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Preface 

OMG 
Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer 
industry standards consortium that produces and maintains computer industry specifications for interoperable, 
portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes 
Information Technology vendors, end users, government agencies, and academia.  

OMG member companies write, adopt, and maintain its specifications following a mature, open process. 
OMG’s specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-
lifecycle approach to enterprise integration that covers multiple operating systems, programming languages, 
middleware and networking infrastructures, and software development environments. OMG’s specifications 
include: UML® (Unified Modeling Language™); CORBA® (Common Object Request Broker Architecture); 
CWM™ (Common Warehouse Metamodel); and industry-specific standards for dozens of vertical markets. 

More information on the OMG is available at http://www.omg.org/. 

OMG Specifications 
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG 
Specifications are available from the OMG website at: 
http://www.omg.org/spec 

All of OMG’s formal specifications may be downloaded without charge from our website. (Products 
implementing OMG specifications are available from individual suppliers.) Copies of specifications, available 
in PostScript and PDF format, may be obtained from the Specifications Catalog cited above or by contacting the 
Object Management Group, Inc. at: 
 
OMG Headquarters 
109 Highland Avenue 
Needham, MA 02494 
USA 
Tel: +1-781-444-0404 
Fax: +1-781-444-0320 
Email: pubs@omg.org 

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org 
 
 
Issues 
 
The reader is encouraged to report any technical or editing issues/problems with this specification to  
https://issues.omg.org/issues/create-new-issue 
 
 
 
 
 
 
 

https://issues.omg.org/issues/create-new-issue
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 Scope 
1.1 Purpose 
This specification of a UMLTM profile adds capabilities to UML for a comprehensive facility to structure 
information in support of model based analysis for architecture optimization and system design. This extension 
is called UPR: the UML profile for ROSETTA, in reference to its underlying mathematical foundation (the 
Relational Oriented Systems Engineering Technology Tradeoff and Analysis framework, for which an overview 
is provided in Clause 6.2). The relational orientation of the framework further supports model transformation 
between architecture design and detailed system design.  
 

1.2 Challenges being addressed 
A comprehensive facility has been lacking to support information structuring and integration for architecture 
optimization and Constraint-Driven Design analysis across distributed domain experts in a system design team. 
The facility must also support efficient and effective transformation of the system architecture into detailed 
system design. In current international standards [REF1], system architecture description is conceptualized 
using elements and relationships between elements. 
 

1.3 Meeting the challenges 
UPR provides an object-oriented facility to structure information in support of a variety of systems analyses for 
relational oriented architecture description and transformation into design. The core concepts refined in this 
profile build on existing OMG models and descriptions. The intent is not to define new techniques for model 
based analysis and optimization; but rather to provide new facilities to support analysis. To accomplish this, the 
profile: 

• Supports information structuring and integration for architecture optimization and Constraint-Driven 
Design analysis  

• Provides a facility for identification of conflicting and harmonious Design Objectives 

• Implements a mathematically based framework using precise object-oriented syntax and semantics for 
relational orientation and transformation 

The profile facilitates annotation of models to identify information required to perform analysis. The underlying 
framework enables precise and efficient structuring of the information. No new diagrams are proposed for UPR. 
The contributors believe that this is a vendor specific concern that would best be served by a longer term RFP, 
should there be interest, if and when the UPR RFC is finalized. 
 

1.4 Demonstration of the general applicability  
UPR should be beneficial to software and system architects in their collaboration with systems engineers and 
designers. Two case studies will be used to demonstrate the general applicability of the facility: 

• Embedded system design and analysis 
• Engineering a complex system across distributed domain experts  

These case studies are provided in the annexes to the profile. The embedded system case study can be used to 
demonstrate how the relational viewpoint on models in UPR can be used to provide the software architect and 
the system engineer an integrated system of models that supports the design and development of a real-time 
embedded system. The second case study provides an end-to-end example of how UPR can support architecture 
analysis and Constraint-Driven Design of a complex system across a distributed team of domain experts. 
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 Conformance 
Conforming implementations of the profile must conform to UML 2.5 (or greater). In addition, conforming 
implementations must comply with the abstract syntax, i.e., all stereotypes that are defined in the normative 
clauses, of UPR. A tool demonstrating abstract syntax conformance provides a user interface that enables 
instances of concrete UPR stereotypes (which are applications of stereotypes to instances of UML metaclasses) 
to be created, read, updated, and deleted. The tool shall also provide a way to validate the stereotypes against 
their constraints defined in the profile. 

Conforming implementations of the profile must conform to UML 2.5 (or greater). In addition, the conforming 
implementation should also comply with the following conformance points: 

 
• Syntax Conformance: At a minimum, the tool must comply with the abstract syntax, i.e. stereotypes 

that are defined in the normative clauses, of UPR. A tool demonstrating abstract syntax conformance 
provides a user interface that enables instances of concrete UPR stereotypes (which are applications of 
stereotypes to instances of UML metaclasses) to be created, read, updated, and deleted. The tool shall 
also provide a way to validate the stereotypes against their constraints defined in the profile. 
 

