Error
An invalid timeout parameter
was specified.

E_TIMEOUT Warning
The specified time has elapsed
without the check being properly
removed.

endInsertion

E_ILLEGAL Error
The device is not in check
insertion mode.

EMICR_NOCHECK Warning
The device was taken out of
insertion mode without a check
being inserted.

endRemoval

E_ILLEGAL Error
The device is not in check
removal mode.

EMICR_CHECK Warning
The device was taken out of
removal mode while a check is
still present.

Value Severity Meaning

N/A
Unified POS, v1.16.1 1919

D.11.23 Motion Sensor

Motion Sensor Example

waitForMotion(30000)

<?xml version="1.0" encoding="UTF-8"?>
<MotionSensor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/MotionSensor/
MotionSensorV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/MotionSensor/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>12431234</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="MotionSensor">MS1</SensorID>

</ARTSHeader>
<MotionSensorBody>

<WaitForMotion>
<Timeout>30000</Timeout>
</WaitForMotion>

</MotionSensorBody>
</MotionSensor>

Motion Sensor Domain

Figure D.99: Motion Sensor Domain View
1920 Unified POS, v1.16.1

Motion Sensor Properties

Figure D.100: Motion Sensor Properties Domain View

Motion Sensor Methods

Figure D.101: Motion Sensor Methods Domain View

Motion Sensor Events

Figure D.102: Motion Sensor Events Domain View
Unified POS, v1.16.1 1921

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

Method Value Severity Meaning
waitForMotion

E_TIMEOUT Warning The timeout period expired
before motion was detected.

Value Severity Meaning

MOTION_M_PRESENT Information Motion Sensor has detected
someone is present.

MOTION_M_ABSENT Information

Motion Sensor has detected no
one has been present for the
number of milliseconds
specified in Timeout.
1922 Unified POS, v1.16.1

D.11.24 MSR

MSR Example

fire DataEvent

<?xml version="1.0" encoding="UTF-8"?>
<MSREvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/MSREvents/ MSREventV1.14.1.xsd" xmlns="http://
www.omg.org/UnifiedPOS/MSREvents/" MajorVersion="1" MinorVersion="14"
FixVersion="1">

<DataEvent>
<SequenceNumber>4294967295</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS="MagneticStripeReader">MSR1
</SensorID>
<Status>0</Status>

</DataEvent>
</MSREvent>

get Track1Data

<?xml version="1.0" encoding="UTF-8"?>
<MSR xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/MSR/ MSRV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/MSR/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request" ActionCode="Read">
<MessageID>123123123</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="MagneticStripeReader">MSR1
</SensorID>

</ARTSHeader>
<MSRBody>

<GetProperty>
<Track1Data>\u005b\u0029\u003e\u001e\u0030\u0000\u001d\u0030

\u0030\u0030\u0031\u001d\u0032\u001d\u0033\u001d\u0031\u0032\u0033
</Track1Data>

</GetProperty>
</MSRBody>

</MSR>
Unified POS, v1.16.1 1923

MSR Domain

Figure D.103: MSR Domain View
1924 Unified POS, v1.16.1

MSR Properties

Figure D.104: MSR Properties Domain View

MSR Methods

Figure D.105: MSR Methods Domain View
Unified POS, v1.16.1 1925

MSR Events

Figure D.106: MSR Events Domain View
1926 Unified POS, v1.16.1

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

Method Value Severity Meaning
writeTracks

E_ILLEGAL Error

The data to be written exceeds
the EncodingMaxLength
property for the selected
TracksToWrite, or
CapWritableTracks is set to
MSR_TR_NONE.

E_FAILURE Error

A card was swiped within the
allotted timeout, but that card
or track specified by
TracksToWrite is not writable

E_TIMEOUT Warning A card was not swiped within
the allotted timeout period

Value Severity Meaning

N/A
Unified POS, v1.16.1 1927

D.11.25 PIN Pad

PIN Pad Example

 beginEFTTransaction

<?xml version="1.0" encoding="UTF-8"?>
<PINPad xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/PINPad/ PINPadV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/PINPad/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1234</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="PINPad">PP1</SensorID>

</ARTSHeader>
<PINPadBody>

<BeginEFTTransaction>
<PINPadSystem>M/S</PINPadSystem>
<TransactionHost>0</TransactionHost>

</BeginEFTTransaction>
</PINPadBody>

</PINPad>

enablePINEntry

<?xml version="1.0" encoding="UTF-8"?>
<PINPad xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/PINPad/ PINPadV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/PINPad/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1235</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="PINPad">PP1</SensorID>

</ARTSHeader>
<PINPadBody>

<EnablePINEntry/>
</PINPadBody>

</PINPad>

 fire DataEvent

<?xml version=”1.0” encoding=”UTF-8”?>
<PINPadEvent xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=”http://www.omg.org/UnifiedPOS/PINPadEvents/ ../
PINPadEventV1.14.1.xsd” xmlns=”http://www.omg.org/UnifiedPOS/PINPadEvents/”
MajorVersion="1" MinorVersion="14" FixVersion="1"”>

<DataEvent>
<SequenceNumber>1236</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS=”PINPad”>PP1</SensorID>
<Status>PPAD_SUCCESS</Status>

</DataEvent>
</PINPadEvent>

 computeMAC(in, out)

<?xml version="1.0" encoding="UTF-8"?>
1928 Unified POS, v1.16.1

<PINPad xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://
www.omg.org/UnifiedPOS/PINPad/ PINPadV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/PINPad/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1237</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="PINPad">PP1</SensorID>

</ARTSHeader>
<PINPadBody>

<ComputeMAC>
<InMsg>in</InMsg>
<OutMsg>\u005b\u0029\u003e\u001e\u0030\u0000\u001d\u0030\u0030

\u0030\u0031\u001d\u0032\u001d\u0033\u001d\u0031\u0032\u0033
</OutMsg>

</ComputeMAC>
</PINPadBody>

</PINPad>

 verifyMAC(message)
<?xml version="1.0" encoding="UTF-8"?>
<PINPad xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/PINPad/ PINPadV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/PINPad/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1238</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="PINPad">PP1</SensorID>

</ARTSHeader>
<PINPadBody>

<VerifyMAC>
<Message>message</Message>

</VerifyMAC>
</PINPadBody>

</PINPad>

endEFTTransaction(PPA_EFT_NORMAL)

<?xml version="1.0" encoding="UTF-8"?>
<PINPad xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/PINPad/ PINPadV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/PINPad/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1239</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="PINPad">PP1</SensorID>

</ARTSHeader>
<PINPadBody>

<EndEFTTransaction>
<CompletionCode>PPAD_EFT_NORMAL
</CompletionCode>

</EndEFTTransaction>
</PINPadBody>

</PINPad>
Unified POS, v1.16.1 1929

PIN Pad Domain

Figure D.107: PIN Pad Domain View

PIN Pad Properties

Figure D.108: PIN Pad Properties Domain View
1930 Unified POS, v1.16.1

PIN Pad Methods

Figure D.109: PIN Pad Methods Domain View

PIN Pad Events

Figure D.110: PIN Pad Events Domain View
Unified POS, v1.16.1 1931

Device Error Codes to Message Severity Codes
This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

Method Value Severity Meaning
beginEFTTransaction

E_ILLEGAL Error

The requested PIN Pad Management
System is not supported by the Control,
or the requested EFT Transaction Host
is an illegal value for the selected PIN
Pad Management System.

E_BUSY Warning The PIN Pad is already performing an
EFT transaction.

computeMAC

E_DISABLED Warning A beginEFTTransaction method has not
been performed

E_BUSY Warning
PINEntryEnabled is true. The PIN Pad
cannot perform a MAC calculation
during PIN Entry.

enablePINEntry

E_DISABLED Warning A beginEFTTransaction method has not
been performed.

updateKey

E_ILLEGAL Error

One of the following conditions
occurred.
* The selected PIN Pad Management
System does not support this function.
* The keyNum specifies an
unacceptable key number.
* The key contains a bad key (not Hex-
ASCII or wrong length or bad parity).

verifyMAC

E_BUSY Warning
PINEntryEnabled is true. The PIN Pad
cannot perform a MAC verification
during PIN Entry

E_DISABLED Warning A beginEFTTransaction method has not
been performed.

E_FAILURE Error The Service failed to verify the MAC
value in message.

Value Severity Meaning

N/A
1932 Unified POS, v1.16.1

D.11.26 Point Card Reader/Writer

Point Card Reader Example

beginInsertion

<?xml version="1.0" encoding="UTF-8"?>
<PointCardRW xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/PointCardRW/
PointCardRWV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/PointCardRW/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="PointcardReaderWriter">PCR1
</SensorID>

</ARTSHeader>
<PointCardRWBody>

<BeginInsertion>
<Timeout>30000</Timeout>

</BeginInsertion>
</PointCardRWBody>

</PointCardRW>

endInsertion

<?xml version="1.0" encoding="UTF-8"?>
<PointCardRW xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/PointCardRW/
PointCardRWV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/PointCardRW/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>2</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="PointcardReaderWriter">PCR1
</SensorID>

</ARTSHeader>
<PointCardRWBody>

<EndInsertion/>
</PointCardRWBody>

</PointCardRW>

set DataEventEnabled to true

<?xml version="1.0" encoding="UTF-8"?>
<PointCardRW xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/PointCardRW/
PointCardRWV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/PointCardRW/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request" ActionCode="Begin">
<MessageID Name="String" 

 Timestamp="2001-12-17T09:30:47.0Z">12341234
</MessageID>
<DateTime TypeCode="Message">2001-12-17T09:30:47.0Z
</DateTime>
<SensorID UnifiedPOS="PointcardReaderWriter">PCR1
</SensorID>

</ARTSHeader>
Unified POS, v1.16.1 1933

<PointCardRWBody>
<SetProperty>

<DataEventEnabled>true</DataEventEnabled>
</SetProperty>

</PointCardRWBody>
</PointCardRW>

fire DataEvent

<?xml version="1.0" encoding="UTF-8"?>
<PointCardRWEvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/PoinCardEvents/
PointCardRWEventV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/PoinCardEvents/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<DataEvent>
<SequenceNumber>4</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS="PointcardReaderWriter">PCR1
</SensorID>
<Status>0</Status>

</DataEvent>
</PointCardRWEvent>

printWrite(1, 0, 0, “1000 points”)

<?xml version="1.0" encoding="UTF-8"?>
<PointCardRW xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/PointCardRW/
PointCardRWV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/PointCardRW/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>5</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="PointcardReaderWriter">PCR1
</SensorID>

</ARTSHeader>
<PointCardRWBody>

<PrintWrite>
<Kind>Print</Kind>
<HPosition>0</HPosition>
<VPosition>0</VPosition>
<Data>1000 points</Data>

</PrintWrite>
</PointCardRWBody>

</PointCardRW>
1934 Unified POS, v1.16.1

Point Card Reader Domain

Figure D.111: Point Card RW Domain View
Unified POS, v1.16.1 1935

Point Card Reader Properties

Figure D.112: Point Card RW Properties Domain View

Point Card Reader Methods

Figure D.113: Point Card RW Methods Domain View
1936 Unified POS, v1.16.1

Point Card Reader Events

Figure D.114: Point Card RW Events Domain View
Unified POS, v1.16.1 1937

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Method Value Severity Meaning
beginInsertion

E_BUSY Warning
This operation cannot be performed
because asynchronous output is in
progress.

E_ILLEGAL Error
The Point Card Reader Writer does
not exist or an invalid timeout
parameter was specified.

E_TIMEOUT Warning
The specified time has elapsed
without the point card being properly
inserted.

beginRemoval

E_BUSY Warning
This operation cannot be performed
because asynchronous output is in
progress.

E_ILLEGAL Error
The Point Card Reader Writer does
not exist or an invalid timeout
parameter was specified.

E_TIMEOUT Warning
The specified time has elapsed
without the point card being properly
inserted.

cleanCard

E_ILLEGAL Error The Point Card Reader Writer does
not exist or CapCleanCard is false.

clearPrintWrite

E_BUSY Warning
This operation cannot be performed
because asynchronous output is in
progress.

endInsertion

E_ILLEGAL Warning The Point Card Reader Writer is not
in point card insertion mode.

E_FAILURE Warning A card is not inserted in the Point
Card Reader Writer.

endRemoval

E_ILLEGAL Error The Point Card Reader Writer is not
in point card removal mode.

E_FAILURE Warning There is a card in the Point Card
Reader Writer.

printWrite

E_ILLEGAL Warning There is no card in the Point Card
Reader Writer.

rotatePrint
1938 Unified POS, v1.16.1

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

E_BUSY Warning
This operation cannot be performed
because asynchronous output is in
progress.

E_ILLEGAL Error The Point Card Reader Writer does
not support the specified rotation.

validateData

E_ILLEGAL Warning
Some of the data is not precisely
supported by the device, but the
Control can select valid alternatives.

E_FAILURE Error Some of the data is not supported. No
alternatives can be selected.

E_EXTENDED
EPCRW_READ Error There was a read error
EPCRW_WRITE Error There was a write error
EPCRW_JAM Error There was a card jam
EPCRW_MOTOR Error There was a conveyance motor error

EPCRW_COVER Error The conveyance motor cover was
open

EPCRW_PRINTER Error The printer has an error

EPCRW_RELEASE Warning There is a card remaining in the
entrance

EPCRW_DISPLAY Error There was a display indicator error
EPCRW_NOCARD Warning There is no card in the reader

Value Severity Meaning

PCRW_SUE_NOCARD Warning
No card or card sensor position
indeterminate

PCRW_SUE_REMAINING Warning Card remaining in the entrance
PCRW_SUE_INRW Warning There is a card in the device
Unified POS, v1.16.1 1939

D.11.27 POS Keyboard

POS Keyboard Example

 fire DataEvent

<?xml version="1.0" encoding="UTF-8"?>
<POSKeyboardEvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/POSKeyboardEvents/
POSKeyboardEventV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/
POSKeyboardEvents/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<DataEvent>
<SequenceNumber>4294967295</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS="POSKeyboard">KBD1</SensorID>
<Status>0</Status>

</DataEvent>
</POSKeyboardEvent>

POS Keyboard Domain

Figure D.115: POS Keyboard Domain View
1940 Unified POS, v1.16.1

POS Keyboard Properties

Figure D.116: POS Keyboard Properties Domain View

POS Keyboard Methods

Figure D.117: POS Keyboard Methods Domain View

POS Keyboard Events

Figure D.118: POS Keyboard Events Domain View
Unified POS, v1.16.1 1941

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

Method Value Severity Meaning

N/A

Value Severity Meaning
N/A
1942 Unified POS, v1.16.1

D.11.28 POS Power

POS Power Example

 set PowerNotify to true

<?xml version="1.0" encoding="UTF-8"?>
<POSPower xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/POSPower/ POSPowerV1.14.1.xsd" xmlns="http://
www.omg.org/UnifiedPOS/POSPower/" MajorVersion="1" MinorVersion="14"
FixVersion="1">

<ARTSHeader MessageType="Request" ActionCode="Begin">
<MessageID>1234</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="POSPower">Power1</SensorID>

</ARTSHeader>
<POSPowerBody>

<SetProperty>
<PowerNotify>PN_ENABLED</PowerNotify>

</SetProperty>
</POSPowerBody>

</POSPower>

 fire StatusUpdateEvent (power low)

<?xml version="1.0" encoding="UTF-8"?>
<POSPowerEvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/POSPowerEvents/
POSPowerEventV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/POSPowerEvents/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<StatusUpdateEvent>
<SequenceNumber>4294967295</SequenceNumber>
<EventDateTime TypeCode="Message">2001-12-17T09:30:47.0Z
</EventDateTime>
<SensorID UnifiedPOS="POSPower">Pwr1</SensorID>
<Status>PWR_SUE_UPS_LOW</Status>

</StatusUpdateEvent>
</POSPowerEvent>
Unified POS, v1.16.1 1943

POS Power Domain

Figure D.119: POS Power Domain View

POS Power Properties

Figure D.120: POS Power Properties Domain View
1944 Unified POS, v1.16.1

POS Power Methods

Figure D.121: POS Power Methods Domain View

POS Power Events

Figure D.122: POS Power Events Domain View
Unified POS, v1.16.1 1945

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

Method Value Severity Meaning
restartPOS

E_ILLEGAL Error This method is not supported
shutdownPOS

E_ILLEGAL Error This method is not supported
standbyPOS

E_ILLEGAL Error This method is not supported
suspendPOS

E_ILLEGAL Error This method is not supported

Value Severity Meaning

PWR_SUE_UPS_FULL UPS Information
battery is near full charge. Can be returned if
CapUPSChargeState contains
PWR_UPS_FULL

PWR_SUE_UPS_WARNING Warning
UPS battery is near 50% charge. Can be
returned if CapUPSChargeState contains
PWR_UPS_WARNING

PWR_SUE_UPS_LOW Warning

UPS battery is near empty. Application
shutdown should be started to ensure that it
can be completed before the battery charge
is depleted. A minimum of 2 minutes of
normal system operation can be assumed
when this state is entered unless this is the
first charge state reported upon entering the
“Off” state. Can be returned if
CapUPSChargeState contains
PWR_UPS_LOW.

PWR_SUE_UPS_CRITICAL Warning

UPS is in critical state, and will in short time
be disconnected. Can be returned if
CapUPSChargeState contains
PWR_UPS_CRITICAL

PWR_SUE_FAN_STOPPED Error The CPU fan is stopped. Can be returned if
CapFanAlarm is true.

PWR_SUE_FAN_RUNNING Information The CPU fan is running. Can be returned if
CapFanAlarm is true.

PWR_SUE_TEMPERATURE_HIGH Error The CPU is running on high temperature.
Can be returned if CapHeatAlarm is true.

PWR_SUE_TEMPERATURE_OK Information The CPU is running on normal temperature.
Can be returned if CapHeatAlarm is true.
1946 Unified POS, v1.16.1

PWR_SUE_SHUTDOWN Error The system will shutdown immediately

PWR_SUE_BAT_LOW Warning
The system remaining battery capacity is at
or below the low battery threshold and the
system is operating from the battery

PWR_SUE_BAT_CRITICAL Error
The system remaining battery capacity is at
or below the critically low battery threshold
and the system is operating from the battery.

PWR_SUE_BAT_CAPACITY_REM
AINING Information The BatteryCapacityRemaining property

has been updated
PWR_SUE_RESTART Warning The system will restart immediately.

PWR_SUE_STANDBY Information The system is requesting a transition to the
Standby state

PWR_SUE_USER_STANDBY Information The system is requesting a transition to the
Standby state as a result of user input.

PWR_SUE_SUSPEND Information The system is requesting a transition to the
Suspend state.

PWR_SUE_USER_SUSPEND Information The system is requesting a transition to the
Suspend state as a result of user input

PWR_SUE_PWR_SOURCE Information The PowerSource property has been updated
PWR_SUE_SHUTDOWN Error The system will shutdown immediately

PWR_SUE_BAT_LOW Warning
The system remaining battery capacity is at
or below the low battery threshold and the
system is operating from the battery

PWR_SUE_BAT_CRITICAL Error
The system remaining battery capacity is at
or below the critically low battery threshold
and the system is operating from the battery.

PWR_SUE_BAT_CAPACITY_REM
AINING Information The BatteryCapacityRemaining property

has been updated
PWR_SUE_RESTART Warning The system will restart immediately.

PWR_SUE_STANDBY Information The system is requesting a transition to the
Standby state

PWR_SUE_USER_STANDBY Information The system is requesting a transition to the
Standby state as a result of user input.

PWR_SUE_SUSPEND Information The system is requesting a transition to the
Suspend state.

PWR_SUE_USER_SUSPEND Information The system is requesting a transition to the
Suspend state as a result of user input

PWR_SUE_PWR_SOURCE Information The PowerSource property has been updated
Unified POS, v1.16.1 1947

D.11.29 POS Printer

POS Printer Example
 changePrintSide(PTR_PS_SIDE1)

<?xml version="1.0" encoding="UTF-8"?>
<POSPrinter xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/POSPrinter/ POSPrinterV1.14.1.xsd" xmlns="http://
www.omg.org/UnifiedPOS/POSPrinter/" MajorVersion="1" MinorVersion="14"
FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1234</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="POSPrinter">PTR1</SensorID>

</ARTSHeader>
<POSPrinterBody>

<ChangePrintSide>
<Side>PTR_PS_SIDE1</Side>

</ChangePrintSide>
</POSPrinterBody>

</POSPrinter>

 printNormal(PTR_S_SLIP, “Some String Data”)

<?xml version="1.0" encoding="UTF-8"?>
<POSPrinter xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/POSPrinter/ POSPrinterV1.14.1.xsd" xmlns="http://
www.omg.org/UnifiedPOS/POSPrinter/" MajorVersion="1" MinorVersion="14"
FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>587689</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="POSPrinter">Prt1</SensorID>

</ARTSHeader>
<POSPrinterBody>

<PrintNormal>
<Station>PTR_S_SLIP</Station>
<Data>Some String Data</Data>

</PrintNormal>
</POSPrinterBody>

</POSPrinter>
1948 Unified POS, v1.16.1

POS Printer Domain

Figure D.123: POS Printer Domain View
Unified POS, v1.16.1 1949

POS Printer Properties

Figure D.124: POS Printer Properties Domain View

POS Printer Methods

Figure D.125: POS Printer Methods Domain View
1950 Unified POS, v1.16.1

POS Printer Events

Figure D.126: POS Printer Events Domain View
Unified POS, v1.16.1 1951

Device Error Codes to Message Severity Codes
This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Method Value Severity Meaning
beginInsertion

E_BUSY Warning Cannot perform request while output is
in progress.

E_ILLEGAL Error The slip station does not exist or an
invalid timeout parameter was specified.

E_TIMEOUT Warning The specified time has elapsed without
the form being properly inserted

beginRemoval

E_BUSY Warning Cannot perform request while output is
in progress.

E_ILLEGAL Information
The Fiscal Printer does not have a slip
station or an invalid timeout parameter
was specified.

E_TIMEOUT Warning The specified time has elapsed without
the form being properly removed.

changePrintSide

E_BUSY Warning Cannot perform request while output is
in progress.

E_ILLEGAL Error

One of the following errors occurred:
* The slip station does not exist
* the printer does not support both sides
printing
* an invalid side parameter was specified

EPTR_COVER_OPEN Error The printer cover is open.

EPTR_SLP_EMPTY Warning The slip station was specified, but a form
is not inserted.

EPTR_SLP_CARTRID
GE_EMPTY

Error A slip station cartridge is empty.

EPTR_SLP_CARTRID
GE_REMOVED

Error A slip station cartridge has been
removed.

EPTR_SLP_HEAD_CL
EANING

Warning A slip station head is being cleaned.

cutPaper

E_BUSY Warning Cannot perform request while output is
in progress.

E_ILLEGAL Error

An invalid percentage was specified, the
receipt station does not exist, the receipt
printer does not have paper cutting
ability, or Page Mode for the receipt
station is active.

EPTR_COVER_OPEN Error The printer cover is open.
EPTR_REC_EMPTY Error The receipt station is out of paper.
1952 Unified POS, v1.16.1

endInsertion

E_BUSY Warning Cannot perform request while output is
in progress.

E_ILLEGAL Warning The Fiscal Printer is not in slip insertion
mode.

EPTR_COVER_OPEN Warning The device was taken out of insertion
mode while the Printer cover was open.

EPTR_SLP_EMPTY Warning The device was taken out of insertion
mode without a form being inserted.

endRemoval

E_BUSY Warning Cannot perform request while output is
in progress.

E_ILLEGAL Warning The Printer is not in slip removal mode.

EFPTR_SLP_FORM Warning The device was taken out of removal
mode while a form was still present.

markFeed

E_BUSY Warning Cannot perform request while output is
in progress.

E_ILLEGAL Error
The receipt print station does not support
the given mark sensed paper handling
function.

EPTR_COVER_OPEN Error The printer cover is open.
EPTR_REC_EMPTY Error The receipt paper is empty.

pageModePrint

E_BUSY Warning Cannot perform request while output is
in progress.

E_ILLEGAL Error

The specified PageModeStation does not
exist, or CapxxxPageMode is false, or
the specified
PageModeStation is not in Page Mode
and control is
set to PTR_PM_NORMAL,
PTR_PM_PRINT_SAVE,
or PTR_PM_CANCEL

printBarCode

E_BUSY Warning Cannot perform request while output is
in progress.
Unified POS, v1.16.1 1953

E_ILLEGAL Error

One of the following parameter errors
occurred:
* station does not exist
* station does not support bar code
printing
* height or width is zero or too big
* symbology is not supported
* not all characters in data are supported
by symbology
* alignment is invalid or too big
* Code Set is not specified for
PTR_BCS_Code128_Parsed at start of
data
* textPosition is invalid, or
* the RotateSpecial rotation is not
supported

EPTR_COVER_OPEN Error The printer cover is open.
EPTR_REC_EMPTY Error The receipt paper is empty.
EPTR_REC_CARTRID
GE_REMOVED

Error A receipt cartridge has been removed.

EPTR_REC_CARTRID
GE_EMPTY

Error A receipt cartridge is empty.

EPTR_REC_HEAD_C
LEANING

Warning A receipt cartridge head is being cleaned.

EPTR_SLP_EMPTY Warning The slip station was specified, but a form
is not inserted.

EPTR_SLP_CARTRID
GE_REMOVED

Error A slip cartridge has been removed.

EPTR_SLP_CARTRID
GE_EMPTY

Error A slip cartridge is empty.

EPTR_SLP_HEAD_CL
EANING

Warning A slip cartridge head is being cleaned.

printBitmap

E_BUSY Warning Cannot perform while output is in
progress.

E_ILLEGAL Warning
The Fiscal Printer does not support
duplicate receipts or there is no buffered
transaction to print

EFPTR_WRONG_STA
TE

Warning The Fiscal Printer is not currently in the
Monitor state

EFPTR_JRN_EMPTY Error The journal station is out of paper.
EFPTR_REC_EMPTY Error The receipt station is out of paper

printFiscalDocumentLine

E_BUSY Warning Cannot perform while output is in
progress.
1954 Unified POS, v1.16.1

E_ILLEGAL Error

One of the following parameter errors
occurred:
* station does not exist
* station does not support bitmap
printing
* width parameter is invalid or too big
* alignment is invalid or too big

EPTR_TOOBIG Error
The bitmap is either too wide to print
without transformation, or it is too big to
transform

EPTR_COVER_OPEN Error The printer cover is open.

EPTR_BADFORMAT Error The specified file is either not a bitmap
file, or it is in an unsupported format.

EPTR_REC_EMPTY Error The receipt station was specified but is
out of paper.

EPTR_REC_CARTRID
GE_REMOVED

Error A receipt cartridge has been removed.

EPTR_REC_CARTRID
GE_EMPTY

Error A receipt cartridge is empty.

EPTR_REC_HEAD_C
LEANING

Warning A receipt cartridge head is being cleaned.

EPTR_SLP_EMPTY Warning The slip station was specified, but a form
is not inserted.

EPTR_SLP_CARTRID
GE_REMOVED

Error A slip cartridge has been removed.

EPTR_SLP_CARTRID
GE_EMPTY

Error A slip cartridge is empty.

EPTR_SLP_HEAD_CL
EANING

Warning A slip cartridge head is being cleaned.

printImmediate

E_ILLEGAL Error

The specified station does not exist, or
the station is in Page Mode and the
device does not support direct printing in
Page Mode.

EPTR_COVER_OPEN Error The printer cover is open.

EPTR_JRN_EMPTY Error The journal station was specified but is
out of paper.

EPTR_JRN_CARTRID
GE_REMOVED

Error A journal cartridge has been removed.

EPTR_JRN_CARTRID
GE_EMPTY

Error A journal cartridge is empty.

EPTR_JRN_HEAD_CL
EANING

Warning A journal cartridge head is being cleaned

EPTR_REC_EMPTY Error The receipt station was specified but is
out of paper
Unified POS, v1.16.1 1955

EPTR_REC_CARTRID
GE_REMOVED

Error A receipt cartridge has been removed.

EPTR_REC_CARTRID
GE_EMPTY

Error A receipt cartridge is empty

EPTR_REC_HEAD_C
LEANING

Warning A receipt cartridge head is being cleaned.

EPTR_SLP_EMPTY Warning The slip station was specified, but a form
is not inserted.

EPTR_SLP_CARTRID
GE_REMOVED

Error A slip cartridge has been removed.

EPTR_SLP_CARTRID
GE_EMPTY

Error A slip cartridge is empty

EPTR_SLP_HEAD_CL
EANING

Warning A slip cartridge head is being cleaned.

printMemoryBitmap

E_BUSY Warning Cannot perform while output is in
progress.

E_ILLEGAL Error

One of the following parameter errors
occurred:
* station does not exist
* station does not support bitmap
printing
* width parameter is invalid or too big
* alignment is invalid or too big

EPTR_TOOBIG Error
The bitmap is either too wide to print
without transformation, or it is too big to
transform.

EPTR_COVER_OPEN Error The printer cover is open.

EPTR_BADFORMAT Error The specified file is either not a bitmap
file, or it is in an unsupported format.

EPTR_REC_EMPTY Error The receipt station was specified but is
out of paper.

EPTR_REC_CARTRID
GE_REMOVED

Error A receipt cartridge has been removed.

EPTR_REC_CARTRID
GE_EMPTY

Error A receipt cartridge is empty.

EPTR_REC_HEAD_C
LEANING

Warning A receipt cartridge head is being cleaned

EPTR_SLP_EMPTY Warning The slip station was specified, but a form
is not inserted.

EPTR_SLP_CARTRID
GE_REMOVED

Error A slip cartridge has been removed.

EPTR_SLP_CARTRID
GE_EMPTY

Error A slip cartridge is empty.

EPTR_SLP_HEAD_CL
EANING

Warning A slip cartridge head is being cleaned.
1956 Unified POS, v1.16.1

printNormal
E_ILLEGAL Error The specified station does not exist.

E_BUSY Warning Cannot perform while output is in
progress.

EPTR_COVER_OPEN Error The printer cover is open.

EPTR_JRN_EMPTY Error The journal station was specified but is
out of paper.

EPTR_JRN_CARTRID
GE_REMOVED

Error A journal cartridge has been removed.

EPTR_JRN_CARTRID
GE_EMPTY

Error A journal cartridge is empty.

EPTR_JRN_HEAD_CL
EANING

Warning A journal cartridge head is being
cleaned.

EPTR_REC_EMPTY Error The receipt station was specified but is
out of paper.

EPTR_REC_CARTRID
GE_REMOVED

Error A receipt cartridge has been removed.

EPTR_REC_CARTRID
GE_EMPTY

Error A receipt cartridge is empty.

EPTR_REC_HEAD_C
LEANING

Warning A receipt cartridge head is being cleaned

EPTR_SLP_EMPTY Warning The slip station was specified, but a form
is not inserted.

EPTR_SLP_CARTRID
GE_REMOVED

Error A slip cartridge has been removed.

EPTR_SLP_CARTRID
GE_EMPTY

Error A slip cartridge is empty.

EPTR_SLP_HEAD_CL
EANING

Warning A slip cartridge head is being cleaned.

printTwoNormal

E_ILLEGAL Error

The specified stations do not support
concurrent printing, or Page Mode is
active for either station specified in
stations.

E_BUSY Warning Cannot perform while output is in
progress.

EPTR_COVER_OPEN Error The printer cover is open.

EPTR_JRN_EMPTY Error The journal station was specified but is
out of paper.

EPTR_JRN_CARTRID
GE_REMOVED

Error A journal cartridge has been removed.

EPTR_JRN_CARTRID
GE_EMPTY

Error A journal cartridge is empty.

EPTR_JRN_HEAD_CL
EANING

Warning A journal cartridge head is being
cleaned.
Unified POS, v1.16.1 1957

EPTR_REC_EMPTY Error The receipt station was specified but is
out of paper.

EPTR_REC_CARTRID
GE_REMOVED

Error A receipt cartridge has been removed.

EPTR_REC_CARTRID
GE_EMPTY

Error A receipt cartridge is empty.

EPTR_REC_HEAD_C
LEANING

Warning A receipt cartridge head is being cleaned

EPTR_SLP_EMPTY Warning The slip station was specified, but a form
is not inserted.

EPTR_SLP_CARTRID
GE_REMOVED

Error A slip cartridge has been removed.

EPTR_SLP_CARTRID
GE_EMPTY

Error A slip cartridge is empty.

EPTR_SLP_HEAD_CL
EANING

Warning A slip cartridge head is being cleaned.

rotatePrint

E_ILLEGAL Error
The specified station does not exist, or
the station does not support the specified
rotation

E_BUSY Warning Cannot perform while output is in
progress.

EPTR_COVER_OPEN Error The printer cover is open.

EPTR_REC_EMPTY Error The receipt station was specified but is
out of paper.

EPTR_REC_CARTRID
GE_REMOVED

Error A receipt cartridge has been removed.

EPTR_REC_CARTRID
GE_EMPTY

Error A receipt cartridge is empty.

EPTR_REC_HEAD_C
LEANING

Warning A receipt cartridge head is being cleaned

EPTR_SLP_EMPTY Warning The slip station was specified, but a form
is not inserted.

EPTR_SLP_CARTRID
GE_REMOVED

Error A slip cartridge has been removed.

EPTR_SLP_CARTRID
GE_EMPTY

Error A slip cartridge is empty.

EPTR_SLP_HEAD_CL
EANING

Warning A slip cartridge head is being cleaned.

setBitmap
1958 Unified POS, v1.16.1

E_ILLEGAL Error

One of the following errors occurred:
* bitmapNumber is invalid
* station does not exist
* station does not support bitmap
printing
* width is too big
* alignment is invalid or too big

E_NOEXIST Error fileName was not found.

EPTR_TOOBIG Error
The bitmap is either too wide to print
without transformation, or it is too big to
transform.

EPTR_BADFORMAT Error The specified file is either not a bitmap
file, or it is in an unsupported format.

setLogo
E_ILLEGAL Error An invalid location was specified

transactionPrint

E_ILLEGAL Error The specified station does not exist, or
CapTransaction is false.

E_BUSY Warning Cannot perform while output is in
progress.

EPTR_COVER_OPEN Error The printer cover is open.

EPTR_JRN_EMPTY Error The journal station was specified but is
out of paper.

EPTR_JRN_CARTRID
GE_REMOVED

Error A journal cartridge has been removed.

EPTR_JRN_CARTRID
GE_EMPTY

Error A journal cartridge is empty.

EPTR_JRN_HEAD_CL
EANING

Warning A journal cartridge head is being
cleaned.

EPTR_REC_EMPTY Error The receipt station was specified but is
out of paper.

EPTR_REC_CARTRID
GE_REMOVED

Error A receipt cartridge has been removed.

EPTR_REC_CARTRID
GE_EMPTY

Error A receipt cartridge is empty.

EPTR_REC_HEAD_C
LEANING

Warning A receipt cartridge head is being cleaned

EPTR_SLP_EMPTY Error The slip station was specified, but a form
is not inserted.

EPTR_SLP_CARTRID
GE_REMOVED

Error A slip cartridge has been removed.

EPTR_SLP_CARTRID
GE_EMPTY

Error A slip cartridge is empty.

EPTR_SLP_HEAD_CL
EANING

Warning A slip cartridge head is being cleaned.

validateData
Unified POS, v1.16.1 1959

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

E_ILLEGAL Error

Some of the data is not precisely
supported by the printer station, but the
Service can select valid alternatives. This
exception can also be thrown if an escape
sequence is not supported while either
Page Mode or rotate sideways is active.

E_FAILURE Error Some of the data is not supported. No
alternatives can be selected.

Value Severity Meaning
PTR_SUE_COVER_OPEN Error Printer cover is open.
PTR_SUE_COVER_OK Error Printer cover is closed.
PTR_SUE_JRN_EMPTY Error No journal paper
PTR_SUE_JRN_NEAREMPTY Warning Journal paper is low
PTR_SUE_JRN_PAPEROK Information Journal paper is ready
PTR_SUE_REC_EMPTY Error No receipt paper.
PTR_SUE_REC_NEAREMPTY Warning Receipt paper is low
PTR_SUE_REC_PAPEROK Information Receipt paper is ready.

PTR_SUE_SLP_EMPTY Error
No slip form is inserted, and no
slip form has been detected at the
entrance to the slip station.

PTR_SUE_SLP_NEAREMPTY Warning Almost at the bottom of the slip
form.

PTR_SUE_SLP_PAPEROK Information Slip form is inserted

PTR_SUE_IDLE Information
All asynchronous output has
finished, either successfully or
because output has been cleared.

PTR_SUE_JRN_CARTRIDGE_EMPTY Warning
A journal cartridge needs to be
replaced. Cartridge is empty or
not present.

PTR_SUE_JRN_HEAD_CLEANING Information A journal cartridge has begun
cleaning.

PTR_SUE_JRN_CARTRIDGE_NEAREMPTY Warning A journal cartridge is near end

PTR_SUE_JRN_CARTRIDGE_OK Information
All journal cartridges are ready. It
gives no indication of the amount
of media in the cartridge

PTR_SUE_REC_CARTRIDGE_EMPTY Warning
A receipt cartridge needs to be
replaced. Cartridge is empty or
not present.

PTR_SUE_REC_HEAD_CLEANING Information A receipt cartridge has begun
cleaning.

PTR_SUE_REC_CARTRIDGE_NEAREMPTY Warning A receipt cartridge is near end.
1960 Unified POS, v1.16.1

PTR_SUE_REC_CARTRIDGE_OK Information
All receipt cartridges are ready. It
gives no indication of the amount
of media in the cartridge

PTR_SUE_SLP_CARTRIDGE_EMPTY Warning
A slip cartridge needs to be
replaced. Cartridge is empty or
not present

PTR_SUE_SLP_HEAD_CLEANING Information A slip cartridge has begun
cleaning.

PTR_SUE_SLP_CARTRIDGE_NEAREMPTY Warning A slip cartridge is near end.

PTR_SUE_SLP_CARTRIDGE_OK Information
All slip cartridges are ready. It
gives no indication of the amount
of media in the cartridge.

PTR_SUE_JRN_COVER_OPEN Error Journal station cover is open
PTR_SUE_JRN_COVER_OK Information Journal station cover is closed
PTR_SUE_REC_COVER_OPEN Error Receipt station cover is open.
PTR_SUE_REC_COVER_OK Information Receipt station cover is closed
PTR_SUE_SLP_COVER_OPEN Error Slip station cover is open
PTR_SUE_SLP_COVER_OK Information Slip station cover is closed.
Unified POS, v1.16.1 1961

D.11.30 Remote Order Display

Remote Order Display Example

Display Data (Medium Hamburger) on the Grill Kitchen Display

<?xml version="1.0" encoding="UTF-8"?>
<RemoteOrderDisplay xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/RemoteOrderDisplay/
RemoteOrderDisplayV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/
RemoteOrderDisplay/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="RemoteOrderDisplay">

 Grill Kitchen Display
</SensorID>

</ARTSHeader>
<RemoteOrderDisplayBody>

<DisplayData>
<Units>1</Units>
<Row>1</Row>
<Column>1</Column>
<Attribute>0</Attribute>
<Data>\u0048\u0061\u006d\u0062\u0065\u0067\u0065\u0072

</Data>
</DisplayData>

</RemoteOrderDisplayBody>
</RemoteOrderDisplay>
1962 Unified POS, v1.16.1

Remote Order Display Domain

Figure D.127: Remote Order Display Domain View

Remote Order Display Properties

Figure D.128: Remote Order Display Properties Domain View
Unified POS, v1.16.1 1963

Remote Order Display Methods

Figure D.129: Remote Order Display Methods Domain View
1964 Unified POS, v1.16.1

Remote Order Display Events

Figure D.130: Remote Order Display Events Domain View
Unified POS, v1.16.1 1965

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Method Value Severity Meaning
checkHealth

EROD_NOUNITS Error The CurrentUnitID property is zero.

E_FAILURE Error An error occurred while communicating with the
video unit indicated in CurrentUnitID property.

clearInput
EROD_NOUNITS Error The CurrentUnitID property is zero

clearOutput
EROD_NOUNITS Error The CurrentUnitID property is zero

clearVideoRegion

E_FAILURE Error

An error occurred while communicating with
one of the video units indicated in units. The
ErrorUnits and ErrorString properties are
updated.

controlClock

EROD_BADCLK Error

A ROD_CLK_PAUSE, ROD_CLK_RESUME,
ROD_CLK_START, ROD_CLK_MOVE
command was requested and the specified
clockId has not been initialized by the
ROD_CLK_START command.

EROD_NOCLOCKS Error The ROD_CLK_START failed because the
number of SystemClocks has been reached.

E_FAILURE Error

An error occurred while communicating with
one of the video units indicated in the units
parameter. The ErrorUnits and ErrorString
properties are updated.

E_BUSY Warning

When a ROD_CLK_START command is
requested but the specified clockId is in use. The
ErrorUnits and ErrorString properties are
updated.

controlCursor

E_FAILURE Error
An error occurred communicating with one of
the video units indicated in units. The ErrorUnits
and ErrorString properties are updated.

copyVideoRegion

E_FAILURE Error
An error occurred communicating with one of
the video units indicated in units. The ErrorUnits
and ErrorString properties are updated.

displayData

E_FAILURE Error
An error occurred communicating with one of
the video units indicated in units. The ErrorUnits
and ErrorString properties are updated.

drawBox
1966 Unified POS, v1.16.1

E_FAILURE Error
An error occurred communicating with one of
the video units indicated in units. The ErrorUnits
and ErrorString properties are updated.

freeVideoRegion

E_FAILURE Error
An error occurred communicating with one of
the video units indicated in units. The ErrorUnits
and ErrorString properties are updated.

resetVideo

E_FAILURE Error
An error occurred communicating with one of
the video units indicated in units. The ErrorUnits
and ErrorString properties are updated.

restoreVideoRegion

EROD_NOREGION Error The bufferId does not contain a previously saved
video region

E_FAILURE Error
An error occurred communicating with one of
the video units indicated in units. The ErrorUnits
and ErrorString properties are updated.

saveVideoRegion

E_ILLEGAL Error
bufferId, row, column, height, or width is out of
range. The ErrorUnits and ErrorString properties
are updated.