• Semantic Conformance: For a given well-formed model that conforms to the Syntax Conformance, the 
tool must be able to extract the information modeled by the stereotypes according to the domain 
models provided in the specification. The normative force of the domain models in subclauses 7.2, 9.2, 
10.2 and 11.2 are to ensure that UPR stereotypes correctly capture the semantic knowledge and the 
structure of the semantic knowledge that are supported by the ROSETTA framework. 

 

 References 
 Normative References 

The following normative documents are referenced in this specification 
Reference  Description 

[OCL] Object Constraint Language (OCL™). Available at http://www.omg.org/spec/OCL/  

[UML] Unified Modeling Language™ (UML®). Available at http://www.omg.org/spec/UML/  

 Non-normative References 
The following informative documents are referenced in this specification: 
Reference  Description 

[SML] OMG System Modeling Language™ (SysML®). Available at 

https://www.omg.org/spec/SysML/ 

[REF1] ISO/IEC/IEEE 42010:2011, Systems and software engineering - Architecture 

description, Technical Committee ISO/IEC JTC 1/SC 7, December 2011 

[REF2] Mavris, D. N., Griendling, K., & Dickerson, C. E. (2013). Relational-oriented systems 

engineering and technology tradeoff analysis framework. Journal of Aircraft, 50(5), 

1564-1575. 

[REF3] Dickerson, C. E. (2011, June). Mathematical foundations for relational oriented 

systems engineering (ROSE). In System of Systems Engineering (SoSE), 2011 6th 
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International Conference on (pp. 197-202). IEEE. 

[REF4] Dickerson, C. E., & Mavris, D. N. (2011, June). Relational oriented systems 

engineering (ROSE): Preliminary report. In System of Systems Engineering (SoSE), 

2011 6th International Conference on (pp. 149-154). IEEE. 

[REF5] Tarski, A. (1954, 1945). Contributions to the theory of models I, II, III (Vol 57, pp. 

572-581, 582-588; Vol58, pp. 56-64).  Nederl. Aka. Wetensch. Proc. Ser. A. 

[REF6] Bell, J. L. & Slomson, A. B.  (1969). Models and Ultraproducts. North-Holland / 

American Elsevier, New York 

[REF7] Suh, N. P. (1998). Axiomatic design theory for systems. Research in 

engineering design, 10(4), 189-209. 

[REF8] Akao, Y. (1990). Quality function deployment.  Cambridge, MA: Productivity Press 

[REF9][REF7] Dickerson, C. E., & Mavris, D. (2013). A brief history of models and model based 

systems engineering and the case for relational orientation. IEEE Systems 

Journal, 7(4), 581-592. 

[REF10][REF8] Dickerson, C. E. (2013). A relational oriented approach to system of systems 

assessment of alternatives for data link interoperability. IEEE Systems Journal, 7(4), 

549-560. 

[REF11][REF9] Sowa, J. F. (2000). Knowledge representation: logical, philosophical, and 

computational foundations (Vol. 13). Pacific Grove: Brooks/Cole. 

[REF12][REF10] Dickerson, C., & Holden, T. (2014). Relational oriented systems engineering 

framework for flight training. The Journal of Defense Modeling and Simulation, 11(2), 

103-113. 

[REF13][REF11] Rudakov, S., & Dickerson, C. E. (2017). Harmonization of IEEE 1012 and IEC 

60880 standards regarding verification and validation of nuclear power plant safety 

systems software using model-based methodology. Progress in Nuclear Energy, 99, 

86-95. 

[REF14][REF12] Dickerson, C. E., Ji, S., & Roslan, R. (2016, June). Formal methods for a system of 

systems analysis framework applied to traffic management. In System of Systems 

Engineering Conference (SoSE), 2016 11th (pp. 1-6). IEEE. 

[REF13] Akao, Y. (1990). Quality function deployment.  Cambridge, MA: Productivity Press 

[REF15][REF14] ISO/IEC/IEEE 15288:2015, Systems and software engineering -- System life cycle 

processes, Technical Committee ISO/IEC JTC 1/SC 7, May 2015 
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 Terms and Definitions 
This clause provides the definitions and explanation of the terms and concepts used in the UPR. To assist the 
readers to have a collective understanding of these terms, they are not organized in the conventional alphabetical 
order.  

Constraint-Driven Design A system design approach in which design constraints are a central 
concern. A solution obtained from such a design approach aims to 
satisfy all design constraints.   

Variable An attribute (used to describe system property or parameter) that 
can take on a range of values. 

Mathematical Constraint A mathematical relation that associates a variable with a constant 
value in a way that limits the range of values of the variable, e.g. 
with a comparison operator to express equalities and inequalities. 

Design Objective A measurable attribute, such as performance or a physical property 
that can be expressed as a variable and used to compare systems.  

Design Objective Constraint A mathematical constraint applied to a Design Objective.   

Design Variable A variable associated with a system that is used to define the 
system; and is under the design authority of the engineer. 

Design Variable Constraint A mathematical constraint applied to a Design Variable. It is 
further categorized into Design Range and Feasible Range in UPR.  

Design Range A defined range of values of a Design Variable; mathematically, 
this is the domain of the variable. 

Design Space A (multi-dimensional) Space formed by the collective Design 
Ranges. 

Feasible Range The Feasible Range refines the Design Range of a Design Variable 
to provide a subset of feasible solutions. In Constraint Driven 
Design this subset of the Design Space is implied by a given set of 
Design Objective Constraints.  

Feasible Design Space A (multi-dimensional) Space formed by Feasible Ranges. 

Sensitivity A mathematical-based relation between two variables that indicate 
how the variation in one variable affects the variation in the other 
variable. In UPR, Sensitivity is specified through using Polynomial 
coefficients. 

Polynomial An expression consisting of variables and coefficients, that 
involves only the operations of addition, subtraction, 
multiplication, and non-negative integer exponents of variables. 
e.g. 𝑥𝑥2 + 3𝑦𝑦4 + 𝑧𝑧. A Design Objective, within the scope of UPR, 
can be expressed as a univariate polynomial function of a Design 
Variable.    

Univariate Polynomial A polynomial that has only one variable, e.g. 1 + 𝑥𝑥 + 𝑥𝑥2 + 3𝑥𝑥4. 

Relation A relation is an association (or mathematical function) of one or 
more arguments (logical or metric variables) whose range is the set 
of truth values {true, false}. Note that the statement: 𝑥𝑥1 < 𝑥𝑥2 
cannot be assigned a truth value until it is interpreted as a relation 
on a defined set. 

Relational Structure A defined collection of relations.  

Relational Transformation Relational Transformation refers to transformations that preserve 

Commented [SJ21]: UPR-9: The term "relation" should be 
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Relational Structure. There are two types of Relational 
Transformation defined and specified in this profile: Binary 
(Clause 6.2.4) and Unary (Clause 6.2.5). 

Matrix Representation A Matrix Representation in this profile refers to a graphical 
representation that the structure of which can be represented by a 
mathematical n-by-m matrix.   

 Symbols 
Acronym Name, description 
DO DesignObjective (acronym used to shorten certain stereotype names) 
DoE Design of Experiment 
DV DesignVariable (acronym used to shorten certain stereotype names) 
DPF Diesel Particulate Filter 
ELM Element (refer to system element, acronym used to shorten certain stereotype names) 
FE Fuel Economy 
MARTE Modeling and Analysis of Real-Time Embedded Systems 
MBSE Model Based Systems Engineering 
MDS Minimum Detectable Signal 
MTL Minimum Triggering Level 
OCL Object Constraint Language 
PM Particulate Matter 
QFD Quality Function Deployment 
ROSETTA Relational Oriented System Engineering Technology Trade-off Analysis 
RT-B Binary Transformation 
RT-U Unary Transformation 
UML Unified Modeling Language 
UPR UML Profile for ROSETTA 
SysML Systems Modeling Language 

 

 Additional Information  
 Related Standards 

UPR is related to the following normative OMG specifications: 

• UML: Like any other UML profile, UPR is defined on the basis of the metamodel provided in the 
UML 2.5 Specification. 

• OCL: UPR uses OMG’s Object Constraint Language (OCL) to precisely formalize the constraints 
stated in natural language for the abstract syntax.  

 

 Background for Constraint-Driven Design 

 ROSETTA Framework 
UPR is an object-oriented implementation of an underlying mathematical formalism that is referred to as the 
Relational Oriented Systems Engineering Technology Tradeoff and Analysis framework [REF2]. When the term 
framework is used in association with ROSETTA, it will refer to the mathematical formalism; whereas when the 
term profile is used, it will refer to an object-oriented implementation. One of the challenges of developing UPR 
has been to specify the profile in a way that is consistent with the underlying mathematical concepts. 
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This clause offers a brief background on the underlying formalism and its relation to mathematical modeling 
and systems engineering.  When reading this 6.2.1 clause, it is important to keep in mind that the framework is 
written in the language of mathematical logic and set theory. The conceptualization that follows must be read 
from this point of view if the reader is to understand it. The concepts in the subsequent clauses in the RFC are 
written in the language of UML [UML]. 
 