EROD_NOBUFFERS Error Requested buffer exceeds the number of
SystemVideoSaveBuffers.

EROD_NOROOM Error
All the buffer memory has been allocated for a
specific unit. The ErrorUnits and ErrorString
properties are updated.

E_FAILURE Error
An error occurred communicating with one of
the video units indicated in units. The ErrorUnits
and ErrorString properties are updated.

selectCharacterSet

E_FAILURE Error
An error occurred communicating with one of
the video units indicated in units. The ErrorUnits
and ErrorString properties are updated.

setCursor

E_FAILURE Error
An error occurred communicating with one of
the video units indicated in units. The ErrorUnits
and ErrorString properties are updated.

transactionDisplay

E_BUSY Warning

Cannot perform while output is in progress for
one of the video units indicated in units. The
ErrorUnits and ErrorString properties are
updated.

E_FAILURE Error
An error occurred communicating with one of
the video units indicated in units. The ErrorUnits
and ErrorString properties are updated.

updateVideoRegionAttribute
Unified POS, v1.16.1 1967

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

E_FAILURE Error
An error occurred communicating with one of
the video units indicated in units. The ErrorUnits
and ErrorString properties are updated.

videoSound

E_FAILURE Error
An error occurred communicating with one of
the video units indicated in units. The ErrorUnits
and ErrorString properties are updated.

Value Severity Meaning

N/A
1968 Unified POS, v1.16.1

D.11.31 RFID Scanner

RFID Scanner Example

Retrieve CapMultipleProtocols Property Response

<?xml version="1.0" encoding="UTF-8"?>
<RFIDScanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/RFIDScanner/
RFIDScannerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/RFIDScanner/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Response" ActionCode="Read">
<MessageID>1234</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<Response ResponseCode="OK">

<RequestID>98765</RequestID>
<ResponseTimestamp>2001-12-17T09:30:47.0Z
</ResponseTimestamp>

</Response>
<SensorID UnifiedPOS="RFIDScanner">String</SensorID>

</ARTSHeader>
<RFIDScannerBody>

<GetProperty>
<CapMultipleProtocols>RFID_CMP_EPC0
</CapMultipleProtocols>
<CapMultipleProtocols>RFID_CMP_0PLUS
</CapMultipleProtocols>

</GetProperty>
</RFIDScannerBody>

</RFIDScanner>

Set ProtocolMask Property

<?xml version="1.0" encoding="UTF-8"?>
<RFIDScanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/RFIDScanner/
RFIDScannerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/RFIDScanner/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish" ActionCode="Update">
<SensorID UnifiedPOS="RFIDScanner">POS1Scanner</SensorID>

</ARTSHeader>
<RFIDScannerBody>

<SetProperty>
<ProtocolMask>RFID_SDT_EPC0</ProtocolMask>

</SetProperty>
</RFIDScannerBody>

</RFIDScanner>

RFID Scanner Data Event

<?xml version="1.0" encoding="UTF-8"?>
<RFIDScannerEvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/RFIDScannerEvents/
RFIDScannerEventV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/
RFIDScannerEvents/" MajorVersion="1" MinorVersion="14" FixVersion="1"
ActionCode="Begin">
Unified POS, v1.16.1 1969

<DataEvent>
<SequenceNumber>4294967295</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SourceName>POS1Scanner</SourceName>
<SensorID UnifiedPOS="RFIDScanner">POS1Scanner</SensorID>
<Status>0</Status>
<Properties>

<CheckHealthText>String</CheckHealthText>
<DataCount>0</DataCount>
<CurrentTagID>\u005b\u0029\u003e\u001e\u0030\u0000

 </CurrentTagID>
<CurrentTagIDLength>0</CurrentTagIDLength>
<CurrentTagProtocol>0</CurrentTagProtocol>
<CurrentTagUserData>
\u005b\u0029\u003e\u001e\u0030\u0000\u001d\u0030

 \u0030\u0030\u0031\u001d\u0032\u001d\u0033
 \u001d\u0031\u0032\u0033
 </CurrentTagUserData>

</Properties>
</DataEvent>

</RFIDScannerEvent>

Read Tags Request

<?xml version="1.0" encoding="UTF-8"?>
<RFIDScanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/RFIDScanner/
RFIDScannerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/RFIDScanner/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish" ActionCode="Initiate">
<SensorID UnifiedPOS="RFIDScanner">POS1Scanner</SensorID>

</ARTSHeader>
<RFIDScannerBody>

<ReadTags>
<Cmd>RFID_RT_ID</Cmd>
<FilterID>

\u005b\u0029\u003e\u001e\u0030\u0000
</FilterID>
<FilterMask>

\u0029\u003e\u001e\u0030\u0000\u005b
</FilterMask>
<Start>0</Start>
<Length>0</Length>
<Timeout>0</Timeout>
<Password>

\u005b\u0029\u003e\u001e\u0030\u0000
</Password>

</ReadTags>
</RFIDScannerBody>

</RFIDScanner>

Write Tags Request

<?xml version="1.0" encoding="UTF-8"?>
<RFIDScanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/RFIDScanner/
RFIDScannerV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/RFIDScanner/"
MajorVersion="1" MinorVersion="14" FixVersion="1">
1970 Unified POS, v1.16.1

<ARTSHeader MessageType="Request" ActionCode="Begin">
<DateTime TypeCode="Message">2001-12-17T09:30:47.0Z
</DateTime>
<SensorID UnifiedPOS="RFIDScanner">POS1Scanner
</SensorID>

</ARTSHeader>
<RFIDScannerBody>

<WriteTagData>
<TagID>

\u0029\u003e\u001e\u0030\u0000\u005b
 </TagID>

<UserData>
\u005b\u0029\u003e\u001e\u0030\u0000

 </UserData>
<Start>0</Start>
<Timeout>0</Timeout>
<Password>

\u022b\u0029\u003e\u001e\u0030\u0000
 </Password>

</WriteTagData>
</RFIDScannerBody>

</RFIDScanner>
Unified POS, v1.16.1 1971

RFID Scanner Domain

Figure D.131: RFID Scanner Domain View

RFID Scanner Properties

Figure D.132: RFID Scanner Properties Domain View
1972 Unified POS, v1.16.1

RFID Scanner Methods

Figure D.133: RFID Scanner Methods Domain View

RFID Scanner Events

Figure D.134: RFID Scanner Events Domain View
Unified POS, v1.16.1 1973

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

Method Value Severity Meaning
disableTag

E_TIMEOUT Error Allowed execution time has expired.

Value Severity Meaning

N/A
1974 Unified POS, v1.16.1

D.11.32 Scale

Scale Example

Service initializes AsyncMode = False

<?xml version="1.0" encoding="UTF-8"?>
<Scale xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/Scale/ ScaleV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/Scale/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish" ActionCode="Update">
<MessageID>1</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="Scale">Grocery1</SensorID>

</ARTSHeader>
<ScaleBody>

<SetProperty>
<AsyncMode>false</AsyncMode>

</SetProperty>
</ScaleBody>

</Scale>

User places item on scale

User commands terminal to request weight (keypad press)

Application sends readWeight method call to the service via control

<?xml version="1.0" encoding="UTF-8"?>
<Scale xmlns:xs="http://www.w3.org/2001/XMLSchema-instance" xs:schemaLocation="http://

www.omg.org/UnifiedPOS/Scale/ ScaleV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/Scale/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request">
<MessageID>2</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="Scale">Grocery1</SensorID>

</ARTSHeader>
<ScaleBody>

<ReadWeight>
<WeightData xs:nil="true"/>
<Timeout>30</Timeout>

</ReadWeight>
</ScaleBody>

</Scale>

Service sends device specific weight request to the scale

Scale responds with scale weight “15034” on scale interface

Service returns the weight value in weightData parameter “15034”

<?xml version="1.0" encoding="UTF-8"?>
Unified POS, v1.16.1 1975

<Scale xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://
www.omg.org/UnifiedPOS/Scale/ ScaleV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/Scale/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Response">
<MessageID>2</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="Scale">Grocery1</SensorID>

</ARTSHeader>
<ScaleBody>

<ReadWeight>
<WeightData>15034</WeightData>
<Timeout>30</Timeout>

</ReadWeight>
</ScaleBody>

</Scale>

Application reads the weight (15.034 lbs) as returned in weightData

Scale Domain

Figure D.135: Scale Domain View
1976 Unified POS, v1.16.1

Scale Properties

Figure D.136: Scale Properties Domain View

Scale Methods

Figure D.137: Scale Methods Domain View
Unified POS, v1.16.1 1977

Scale Events

Figure D.138: Scale Events Domain View
1978 Unified POS, v1.16.1

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

Method Value Severity Meaning
displayText

E_ILLEGAL Error

An invalid text was specified -- the text
contains more characters than
MaxDisplayTextChars, or CapDisplayText
is false.

readWeight
E_ILLEGAL Error An invalid timeout parameter was specified.
E_BUSY Warning An asynchronous readWeight is in progress.

E_TIMEOUT Error
A stable non-zero weight was not available
before timeout milliseconds elapsed

ESCAL_OVERWEIGHT Error The weight was over MaximumWeight.

ESCAL_UNDER_ZERO Error
The scale is reporting a weight that is less
than zero due to a calibration error. The
scale should be recalibrated.

ESCAL_SAME_WEIGHT Warning

The scale is reporting that the item/weight
on the scale is identical to the previously
reported item/weight; i.e., the item has not
been removed from the scale.

zeroScale
E_ILLEGAL Error CapZeroScale is false.
E_BUSY Warning An asynchronous readWeight is in progress.

Value Severity Meaning

SCAL_SUE_STABLE_WEIGHT Information
Scale weight is stable. The
ScaleLiveWeight property is updated
before event delivery

SCAL_SUE_WEIGHT_UNSTABLE Warning Scale weight is unstable.
SCAL_SUE_WEIGHT_ZERO Warning Scale weight is zero
SCAL_SUE_WEIGHT_OVERWEIGHT Warning Scale weight is overweight
SCAL_SUE_NOT_READY Warning Scale is not ready to weigh
SCAL_SUE_WEIGHT_UNDER_ZERO Warning Scale weight is under zero
Unified POS, v1.16.1 1979

D.11.33 Scanner Device

Scanner Device Example

Application sets DecodeData = True

<?xml version="1.0" encoding="UTF-8"?>
<Scanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/Scanner/ ScannerV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/Scanner/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish" ActionCode="Update">
<MessageID>1</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="Scanner">Scanner1</SensorID>

</ARTSHeader>
<ScannerBody>

<SetProperty>
<DecodeData>true</DecodeData>

</SetProperty>
< /ScannerBody>
</Scanner>

Application sets DataEventEnabled = True

<?xml version="1.0" encoding="UTF-8"?>
<Scanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/Scanner/ ScannerV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/Scanner/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish" ActionCode="Update">
<MessageID>2</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="Scanner">Scanner1</SensorID>

</ARTSHeader>
<ScannerBody>

<SetProperty>
<DataEventEnabled>false</DataEventEnabled>

</SetProperty>
</ScannerBody>

</Scanner>

User scans bar code with data “5000174289657<CR>”

Scanner decodes bar code, sends data to scanner service

Scanner service sets ScanData property = “5000174289657”

Scanner service sets ScanDataType = “SCAN_SDT_EAN13”
1980 Unified POS, v1.16.1

Scanner service notifies application (through control) of asynchronous data event

<?xml version="1.0" encoding="UTF-8"?>
<ScannerEvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/ScannerEvents/
ScannerEventV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/ScannerEvents/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<DataEvent>
<SequenceNumber>3</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS="Scanner">Scanner1</SensorID>
<Status>0</Status>

</DataEvent>
</ScannerEvent>

Application services event (reads ScanData or ScanDataLabel, and ScanDataType)

Request

<?xml version="1.0" encoding="UTF-8"?>
<Scanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/Scanner/ ScannerV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/Scanner/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request" ActionCode="Read">
<MessageID>4</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="Scanner">Scanner1</SensorID>

</ARTSHeader>
<ScannerBody>

<GetProperty>
<ScanData/>
<ScanDataLabel/>

</GetProperty>
</ScannerBody>

</Scanner>

Response

<?xml version="1.0" encoding="UTF-8"?>
<Scanner xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

www.omg.org/UnifiedPOS/Scanner/ ScannerV1.14.1.xsd" xmlns="http://www.omg.org/
UnifiedPOS/Scanner/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Response" ActionCode="Read">
<MessageID>4</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="Scanner">Scanner1</SensorID>

</ARTSHeader>
<ScannerBody>

<GetProperty>
<ScanData>\u005b\u0029\u003e\u001e\u0030\u0000

 </ScanData>
<ScanDataType>SCAN_SDT_EAN13</ScanDataType>

</GetProperty>
</ScannerBody>

</Scanner>
Unified POS, v1.16.1 1981

Scanner Domain

Figure D.139: Scanner Domain View

Scanner Properties

Figure D.140: Scanner Properties Domain View

Scanner Methods

Figure D.141: Scanner Methods Domain View
1982 Unified POS, v1.16.1

Scanner Events

Figure D.142: Scanner Events Domain View
Unified POS, v1.16.1 1983

Device Error Codes to Message Severity Codes
This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Status Codes to Message Severity Codes
This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

Method Value Severity Meaning
N/A

Value Severity Meaning
N/A
1984 Unified POS, v1.16.1

D.11.34 Signature Capture

Signature Capture Example

 beginCapture(formName)

<?xml version="1.0" encoding="UTF-8"?>
<SignatureCapture xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/SignatureCapture/
SignatureCaptureV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/SignatureCapture/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="SignatureCapture">SigCap003</SensorID>

</ARTSHeader>
<SignatureCaptureBody>

<BeginCapture>
<FormName>formName</FormName>

</BeginCapture>
</SignatureCaptureBody>

</SignatureCapture>

 fire DataEvent

<?xml version="1.0" encoding="UTF-8"?>
<SignatureCaptureEvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/SignatureCaptureEvents/
SignatureCaptureEventV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/
SignatureCaptureEvents/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<DataEvent>
<SequenceNumber>2</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS="SignatureCapture">SigCap003</SensorID>
<Status>0</Status>

</DataEvent>
</SignatureCaptureEvent>

 get PointArray

Request

<?xml version="1.0" encoding="UTF-8"?>
<SignatureCapture xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/SignatureCapture/
SignatureCaptureV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/SignatureCapture/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request" ActionCode="Read">
<MessageID>3</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="SignatureCapture">SigCap003</SensorID>

</ARTSHeader>
<SignatureCaptureBody>

<GetProperty>
<PointArray/>

</GetProperty>
</SignatureCaptureBody>

</SignatureCapture>
Unified POS, v1.16.1 1985

Response

<?xml version="1.0" encoding="UTF-8"?>
<SignatureCapture xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/SignatureCapture/
SignatureCaptureV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/SignatureCapture/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request" ActionCode="Begin">
<MessageID>4</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<Response>

<RequestID>3</RequestID>
<ResponderID>SigCap003</ResponderID>

</Response>
<SensorID UnifiedPOS="SignatureCapture">SigCap003</SensorID>

</ARTSHeader>
<SignatureCaptureBody>

<GetProperty>
<PointArray>

<Point>
<LowX>127</LowX>
<HighX>127</HighX>
<LowY>127</LowY>
<HighY>127</HighY>

</Point>
</PointArray>

</GetProperty>
</SignatureCaptureBody>

</SignatureCapture>
1986 Unified POS, v1.16.1

Signature Capture Domain

Figure D.143: Signature Capture Domain View

Signature Capture Properties

Figure D.144: Signature Capture Properties Domain View



Unified POS, v1.16.1 1987

Signature Capture Methods

Figure D.145: Signature Capture Methods Domain View

Signature Capture Events

Figure D.146: Signature Capture Events Domain View
1988 Unified POS, v1.16.1

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

Method Value Severity Meaning
beginCapture

E_NOEXIST Error formName was not found.
endCapture

E_ILLEGAL Warning
Signature capture was not in
progress

Value Severity Meaning

N/A
Unified POS, v1.16.1 1989

D.11.35 Smart Card Reader / Writer

Smart Card Reader / Writer Example
beginInsertion

<?xml version="1.0" encoding="UTF-8"?>
<SmartCardRW xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/SmartCardRW/
SmartCardRWV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/SmartCardRW/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>1</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="SmartCardRW">100</SensorID>

</ARTSHeader>
<SmartCardRWBody>

<BeginInsertion>
<Timeout>30000</Timeout>

</BeginInsertion>
</SmartCardRWBody>

</SmartCardRW>

endInsertion

<?xml version="1.0" encoding="UTF-8"?>
<SmartCardRW xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/SmartCardRW/
SmartCardRWV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/SmartCardRW/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>2</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="SmartCardRW">2</SensorID>

</ARTSHeader>
<SmartCardRWBody>

<EndInsertion/>
</SmartCardRWBody>

</SmartCardRW>

fire DataEvent

<?xml version="1.0" encoding="UTF-8"?>
<SmartCardRWEvent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/SmartCardEvents/
SmartCardRWEventV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/
SmartCardEvents/" MajorVersion="1" MinorVersion="14" FixVersion="1">

<DataEvent Severity="Information" Mode="Production" Priority="-0">
<SequenceNumber>3</SequenceNumber>
<EventDateTime>2001-12-17T09:30:47.0Z</EventDateTime>
<SensorID UnifiedPOS="SmartCardRW">100</SensorID>
<Status>0</Status>

</DataEvent>
</SmartCardRWEvent>

readData

Request

<?xml version="1.0" encoding="UTF-8"?>
1990 Unified POS, v1.16.1

<SmartCardRW xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.omg.org/UnifiedPOS/SmartCardRW/
SmartCardRWV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/SmartCardRW/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Request">
<MessageID>4</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="SmartCardRW">100</SensorID>

</ARTSHeader>
<SmartCardRWBody>

<ReadData>
<Action>SC_READ_DATA</Action>
<Count/>
<Data/>

</ReadData>
</SmartCardRWBody>

</SmartCardRW>

Response

<?xml version="1.0" encoding="UTF-8"?>
<SmartCardRW xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/SmartCardRW/
SmartCardRWV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/SmartCardRW/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Response">
<MessageID>4</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="SmartCardRW">100</SensorID>

</ARTSHeader>
<SmartCardRWBody>

<ReadData>
<Action>SC_READ_DATA</Action>
<Count>10</Count>
<Data>1234568790</Data>

</ReadData>
</SmartCardRWBody>

</SmartCardRW>

beginRemoval

<?xml version="1.0" encoding="UTF-8"?>
<SmartCardRW xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/SmartCardRW/
SmartCardRWV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/SmartCardRW/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>5</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="SmartCardRW">100</SensorID>

</ARTSHeader>
<SmartCardRWBody>

<BeginRemoval>
<Timeout>30000</Timeout>

</BeginRemoval>
</SmartCardRWBody>

</SmartCardRW>
Unified POS, v1.16.1 1991

endRemoval

<?xml version="1.0" encoding="UTF-8"?>
<SmartCardRW xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/SmartCardRW/
SmartCardRWV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/SmartCardRW/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>6</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="SmartCardRW">100</SensorID>

</ARTSHeader>
<SmartCardRWBody>

<EndRemoval/>
</SmartCardRWBody>

</SmartCardRW>

Smart Card Reader Domain

Figure D.147: Smart Card Reader Domain View
1992 Unified POS, v1.16.1

Smart Card Reader Properties

Figure D.148: Smart Card Reader Properties Domain View

Smart Card Reader Methods

Figure D.149: Smart Card Reader Methods Domain View
Unified POS, v1.16.1 1993

Smart Card Reader Events

Figure D.150: Smart Card Reader Events Domain View
1994 Unified POS, v1.16.1

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Method Value Severity Meaning
beginInsertion

E_BUSY Warning
This operation cannot be performed
because asynchronous output is in
progress.

E_ILLEGAL Error
The SCR/W does not exist or an
invalid timeout parameter was
specified.

E_TIMEOUT Error
The specified time has elapsed
without the smart card being properly
inserted.

beginRemoval

E_BUSY Warning
This operation cannot be performed
because asynchronous output is in
progress.

E_ILLEGAL Error
The SCR/W does not exist or an
invalid timeout parameter was
specified.

E_TIMEOUT Warning
The specified time has elapsed
without the smart card being properly
inserted.

endInsertion

E_ILLEGAL Warning The SCR/W is not in smart card
insertion mode.

E_FAILURE Warning A card is not inserted in the SCR/W.
endRemoval

E_ILLEGAL Warning The SCR/W is not in smart card
removal mode.

E_FAILURE Warning There is a card in the SCR/W.
readData

E_CLAIMED Warning
Cannot read because the smart card
present in the SCR/W is claimed by
another application.

E_ILLEGAL Error

The action is not valid for the type of
smart card present in the SCR/W or
the count value is not valid for the
smart card present in the SCR/W.

writeData

E_CLAIMED Warning
Cannot read because the smart card
present in the SCR/W is claimed by
another application.
Unified POS, v1.16.1 1995

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

E_ILLEGAL Error

The action is not valid for the type of
smart card present in the SCR/W or
the count value is not valid for the
smart card present in the SCR/W.

E_EXTENDED
ESC_READ Error There was a read error
ESC_WRITE Error There was a write error

ESC_TORN Warning
The smart card was prematurely
removed from the SCR/W
unexpectedly.

ESC_NO_CARD Warning There is no card detected in the SCR/
W but a card was expected

Value Severity Meaning

SC_SUE_NO_CARD Warning
No card detected in the SCR/W
Device.

SC_SUE_CARD_PRESENT Information There is a card in the device.
1996 Unified POS, v1.16.1

D.11.36 Tone Indicator

Tone Indicator Example

 set Tone1Frequency

<?xml version="1.0" encoding="UTF-8"?>
<ToneIndicator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/ToneIndicator/
ToneIndicatorV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/ToneIndicator/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish" ActionCode="Begin">
<MessageID>1</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="ToneIndicator">Buzzer1</SensorID>

</ARTSHeader>
<ToneIndicatorBody>

<SetProperty>
<Tone1Pitch>1000</Tone1Pitch>

</SetProperty>
</ToneIndicatorBody>

</ToneIndicator>

 Sound(3, 100)

<?xml version="1.0" encoding="UTF-8"?>
<ToneIndicator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/UnifiedPOS/ToneIndicator/
ToneIndicatorV1.14.1.xsd" xmlns="http://www.omg.org/UnifiedPOS/ToneIndicator/"
MajorVersion="1" MinorVersion="14" FixVersion="1">

<ARTSHeader MessageType="Publish">
<MessageID>2</MessageID>
<DateTime>2001-12-17T09:30:47.0Z</DateTime>
<SensorID UnifiedPOS="ToneIndicator">Buzzer1</SensorID>

</ARTSHeader>
<ToneIndicatorBody>

<Sound>
<NumberOfCycles>3</NumberOfCycles>
<InterSoundWait>100</InterSoundWait>

</Sound>
</ToneIndicatorBody>

</ToneIndicator>
Unified POS, v1.16.1 1997

Tone Indicator Domain

Figure D.151: Tone Indicator Domain View

Tone Indicator Properties

Figure D.152: Tone Indicator Properties Domain View
1998 Unified POS, v1.16.1

Tone Indicator Methods

Figure D.153: Tone Indicator Methods Domain View

Tone Indicator Events

Figure D.154: Tone Indicator Events Domain View
Unified POS, v1.16.1 1999

Device Error Codes to Message Severity Codes

This table is for device specific error codes. The common errors are defined in “Device Error Codes and
Message Severity Codes” on page 1792.

Status Codes to Message Severity Codes

This table is for device specific status codes. The common status codes are defined in “Standard Status
Codes to Severity Codes” on page 1795.

Device Specific Status Messages

Method Value Severity Meaning
sound

E_CLAIMED Warning

Indicates that another application
has claimed the device and has
taken over the tone device causing
the sound from this method to be
interrupted

E_ILLEGAL Error

One of the following errors
occurred:
• numberOfCycles is neither a
positive, non-zero value nor
FOREVER.
• numberOfCycles is FOREVER
when AsyncMode is false.
• A negative interSoundWait was
specified
• A negative interToneWait was
specified

Value Severity Meaning

N/A
2000 Unified POS, v1.16.1

D.12 NAFEM Protocol

The XMLPOS Common Data components are used in the ProCon interface to National Association of Food Equipment
Manufacturers (NAFEM) Hardware.

D.12.1 Administration Enterprise Group

Figure D.155: Administrative Enterprise Group Domain View
Unified POS, v1.16.1 2001

D.12.2 Asset Management Enterprise Group

Figure D.156: Asset Management Enterprise Group Domain View
2002 Unified POS, v1.16.1

D.12.3 Bulk Transfer Enterprise Group

Figure D.157: Bulk Transfer Enterprise Group Domain View
Unified POS, v1.16.1 2003

D.12.4 Clock Calendar Enterprise Group

Figure D.158: Clock Calendar Enterprise Group Domain View
2004 Unified POS, v1.16.1

D.12.5 Inventory Management Enterprise Group

Figure D.159: Inventory Management Enterprise Group Domain View
Unified POS, v1.16.1 2005

D.12.6 Maintenance Enterprise Group

Figure D.160: Maintenance Enterprise Group Domain View
2006 Unified POS, v1.16.1

D.12.7 Monitor Enterprise Group

Figure D.161: Monitor Enterprise Group Domain View
Unified POS, v1.16.1 2007

D.12.8 Notification Enterprise Group

Figure D.162: Notification Enterprise Group Domain View
2008 Unified POS, v1.16.1

D.12.9 Security Enterprise Group

Figure D.163: Security Enterprise Group Domain View
Unified POS, v1.16.1 2009

D.12.10 Utility Enterprise Group

Figure D.164: Utility Enterprise Group Domain View
2010 Unified POS, v1.16.1

D.13 Distributed Files

The following is a list of the XSD Schema files that are provided to support the XMLPOS environment.

BeltEventV1.14.1.xsd KeylockEventV1.14.1.xsd

BeltV1.14.1.xsd KeylockV1.14.1.xsd

BillAcceptorEventV1.14.1.xsd LightsEventV1.14.1.xsd

BillAcceptorV1.14.1.xsd LightsV1.14.1.xsd

BillDispenserEventV1.14.1.xsd LineDisplayEventV1.14.1.xsd

BillDispenserV1.14.1.xsd LineDisplayV1.14.1.xsd

BiometricsEventV1.14.1.xsd MICREventV1.14.1.xsd

BiometricsV1.14.1.xsd MICRV1.14.1.xsd

BumpBarEventV1.14.1.xsd MotionSensorEventV1.14.1.xsd

BumpBarV1.14.1.xsd MotionSensorV1.14.1.xsd

CashChangerEventV1.14.1.xsd MSREventV1.14.1.xsd

CashChangerV1.14.1.xsd MSRV1.14.1.xsd

CashDrawerEventV1.14.1.xsd PINPadEventV1.14.1.xsd

CashDrawerV1.14.1.xsd PINPadV1.14.1.xsd

CATEventV1.14.1.xsd PointCardRWEventV1.14.1.xsd

CATV1.14.1.xsd PointCardRWV1.14.1.xsd

CheckScannerEventV1.14.1.xsd POSKeyboardEventV1.14.1.xsd

CheckScannerV1.14.1.xsd POSKeyboardV1.14.1.xsd

CoinAcceptorEventV1.14.1.xsd POSPowerEventV1.14.1.xsd

CoinAcceptorV1.14.1.xsd POSPowerV1.14.1.xsd

CoinDispenserEventV1.14.1.xsd POSPrinterEventV1.14.1.xsd

CoinDispenserV1.14.1.xsd POSPrinterV1.14.1.xsd

ElectronicJournalEventV1.14.1.xsd RemoteOrderDisplayEventV1.14.1.xsd

ElectronicJournalV1.14.1.xsd RemoteOrderDisplayV1.14.1.xsd

ElectronicValueRWEventV1.14.1.xsd RFIDScannerEventV1.14.1.xsd

ElectronicValueRWV1.14.1.xsd RFIDScannerV1.14.1.xsd

FiscalPrinterEventV1.14.1.xsd ScaleEventV1.14.1.xsd

FiscalPrinterV1.14.1.xsd ScaleV1.14.1.xsd

GateEventV1.14.1.xsd ScannerEventV1.14.1.xsd

GateV1.14.1.xsd ScannerV1.14.1.xsd

HardTotalsEventV1.14.1.xsd SignatureCaptureEventV1.14.1.xsd

HardTotalsV1.14.1.xsd SignatureCaptureV1.14.1.xsd

ImageScannerEventV1.14.1.xsd SmartCardRWEventV1.14.1.xsd

ImageScannerV1.14.1.xsd SmartCardRWV1.14.1.xsd

ItemDispenserEventV1.14.1.xsd ToneIndicatorEventV1.14.1.xsd

ItemDispenserV1.14.1.xsd ToneIndicatorV1.14.1.xsd
Unified POS, v1.16.1 2011

D.14 Glossary

Term Definition
2012 Unified POS, v1.16.1

Annex E

Change History

E.1 Release Version 1.4

Version 1.4 is the first release of the UnifiedPOS standard, and was issued on February 25, 1999. It derives its
release version number from the corresponding OPOS and JavaPOS standard version numbers 1.4. In an attempt
to prevent confusion, all peripheral device classifications that are present in the version 1.4 standard of OPOS
and JavaPOS are “grandfathered” into this first release of UnifiedPOS standard.

The Chapters that are shown in this standard shall be used as guidelines for future peripheral device
classifications to be included in subsequent versions of the standards. Therefore, one can be assured that if they
have version 1.4 of the UnifiedPOS standard it will be the basis for the version 1.4 of the OPOS or JavaPOS
standard. This cross-linking of standard version numbers will be maintained in the future.

E.2 Release Version 1.5

Version 1.5 of this specification, issued on September 24, 2000, contains several new chapters (devices) and
updates to existing chapters that provide clarifications and corrections to Version 1.4. These are detailed below,
with links to the corresponding pages and/or chapters as appropriate.

• Updated the Version and issue date on the front page.

• Updated the Table of Contents to reflect additional chapters and headings.

• Updated the “Table of extensions to UML for UnifiedPOS.”

• Updated the Package Diagram.

• Added another condition that causes the Device to exit the Error state.

• Updated the Power State Diagram.

• Updated the Device State Diagram.

• Updated, throughout the specification, the mutability of the DirectIOEvent attributes Data and Obj to reflect
the fact that they are read-write.

• Updated, throughout the specification, the mutability of the ErrorEvent attribute ErrorResponse to reflect the
fact that it is read-write.

• Updated the case of the first letter of all Properties, and Event Attributes to uppercase to make consistent
throughout the specification.

• Added the Base Control Class Diagram.

• Updated the Event Interfaces Diagram.

• Updated the Bump Bar chapter header to remove the “example” status.

• Updated the Bump Bar Class Diagram.
Unified POS, v1.16.1 2013

• Updated the Bump Bar State Diagram.

• Added a new chapter describing the Cash Changer, including 1.5 specific updates. See Chapter 8.

• Added a new chapter describing the Cash Drawer, including 1.5 specific updates. See Chapter 9.

• Added a new chapter describing the CAT, including 1.5 specific updates. See Chapter 10.

• Added a new chapter describing the MSR. See Chapter 26.

• Updated the MSR chapter to include Track 4 handling for JIS-II type cards. See various additions within the
MSR chapter.

• Updated the MSR chapter to include a typical usage sequence diagram. See “MSR Sequence Diagram.”

• Added a new chapter describing the PIN Pad, including 1.5 specific updates. See Chapter 27.

• Added a new chapter describing the Point Card Reader Writer. See Chapter 28.

• Added a new chapter describing the POS Power. See Chapter 30.

• Added a new chapter describing the POS Printer. See Chapter 31.

• Updated the POS Printer chapter to include “both sides printing” support, including a new Property, Method,
and sequence diagram. See “Both sides printing” sequence diagram,” “CapSlpBothSidesPrint Property,”
“changePrintSide Method.”

• Added a new Annex describing Hardware References. See Annex G.

• Made minor typographical and formatting changes as necessary.

E.3 Release Version 1.6

Version 1.6 of this specification, issued on July 15, 2001, contains several new/completed chapters (not new
devices) and updates to existing chapters that provide updates, clarifications, and corrections to Version 1.5.
These are detailed below, with links to the corresponding pages and/or chapters as appropriate.

• Updated the Version and issue date on the front.

• Updated the Table of Contents to reflect additional chapters and headings.

• Completed the chapter describing the Coin Dispenser device. See Chapter 13.

• Completed the chapter describing the Fiscal Printer device. See Chapter 16.

• Added the CapAdditionalHeader, CapAdditionalTrailer, CapChangeDue,
CapEmptyReceiptIsVoidable, CapFiscalReceiptStation, CapFiscalReceiptType, CapMultiContractor,
CapOnlyVoidLastItem, CapPackageAdjustment, CapPostPreLine, CapSetCurrency,
CapTotalizerType, ActualCurrency, AdditionHeader, AdditionalTrailer, ChangeDue, ContractorId,
DateType, FiscalReceiptStation, FiscalReceiptType, MessageType, PostLine, PreLine, and
TotalizerType properties.

• Changed the descriptions of the following properties to indicate that initialization takes place when the device
is first enabled following the open method call:

• CountryCode, ErrorOutID, PrinterState, QuantityDecimalPlaces, and QuantityLength.

• Added the setCurrency, printRecCash, printRecItemFuel, printRecItemFuelVoid,
printRecPackageAdjustment, printRecPackageAdjustVoid, printRecRefundVoid,
printRecSubtotalAdjustVoid, and printRecTaxID methods.
2014 Unified POS, v1.16.1

• Added country support for Bulgaria and Romania.

• Many updates in the General Information section.

• Clarified the description of the CapPositiveAdjustment property.

• Updated the CountryCode, DayOpened, and DescriptionLength properties to reflect additions to the
specification.

• Updated the endFiscalReceipt, getData, getDate, printRecItem, printRecMessage, printRecNotPaid,
printRecRefund, printRecSubtotal, printRecSubtotalAdjustment, printRecTotal, printRecVoid,
printRecVoidItem, printZReport, and setHeaderLine methods to reflect additions to the specification.

• Updated ErrorEvent to reflect additions to the specification.

• Completed the chapter describing the Hard Totals device. See Chapter 18.

• Completed the chapter describing the Keylock device. See Chapter 21.

• Completed the chapter describing the Line Display device. See Chapter 23.

• Added CapBlinkRate, CapCursorType, CapCustomGlyph, CapReadBack, CapReverse, BlinkRate,
CursorType, CustomGlyphList, GlyphHeight, and GlyphWidth properties.

• Added defineGlyph and readCharacterAtCursor methods.

• Updated the displayText and displayTextAt methods to support new attributes for reverse video,
DISP_DT_REVERSE and DISP_DT_BLINK_REVERSE.

• Completed the chapter describing the MICR device. See Chapter 24.

• Completed the chapter describing the POS Keyboard device. See Chapter 29.

• Completed the chapter describing the Remote Operator Display device. See Chapter 32.

• Completed the chapter describing the Scale device. See Chapter 34.

• Changed the descriptions of the following properties to indicate that initialization takes place when the device
is first enabled following the open method call:

SalesPrice, TareWeight, and UnitPrice.

• Completed the chapter describing the Scanner device. See Chapter 35.

• Completed the chapter describing the Signature Capture device. See Chapter 36.

• Completed the chapter describing the Tone Indicator device. See Chapter 38.

• Changed the descriptions of the following properties to indicate that initialization takes place when the device
is first enabled following the open method call:

AsyncMode, InterToneWait, Tone1Duration, Tone1Pitch, Tone1Volume, Tone2Duration,
Tone2Pitch, and Tone2Volume.

• Reformatted the Tables in the Summary sections of each chapter and included the original version in which the
Properties, Methods, and Events were supported.

• Moved Annexes A, B, and C to be Annexes C, D, and E to make room for the OPOS and JavaPOS annexes.
Unified POS, v1.16.1 2015

E.4 Release Version 1.7

Version 1.7 of this specification, released on July 24, 2002, includes chapters describing two new devices, Check
Scanner and Motion Sensor, and contains several updates to the existing chapters that provide enhancements,
clarifications, and corrections to Version 1.6. These changes are detailed below, with links to the corresponding
pages and/or chapters as appropriate. However, any minor typographical changes are not listed below.

• Updated the Version and issue date on the front.

• Added the NRF Copyright notice.

• Added the NRF Disclaimer notice.

• Updated the Table of Contents to reflect additional sections.

• Expanded the wording in several chapters to clarify the meaning of “Buffers the request.” to be “Buffers the
request in program memory, for delivery to the Physical Device as soon as the Physical Device can receive and
process it.”, or similar wording. The following chapters incorporate this change:

• Introduction and Architecture

• Bump Bar

• Fiscal Printer

• Point Card Reader/Writer

• POS Printer

• Remote Order Display

• Tone Indicator

• Annex A - OPOS

• Annex B - JavaPOS

• Expanded/clarified the definition in several chapters of the ER_CLEAR ErrorResponse to an ErrorEvent.
The following chapters incorporate this change:

• Common Properties, Methods, and Events

• Bump Bar

• Fiscal Printer

• Point Card Reader/Writer

• POS Printer

• Remote Order Display

• Tone Indicator

• Annex A - OPOS (also SOError)

• Annex B - JavaPOS

• Expanded/clarified the definition in several chapters of the function of the clearOutput method. The
following chapters incorporate this change:

• Common Properties, Methods, and Events

• Bump Bar

• Remote Order Display

• Annex A - OPOS

• Annex B - JavaPOS
2016 Unified POS, v1.16.1

• Used a consistent description of “XxxxxxEvent being delivered to the application” in the following chapters:

• MICR, Scanner, and SignatureCapture devices.

• Reworded the Dependencies section to reference Annexes A and B as the implementation reference, see
Chapter 1.

• Reworded the application’s requirements for Event registration, see Chapter 1.

• Added OPOS and JavaPOS verbiage, listed the OPOS-specific Common Property names, and cross reference
links to the language specific Common Properties Summary Tables from the Common Properties Summary
Table, see Chapter 1.

• Added clarification of the initial value of the PowerNotify property after the open method call, see
“PowerNotify Property” in Chapter 2.

• Added a sequence diagram to the open method description. See Chapter 2.

• Updated the Common DirectIOEvent Obj attribute to reference the OPOS BinaryConversion property, see
Chapter 2.

• Expanded the meaning of the ER_RETRY ErrorResponse attribute of the ErrorEvent, see Chapter 2.

• Corrected the values for ErrorEvent ErrorLocus and ErrorResponse attributes from E_EL_XXX and
E_ER_XXX to EL_XXX and ER_XXX, see Chapter 2.

• Added a Sequence Diagram to the Cash Changer device chapter. This diagram replaces the “processing flow”
diagram.

• Added a Sequence Diagram to the Cash Drawer device chapter.

• Changed the chapter heading for CAT to be “CAT - Credit Authorization Terminal” for consistency.

• Added a Sequence Diagram to the CAT device chapter.

• Updated the CAT property AdditionalSecurityInformation to reference the OPOS BinaryConversion
property, see Chapter 10.

• Updated the CAT property SlipNumber to be consistently defined as a string in the Summary and Properties
section of the chapter, see Chapter 10.

• Reworded some of the descriptions in the CAT, ErrorEvent, Attributes section, see Chapter 10.

• Added the chapter describing the Check Scanner device. See Chapter 11. The chapters following have been
renumbered accordingly.

• Added a Sequence Diagram to the CoinDispenser device chapter, see Chapter 13.

• Removed two blank (headings only) pages from the FiscalPrinter chapter that were to contain diagrams,
namely, the Fiscal Printer State Diagram and the Fiscal Printer PrinterState Diagram.

• Updated the FiscalPrinter printNormal method data parameter to reference the OPOS BinaryConversion
property, see Chapter 16.

• Made the following changes to Chapter 18:

• Added a Sequence Diagram to the HardTotals device chapter.

• Corrected the ErrorCode value for commitTrans to E_ILLEGAL.

• Updated the HardTotals read method data parameter to reference the OPOS BinaryConversion
property.

• Added the ErrorCode value of E_ILLEGAL to the setAll method.
Unified POS, v1.16.1 2017

• Updated the HardTotals write method data parameter to reference the OPOS BinaryConversion
property.

• Updated/corrected the Class Diagram of the Keylock device chapter, see Chapter 21.

• Added a Sequence Diagram to the Keylock device chapter, see Chapter 21.

• Made the following changes to Chapter 23:

• Deleted the last (redundant) bullet of the Capabilities section in the LineDisplay device chapter.

• Updated the Class Diagram of the LineDisplay device chapter.

• Added a Sequence Diagram to the LineDisplay device chapter.

• Added a Data Characters and Escape Sequence section to the LineDisplay device chapter.

• Updated the LineDisplay DeviceColumns property to reflect the impact of changing ScreenMode.

• Updated the LineDisplay DeviceRows property to reflect the impact of changing ScreenMode.

• Updated the LineDisplay device to support CodePage mapping:

• Added the following properties: CapMapCharacterSet and MapCharacterSet.

• Updated the LineDisplay device to support various screen modes:
• Added the following properties: CapScreenMode, ScreenMode, and ScreenModeList.