The framework is a model based formalism that integrates and extends the concepts of relational structures and 
relational homomorphism in universal algebra to systems engineering [REF3, REF4]. It admits a graphical 
interpretation that lends itself to the graphical representations of models in UML and SysML[SML]. The 
formalism of the framework is rooted in the Tarski theory of models in mathematical logic [REF5, REF6] but 
has been adapted to the practice of engineering [REF2, REF4]. Put succinctly, a model in the Tarski theory is 
defined to be a relational structure (in the sense of mathematical set theory) that is the image of an injective 
mapping of one or more sentences in the first order predicate calculus (a sentence being a fully quantified well-
formed formula). In other words, the model ‘faithfully’ realizes the sentences. This concept of model in 
mathematical logic is similar to a PIM – PSM transformation in MDATM for software development.   
 
The ROSETTA formalism further supports the rigorous development of structures for the design of systems and 
the assemblage of systems of systems that mathematically interpret the methods of Nam Suh on Axiomatic 
Design theory [REF7]. It is also similar to the Quality Function Deployment (QFD) House of Quality [REF8]; 
but can translate expert opinion into mathematical relations [REF2, REF7REF9]. For this reason, the name of 
the (mathematical) framework bears an intentional similarity to the Rosetta stone which provided the means to 
interpret between the Greek, Egyptian and Hieroglyphics demotic languages. Similarly, ROSETTA provides a 
facility for interpretation of concepts between systems engineers and software and system architects.  
 
The relational oriented viewpoint on systems supports a general systems methodology that employs a principle 
of model specification and relational transformation for the purpose of system description, analysis, and design. 
As summarized in [REF8REF10], in the relational viewpoint, the specification of a model associated with a 
system is the specification of: 

• Entities associated with the system 
• Sentences (declarations) about the entities 
• Modeling elements to instantiate the sentences 
• A semantic structure on the modeling elements 
• Interpretations of the sentences into the semantic structure 

Entities are abstractions that admit logical or physical existence. The entities of the system can include 
attributes, classes (components), and the functionality of the system. There can also be entities associated with 
the system which are not part of it, e.g. the operating environment and context of the system. 
 
The sentences are the basis for system specification. A system model is valid when the interpretation of each 
sentence is true within the semantic structure of the model. The validation process is facilitated by two types of 
semantic structures: relational structures (i.e. a collection of mathematical relations) and graphical 
representations (e.g. an Activity diagram or a Conceptual Graph). A graphical representation of a model is a 
collection of vertices and edges for encoding the semantic information captured by the sentences. The modeling 
elements in this case are the vertices. The edges, which represent relationships between vertices, are represented 
as pairs of vertices. The underlying structure is a (discrete) graph which therefore also has a matrix 
representation. 
 
Semantic structure is a concept which seeks to formalize the intended meaning of natural language through 
some type of mathematical organization. It can be thought of as structured knowledge about the system.  
 
The term structure is offered without definition but is assumed to have locations and relations between the 
locations. A predicate in the first order logic is an example of a structure. The symbols for the variables and 
constants are locations (for information/ interpretation) and the Predicate Letter is the symbol for a relation 
between the variables and constants.  By itself, a predicate is not semantic; it requires interpretation, e.g. into a 
relational structure. The combination of a predicate sentence with knowledge (e.g. ontology) can provide a 
language that can express relationships about the entities of a domain of interest [REF9REF11]. An architectural 
domain relates to a type of knowledge about the system or to one or more system components.  
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Relational frames are specified as ordered pairs (M, R). The modeling elements are specified by M and the 
semantic structure is specified by R. This type of frame provides a static structure for organizing knowledge 
about the system using predefined internal relations specified by the model that reflect the relational structure of 
the semantic information captured by the sentences and their interpretation into the structure. This follows a line 
of reasoning for knowledge representation similar to the use of frames to represent structure as expressed in 
[REF9REF11]. 
 
This is also a mathematical representation of knowledge similar to the concept of object oriented frames used in 
software engineering, which is primarily concerned with the classes and objects of software architecture, their 
responsibilities and collaborations, and the threads of control. The mathematical representation in relational 
orientation admits matrix representation that can be used by systems engineers in practical ways to employ the 
concepts of relational structures and relational homomorphism. If (M, R) is a relational frame, then a matrix 
representation of the frame will be denoted as M. Similarly, for another frame, (N, S), the notation would be N. 
 
Model elements are related by belonging to: (i) n-ary mathematical relations, (ii) hierarchical decomposition, or 
(iii) association with elements of another model by transformation. The special case n = 1 for n-ary relations is 
called a unary relation, i.e. a defined subset of elements. The case n = 2 is a binary relation. The types (i) and 
(ii) of mathematical relation are concerned with the internal structure of a model. The associated relational 
frames will be referred to simply as frames. The third type of relation is an association external to a model, 
although hierarchical decomposition into sub-models can also admit transformations. The type (iii) frame will 
be referred to as a transformational frame and denoted as Q = (M, N; Q) where M and N are the model elements 
of two models and Q is an association between the elements of the frames. A matrix notation for the 
transformational frame Q will be denoted as Q. Note that although the frame is an ordered triple, the association 
Q is not preferential to the direction of transformation. 
 

 
Figure 6-1 Simple example of a Transformational Frame (Q) in matrix form  

A simple transformational frame in matrix form is depicted in Figure 6-1. The symbols y1, y2, and y3 in this 
example represent Design Objectives. Similarly, x1, x2, and x3 represent Design Variables. In an automotive 
emissions problem, the objectives might be metrics for fuel economy, particulate matter (in the emissions), and 
the efficiency of a Diesel Particulate Filter (DPF). On the other hand, the mathematical modeling elements of a 
system specification might be metrics associated with two functionalities of the system, such as operating the 
engine at a high temperature and burning the soot; while the third variable could be associated with a choice of 
DPF technology. Two of the three frames in matrix form, i.e. N and Q, in the figure are therefore specified 
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explicitly. The semantic of the (xi, xj) binary relation is that x1 has a dependency on xj. For example, (x2, x3) 
means the burning of soot depends on the DPF technology. Similarly, the Q frame states that the Design 
Objectives depend on the Design Variables. For example, (y3, x3) means that the DPF efficiency depends on the 
DPF technology. 
 
We shall see that a semantic structure on the remaining frame (M) is implied by the other two (c.f. Clause 6.2.4). 
Specifically this structure is the pair of binary relations in the matrix M depicted in Figure 6-1. 
 
A relational transformation is specified as an association between the elements of two models of a system that 
induces a mapping between the relationships expressed in the models and preserves the structure of these 
relationships. For example, a relational transformation of a graph can be understood as a multi-valued 
association of the vertices of the graph (of a source model) that preserves the relationships of the edges to the 
vertices (in the target model).  
 
An example can be seen in the emissions example, where the association Q when viewed as an injective 
mapping from N to M, gives rise to the two new binary relations in M. Thus, dependencies between the Design 
Variables give rise to dependencies in the Design Objectives, which otherwise had been considered to be 
independent. Note that these relations of dependency could be specified by expert opinion (as with QFD 
[REF13REF8]) or could be derived using chain rule calculations for multivariate calculus (c.f. Clause 6.2.4).  
 
Note that the figure is the form of the structures and transformations used in Tarski model theory. In the figure, 
the source model represents the binary relations that would be the predicates represented by the matrix N. The Q 
matrix is injective. The result of the transformation would be a matrix representation of the binary structure of 
the mathematical relation into the ‘target model’ that images the predicates in the ‘source model’.   
 
When two models of a system are related by a relational transformation, the collective three frames will be 
referred to as a framework. The M-Q-N structure of the example in the figure is representative of one form of a 
ROSETTA framework.  
 
The matrix representation provides a mathematical facility to structure knowledge for a variety of systems 
analyses. Reference [REF2] is an example in aerospace; [REF8REF10] is an example in data links; 
[REF10REF12] is in flight training; [REF11REF13] is commercial nuclear standards; and reference 
[REF12REF14] is an example of emerging formal methods for safety analysis in urban traffic management 
systems. 
 
In relational orientation, systems are modeled using multiple frameworks, which represent the various 
knowledge domains and components of the system. Frameworks are integrated into a framework structure by 
sharing common frames or by transformations between frames. The specification of frameworks is complete 
when they form a framework structure that is adequate for system specification, analysis and design. This 
resultant framework structure provides an abstraction that can be used for specifying and integrating the models 
of the system. 
 

 Mathematical-based Constraint Modeling 
In the context of engineering, constraints can be classified into two types. On the one hand, there is the type of 
constraints that can be expressed mathematically by equalities and inequalities, e.g. the mass of a laptop must 
not be greater than two kilograms, which can be mathematically written as 𝑀𝑀 ≤ 2𝑘𝑘𝑘𝑘. On the other hand, there 
is the other type of constraints that cannot be easily expressed mathematically, e.g. the component must be in the 
shape of a triangle. UPR models mathematical-based constraints, referred to as Mathematical Constraints, using 
the following generic mathematical relation: ‘a variable’ is related to ‘a value’ by a ‘comparison operator’, 
where: 
 

• A Variable represents the element being constrained. It can take on any real number when being 
unconstrained.  

• A Comparison Operator, such as ‘=’ and ‘<’, are mathematical symbols defined to indicate equality 
and inequalities.   

• A Value is a real number. In UPR, it is unitless.  
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The example, 𝑀𝑀 ≤ 2, without the unit being specified, is an example that follows the above construct1. There 
can be multiple constraints on one variable. For instance, as mass is always positive, this creates an additional 
constraint on 𝑀𝑀, which says, 𝑀𝑀 ≥ 0. Although, mathematically, it is possible to combine these two constraints 
into a single mathematical expression as 0 ≤ 𝑀𝑀 ≤ 2. However, this does not follow the construct adopted by 
UPR. In this case, UPR requires two constraints to be defined separately on the same variable. 