• Updated the LineDisplay device to support the displaying of bitmaps:
• Added the following properties: CapBitmap, MaximumX, and MaximumY.
• Added the following methods: displayBitmap, setBitmap.

• Updated the LineDisplay clearText method to clarify the lifetime of bitmaps.

• Updated the LineDisplay defineGlyph method glyph parameter to reference the OPOS
 BinaryConversion property.

• Updated the LineDisplay displayText method data parameter to reference the OPOS
 BinaryConversion property.

• Updated the LineDisplay displayText method to reference the use of escape sequences and the
 placement of text and bitmaps.

• Updated the LineDisplay displayTextAt method data parameter to reference the OPOS
 BinaryConversion property.

• Updated the LineDisplay scrollText method to clarify that bitmaps are also scrolled.

• Changed the chapter heading for MICR to be “MICR - Magnetic Ink Character Recognition Reader” for
consistency.

• Added a Sequence Diagram to the MICR device chapter.

• Expanded the description of the check removal processing under the Model section.

• Expanded the description of event firing after the endInsertion processing is successfully completed, see
Chapter 24.

• Added additional ErrorCodeExtended values to the MICR ErrorEvent, see Chapter 24.

• Added the chapter describing the Motion Sensor device. See Chapter 25. The chapters following have been
renumbered accordingly.

• Changed the chapter heading for MSR to be “MSR - Magnetic Stripe Reader” for consistency.

• Added a Sequence Diagram to the MSR device chapter, see Chapter 26.

• Added a Sequence Diagram to the PINPad device chapter, see Chapter 27.
2018 Unified POS, v1.16.1

• Updated the PINPad computeMAC method inMsg and outMsg parameters to reference the OPOS
BinaryConversion property, see Chapter 27.

• Made the following changes to Chapter 28:

• Added a new ESC sequence to the Point Card Reader Writer device chapter providing for more
reliable handling of pass through data.

• Added a Sequence Diagram to the Point Card Reader Writer device chapter.

• Updated the Point Card Reader Writer device to support CodePage mapping by adding the
CapMapCharacterSet and MapCharacterSet properties.

• Updated the Point Card Reader Writer printWrite method data parameter to reference the OPOS
BinaryConversion property.

• Updated the Point Card Reader Writer validateData method data parameter to reference the OPOS
BinaryConversion property.

• Added a Sequence Diagram to the POS Keyboard device chapter, see Chapter 29.

• Added a Sequence Diagram to the POS Power device chapter, see Chapter 30.

• Updated/clarified the text in the various diagrams in the POS Power Chapter.

• Added clarification of the pixel handling capability of the POS Printer.

• Made the following changes to Chapter 31:

• Updated the Class Diagram of the POS Printer device chapter.

• Added a new ESC sequence to the POS Printer device chapter providing for more reliable handling of
 pass through data.

• Updated the POS Printer device to support CodePage mapping by adding the CapMapCharacterSet
 and MapCharacterSet properties.

• Updated the POS Printer device to add support for printing Barcodes and Bitmaps to rotatePrint by
 adding the RecBitmapRotationList and SlpBitmapRotationList properties, and updating the
 SlpBarCodeRotationList property.

• Added additional meaning for the E_ILLEGAL error in the printBarCode method of the POS Printer.

• Clarified the format of the file referenced by the fileName parameter of the printBitmap method of
 the POS Printer for the OPOS environment, and clarified the interaction between mixed text and
 bitmap printing.

• Updated the following POS Printer methods/parameter to reference the OPOS BinaryConversion
 property:

• printBarCode data
• printImmediate data
• printNormal dat
• printTwoNormal data1/data2
• setLogo data
• validateData data

• Expanded the allowable values of the bitmapNumber parameter of the setBitmap method of the POS
 Printer.

• Clarified the format of the file referenced by the fileName parameter of the setBitmap method of the
 POS Printer for the OPOS environment, and clarified the interaction between mixed text and bitmap
 printing.
Unified POS, v1.16.1 2019

• Updated the Remote Order Display device to support CodePage mapping by adding the
CapMapCharacterSet and MapCharacterSet properties. in Chapter 32.

• Updated the Remote Order Display displayData method data parameter to reference the OPOS
BinaryConversion property, see Chapter 32.

• Added a Sequence Diagram to the Scale device chapter, see Chapter 34.

• Updated the Scale displayText method data parameter to reference the OPOS BinaryConversion property,
see Chapter 34.

• Added a Sequence Diagram to the Scanner device chapter, see Chapter 35.

• Updated the Scanner ScanData and ScanDataLabel properties to reference the OPOS BinaryConversion
property in Chapter 35.

• Added a Sequence Diagram to the Signature Capture device chapter, see Chapter 36.

• Updated the Signature Capture PointArray and RawData properties to reference the OPOS
BinaryConversion property in Chapter 36.

• Added a Sequence Diagram to the Tone Indicator device chapter, see Chapter 38.

• Made the following changes to Annex A:

• Made the OPOS Windows operating Systems supported a more general statement, and added the
 exclusion of Windows 3.x, removed reference to the deliverable of the CPG.

• Added an Event Registration Sequence Diagram.

• Added a language specific Common Properties Summary Table to the OPOS Annex.

• Added a language specific Programmatic Names Table to the OPOS Annex.

• Added table to the BinaryConversion property description to define the affected devices and
 properties/methods.

• Added CapStatusMultiDrawerDetect to the two tables describing the Cash Drawer Properties
 Operations.

• Added an asterisk to identify OpenDrawer as required for basic operations to the two tables
 describing the Cash Drawer Properties Operations.

• Added Check Scanner and Motion Sensor to the Device Class Keys list.

• Added Check Scanner and Motion Sensor to the Header Files list.

• Added Code Page technical information regarding the Mapping of CharacterSet.

• Added the original OPOS Application Programmers Guide Change History for Revisions 1.01
 through 1.6.

• Added the OPOS Control Programmers Guide as Section 8.

• Added an Event Registration Sequence Diagram.

• Made the following changes to Annex B:

• Updated the JavaPOS Package Structure descriptions, also added CheckScanner and MotionSensor
devices.

• Added a language specific Common Properties Summary Table to the JavaPOS Annex.

• Added a language specific Class Names Table to the JavaPOS Annex.

• Added clarification of the initial value of the PowerNotify property after the open method call.

• Added CapStatusMultiDrawerDetect to the table describing the Cash Drawer Properties Operations.
2020 Unified POS, v1.16.1

• Added an asterisk to identify openDrawer as required for basic operations to the tables describing the
 Cash Drawer Properties Operations.

• Added Code Page technical information regarding the Mapping of CharacterSet.

• Added the original JavaPOS Programming Guide Change History for Revisions 1.3 through 1.6.

• Added reference detailing 2nd USB PlusPower connector, reworded the description of the PlusPower
connectors, and added information on the IBM patents, see See Annex F.

• Made minor typographical and formatting changes throughout the document as necessary.

E.5 Release Version 1.8

Version 1.8 of this specification, released on June 30, 2003, includes a new chapter describing the Smart Card
Reader Writer device, additions for the support of Device Statistics that affect every device/chapter, and contains
several updates to the existing chapters that provide enhancements, clarifications, and corrections to Version 1.7.
These changes are detailed below, with links to the corresponding sections, pages, or chapters as appropriate.
However, any minor typographical changes are not listed below.

• Updated the Version and issue date on the front.

• Added new company names to the Member list.

• Updated the Table of Contents to reflect additional sections.

• Added the Device Statistics information to the Introduction and Architecture Chapter, Common PME Chapter,
all the device Chapters in the Summary Tables, and the OPOS and JavaPOS Appendices also in the Summary
Tables, and Properties and Methods Sections.

• Updated several Sequence Diagrams in order to more closely depict the sequence of the Service processing of
event firing and the decrement of DataCount. Updated diagrams are in the MICR, MSR, POSKeyboard,
Scanner, and SignatureCapture chapters.

• Reworded the handling of Workstation or POS terminal power loss support under the Device Power Reporting
Model, see Chapter 1, Annex A, and Annex B.

• Corrected minor typographical error in and reformatted the layout of the CashChanger State Diagram, see
Chapter 8.

• Corrected the Summary section definition of parameters of the Cash Drawer openDrawer and
waitForDrawerClose methods, see Chapter 9.

• Corrected the ErrorResponse type of the CAT ErrorEvent to read-write, see Chapter 10.

• Made the following changes to Chapter 16:

• Added various enhancements to the Model discussion for the Fiscal Printer.

• Updated the Fiscal Receipt and Fiscal Receipt Ending descriptions of the Fiscal Printer to allow use
 of the printRecMessage method in these states.

• Updated the Message Lines description of the Fiscal Printer Receipt Layouts.

• Updated the CapAdditionalLines property of the Fiscal Printer.

• Expanded the description of PTR_SUE_SLP_EMPTY status of the Fiscal Printer StatusUpdateEvent.

• Added support for multiple covers in the Fiscal Printer StatusUpdateEvent.

• Clarified the wording of the claimFile method in the HardTotals device, see Chapter 18.

• Added DISP_CCT_BLINK to the LineDisplay CapCursorType capability, see Chapter 23.
Unified POS, v1.16.1 2021

• Added DISP_CT_BLINK to the LineDisplay CursorType property, see Chapter 23.

• Corrected the wording in the PINPad Features not Supported section, last bullet, to remove the word “not”, see
Chapter 27.

• Corrected the type of the PINPad device’s Amount property from int32 to currency in both the Summary and
Properties sections, see Chapter 27.

• Corrected the ErrorResponse type of the PINPad ErrorEvent to read-write, see Chapter 27.

• Made the following changes to Chapter 31:

• Clarified the pixel-level addressing for the POSPrinter.

• Added various enhancements to the Model discussion for the POSPrinter.

• Added clarification in POSPrinter describing cartridge statuses.

• Added discussion in POSPrinter describing actions of partial line printing.

• Corrected the ESC sequence for Feed and Paper Cut in the POSPrinter device.

• Updated the four POSPrinter Low Level state diagrams.

• Added clarification to the handling and printing of the PTR_BCS_Code128 barcode format supported
 by the POSPrinter device, printBarCode method.

• Added additional RSS barcode formats supported by the POSPrinter device printBarCode method.

• Added clarification of status of RotateSpecial and usage of PTR_RP_BARCODE under rotatePrint
 in POSPrinter.

• Expanded the description of PTR_SUE_SLP_EMPTY status of the POSPrinter StatusUpdateEvent.

• Added support for multiple covers in the POSPrinter StatusUpdateEvent.

• Clarified the check digit handling for the ScanDataLabel property supported by the Scanner device.

• Added additional RSS ScanDataType formats supported by the Scanner device, see Chapter 35.

• Added the chapter describing the Smart Card Reader Writer device. See Chapter 37. The chapters following
have been renumbered accordingly.

• Moved the Tone Indicator chapter from 24 to 25 to make room for the Smart Card Reader Writer chapter that
is added in this release.

• Made the wording consistent in the OPOS Annex Methods (except Open), Return section.

• Made the following changes to Annex A:

• Added Smart Card Reader Writer to the OPOS Programmatic Names list.

• Added Smart Card Reader Writer to the Device Class Keys list.

• Added Smart Card Reader Writer to the Header Files list and corrected MotionSensor file name to
 match released file name.

• Added Smart Card Reader Writer to the Internal Header Files list and corrected MotionSensor file
 name to match released file name.

• Updated the JavaPOS Package Structure descriptions, also added the Smart Card Reader Writer device, see
Annex B.

• Corrected the package names for PointCardRWService15 through PointCardRWService17 and
POSPowerService15 through POSPowerService17, see Annex B.

• Added Smart Card Reader Writer to the JavaPOS Class Names, see Annex B.
2022 Unified POS, v1.16.1

E.6 Release Version 1.9

Version 1.9 of this specification, released on January 16, 2005, includes a reference to the addition of the POS for
.NET Annex, additions for the support of updating firmware for all device categories, and contains several
updates to the existing chapters that provide enhancements, clarifications, and corrections to Version 1.8. These
changes are detailed below, with links to the corresponding sections, pages, or chapters as appropriate. However,
any minor typographical changes are not listed below.

• Updated the Version and issue date on the front.

• Added BearingPoint company name to the Member list and split into Members and Contributors sections.

• Updated the Table of Contents to reflect additional sections.

• Added minor text updates throughout the Introduction and Architecture chapter to include references to Annex
C as the POS for .NET Reference Implementation.

• Added an update firmware capability that applies to all device categories. This added two Common Properties:
CapCompareFirmwareVersion and CapUpdateFirmware, and two Common Methods: updateFirmware
and compareFirmwareVersion. Also, six additional statuses are added to the StatusUpdateEvent. These
updates apply to all device categories and to all implementation references.

• Added the type byte to the UnifiedPOS Data Types and JavaPOS Data Types, to provide the definition of the
type of the value parameter of the HardTotals’ setAll method. See Chapter 1 and Annex B.

• Corrected the wording in the ErrorEvent to define that only input error events are delayed depending on the
setting of the DataEventEnabled property. See Chapter 2.

• Added Electronic Money Device enhancements to the CAT device with the addition of Balance,
CapCashDeposit, CapLockTerminal, CapLogStatus, CapUnlockTerminal, LogStatus, and
SettledAmount properties and cashDeposit, lockTerminal, unlockTerminal methods. See additions in
Chapter 10.

• Added a contrast enhancement to the CheckScanner device with the addition of CapAutoContrast,
CapContrast, and Contrast properties. See additions in Chapter 11.

• Corrected the Remarks section of the FiscalPrinter device’s ErrorEvent section, by deleting an erroneous
sentence that referenced the DataEventEnabled property. See Chapter 16.

• Corrected the “use after...” clauses of the resetStatistics, retrieveStatistics, and updateStatistics methods of
the Keylock device to be “open, enable.” See Chapter 21.

• Corrected the PPAD_LANG_UNRESTRICTED value name (was originally
PPAD_DISP_RESTRICTED_ORDER) of the CapLanguage property of the PINPad. See Chapter 27.

• Corrected the description under Errors of the MerchantID PINPad property to reference
beginEFTTransaction instead of enablePINEntry. See Chapter 27.

• Corrected the description under the Remarks section of the verifyMAC PINPad method to state that a
UposException will be thrown if it cannot verify the message. Also added an E_FAILURE exception under
the Errors section to cover this scenario. See Chapter 27.

• Added enhancements to support Battery Powered POS devices to the POSPower device with the addition of
the BatteryCapacityRemaining, BatteryCriticallyLowThreshold, BatteryLowThreshold,
CapBatteryCapacityRemaining, CapRestartPOS, CapStandbyPOS, CapSuspendPOS,
CapVariableBatteryCriticallyLowThreshold, CapVariableBatteryLowThreshold, and PowerSource
properties and the restartPOS, standbyPOS, and suspendPOS methods. See additions in Chapter 30.
Unified POS, v1.16.1 2023

• Added a Page Mode print enhancement to the POSPrinter device with the addition of
CapConcurrentPageMode, CapRecPageMode, CapSlpPageMode, PageModeArea,
PageModeDescriptor, PageModeHorizontalPosition, PageModePrintArea, PageModePrintDirection,
PageModeStation, and PageModeVerticalPosition properties and clearPrintArea and pageModePrint
methods. See additions in Chapter 31.

• Clarified the initial value of JrnCurrentCartridge, RecCurrentCartridge, and SlpCurrentCartridge of the
POSPrinter device when the corresponding station is not present. See Chapter 31.

• Corrected the Errors section of the changePrintSide POSPrinter method to include three previously omitted
E_EXTENDED values. See Chapter 31.

• Corrected the Remarks section of the POSPrinter device’s ErrorEvent section, by deleting an erroneous
sentence that referenced the DataEventEnabled property. See Chapter 31.

• Added a “live weight” enhancement to the Scale device with the addition of CapStatusUpdate,
ScaleLiveWeight, and StatusNotify properties and updates to the readWeight method and
StatusUpdateEvent. See additions in Chapter 34.

• Corrected the Remarks section of the ToneIndicator device’s ErrorEvent section, by deleting an erroneous
sentence that referenced the DataEventEnabled property. See Chapter 38.

• Updated the JavaPOS Package Structure descriptions for Version 1.9, and corrected verbiage on Version 1.8
updated contents. See Annex B.

• Corrected the wording in the JavaPOS ErrorEvent to define that only input error events are delayed
depending on the setting of the DataEventEnabled property. See Annex B.

• Moved this Appendix to be Annex D to allow insertion of the POS for .NET Appendix as Annex C. Annexes
D and E are also moved to be Annexes E and F respectively.

E.7 Release Version 1.10

Version 1.10 of this specification, released on February 10, 2006, includes the full incorporation of the POS for
.NET Reference Implementation in Annex C, new chapters describing the Biometrics and Electronic Journal
device categories, additions for the support of clearing input properties for all device categories, and contains
several updates to the existing chapters that provide enhancements, clarifications, and corrections to Version 1.9.
These changes are detailed below, with links to the corresponding sections, pages, or chapters as appropriate.
However, any minor typographical changes are not listed below.

• Updated the Version and issue date on the front.

• Updated the ARTS/NRF Copyright and Disclaimer notices.

• Added to the Members and Contributors sections.

• Updated the Table of Contents to reflect additional sections.

• Clarified the property handling of the EL_INPUT ErrorLocus of the ErrorEvent, see Chapter 2.

• Corrected three occurrences of ER_CONTINUE_INPUT - should be ER_CONTINUEINPUT - in the
Introduction and Architecture chapter, in the ErrorEvent section of Chapter 36, the SmartCardRW device
category, and in the JavaPOS Annex.

• Added the clearInputProperties method to the Common Properties, Methods, and Events chapter. Also
added this method to all device categories Summary and Model sections as appropriate, and to the OPOS and
JavaPOS Implementation References.
2024 Unified POS, v1.16.1

• Added ESTATS_DEPENDENCY ErrorCodeExtended to the resetStatistics and updateStatistics Common
Methods, see Chapter 2.

• Clarified the EL_INPUT description of the ErrorEvent to include “No previously buffered input data is
available.” instead of “No input data is available.” in the Common Properties, Methods, and Events chapter.
This change was also applied to the ErrorEvent of all the appropriate input device categories as well as the
OPOS (2) and JavaPOS Appendices.

• Added the chapter describing the Biometrics device. See Chapter 6. The chapters following have been
renumbered accordingly.

• Re-instated the missing CAT_TRANSACTION_CHECKCARD value to the TransactionType property of
the CAT device category, see Chapter 10.

• Added the chapter describing the Electronic Journal device. See Chapter 14. The chapters following have been
renumbered accordingly.

• Replaced references to ‘Newline’ with ‘Line Feed’ in the FiscalPrinter, LineDisplay, and POSPrinter
device categories. Also replaced references to ‘\n’ and ‘\r’ with ‘10 decimal’ and ‘13 decimal’ respectively.

• Added the range of valid values “Range 1000 and above - Code page; matches one of the standard values” to
the CharacterSet property of the LineDisplay, POSPrinter, and RemoteOrderDisplay device categories.
Also added a reference to the “Mapping of CharacterSet” section in the Annexes.

• Added support for writing tracks to the MSR device category, adding new capabilities, and updates to the
Model section, as well as the supporting Properties and Methods and updated diagrams. See Chapter 26.

• Added clarifications to the ErrorReportingType and ErrorEvent of the MSR device category, see Chapter
26.

• Replaced the reference to “Range 1000 and higher - Windows code page; matches one of the standard values.”
with “Range 1000 and above - Code page; matches one of the standard values” in the CharacterSet property
of the PointCardReaderWriter device category. Also added a reference to the “Mapping of CharacterSet”
section in the Annexes.

• Corrected the definition of the restartPOS method of the POSPower device category in the Class Diagram
section to match the definition in the Method (UML operations) section, see Chapter 30.

• Made the following changes to Chapter 31:

• Clarified the description in Synchronous Printing of the POSPrinter device category.

• Added an ESC sequence to the POSPrinter device category to allow the in-line printing of barcodes.

• Extended several ESC sequences of the POSPrinter device category to allow individual unsetting
thereof.

• Added a new ESC sequence to support ‘Left justify’.

• Added the printMemoryBitmap method to the POSPrinter device category to allow the printing of
bitmaps from a memory image.

• Clarified/corrected which print methods can be used for the various settings of the rotation parameter
of the rotatePrint method of the POSPrinter device category.

• Clarified that in the data parameter of the setLogo method of the POSPrinter device category escape
sequences excludes other logos.

• Added clarifications/corrections to the Scale device category. Defined the ScaleLiveWeight,
TareWeight, and UnitPrice properties as accessible after ‘open-claim-enable’ to match the
definitions in the summary section, and added the E_BUSY status to the readWeight and zeroScale
methods. See Chapter 34.
Unified POS, v1.16.1 2025

• Corrected/changed the names of the constants for the StatusNotify property and StatusUpdateEvent
of the Scale device category to maintain consistency. Values are changed from SCL_XXX to
SCAL_XXX. See Chapter 34.

• Clarified the conditions under which a check digit should be calculated for the ScanDataLabel property of the
Scanner device category, see Chapter 35.

• Clarified the Input Model description of how data is made available and the interaction of the readData and
DataEvent processing of the SmartCardRW device category, see Chapter 37.

• Made the following changes to Annex A:

• Refreshed the URLs that provide links to the OPOS Common Controls.

• Added some explanatory footnotes that were “lost in migration” from the original OPOS
 specification.

• Corrected the second parameter of the CompareFirmwareVersion method in the OPOS Common
 Methods table to match the definition in the Methods section.

• Added Biometrics and Electronic Journal to the OPOS Programmatic Names list.

• Updated the table in the BinaryConversion property to include information and links relative to the
 impact on the binary properties and method parameters of the Biometrics Device Category.

• Added Biometrics and Electronic Journal to the OPOS Device Class Keys list.

• Added Biometrics and Electronic Journal to the OPOS Header Files list.

• Added the ‘omitted’ new method interfaces that were added in versions 1.8 and 1.9 into the OPOS
 Annex.

• Added Biometrics and Electronic Journal to the OPOS Internal Header Files list.

• Added a reference to the “Mapping of CharacterSet” section in the OPOS and JavaPOS
 Implementation Reference Appendices to the effect that “In the Windows environment, setting
 CharacterSet to a value in the range 1000 and higher, matches one of the standard Windows
 operating system code page values.”

• Updated the JavaPOS Package Structure descriptions for Version 1.10. See Annex B.

• Added Biometrics and Electronic Journal to the JavaPOS Class Names, see Annex B.

• Added the POS for .NET Appendix detailed information to Annex C.

E.8 Release Version 1.11

Version 1.11 of this specification, released on January 15, 2007, includes the full incorporation of the POS for
.NET Reference Implementation in Annex C, new chapters describing the BillAcceptor, BillDispenser,
CoinAcceptor, and ImageScanner device categories, the introduction of element deprecation, and contains
several updates to the existing chapters that provide enhancements, clarifications, and corrections to Version
1.10. These changes are detailed below, with links to the corresponding sections, pages, or chapters as
appropriate. However, any minor typographical changes are not listed below.

• Updated the Version and issue date on the front.

• Updated the ARTS/NRF Copyright and Disclaimer notices.

• Updated the Members and Contributors sections, including changing Symbol Inc. to Motorola, Inc.

• Updated the Table of Contents to reflect additional sections.
2026 Unified POS, v1.16.1

• Added data type definitions “array of binary”, “int32 array”, and “int32 array by reference” and updated the
definition of “binary by reference” to support the BIR structure and other parameters used in the Biometrics
and MSR device categories. See Chapter 1.

• Expanded the section on Initialization to include Initialization and Error Reporting guidelines. See Chapter
1.

• Added a new error code E_DEPRECATED to “Error Codes.”

• Added a new section describing Deprecation, see “Deprecation Handling.”

• Added a new section describing Hydra Device Considerations.

• Corrected the Error description of CapPowerReporting and PowerState common properties to state that an
exception can be thrown on errors. See Chapter 2.

• Added the chapter describing the BillAcceptor device category. See Chapter 4. The chapters following have
been renumbered accordingly.

• Added the chapter describing the BillDispenser device category. See Chapter 5. The chapters following have
been renumbered accordingly.

• Made the following changes to Chapter 6:

• Cross-referenced the CapPrematchData property with the processPrematchData method in the
 Biometrics device category.

• Corrected the spelling of constants *_KEYSTROKE_DYNAMICS in the CapSensorType and
 SensorType properties of the Biometrics device category.

• Added/corrected the E_ILLEGAL description of the SensorColor, SensorOrientation, and
 SensorType properties of the Biometrics device category.

• Changed E_FAILURE on the ErrorCode of the Biometrics device category’s methods where this
 was referencing a parameter error, to be E_ILLEGAL.

• Added E_ILLEGAL to all the Biometrics device category’s methods except endCapture as the
 ErrorCode if a capture is already in progress when the method is called. Also added E_TIMEOUT to
 the identify and verify methods.

• Modified the referenceBIRPopulation and candidateRanking parameters of the identify and
 identifyMatch methods of the Biometrics device category to be “array of binary” instead of binary
 and “int32 array” instead of binary respectively.

• Added the missing Remarks clarification paragraph to the Biometrics ErrorEvent.

• Added three new stati to the StatusUpdateEvent of the Biometrics device category,
 BIO_SUE_MOVE_SLOWER, BIO_SUE_MOVE_FASTER, and BIO_SUE_SENSOR_DIRTY.

• Updated the chapter describing the CashChanger device category to support the new cash management
devices. See Chapter 8.

• Added clarifications to the CheckScanner device category regarding the usage/contents of the
ImageTagData property and associated properties and methods. See Chapter 11.

• Added the chapter describing the CoinAcceptor device category. See Chapter 12. The chapters following have
been renumbered accordingly.

• Updated the chapter describing the CoinDispenser device category to support the new cash management
devices. See Chapter 13. 


Unified POS, v1.16.1 2027

• Added cross-referencing in the ElectronicJournal device category for the CapMediumIsAvailable,
CapPrintContent, and CapPrintContentFile properties to their corresponding property/methods. Made all
references to POSPrinter also reference FiscalPrinter. Clarified some wording in the Model section and
queryContent method.

• Corrected the wording of the description of the toMarker parameter of the printContent and queryContent
methods of the ElectronicJournal device category, see Chapter 14.

• Made the following changes to Chapter 16:

• Added several additions/corrections to the FiscalPrinter device category. See ActualCurrency (new
currencies), CapCheckTotal (restriction on CheckTotal), CapPositiveSubtotalAdjustment (new
capability), CheckTotal, CountryCode (new countries), DateType (new value), FiscalReceiptType
(new receipt type), beginFiscalDocument (removed restriction, added error code),
beginFiscalReceipt (added error code), getVatEntry (corrected Capability reference),
printRecItemAdjustment (added coupons), printRecItemAdjustmentVoid (added coupons),
printRecMessage (relaxed restriction), printRecSubtotalAdjustment (allowed surcharges and added
coupons), setVatTable (added capability check), setVatValue (added capability check), and
ErrorEvent (added new ErrorCodeExtended value).

• Added methods printRecItemVoid and printRecItemAdjustmentVoid to the FiscalPrinter device
category.

• Deprecated the CapAmountNotPaid property and the printRecVoidItem method of the
FiscalPrinter device category.

• Updated the printRecNotPaid method of the FiscalPrinter device category to reference the
CapReceiptNotPaid property instead of the CapAmountNotPaid property which is deprecated.

• Added an new definition (FPTR_RT_EOD_ORDINAL) and clarified an existing definition
(FPTR_RT_ORDINAL) of the printReport method of the FiscalPrinter device category.

• Added the chapter describing the ImageScanner device category. See Chapter 19. The chapters following
have been renumbered accordingly.

• Added support for an electronic Keylock to the Keylock device category including an updated Class Diagram.
See Chapter 21.

• Corrected the omission of the format of the ExpirationDate property of the MSR device category. See
Chapter 26.

• Changed the data parameter of the writeTracks method of the MSR device category from string to ‘array
of binary’ to facilitate implementation. See Chapter 26.

• Added printMemoryBitmap to the list of methods supported by the pageModePrint method of the
POSPrinter device category. See Chapter 31.

• Clarified the wording of the rotation parameter of the rotatePrint method of the POSPrinter device category.
See Chapter 31.

• Corrected the type of the AsyncMode property and the syntax definition of the AutoToneDuration property
of the RemoteOrderDisplay device category.

• Added new 2D Symbologies to the ScanDataType property of the Scanner device category. See Chapter 35.

• Added the missing Remarks clarification paragraph to the SignatureCapture ErrorEvent that was apparently
dropped during the transition to UnifiedPOS, see Chapter 36. 


2028 Unified POS, v1.16.1

• Made the following changes to Annex A:

• Added OPOS_E_DEPRECATED to the list of ResultCode values.

• Updated the table of OPOS Data Types.

• Updated the list of OPOS Programmatic Names.

• Updated the entries in the BinaryConversion table to reference the FrameData property of the
 ImageScanner device category.

• Added OPOS_E_DEPRECATED to the ResultCode values.

• Updated the list of OPOS Device Class Keys.

• Updated the list of OPOS Application Header Files.

• Updated the list of OPOS Internal Header Files.

• Made the following changes to Annex B:

• Updated the table of JavaPOS Data Types.

• Added JPOS_E_DEPRECATED to the ErrorCode values.

• Updated the list of JavaPOS Packages.

• Updated the JavaPOS Class Names.

• Removed the duplicate Data Types table, and added a cross-reference link to the table.

• Made the following changes to Annex C:

• Updated that section describes the POS for .NET Reference Implementation to support the current
release level of the specification. This includes updating to support the latest level of the Common
PMEs.

• Clarified the “Shim” descriptions.

• Replaced many hyperlinks that reference non-static URLs with static URLs.

• Added a new table describing the Device Category support level and initial supported version
 information.

• Updated the tables describing the mapping of POS for .NET enumerations.

• Updated the table of POS for .NET Data Types and added a column for VB.NET types.

• Updated the table defining the POS for .NET Common Properties. Added the definitions for
 CapCompareFirmwareVersion and CapUpdateFirmware properties.

• Updated the list defining the POS for .NET Common Methods. Added the definitions for the
 ClearInputProperties, CompareFirmwareVersion, and UpdateFirmware methods.

• Clarified the descriptions in the Shim section.

• Added an architecture diagram to the Shim.

• Added a new Annex G describing Deprecation History.

E.9 Release Version 1.12

Version 1.12 of this specification, released on January 14, 2008, includes new chapters describing the Belt,
ElectronicValueRW, Gate, ItemDispenser, Lights, and RFIDScanner device categories, new Appendices
describing the XMLPOS Mapping Reference, Systems Management Information, and Device Statistics, and
contains several updates to the existing chapters that provide enhancements, clarifications, and corrections to
Version 1.11. These changes are detailed below, with links to the corresponding sections, pages, or chapters as
appropriate. However, any minor typographical changes are not listed below.
Unified POS, v1.16.1 2029

• Updated the Version and issue date on the front.

• Updated the ARTS/NRF Copyright and Disclaimer notices.

• Updated the Members and Contributors sections, including changing PSC Inc. to Datalogic Scanning, Inc.

• Updated the Table of Contents to reflect additional sections.

• Added the List of Figures to cross-reference figures in new section(s).

• Added clarification throughout the document where the usage of NULL/null is inconsistent/wrong. This
affected these chapters (CashChanger, CAT, CheckScanner, ElectronicJournal, and RFIDScanner), and
one annex - POS for .NET.

• Updated the “About this Document” section with descriptions of the various annexes.

• Added mutability clarifications to the Data Types table.

• Added clarification of the operation of FreezeEvents and properties that are kept current while a device is
enabled.

• Added clarification of the handling of DataEventEnabled during the firing of input ErrorEvents.

• Added clarification to the Asynchronous Output processing.

• Added the chapter describing the Belt device category.

• Corrected the invalid examples in BillAcceptor (DepositCounts, adjustCashCounts, and readCashCounts),
BillDispenser (adjustCashCounts) and readCashCounts, and CoinAcceptor (DepositCashList) to only
use valid Yen currency values and to correctly use the ‘;’ for delineating coin and notes. Also corrected the
‘Version’ supported for clearOutput in the BillDispenser Summary section to indicate “Not supported.”

• Added clarifications and cross-referencing to various properties and clarifications to methods descriptions and
method parameters of the Biometrics device category. See CapRawSensorData, CapRealTimeData,
RawSensorData, RealTimeDataEnabled, identify, identifyMatch, verify, and verifyMatch.

• Added new status to the StatusUpdateEvent of the Biometrics device category, see Chapter 6.

• Corrected the Sequence Diagram of the CashDrawer device category, see Chapter 9.

• Added a new status to the StatusUpdateEvent of the ElectronicJournal device category, see Chapter 14.

• Made the following changes to Chapter 15: Added the chapter describing the ElectronicValue Reader/
Writer device category. The chapters following have been renumbered accordingly.

• Made the following changes to Chapter 16:

• Added the State Diagram to the FiscalPrinter device category.

• Added new methods printRecItemRefund and printRecItemRefundVoid to the FiscalPrinter
device category. Updated the Model section, Ordering of Fiscal Receipt Print Requests, the getData
method, printRecRefund method, and printRecRefundVoid method with references to these new
methods. Updated the Error Model and ErrorEvent sections with missing static. Also added Sweden
(see CountryCode as a supported country with Krona as its currency (see ActualCurrency).

• Added the chapter describing the Gate device category. See Chapter 17. The chapters following have been
renumbered accordingly.

• Removed “Bar Code Scanner” from the title and headings of the ImageScanner device category, see Chapter
19.
2030 Unified POS, v1.16.1

• Added the chapter describing the ItemDispenser device category. The chapters following have been
renumbered accordingly.

• Removed the (now) erroneous sentence from the Keylock Sequence Diagram heading text, see Chapter 21.

• Added the chapter describing the Lights device category. The chapters following have been renumbered
accordingly.

• Made the following changes to Chapter 26:

• Added new item to the Capabilities section, updated Class Diagram, new properties
CardPropertyList, CardType, CardTypeList, and WriteCardType, and method
retrieveCardProperty to the MSR device category to support AAMVA cards (e.g., Driver’s Licence
and ID Cards). Also updated the DecodeData property, and the writeTracks method, to identify the
card format/type. Added a cross-reference from the writeTracks method data parameter, to the
BinaryConversion table in Annex A.

• Added support for data encryption, card and device authentication to the MSR device category. This
update added 4 new Capabilities (CapCardAuthentication, CapDataEncryption, CapDeviceAuthentication,

CapTrackDataMasking), 14 new Properties (AdditionalSecurityInformation, CardAuthenticationData,

CardAuthenticationDataLength, DataEncryptionAlgorithm, DeviceAuthenticated, DeviceAuthenticationProtocol,

Track1EncryptedData, Track1EncryptedDataLength, Track2EncryptedData, Track2EncryptedDataLength,

Track3EncryptedData, Track3EncryptedDataLength, Track4EncryptedData, Track4EncryptedDataLength), 4 new
Methods (authenticateDevice, deauthenticateDevice, retrieveDeviceAuthenticationData, updateKey), and 2 status
values to the StatusUpdateEvent (SUE_DEVICE_AUTHENTICATED, SUE_DEVICE_DEAUTHENTICATED), as
well as textual updates to most of the chapter, including updates to (most of the) existing Properties
and Methods. Also added an updated Class Diagram and new Authentication Sequence Diagram.

• Corrected the attribute to ‘read-only’ in the syntax of the PINEntryEnabled property of the PINPad device
category to match the Summary section, see Chapter 27.

• Added the ESC sequence definition to the POSPrinter device category to support strike-through printing.
Added the standard termination character to the Underline printing sequence. Also added clarifications to the
syntax in the tables and descriptions. See Chapter 31.

• Replaced the RSS constants with GS1 definitions in the printBarCode method of the POSPrinter device
category. Old definitions are deprecated. See Chapter 31.

• Added a cross-reference from the printMemoryBitmap method data parameter of the POSPrinter device
category, see Chapter 31, to the BinaryConversion table in Annex A.

• Added the chapter describing the RFIDScanner device category. See Chapter 33. The chapters following have
been renumbered accordingly.

• Updated the Class Diagram of the Scale device category to correct the weightData parameter of the
readWeight method, see Chapter 34.

• Replaced the RSS constants with GS1 definitions in the ScanDataType property of the Scanner device
category. Old definitions are deprecated. See Chapter 35.

• Added minor mutability clarifications to the Annex A OPOS Data Types section.

• Updated various tables and file lists in Appendix A in support of the new Belt, ElectronicValueRW, Gate,
ItemDispenser, Lights, and RFIDScanner device categories.

• Updated the entries in the BinaryConversion table to reference the applicable properties and method
parameters of the new device categories. See Annex A. 
Unified POS, v1.16.1 2031

• Updated/added in Annex A the URL of the location of the OPOS header files and internal header files.

• Updated various tables and file lists in Annex B in support of the new Belt, ElectronicValueRW, Gate,
ItemDispenser, Lights, and RFIDScanner device categories.

• Added a clarification for the handling on binary data inside a Java string, see Annex B.

• Updated the Device Category table in Annex C in support of the new Belt, ElectronicValueRW, Gate,
ItemDispenser, Lights, and RFIDScanner device categories.

• Updated the enumeration table in Annex C, POS for .NET with the “RSS to GS1” updates to symbology for
the POSPrinter and the Scanner device categories.

• Added a new Annex D describing the XMLPOS Mapping Reference. The appendices following have been
renumbered accordingly.

• Added Scanner and POSPrinter deprecated RSS symbology definitions to the deprecated items table, see
Annex H.

• Added a new Annex I providing System Management Information.

• Added a new Annex J describing the Device Statistics. The was previously released as a separate document,
but is now included as an Annex.

• Added new device statistics for the RFIDScanner device category and for the MSR device category in
support of card and device authentication, see Annex J.

E.10 Release Version 1.13

Version 1.13 of this specification, released in 2009, includes updates that reflect feedback from device service
developers and application development programmers as a result of using Version 1.12 and previous versions of
this standard. These changes are detailed below, with links to the corresponding sections, pages, or chapters as
appropriate. However, any minor typographical changes are not listed below.

Title Pages
• Added changes to UnifiedPOS Technical Committee Members and Technical Committee Contributors to

reflect current status of active committee membership.

Introduction and Architecture
• Added updated footnote “b” to clarify that leading or trailing spaces should not be used in comma delimited

string data, see Chapter 1.

• Added clarification paragraph to Device Input Model description to clarify the situation of a driver receiving
data from an input device when the application believes the device is disabled, see Chapter 1.

• Clarify the event ID delivered from OutputCompleteEvent does not have to be sequential, but it has to be
unique, see Chapter 1. 

Common Properties, Methods, Events
• Added clarification to the ErrorEvent for the ER_RETRY, ER_CLEAR, and ER_CONTINUEINPUT error

response codes.

• Added additional “See Also, reference” for OutputCompleteEvent.
2032 Unified POS, v1.16.1

Biometrics
• Added to Biometrics device two new values for StatusUpdateEvent,

BIO_SUE_STATUS_SENSOR_READY and BIO_SUE_STATUS_SENSOR_COMPLETE, see Chapter 6. 

Cash Drawer
• Updated Cash Drawer, StatusUpdateEvent description and status value meanings, see Chapter 9. 

Check Scanner
See Chapter 11 for these changes:

• Updated the Remarks section in the Check Scanner for the FileIndex property to clarify its usage.

• Added example to Check Scanner for XML data structure using CDATA to transfer the XML ImageData.

• In the Check Scanner the MapMode property, under the Remarks, additional definition was added to clarify
its default value.

• The remarks section under the Check Scanner storeImage method was clarified. 

Fiscal Printer
See Chapter 16 for these changes:

• The ErrorCode Extended, EFPTR_SLP_FORM, was added in the Error Model description.

• In the Ordering of Fiscal Receipt Print Requests the printRecMessage method was added to the list of
available fiscal print methods.

• Updated the Fiscal Printer by adding reference for printRecMessage method and clarifications.

• Edit definition for CapAdditionalLines property.

• Updated the Fiscal Printer by adding reference for printRecMessage method in the PrinterState property.

• Add clarification and change the description to E_ILLEGAL to endItemList method for Fiscal Printer.

• Updated the Fiscal Printer by adding clarifications for the printRecMessage method.

• Added clarification to verifyItem method for ErrorCodeExtended value E_ILLEGAL.

• Added ErrorCodeExtended, EFPTR_SLP_FORM, to Fiscal Printer errorEvent method. 

Lights
• Corrected switchOn method under See Also to include the reference to CapAlarm property, see Chapter 22. 

MICR
See Chapter 24 for these changes:

• Updated and added definitions for the MICR Character Substitution and clarification to CMC-7 support.

• Added additional Country Codes to the MICR CountryCode properties.

• Updated the MICR RawData Property remarks and added a sample definition for the CMC-7 coding.

MSR
See Chapter 26 for these changes:
Unified POS, v1.16.1 2033

• Added a section to describe the MSR Encryption and Authentication, for MSR devices and/or services that
support that functionality.

• Added additional wording to clarify masking requirements for the MSR AcountNumber property.

• Added additional wording to clarify CapTrackDataMasking for the MSR device.

• Clarified the remarks for CardAuthenticationDataLength, and DecodeData.

• Added clarification example for MSR ErrorReporting property.

• Clarified the remarks for: 
Track1EncryptedDataLength 
Track2EncryptedDataLength
Track3EncryptedDataLength
Track4EncryptedDataLength
to indicate the value for the length is determined before encryption takes place.

• Corrected the type for value from “inout” to “out” in the retrieveCardProperty method; clarified the
Description for the value parameter.

POS Keyboard
• Added clarification for POS Keyboard Keyboard Translations requirements, see Chapter 29.