To facilitate the modeling of Constraint-Driven Design (CDD) problem, UPR focuses on developing a facility to 
accommodate the modeling of mathematical-based constraints in a structured way. In brief, Mathematical 
Constraints are divided into two types: 
 

• Design Objective Constraints: These are constraints on Design Objectives. An example of a Design 
Objective Constraint can be ‘a vehicle must achieve a top speed of greater than 100 miles per hour 
(mph)’.  A Design Objective is measurable attribute, such as performance or a physical property that 
can be expressed as a variable and used to compare systems. Sometimes, Design Objectives are to be 
optimized. For example, the cost of the system to be designed needs to be minimized, or the power 
output of the system to be designed shall be maximized. In these cases, there are no limits (constraints) 
specified for these Design Objectives. Hence, they can be considered as unbounded or unconstrained.  
CDD is only concerned with Design Objectives that are constrained. However, it is worth noting that 
adopting a CDD approach to system design is not in conflict with design approaches such as design 
optimization techniques.  

• Design Variable Constraints: A Design Variable is a variable associated with a system that is used to 
define the system; and is under the design authority of the engineer. Using the examples stated above, 
system designer may want to consider finding combinations of engine power and engine torque to 
achieve the desired top speed. In this case, engine power and engine torque can be defined as Design 
Variables. A Design Variable Constraints is simply a constraint applied to the Design Variable that 
limits the possible design choices on that Design Variable. Further details on the classification of 
Design Variable Constraints are discussed in sub clause 6.2.5. 

It is worth noting that although we have divided Mathematical Constraints into two types, there is not a fine line 
between them unless a CDD problem is formulated. Design Variable Constraint in one CDD problem may 
become a Design Objective Constraint in another CDD problem. This is because a Design Variable after being 
specified in one design problem may become a Design Objective (a requirement) in the design of another 
system or subsystem. This is often seen in engineering complex system that has multiple hierarchical levels. For 
instance, following the example stated above, after the engine power and engine torque have been specified by 
the vehicle designer, this may then become a Design Objective Constraint (requirement) for the engine 
designers and manufacturers. 
 

 Mathematical-based Relation Modeling 
In the context of engineering, relations between variables can sometimes be quantified mathematically. Where 
an exact mathematical relation between two variables is known, it is possible to express such a relation using 
analytics. For example, based on Newton’s 2nd Law, to achieve a desired acceleration, 𝑎𝑎, an object with mass, 
𝑚𝑚, would need a net force of, 𝐹𝐹 = 𝑚𝑚𝑎𝑎. Where an exact mathematical relation is unknown, there may be a need 
to express a qualitative representation of the relations between the variables using a subjective scale. For 
instance, using the correlation concept used in Quality Functional Deployment (QFD) [REF13REF8], on a scale 
from -3 to +3, it is possible to express two variables having a weak positive correlation by a correlation value, 
+1; and two variables having a strong negative correlation by a correlation value, -3.  
 
In either of the above cases, the relation between two variables can be expressed by an abstract expression, 
referred to as the Sensitivity in UPR. In general, Sensitivity is understood as a mathematical-based relation 
between two variables that indicate how the variation in one variable affects the variation in the other variable. 
For two generic variables, x and y, partial differentiation can be used to calculate the Sensitivity between them 
as, 

Sensitivity =
𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥

 
                                                           
1 Note that the unit here is an intrinsic property of the element that the variable represents, and can be modeled through other 

means than UPR, for example, using the SysML UnitAndQuantityKind model library.  
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Equation 6-12 

For instance, based on Newton’s 2nd Law, the Sensitivity between the forces required to increase the velocity of 
a mass at a constant acceleration of 5ms-2 can be calculated as,   

Sensitivity =
𝜕𝜕𝐹𝐹
𝜕𝜕𝑚𝑚

= 𝑎𝑎 = 5ms-2 

Equation 6-2 

For the case of using the subjective correlation in using QFD technique, the Sensitivity is equivalent to the 
defined correlation value, e.g. Sensitivity = 3 for two strongly correlated variables.  
 