POS Printer
See Chapter 31 for these changes:

• In POS Printer Property Summary List added properties for CapRecRuledLine; CapSlpRuledLine.

• In POS Printer Method Summary List added drawRuledLine method.

• Added description for alternative way to handle escape code sequences that contain variable length data,
“Data Characters and Escape Sequences.”

• In POS Printer Commands table added entry to describe in-line ruled line escape sequence to be used.

• Added further description for Ruled Line Drawing in the POS Printer.

• Added in the POS Printer Properties the description for the capability property CapRecRuledLine.

• Added in the POS Printer Properties the description for the capability property CapSlpRuledLine.

• In POS Printer, added drawRuledLine method.

• Removed the ErrorCodeExtended note “(Can only apply if AsyncMode is false)” for the printImmediate
method on basis that this method is synchronous only and note is not applicable.

• Added additional two dimensional symbologies (Data Matrix, QR Code, Micro QR Code, Aztec, Micro PDF
417) to the printBarCode method.

Scale
See Chapter 34 for these changes:

• Added Scale property, ZeroValid, in the properties summary table which allows for reporting a “0” weight as
a valid weight.

• In Scale device, added a description of the changes put into this release for reporting a zero weight as a valid
weight.
2034 Unified POS, v1.16.1

• Added the description of the ZeroValid property.

• For the readWeight method call for the Scale, changes to description added to allow for receipt of zero weight
if ZeroValid = true.

Tone Indicator
See Chapter 38 for these changes:

• In Tone Indicator added CapMelody, MelodyType, MelodyVolume to Properties Table.

• In Tone Indicator Model, added description for new “melody” tones that may be supported.

• In Tone Indicator Model section, the description for when “melody” can be selected and affect of Tone
properties is documented.

• Added the Properties for the Tone Indicator CapMelody, MelodyType, MelodyVolume.

• Updated the sound method, Remarks section, to provide the “siren” and “melody” tone duration descriptions.

Java For Retail POS--JavaPOS Implementation Reference
See Annex B for these changes:

• Added new Java Interfaces for existing device classes for Release 1.13.

• Corrected Common Methods to “Updated in Release 1.10” version reference (not Release 1.9 as previously
shown).

• Corrected the Change History, Release 1.7 problem where change log was incorrectly called out as Annex D
and should be Annex E.

POS For .Net Implementation Reference
See Annex C for these changes:

• Updated web links for location of P4DN SDK software.

• Updated the Enumeration Table with corrections to the cells to properly display the content; added entry of
“No Equivalent Defined” in cell locations where no translations are available.

• Removed invalid web link for “Structures” information from MSDN and require search MSDN for further
information.

• Added a warning note to the POS4DN implementation documentation for the DevicePath property to note it is
not intended for Application usage.

XMLPOS--XML For POS Mapping Reference
See Annex D for these changes:

• The introduction of the usage of Group and Choice for the Common and Device Specific Properties, Methods,
and Events in the XML Complex Type Definitions for each of the device types required the updating of all of
XML examples used in this section. In addition this required the updating of all of the Figures associated with
each Device Class for the Domain View, Properties DomainView, Methods Domain View, and Events
Domain View. Any new Properties, Methods, or Events that were added to the device classifications as a
result of changes in Version 1.13 were added and highlighted in the respective figures.

• Globally replaced “Device Specific Stati” with the more grammatically correct “Device Specific Status
Messages” in the document, especially frequently found in XMLPOS Annex with this instance an example.
Unified POS, v1.16.1 2035

Systems Management Information
See Annex I for these changes:

• Throughout the Systems Management Information Annex extensive grammar, spelling and other editorial
changes were made to the clean up the content. In addition each peripheral device section that describes the
Peripheral Interfaces along with their respective class diagrams was corrected.

• The data type int8 was added to the Utilized CIM Data Types table.

• The Properties for each of the peripheral device sections were reviewed and changed as required to reflect the
correct Properties spelling and naming for the specific definitions.

E.11 Release Version 1.14

Version 1.14 of this specification, released in 2013, includes updates that reflect feedback from device service
developers and application development programmers as a result of using Version 1.13 and previous versions of
this standard. These changes are detailed below, with links to the corresponding sections, pages, or chapters as
appropriate. Additional extensive changes were added to the Scale device and the Electronic Value Reader/Writer
device. However, any minor typographical changes are not listed below.

Note: It was the decision of the UnifiedPOS Committee to freeze the major version of this standard to V1.14 and
include only minor bug fixes and clarifications to this standard. The reason for this is the Committee, as of this
writing, working on a vastly updated version of the standard, UnifiedPOS Version 2 which builds upon the
UnifiedPOS 1.X functionality but incorporates newer hardware and software technologies not envisioned when
V1.x versions were created.

Common Properties, Methods, and Events
See Chapter 2 for these changes:

• Clarified the CapCompareFirmwareVersion property is initialized by the open method.

• Clarified the CapUpdateFirmware property is initialized by the open method

Cash Changer
See Chapter 8 for these changes:

• Corrected the FullStatus property in the property description to reflect access is valid after open, claim,
enable.

• Corrected the ServiceCount property in the property description to reflect access is valid after open.

• Corrected the ServiceIndex property in the property description to reflect access is valid after open.

Cash Drawer
See Chapter 9 for these changes:

• Corrected the DrawerOpened property in the property description to reflect access is valid after open, enable.

Electronic Value Reader/Writer

See Chapter 15 for these changes:
2036 Unified POS, v1.16.1

• Updated the Summary section to include new Properties, Methods, and Events reflected in the 1.14 in the
Version column.

• Updated the General section to identify what has been added to this version of the device.

• Updated the Class diagram to reflect changes.

• Updated the Sequence diagram to reflect changes.

• Updated the State diagram to reflect changes.

• Updated AccountNumber Property.

• Updated Amount Property.

• Updated Balance Property.

• Updated BalanceOf Point Property.

• Added CapPINDevice Property.

• Added CapTrainingMode Property.

• Updated ExpirationDate Property.

• Updated LastUsedDate Property.

• Updated MediumID Property.

• Added PINEntry Property.

• Updated Point Property.

• Updated SettledAmount Property.

• Added TrainingModeState Property.

• Updated VoucherID Property.

• Updated VoucherIDList Property.

• Added clearParameterInformation method.

• Added queryLastSuccessfulTransactionResult method.

• Added retrieveResultInformation method.

• Added setParemeterInformation method.

• Added TransitionEvent event. Note, this is the first time that the events have been expanded since Version 1.0
of the standard. This event is only to be used for this device because of its unique features that require special
notification by the application to the device to determine operation modes and status.

Fiscal Printer
• Corrected the printRecTotal method where parameters “total” and “payment” should be type currency not

int32 as previously denoted, see Chapter 16.
MSR

• Clarified the paragraph two of topic MSR Encryption and Authentication in the General Information section
that describes the security capabilities to provide Transaction Encryption and MSR Reader Authentication, see
Chapter 26 for MSR devices and/or services that support that functionality.


Unified POS, v1.16.1 2037

PINPad
• Added additional note about additional string values for beginEFTTransaction method’s PINPadSystem

value to allow for other Management systems, see Chapter 27. 

POS Printer
• Added note about additional scanner codes added to Scanner (Bar Code Scanner) but not included in POS

Printer, see Chapter 31. 

Scale
See Chapter 33 for these changes:

• Updated the Summary section, to include new Properties, Methods, and Events reflected in the 1.14 in the
Version column.

• Updated the General section to identify what has been added to this version of the device.

• Updated the Class diagram to reflect changes.

• Updated the Sequence diagram to reflect changes.

• Added CapFreezeValue Property.

• Added CapReadLiveWeightWithTare Property.

• Added CapSetPriceCalculationMode Property.

• Added CapSetUnitPriceWithWeightUnit Property.

• Added CapSpecialTare Property.

• Added CapTarePriority Property.

• Added MinimumWeight Property.

• Updated ScaleLiveWeight Property.

• Updated TareWeight Property.

• Updated UnitPrice Property.

• Added doPriceCalculating Method.

• Added freezeValue Method.

• Added readLiveWeightWithTare Method.

• Added setPriceCalculationMode Method.

• Added setSpecialTare Method.

• Added setTarePriority Method.

• Added setUnitPriceWithWeightUnit Method.

Scanner (Bar Code Reader)
See Chapter 35 for these changes:

• Added new One Dimensional Symbologies.

• Added a new Composite Symbology.
2038 Unified POS, v1.16.1

• Added new Two Dimensional Symbologies.

• Added new Postal Code Symbologies.

XMLPOS Mapping Reference
• Annex D: The following note was added to add clarification to the developer to not use the examples without

provided valid namespace references:
“Note: The following XML examples include “namespace references”. These are not actual file locations but
placeholders for the appropriate namespace where the support files can be found. 

For example, in the XMLPOS references to file locations shown... 
“http://www.omg.org/UnifiedPOS/namespace/” are not actual locations for the the support files. You must
replace these references with actual locations. 

In summary, when an application uses the XMLPOS schema examples as a basis for their code, it is necessary
to replace the placeholders with valid namespace locations.”

Systems Management Information
• Chapter 2: The DeviceID property was corrected for which version it was introduced into the standard and

matches the DeviceID property description on the following page.

E.12 Release Version 1.14.1

Version 1.14.1, released in 2014, represents a “bug fix” of this specification includes updates that reflect
feedback from device service developers and application development programmers as a result of using
“Electronic Value Reader / Writer” device classification. The changes are detailed below, with links to the
corresponding sections, pages, or chapters as appropriate. No other changes to other sections of the standard were
made and remain the same as in Version 1.14.

Note: It was the decision of the UnifiedPOS Committee to freeze the major version of this standard to V1.14 and
include only minor bug fixes and clarifications to this standard. The reason for this is the Committee, as of this
writing, working on a vastly updated version of the standard, UnifiedPOS Version 2 which builds upon the
UnifiedPOS 1.X functionality but incorporates newer hardware and software technologies not envisioned when
V1.x versions were created.

Electronic Value Reader/Writer
See Chapter 15 for these changes:

• Addition of a description of the Life cycle of a Sub-Service.

• Addition of description of the variations of the service dependent upon behavior of a store or a location.

• Addition of description of how the EVR/W device interacts with a payment center.

• Added an updated Error model that more completely describes the EVR/W error conditions and reporting
structure.

• Added the new CapMembershipCertificate capability.

• Updated the CardServiceList property variations description.
Unified POS, v1.16.1 2039

• Updated the CurrentService property variations description.

• Updated the ReaderWriterServiceList property variations description.

• Added the ServiceType property.

• Added the accessData method.

• Updated the accessLog method consistency information.

• Added the activateEVService method.

• Added the checkServiceRegistrationToMedium method.

• Added the closeDailyEVService method.

• Added the deactivateEVService method.

• Updated the lockTerminal method with changes to its Remarks section.

• Added the openDailyEVService method.

• Added the registerServiceToMedium method.

• Updated the retrieveResultInformation method by additional tags and values and enumeration tag values.

• Updated the unlockTerminal method with changes to the Remarks section.

• Added the unregisterServiceToMedium method.

• Added the updateData method.

• Updated the updateKey method.

• Updated the TransitionEvent by adding two new event type identifiers and added a note in the description
section about its data dependence upon BinaryConversion in an OPOS environment.

• Corrected formatting issues throughout the chapter.

OLE for Retail POS -- OPOS Implementation Reference
• Annex A: Added the following additional entries to the BinaryConversion table “Properties, Methods, and

Event Names” to reflect updates that were added in UnifiedPOS versions 1.12 through 1.14, but inadvertently
left out of the OPOS Annex table.

Device Category Property/Method/Event Name Reference

Common PME directIO See Chapter 2

CAT DailyLog See Chapter 10

ElectronicValueRW AdditionalSecurityInformation
TransitionEvent See Chapter 15
2040 Unified POS, v1.16.1

• Added an informational additional note about the XMLPOS use of ARTSBinary to transfer binary data, see
Annex A. 

XMLPOS
See Annex D for these changes:

• Added the note regarding conversion of binary data to XML data structure “Binary data shall be encoded and
decoded using ARTSBinary as defined in ‘ARTS-XML Best Practices.’”

• Added changes to XML examples for devices that utilize BinaryConversion to reflect new way to transmit
binary data accurately, for example “BIR Property Returned Example”, GetProperty for BIR.

• Updated the Electronic Value Reader / Writer properties and methods drawings to reflect new properties and
methods added.

E.13 Release Version 1.15

Version 1.15, released in 2018, represents a only a migration of this specification from the National Retail
Federation (NRF) to the Object Management Group (OMG) through an extensive agreement. All Copyright
ownership is transfered to OMG under this agreement.

This version includes the replacement of the copyright statements and minor text edits to accommodate this
transition.

The general document changes, in addition to several technical changes, were made as noted below:

• Updated the Version and issue date on the front.

• Updated the Copyright and Disclaimer notices.

MSR

AdditionalSecurityInformation
CardAuthenticationData
Track1Data
Track1DiscretionaryData
Track1EncryptedData
Track2Data
Track2DiscretionaryData
Track2EncryptedData
Track3Data
Track3EncryptedData
Track4Data
Track4EncryptedData
authenticateDevice
deauthenticateDevice
retrieveDeviceAuthenticationData

See Chapter 26

PINPad

Track1Data
Track2Data
Track3Data
Track4Data

See Chapter 27

SmartCardRW readData
writeData See Chapter 36

Device Category Property/Method/Event Name Reference
Unified POS, v1.16.1 2041

• Updated the Table of Contents to reflect additional sections.

• Updated URL from www.nrf-arts.org to retail.omg.org

• Updated URL for UML Documentation

• Updated Chapter 15 EVRW added new capabilities as needed for OPOS-J.

• Updated Chapter 16 Fiscal Printer to include Germany, and ticket Start and End date/time elements.

• Updated Chapter 33 Scale such that the Minimum and Maximum weights must be processed considering the
WeightUnit property.

• Updated Annex C POS for .Net to include elements updates for changes to version 1.15.
2042 Unified POS, v1.16.1

E.14 Updated items in release 1.16
Chapter sections 23 and 38 from UPOS1.15 are included with annotations denoting the changes necessary for
supporting the addition of the Retail Communications Service Devices. Chapters 39-47 are new chapters for devices
being added to UPOS v1. The following is a list of the properties, methods and chapters.

Updated Items in CHAPTER 21 Lights

Properties

CapPattern Property

Methods
switchOnMultiple Method
switchOnPattern Method
switchOffPattern Method

Updated Items in CHAPTER 29 POS Power

Properties
CapBatteryCapacityRemainingInSeconds Property
CapVariableBatteryCriticallyLowThresholdInSeconds Property
CapVariableBatteryLowThresholdInSeconds Property
CapChargeTime Property
BatteryCapacityRemainingInSeconds Property
BatteryCriticallyLowThresholdInSeconds Property
BatteryLowThresholdInSeconds Property
ChargeTime Property

Added Chapters in Release 1.16

CHAPTER 39 Video Capture
CHAPTER 40 Individual Recognition
CHAPTER 41 Sound Recorder
CHAPTER 42 Voice Recognition
CHAPTER 43 Sound Player
CHAPTER 44 Speech Synthesis
CHAPTER 45 Gesture Control
CHAPTER 46 Device Monitor 
CHAPTER 47 Graphic Display
Unified POS, v1.16.1 2043

2044 Unified POS, v1.16.1

Annex F

Additional Software References

F.1 General

This appendix contains a list of additional material that may prove helpful for the understanding of the
UnifiedPOS software environment.

F.2 UML References

The following is a list of additional material that may prove helpful for the understanding of the Unified
Modeling Language which is used for the basis of peripheral device modeling in this standard. They are listed in
alphabetical order and not according to a ranking on usefulness.

Web Location References

Official On-line UML Documentation at Object Management Group:

https://www.omg.org/spec/UML/About-UML/

Reading Material References
1) [Booch98] Booch, G. et al, Unified Modeling Language User Guide, Addisson Wesley
Longman, Inc., 1998, ISBN 0201571684

2) Eriksson, H. and Penker, M., UML Toolkit, John Wiley & Sons, Inc., 1997, ISBN 0471191612

3) Fowler, M. and Scott, K., UML Distilled: Applying the Standard Object Modeling Language,
Addisson Wesley Longman, Inc., 1997, ISBN 0201325632

4) Harmon, P. and Watson, M., Understanding UML: The Developer’s Guide, Morgan Kaufmann
Pubs., Inc., 1997, ISBN 1558604650

5) Muller, P., Instant UML, Wrox Press Ltd., 1997, ISBN 1861000871

6) Quatrani, T., foreword by Booch, G., Visual Modeling with Rational Rose & UML, Addison
Wesley Longman, Inc., 1997, ISBN 0201310163

7) Rumbaugh, J. et al, The Unified Modeling Language Reference Manual, Addisson Wesley
Longman, Inc., 1998, ISBN 020130998X

8) Si Alhir, S., UML In a Nutshell, O'Reilly & Associates, Inc., 1998, ISBN 1565924487

9) Warmer, J. and Kleppe, A., The Object Constraint Language: Precise Modeling with UML,
Addisson Wesley Longman, Inc., 1998, ISBN 0201379406
Unified POS, v1.16.1 2045

http://www.omg.org/spec/UML/About-UML/
http://www.omg.org/spec/UML/About-UML/

2046 Unified POS, v1.16.1

Annex G

Additional Hardware References

G.1 General

This annex contains a list of additional material that may prove helpful for the understanding of the UnifiedPOS
hardware environment.

G.2 USB PlusPower Connector

G.2.1 Overview

USB, or the Universal Serial Bus, is a communications attachment standard that includes power in the cable
connection to the peripheral device. One of the limitations of USB is the amount of +5 volt current available to
supply attached peripherals. Normally, 500 milliamp is available at each host port and each powered external hub
port. This amount of current is sufficient for most PC type peripherals like mice and keyboards. When the power
requirements exceed the 500 milliamp limitation, external peripherals require the use of an external power supply
(brick) to supply the necessary power requirements. This limitation takes away from the true “plug-n-play” idea
conceived for USB peripherals.

The PlusPower USB connector provides a single cable connection that supplies both the standard USB
communication signals and two additional wire pairs for extra power.

G.2.2 Host Side Connector

The host connector incorporates an “A” type socket that allows compatibility of standard USB peripherals. The
connector itself is unique in that it provides the additional benefit of a locking mechanism for the cable
connector. The host connector's four power pins (two ground and two voltage) are keyed to a specific voltage
available at that port.

The following voltage keying options are available:

• +5 volts DC at a maximum rating of 6 amps per connector

• +12 volts DC at a maximum rating of 6 amps per connector
Unified POS, v1.16.1 2047

• +24 volts DC at a maximum rating of 6 amps per connector

G.2.3 Cable

The cable end is also keyed to match the voltage type and is color coded to simplify voltage identification.

• +5 volts (ivory)

• +12 volts (teal)

• +24 volts (red)

G.2.4 Peripheral Side Connection

The peripheral side connection is loosely defined and generally left to the specific user's physical space
requirements. The Series B connector as supplied by FCI/Berg is the recommended connector but not mandatory.

G.2.5 Web Location References - USB connector EIA approval

• Approved March 2000 as EIA standard.

• Defines 12 and 24 volt key connectors.

• EIA 700BAAD number assigned.

Official On-line Documentation for the USB PlusPower connector is available at:

https://www.ecianow.org/

https://www.tiaonline.org/standards/search_n_order.cfm

G.2.6 Reading Material References

1) EIA-700BAAD, Detail Specification for Shielded Rectangular Connector(s) For Universal
Serial Bus PlusPower Connector(s) Series “A”, EIA Engineering Publications Office, 2500 Wilson
Boulevard, Arlington, Virginia, 22201.

2) EIA-700BAAE, Detail Specification for Shielded Rectangular Connector(s) For Universal
Serial Bus PlusPower Connector(s) Series “B”, EIA Engineering Publications Office, 2500 Wilson
Boulevard, Arlington, Virginia, 22201.
2048 Unified POS, v1.16.1

http://www.ecianow.org/
http://www.tiaonline.org/standards/search_n_order.cfm

G.2.7 ARTS Standard Endorsement

ARTS has adopted the Powered USB connectors (as defined in EIA Standard EIA-700BAAD and EIA-
700BAAE) as a retail standard for attachment of point-of-sale I/O devices. This is in keeping with the following
ARTS objectives:

• Provide the retail community with a widely available connection standard that increases options and function
while reducing cost

• Protect the retail community from legal actions or restrictions that might hinder operations, limit future options,
or increase costs

In response to this endorsement of technology which includes an IBM patent, IBM is pleased to offer a royalty
free license for Point-Of-Sale usage of the powered USB connector as described in the following statement:

“IBM will make available to retail point-of-sale vendors, a non-exclusive fully paid-up license under U.S. Patent
No.: 6,086,430 (and any corresponding patents of other countries) to use Powered USB connectors (as defined in
EIA Standard EIA-700BAAD and EIA-700BAAE) in Retail point-of-sale terminals, upon the signing of a license
agreement and payment of a nominal fee.”

The fee referenced is $5,000 per ARTS member as the one time charge for the patent.

For the patent license please contact:

Director of Licensing

International Business Machines Corporation

North Castle Drive

Armonk, New York 10504-1785

The agreement provides a license to products which are considered a Point-of-Sale Device or a peripheral device
designed primarily for attaching to a Point-of-Sale Device; and, which contain connectors which conform to and
operate in compliance with specifications for a Supported Standard. A Point-of-Sale Device means a device
designed primarily for use in retail stores for recording sales data and handling on-site customer transactions at
the time a sale is made. A Supported Standard is defined as the Detail Specification for Shielded Rectangular
Connectors for Universal Serial Bus Plus Power Connectors Series “B” (ANSI/EIA-700BAAE-00) (Published:
May 9, 2000) and/or Detail Specification for Shielded Rectangular Connectors for Universal Serial Bus Plus
Power Connectors Series “A” (ANSI/EIA-700BAAD-00) (Published: May 10, 2000). This is a limited field of
use licensing arrangement, available for a one time fee of $5000 from IBM, for applications determined by IBM
to be compliant with the license definitions referenced above. All other uses of these patents, in support of
specifications or standards, are available from IBM under non-exclusive, non-discriminatory, reasonable terms
and conditions, in accordance with IBM's normal licensing policies. The license is available to Point-of-Sale
manufacturers, value added resellers, and systems integrators.
Unified POS, v1.16.1 2049

2050 Unified POS, v1.16.1

Annex H

Deprecation History

H.1 General

This annex was added in Release 1.11 of this specification and contains a history of Properties, Methods,
Constants, etc., (Elements) that have been deprecated from the Specification. Details are provided of the release
level when the deprecation was introduced and the release level at which the element is no longer supported.

Device Category Element Name
Release
Marked

Deprecated

Release
Support

Removed

FiscalPrinter CapAmountNotPaid 1.11

FiscalPrinter printRecVoidItem 1.11

POSPrinter/
printBarCode

PTR_BCS_RSS14 and
PTR_BCS_RSS_EXPANDED 1.12

Scanner/
ScanDataType

SCAN_SDT_RSS14 and
SCAN_SDT_RSS_EXPANDED 1.12
Unified POS, v1.16.1 2051

2052 Unified POS, v1.16.1

Annex I

Systems Management Information

I.1 What is Systems Management?

Systems Management refers to a means of managing and administering a distributed computer system from an
enterprise-wide level. These computer systems do not only include the base units but the attached peripherals as
well.

I.2 How is UnifiedPOS involved in Systems Management?

The goals of UnifiedPOS is to define a set of common properties, methods and events that would be of interest
to a systems management solution. The various implementations of the UnifiedPOS drivers are uniquely
positioned to communicate with the POS peripheral and collect pertinent systems management information. In
this appendix, the goal is to:

• Define the common properties, methods, and events to be used by systems management for each type of device
specified in the UnifiedPOS standard,

• Define a mapping of the UnifiedPOS properties and statistics to the systems management properties,

• Provide information on how the various device services and device controls can provide this information to
systems management.

The model will utilize the Common Information Model (CIM) from the Distributed Management Task Force
(DMTF). This model is selected because it is broadly adopted by several systems management solutions and is
supported on multiple environments and operating systems. Additionally, CIM is extensible, so vendors may
provide information beyond the common model.

Deliverables available for UnifiedPOS model for CIM are:

• UnifiedPOS Programmer’s Guide – this document: For application developers and hardware providers.

• Model Object Format (MOF) files that provide the common device models for the UnifiedPOS devices.

Common Information Model reference:
https://www.dmtf.org/standards/cim/

ARTS OMG Retail Domain Task Force Standards Body:
https://retail.omg.org/

I.3 Who Should Read This Section

This Section is targeted at a systems management solution developer who requires access to POS-specific device
information. It is also targeted to the system developer who will provide device information from within the
device services he provided. This guide assumes that the reader is familiar with the following:
Unified POS, v1.16.1 2053

http://monroecs.com/opos.htm
http://retail.omg.org/

• The UnifiedPOS Device chapters in this document.

• General characteristics of POS peripheral devices.

• The Common Information Model

I.4 UnifiedPOS Device Information Reporting Model

In order to expedite and encourage the broadest acceptance of supporting the UnifiedPOS device information, the
information is provided using the Common Information Model. According to the Distributed Management Task
Force,

CIM provides a common definition of management information for systems, networks, applications and services, and
allows for vendor extensions. CIM’s common definitions enable vendors to exchange semantically rich management
information between systems throughout the network.

Examples of information provided in this CIM model are the device’s Serial Number, Firmware Version, and
Connection Type. Examples of usage data for the POSPrinter device are the Number of Lines Printed, Number of
Hours Running, Number of paper cuts, etc. Examples of usage data for the Scanner device are the Number of
scans, Number of Hours Running, etc. Examples of usage data for the MSR device are the Number of successful
swipes, Number of swipes resulting in errors, Number of Hours Running, etc.

In some cases, the data may be accumulated and stored within the device itself. In other cases, the data may be
accumulated by the Service and stored, possibly on the POS terminal or store controller.

I.4.1 CIM Structure

CIM is an object-oriented model with classes used to represent the various types of elements to be managed.
Class definitions can be inherited from other classes, and vendors are free to expand upon existing classes. For
the UnifiedPOS model, a class called UPOS_LogicalDevice is specified. This class contains all the properties
and methods common to all the UnifiedPOS devices to be represented for systems management. This class
inherits elements from the CIM_LogicalDevice class specified in CIM Core Device model. CIM_LogicalDevice
is the base class in CIM from which all other device classes are derived. It is therefore the class from which
UnifiedPOS will also derive its base class and all other device classes.
2054 Unified POS, v1.16.1

Unified POS, v1.16.1 2055

2056 Unified POS, v1.16.1

I.5 Architectural Overview

The UnifiedPOS drivers are well positioned to communicate with the POS peripherals to gather operational and
statistical information about the devices they are communicating with. In order for the driver to help provide
systems management information, as well as perform the operations it is originally intended for, there are three
basic limitations they must overcome.

I.5.1 Exclusive Use

UnifiedPOS specifies a concept of exclusive use for a device. In many device classes, it is a requirement. The
purpose of the concept is to ensure that one and only one application is trying to access a particular logical
device at a time. This is to ensure that device is not overrun with requests from multiple sources, such as two
applications trying to print a receipt on the same POS Printer at the same time. While this makes sense for POS
applications, locking access to a device puts the onus of device statistics gathering on the POS application
instead granting access to a systems management package. Therefore, a systems management interface must be
created to bypass this restriction. When one instance of the driver has the device classes, it should not limit the
availability of systems management information.

I.5.2 Multiple Instances

UnifiedPOS also allows for multiple applications to instantiate instances of the same device services. This
introduces the possibility that multiple interfaces are monitored by the system management application, creating
confusion and undue overhead.

I.5.3 Limited Lifetime

The lifetime of a device service or device control is controlled by the POS application that instantiates the
classes. This is not the most desirable situation for a systems management solution. However, the initial goal is
to provide some level of systems management for these devices, and using the UnifiedPOS devices drivers is a
logical place to start. The assumption is that these drivers will be instantiated for most of the time that the POS
device is running.

I.5.4 Solution Creation

The solution then appears to be the creation of a UnifiedPOS Management Services component. This component
would be responsible for mapping the properties between the two models, resolving multiple instances and
negotiating contention with exclusive use devices.

To support the enablement of this component, the Device Controls and Services would require the addition of a
CIM Object interface. The device control would allow for a base level of systems management. If extended
services are provided, they could be exposed through an interface in the Device Service.

UPOS Management Services will present an implementation of UPOS_LogicalDevice for every Device Service
it detects to the CIM Object Monitor (CIMOM). If a Device Service registers an object implementation with the
Management Service then the Service will replace the instance of UPOS_LogicalDevice with a proxy to the
provided object form the Device Service. This allows legacy devices to be seen although on a limited basis, and
it does not limit the creation of object extensions by the Device Services vendors.
Unified POS, v1.16.1 2057

A Proxy object queue will maintain a list of all instances of a given device service, but only use the currently
active device service as the active proxy object. If/When a different device service becomes the active device
service, then the proxy will change its relationship. When there are multiple instances of a sharable device
service, the proxy will use the first active device service in the list. Should the current device service shutdown,
the proxy will switch to the next object in the list.

Device
ServiceCIM Object

Device
ServiceCIM Object

Device
ServiceCIM Object

POS Application

UPOS Device
Control

Device
ServiceCIM Object

CIM Object

U
P

O
S

 M
an

a
ge

m
e

n
t S

e
rv

ic
e

s Proxy Object

Mgmt. Application

CIMOM

Enabled

Disabled

Disabled

Disabled

Device
ServiceCIM Object
Device

ServiceCIM Object

Device
ServiceCIM Object
Device
ServiceCIM Object

Device
ServiceCIM Object
Device

ServiceCIM Object

POS Application

UPOS Device
Control

Device
ServiceCIM Object
Device

ServiceCIM Object

CIM Object

U
P

O
S

 M
an

a
ge

m
e

n
t S

e
rv

ic
e

s Proxy Object

Mgmt. Application

CIMOM

Enabled

Disabled

Disabled

Disabled
2058 Unified POS, v1.16.1

Additionally, two other things should be considered when providing this information from within the device
service. First, systems management should not interfere with the operation of the device. The device service
needs to take special steps to prioritize the requests. For example, if a systems management solution is repeatedly
requesting the value of a property, such as ReceiptCharacterPrintedCount from the POS Printer, the service
should not repeatedly poll the hardware every time. This could degrade the performance of the driver and the
device. The driver could isolate the request and respond with a cached value. The driver can then request the
value from the hardware at a less intrusive time or interval. Many systems management values, such as
thresholds, do not require “real-time” data.

Secondly, many drivers do not “touch” the hardware until DeviceEnabled is set to true. However, systems
management solutions may request values as soon as the driver is opened. Therefore, it may be wise to hold a set
of values from device on the system unit so they can be reported before communications with the hardware is
initiated. This information could be stored by serial number or logical name and should be refreshed once
communication is initiated.

I.6 Utilized CIM Data Types Updated in Release 1.13

The parameter and return types specified in the CIM model are as follows:
Type Meaning
boolean A variable with the legal values TRUE (non-zero) and FALSE (zero).

dateTime A CIM internal date/time class.

int8 An integer with a size of 8 bits

int16 An integer with a size of 16 bits.

int32 An integer with a size of 32 bits.

int64 An integer with a size of 64 bits.

string A character string.

uint32 An unsigned integer with a size of 32 bits.

uint64 An unsigned integer with a size of 64 bits.
Unified POS, v1.16.1 2059

I.7 Common Properties, Methods, and Events Updated in Release 1.14

UnifiedPOS Systems Management implementation specific definitions of the Common Properties.

Properties

Name Type
UnifiedPOS

Property
 Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.13

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12

MANAGEDSYSTEMELEMENT

InstallDate dateTime Installa-
tion Date

1.12

Name string DeviceID 1.13
2060 Unified POS, v1.16.1

I.8 Common Methods

UnifiedPOS Systems Management implementation specific definitions of the Common Methods.

I.9 Properties Updated in Release 1.13

DeviceID Property
Syntax string DeviceID;

Remarks String used to uniquely identify the device. Generated using the logical name and the DeviceCategory of
the device, such as “SerialPrinterUPOS POSPrinter” and “HardTotalsUPOS HardTotals.”

See Also DeviceCategory property.

I.10 Peripheral Interfaces

Nearly all of the devices have additional properties or methods beyond the common set found in the previous
chapter. The following device descriptions will list those properties and methods unique to each device and
provide an explanation for each one.

MANAGEDELEMENT

Caption string DeviceControlDescription 1.12

Description string DeviceServiceDescription 1.12

 Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
 Statistic
Version

UnifiedPOS
Version
Unified POS, v1.16.1 2061

I.10.1 Belt Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Belt Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12
2062 Unified POS, v1.16.1

Specific

CapLightBarrierBackward: boolean -Same- 1.12

CapLightBarrierForward: boolean -Same- 1.12

CapSecurityFlapBackward: boolean -Same- 1.12

CapSecurityFlapForward: boolean -Same- 1.12

MotionStatus: int32 -Same- 1.12

SecurityFlapBackwardOpened: boolean -Same- 1.12

SecurityFlapForwardOpened: boolean -Same- 1.12

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult
);

1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12

Specific

resetBelt (); 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version
Unified POS, v1.16.1 2063

Belt Class Diagram

The following diagram shows the relationships between the Belt classes.

I.10.2 Bill Acceptor Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Bill Acceptor Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12
2064 Unified POS, v1.16.1

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version
Unified POS, v1.16.1 2065

Specific

CapDiscrepancy: boolean -Same- 1.12

CapFullSensor: boolean -Same- 1.12

CapJamSensor: boolean -Same- 1.12

CapNearFullSensor: boolean -Same- 1.12

CapPauseDeposit: boolean -Same- 1.12

CapRealTimeData: boolean -Same- 1.12

CurrencyCode: string -Same- 1.12

DepositCashList: string -Same- 1.12

DepositCodeList: string -Same- 1.12

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12

Specific

readCashCounts (inout cashCounts: string, inout discrepancy: boolean): 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version
2066 Unified POS, v1.16.1

Bill Acceptor Class Diagram

The following diagram shows the relationships between the Bill Acceptor classes.

I.10.3 Bill Dispenser Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Bill Dispenser Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12
Unified POS, v1.16.1 2067

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version
2068 Unified POS, v1.16.1

Specific

CapDiscrepancy: boolean -Same- 1.12

CapEmptySensor: boolean -Same- 1.12

CapJamSensor: boolean -Same- 1.12

CapNearEmptySensor: boolean -Same- 1.12

CurrencyCashList: string -Same- 1.12

CurrencyCode: string -Same- 1.12

CurrencyCodeList: string -Same- 1.12

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult
);

1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12

Specific

readCashCounts (inout cashCounts: string, inout discrepancy: boolean): 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version
Unified POS, v1.16.1 2069

Bill Dispenser Class Diagram

The following diagram shows the relationships between the Bill Dispenser classes.
2070 Unified POS, v1.16.1

I.10.4 Biometrics Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Biometrics Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.1

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12

Specific

SuccessfulMatchCount uint64 -Same- 1.13

UnsuccessfulMatchCount uint64 -Same- 1.13

AverageFAR uint32 -Same- 1.13

AverageFRR uint32 -Same- 1.13
Unified POS, v1.16.1 2071

Biometrics Class Diagram

The following diagram shows the relationships between the Biometrics classes.

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12
2072 Unified POS, v1.16.1

I.10.5 Bump Bar Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Bump Bar Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12
Unified POS, v1.16.1 2073

Bump Bar Class Diagram

The following diagram shows the relationships between the Bump Bar classes.

Specific

BumpCount: boolean -Same- 1.12

CapTone: boolean -Same- 1.12

UnitsOnline: int32 -Same- 1.12

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version
2074 Unified POS, v1.16.1

I.10.6 Cash Changer Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Cash Changer Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12
Unified POS, v1.16.1 2075

Specific

CapDiscrepancy: boolean -Same- 1.12

CapFullSensor: boolean -Same- 1.12

CapJamSensor: boolean -Same- 1.12

CapNearFullSensor: boolean -Same- 1.12

CapPauseDeposit: boolean -Same- 1.12

CapRealTimeData: boolean -Same- 1.12

CurrencyCode: string -Same- 1.12

DepositCashList: string -Same- 1.12

DepositCodeList: string -Same- 1.12

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12

Specific

readCashCounts (inout cashCounts: string, inout discrepancy: boolean): 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version
2076 Unified POS, v1.16.1

Cash Changer Class Diagram

The following diagram shows the relationships between the Cash Changer classes.
Unified POS, v1.16.1 2077

I.10.7 Cash Drawer Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Cash Drawer Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12
2078 Unified POS, v1.16.1

Cash Drawer Class Diagram

The following diagram shows the relationships between the Cash Drawer classes.

Specific

CapStatus: boolean -Same- 1.12

CapStatusMultiDrawerDetect: boolean -Same- 1.12

DrawerFailedOpenCount: uint64 -Same- 1.12

DrawerGoodOpenCount: uint64 -Same- 1.12

DrawerOpened: boolean -Same- 1.12

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version
Unified POS, v1.16.1 2079

I.10.8 Credit Authorization Terminal Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Credit Authorization Terminal
Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12
2080 Unified POS, v1.16.1

Credit Authorization Terminal Class Diagram

The following diagram shows the relationships between the Credit Authorization Terminal classes.

Specific

CapCashDeposit: boolean -Same- 1.12

CapLockTerminal: boolean -Same- 1.12

CapUnlockTerminal: boolean -Same- 1.12

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version
Unified POS, v1.16.1 2081

I.10.9 Check Scanner Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Check Scanner Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12
2082 Unified POS, v1.16.1

Specific

CapAutoContrast: boolean -Same- 1.12

CapAutoGenerateFileID: boolean -Same- 1.12

CapAutoGenerateImageTagData: boolean -Same- 1.12

CapAutoSize: boolean -Same- 1.12

CapColor: uint64 -Same- 1.12

CapConcurrentMICR: boolean -Same- 1.12

CapContrast: boolean -Same- 1.12

CapDefineCropArea: boolean -Same- 1.12

CapImageFormat: int32 -Same- 1.12

CapImageTagData: boolean -Same- 1.12

CapMICRDevice: boolean -Same- 1.12

CapStoreImageFiles: boolean -Same- 1.12

CapValidationDevice: boolean -Same- 1.12

ChecksScannedCount uint64 -Same- 1.13

Color: int32 -Same- 1.12

ConcurrentMICR: boolean -Same- 1.12

ImageFormat: int32 -Same- 1.12

ImageMemoryStatus: int32 -Same- 1.12

MaxCropAreas: int32 -Same- 1.12

Quality: int32 -Same- 1.12

QualityList: string -Same- 1.12

RemainingImagesEstimate: int32 -Same- 1.12

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version
Unified POS, v1.16.1 2083

Check Scanner Class Diagram

The following diagram shows the relationships between the Check Scanner classes.
2084 Unified POS, v1.16.1

I.10.10 Coin Acceptor Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Coin Acceptor Device Category.

Properties

Name Type
UnifiedPOS

 Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12
Unified POS, v1.16.1 2085

Specific

CapDiscrepancy: boolean -Same- 1.12

CapFullSensor: boolean -Same- 1.12

CapJamSensor: boolean -Same- 1.12

CapNearFullSensor: boolean -Same- 1.12

CapPauseDeposit: boolean -Same- 1.12

CapRealTimeData: boolean -Same- 1.12

CurrencyCode: string -Same- 1.12

DepositCashList: string -Same- 1.12

DepositCodeList: string -Same- 1.12

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12

Specific

readCashCounts (inout cashCounts: string, inout discrepancy: boolean): 1.12
2086 Unified POS, v1.16.1

Coin Acceptor Class Diagram

The following diagram shows the relationships between the Coin Acceptor classes.
Unified POS, v1.16.1 2087

I.10.11 Coin Dispenser Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Coin Dispenser Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12
2088 Unified POS, v1.16.1

Specific

CapEmptySensor: boolean -Same- 1.12

CapJamSensor: boolean -Same- 1.12

CapNearEmptySensor: boolean -Same- 1.12

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12

Specific

readCashCounts (inout cashCounts: string, inout discrepancy: boolean): 1.12
Unified POS, v1.16.1 2089

Coin Dispenser Class Diagram

The following diagram shows the relationships between the Coin Dispenser classes.
2090 Unified POS, v1.16.1

I.10.12 Electronic Journal Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Electronic Journal Device
Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12
Unified POS, v1.16.1 2091

Specific

CapErasableMedium: boolean -Same- 1.12

CapInitializeMedium: boolean -Same- 1.12

CapMediumIsAvailable: boolean -Same- 1.12

CapPrintContent: boolean -Same- 1.12

CapPrintContentFile: boolean -Same- 1.12

CapStation: int32 -Same- 1.12

CapStorageEnabled: boolean -Same- 1.12

CapWaterMark: boolean -Same- 1.12

EraseCount uint64 -Same- 1.13

FailedWriteCount unit64 -Same- 1.13

MediumFreeSpace uint64 -Same- 1.13

MediumID: string -Same- 1.12

MediumIsAvailable: boolean -Same- 1.12

MediumRemoveCount uint64 -Same- 1.13

MediumSize: currency -Same- 1.12

Station: int32 -Same- 1.12

StorageEnabled: boolean -Same- 1.12

WriteCount uint64 -Same- 1.13

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version
2092 Unified POS, v1.16.1

Electronic Journal Class Diagram

The following diagram shows the relationships between the Electronic Journal classes.
Unified POS, v1.16.1 2093

I.10.13 Electronic Value Reader/Writer Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Electronic Value Reader/Writer
Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12
2094 Unified POS, v1.16.1

Electronic Value Reader/Writer Class Diagram

The following diagram shows the relationships between the Electronic Value Reader/Writer classes.
Unified POS, v1.16.1 2095

I.10.14 Fiscal Printer Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Fiscal Printer Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12
2096 Unified POS, v1.16.1

Specific

BarcodePrintedCount uint64 -Same- 1.12

CapCoverSensor boolean -Same- 1.12

CapJournalEmptySensor boolean CapJrnEmptySensor 1.12

CapJournalNearEndSensor boolean CapJrnNearEndSensor 1.12

CapJournalPresent boolean CapJrnPresent 1.13

CapReceiptEmptySensor boolean CapRecEmptySensor 1.13

CapReceiptNearEndSensor boolean CapRecNearEndSensor 1.13

CapReceiptPresent boolean CapRecPresent 1.13

CapSlipEmptySensor boolean CapSlpEmptySensor 1.13

CapSlipFullSlip boolean CapSlpFullSlip 1.13

CapSlipNearEndSensor boolean CapSlpNearEndSensor 1.13

CapSlipPresent boolean CapSlpPresent 1.13

CountryCode int32 -Same- 1.12

FailedPaperCutCount uint64 -Same- 1.12

FailedPrintSideChangeCount uint64 -Same- 1.12

FormInsertionCount uint64 -Same- 1.12

HomeErrorCount uint64 -Same- 1.12

JournalCharacterPrintedCount uint64 -Same- 1.12

JournalEmpty boolean JrnEmpty 1.13

JournalLinePrintedCount uint64 -Same- 1.12

JournalNearEnd boolean JrnNearEnd 1.13

MaximumTempReachedCount uint64 -Same- 1.12

NVRAMWriteCount uint64 -Same- 1.12

PaperCutCount uint64 -Same- 1.12

PrinterFaultCount uint64 -Same- 1.12

PrintSideChangeCount uint64 -Same- 1.12

ReceiptCharacterPrintedCount uint64 -Same- 1.12

ReceiptCoverOpenCount uint64 -Same- 1.12

ReceiptEmpty boolean RecEmpty 1.13

ReceiptLineFeedCount uint64 -Same- 1.12

ReceiptLinePrintedCount uint64 -Same- 1.12

ReceiptNearEnd boolean RecNearEnd 1.13

Properties (Continued)

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version
Unified POS, v1.16.1 2097

SlipCharacterPrintedCount uint64 -Same- 1.12

SlipCoverOpenCount uint64 -Same- 1.12

SlipLineFeedCount uint64 -Same- 1.12

SlipLinePrintedCount uint64 -Same- 1.12

SlipEmpty boolean SlpEmpty 1.13

SlipNearEnd boolean SlpNearEnd 1.13

StampFiredCount uint64 -Same- 1.12

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version
2098 Unified POS, v1.16.1

Fiscal Printer Class Diagram

The following diagram shows the relationships between the Fiscal Printer classes.
Unified POS, v1.16.1 2099

I.10.15 Gate Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Gate Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12
2100 Unified POS, v1.16.1

Gate Class Diagram

The following diagram shows the relationships between the Gate classes.
Unified POS, v1.16.1 2101

I.10.16 Hard Totals Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Hard Totals Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12
2102 Unified POS, v1.16.1

Specific

CapErrorDetection: boolean -Same- 1.12

CapSingleFile: boolean -Same- 1.12

CapTransactions: boolean -Same- 1.12

TotalsSize: int32 -Same- 1.12

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version
Unified POS, v1.16.1 2103

Hard Totals Class Diagram

The following diagram shows the relationships between the Hard Totals classes.
2104 Unified POS, v1.16.1

I.10.17 Image Scanner Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Image Scanner Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12
Unified POS, v1.16.1 2105

Image Scanner Class Diagram

The following diagram shows the relationships between the Image Scanner classes.
2106 Unified POS, v1.16.1

I.10.18 Item Dispenser Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Item Dispenser Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12
Unified POS, v1.16.1 2107

Specific

DispenserStatus: int32 -Same- 1.12

MaxSlots: int32 -Same- 1.12

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12

Specific

readItemCount (inout int32 itemCount, int32 slotNumber); 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version
2108 Unified POS, v1.16.1

Item Dispenser Class Diagram

The following diagram shows the relationships between the Item Dispenser classes.
Unified POS, v1.16.1 2109

I.10.19 Keylock Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Keylock Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12
2110 Unified POS, v1.16.1

Specific

CapKeylockType: int32 -Same- 1.12

KeyPosition: int32 -Same- 1.12

LockPositionChangeCount: uint64 -Same- 1.12

PositionCount: int32 -Same- 1.12

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version
Unified POS, v1.16.1 2111

Keylock Class Diagram

The following diagram shows the relationships between the Keylock classes.
2112 Unified POS, v1.16.1

I.10.20 Lights Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Lights Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12
Unified POS, v1.16.1 2113

Specific

MaxLights: int32 -Same- 1.12

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version
2114 Unified POS, v1.16.1

Lights Class Diagram

The following diagram shows the relationships between the Lights classes.
Unified POS, v1.16.1 2115

I.10.21 Line Display Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Line Display Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12
2116 Unified POS, v1.16.1

Specific

BlinkRate: int32 -Same- 1.12

CapBitmap: boolean -Same- 1.12

CapBlink: int32 -Same- 1.12

CapBlinkRate: boolean -Same- 1.12

CapBrightness: boolean -Same- 1.12

CapCharacterSet: int32 -Same- 1.12

CapCursorType: int32 -Same- 1.12

CapCustomGlyph: boolean -Same- 1.12

CapDescriptors: boolean -Same- 1.12

CapHMarquee: boolean -Same- 1.12

CapICharWait: boolean -Same- 1.12

CapMapCharacterSet: boolean -Same- 1.12

CapReadBack: int32 -Same- 1.12

CapReverse: int32 -Same- 1.12

CapScreenMode: boolean -Same- 1.12

CapVMarquee: boolean -Same- 1.12

CharacterSet: int32 -Same- 1.12

CharacterSetList: string -Same- 1.12

Columns: int32 -Same- 1.12

CustomGlyphList: string -Same- 1.12

DeviceBrightness: int32 -Same- 1.12

DeviceColumns: int32 -Same- 1.12

DeviceDescriptors: int32 -Same- 1.12

DeviceRows: int32 -Same- 1.12

DeviceWindows: int32 -Same- 1.12

GlyphHeight: int32 -Same- 1.12

GlyphWidth: int32 -Same- 1.12

MarqueeFormat: int32 -Same- 1.12

MarqueeRepeatWait: int32 -Same- 1.12

MaximumX: int32 -Same- 1.12

MaximumY: int32 -Same- 1.12

OnlineTransactionCount: uint64 -Same- 1.12

Rows: int32 -Same- 1.12

ScreenMode: int32 -Same- 1.12

ScreenModeList: string -Same- 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version
Unified POS, v1.16.1 2117

Line Display Class Diagram

The following diagram shows the relationships between the Line Display classes

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12
2118 Unified POS, v1.16.1

I.10.22 MICR Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the MICR Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12
Unified POS, v1.16.1 2119

Specific

CapValidationDevice: boolean -Same- 1.13

FailedReadCount: uint64 -Same- 1.12

FailedDataParseCount: uint64 -Same- 1.12

GoodReadCount: uint64 -Same- 1.12

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version
2120 Unified POS, v1.16.1

MICR Class Diagram

The following diagram shows the relationships between the MICR classes.
Unified POS, v1.16.1 2121

I.10.23 Motion Sensor Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Motion Sensor Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12

Specific

MotionEventCount: uint64 -Same- 1.12

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12
2122 Unified POS, v1.16.1

Motion Sensor Class Diagram

The following diagram shows the relationships between the Motion Sensor classes.
Unified POS, v1.16.1 2123

I.10.24 MSR Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the MSR Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPO
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12
2124 Unified POS, v1.16.1

Specific

CapISO: boolean -Same- 1.12

CapJISOne: boolean -Same- 1.12

CapJISTwo: boolean -Same- 1.12

CapTransmitSentinels: boolean -Same- 1.12

CapWritableTracks: int32 -Same- 1.12

DecodeData: boolean -Same- 1.12

EncodingMaxLength: int32 -Same- 1.12

ErrorReportingType: int32 -Same- 1.12

FailedReadCount uint64 -Same- 1.12

FailedWriteCount uint64 -Same- 1.12

GoodReadCount uint64 -Same- 1.12

GoodWriteCount uint64 -Same- 1.12

MissingStartSentinelTrack1Count uint64 -Same- 1.12

MissingStartSentinelTrack2Count uint64 -Same- 1.12

MissingStartSentinelTrack3Count uint64 -Same- 1.12

MissingStartSentinelTrack4Count uint64 -Same- 1.12

ParityLRCErrorTrack1Count uint64 -Same- 1.12

ParityLRCErrorTrack2Count uint64 -Same- 1.12

ParityLRCErrorTrack3Count uint64 -Same- 1.12

ParityLRCErrorTrack4Count uint64 -Same- 1.12

ParseDecodeData: boolean -Same- 1.12

TracksToRead: int32 -Same- 1.12

TracksToWrite: int32 -Same- 1.12

TransmitSentinels: boolean -Same- 1.12

UnreadableCardCount uint64 -Same- 1.12

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPO
Version
Unified POS, v1.16.1 2125

MSR Class Diagram

The following diagram shows the relationships between the MSR classes.
2126 Unified POS, v1.16.1

I.10.25 PINPad Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the PINPad Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12

Specific

InvalidPINEntryCount: uint64 -Same- 1.12

ValidPINEntryCount: uint64 -Same- 1.12

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12
Unified POS, v1.16.1 2127

PINPad Class Diagram

The following diagram shows the relationships between the PINPad classes.
2128 Unified POS, v1.16.1

I.10.26 Point Card Reader/Writer Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Point Card Reader/Writer Device
Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12
Unified POS, v1.16.1 2129

Specific

CapCardEntranceSensor: boolean -Same- 1.12

CapCharacterSet: int32 -Same- 1.12

CapCleanCard: boolean -Same- 1.12

CapClearPrint: boolean -Same- 1.12

CapMapCharacterSet: boolean -Same- 1.12

CapPrint: boolean -Same- 1.12

CapPrintMode: boolean -Same- 1.12

CapTracksToRead: int32 -Same- 1.12

CapTracksToWrite: int32 -Same- 1.12

CardState: int32 -Same- 1.12

CharacterSet: int32 -Same- 1.12

CharacterSetList: string -Same- 1.12

FontTypeFaceList: string -Same- 1.12

LineChars: int32 -Same- 1.12

LineCharsList: string -Same- 1.12

LineHeight: int32 -Same- 1.12

LineSpacing: int32 -Same- 1.12

LineWidth: int32 -Same- 1.12

MapCharacterSet: boolean -Same- 1.12

MaxLine: int32 -Same- 1.12

PrintHeight: int32 -Same- 1.12

ReadState1: int32 -Same- 1.12

ReadState2: int32 -Same- 1.12

RecvLength1: int32 -Same- 1.12

RecvLength2: int32 -Same- 1.12

SidewaysMaxChars: int32 -Same- 1.12

SidewaysMaxLines: int32 -Same- 1.12

TracksToRead: int32 -Same- 1.12

TracksToWrite: int32 -Same- 1.12

WriteState1: int32 -Same- 1.12

WriteState2: int32 -Same- 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version
2130 Unified POS, v1.16.1

Point Card Reader/Writer Class Diagram

The following diagram shows the relationships between the Point Card Reader/Writer classes.

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12
Unified POS, v1.16.1 2131

I.10.27 POS Keyboard Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the POSKeyboard Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12
2132 Unified POS, v1.16.1

Specific

CapKeyUp: boolean -Same- 1.12

EventTypes: int32 -Same- 1.12

KeyPressedCount: int64 -Same- 1.12

NumberOfPOSKeys: int32 1.12

POSKeyData: int32 -Same- 1.12

POSKeyEventType: int32 -Same- 1.12

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12

Specific

int32 getPOSKeyValues (inout array of int32 KeyValues); 1.12

iint32 setPOSKeyValue (int32 KeyNumber, uint64 NewValue); 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version
Unified POS, v1.16.1 2133

POS Keyboard Class Diagram

The following diagram shows the relationships between the POS Keyboard classes.
2134 Unified POS, v1.16.1

Properties (UML attributes)

NumberOfPOSKeys Property

Syntax NumberOfPOSKeys: int32

Remarks Holds the number of POS Keys

Methods (UML operations)

getPOSKeyValues Method

Syntax getPOSKeyValues (inout keyValues: array of int64)

Remarks Gets the values of the key.

setPOSKeyValue Method
Syntax setPOSKeyValue (KeyNumber: int32, NewValue: uint64)

Parameter Description

KeyNumber Number of the key to set the value for..

NewValue New value for the specified key..

Remarks Sets the value of a specific key.
Unified POS, v1.16.1 2135

I.10.28 POS Power Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the POS Power Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12
2136 Unified POS, v1.16.1

POS Power Class Diagram

The following diagram shows the relationships between the POS Power classes.
Unified POS, v1.16.1 2137

I.10.29 POS Printer Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the POS Printer Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

Unified-
POS

Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12
2138 Unified POS, v1.16.1

Specific

BarcodePrintedCount uint64 -Same- 1.12

CapBothSidesPrint boolean CapSlipBothSidesPrint 1.12

CapCharacterSet int32 -Same- 1.12

CapConcurrentJrnRec boolean -Same- 1.12

CapConcurrentJrnSlp boolean -Same- 1.12

CapConcurrentPageMode boolean -Same- 1.12

CapConcurrentRecSlp boolean -Same- 1.12

CapCoverSensor boolean -Same- 1.12

CapFullSlip boolean CapSlipFullslip 1.13

CapJournalCartridgeSensor: int32 CapJrnCartridgeSensor 1.12

CapJournalEmptySensor boolean CapJrnEmptySensor 1.12

CapJournalNearEndSensor boolean CapJrnNearEndSensor 1.12

CapJournalPresent boolean CapJrnPresent 1.12

CapMapCharacterSet boolean -Same- 1.12

CapMarkFeed int32 CapRecMarkFeed 1.13

CapPapercut boolean CapRecPapercut 1.13

CapReceiptCartridgeSensor int32 CapRecCartridgeSensor 1.12

CapReceiptEmptySensor boolean CapRecEmptySensor 1.12

CapReceiptNearEndSensor boolean CapRecNearEndSensor 1.12

CapReceiptPageMode boolean CapRecPageMode 1.12

CapReceiptPresent boolean CapRecPresent 1.12

CapSlipCartridgeSensor int32 CapSlpCartridgeSensor 1.12

CapSlipEmptySensor boolean CapSlpEmptySensor 1.12

CapSlipNearEndSensor boolean CapSlpNearEndSensor 1.12

CapSlipPageMode boolean CapSlpPageMode 1.12

CapSlipPresent boolean CapSlpPresent 1.12

CapStamp boolean CapRecStamp 1.13

CartridgeNotify int32 -Same- 1.12

CharacterSet int32 -Same- 1.12

CharacterSetList string -Same- 1.12

CoverOpen boolean -Same- 1.12

FailedPaperCutCount uint64 -Same- 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
Statistic
Version

Unified-
POS

Version
Unified POS, v1.16.1 2139

FailedPrintSideChangeCount uint64 -Same- 1.12

FontTypefaceList string -Same- 1.12

FormInsertionCount uint64 -Same- 1.12

HomeErrorCount uint64 -Same- 1.12

JournalCartridgeState int32 JrnCartridgeState 1.12

JournalCharacterPrintedCount uint64 -Same- 1.12

JournalCurrentCartridge int32 JrnCurrentCartridge 1.12

JournalEmpty boolean JrnEmpty 1.12

JournalLetterQuality boolean JrnLetterQuality 1.12

JournalLineChars int32 JrnLineChars 1.12

JournalLineCharsList string JrnLineCharsList 1.12

JournalLineHeight int32 JrnLineHeight 1.12

JournalLinePrintedCount uint64 -Same- 1.12

JournalLineSpacing int32 JrnLineSpacing 1.12

JournalLineWidth int32 JrnLineWidth 1.12

JournalNearEnd boolean JrnNearEnd 1.12

MapCharacterSet boolean -Same- 1.12

MapMode int32 -Same- 1.12

MaximumTempReachedCount uint64 -Same- 1.12

NVRAMWriteCount uint64 -Same- 1.12

PaperCutCount uint64 -Same- 1.12

PrinterFaultCount uint64 -Same- 1.12

PrintSideChangeCount uint64 -Same- 1.12

ReceiptCartridgeState int32 RecCartridgeState 1.12

ReceiptCharacterPrintedCount uint64 -Same- 1.12

ReceiptCoverOpenCount uint64 -Same- 1.12

ReceiptCurrentCartridge int32 RecCurrentCartridge 1.12

ReceiptEmpty boolean RecEmpty 1.12

ReceiptLetterQuality boolean RecLetterQuality 1.12

ReceiptLineChars int32 RecLineChars 1.12

ReceiptLineCharsList string RecLineCharsList 1.12

ReceiptLineFeedCount uint64 -Same- 1.12

ReceiptLineHeight int32 RecLineHeight 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
Statistic
Version

Unified-
POS

Version
2140 Unified POS, v1.16.1

ReceiptLinePrintedCount uint64 -Same- 1.12

ReceiptLineSpacing int32 RecLineSpacing 1.12

ReceiptLineWidth int32 RecLineWidth 1.12

ReceiptNearEnd boolean RecNearEnd 1.12

ReceiptPageModeArea string PageModeArea
PageModeStation

1.12

ReceiptPageModeDescriptor int32 PageModeDescriptor
PageModeStation

1.12

ReceiptSidewaysMaxChars int32 RecSidewaysMaxChars 1.12

ReceiptSidewaysMaxLines int32 RecSidewaysMaxLines 1.12

SlipCartridgeState int32 SlpCartridgeState 1.12

SlipCharacterPrintedCount uint64 -Same- 1.12

SlipCoverOpenCount uint64 -Same- 1.12

SlipCurrentCartridge int32 SlpCurrentCartridge 1.13

SlipEmpty boolean SlpEmpty 1.12

SlipLetterQuality boolean SlpLetterQuality 1.12

SlipLineChars int32 SlpLineChars 1.12

SlipLineCharsList string SlpLineCharsList 1.12

SlipLineFeedCount uint64 -Same- 1.12

SlipLineHeight int32 SlpLineHeight 1.12

SlipLinePrintedCount uint64 -Same- 1.12

SlipLineSpacing int32 SlpLineSpacing 1.12

SlipLineWidth int32 SlpLineWidth 1.12

SlipNearEnd boolean SlpNearEnd 1.12

SlipPageModeArea string PageModeArea
PageModeStation

1.12

SlipPageModeDescriptor int32 PageModeDescriptor
PageModeStation

1.12

SlipSidewaysMaxChars int32 SlpSidewaysMaxChars 1.12

SlipSidewaysMaxLines int32 SlpSidewaysMaxLines 1.12

StampFiredCount uint64 -Same- 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
Statistic
Version

Unified-
POS

Version
Unified POS, v1.16.1 2141

POS Printer Class Diagram

The following diagram shows the relationships between the POS Printer classes.

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12

Specific

int32 cleanHead (int32 station); 1.12
2142 Unified POS, v1.16.1

I.10.30 Remote Order Display Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Remote Order Display Device
Category.

Properties

Name Type
UnifiedPOS

Property
 Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12
Unified POS, v1.16.1 2143

Specific

CapMapCharacterSet: boolean -Same- 1.12

SystemClocks: int32 -Same- 1.12

SystemVideoSaveBuffers: int32 -Same- 1.12

Timeout: int32 -Same- 1.12

UnitsOnline: int32 -Same- 1.12

VideoMode: int32 -Same- 1.12

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
 Statistic
Version

UnifiedPOS
Version
2144 Unified POS, v1.16.1

Remote Order Display Class Diagram

The following diagram shows the relationships between the Remote Order Display classes.
Unified POS, v1.16.1 2145

I.10.31 RFID Scanner Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the RFID Scanner Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12

SPECIFIC

TagReadCount uint64 -Same- 1.13

GoodTagWriteCount uint64 -Same- 1.13

FailedTagWriteCount uint64 -Same- 1.13

GoodTagLockCount uint64 -Same- 1.13

FailedTagLockCount uint64 -Same- 1.13

GoodTagDisableCount uint64 -Same- 1.13

FailedTagDisableCount uint64 -Same- 1.13
2146 Unified POS, v1.16.1

RFID Scanner Class Diagram

The following diagram shows the relationships between the RFID Scanner classes.

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12
Unified POS, v1.16.1 2147

I.10.32 Scale Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Scale Device Category.

Properties

Name Type
UnifiedPOS

Property
 Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12
2148 Unified POS, v1.16.1

Specific

CalibrationCount: uint64 1.13

CapDisplay: boolean -Same- 1.12

CapDisplayText: boolean -Same- 1.12

CapPriceCalculating: boolean -Same- 1.12

CapTareWeight: boolean -Same- 1.12

CapZeroScale: boolean -Same- 1.12

GoodWeightReadCount: uint64 -Same- 1.12

MaxDisplayTextChars: int32 -Same- 1.12

MaximumWeight: int32 -Same- 1.12

RezeroCount: uint64 1.13

WeightUnit: int32 -Same- 1.12

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12

Specific Version

int32 setWeightsUnit (uint64 NewWtValue); 1.12

int32 setDisplayText (string NewText); 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
 Statistic
Version

UnifiedPOS
Version
Unified POS, v1.16.1 2149

Scale Class Diagram

The following diagram shows the relationships between the Scale classes.

Methods (UML operations)

setWeightUnit Method

Syntax setWeightUnit (NewValue: uint64)

Parameter Description

NewValue The value of the weight unit.

Remarks Sets the scale to operate in the weight unit specified in NewValue.

See Also WeightUnit Property.
2150 Unified POS, v1.16.1

I.10.33 Scanner Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Scanner Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12
Unified POS, v1.16.1 2151

Specific

BeeperFrequency: int32 1.12

BeeperVolume: int32 1.12

BeepOnGoodRead: 1.12

GoodScanCount: int32 -Same- 1.12

UPCA: boolean 1.12

UPCE: boolean 1.12

EAN8: boolean 1.12

EAN13: boolean 1.12

CODE39: boolean 1.12

I25: boolean 1.12

D25: boolean 1.12

CODABAR: boolean 1.12

CODE93: boolean 1.12

CODE128: boolean 1.12

UCCEAN128: boolean 1.12

UPC_2DIGIT_SUPPLEMENTALS: boolean 1.12

UPC_5DIGIT_SUPPLEMENTALS: boolean 1.12

CODE128_SUPPLEMENTALS: boolean 1.12

UPCA_CHECKDIGIT: boolean 1.12

UPCE_CHECKDIGIT: boolean 1.12

CODE39_CHECKDIGIT: boolean 1.12

I25_CHECKDIGIT: boolean 1.12

CONVERT_UPCA_13: boolean 1.12

CONVERT_UPCE_13: boolean 1.12

CONVERT_UPCE_UPCA: boolean 1.12

DECODE_SECURITY_LEVEL: int8 1.12

SameSymbolTimeout: int32 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version
2152 Unified POS, v1.16.1

Scanner Class Diagram

The following diagram shows the relationships between the Scanner classes.

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12
Unified POS, v1.16.1 2153

Properties (UML attributes)

BeeperFrequency Property Updated in Release 1.13
Syntax BeeperFrequency: int32

Remarks Holds the frequency of the Beeper used to indicate a decode. It is one of the following values:

Value Meaning
SCAN_BF_LOWEST Lowest available frequency (value=0)

SCAN_BF_LOW Low frequency (value=1)

SCAN_BF_MEDIUM Medium frequency (value=2)

SCAN_BF_HIGH High frequency (value=3)

BeeperVolume Property Updated in Release 1.13
Syntax BeeperVolume: int32

Remarks Holds the volume of the Beeper used to indicate a decode. It is one of the following values:

Value Meaning
SCAN_BV_LOWEST Lowest available volume (value=0)

SCAN_BV_LOW Low volume (value=1)

SCAN_BV_MEDIUM Medium volume (value=2)

SCAN_BV_HIGH High volume (value=3)

BeepOnGoodRead Property
Syntax BeepOnGoodRead: boolean

Remarks Enable/Disable Beep indication on a good read.

GoodScanCount Property
Syntax GoodScanCount: int32

Remarks Number of successful scans
2154 Unified POS, v1.16.1

SameSymbolTimeout Property Updated in Release 1.13
Syntax SameSymbolTimeout:int32

Remarks Holds the timeout before a scanner may reread the same barcode. It is one of the following values:

Value Meaning
SCAN_ST_SHORT Short timeout (value=0)
SCAN_ST_MEDIUM Medium timeout (value=1)
SCAN_ST_LONG Long timeout (value=3)

UPCA Property
Syntax UPCA: Boolean

Remarks Enable/disable UPC-A decoding.

UPCE Property
Syntax UPCE: boolean

Remarks Enable/disable UPC-E decoding.

EAN8 Property
Syntax EAN8: boolean

Remarks Enable/disable EAN-8 decoding.

EAN13 Property
Syntax EAN13: boolean

Remarks Enable/disable EAN-13 decoding.

Code39 Property
Syntax CODE39: boolean

Remarks Enable/disable Code 39 decoding.
Unified POS, v1.16.1 2155

I25 Property
Syntax I25: boolean

Remarks Enable/disable Interleaved 2 of 5 decoding.

D25 Property
Syntax D25: boolean

Remarks Enable/disable Discrete 2 0F 5 decoding.

CODABAR Property
Syntax CODABAR: boolean

Remarks Enable/disable Codabar decoding.

CODE93 Property
Syntax CODE93: boolean

Remarks Enable/disable Code 93 decoding.

CODE128 Property
Syntax CODE128: boolean

Remarks Enable/disable Code 128 decoding.

UCCEAN128 Property
Syntax UCCEAN128: boolean

Remarks Enable/disable UUC/EAN 128 decoding.

UPC_2DIGIT_SUPPLEMENTALS Property
Syntax UPC_2DIGIT_SUPPLEMENTALS: boolean

Remarks Enable/disable the decoding of UPC 2-digit supplemental characters.
2156 Unified POS, v1.16.1

UPC_5DIGIT_SUPPLEMENTALS Property
Syntax UPC_5DIGIT_SUPPLEMENTALS: boolean

Remarks Enable/disable the decoding of UPC 5-digit supplemental characters.

CODE128_SUPPLEMENTALS Property
Syntax CODE128_SUPPLEMENTALS: boolean

Remarks Enable/disable the decoding of Code 128 supplemental characters.

UPCA_CHECKDIGIT Property
Syntax UPCA_CHECKDIGIT: boolean

Remarks Enable/disable UPC-A Check Digit

UPCE_CHECKDIGIT Property
Syntax UPCE_CHECKDIGIT: boolean

Remarks Enable/disable UPC-E CheckDigit

CODE39_CHECKDIGIT Property
Syntax CODE39_CHECKDIGIT: boolean

Remarks Enable/disable Code 39 CheckDigit

I25_CHECKDIGIT Property
Syntax I25_CHECKDIGIT: boolean

Remarks Enable/disable Interleave 2 of 5 CheckDigit

CONVERT_UPCA_13 Property
Syntax CONVERT_UPCA_13: boolean

Remarks Enable/disable the conversion (expansion) of UPC-A to EAN-13.
Unified POS, v1.16.1 2157

CONVERT_UPCE_13 Property
Syntax CONVERT_UPCE_13: boolean

 Remarks Enable/disable the conversion (expansion) of UPC-E to EAN-13.

CONVERT_UPCE_UPCA Property
Syntax CONVERT_UPCA_13: boolean

Remarks Enable/disable the conversion (expansion) of UPC-E to UPC-A.

DECODE_SECURITY_LEVEL Property
Syntax DECODE_SECURITY_LEVEL: int8

Remarks Holds the Security/Integrity level for in-store barcode labels. It is one of the following values:

Value Meaning
SCAN_SL_LOW Low security level (value=0)
SCAN_SL_MEDIUM Medium security level (value=1)
SCAN_SL_HIGH High security level (value=2)
SCAN_SL_HIGHEST Highest security level (value=3)
2158 Unified POS, v1.16.1

I.10.34 Signature Capture Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Signature Capture Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12
Unified POS, v1.16.1 2159

Specific

CapDisplay: boolean -Same- 1.12

CapRealTimeData: boolean -Same- 1.12

CapUserTerminated: boolean -Same- 1.12

FailedSignatureReadCount uint64 -Same- 1.12

GoodSignatureReadCount uint64 -Same- 1.12

MaximumX: int32 -Same- 1.12

MaximumY: int32 -Same- 1.12

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version
2160 Unified POS, v1.16.1

Signature Capture Class Diagram

The following diagram shows the relationships between the Signature Capture classes.
Unified POS, v1.16.1 2161

I.10.35 Smart Card Reader/Writer Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Smart Card Reader/Writer Device
Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12
2162 Unified POS, v1.16.1

Specific:

CapCardErrorDetection: boolean -Same- 1.12

CapInterfaceMode: int32 -Same- 1.12

CapIsoEmvMode: int32 -Same- 1.12

CapSCPresentSensor: int32 -Same- 1.12

CapSCSlots: int32 -Same- 1.12

CapTransmissionProtocol: int32 -Same- 1.12

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version
Unified POS, v1.16.1 2163

Smart Card Reader/Writer Class Diagram

The following diagram shows the relationships between the Smart Card Reader/Writer classes.
2164 Unified POS, v1.16.1

I.10.36 Tone Indicator Updated in Release 1.13

UnifiedPOS Systems Management implementation specific definitions of the Tone Indicator Device Category.

Properties

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version

UNIFIEDPOSLOGICALDEVICE

Bus string Interface 1.12

CapCompareFirmwareVersion boolean -Same- 1.12

CapPowerReporting int32 -Same- 1.12

CapUpdateFirmware boolean -Same- 1.12

CommunicationErrorCount uint64 -Same- 1.13

DeviceCategory string -Same- 1.12

DeviceControlVersion string -Same- 1.12

DeviceID string 1.12

DeviceServiceVersion string -Same- 1.12

FirmwareRevision string -Same- 1.12

HoursPoweredCount uint64 -Same- 1.12

ManufactureDate string -Same- 1.12

ManufacturerName string -Same- 1.12

MechanicalRevision string -Same- 1.12

ModelName string -Same- 1.12

PhysicalDeviceName string -Same- 1.12

PhysicalDeviceDescription string -Same- 1.12

PowerNotify int32 -Same- 1.12

PowerState int32 -Same- 1.12

SerialNumber string -Same- 1.12

UnifiedPOSVersion string -Same- 1.12
Unified POS, v1.16.1 2165

Specific

CapPitch: boolean -Same- 1.12

CapVolume: boolean -Same- 1.12

ToneSoundedCount: uint64 -Same- 1.12

Methods (UML operations)

Name Version

int32 CompareFirmwareVersion (string FirmwareFileName, inout int32 pResult); 1.12

int32 UpdateFirmware (string FirmwareFileName); 1.12

Properties (Continued)

Name Type
UnifiedPOS

Property
Statistic
Version

UnifiedPOS
Version
2166 Unified POS, v1.16.1

Tone Indicator Class Diagram

The following diagram shows the relationships between the Tone Indicator classes.
Unified POS, v1.16.1 2167

I.11 Technical Details

I.11.1 MOF Files

The UnifiedPOS Technical Committee distributes Model Object Format (MOF) files containing all of the
specified UnifiedPOS Systems Management model information. These files are provided so that the model
information can be added to a target system. The format of these files is specified in the CIM standard.

To add the Model on a Windows system:
mofcomp <installdir>\UPOSMgmtSrvProv.mof

To add the Model on a Linux system running Pegasus:

/opt/tog-pegasus/bin/cimmof -nroot/cimv2 /usr/share/cmpi/mof/
UPOSMgmtSrv.mof

/opt/tog-pegasus/bin/cimmof -nroot/PG_InterOp /usr/share/cmpi/mof/
UPOSMgmtSrvR.mof
2168 Unified POS, v1.16.1

Annex J

Device Statistics

J.1 General

This annex contains the definitions of the statistics that are defined for each device category as well as the
common device statistics that are part of every device category.

J.2 Device Category Names

Since some of the POS Device Category programmatic names in the UnifiedPOS specification may not be
recognizable outside the Retail POS environment where the Defined Statistics data are being processed, an
alternate “long programmatic name” has been assigned where necessary. The correlations of UnifiedPOS
programmatic names and alternate long names are defined in the following table.

UnifiedPOS Device
Programmatic Names

Alternate Device Name

Belt Belt

BillAcceptor BillAcceptor

BillDispenser BillDispenser

Biometrics Biometrics

BumpBar BumpBar

CashChanger CashChanger

CashDrawer CashDrawer

CAT CreditAuthorizationTerminal

CheckScanner CheckScanner

CoinAcceptor CoinAcceptor

CoinDispenser CoinDispenser

ElectronicJournal ElectronicJournal

ElectronicValueRW ElectronicValueReaderWriter

FiscalPrinter FiscalPrinter

Gate Gate

HardTotals HardTotals

ImageScanner ImageScanner

ItemDispenser ItemDispenser

Keylock Keylock

Lights Lights
Unified POS, v1.16.1 2169

J.2.1 Common Statistics for All Device Categories

The following table contains the definitions of the information contained in the UnifiedPOS defined
DeviceInformation section covering all device categories.

LineDisplay LineDisplay

MICR MagneticInkCharacterRecognitionReader

MotionSensor MotionSensor

MSR MagneticStripeReader

PINPad PINPad

PointCardRW PointCardReaderWriter

POSKeyboard POSKeyboard

POSPower POSPower

POSPrinter POSPrinter

RemoteOrderDisplay RemoteOrderDisplay

RFIDScanner RFIDScanner

Scale Scale

Scanner BarCodeScanner

SignatureCapture SignatureCapture

SmartCardRW SmartCardReaderWriter

ToneIndicator ToneIndicator

<DeviceInformation>

XML Definition Name
Definition description

UnifiedPOSVersion
Version of the UnifiedPOS specification
supported

DeviceCategory Device category (e.g., POSPrinter)

ManufacturerName Device manufacturer’s name

ModelName Device model name

SerialNumber Device serial number

ManufactureDate Device manufacture date

MechanicalRevision Device hardware revision

FirmwareRevision Device firmware revision

Interface Device hardware interface (e.g., serial, USB)

InstallationDate Device installation date

UnifiedPOS Device
Programmatic Names

Alternate Device Name
2170 Unified POS, v1.16.1

The following table contains the definitions of the UnifiedPOS defined statistics for all device categories.

J.2.2 XML definitions for Biometrics Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the Biometrics device
category.

J.2.3 XML definitions for BumpBar Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the BumpBar device
category.

J.2.4 XML definitions for CashDrawer Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the CashDrawer device
category.

<UnifiedPOSStatisticsContext>
XML Definition Name

Definition description

HoursPoweredCount Number of hours powered on

CommunicationErrorCount Number of communication errors

<UnifiedPOSStatisticsContext>

XML Definition Name
Definition description

SuccessfulMatchCount Number of successful biometric matches

UnsuccessfulMatchCount Number of unsuccessful biometric matches

AverageFAR Average False Accept Rate achieved

AverageFRR Average False Reject Rate achieved

<UnifiedPOSStatisticsContext>

XML Definition Name
Definition description

BumpCount Number of times bump bar pressed

<UnifiedPOSStatisticsContext>

XML Definition Name
Definition description

DrawerGoodOpenCount Drawer open successes

DrawerFailedOpenCount Drawer open failures
Unified POS, v1.16.1 2171

J.2.5 XML definitions for CheckScanner Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the CheckScanner device
category.

J.2.6 XML definitions for ElectronicJournal Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the ElectronicJournal
device category.

J.2.7 XML definitions for FiscalPrinter Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the FiscalPrinter device
category.

<UnifiedPOSStatisticsContext>

XML Definition Name
Definition description

ChecksScannedCount Number of checks scanned

<UnifiedPOSStatisticsContext>

XML Definition Name
Definition description

WriteCount Number of writes to the recording medium

FailedWriteCount
Number of failed writes to the recording medi-
um

EraseCount Number of times data was erased

MediumRemovedCount Number of times medium was removed

MediumSize Amount of storage in bytes

MediumFreeSpace Free space of storage in bytes

<UnifiedPOSStatisticsContext>

XML Definition Name
Definition description

BarcodePrintedCount Number of Barcodes printed

FormInsertionCount
Number of forms inserted into the document/
slip station

HomeErrorCount Number of home errors

JournalCharacterPrintedCount Number of Journal characters printed

JournalLinePrintedCount Number of Journal lines printed

MaximumTempReachedCount
Number of times Maximum temperature
reached

NVRAMWriteCount Number of times NVRAM is written to
2172 Unified POS, v1.16.1

J.2.8 XML definitions for ImageScanner Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the ImageScanner device
category.

J.2.9 XML definitions for Keylock Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the Keylock device category.

PaperCutCount Number of paper cuts

FailedPaperCutCount Number of failed paper cuts

PrinterFaultCount Number of Printer faults

PrintSideChangeCount Number of print side changes (check flips)
performed

FailedPrintSideChangeCount
Number of print side changes (check flips)
failures

ReceiptCharacterPrintedCount Number of receipt characters printed

ReceiptCoverOpenCount Number of times the receipt cover was opened

ReceiptLineFeedCount Number of receipt line feeds performed

ReceiptLinePrintedCount Number of receipt lines printed

SlipCharacterPrintedCount Number of document/slip characters printed

SlipCoverOpenCount
Number of times the document/slip station
cover opened

SlipLineFeedCount Number of document/slip line feeds performed

SlipLinePrintedCount Number of document/slip lines printed

StampFiredCount Number of Stamps fired

<UnifiedPOSStatisticsContext>
XML Definition Name

Definition description

GoodReadCount
Number of still images acquired that resulted in
a decode of bar code data. (Not including video
frames)

NoReadCount
Number of still images acquired that did not re-
sult in a decode of bar code data. (Not including
video frames)

SessionCount Number of sessions executed

<UnifiedPOSStatisticsContext>
XML Definition Name

Definition description

LockPositionChangeCount Number of lock position changes
Unified POS, v1.16.1 2173

J.2.10 XML definitions for LineDisplay Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the LineDisplay device
category.

J.2.11 XML definitions for MICR Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the MICR device category.

J.2.12 XML definitions for MotionSensor Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the MotionSensor device
category.

J.2.13 XML definitions for MSR Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the MSR device category.

<UnifiedPOSStatisticsContext>
XML Definition Name

Definition description

OnlineTransitionCount
Number of online transitions (on after screen
blanking)

<UnifiedPOSStatisticsContext>
XML Definition Name

Definition description

GoodReadCount Number of successful reads

FailedReadCount Number of failed reads

FailedDataParseCount Number of failed data parses

<UnifiedPOSStatisticsContext>
XML Definition Name

Definition description

MotionEventCount Number of motion occurrences

<UnifiedPOSStatisticsContext>
XML Definition Name

Definition description

GoodReadCount Number of successful reads

FailedReadCount Number of failed reads

UnreadableCardCount Number of unreadable cards

GoodWriteCount Number of successful writes
2174 Unified POS, v1.16.1

J.2.14 XML definitions for PINPad Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the PINPad device category.

J.2.15 XML definitions for POSKeyboard Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the POSKeyboard device
category.

FailedWriteCount Number of failed writes

MissingStartSentinelTrack1Count
Number of errors with missing start sentinel on
track 1 (possible empty track)

ParityLRCErrorTrack1Count Number of Parity or LRC errors on track 1

MissingStartSentinelTrack2Count
Number of errors with missing start sentinel on
track 2 (possible empty track)

ParityLRCErrorTrack2Count Number of Parity or LRC errors on track 2

MissingStartSentinelTrack3Count
Number of errors with missing start sentinel on
track 3 (possible empty track)

ParityLRCErrorTrack3Count Number of Parity or LRC errors on track 3

MissingStartSentinelTrack4Count
Number of errors with missing start sentinel on
track 4 (possible empty track)

ParityLRCErrorTrack4Count Number of Parity or LRC errors on track 4

GoodCardAuthenticationData-
Count

Number of successful card authentication data
reads

FailedCardAuthenticationData-
Count

Number of failed card authentication data reads

ChallengeRequestCount Number of successful calls to the
retrieveDeviceAuthenticationData method

GoodDeviceAuthenticationCount Number of successful device authentication
attempts

FailedDeviceAuthenticationCount Number of failed device authentication at-
tempts

<UnifiedPOSStatisticsContext>
XML Definition Name

Definition description

ValidPINEntryCount Number of valid PIN entries

InvalidPINEntryCount Number of invalid PIN entries

<UnifiedPOSStatisticsContext>
XML Definition Name

Definition description

KeyPressedCount Number of keys pressed
Unified POS, v1.16.1 2175

J.2.16 XML definitions for POSPrinter Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the POSPrinter device
category.

<UnifiedPOSStatisticsContext>

XML Definition Name
Definition description

BarcodePrintedCount Number of Barcodes printed

FormInsertionCount
Number of forms inserted into the document/
slip station

HomeErrorCount Number of home errors

JournalCharacterPrintedCou
nt

Number of Journal characters printed

JournalLinePrintedCount Number of Journal lines printed

MaximumTempReachedCoun
t

Number of times Maximum temperature
reached

NVRAMWriteCount Number of times NVRAM is written to

PaperCutCount Number of paper cuts

FailedPaperCutCount Number of failed paper cuts

PrinterFaultCount Number of Printer faults

PrintSideChangeCount
Number of print side changes (or check flips)
performed

FailedPrintSideChangeCount
Number of print side changes (or check flips)
failures

ReceiptCharacterPrintedCou
nt

Number of receipt characters printed

ReceiptCoverOpenCount Number of times the receipt cover was opened

ReceiptLineFeedCount Number of receipt line feeds performed

ReceiptLinePrintedCount Number of receipt lines printed

SlipCharacterPrintedCount Number of document/slip characters printed

SlipCoverOpenCount
Number of times the document/slip station
cover opened

SlipLineFeedCount Number of document/slip line feeds performed

SlipLinePrintedCount Number of document/slip lines printed

StampFiredCount Number of Stamps fired
2176 Unified POS, v1.16.1

J.2.17 XML definitions for RFIDScanner Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the RFIDScanner device
category.