Sometimes, the mathematical relation between two variables y and x can be non-linear. In this case, the 
Sensitivity value, as calculated by using Equation 6-1, will be dependent on the value of x. For example, let us 
consider a 2nd order polynomial of the form, 

y = 2𝑥𝑥 + 3𝑥𝑥2 
Equation 6-3 

Using Equation 1, it can be concluded that at 𝑥𝑥 = 1, Sensitivity is 8; while at 𝑥𝑥 = 2, Sensitivity is 14. Due to 
the varying Sensitivity, differentiating the polynomial does not provide a useful result. However, by keeping the 
coefficients in the polynomial, Sensitivity can be obtained as long as these coefficients are available. For an n-th 
order polynomial that reads, 

y = 𝑐𝑐0 + 𝑐𝑐1𝑥𝑥 + 𝑐𝑐2𝑥𝑥2 + ⋯ = �𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖
𝑖𝑖=0

 

Equation 6-4 

the Sensitivity can be generically expressed as,  

Sensitivity =
𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥

= 𝑐𝑐1 + 2𝑐𝑐2𝑥𝑥 + ⋯ = �𝑖𝑖𝑐𝑐1𝑥𝑥𝑖𝑖−1
𝑖𝑖=1

 

Equation 6-5 

In addition to facilitating the modeling of single valued Sensitivity, UPR thereby also aims to facilitate the 
modeling of the coefficients in polynomials of arbitrary degree. A single valued Sensitivity, such as the ones in 
previous examples using QFD correlations, can be approximated as a 1st order polynomial with 𝑐𝑐0 = 0 and 𝑐𝑐1 
being the Sensitivity specified. This then allows the modeling of Sensitivity in the two different cases to be 
integrated by using polynomial coefficients alone. 

 Binary Transformation for Dependency Analysis 
 
In systems engineering and design, knowing the relationships between Design Objectives can be useful. For 
example, this knowledge is essential in determining what tradeoff analysis will be most valuable. However, 
without empirical evidence or detailed knowledge of the system, it is almost impossible to determine which of 
these relationships (conflicting, harmonious, or independent) are present. In SysML [SML], Design Objectives 
can be modeled using Requirements in a SysML Requirement diagram. To better facilitate the modeling of 
requirement relations, SysML further extends UML Dependency to include additional Dependency types such 
as Verify and Refine. These Dependency types are very useful in representing requirement traceability. 
However, neither UML nor SysML are capable of expressing that harmonious, conflicting, or no significant 
relationship exists between two Design Objectives. UPR aims to provide a facility to model these relationships 
as well as facilitate transformations that can be used to identify these relationships.  
 
Where prior knowledge of harmony, conflict and independence is not available, a means to establish this 
knowledge is of great value. Sensitivities introduced in the UPR shall facilitate the identification of harmonious 
and conflicting relations between Design Objectives. Although identification method is not part of the UPR 
profile, a particular method, referred to as Binary Transformation (RT-B), is introduced in the rest of this sub 
clause to show how UPR can facilitate this transformation for the identification of relationships between Design 
Objectives. RT-B is originated from the ROSETTA Framework [REF2]. And note that this method is 
informative only. The principle of the stereotypes defined in UPR is to support such an identification method.   
 
                                                           
2 Note that the partial derivative becomes exact if 𝑦𝑦 only depends on 𝑥𝑥 
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In general, a relational transformation is specified as an association between the elements or parameters of two 
models of a system, that induces a further mapping between the relationships in the models. The mathematical 
formalism of RT-B can be expressed as, 

�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� ∈ 𝐍𝐍 with (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑘𝑘), (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑙𝑙) ∈ 𝐐𝐐 implies(𝑦𝑦𝑘𝑘 , 𝑦𝑦𝑙𝑙) ∈ 𝐌𝐌 
Equation 6-6 Binary Relation Transformation 

where 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗  are used to denote two system elements or parameters; and 𝑦𝑦𝑘𝑘  and 𝑦𝑦𝑙𝑙  are used to denote two 
Design Objectives. Then, Equation 6-6 says that if the two system elements (parameters) are related as captured 
in a relational set, N; and if the system element 𝑥𝑥𝑖𝑖  relates to the Design Objective 𝑦𝑦𝑘𝑘  and that the system 
element 𝑥𝑥𝑗𝑗 relates to the other Design Objective 𝑦𝑦𝑙𝑙 , which are both captured in a relational set, Q; then there is 
an implied relation between the two Design Objectives, defined as 𝑀𝑀 ≡ 𝑁𝑁Q.  
 
Using the RT-B, it is then possible to identify whether two Design Objectives are related or not by tracing their 
relationships to system elements or parameters. The semantic meaning, i.e. the type of the dependency 
(relation), of the implied relation between the Design Objectives, depends on the semantic meanings of the 
existing relations used. Here, as we are interested in whether the related Design Objectives are mathematically 
harmonious, conflicting or independent, we can use the concept of Sensitivity introduced in Clause 6.2.2. For 
example, for the relation between Design Objective, 𝑦𝑦𝑘𝑘 and system element, 𝑥𝑥𝑖𝑖 , we have    

Sensitivity =
𝜕𝜕𝑦𝑦𝑘𝑘
𝜕𝜕𝑥𝑥𝑖𝑖

 

Equation 6-7 

Using the same concept, it is possible to mathematically determine the Sensitivity between the two related 
Design Objectives by  

𝑑𝑑𝑦𝑦𝑘𝑘
𝑑𝑑𝑦𝑦𝑙𝑙

=
𝜕𝜕𝑦𝑦𝑘𝑘
𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝑥𝑥𝑗𝑗
𝜕𝜕𝑦𝑦𝑙𝑙

+
𝜕𝜕𝑦𝑦𝑘𝑘
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝑥𝑥𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
𝜕𝜕𝑦𝑦𝑘𝑘

 

Equation 6-8 

If this equation yields a positive value, a (mathematically) harmonious relation is identified; while if it yields a 
negative value, a (mathematically) conflicting relation is identified. Sometimes, it can be useful to normalize the 
yield values into a unitless scale for the sake of comparing the strength of relations among Design Objectives.  
 