J.2.18 XML definitions for Scale Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the Scale device category.

J.2.19 XML definitions for Scanner Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the Scanner device category.

<UnifiedPOSStatisticsContext>
XML Definition Name

Definition description

TagReadCount Total number of tags read

GoodTagWriteCount Number of successfully written tags

FailedTagWriteCount Number of unsuccessfully written tags

GoodTagLockCount Number of successfully locked tags

FailedTagLockCount Number of unsuccessfully locked tags

GoodTagDisableCount Number of successfully disabled (killed) tags

FailedTagDisableCount
Number of unsuccessfully disabled (killed)
tags

<UnifiedPOSStatisticsContext>
XML Definition Name

Definition description

GoodWeightReadCount Number of successful weight reads

<UnifiedPOSStatisticsContext>
XML Definition Name

Definition description

GoodScanCount Number of successful scans
Unified POS, v1.16.1 2177

J.2.20 XML definitions for SignatureCapture Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the SignatureCapture
device category.

J.2.21 XML definitions for ToneIndicator Device Statistics

The following table contains the definitions of the UnifiedPOS defined statistics for the ToneIndicator device
category.

<UnifiedPOSStatisticsContext>
XML Definition Name

Definition description

GoodSignatureReadCount Number of successful signature reads

FailedSignatureReadCount Number of unsuccessful signature reads

<UnifiedPOSStatisticsContext>
XML Definition Name

Definition description

ToneSoundedCount Number of tones played
2178 Unified POS, v1.16.1

Annex K

Relationship to OMG Specifications

K.1 Activities in Robotics Domain Task Force

The OMG Robotics Domain Task Force (Robotics DTF) fosters the integration of robotics systems
from modular components through the adoption of OMG standards. It recommends the adoption and
extends OMG technologies that apply to the specific domain of robotics systems where no current
baseline specifications exist, such as MDA for Robotics. The object technology is not solely limited to
software but is extended to real objects. It also collaborates with other organizations for
standardization, such as the one for home information appliances, and makes an open effort to increase
interoperability in the field of robotics.

 (https://www.omg.org/robotics/)

K.2 RoIS Specification
Robotic Interaction Service Framework [RoIS] defines several functional components for robotic
interaction services.

Definitions related to locations of entities in robotic services will be described with Robotic
Localization Service[RLS]. Definitions of status of components in services will be described in
conjunction with Robotic Technology Component [RTC], Finite State Machine Component for RTC
[FSM4RTC] and Unified Component Model for Distributed Real-Time and Embedded Systems
[UCM].

RoIS specification seeks that specify a RoIS framework, on top of which various service robot
applications are developed.

K.2.1 Scope of RoIS specification

They are summarized in the following items.

ꞏ Interface between service application and Human Robot Interaction (HRI) engine

ꞏ Interface to obtain information from HRI Engine according to the timing of the service
application’s needs (Query)

ꞏ Interface to receive information from HRI Engine triggered by real time events (Event
notification / subscription / cancellation)
Unified POS, v1.16.1 2179

https://www.omg.org/robotics/

ꞏ Interface for instructions to device control HRI Engine functions (Command)
Definition of common messages for all HRI Engines

K.3 Robot Service Ontology [RoSO] RFP

A new RFP of Robot Service Ontology[RoSO] currently being discussed in Robotics DTF are based on
the concept of RoIS.

RoSO is aiming to define the specification (ontology) that clarifies the concept of a common
vocabulary and / or a robot service in order to describe a service provided by a robot or exchange a
description of a service provided by a service robot

Below is an example of HRI main component examples from this point of view.

Table K-1 – (From RoIS 1.2) Basic HRI Components
2180 Unified POS, v1.16.1

K.4 Interoperability between UPOS RCSD and RoIs

K.4.1 Relationsihp between UPOS RCSD and RoIS

OMG's Robotics standard provides a lower level control layer to manage Robot Device with finer
granularity and higher accuracy to accommodate a wide range of industry applications.

On the other hand, the UPOS RCSD specification focuses on the functioning of robotic equipment
within the retail store environment. In the UPOS RCSD specification robots are treated as peripheral
equipment of the latest POS system. Therefore, the UPOS RCSD specification focuses on the
definition of the interface between the POS and the robotic device.

RoIS is already existing as OMG standard and it defined a component frame service that was intended
for robotic communication services with people.

Therefore, ROIS developed a general robot service framework, which is different from UPOS RCSD,
but it is possible to describe the function of UPOS RCSD.

To confirm the compatibility and interoperability of the RCSD functions of RoIS and UPOS, both DTFs created and
confirmed the function mapping table.

For this purpose, we use the general RoIS HRI component defined in the RoIS 1.2 specification.

HRI Component Name Description
system information Provides the information of the system such as status of the

system and position of the physical unit.
person detection Detects number of people
person localization Detects position of people
person identification Identifies ID (name) of people
face detection Detects number of human faces
face localization Detects position of human faces
sound detection Detects number of sound sources
sound localization Detects position of sound sources
speech recognition Recognizes person’s speech
gesture recognition Recognizes person’s gesture
speech synthesis Generates robot speech
reaction Performs specified reaction
navigation Moves to specified target location
follow Follows a specified target object
move Moves to specified distance or curve
Unified POS, v1.16.1 2181

• The two teams continue to collaborate between the part of their separate RFP’s and standards that will be
established.
2182 Unified POS, v1.16.1

• For that purpose, it is very necessary to understand the common vocabulary of the robot service and the needs of
the ontology.

• If each team’s specification satisfies the above mapping table, it is confirmed that the standard can be maintained
independently.

• In addition, the figure below shows a typical scenario where RCSD and RoIS work independently or in
conjunction.
Unified POS, v1.16.1 2183

K.5 Document History / Version History

K.6 Glossary

Ver Date Sections Description of Change
 1.0 2019-2-18 Initial Version – additions and updates to UPOS v1.15

 1.1 2019-7-09 Revised for the issues and additions from the Review
 1.2 2020-2-21 Issues, Updates are added version from the Review
 1.3 2020-7-16 Issues, Updates are added version from the Review
1.4 2021-08-10 Issues, Updates are added version from the Review

Term Definition
EVRW Electronic Value Reader Writer

 CAT Credit Authorization Terminal
2184 Unified POS, v1.16.1

	1 Introduction and Architecture
	1.1 What is Unified POS?
	1.1.1 About This Documentation Updated in Release 1.12
	1.1.2 Goals
	1.1.3 Dependencies
	1.1.4 UnifiedPOS Relationship to Conforming Platform Mappings
	1.1.5 Who Should Read This Document

	1.2 Conformance
	1.2.1 Unified POS

	1.3 Architectural Overview
	1.3.1 General
	1.3.2 Architectural Components
	1.3.3 Use of UML
	1.3.4 Data Types Updated in Release 1.13
	1.3.5 Device Behavior Models
	1.3.6 Device Sharing Model

	2 Common Properties, Methods, and Events
	2.1 General
	2.2 Summary Updated in Release 1.10
	2.3 General Information
	2.3.1 Common PME Class Diagram Updated in Release 1.10

	2.4 Properties (UML attributes)
	2.4.1 AutoDisable Property
	2.4.2 CapCompareFirmwareVersion Property Revised in Release 1.14
	2.4.3 CapPowerReporting Property Updated in Release 1.11
	2.4.4 CapStatisticsReporting Property Added in Release 1.8
	2.4.5 CapUpdateFirmware Property Updated in Release 1.14
	2.4.6 CapUpdateStatistics Property Added in Release 1.8
	2.4.7 CheckHealthText Property
	2.4.8 Claimed Property
	2.4.9 DataCount Property
	2.4.10 DataEventEnabled Property
	2.4.11 DeviceControlDescription Property
	2.4.12 Device Control Version Property
	2.4.13 DeviceEnabled Property
	2.4.14 DeviceServiceDescription Property
	2.4.15 DeviceServiceVersion Property
	2.4.16 FreezeEvents Property Updated in Release 1.12
	2.4.17 OutputID Property
	2.4.18 PowerNotify Property
	2.4.19 PowerState Property Updated in Release 1.11
	2.4.20 PhysicalDeviceDescription Property
	2.4.21 PhysicalDeviceName Property
	2.4.22 State Property

	2.5 Methods (UML operations)
	2.5.1 checkHealth Method
	2.5.2 claim Method Updated in Release 1.11
	2.5.3 clearInput Method
	2.5.4 clearInputProperties Method Added in Release 1.10
	2.5.5 clearOutput Method Updated in Release 1.7
	2.5.6 close Method
	2.5.7 compareFirmwareVersion Method Added in Release 1.9
	2.5.8 directIO Method
	2.5.9 open Method Updated in Release 1.7
	2.5.10 release Method
	2.5.11 resetStatistics Method Updated in Release 1.10
	2.5.12 retrieveStatistics Method Added in Release 1.8
	2.5.13 updateFirmware Method Added in Release 1.9
	2.5.14 updateStatistics Method Updated in Release 1.10

	2.6 Events (UML interfaces)
	2.6.1 DataEvent
	2.6.2 DirectIOEvent Updated in Release 1.7
	2.6.3 ErrorEvent Updated in Release 1.13
	2.6.4 OutputCompleteEvent Updated in Release 1.13
	2.6.5 StatusUpdateEvent Updated in Release 1.9

	3 Belt
	3.1 General
	3.2 Summary
	3.3 General Information
	3.3.1 Capabilities

	3.4 Belt Class Diagram
	3.5 Belt Sequence Diagram
	3.5.1 Model
	3.5.2 Device Sharing
	3.5.3 Belt State Diagram

	3.6 Properties (UML attributes)
	3.6.1 AutoStopBackward Property
	3.6.2 AutoStopBackwardDelayTime Property
	3.6.3 AutoStopBackwardItemCount Property
	3.6.4 AutoStopForward Property
	3.6.5 AutoStopForwardDelayTime Property
	3.6.6 AutoStopForwardItemCount Property
	3.6.7 CapAutoStopBackward Property
	3.6.8 CapAutoStopBackwardItemCount Property
	3.6.9 CapAutoStopForward Property
	3.6.10 CapAutoStopForwardItemCount Property
	3.6.11 CapLightBarrierBackward Property
	3.6.12 CapLightBarrierForward Property
	3.6.13 CapMoveBackward Property
	3.6.14 CapSecurityFlapBackward Property
	3.6.15 CapSecurityFlapForward Property
	3.6.16 CapSpeedStepsBackward Property
	3.6.17 CapSpeedStepsForward Property
	3.6.18 LightBarrierBackwardInterrupted Property
	3.6.19 LightBarrierForwardInterrupted Property
	3.6.20 MotionStatus Property
	3.6.21 SecurityFlapBackwardOpened Property
	3.6.22 SecurityFlapForwardOpened Property

	3.7 Methods (UML operations)
	3.7.1 adjustItemCount Method
	3.7.2 moveBackward Method
	3.7.3 moveForward Method
	3.7.4 resetBelt Method
	3.7.5 resetItemCount Method
	3.7.6 stopBelt Method

	3.8 Events (UML interfaces)
	3.8.1 DirectIOEvent
	3.8.2 StatusUpdateEvent

	4 Bill Acceptor
	4.1 General
	4.2 Summary
	4.3 General Information
	4.3.1 Capabilities

	4.4 Bill Acceptor Class Diagram
	4.4.1 Model
	4.4.2 Bill Acceptor Sequence Diagram
	4.4.3 Bill Acceptor State Diagram
	4.4.4 Device Sharing

	4.5 Properties (UML attributes)
	4.5.1 CapDiscrepancy Property
	4.5.2 CapFullSensor Property
	4.5.3 CapJamSensor Property
	4.5.4 CapNearFullSensor Property
	4.5.5 CapPauseDeposit Property
	4.5.6 CapRealTimeData Property
	4.5.7 CurrencyCode Property
	4.5.8 DepositAmount Property
	4.5.9 DepositCashList Property
	4.5.10 DepositCodeList Property
	4.5.11 DepositCounts Property Updated in Release 1.12
	4.5.12 DepositStatus Property
	4.5.13 FullStatus Property
	4.5.14 RealTimeDataEnabled Property

	4.6 Method (UML operations)
	4.6.1 adjustCashCounts Method Updated in Release 1.12 Syntax adjustCashCounts (cashCounts: string); void { raises-exception, use after open-claim-enable }
	4.6.2 beginDeposit Method
	4.6.3 endDeposit Method
	4.6.4 endDeposit Method
	4.6.5 fixDeposit Method
	4.6.6 pauseDeposit Method
	4.6.7 readCashCounts Method Updated in Release 1.12

	4.7 Events (UML interfaces)
	4.7.1 DataEvent
	4.7.2 DirectIOEvent
	4.7.3 StatusUpdateEvent

	5 Bill Dispenser
	5.1 General
	5.2 Summary
	5.3 General Information
	5.3.1 Capabilities
	5.3.2 Bill Dispenser Class Diagram
	5.3.3 Model
	5.3.4 Bill Dispenser Sequence Diagram
	5.3.5 Bill Dispenser State Diagram
	5.3.6 Device Sharing

	5.4 Properties (UML attributes)
	5.4.1 AsyncMode Property
	5.4.2 AsyncResultCode Property
	5.4.3 AsyncResultCodeExtended Property
	5.4.4 CapDiscrepancy Property
	5.4.5 CapEmptySensor Property
	5.4.6 CapJamSensor Property
	5.4.7 CapNearEmptySensor Property
	5.4.8 CurrencyCashList Property
	5.4.9 CurrencyCode Property
	5.4.10 CurrencyCodeList Property
	5.4.11 CurrentExit Property
	5.4.12 DeviceExits Property
	5.4.13 DeviceStatus Property
	5.4.14 ExitCashList Property

	5.5 Methods (UML operations)
	5.5.1 adjustCashCounts Method Updated in Release 1.12
	5.5.2 dispenseCash Method
	5.5.3 readCashCounts Method Updated in Release 1.12

	5.6 Events (UML interfaces)
	5.6.1 DirectIOEvent
	5.6.2 StatusUpdateEvent

	6 Biometrics
	6.1 General
	6.2 Summary
	6.3 General Information
	6.3.1 Capabilities
	6.3.2 Biometrics Class Diagram
	6.3.3 Model
	6.3.4 Device Sharing
	6.3.5 Biometrics Sequence Diagrams
	6.3.6 Biometrics State Diagram

	6.4 Properties (UML Attributes)
	6.4.1 Algorithm Property
	6.4.2 AlgorithmList Property
	6.4.3 BIR Property
	6.4.4 CapPrematchData Property Updated in Release 1.11
	6.4.5 CapRawSensorData Property Updated in Release 1.12
	6.4.6 CapRealTimeData Property Updated in Release 1.12
	6.4.7 CapSensorColor Property
	6.4.8 CapSensorOrientation Property
	6.4.9 CapSensorType Property Updated in Release 1.11
	6.4.10 CapTemplateAdaptation Property
	6.4.11 RawSensorData Property Updated in Release 1.12
	6.4.12 RealTimeDataEnabled Property Updated in Release 1.12
	6.4.13 SensorBPP Property
	6.4.14 SensorColor Property Updated in Release 1.11
	6.4.15 SensorHeight Property
	6.4.16 SensorOrientation Property Updated in Release 1.11
	6.4.17 SensorType Property Updated in Release 1.11
	6.4.18 SensorWidth Property

	6.5 Methods (UML operations)
	6.5.1 beginEnrollCapture Method Updated in Release 1.11
	6.5.2 beginVerifyCapture Method Updated in Release 1.11
	6.5.3 endCapture Method
	6.5.4 identify Method Updated in Release 1.12
	6.5.5 identifyMatch Method Updated in Release 1.12
	6.5.6 processPrematchData Method Updated in Release 1.11
	6.5.7 verify Method Updated in Release 1.12
	6.5.8 verifyMatch Method Updated in Release 1.12

	6.6 Events (UML Interfaces)
	6.6.1 DataEvent
	6.6.2 DirectIOEvent
	6.6.3 ErrorEvent Updated in Release 1.11
	6.6.4 StatusUpdateEvent Updated in Release 1.13

	7 Bump Bar
	7.1 General
	7.2 Summary
	7.3 General Information
	7.3.1 Capabilities
	7.3.2 Bump Bar Class Diagram
	7.3.3 Model
	7.3.4 Input – Bump Bar
	7.3.5 Output – Tone Updated in Release 1.7
	7.3.6 Device Sharing
	7.3.7 Bump Bar State Diagram

	7.4 Properties (UML attributes)
	7.4.1 AsyncMode Property
	7.4.2 AutoToneDuration Property
	7.4.3 AutoToneFrequency Property
	7.4.4 BumpBarDataCount Property
	7.4.5 CapTone Property
	7.4.6 CurrentUnitID Property
	7.4.7 ErrorString Property
	7.4.8 ErrorUnits Property
	7.4.9 EventString Property
	7.4.10 EventUnitID Property
	7.4.11 EventUnits Property
	7.4.12 Keys Property
	7.4.13 Timeout Property
	7.4.14 UnitsOnline Property

	7.5 Methods (UML operations)
	7.5.1 bumpBarSound Method
	7.5.2 checkHealth Method (Common)
	7.5.3 clearInput Method (Common)
	7.5.4 clearOutput Method (Common) Updated in Release 1.7
	7.5.5 setKeyTranslation Method

	7.6 Events (UML interfaces)
	7.6.1 DataEvent
	7.6.2 DirectIOEvent
	7.6.3 ErrorEvent Updated in Release 1.10 << event >> upos::events::ErrorEvent ErrorCode: int32 { read-only } ErrorCodeExtended: int32 { read-only } ErrorLocus: int32 { read-only } ErrorResponse: int32 { read-write }
	7.6.4 OutputCompleteEvent
	7.6.5 StatusUpdateEvent

	8 Cash Changer
	8.1 General
	8.2 Summary
	8.3 General Information
	8.3.1 Capabilities Updated in Release 1.11
	8.3.2 Cash Changer Class Diagram Updated in Release 1.11
	8.3.3 Model Updated in Release 1.11
	8.3.4 Cash Changer Sequence Diagram Added in Release 1.7
	8.3.5 Cash Changer State Diagram Updated in Release 1.8
	8.3.6 Device Sharing

	8.4 Properties (UML attributes)
	8.4.1 AsyncMode Property
	8.4.2 AsyncResultCode Property
	8.4.3 AsyncResultCodeExtended Property
	8.4.4 CapDeposit Property Added in Release 1.5
	8.4.5 CapDepositDataEvent Property Added in Release 1.5
	8.4.6 CapDiscrepancy Property
	8.4.7 CapEmptySensor Property
	8.4.8 CapFullSensor Property
	8.4.9 CapJamSensor Property Added in Release 1.11
	8.4.10 CapNearEmptySensor Property
	8.4.11 CapNearFullSensor Property
	8.4.12 CapPauseDeposit Property Added in Release 1.5
	8.4.13 CapRealTimeData Property Added in Release 1.11
	8.4.14 CapRepayDeposit Property Added in Release 1.5
	8.4.15 CurrencyCashList Property
	8.4.16 CurrencyCode Property
	8.4.17 CurrencyCodeList Property
	8.4.18 CurrentExit Property
	8.4.19 CurrentService Property Added in Release 1.11
	8.4.20 DepositAmount Property
	8.4.21 DepositCashList Property Added in Release 1.5
	8.4.22 DepositCodeList Property Added in Release 1.5
	8.4.23 DepositCounts Property Added in Release 1.5
	8.4.24 DepositStatus Property Added in Release 1.5
	8.4.25 DeviceExits Property
	8.4.26 DeviceStatus Property
	8.4.27 ExitCashList Property
	8.4.28 FullStatus Property Updated in Release 1.14
	8.4.29 RealTimeDataEnabled Property Added in Release 1.11
	8.4.30 ServiceCount Property Updated in Release 1.14

	8.5 Methods (UML operations)
	8.5.1 adjustCashCounts Method Added in Release 1.11
	8.5.2 beginDeposit Method Added in Release 1.5
	8.5.3 dispenseCash Method
	8.5.4 dispenseChange Method
	8.5.5 endDeposit Method Added in Release 1.5
	8.5.6 fixDeposit Method Added in Release 1.5
	8.5.7 pauseDeposit Method Added in Release 1.5
	8.5.8 readCashCounts Method

	8.6 Events (UML interfaces)
	8.6.1 DataEvent Updated in Release 1.11
	8.6.2 DirectIOEvent
	8.6.3 StatusUpdateEvent

	9 Cash Drawer
	9.1 General
	9.2 Summary
	9.3 General Information
	9.3.1 Capabilities
	9.3.2 Cash Drawer Class Diagram Updated in Release 1.8
	9.3.3 Cash Drawer Sequence Diagram Updated in Release 1.12
	9.3.4 Device Sharing

	9.4 Properties (UML attributes)
	9.4.1 CapStatus Property
	9.4.2 CapStatusMultiDrawerDetect Property Added in Release 1.5
	9.4.3 DrawerOpened Property Updated in Release 1.14

	9.5 Methods (UML operations)
	9.5.1 openDrawer Method
	9.5.2 waitForDrawerClose Method

	9.6 Events (UML interfaces)
	9.6.1 DirectIOEvent
	9.6.2 StatusUpdateEvent Updated in Release 1.13 << event >> upos::events::StatusUpdateEvent Status: int32 { read-only }

	10 CAT - Credit Authorization Terminal
	10.1 General
	10.2 Summary
	10.3 General Information
	10.3.1 Description of terms
	10.3.2 Capabilities
	10.3.3 CAT Class Diagram Updated in Release 1.9
	10.3.4 Model
	10.3.5 Device Sharing
	10.3.6 CAT Sequence Diagram Added in Release 1.7
	10.3.7 CAT State Diagram

	10.4 Properties (UML attributes)
	10.4.1 AccountNumber Property Updated in Release 1.9
	10.4.2 AdditionalSecurityInformation Property Updated in Release 1.7
	10.4.3 ApprovalCode Property Updated in Release 1.9
	10.4.4 AsyncMode Property
	10.4.5 Balance Property Added in Release 1.9
	10.4.6 CapAdditionalSecurityInformation Property
	10.4.7 CapAuthorizeCompletion Property
	10.4.8 CapAuthorizePreSales Property
	10.4.9 CapAuthorizeRefund Property
	10.4.10 CapAuthorizeVoid Property
	10.4.11 CapAuthorizeVoidPreSales Property
	10.4.12 CapCashDeposit Property Added in Release 1.9
	10.4.13 CapCenterResultCode Property
	10.4.14 CapCheckCard Property
	10.4.15 CapDailyLog Property
	10.4.16 CapInstallments Property
	10.4.17 CapLockTerminal Property Added in Release 1.9
	10.4.18 CapLogStatus Property Added in Release 1.9
	10.4.19 CapPaymentDetail Property
	10.4.20 CapTaxOthers Property
	10.4.21 CapTransactionNumber Property
	10.4.22 CapTrainingMode Property
	10.4.23 CapUnlockTerminal Property Added in Release 1.9
	10.4.24 CardCompanyID Property
	10.4.25 CenterResultCode Property
	10.4.26 DailyLog Property
	10.4.27 LogStatus Property Added in Release 1.9
	10.4.28 PaymentCondition Property Updated in Release 1.9
	10.4.29 PaymentDetail Property Updated in Release 1.9
	10.4.30 PaymentMedia Property Updated in Release 1.9
	10.4.31 SequenceNumber Property
	10.4.32 SettledAmount Property Added in Release 1.9
	10.4.33 SlipNumber Property Updated in Release 1.7
	10.4.34 TrainingMode Property
	10.4.35 TransactionNumber Property
	10.4.36 TransactionType Property Updated in Release 1.10

	10.5 Methods (UML operations)
	10.5.1 accessDailyLog Method Updated in Release 1.9
	10.5.2 authorizeCompletion Method
	10.5.3 authorizePreSales Method
	10.5.4 authorizeRefund Method
	10.5.5 authorizeSales Method
	10.5.6 authorizeVoid Method
	10.5.7 authorizeVoidPreSales Method
	10.5.8 cashDeposit Method Added in Release 1.9
	10.5.9 checkCard Method Updated in Release 1.9
	10.5.10 lockTerminal Method Added in Release 1.9
	10.5.11 unlockTerminal Method Added in Release 1.9

	10.6 Events (UML interfaces)
	10.6.1 DirectIOEvent
	10.6.2 ErrorEvent Updated in Release 1.9
	10.6.3 OutputCompleteEvent
	10.6.4 StatusUpdateEvent Updated in Release 1.9

	11 Check Scanner
	11.1 General
	11.2 Summary
	11.3 General Information
	11.3.1 Capabilities
	11.3.2 Check Scanner Class Diagram Updated in Release 1.9
	11.3.3 Model Updated in Release 1.11
	11.3.4 Device Sharing
	11.3.5 Check Scanner Sequence Diagram
	11.3.6 Check Scanner State Diagram

	11.4 Properties (UML attributes)
	11.4.1 CapAutoContrast Property Added in Release 1.9
	11.4.2 CapAutoGenerateFileID Property
	11.4.3 CapAutoGenerateImageTagData Property
	11.4.4 CapAutoSize Property
	11.4.5 CapColor Property
	11.4.6 CapConcurrentMICR Property
	11.4.7 CapContrast Property Added in Release 1.9
	11.4.8 CapDefineCropArea Property
	11.4.9 CapImageFormat Property
	11.4.10 CapImageTagData Property Updated in Release 1.11
	11.4.11 CapMICRDevice Property
	11.4.12 CapStoreImageFiles Property
	11.4.13 CapValidationDevice Property
	11.4.14 Color Property
	11.4.15 ConcurrentMICR Property
	11.4.16 Contrast Property Added in Release 1.9
	11.4.17 CropAreaCount Property
	11.4.18 DocumentHeight Property
	11.4.19 DocumentWidth Property
	11.4.20 FileID Property
	11.4.21 FileIndex Property Updated in Release 1.13
	11.4.22 ImageData Property
	11.4.23 ImageFormat Property
	11.4.24 ImageMemoryStatus Property
	11.4.25 ImageTagData Property Updated in Release 1.13
	11.4.26 MapMode Property Updated in Release 1.13
	11.4.27 MaxCropAreas Property
	11.4.28 Quality Property
	11.4.29 QualityList Property
	11.4.30 RemainingImagesEstimate Property

	11.5 Methods (UML operations)
	11.5.1 beginInsertion Method
	11.5.2 beginRemoval Method
	11.5.3 clearImage Method
	11.5.4 defineCropArea Method
	11.5.5 endInsertion Method
	11.5.6 endRemoval Method
	11.5.7 retrieveImage Method Updated in Release 1.11
	11.5.8 retrieveMemory Method Updated in Release 1.11
	11.5.9 storeImage Method Updated in Release 1.13

	11.6 Events (UML interfaces)
	11.6.1 DataEvent
	11.6.2 DirectIOEvent
	11.6.3 ErrorEvent
	11.6.4 StatusUpdateEvent

	12 Coin Acceptor
	12.1 General
	12.2 Summary
	12.3 General Information
	12.3.1 Capabilities
	12.3.2 Coin Acceptor Class Diagram
	12.3.3 Model
	12.3.4 Coin Acceptor Sequence Diagram
	12.3.5 Coin Acceptor State Diagram
	12.3.6 Device Sharing

	12.4 Properties (UML attributes)
	12.4.1 CapDiscrepancy Property
	12.4.2 CapFullSensor Property
	12.4.3 CapJamSensor Property
	12.4.4 CapNearFullSensor Property
	12.4.5 CapPauseDeposit Property
	12.4.6 CapRealTimeData Property
	12.4.7 CurrencyCode Property
	12.4.8 DepositAmount Property
	12.4.9 DepositCashList Property
	12.4.10 DepositCodeList Property
	12.4.11 DepositCounts Property
	12.4.12 DepositStatus Property
	12.4.13 FullStatus Property
	12.4.14 RealTimeDataEnabled Property

	12.5 Methods (UML operations)
	12.5.1 adjustCashCounts Method
	12.5.2 beginDeposit Method
	12.5.3 endDeposit Method
	12.5.4 fixDeposit Method
	12.5.5 pauseDeposit Method
	12.5.6 readCashCounts Method

	12.6 Events (UML interfaces)
	12.6.1 DataEvent
	12.6.2 DirectIOEvent
	12.6.3 StatusUpdateEvent

	13 Coin Dispenser
	13.1 General
	13.2 Summary
	13.3 General Information
	13.3.1 Capabilities Updated in Release 1.11
	13.3.2 Coin Dispenser Class Diagram Updated in Release 1.11
	13.3.3 Coin Dispenser Sequence Diagram Added in Release 1.7
	13.3.4 Coin Dispenser State Diagram Updated in Release 1.11
	13.3.5 Model Updated in Release 1.11
	13.3.6 Device Sharing

	13.4 Properties (UML attributes)
	13.4.1 CapEmptySensor Property
	13.4.2 CapJamSensor Property
	13.4.3 CapNearEmptySensor Property
	13.4.4 DispenserStatus Property

	13.5 Methods (UML operations)
	13.5.1 adjustCashCounts Method Added in Release 1.11
	13.5.2 dispenseChange Method
	13.5.3 readCashCounts Method Added in Release 1.11

	13.6 Events (UML interfaces)
	13.6.1 DirectIOEvent
	13.6.2 StatusUpdateEvent

	14 Electronic Journal
	14.1 General
	14.2 Summary
	14.3 General Information
	14.3.1 Capabilities
	14.3.2 Electronic Journal Class Diagram
	14.3.3 Model
	14.3.4 Device Sharing
	14.3.5 Electronic Journal Sequence Diagrams
	14.3.6 Electronic Journal State Diagram

	14.4 Properties (UML Attributes)
	14.4.1 AsyncMode Property
	14.4.2 CapAddMarker Property
	14.4.3 CapErasableMedium Property
	14.4.4 CapInitializeMedium Property
	14.4.5 CapMediumIsAvailable Property Updated in Release 1.11
	14.4.6 CapPrintContent Property Updated in Release 1.11
	14.4.7 CapPrintContentFile Property Updated in Release 1.11
	14.4.8 CapRetrieveCurrentMarker Property
	14.4.9 CapRetrieveMarker Property
	14.4.10 CapRetrieveMarkerByDateTime Property
	14.4.11 CapRetrieveMarkersDateTime Property
	14.4.12 CapStation Property
	14.4.13 CapStorageEnabled Property
	14.4.14 CapSuspendPrintContent Property
	14.4.15 CapSuspendQueryContent Property
	14.4.16 CapWaterMark Property
	14.4.17 FlagWhenIdle Property
	14.4.18 MediumFreeSpace Property
	14.4.19 MediumID Property
	14.4.20 MediumIsAvailable Property Updated in Release 1.11
	14.4.21 MediumSize Property
	14.4.22 Station Property
	14.4.23 StorageEnabled Property Updated in Release 1.11
	14.4.24 Suspended Property
	14.4.25 WaterMark Property

	14.5 Methods (UML operations)
	14.5.1 addMarker Method
	14.5.2 cancelPrintContent Method
	14.5.3 cancelQueryContent Method
	14.5.4 eraseMedium Method
	14.5.5 initializeMedium Method
	14.5.6 printContent Method Updated in Release 1.11
	14.5.7 printContentFile Method Updated in Release 1.11
	14.5.8 queryContent Method Updated in Release 1.11
	14.5.9 resumePrintContent Method
	14.5.10 resumeQueryContent Method
	14.5.11 retrieveCurrentMarker Method
	14.5.12 retrieveMarker Method
	14.5.13 retrieveMarkerByDateTime Method
	14.5.14 retrieveMarkersDateTime Method
	14.5.15 suspendPrintContent Method
	14.5.16 suspendQueryContent Method

	14.6 Events (UML interfaces)
	14.6.1 DataEvent
	14.6.2 DirectIOEvent
	14.6.3 ErrorEvent
	14.6.4 OutputCompleteEvent
	14.6.5 StatusUpdateEvent Updated in Release 1.12

	15 Electronic Value Reader/Writer
	15.1 General
	15.2 Summary
	15.3 General Information
	15.3.1 Capabilities
	15.3.2 Added in Release 1.14
	15.3.3 Added in Release 1.14.1
	15.3.4 Added in Release 1.15
	15.3.5 EVRW Class Diagram
	15.3.6 Model
	15.3.7 Life Cycle of Sub-Service Added in Release 1.14.1
	15.3.8 The Service with Variations Added in Release 1.14.1
	15.3.9 The Connection Model of EVR/W Devices and Payment Center Added in Release 1.14.1
	15.3.10 Transaction Mode Support
	15.3.11 Device Sharing
	15.3.12 EVRW Sequence Diagram
	15.3.13 EVRW State Diagram
	15.3.14 Error Model　　　　　　　　　　　　　　　　　　Updated in Release 1.14.1　

	15.4 Properties (UML attributes)
	15.4.1 AccountNumber Property　　　　　　　　　　　　　　Updated in Release 1.14 Syntax 　 　AccountNumber: string { read-only, access after open }
	15.4.2 AdditionalSecurityInformation Property
	15.4.3 Amount Property　　　　　　　　　　　　　　　　　Updated in Release 1.14 Syntax 　　Amount: currency { read-write, access after open }
	15.4.4 ApprovalCode Property
	15.4.5 AsyncMode Property
	15.4.6 Balance Property　　　　　　　　　　　　　　　　　Updated in Release 1.14 Syntax 　　Balance: currency { read-only, access after open }
	15.4.7 BalanceOfPoint Property　　　　　　　　　　　　　　Updated in Release 1.14
	15.4.8 CapActivateService Property
	15.4.9 CapAdditionalSecurityInformation Property　　　　　　Added in Release 1.15
	15.4.10 CapAddValue Property
	15.4.11 CapAuthorizeCompletion Property　　　　　　　　　Added in Release 1.15
	15.4.12 CapAuthorizePreSales Property　　　　　　　　　　Added in Release 1.15
	15.4.13 CapAuthorizeRefund Property　　　　　　　　　　　Added in Release 1.15
	15.4.14 CapAuthorizeVoid Property　　　　　　　　　　　　Added in Release 1.15
	15.4.15 CapAuthorizeVoidPreSales Property　　　　　　　　Added in Release 1.15
	15.4.16 CapCancelValue Property
	15.4.17 CapCrdSensor Property
	15.4.18 CapCashDeposit Property Added in Release 1.15
	15.4.19 CapCenterResultCode Property Added in Release 1.15
	15.4.20 CapCheckCard Property Added in Release 1.15
	15.4.21 CapDailyLog Property Added in Release 1.15
	15.4.22 CapDetectionControl Property
	15.4.23 CapElectronicMoney Property
	15.4.24 CapEnumerateCardServices Property
	15.4.25 CapIndirectTransactionLog Property
	15.4.26 CapInstallments Property Added in Release 1.15
	15.4.27 CapLockTerminal Property
	15.4.28 CapLogStatus Property
	15.4.29 CapMediumID Property
	15.4.30 CapMembershipCertificate Property Added in Release 1.14.1
	15.4.31 CapPaymentDetail Property Added in Release 1.15
	15.4.32 CapPINDevice Property Added in Release 1.15
	15.4.33 CapPoint Property
	15.4.34 CapSubtractValue Property
	15.4.35 CapTaxOthers Property Added in Release 1.15
	15.4.36 CapTrainingMode Property Added in Release 1.14
	15.4.37 CapTransaction Property
	15.4.38 CapTransactionLog Property
	15.4.39 CapTransactionNumber Property Added in Release 1.15
	15.4.40 CapUnlockTerminal Property
	15.4.41 CapUpdateKey Property
	15.4.42 CapVoucher Property
	15.4.43 CapWriteValue Property
	15.4.44 CardCompanyID Property Added in Release 1.15
	15.4.45 CardServiceList Property Updated in Release 1.14.1
	15.4.46 CenterResultCode Property Added in Release 1.15
	15.4.47 CurrentService Property Updated in Release 1.14.1
	15.4.48 DailyLog Property Added in Release 1.15
	15.4.49 DetectionControl Property
	15.4.50 DetectionStatus Property
	15.4.51 ExpirationDate Property Updated in Release 1.14
	15.4.52 LastUsedDate Property Updated in Release 1.14
	15.4.53 LogStatus Property
	15.4.54 MediumID Property Updated in Release 1.14
	15.4.55 PaymentCondition Property Updated in Release 1.15
	15.4.56 PaymentDetail Property Added in Release 1.15
	15.4.57 PaymentMedia Property Added in Release 1.15
	15.4.58 PINEntry Property Added in Release 1.14
	15.4.59 Point Property Updated in Release 1.14
	15.4.60 ReaderWriterServiceList Property Updated in Release 1.14.1
	15.4.61 SequenceNumber Property
	15.4.62 ServiceType Property Added in Release 1.14.1
	15.4.63 SettledAmount Property Updated in Release 1.14
	15.4.64 SettledPoint Property
	15.4.65 SlipNumber Property Added in Release 1.15
	15.4.66 TrainingModeState Property Added in Release 1.14
	15.4.67 TransactionLog Property
	15.4.68 TransactionNumber Property Added in Release 1.15
	15.4.69 TransactionType Property Added in Release 1.15
	15.4.70 VoucherID Property Updated in Release 1.14
	15.4.71 VoucherIDList Property Updated in Release 1.14

	15.5 Methods (UML operations)
	15.5.1 accessDailyLog Method Added in Release 1.15
	15.5.2 accessData Method Added in Release 1.14.1
	15.5.3 accessLog Method Updated in Release 1.14.1
	15.5.4 activateEVService Method Added in Release 1.14.1
	15.5.5 activateService Method
	15.5.6 addValue Method
	15.5.7 authorizeCompletion Method Added in Release 1.15
	15.5.8 authorizePreSales Method Added in Release 1.15
	15.5.9 authorizeRefund Method Added in Release 1.15
	15.5.10 authorizeSales Method Added in Release 1.15
	15.5.11 authorizeVoid Method Added in Release 1.15
	15.5.12 authorizeVoidPreSales Method Added in Release 1.15
	15.5.13 beginDetection Method
	15.5.14 beginRemoval Method
	15.5.15 cancelValue Method
	15.5.16 captureCard Method
	15.5.17 cashDeposit Method Added in Release 1.15
	15.5.18 checkCard Method Added in Release 1.15
	15.5.19 checkServiceRegistrationToMedium Method Added in Release 1.14.1
	15.5.20 clearParameterInformation Method Added in Release 1.14
	15.5.21 closeDailyEVService Method Added in Release 1.14.1
	15.5.22 deactivateEVService Method　　　　　　　　　　　Added in Release 1.14.1
	15.5.23 endDetection Method
	15.5.24 endRemoval Method
	15.5.25 enumerateCardServices Method
	15.5.26 lockTerminal Method　　　　　　　　　　　　　Updated in Release 1.14.1
	15.5.27 openDailyEVService Method　　　　　　　　　　　Added in Release 1.14.1
	15.5.28 queryLastSuccessfulTransactionResult Method　　　　Added in Release 1.14
	15.5.29 readValue Method
	15.5.30 registerServiceToMedium Method　　　　　　　　　Added in Release 1.14
	15.5.31 retrieveResultInformation Method　　　　　　　　　Added in Release 1.15
	15.5.32 setParameterInformation Method　　　　　　　　　Added in Release 1.14
	15.5.33 subtractValue Method
	15.5.34 transactionAccess Method
	15.5.35 unlockTerminal Method Updated in Release 1.14.1
	15.5.36 unregisterServiceToMedium Method Added in Release 1.14.1
	15.5.37 updateData Method Added in Release 1.14.1
	15.5.38 updateKey Method Updated in Version 1.14.1
	15.5.39 writeValue Method

	15.6 Events (UML interfaces)
	15.6.1 DataEvent
	15.6.2 DirectIOEvent
	15.6.3 ErrorEvent
	15.6.4 OutputCompleteEvent
	15.6.5 StatusUpdateEvent
	15.6.6 TransitionEvent Updated in Release 1.14

	16 Fiscal Printer
	16.1 General
	16.2 Summary
	16.3 General Information
	16.3.1 Fiscal Printer Class Diagram
	16.3.2 General Requirements
	16.3.3 Fiscal Printer Modes
	16.3.4 Model Updated in Release 1.12
	16.3.5 Error Model Updated in Release 1.13
	16.3.6 Release 1.8 Additional Model Clarifications
	16.3.7 Fiscal Printer States Updated in Release 1.8
	16.3.8 Fiscal Printer State Diagram Added in Release 1.12
	16.3.9 Document Printing
	16.3.10 Ordering of Fiscal Receipt Print Requests Updated in Release 1.13
	16.3.11 Fiscal Receipt Layouts Updated in Release 1.8
	16.3.12 Example of a Fiscal Receipt
	16.3.13 Totalizers and Fiscal Memory
	16.3.14 Counters
	16.3.15 VAT Tables
	16.3.16 Receipt Duplication
	16.3.17 Currency Amounts, Percentage Amounts, VAT Rates, and Quantity Amounts
	16.3.18 Currency Change
	16.3.19 Device Sharing

	16.4 Properties (UML attributes)
	16.4.1 ActualCurrency Property Updated in Release 1.12
	16.4.2 AdditionalHeader Property　　　　　　　　　　　　Added in Release 1.6
	16.4.3 AdditionalTrailer Property Added in Release 1.6
	16.4.4 AmountDecimalPlaces Property
	16.4.5 AsyncMode Property
	16.4.6 CapAdditionalHeader Property Added in Release 1.6
	16.4.7 CapAdditionalLines Property Updated in Release 1.13
	16.4.8 CapAdditionalTrailer Property Added in Release 1.6
	16.4.9 CapAmountAdjustment Property
	16.4.10 CapAmountNotPaid Property Deprecated in Release 1.11
	16.4.11 CapChangeDue Property Added in Release 1.6
	16.4.12 CapCheckTotal Property Updated in Release 1.11
	16.4.13 CapCoverSensor Property
	16.4.14 CapDoubleWidth Property
	16.4.15 CapDuplicateReceipt Property
	16.4.16 CapEmptyReceiptIsVoidable Property Added in Release 1.6
	16.4.17 CapFiscalReceiptStation Property Added in Release 1.6
	16.4.18 CapFiscalReceiptType Property Added in Release 1.6
	16.4.19 CapFixedOutput Property
	16.4.20 CapHasVatTable Property
	16.4.21 CapIndependentHeader Property
	16.4.22 CapItemList Property
	16.4.23 CapJrnEmptySensor Property
	16.4.24 CapJrnNearEndSensor Property
	16.4.25 CapJrnPresent Property
	16.4.26 CapMultiContractor Property Added in Release 1.6
	16.4.27 CapNonFiscalMode Property
	16.4.28 CapOnlyVoidLastItem Property Added in Release 1.6
	16.4.29 CapOrderAdjustmentFirst Property
	16.4.30 CapPackageAdjustment Property Added in Release 1.6
	16.4.31 CapPercentAdjustment Property
	16.4.32 CapPositiveAdjustment Property
	16.4.33 CapPositiveSubtotalAdjustment Property Added in Release 1.11
	16.4.34 CapPostPreLine Property Added in Release 1.6
	16.4.35 CapPowerLossReport Property
	16.4.36 CapPredefinedPaymentLines Property
	16.4.37 CapReceiptNotPaid Property
	16.4.38 CapRecEmptySensor Property
	16.4.39 CapRecNearEndSensor Property
	16.4.40 CapRecPresent Property
	16.4.41 CapRemainingFiscalMemory Property
	16.4.42 CapReservedWord Property
	16.4.43 CapSetCurrency Property Added in Release 1.6
	16.4.44 CapSetHeader Property
	16.4.45 CapSetPOSID Property
	16.4.46 CapSetStoreFiscalID Property
	16.4.47 CapSetTrailer Property
	16.4.48 CapSetVatTable Property
	16.4.49 CapSlpEmptySensor Property
	16.4.50 CapSlpFiscalDocument Property
	16.4.51 CapSlpFullSlip Property
	16.4.52 CapSlpNearEndSensor Property
	16.4.53 CapSlpPresent Property
	16.4.54 CapSlpValidation Property
	16.4.55 CapSubAmountAdjustment Property
	16.4.56 CapSubPercentAdjustment Property
	16.4.57 CapSubtotal Property
	16.4.58 CapTotalizerType Property Added in Release 1.6
	16.4.59 CapTrainingMode Property
	16.4.60 CapValidateJournal Property
	16.4.61 CapXReport Property
	16.4.62 ChangeDue Property Added in Release 1.6
	16.4.63 CheckTotal Property Updated in Release 1.11
	16.4.64 ContractorId Property Added in Release 1.6
	16.4.65 CountryCode Property Updated in Release 1.12
	16.4.66 CoverOpen Property
	16.4.67 DateType Property Updated in Release 1.11
	16.4.68 DayOpened Property Updated in Release 1.6
	16.4.69 DescriptionLength Property Updated in Release 1.6
	16.4.70 DuplicateReceipt Property
	16.4.71 ErrorLevel Property
	16.4.72 ErrorOutID Property Updated in Release 1.6
	16.4.73 ErrorState Property
	16.4.74 ErrorStation Property
	16.4.75 ErrorString Property
	16.4.76 FiscalReceiptStation Property Added in Release 1.6
	16.4.77 FiscalReceiptType Property Updated in Release 1.11
	16.4.78 FlagWhenIdle Property
	16.4.79 JrnEmpty Property
	16.4.80 JrnNearEnd Property
	16.4.81 MessageLength Property
	16.4.82 MessageType Property Added in Release 1.6
	16.4.83 NumHeaderLines Property
	16.4.84 NumTrailerLines Property
	16.4.85 NumVatRates Property
	16.4.86 PostLine Property Added in Release 1.6
	16.4.87 PredefinedPaymentLines Property
	16.4.88 PreLine Property Added in Release 1.6
	16.4.89 PrinterState Property Updated in Release 1.13
	16.4.90 QuantityDecimalPlaces Property Updated in Release 1.6
	16.4.91 QuantityLength Property Updated in Release 1.6
	16.4.92 RecEmpty Property
	16.4.93 RecNearEnd Property
	16.4.94 RemainingFiscalMemory Property
	16.4.95 ReservedWord Property
	16.4.96 SlpEmpty Property
	16.4.97 SlpNearEnd Property
	16.4.98 SlipSelection Property
	16.4.99 TotalizerType Property Added in Release 1.6
	16.4.100 TrainingModeActive Property

	16.5 Methods (UML operations)
	16.5.1 beginFiscalDocument Method Updated in Release 1.11
	16.5.2 beginFiscalReceipt Method Updated in Release 1.11
	16.5.3 beginFixedOutput Method
	16.5.4 beginInsertion Method
	16.5.5 beginItemList Method
	16.5.6 beginNonFiscal Method
	16.5.7 beginRemoval Method
	16.5.8 beginTraining Method
	16.5.9 clearError Method
	16.5.10 endFiscalDocument Method
	16.5.11 endFiscalReceipt Method Updated in Release 1.6
	16.5.12 endFixedOutput Method
	16.5.13 endInsertion Method
	16.5.14 endItemList Method Updated in Release 1.13
	16.5.15 endNonFiscal Method
	16.5.16 endRemoval Method
	16.5.17 endTraining Method
	16.5.18 getData Method Updated in Release 1.12
	16.5.19 getDate Method Updated in Release 1.6
	16.5.20 getTotalizer Method Updated in Release 1.6
	16.5.21 getVatEntry Method Updated in Release 1.11
	16.5.22 printDuplicateReceipt Method
	16.5.23 printFiscalDocumentLine Method
	16.5.24 printFixedOutput Method
	16.5.25 printNormal Method Updated in Release 1.7
	16.5.26 printPeriodicTotalsReport Method
	16.5.27 printPowerLossReport Method
	16.5.28 printRecCash Method Added in Release 1.6
	16.5.29 printRecItem Method Updated in Release 1.6
	16.5.30 printRecItemAdjustment Method Updated in Release 1.11
	16.5.31 printRecItemAdjustmentVoid Method Added in Release 1.11
	16.5.32 printRecItemFuel Method Added in Release 1.6
	16.5.33 printRecItemFuelVoid Method Added in Release 1.6
	16.5.34 printRecItemRefund Method Added in Release 1.12
	16.5.35 printRecItemRefundVoid Method Added in Release 1.12
	16.5.36 printRecItemVoid Method 　　　　　　　　　　Added in Release 1.11
	16.5.37 printRecMessage Method Updated in Release 1.13
	16.5.38 printRecNotPaid Method Updated in Release 1.11
	16.5.39 printRecPackageAdjustment Method Added in Release 1.6
	16.5.40 printRecPackageAdjustVoid Method Added in Release 1.6
	16.5.41 printRecRefund Method Updated in Release 1.12
	16.5.42 printRecRefundVoid Method　　　　　　　　　　Updated in Release 1.12
	16.5.43 printRecSubtotal Method Updated in Release 1.6
	16.5.44 printRecSubtotalAdjustment Method Updated in Release 1.11
	16.5.45 printRecSubtotalAdjustVoid Method Added in Release 1.6
	16.5.46 printRecTaxID Method Added in Release 1.6
	16.5.47 printRecTotal Method Updated in Release 1.14
	16.5.48 printRecVoid Method Updated in Release 1.6
	16.5.49 printRecVoidItem Method Deprecated in Release 1.11
	16.5.50 printReport Method Updated in Release 1.11
	16.5.51 printXReport Method
	16.5.52 printZReport Method Updated in Release 1.6
	16.5.53 resetPrinter Method
	16.5.54 setCurrency Method Added in Release 1.6
	16.5.55 setDate Method
	16.5.56 setHeaderLine Method Updated in Release 1.6
	16.5.57 setPOSID Method
	16.5.58 setStoreFiscalID Method
	16.5.59 setTrailerLine Method
	16.5.60 setVatTable Method
	16.5.61 setVatValue Method Updated in Release 1.11
	16.5.62 verifyItem Method Updated in Release 1.13

	16.6 Events (UML interfaces)
	16.6.1 DirectIOEvent
	16.6.2 ErrorEvent Updated in Release 1.13
	16.6.3 OutputCompleteEvent
	16.6.4 StatusUpdateEvent Updated in Release 1.8

	17 Gate
	17.1 General
	17.2 Summary
	17.3 General Information
	17.3.1 Capabilities
	17.3.2 Gate Class Diagram
	17.3.3 Gate Sequence Diagram
	17.3.4 Device Sharing

	17.4 Properties (UML attributes)
	17.4.1 CapGateStatus Property
	17.4.2 GateStatus Property

	17.5 Methods (UML operations)
	17.5.1 openGate Method
	17.5.2 waitForGateClose Method

	17.6 Events (UML interfaces)
	17.6.1 DirectIOEvent
	17.6.2 StatusUpdateEvent

	18 Hard Totals
	18.1 General
	18.2 Summary
	18.3 General Information
	18.3.1 Capabilities
	18.3.2 Hard Totals Class Diagram
	18.3.3 Hard Totals Sequence Diagram Added in Release 1.7
	18.3.4 Model
	18.3.5 Device Sharing

	18.4 Properties (UML attributes)
	18.4.1 CapErrorDetection Property
	18.4.2 CapSingleFile Property
	18.4.3 CapTransactions Property
	18.4.4 FreeData Property
	18.4.5 NumberOfFiles Property
	18.4.6 TotalsSize Property
	18.4.7 TransactionInProgress Property

	18.5 Methods (UML operations)
	18.5.1 beginTrans Method
	18.5.2 claim Method (Common)
	18.5.3 claimFile Method Updated in Release 1.8
	18.5.4 commitTrans Method
	18.5.5 create Method
	18.5.6 delete Method
	18.5.7 find Method
	18.5.8 findByIndex Method
	18.5.9 read Method Updated in Release 1.7
	18.5.10 recalculateValidationData Method
	18.5.11 release Method (Common)
	18.5.12 releaseFile Method
	18.5.13 rename Method
	18.5.14 rollback Method
	18.5.15 setAll Method Updated in Release 1.7
	18.5.16 validateData Method
	18.5.17 write Method Updated in Release 1.7

	18.6 Events (UML interfaces)
	18.6.1 DirectIOEvent
	18.6.2 StatusUpdateEvent

	19 Image Scanner
	19.1 General
	19.2 Summary
	19.3 General Information
	19.3.1 Capabilities
	19.3.2 Image Scanner Class Diagram
	19.3.3 Image Scanner Sequence Diagram 1
	19.3.4 Image Scanner Sequence Diagram 2
	19.3.5 Image Scanner Sequence Diagram 3
	19.3.6 Image Scanner Sequence Diagram 4
	19.3.7 Model
	19.3.8 Device Sharing
	19.3.9 Image Scanner State Diagram

	19.4 Properties (UML attributes)
	19.4.1 AimMode Property
	19.4.2 BitsPerPixel Property
	19.4.3 CapAim Property
	19.4.4 CapDecodeData Property
	19.4.5 CapHostTriggered Property
	19.4.6 CapIlluminate Property
	19.4.7 CapImageData Property
	19.4.8 CapImageQuality Property
	19.4.9 CapVideoData Property
	19.4.10 FrameData Property
	19.4.11 FrameType Property
	19.4.12 IlluminateMode Property
	19.4.13 ImageHeight Property
	19.4.14 ImageLength Property
	19.4.15 ImageMode Property
	19.4.16 ImageQuality Property
	19.4.17 ImageType Property
	19.4.18 ImageWidth Property
	19.4.19 VideoCount Property
	19.4.20 VideoRate Property

	19.5 Methods (UML operations)
	19.5.1 startSession Method
	19.5.2 stopSession Method

	19.6 Events (UML interfaces)
	19.6.1 DataEvent
	19.6.2 DirectIO Event
	19.6.3 ErrorEvent
	19.6.4 StatusUpdateEvent

	20 Item Dispenser
	20.1 General
	20.2 Summary
	20.3 General Information
	20.3.1 Capabilities
	20.3.2 Item Dispenser Class Diagram
	20.3.3 Item Dispenser Sequence Diagram
	20.3.4 Model
	20.3.5 Device Sharing
	20.3.6 Item Dispenser State Diagram

	20.4 Properties (UML attributes)
	20.4.1 CapEmptySensor Property
	20.4.2 CapIndividualSlotStatus Property
	20.4.3 CapJamSensor Property
	20.4.4 CapNearEmptySensor Property
	20.4.5 DispenserStatus Property
	20.4.6 MaxSlots Property

	20.5 Methods (UML operations)
	20.5.1 adjustItemCount Method
	20.5.2 dispenseItem Method
	20.5.3 readItemCount Method

	20.6 Events (UML interfaces)
	20.6.1 DirectIOEvent
	20.6.2 StatusUpdateEvent

	21 Keylock
	21.1 General
	21.2 Summary
	21.3 General Information
	21.3.1 Capabilities Updated in Release 1.11
	21.3.2 Keylock Class Diagram Updated in Release 1.11
	21.3.3 Keylock Sequence Diagram Updated in Release 1.12
	21.3.4 Model Updated in Release 1.11
	21.3.5 Device Sharing

	21.4 Properties (UML attributes)
	21.4.1 CapKeylockType Property Added in Release 1.11
	21.4.2 ElectronicKeyValue Property Added in Release 1.11
	21.4.3 KeyPosition Property Updated in Release 1.11
	21.4.4 PositionCount Property Updated in Release 1.11

	21.5 Methods (UML operations)
	21.5.1 waitForKeylockChange Method Updated in Release 1.11

	21.6 Events (UML interfaces)
	21.6.1 DirectIOEvent
	21.6.2 StatusUpdateEvent Updated in Release 1.11

	22 Lights
	22.1 General
	22.2 Summary
	22.3 General Information
	22.3.1 Capabilities
	22.3.2 Device Sharing
	22.3.3 Lights Class Diagram
	22.3.4 Lights Sequence Diagram

	22.4 Properties (UML attributes)
	22.4.1 CapAlarm Property
	22.4.2 CapBlink Property
	22.4.3 CapColor Property
	22.4.4 CapPatternProperty Added in Release 1.16
	22.4.5 MaxLights Property

	22.5 Methods (UML operations)
	22.5.1 switchOff Method
	22.5.2 switchOffPattern Method
	22.5.3 switchOn Method
	22.5.4 switchOnMultiple Method Added in Release 1.16
	22.5.5 switchOnPattern Method Added in Release 1.16

	22.6 Events (UML interfaces)
	22.6.1 DirectIOEvent
	22.6.2 StatusUpdateEvent

	23 Line Display
	23.1 General
	23.2 Summary
	23.3 General Information
	23.3.1 Capabilities Updated in Version 1.7
	23.3.2 Line Display Class Diagram Updated in Release 1.7
	23.3.3 Line Display Sequence Diagram Added in Release 1.7
	23.3.4 Model Updated in Release 1.7
	23.3.5 Display Modes
	23.3.6 Data Characters and Escape Sequences Added in Release 1.7
	23.3.7 Device Sharing

	23.4 Properties (UML attributes)
	23.4.1 BlinkRate Property Added in Release 1.6
	23.4.2 CapBitmap Property Added in Release 1.7
	23.4.3 CapBlink Property
	23.4.4 CapBlinkRate Property Added in Release 1.6
	23.4.5 CapBrightness Property
	23.4.6 CapCharacterSet Property Updated in Release 1.5
	23.4.7 CapCursorType Property Updated in Release 1.8
	23.4.8 CapCustomGlyph Property Added in Release 1.6
	23.4.9 CapDescriptions Property
	23.4.10 CapHMarquee Property
	23.4.11 CapICharWait Property
	23.4.12 CapMapCharacterSet Property Added in Release 1.7
	23.4.13 CapReadBack Property Added in Release 1.6
	23.4.14 CapReverse Property Added in Release 1.6
	23.4.15 CapScreenMode Property Added in Release 1.7
	23.4.16 CapVMarquee Property
	23.4.17 CharacterSet Property Updated in Release 1.10
	23.4.18 CharacterSetList Property
	23.4.19 Columns Property
	23.4.20 CurrentWindow Property Updated in Release 1.6
	23.4.21 u8CursorColumn Property
	23.4.22 CursorRow Property
	23.4.23 CursorType Property Updated in Release 1.8
	23.4.24 CusorUpdate Property
	23.4.25 CustomGlyphList Property Added in Release 1.6
	23.4.26 DeviceBrightness Property
	23.4.27 DeviceColumns Property Updated in Release 1.7
	23.4.28 DeviceDescriptors Property
	23.4.29 DeviceRows Property Updated in Release 1.7
	23.4.30 DeviceWindows Property
	23.4.31 GlyphHeight Property Added in Release 1.6
	23.4.32 GlyphWidth Property Added in Release 1.6
	23.4.33 InterCharacterWait Property
	23.4.34 MapCharacterSet Property Added in Release 1.7
	23.4.35 MarqueeFormat Property
	23.4.36 MarqueeRepeatWait Property
	23.4.37 MarqueeType Property
	23.4.38 MarqueeUnitWait Property
	23.4.39 MaximumX Property Added in Release 1.7
	23.4.40 MaximumY Property Added in Release 1.7
	23.4.41 Rows Property
	23.4.42 ScreenMode Property Added in Release 1.7
	23.4.43 ScreenModeList Property Added in Release 1.7

	23.5 Methods (UML operations)
	23.5.1 clearDescriptors Method
	23.5.2 clearText Method Updated in Release 1.7
	23.5.3 createWindow Method Updated in Release 1.6
	23.5.4 defineGlyph Method Updated in Release 1.7
	23.5.5 destroyWindow Method
	23.5.6 displayBitmap Method Added in Release 1.7
	23.5.7 displayText Method Updated in Release 1.7
	23.5.8 displayTextAt Method Updated in Release 1.7
	23.5.9 readCharacterAtCursor Method Added in Release 1.6
	23.5.10 refreshWindow Method
	23.5.11 scrollText Method Updated in Release 1.7
	23.5.12 setBitmap Method Added in Release 1.7
	23.5.13 setDescriptor Method

	23.6 Events (UML interfaces)
	23.6.1 DirectIOEvent
	23.6.2 StatusUpdateEvent

	24 MICR - Magnetic Ink Character Recognition Reader
	24.1 General
	24.2 Summary
	24.3 General Information
	24.3.1 Capabilities
	24.3.2 MICR Class Diagram
	24.3.3 MICR Sequence Diagram Updated in Release 1.8
	24.3.4 Model
	24.3.5 Device Sharing
	24.3.6 MICR - Character Substitution Updated in Release 1.13

	24.4 Properties (UML attributes)
	24.4.1 AccountNumber Property
	24.4.2 Amount Property
	24.4.3 BankNumber Property
	24.4.4 CapValidationDevice Property
	24.4.5 CheckType Property
	24.4.6 CountryCode Property Updated in Release 1.13
	24.4.7 EPC Property
	24.4.8 RawData Property Updated in Release 1.13
	24.4.9 SerialNumber Property
	24.4.10 TransitNumber Property

	24.5 Methods (UML operations)
	24.5.1 beginInsertion Method
	24.5.2 beginRemoval Method
	24.5.3 endInsertion Method
	24.5.4 endRemoval Method

	24.6 Events (UML interfaces)
	24.6.1 DataEvent
	24.6.2 DirectIOEvent
	24.6.3 ErrorEvent Updated in Release 1.10
	24.6.4 StatusUpdateEvent

	25 Motion Sensor
	25.1 General
	25.2 Summary
	25.3 General Information
	25.3.1 Capabilities
	25.3.2 Motion Sensor Class Diagram
	25.3.3 Model
	25.3.4 Device Sharing
	25.3.5 Motion Sensor Sequence Diagram
	25.3.6 Motion Sensor State Diagram

	25.4 Properties (UML attributes)
	25.4.1 Motion Property
	25.4.2 Timeout Property

	25.5 Methods (UML operations)
	25.5.1 waitForMotion Method

	25.6 Events (UML interfaces)
	25.6.1 DirectIOEvent
	25.6.2 StatusUpdateEvent

	26 MSR - Magnetic Stripe Reader
	26.1 General
	26.2 Summary
	26.3 General Information
	26.3.1 Capabilities Updated in Release 1.12
	26.3.2 MSR Class Diagram Updated in Release 1.12
	26.3.3 Device Behavior Model Updated in Release 1.12
	26.3.4 MSR Encryption and Authentication Updated in Release 1.14
	26.3.5 Device Sharing
	26.3.6 MSR Sequence Diagram Updated in Release 1.8
	26.3.7 MSR Device Authentication Sequence Diagram Added in Release 1.12
	26.3.8 MSR State Diagrams

	26.4 Properties (UML attributes)
	26.4.1 AccountNumber Property Updated in Release 1.13
	26.4.2 AdditionalSecurityInformation Property Added in Release 1.12
	26.4.3 CapCardAuthentication Property Added in Release 1.12
	26.4.4 CapDataEncryption Property Added in Release 1.12
	26.4.5 CapDeviceAuthentication Property Added in Release 1.12
	26.4.6 CapISO Property
	26.4.7 CapJISOne Property
	26.4.8 CapJISTwo Property
	26.4.9 CapTrackDataMasking Property Updated in Release 1.13
	26.4.10 CapTransmitSentinels Property Added in Release 1.5
	26.4.11 CapWritableTracks Property Added in Release 1.10
	26.4.12 CardAuthenticationData Property Added in Release 1.12
	26.4.13 CardAuthenticationDataLength Property Updated in Release 1.13
	26.4.14 CardPropertyList Property Added in Release 1.12
	26.4.15 CardType Property Added in Release 1.12
	26.4.16 CardTypeList Property Added in Release 1.12
	26.4.17 DataEncryptionAlgorithm Property Added in Release 1.12
	26.4.18 DecodeData Property Updated in Release 1.13
	26.4.19 DeviceAuthenticated Property Added in Release 1.12
	26.4.20 DeviceAuthenticationProtocol Property Added in Release 1.12
	26.4.21 EncodingMaxLength Property Updated in Release 1.10
	26.4.22 ErrorReportingType Property Updated in Release 1.13
	26.4.23 ExpirationDate Property　　　　　　　　　　　　Updated in Release 1.12
	26.4.24 FirstName Property Updated in Release 1.12
	26.4.25 MiddleInitial Property Updated in Release 1.12
	26.4.26 ParseDecodeData Property Updated in Release 1.12
	26.4.27 ServiceCode Property Updated in Release 1.12
	26.4.28 Suffix Property Updated in Release 1.12
	26.4.29 Surname Property Updated in Release 1.12
	26.4.30 Title Property Updated in Release 1.12
	26.4.31 Track1Data Property Updated in Release 1.12
	26.4.32 Track1DiscretionaryData Property Updated in Release 1.12
	26.4.33 Track1EncryptedData Property Added in Release 1.12
	26.4.34 Track1EncryptedDataLenght Property Updated in Release 1.13
	26.4.35 Track2Data Property Updated in Release 1.12
	26.4.36 Track2DiscretionaryData Property Added in Release 1.12
	26.4.37 Track2EncryptedData Property Added in Release 1.12
	26.4.38 Track2EncryptedDataLength Property Updated in Release 1.13
	26.4.39 Track3Data Property Updated in Release 1.12
	26.4.40 Track3EncryptedData Property Added in Release 1.12
	26.4.41 Track3EncryptedDataLength Property Updated in Release 1.13
	26.4.42 Track4Data Property Updated in Release 1.12
	26.4.43 Track4EncryptedData Property Added in Release 1.12
	26.4.44 Track4EncryptedDataLength Property Updated in Release 1.13
	26.4.45 TracksToRead Property Updated in Release 1.5
	26.4.46 TracksToWrite Property Added in Release 1.10
	26.4.47 TransmitSentinels Property Added in Release 1.5
	26.4.48 WriteCardType Property Added in Release 1.12

	26.5 Methods (UML operations)
	26.5.1 authenticateDevice Method Added in Release 1.12
	26.5.2 deauthenticateDevice Method Added in Release 1.12
	26.5.3 retrieveCardProperty Method Updated in Release 1.13
	26.5.4 retrieveDeviceAuthenticationData Method Added in Release 1.12
	26.5.5 updateKey Method Added in Release 1.12
	26.5.6 writeTracks Method Updated in Release 1.12

	26.6 Events (UML interfaces)
	26.6.1 DataEvent Updated in Release 1.12
	26.6.2 DirectIOEvent
	26.6.3 ErrorEvent Updated in Release 1.10
	26.6.4 StatusUpdateEvent Updated in Release 1.12

	27 Pin Pad
	27.1 General
	27.2 Summary
	27.3 General Information
	27.3.1 Capabilities
	27.3.2 Pin Pad Class Diagram
	27.3.3 Pin Pad Sequence Diagram Added in Release 1.7
	27.3.4 Feature Not Supported
	27.3.5 Note on Terminology
	27.3.6 Model
	27.3.7 Device Sharing
	27.3.8 Pin Pad State Diagram

	27.4 Properties (UML attributes)
	27.4.1 AccountNumber Property
	27.4.2 AdditionalSecurityInformation Property
	27.4.3 Amount Property Corrected in Release 1.8
	27.4.4 AvailableLanguagesList Property
	27.4.5 AvailablePromptsList Property
	27.4.6 CapDisplay Property
	27.4.7 CapKeyboard Property
	27.4.8 CapLanguage Property Updated in Release 1.9
	27.4.9 CapMACCalculation Property
	27.4.10 CapTone Property
	27.4.11 EncryptedPIN Property
	27.4.12 MaximumPINLength Property
	27.4.13 MerchantID Property
	27.4.14 MinimumPINLength Property
	27.4.15 PINEntryEnabled Property Updated in Release 1.12
	27.4.16 Prompt Property
	27.4.17 PromptLanguage Property
	27.4.18 TerminalID Property
	27.4.19 Track1Data Property
	27.4.20 Track2Data Property
	27.4.21 Track3Data Property
	27.4.22 Track4Data Property Added in Release 1.5
	27.4.23 TransactionType Property

	27.5 Methods (UML operations)
	27.5.1 beginEFTTransaction Method Updated in Release 1.14
	27.5.2 computeMAC Method Updated in Release 1.7
	27.5.3 enablePINEntry Method
	27.5.4 endEFTTransaction Method
	27.5.5 updateKey Method
	27.5.6 verifyMAC Method Updated in Release 1.9

	27.6 Events (UML interfaces)
	27.6.1 DataEvent
	27.6.2 DirectIOEvent
	27.6.3 ErrorEvent
	27.6.4 StatusUpdateEvent

	28 Point Card Reader/Writer
	28.1 General
	28.2 Summary
	28.3 General Information
	28.3.1 Capabilities
	28.3.2 Point Card Reader/Writer Class Diagram
	28.3.3 Model
	28.3.4 Card Insertion Diagram
	28.3.5 Printing Capability
	28.3.6 Cleaning Capability
	28.3.7 Initialization of Magnetic Stripe Data
	28.3.8 Device Sharing
	28.3.9 Data Characters and Escape Sequences Updated in Release 1.7
	28.3.10 Point Card Reader Writer Sequence Diagram Added in Release 1.7
	28.3.11 Point Card Reader Writer State Diagram

	28.4 Properties (UML attributes)
	28.4.1 CapBold Property
	28.4.2 CapCardEntranceSensor Property
	28.4.3 CapCleanCard Property
	28.4.4 CapClearPrint Property
	28.4.5 CapDhigh Property
	28.4.6 CapDwide Property
	28.4.7 CapDwideDhigh Property
	28.4.8 CapItalic Property
	28.4.9 CapLeft90 Property
	28.4.10 CapMapCharacterSet Property Added in Release 1.7
	28.4.11 CapPrint Property
	28.4.12 CapPrintMode Property
	28.4.13 CapRight90 Property
	28.4.14 CapRotate180 Property
	28.4.15 CapTracksToRead Property
	28.4.16 CapTracksToWrite Property
	28.4.17 CardState Property
	28.4.18 CharacterSet Property Updated in Release 1.10
	28.4.19 CharacterSetList Property
	28.4.20 FontTypefaceList Property
	28.4.21 LineChars Property
	28.4.22 LineCharsList Property
	28.4.23 LineHeight Property
	28.4.24 LineSpacing Property
	28.4.25 LineWidth Property
	28.4.26 MapCharacterSet Property Added in Release 1.7
	28.4.27 MapMode Property Updated in Release 1.13
	28.4.28 MaxLine Property
	28.4.29 PrintHeight Property
	28.4.30 ReadState1 Property
	28.4.31 ReadState2 Property
	28.4.32 RecvLength1 Property
	28.4.33 RecvLength2 Property
	28.4.34 SidewaysMaxChars Property
	28.4.35 SidewaysMaxLines Property
	28.4.36 TracksToRead Property
	28.4.37 TracksToWrite Property
	28.4.38 Track1Data Property
	28.4.39 Track2Data Property
	28.4.40 Track3Data Property
	28.4.41 Track4Data Property
	28.4.42 Track5Data Property
	28.4.43 Track6Data Property
	28.4.44 WriteState1 Property
	28.4.45 WriteState2 Property
	28.4.46 Write1Data Property
	28.4.47 Write2Data Property
	28.4.48 Write3Data Property
	28.4.49 Write4Data Property
	28.4.50 Write5Data Property
	28.4.51 Write6Data Property

	28.5 Methods (UML operations)
	28.5.1 beginInsertion Method
	28.5.2 beginRemoval Method
	28.5.3 cleanCard Method
	28.5.4 clearPrintWrite Method
	28.5.5 endInsertion Method
	28.5.6 endRemoval Method
	28.5.7 printWrite Method Updated in Release 1.7
	28.5.8 rotatePrint Method
	28.5.9 validateData Method Updated in Release 1.7

	28.6 Events (UML Interfaces)
	28.6.1 DataEvent
	28.6.2 DirectIOEvent
	28.6.3 ErrorEvent Updated in Release 1.10
	28.6.4 OutputCompleteEvent
	28.6.5 StatusUpdateEvent

	29 POS Keyboard
	29.1 General
	29.2 Summary
	29.3 General Information
	29.3.1 Capabilities
	29.3.2 POS Keyboard Class Diagram
	29.3.3 POS Keyboard Sequence Diagram Updated in Release 1.8
	29.3.4 Model
	29.3.5 Device Sharing

	29.4 Properties (UML attributes)
	29.4.1 CapKeyUp Property
	29.4.2 EventTypes Property
	29.4.3 POSKeyData Property
	29.4.4 POSKeyEventType Property

	29.5 Events (UML interfaces)
	29.5.1 DataEvent
	29.5.2 DirectIOEvent
	29.5.3 ErrorEvent Updated in Release 1.10
	29.5.4 StatusUpdateEvent

	30 POS Power
	30.1 General
	30.2 Summary
	30.3 General Information
	30.3.1 Capabilities
	30.3.2 Device Sharing
	30.3.3 Model
	30.3.4 POSPower Class Diagram Updated in Release 1.16
	30.3.5 POSPower Sequence Diagram
	30.3.6 POSPower Standby Sequence Diagram
	30.3.7 POSPower State Diagram
	30.3.8 POSPower PowerState Diagram - Part 1
	30.3.9 POSPower PowerState Diagram - Part 2
	30.3.10 POSPower PowerState Diagram - Part 3
	30.3.11 POSPower State Chart Diagram for Fan and Temperature
	30.3.12 POSPower Battery State Diagram
	30.3.13 POSPower Transitions State Diagram

	30.4 Properties (UML attributes)
	30.4.1 BatteryCapacityRemaining Property
	30.4.2 BatteryCapacityRemainingInSeconds Property Added in Release 1.16
	30.4.3 BatteryCriticallyLowThreshold Property
	30.4.4 BatteryCriticallyLowThresholdInSeconds Property Added in Release 1.16
	30.4.5 BatteryLowThreshold Property Added in Release 1.9
	30.4.6 BatteryLowThresholdInSeconds Property Added in Release 1.16
	30.4.7 CapBatteryCapacityRemaining Property
	30.4.8 CapBatteryCapacityRemainingInSeconds Property Added in Release 1.16
	30.4.9 CapChargeTime Property Added in Release 1.16
	30.4.10 CapFanAlarm Property
	30.4.11 CapHeatAlarm Property
	30.4.12 CapQuickCharge Property
	30.4.13 CapRestartPOS Property
	30.4.14 CapShutdownPOS Property
	30.4.15 CapStandbyPOS Property
	30.4.16 CapSuspendPOS Property
	30.4.17 CapUPSChargeState Property
	30.4.18 CapVariableBatteryCriticallyLowThreshold Property
	30.4.19 CapVariableBatteryCriticallyLowThresholdInSeconds Property 　　　　　　　 　　　　　　　　 Added in Release 1.16
	30.4.20 CapVariableBatteryLowThreshold Property
	30.4.21 CapVariableBatteryLowThresholdInSeconds Property 　 Added in Release 1.16
	30.4.22 ChargeTime Property 　　 Added in Release 1.16
	30.4.23 EnforcedShutdownDelayTime Property
	30.4.24 PowerFailDelayTime Property
	30.4.25 PowerSource Property Added in Release 1.9
	30.4.26 QuickChargeMode Property
	30.4.27 QuickChargeTime Property
	30.4.28 UPSChargeState Property

	30.5 Methods (UML operations)
	30.5.1 restartPOS Method
	30.5.2 shutdownPOS Method
	30.5.3 standbyPOS Method
	30.5.4 suspendPOS Method

	30.6 Events (UML interfaces)
	30.6.1 DirectIOEvent
	30.6.2 StatusUpdateEvent

	31 POS Printer
	31.1 General
	31.2 Summary
	31.3 General Information
	31.3.1 Capabilities Updated in Release 1.8
	31.3.2 POS Printer Class Diagram
	31.3.3 POS Printer Class Diagram Updates Updated in Release 1.10
	31.3.4 Model Updated in Release 1.13
	31.3.5 Device Sharing
	31.3.6 POS Printer State Diagram
	31.3.7 Page Mode Printing State Diagram Added in Release 1.9
	31.3.8 “Both sides printing” sequence Diagram
	31.3.9 Page Mode printing sequence Diagram Added in Release 1.9
	31.3.10 Data Characters and Escape Sequences Updated in Release 1.13
	31.3.11 POS Printer State Diagrams (Low Level)

	31.4 Properties (UML attributes)
	31.4.1 AsyncMode Property
	31.4.2 CapCharacterSet Property Updated in Release 1.5
	31.4.3 CapConcurrentJrnRec Property
	31.4.4 CapConcurrentJrnSlp Property
	31.4.5 CapConcurrentPageMode Property Added in Release 1.9
	31.4.6 CapConcurrentRecSlp Property
	31.4.7 CapCoverSensor Property
	31.4.8 CapJrn2Color Property
	31.4.9 CapJrnBold Property
	31.4.10 CapJrnCartridgeSensor Property Added in Release 1.5
	31.4.11 CapJrnColor Property Added in Release 1.5
	31.4.12 CapJrnDhigh Property
	31.4.13 CapJrnDwide Property
	31.4.14 CapJrnDwideDhigh Property
	31.4.15 CapJrnEmptySensor Property
	31.4.16 CapJrnItalic Property
	31.4.17 CapJrnNearEndSensor Property
	31.4.18 CapJrnPresent Property
	31.4.19 CapJrnUnderline Property
	31.4.20 CapMapCharacterSet Property Added in Release 1.7
	31.4.21 CapRec2Color Property
	31.4.22 CapRecBarCode Property
	31.4.23 CapRecBitmap Property
	31.4.24 CapRecBold Property
	31.4.25 CapRecCartridgeSensor Property Added in Release 1.5
	31.4.26 CapRecColor Property Added in Release 1.5
	31.4.27 CapRecDhigh Property
	31.4.28 CapRecDwide Property
	31.4.29 CapRecDwideDhigh Property
	31.4.30 CapRecEmptySensor Property
	31.4.31 CapRecItalic Property
	31.4.32 CapRecLeft90 Property
	31.4.33 CapRecMarkFeed Property Added in Release 1.5
	31.4.34 CapRecNearEndSensor Property
	31.4.35 CapRecPageMode Property Added in Release 1.9
	31.4.36 CapRecPapercut Property
	31.4.37 CapRecPresent Property
	31.4.38 CapRecRight90 Property
	31.4.39 CapRecRotate180 Property
	31.4.40 CapRecRuledLine Property Added in Release 1.13
	31.4.41 CapRecStamp Property
	31.4.42 CapRecUnderline Property
	31.4.43 CapSlp2Color Property
	31.4.44 CapSlpBarCode Property
	31.4.45 CapSlpBitmap Property
	31.4.46 CapSlpBold Property
	31.4.47 CapSlpBothSidesPrint Property Added in Release 1.5
	31.4.48 CapSlpCartridgeSensor Property Added in Release 1.5
	31.4.49 CapSlpColor Property Added in Release 1.5
	31.4.50 CapSlpDhigh Property
	31.4.51 CapSlpDwide Property
	31.4.52 CapSlpDwideDhigh Property
	31.4.53 CapSlpEmptySensor Property
	31.4.54 CapSlpFullslip Property
	31.4.55 CapSlpItalic Property
	31.4.56 CapSlpLeft90 Property
	31.4.57 CapSlpNearEndSensor Property
	31.4.58 CapSlpPageMode Property Added in Release 1.9
	31.4.59 CapSlpPresent Property
	31.4.60 CapSlpRight90 Property
	31.4.61 CapSlpRotate180 Property
	31.4.62 CapSlpRuledLine Property Added in Release 1.13
	31.4.63 CapSlpUnderline Property
	31.4.64 CapTransaction Property
	31.4.65 CartridgeNotify Property Added in Release 1.5
	31.4.66 CharacterSet Property Updated in Release 1.10
	31.4.67 CharacterSetList Property
	31.4.68 CoverOpen Property
	31.4.69 ErrorLevel Property
	31.4.70 ErrorStation Property
	31.4.71 ErrorString Property
	31.4.72 FlagWhenIdle Property
	31.4.73 FontTypefaceList Property
	31.4.74 JrnCartridgeState Property Added in Release 1.5
	31.4.75 JrnCurrentCartridge Property Updated in Release 1.9
	31.4.76 JrnEmpty Property
	31.4.77 JrnLetterQuality Property
	31.4.78 JrnLineChars Property
	31.4.79 JrnLineCharsList Property
	31.4.80 JrnLineHeight Property
	31.4.81 JrnLineSpacing Property
	31.4.82 JrnLineWidth Property
	31.4.83 JrnNearEnd Property
	31.4.84 MapCharacterSet Property Added in Release 1.7
	31.4.85 MapMode Property Updated in Release 1.13
	31.4.86 PageModeArea Property Added in Release 1.9
	31.4.87 PageModeDescriptor Property Added in Release 1.9
	31.4.88 PageModeHorizontalPosition Property Added in Release 1.9
	31.4.89 PageModePrintArea Property Added in Release 1.9
	31.4.90 PageModePrintDirection Property Added in Release 1.9
	31.4.91 PageModeStation Property Added in Release 1.9
	31.4.92 PageModeVerticalPosition Property Added in Release 1.9
	31.4.93 RecBarCodeRotationList Property Updated in Release 1.7
	31.4.94 RecBitmapRotationList Property Added in Release 1.7
	31.4.95 RecCartridgeState Property Added in Release 1.5
	31.4.96 RecCurrentCartridge Property Updated in Release 1.9
	31.4.97 RecEmpty Property
	31.4.98 RecLetterQuality Property
	31.4.99 RecLineChars Property
	31.4.100 RecLineCharsList Property
	31.4.101 RecLineHeight Property
	31.4.102 RecLineSpacing Property
	31.4.103 RecLinesToPaperCut Property
	31.4.104 RecLineWidth Property
	31.4.105 RecNearEnd Property
	31.4.106 RecSidewaysMaxChars Property
	31.4.107 RecSidewaysMaxLines Property
	31.4.108 RotateSpecial Property
	31.4.109 SlpBarCodeRotationList Property Updated in Release 1.7
	31.4.110 SlpBitmapRotationList Property Added in Release 1.7
	31.4.111 SlpCartridgeState Property Added in Release 1.5
	31.4.112 SlpCurrentCartridge Property Updated in Release 1.9
	31.4.113 SlpEmpty Property
	31.4.114 SlpLetterQuality Propert
	31.4.115 SlpLineChars Property
	31.4.116 SlpLineCharsList Property
	31.4.117 SlpLineHeight Property
	31.4.118 SlpLinesNearEndToEnd Property
	31.4.119 SlpLineSpacing Property
	31.4.120 SlpLineWidth Property
	31.4.121 SlpMaxLines Property
	31.4.122 SlpNearEnd Property
	31.4.123 SlpPrintSide Property Added in Release 1.5
	31.4.124 SlpSidewaysMaxChars Property
	31.4.125 SlpSidewaysMaxLines Property

	31.5 Methods (UML operations)
	31.5.1 beginInsertion Method
	31.5.2 beginRemoval Method
	31.5.3 changePrintSide Method Updated in Release 1.9
	31.5.4 clearPrintArea Method Added in Release 1.9
	31.5.5 cutPaper Method Updated in Release 1.9
	31.5.6 drawRuledLine Method Added in Release 1.13
	31.5.7 endInsertion Method
	31.5.8 endRemoval Method
	31.5.9 markFeed Method Added in Release 1.5
	31.5.10 pageModePrint Method Updated in Release 1.11
	31.5.11 printBarCode Method Updated in Release 1.13
	31.5.12 printBitmap Method Updated in Release 1.7
	31.5.13 printImmediate Method Updated in Release 1.13
	31.5.14 printMemoryBitmap Method Added in Release 1.12
	31.5.15 printNormal Method Updated in Release 1.7
	31.5.16 printTwoNormal Method Updated in Release 1.9
	31.5.17 rotatePrint Method Updated in Version 1.11
	31.5.18 setBitmap Method Updated in Release 1.7
	31.5.19 setLogo Method Updated in Release 1.10
	31.5.20 transactionPrint Method
	31.5.21 validateData Method Updated in Release 1.9

	31.6 Events (UML interfaces)
	31.6.1 DirectIOEvent
	31.6.2 ErrorEvent Updated in Release 1.9
	31.6.3 OutputCompleteEvent
	31.6.4 StatusUpdateEvent Updated in Release 1.8

	32 Remote Order Display
	32.1 General
	32.2 Summary
	32.3 General Information
	32.3.1 Capabilities
	32.3.2 Remote Order Display Class Diagram
	32.3.3 Model Updated in Release 1.7
	32.3.4 Device Sharing

	32.4 Properties (UML attributes)
	32.4.1 AsyncMode Property Updated in Release 1.11
	32.4.2 AutoToneDuration Property Updated in Release 1.11
	32.4.3 AutoToneFrequency Property
	32.4.4 CapMapCharacterSet Property Added in Release 1.7
	32.4.5 CapSelectCharacterSet Property
	32.4.6 CapTone Property
	32.4.7 CapTouch Property
	32.4.8 CapTransaction Property
	32.4.9 CharacterSet Property Updated in Release 1.10
	32.4.10 CharacterSetList Property
	32.4.11 Clocks Property
	32.4.12 Current UnitID Property
	32.4.13 DataCount Property (Common)
	32.4.14 ErrorString Property
	32.4.15 ErrorUnits Property
	32.4.16 EventString Property
	32.4.17 EventType Property
	32.4.18 EventUnitID Property
	32.4.19 EventUnits Property
	32.4.20 MapCharacterSet Property Added in Release 1.7
	32.4.21 SystemClocks Property
	32.4.22 SystemVideoSaveBuffers Property
	32.4.23 Timeout Property
	32.4.24 UnitsOnline Property
	32.4.25 VideoDataCount Property
	32.4.26 VideoMode Property
	32.4.27 VideoModesList Property
	32.4.28 VideoSaveBuffers Property

	32.5 Methods (UML operations)
	32.5.1 checkHealth Method (Common)
	32.5.2 clearInput Method (Common)
	32.5.3 clearOutput Method (Common) Updated in Release 1.7
	32.5.4 clearVideo Method
	32.5.5 clearVideoRegion Method
	32.5.6 controlClock Method
	32.5.7 controlCursor Method
	32.5.8 copyVideoRegion Method
	32.5.9 displayData Method Updated in Release 1.7
	32.5.10 drawBox Method
	32.5.11 freeVideoRegion Method
	32.5.12 resetVideo Method
	32.5.13 restoreVideoRegion Method
	32.5.14 saveVideoRegion Method
	32.5.15 selectCharacterSet Method
	32.5.16 setCursor Method
	32.5.17 transactionDisplay Method
	32.5.18 updateVideoRegionAttribute Method
	32.5.19 videoSound Method

	32.6 Events (UML interfaces)
	32.6.1 DataEvent
	32.6.2 DirectIOEvent
	32.6.3 ErrorEvent Updated in Release 1.10
	32.6.4 OutputCompleteEvent
	32.6.5 StatusUpdateEvent

	33 RFID Scanner
	33.1 General
	33.2 Summary
	33.3 General Information
	33.3.1 Capabilities
	33.3.2 RFID Scanner Class Diagram
	33.3.3 Model
	33.3.4 RFID Scanner Sequence Diagrams
	33.3.5 RFID Scanner State Diagram
	33.3.6 Device Sharing

	33.4 Properties (UML Attributes)
	33.4.1 CapContinuousRead Property
	33.4.2 CapDisableTag Property
	33.4.3 CapLockTag Property
	33.4.4 CapMultipleProtocols Property
	33.4.5 CapReadTimer Property
	33.4.6 CapWriteTag Property
	33.4.7 ContinuousReadMode Property
	33.4.8 CurrentTagID Property
	33.4.9 CurrentTagProtocol Property
	33.4.10 CurrentTagUserData Property
	33.4.11 ProtocolMask Property
	33.4.12 ReadTimerInterval Property
	33.4.13 TagCount Property

	33.5 Methods (UML operations)
	33.5.1 disableTag Method
	33.5.2 firstTag Method
	33.5.3 lockTag Method
	33.5.4 nextTag Method
	33.5.5 previousTag Method
	33.5.6 readTags Method
	33.5.7 startReadTags Method
	33.5.8 stopReadTags Method
	33.5.9 writeTagData Method
	33.5.10 writeTagID Method

	33.6 Events (UML Interfaces)
	33.6.1 DataEvent
	33.6.2 DirectIOEvent
	33.6.3 ErrorEvent
	33.6.4 OutputCompleteEvent
	33.6.5 StatusUpdateEvent

	34 Scale
	34.1 General
	34.2 Summary
	34.3 General Information
	34.3.1 Capabilities

	34.4 Scale Class Diagram Updated in Release 1.14
	34.5 Scale Sequence Diagram Added in Release 1.7
	34.5.1 Model
	34.5.2 Device Sharing

	34.6 Properties (UML attributes)
	34.6.1 AsyncMode Property Added in Release 1.3
	34.6.2 CapDisplay Property
	34.6.3 CapDisplayText Property Added in Release 1.3
	34.6.4 CapFreezeValue Property Added in Release 1.14
	34.6.5 CapPriceCalculating Property Added in Release 1.3
	34.6.6 CapReadLiveWeightWithTare Property Added in Release 1.14
	34.6.7 CapSetPriceCalculationMode Property Added in Release 1.14
	34.6.8 CapSetUnitPriceWithWeightUnit Property Added in Release 1.14
	34.6.9 CapSpecialTare Property Added in Release 1.14
	34.6.10 CapStatusUpdate Property Added in Release 1.9
	34.6.11 CapTarePriority Property Added in Release 1.14
	34.6.12 CapTareWeight Property Added in Release 1.3
	34.6.13 CapZeroScale Property Added in Release 1.3
	34.6.14 MaxDisplayTextChars Property Added in Release 1.3
	34.6.15 MaximumWeight Property
	34.6.16 MinimumWeight Property Added in Release 1.14
	34.6.17 SalesPrice Property Updated in Release 1.6
	34.6.18 ScaleLiveWeight Property Updated in Release 1.14
	34.6.19 StatusNotify Property Updated in Release 1.10
	34.6.20 TareWeight Property Updated in Release 1.14
	34.6.21 UnitPrice Property Updated in Release 1.14
	34.6.22 WeightUnit Property
	34.6.23 ZeroValid Property Added in Release 1.13

	34.7 Methods (UML operations)
	34.7.1 displayText Method Updated in Release 1.7
	34.7.2 doPriceCalculating Method Added in Release 1.14
	34.7.3 freezeValue Method Added in Release 1.14
	34.7.4 readLiveWeightWithTare Method Added in Release 1.14
	34.7.5 readWeight Method
	34.7.6 setPriceCalculationMode Method Added in Release 1.14
	34.7.7 setSpecialTare Method Added in Release 1.14
	34.7.8 setTarePriority Method Added in Release 1.14
	34.7.9 setUnitPriceWithWeightUnit Method Added in Release 1.14
	34.7.10 zeroScale Method Updated in Release 1.10

	34.8 Events (UML interfaces)
	34.8.1 DataEvent Added in Release 1.3
	34.8.2 DirectIOEvent
	34.8.3 ErrorEvent Updated in Release 1.10
	34.8.4 StatusUpdateEvent Updated in Release 1.10

	35 Scanner (Bar Code Reader)
	35.1 General
	35.2 Summary
	35.3 General Information
	35.3.1 Capabilities
	35.3.2 Scanner Class Diagram
	35.3.3 Scanner Sequence Diagram Updated in Release 1.8
	35.3.4 Model
	35.3.5 Device Sharing

	35.4 Properties (UML attributes)
	35.4.1 DecodeData Property
	35.4.2 ScanData Property Updated in Release 1.7
	35.4.3 ScanDataLabel Property Updated in Release 1.10
	35.4.4 ScanDataType Property Updated in Release 1.14

	35.5 Events (UML interfaces)
	35.5.1 DataEvent
	35.5.2 DirectIOEvent
	35.5.3 ErrorEvent Updated in Release 1.10
	35.5.4 StatusUpdateEvent

	36 Signature Capture
	36.1 General
	36.2 Summary
	36.3 General Information
	36.3.1 Capabilities
	36.3.2 Signature Capture Class Diagram
	36.3.3 Signature Capture Sequence Diagram Updated in Release 1.8
	36.3.4 Model
	36.3.5 Device Sharing

	36.4 Properties (UML attributes)
	36.4.1 CapDisplay Property
	36.4.2 CapRealTimeData Property
	36.4.3 CapUserTerminated Property
	36.4.4 DeviceEnabled Property (Common)
	36.4.5 MaximumX Property
	36.4.6 MaximumY Property
	36.4.7 PointArray Property Updated in Release 1.7
	36.4.8 RawData Property Updated in Release 1.7
	36.4.9 RealTimeDataEnabled Property

	36.5 Methods (UML operations)
	36.5.1 beginCapture Method
	36.5.2 endCapture Method

	36.6 Events (UML interfaces)
	36.6.1 DataEvent
	36.6.2 DirectIOEvent
	36.6.3 ErrorEvent Updated in Release 1.11
	36.6.4 StatusUpdateEvent

	37 Smart Card Reader/Writer
	37.1 General
	37.2 Summary
	37.3 General Information
	37.3.1 Capabilities

	37.4 Smart Card Reader / Writer Class Diagram
	37.5 Model
	37.6 Card Insertion Diagram
	37.7 Device Sharing
	37.8 Data Transfer Modes
	37.9 Smart Card Reader / Writer Sequence Diagram
	37.10 Smart Card Reader / Writer State Diagram
	37.11 Properties (UML Attributes)
	37.11.1 CapCardErrorDetection Property
	37.11.2 CapInterfaceMode Property
	37.11.3 CapIsoEmvMode Property
	37.11.4 CapSCPresentSensor Property
	37.11.5 CapSCSlots Property
	37.11.6 CapTransmissionProtocol Property
	37.11.7 InterfaceMode Property
	37.11.8 IsoEmvMode Property
	37.11.9 SCPresentSensor Property
	37.11.10 SCSlot Property
	37.11.11 TransactionInProgress Property
	37.11.12 TransmissionProtocol Property

	37.12 Methods (UML operations)
	37.12.1 beginInsertion Method
	37.12.2 beginRemoval Method
	37.12.3 endInsertion Method
	37.12.4 endRemoval Method
	37.12.5 readData Method Updated in Release 1.10
	37.12.6 writeData Method

	37.13 Events (UML Interfaces)
	37.13.1 DataEvent Updated in Release 1.10
	37.13.2 DirectIOEvent
	37.13.3 ErrorEvent Updated in Release 1.10
	37.13.4 OutputCompleteEvent
	37.13.5 StatusUpdateEvent

	38 Tone Indicator
	38.1 General
	38.2 Summary
	38.3 General Information
	38.3.1 Capabilities
	38.3.2 Tone Indicator Class Diagram
	38.3.3 Tone Indicator Sequence Diagram Added in Release 1.7
	38.3.4 Model Updated in Release 1.13
	38.3.5 Device Sharing

	38.4 Properties (UML attributes)
	38.4.1 AsyncMode Property Updated in Release 1.6
	38.4.2 CapMelody Property Added in Release 1.13
	38.4.3 CapPitch Property
	38.4.4 CapVolume Property
	38.4.5 InterToneWait Property Updated in Release 1.6
	38.4.6 MelodyType Property Added in Release 1.13
	38.4.7 MelodyVolume Property Added in Release 1.13
	38.4.8 Tone1Duration Property Updated in Release 1.6
	38.4.9 Tone1Pitch Property Updated in Release 1.6
	38.4.10 Tone1Volume Property Updated in Release 1.6
	38.4.11 Tone2Duration Property Updated in Release 1.6
	38.4.12 Tone2Pitch Property Updated in Release 1.6
	38.4.13 Tone2Volume Property Updated in Release 1.6

	38.5 Methods (UML operations)
	38.5.1 sound Method Updated in Release 1.13
	38.5.2 soundImmediate Method

	38.6 Events (UML interfaces)
	38.6.1 DirectIOEvent
	38.6.2 ErrorEvent Updated in Release 1.9
	38.6.3 OutputCompleteEvent
	38.6.4 StatusUpdateEvent

	39 Video Capture
	39.1 General
	39.2 Summary
	39.3 General Information
	39.3.1 Capabilities
	39.3.2 Video Capture Class Diagram

	39.4 Model
	39.4.1 Modes
	39.4.2 Device behaviors
	39.4.3 Photo Mode
	39.4.4 Video Mode
	39.4.5 Device Sharing

	39.5 Properties (UML attributes)
	39.5.1 AutoExposure Property
	39.5.2 AutoFocus Property
	39.5.3 AutoGain Property
	39.5.4 AutoWhiteBalance Property
	39.5.5 Brightness Property
	39.5.6 CapAssociatedHardTotalsDevice Property
	39.5.7 CapAutoExposure Property
	39.5.8 CapAutoFocus Property
	39.5.9 CapAutoGain Property
	39.5.10 CapAutoWhiteBalance Property
	39.5.11 CapBrightness Property
	39.5.12 CapContrast Property
	39.5.13 CapExposure Property
	39.5.14 CapGain Property
	39.5.15 CapHorizontalFlip Property
	39.5.16 CapHue Property
	39.5.17 CapPhoto Property
	39.5.18 CapPhotoColorSpace Property
	39.5.19 CapPhotoFrameRate Property
	39.5.20 CapPhotoResolution Property
	39.5.21 CapPhotoType Property
	39.5.22 CapSaturation Property
	39.5.23 CapStorage Property
	39.5.24 CapVerticalFlip Property
	39.5.25 CapVideo Property
	39.5.26 CapVideoColorSpace Property
	39.5.27 CapVideoFrameRate Property
	39.5.28 CapVideoResolution Property
	39.5.29 CapVideoType Property
	39.5.30 Contrast Property
	39.5.31 Exposure Property
	39.5.32 Gain Property
	39.5.33 HorizontalFlip Property
	39.5.34 Hue Property
	39.5.35 PhotoColorSpace Property
	39.5.36 PhotoColorSpaceList Property
	39.5.37 PhotoFrameRate Property
	39.5.38 PhotoMaxFrameRate Property
	39.5.39 PhotoResolution Property
	39.5.40 PhotoResolutionList Property
	39.5.41 PhotoType Property
	39.5.42 PhotoTypeList Property
	39.5.43 RemainingRecordingTimeInSec Property
	39.5.44 Saturation Property
	39.5.45 Storage Property
	39.5.46 VerticalFlip Property
	39.5.47 VideoCaptureMode Property
	39.5.48 VideoColorSpace Property
	39.5.49 VideoColorSpaceList Property
	39.5.50 VideoFrameRate Property
	39.5.51 VideoMaxFrameRate Property
	39.5.52 VideoResolution Property
	39.5.53 VideoResolutionList Property
	39.5.54 VideoType Property
	39.5.55 VideoTypeList Property

	39.6 Note: Video Capture Device Property Value Relationship
	39.7 Methods (UML operations)
	39.7.1 startVideo Method
	39.7.2 stopVideo Method
	39.7.3 takePhoto Method

	39.8 Events (UML interfaces)
	39.8.1 DirectIOEvent
	39.8.2 ErrorEvent
	39.8.3 StatusUpdateEvent

	40 Individual Recognition
	40.1 General
	40.2 Summary
	40.3 General Information
	40.3.1 Capabilities
	40.3.2 Individual Recognition Class Diagram
	40.3.3 Model
	40.3.4 IndividualRecognitionFilter
	40.3.5 IndividualRecognitionFilter Property Example Format
	40.3.6 IndividualRecognition Information Property Example Format

	40.4 Properties (UML attributes)
	40.4.1 CapIndividualList Property
	40.4.2 IndividualIDs Property
	40.4.3 IndividualRecognitionFilter Property

	40.5 Events (UML interfaces)
	40.5.1 DataEvent
	40.5.2 DirectIOEvent
	40.5.3 ErrorEvent
	40.5.4 StatusUpdateEvent

	41 Sound Recorder
	41.1 General
	41.2 Summary
	41.3 General Information
	41.3.1 Capabilities
	41.3.2 Sound Recorder Class Diagram
	41.3.3 Model
	41.3.4 Device Sharing

	41.4 Properties (UML attributes)
	41.4.1 CapAssociatedHardTotalsDevice Property
	41.4.2 CapChannel Property
	41.4.3 CapSamplingRate Property
	41.4.4 CapSoundType Property
	41.4.5 CapVolume Property
	41.4.6 CapStorage Property
	41.4.7 CapRecordingLevel Property
	41.4.8 Channel Property
	41.4.9 ChannelList Property
	41.4.10 RecordingLevel Property
	41.4.11 RemainingRecordingTimeInSec Property
	41.4.12 SamplingRate Property
	41.4.13 SamplingRateList Property
	41.4.14 SoundData Property
	41.4.15 SoundType Property
	41.4.16 SoundTypeList Property
	41.4.17 Storage Property

	41.5 Methods (UML operations)
	41.5.1 startRecording Method
	41.5.2 stopRecording Method

	41.6 Events (UML interfaces)
	41.6.1 DataEvent
	41.6.2 DirectIOEvent
	41.6.3 ErrorEvent
	41.6.4 StatusUpdateEvent

	42 Voice Recognition
	42.1 General
	42.2 Summary
	42.3 General Information
	42.3.1 Capabilities
	42.3.2 Voice Recognition Class Diagram

	42.4 Model
	42.5 Device Sharing
	42.6 Properties (UML attributes)
	42.6.1 CapLanguage Property
	42.6.2 HearingDataPattern Property
	42.6.3 HearingDataWordList Property
	42.6.4 HearingDataWordList Property
	42.6.5 HearingResult Property
	42.6.6 HearingStatus Property
	42.6.7 LanguageList Property

	42.7 Methods (UML operations)
	42.7.1 startHearingFree Method
	42.7.2 startHearingSentence Method
	42.7.3 startHearingWord Method
	42.7.4 StartHearingYesNo Method
	42.7.5 stopHearing Method

	42.8 Events (UML interfaces)
	42.8.1 DataEvent
	42.8.2 DirectIOEvent
	42.8.3 ErrorEvent
	42.8.4 StatusUpdateEvent

	43 Sound Player
	43.1 General
	43.2 Summary
	43.3 General Information
	43.3.1 Capabilities
	43.3.2 Sound Player Class Diagram
	43.3.3 Model

	43.4 Properties (UML attributes)
	43.4.1 CapAssociatedHardTotalsDevice Property
	43.4.2 CapMultiPlay Property
	43.4.3 CapSoundTypeList Property
	43.4.4 CapStorage Property
	43.4.5 CapVolume Property
	43.4.6 DeviceSoundList Property
	43.4.7 OutputIDList Property
	43.4.8 Storage Property
	43.4.9 Volume Property

	43.5 Methods (UML operations)
	43.5.1 playSound Method
	43.5.2 stopSound Method

	43.6 Events (UML interfaces)
	43.6.1 DirectIOEvent
	43.6.2 ErrorEvent
	43.6.3 OutputCompleteEvent
	43.6.4 StatusUpdateEvent

	44 Speech Synthesis
	44.1 General
	44.2 Summary
	44.3 General Information
	44.3.1 Capabilities
	44.3.2 Speech Synthesis Class Diagram
	44.3.3 Model
	44.3.4 Device Sharing

	44.4 Properties (UML attributes)
	44.4.1 CapLanguage Property
	44.4.2 CapPitch Property
	44.4.3 CapSpeed Property
	44.4.4 CapVoice Property
	44.4.5 CapVolume Property
	44.4.6 Language Property
	44.4.7 LanguageList Property
	44.4.8 OutputIDList Property
	44.4.9 Pitch Property
	44.4.10 Speed Property
	44.4.11 Voice Property
	44.4.12 VoiceList Property
	44.4.13 Volume Property

	44.5 Methods (UML operations)
	44.5.1 speak Method
	44.5.2 speakimmediate Method
	44.5.3 stopCurrentSpeaking Method
	44.5.4 stopSpeaking Method

	44.6 Events (UML interfaces)
	44.6.1 DirectIOEvent
	44.6.2 ErrorEvent
	44.6.3 OutputComplete Event
	44.6.4 StatusUpdateEvent

	45 Gesture Control
	45.1 General
	45.2 Summary
	45.3 General Information
	45.3.1 Capabilities
	45.3.2 Gesture Control Class Diagram
	45.3.3 Model
	45.3.4 Automatic control
	45.3.5 Pose/Motion
	45.3.6 Device Sharing

	45.4 Properties (UML attributes)
	45.4.1 AutoMode Property
	45.4.2 AutoModeList Property
	45.4.3 CapAssociatedHardTotalsDevice Property
	45.4.4 CapMotion Property
	45.4.5 CapMotionCreation Property
	45.4.6 CapPose Property
	45.4.7 CapPoseCreation Property
	45.4.8 CapStorage Property
	45.4.9 JointList Property
	45.4.10 MotionList Property
	45.4.11 PoseCreationMode Property
	45.4.12 PoseList Property
	45.4.13 Storage Property
	45.4.14 Table of Gesture Control Device Listed Items in Property

	45.5 Methods (UML operations)
	45.5.1 createMotion Method
	45.5.2 createPose Method
	45.5.3 getPosition Method
	45.5.4 setPosition Method
	45.5.5 setSpeed Method
	45.5.6 startMotion Method
	45.5.7 startPose Method
	45.5.8 stopControl Method

	45.6 Events (UML interfaces)
	45.6.1 DirectIOEvent
	45.6.2 ErrorEvent
	45.6.3 OutputCompleteEvent
	45.6.4 StatusUpdateEvent

	46 Device Monitor
	46.1 General
	46.2 Summary
	46.3 General Information
	46.3.1 Capabilities
	46.3.2 Device Monitor Class Diagram
	46.3.3 Model
	46.3.4 Device Sharing

	46.4 Properties (UML attributes)
	46.4.1 DeviceData Property
	46.4.2 DeviceList Property
	46.4.3 MonitoringDeviceList Property

	46.5 Methods (UML operations)
	46.5.1 addMonitoringDevice Method
	46.5.2 clearMonitoringDevices Method
	46.5.3 deleteMonitoringDevice Method
	46.5.4 getDeviceValue method

	46.6 Events (UML interfaces)
	46.6.1 DataEvent
	46.6.2 DirectIOEvent
	46.6.3 ErrorEvent
	46.6.4 StatusUpdateEvent

	47 Graphic Display
	47.1 General
	47.2 Summary
	47.3 General Information
	47.3.1 Capabilities
	47.3.2 Graphics Display Class Diagram
	47.3.3 Model
	47.3.4 Device Sharing

	47.4 Properties (UML Attributes)
	47.4.1 Brightness Property
	47.4.2 CapAssociatedHardTotalsDevice Property
	47.4.3 CapBrightness Property
	47.4.4 CapImageType Property
	47.4.5 CapStorage Property
	47.4.6 CapURLBack Property
	47.4.7 CapURLForward Property
	47.4.8 CapVideoType Property
	47.4.9 CapVolume Property
	47.4.10 DisplayMode Property
	47.4.11 ImageType Property
	47.4.12 ImageTypeList Property
	47.4.13 LoadStatus Property
	47.4.14 Storage Property
	47.4.15 URL Property
	47.4.16 VideoType Property
	47.4.17 VideoTypeList Property
	47.4.18 Volume Property

	47.5 Methods (UML operations)
	47.5.1 cancelURLLoading Method
	47.5.2 goURLBack Method
	47.5.3 goURLForward Method
	47.5.4 loadImage Method
	47.5.5 loadURL Method
	47.5.6 playVideo Method
	47.5.7 stopVideo Method
	47.5.8 updateURLPage Method

	47.6 Events (UML interfaces)
	47.6.1 DirectIOEvent
	47.6.2 ErrorEvent
	47.6.3 OutputCompleteEvent
	47.6.4 StatusUpdateEvent

	A.1 What is OLE for Retail POS?
	A.2 Who Should Read This Section
	A.3 General OLE for Retail POS Control Model
	A.4 OPOS Definitions
	A.4.1 Device Class
	A.4.2 Control Object or CO
	A.4.3 Service Object or SO
	A.4.4 OPOS Control or Control

	A.5 How an Application Uses an OPOS Control
	A.6 When Methods and Properties May Be Accessed
	A.6.1 Methods
	A.6.2 Properties

	A.7 Status, Result Code, and State Model Updated in Release 1.11
	A.7.1 Status Model
	A.7.2 Result Code Model
	A.7.3 State Model Updated in Release 1.7

	A.8 Device Sharing Model
	A.8.1 Exclusive-Use Devices
	A.8.2 Sharable Devices

	A.9 Events Updated in Release 1.12
	A.10 OPOS Event Registration Sequence Diagram Added in Release 1.7
	A.11 Input Model Updated in Release 1.12
	A.12 Output Model
	A.13 Device Power Reporting Model Added in OPOS Release 1.3, Updated in Release 1.8
	A.13.1 Model
	A.13.2 Properties
	A.13.3 Power Reporting Requirements for DeviceEnabled

	A.14 Device Information Reporting Model Added in Release 1.8
	A.14.1 Statistics Reporting Properties and Methods

	A.15 Update Firmware Device Model Added in Release 1.9
	A.16 OPOS Component Descriptions
	A.17 Section 1: OPOS Data Types Updated in Release 1.12
	A.18 Section 2: OPOS Interface Descriptions
	A.19 OPOS Common Properties, Methods, and Events
	A.20 Common Properties Updated in Release 1.9
	A.21 Common Methods Updated in Release 1.10
	A.22 OPOS Programmatic Names Updated in Release 1.12
	A.23 Properties
	A.24 Methods
	A.25 Events
	A.26 Peripheral Interfaces
	A.27 OPOS: Cash Drawer
	A.28 OPOS: MICR
	A.29 Section 3: OPOS Registry Usage Updated in Release 1.12
	A.30 Section 4: OPOS Application Header Files Updated in Release 1.12
	A.31 Section 5: Technical Details
	A.31.1 System Strings (BSTR)
	A.31.2 System Strings and Binary Data
	A.31.3 Mapping of CharacterSet Updated in Release 1.10

	A.32 Section 6: Release 1.5 API Change: ClaimDevice and ReleaseDevice
	A.33 Section 7: OPOS APG Change History 　　　　　　　　　　　　　　　　　　　　　　　　　　　　 　　　 Release 1.01
	A.34 Section 8: OPOS Control Programmer’s Guide
	A.34.1 Who Should Read This Section
	A.34.2 General OLE for Retail POS Control Model
	A.34.3 OPOS Definitions
	A.34.4 Interface Overview
	A.34.5 Methods
	A.34.6 Properties
	A.34.7 Events
	A.34.8 Control Object Responsibilities
	A.34.9 Methods
	A.34.10 Properties
	A.34.11 Events
	A.34.12 Service Object Responsibilities and Implementation
	A.34.13 Properties
	A.34.14 Events
	A.34.15 OPOS CPG Change History

	B.1 What is Java for Retail POS?
	B.2 Benefits
	B.3 Dependencies
	B.4 Relationship to OPOS
	B.5 Who Should Read This Section
	B.6 Appendix Overview
	B.7 Architectural Overview
	B.8 Architectural Components
	B.8.1 Additional Layers and APIs

	B.9 Device Behavior Models
	B.10 Introduction to Properties, Methods, and Events
	B.11 Device Initialization and Finalization
	B.11.1 Initialization
	B.11.2 Finalization
	B.11.3 Summary

	B.12 Device Sharing Model
	B.12.1 Exclusive-Use Devices
	B.12.2 Sharable Devices

	B.13 Data Types Updated in Release 1.11
	B.14 Exceptions
	B.14.1 ErrorCode Updated in Release 1.11
	B.14.2 ErrorCodeExtended

	B.15 Events Updated in Release 1.12
	B.15.1 Registering for Events
	B.15.2 Event Delivery

	B.16 JavaPOS Event Registration Sequence Diagram Added in Release 1.7
	B.17 Device Input Model
	B.18 Device Output Models
	B.18.1 Synchronous Output
	B.18.2 Asynchronous Output Updated in Release 1.12

	B.19 Device Power Reporting Model Added in JavaPOS Release 1.3, Updated in Release 1.8.
	B.19.1 Model
	B.19.2 Properties
	B.19.3 Power Reporting Requirements for DeviceEnabled

	B.20 Device Information Reporting Model Added in Release 1.8.
	B.20.1 Statistics Reporting Properties and Methods

	B.21 Update Firmware Device Model Added in Release 1.9
	B.22 Device States
	B.23 Threads
	B.24 Version Handling
	B.25 Classes and Interfaces
	B.26 Synopsis
	B.26.1 Application
	B.26.2 Device Control
	B.26.3 Device Service
	B.26.4 Helper Classes

	B.27 Sample Class and Interface Hierarchies
	B.27.1 Application Sample
	B.27.2 Device Control Sample
	B.27.3 Device Service Sample

	B.28 Sample Application Code
	B.29 Package Structure Updated in Release 1.13
	B.30 Device Controls
	B.31 Device Control Responsibilities
	B.32 Device Service Management
	B.32.1 jpos.config/loader (JCL) and JavaPOS Entry Registry (JER)
	B.32.2 jpos.config/loader (JCL) Characteristics

	B.33 Property and Method Forwarding
	B.34 Event Handling
	B.34.1 Event Listeners and Event Delivery
	B.34.2 Event Callbacks

	B.35 Device Control Version Handling
	B.36 Device Services
	B.37 Device Service Responsibilities
	B.38 Property and Method Processing
	B.39 Event Generation
	B.40 Physical Device Access
	B.41 API Mapping Rules
	B.42 JavaPOS Component Descriptions
	B.43 Section 1: JavaPOS Data Types
	B.44 Section 2: JavaPOS Interface Descriptions
	B.45 JavaPOS Common Properties, Methods, and Events
	B.45.1 Common Methods Updated in Release 1.10
	B.45.2 JavaPOS Class Names Updated in Version 1.12

	B.46 Properties
	B.47 Methods
	B.48 Events
	B.49 Peripheral Interfaces
	B.50 Section 3: Technical Details - OPOS and JavaPOS
	B.51 OPOS to JavaPOS - API Mapping Rules
	B.52 API Deviations
	B.53 Mapping of CharacterSet Updated in Release 1.10
	B.54 Handling Binary Data inside Strings Added in Release 1.12
	B.55 Section 4: JavaPOS Change History
	C.1 What is POS for .NET? Updated in Release 1.15
	C.2 Who Should Read This Section Updated in Release 1.15
	C.3 Overview of POS for .NET
	C.4 POS for .NET Definitions
	C.4.1 Device Class
	C.4.2 Service Object or SO

	C.5 Key POS for .NET Features
	C.6 Key Programming Construct Differences from OPOS
	C.6.1 Naming Conventions
	C.6.2 Structures
	C.6.3 Complete Class Libraries Provided

	C.7 Key Parameter Differences
	C.8 Key Property Signature Differences
	C.9 PosExplorer API
	C.9.1 PosExplorer Properties
	C.9.2 PosExplorer Methods
	C.9.3 PosExplorer Events
	C.9.4 Global Configuration

	C.10 Service Object Registry
	C.11 Consuming Service Objects
	C.11.1 OPOS
	C.11.2 POS for .NET

	C.12 Writing Service Objects
	C.12.1 POS for .NET

	C.13 Status, State Model, and Exceptions
	C.14 Device Sharing Model
	C.15 Events Updated in Release 1.12
	C.16 Input Model Updated in Release 1.12
	C.17 Output Model
	C.17.1 Synchronous Output
	C.17.2 Asynchronous Output Updated in Release 1.12

	C.18 Device Power Reporting Model
	C.18.1 Model

	C.19 Power Reporting Properties
	C.19.1 Power Reporting Requirements for DeviceEnabled

	C.20 Device Information Reporting Model
	C.20.1 Statistics Reporting Properties and Methods

	C.21 POS for .NET Component Descriptions
	C.21.1 POS for .NET Data Types Updated in Release 1.11
	C.21.2 POS for .NET Common Properties, Methods, Events, Statistics, and Constants

	C.22 Common Properties
	C.23 Common Methods
	C.24 Common Events
	C.25 POS for .NET vs. UnifiedPOS Members
	C.26 Interim Procedure Available For Legacy OPOS Services... Shim Code Usage Updated in Release 1.11
	C.27 Architecture Structures Added in Release 1.11
	C.28 Method of Implementation
	C.29 Method of Administration
	C.29.1 Shim Code File Names

	D.1 Overview
	D.1.1 XMLPOS requirements
	D.1.2 Out of Scope

	D.2 Referenced Documents
	D.3 Taxonomy for Conversion from UnifiedPOS to XML Updated in Version 1.14.1
	D.4 Changes to XMLPOS Updated in Version 1.13
	D.5 XMLPOS Architecture Overview Updated in Release 1.14
	D.5.1 UnifiedPOS XML Requirements
	D.5.2 UnifiedPOS Synchronous XML Communications
	D.5.3 UnifiedPOS Asynchronous XML Communications

	D.6 UnifiedPOS XML Errors
	D.6.1 Device Error Codes and Message Severity Codes
	D.6.2 Standard Error Codes to Severity Codes
	D.6.3 Standard Status Codes to Severity Codes
	D.6.4 UnifiedPOS Synchronous XML Errors
	D.6.5 UnifiedPOS Asynchronous XML Errors

	D.7 XMLPOS Common Events
	D.7.1 UnifiedPOS Synchronous XML Events
	D.7.2 UnifiedPOS Asynchronous XML Events

	D.8 XMLPOS Common Properties
	D.9 XMLPOS Common Data
	D.10 ARTS Common Data
	D.11 UnifiedPOS Devices
	D.11.1 Belt
	D.11.2 Bill Acceptor
	D.11.3 Bill Dispenser
	D.11.4 Biometrics
	D.11.5 Bump Bar
	D.11.6 Cash Changer
	D.11.7 Cash Drawer
	D.11.8 CAT
	D.11.9 Check Scanner
	D.11.10 Coin Acceptor
	D.11.11 Coin Dispenser
	D.11.12 Electronic Journal
	D.11.13 Electronic Value Reader / Writer
	D.11.14 Fiscal Printer
	D.11.15 Gate
	D.11.16 Hard Totals
	D.11.17 Image Scanner
	D.11.18 Item Dispenser
	D.11.19 Keylock
	D.11.20 Lights
	D.11.21 Line Display
	D.11.22 MICR
	D.11.23 Motion Sensor
	D.11.24 MSR
	D.11.25 PIN Pad
	D.11.26 Point Card Reader/Writer
	D.11.27 POS Keyboard
	D.11.28 POS Power
	D.11.29 POS Printer
	D.11.30 Remote Order Display
	D.11.31 RFID Scanner
	D.11.32 Scale
	D.11.33 Scanner Device
	D.11.34 Signature Capture
	D.11.35 Smart Card Reader / Writer
	D.11.36 Tone Indicator

	D.12 NAFEM Protocol
	D.12.1 Administration Enterprise Group
	D.12.2 Asset Management Enterprise Group
	D.12.3 Bulk Transfer Enterprise Group
	D.12.4 Clock Calendar Enterprise Group
	D.12.5 Inventory Management Enterprise Group
	D.12.6 Maintenance Enterprise Group
	D.12.7 Monitor Enterprise Group
	D.12.8 Notification Enterprise Group
	D.12.9 Security Enterprise Group
	D.12.10 Utility Enterprise Group

	D.13 Distributed Files
	D.14 Glossary
	E.1 Release Version 1.4
	E.2 Release Version 1.5
	E.3 Release Version 1.6
	E.4 Release Version 1.7
	E.5 Release Version 1.8
	E.6 Release Version 1.9
	E.7 Release Version 1.10
	E.8 Release Version 1.11
	E.9 Release Version 1.12
	E.10 Release Version 1.13
	E.11 Release Version 1.14
	E.12 Release Version 1.14.1
	E.13 Release Version 1.15
	E.14 Updated items in release 1.16
	F.1 General
	F.2 UML References
	G.1 General
	G.2 USB PlusPower Connector
	G.2.1 Overview
	G.2.2 Host Side Connector
	G.2.3 Cable
	G.2.4 Peripheral Side Connection
	G.2.5 Web Location References - USB connector EIA approval
	G.2.6 Reading Material References
	G.2.7 ARTS Standard Endorsement

	H.1 General
	I.1 What is Systems Management?
	I.2 How is UnifiedPOS involved in Systems Management?
	I.3 Who Should Read This Section
	I.4 UnifiedPOS Device Information Reporting Model
	I.4.1 CIM Structure

	I.5 Architectural Overview
	I.5.1 Exclusive Use
	I.5.2 Multiple Instances
	I.5.3 Limited Lifetime
	I.5.4 Solution Creation

	I.6 Utilized CIM Data Types Updated in Release 1.13
	I.7 Common Properties, Methods, and Events Updated in Release 1.14
	I.8 Common Methods
	I.9 Properties Updated in Release 1.13
	I.10 Peripheral Interfaces
	I.10.1 Belt Updated in Release 1.13
	I.10.2 Bill Acceptor Updated in Release 1.13
	I.10.3 Bill Dispenser Updated in Release 1.13
	I.10.4 Biometrics Updated in Release 1.13
	I.10.5 Bump Bar Updated in Release 1.13
	I.10.6 Cash Changer Updated in Release 1.13
	I.10.7 Cash Drawer Updated in Release 1.13
	I.10.8 Credit Authorization Terminal Updated in Release 1.13
	I.10.9 Check Scanner Updated in Release 1.13
	I.10.10 Coin Acceptor Updated in Release 1.13
	I.10.11 Coin Dispenser Updated in Release 1.13
	I.10.12 Electronic Journal Updated in Release 1.13
	I.10.13 Electronic Value Reader/Writer Updated in Release 1.13
	I.10.14 Fiscal Printer Updated in Release 1.13
	I.10.15 Gate Updated in Release 1.13
	I.10.16 Hard Totals Updated in Release 1.13
	I.10.17 Image Scanner Updated in Release 1.13
	I.10.18 Item Dispenser Updated in Release 1.13
	I.10.19 Keylock Updated in Release 1.13
	I.10.20 Lights Updated in Release 1.13
	I.10.21 Line Display Updated in Release 1.13
	I.10.22 MICR Updated in Release 1.13
	I.10.23 Motion Sensor Updated in Release 1.13
	I.10.24 MSR Updated in Release 1.13
	I.10.25 PINPad Updated in Release 1.13
	I.10.26 Point Card Reader/Writer Updated in Release 1.13
	I.10.27 POS Keyboard Updated in Release 1.13
	I.10.28 POS Power Updated in Release 1.13
	I.10.29 POS Printer Updated in Release 1.13
	I.10.30 Remote Order Display Updated in Release 1.13
	I.10.31 RFID Scanner Updated in Release 1.13
	I.10.32 Scale Updated in Release 1.13
	I.10.33 Scanner Updated in Release 1.13
	I.10.34 Signature Capture Updated in Release 1.13
	I.10.35 Smart Card Reader/Writer Updated in Release 1.13
	I.10.36 Tone Indicator Updated in Release 1.13

	I.11 Technical Details
	I.11.1 MOF Files

	J.1 General
	J.2 Device Category Names
	J.2.1 Common Statistics for All Device Categories
	J.2.2 XML definitions for Biometrics Device Statistics
	J.2.3 XML definitions for BumpBar Device Statistics
	J.2.4 XML definitions for CashDrawer Device Statistics
	J.2.5 XML definitions for CheckScanner Device Statistics
	J.2.6 XML definitions for ElectronicJournal Device Statistics
	J.2.7 XML definitions for FiscalPrinter Device Statistics
	J.2.8 XML definitions for ImageScanner Device Statistics
	J.2.9 XML definitions for Keylock Device Statistics
	J.2.10 XML definitions for LineDisplay Device Statistics
	J.2.11 XML definitions for MICR Device Statistics
	J.2.12 XML definitions for MotionSensor Device Statistics
	J.2.13 XML definitions for MSR Device Statistics
	J.2.14 XML definitions for PINPad Device Statistics
	J.2.15 XML definitions for POSKeyboard Device Statistics
	J.2.16 XML definitions for POSPrinter Device Statistics
	J.2.17 XML definitions for RFIDScanner Device Statistics
	J.2.18 XML definitions for Scale Device Statistics
	J.2.19 XML definitions for Scanner Device Statistics
	J.2.20 XML definitions for SignatureCapture Device Statistics
	J.2.21 XML definitions for ToneIndicator Device Statistics

	K.1 Activities in Robotics Domain Task Force
	K.2 RoIS Specification
	K.2.1 Scope of RoIS specification

	K.3 Robot Service Ontology [RoSO] RFP
	K.4 Interoperability between UPOS RCSD and RoIs
	K.4.1 Relationsihp between UPOS RCSD and RoIS

	K.5 Document History / Version History
	K.6 Glossary