Again, the above transformational method is not normative. Users of UPR can use any method to conduct the 
dependency analysis by using the information modeled. The stereotypes introduced in UPR facilitate 
transformational methods of similar kinds to achieve the identification of harmonious and conflicting relations 
between Design Objectives.  

 Unary Transformation to determine Feasible Designs 
Two things can be potentially achieved with a specified Sensitivity (in terms of a set of polynomial coefficients) 
between a Design Objective and a Design Variable. Firstly, one can use it to verify a design specification, i.e. 
values of the Design Variables, against Design Objective Constraints. And secondly, one can use it to determine 
possible design solutions through an inverse mapping of the Design Objective Constraints into the Design 
Space. This subclause explains this concept of inverse mapping through a simple example.When a Sensitivity 
(in terms of polynomial coefficients) is defined between a Design Objective and a Design Variable, e.g. as 
captured by 1st order polynomial, on the one hand, if a design specification is provided, then it is possible to 
verify the design against the Design Objective Constraints by substituting the current design value (as an initial 
design) into a polynomial equation formed by the specified polynomial coefficients. On the other hand, it is of 
interest to system designers that if Sensitivity can be used inversely to obtain design solutions that satisfy a 
given set of Design Objective Constraints. We introduce two types of Design Variable Constraints: namely 
Design Range and Feasible Range to explain this inverse mapping.  

The following simple example illustrates how a Design Objective Constraint imposes a constraint on a Design 
Variable. Let us consider a Design Objective, 𝑦𝑦, is constrained by two Design Objective Constraints, 𝑦𝑦 < 10 
and 𝑦𝑦 > 4 . This Design Objective is related to a Design Variable by a first order polynomial such that,  

𝑦𝑦 = 2𝑥𝑥 
Equation 6-9 

The Design Variable has a physical limit such that it can only be positive numbers and has to be less than 8. 
These can be expressed as two Design Variable Constraints, 𝑥𝑥 > 0 and < 8 . These types of constraint are 
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referred to as Design Ranges. Constraints on Design Variables that are derived from empirical knowledge or 
previous designs are also considered as Design Range. Basically, the collective Design Ranges on a Design 
Variable defines the solution search space. For multiple Design Variables, the collection of all Design Ranges is 
referred to as a Design Space.    
 
Now, substituting the two Design Objective Constraints into the polynomial, it can be determined that the 
Design Variable must be less than 5, i.e. 𝑥𝑥 < 5 and at the same time, greater than 2, i.e. 𝑥𝑥 > 2, in order to not 
violate the Design Objective Constraints. From the above calculation, it is realized that Design Objective 
Constraints can impose new constraints on Design Variables. The type of these new constraints on the Design 
Variable is referred to as Feasible Range. The word ‘feasible’ is used to indicate that design solutions lie within 
the Feasible Range, which will satisfy the Design Objective Constraints. For multiple Design Variables, the 
collection of all Feasible Ranges is referred to as a Feasible Design Space. For a multi-dimensional Design 
Space, a continuous Feasible Design Space may not be unique.  
 
Depending on the detailed specification of the constraints in the CDD problem, through an inverse mapping, a 
Design Range can sometimes become a Feasible Range. In this case, instead of revising the Design Range into a 
Feasible Range, UPR recommends keeping the original Design Range and defining a new Feasible Range. This 
is particularly useful for having a multi-dimensional Design Space, where Feasible Design Spaces, as discussed, 
may not be unique. 
 
To help visualize the above solved CDD problem, Figure 6-2 depicts the inverse mapping, while the other 
information relevant to this CDD problem are captured in Table 6-1. 
 

 
Figure 6-2 An inverse mapping: from Design Objective Constraints into Feasible Ranges (Design Variable 
Constraints) 

Design 
Objective 

Design Objective 
Constraints 

Polynomial 
Relation 

Design 
Variable 

Design Variable Constraints 

Design Ranges Feasible Ranges 

𝑦𝑦 𝑦𝑦 < 10 𝑦𝑦 = 2𝑥𝑥 𝑥𝑥 𝑥𝑥 > 0 𝑥𝑥 < 5 
𝑦𝑦 > 4 𝑥𝑥 < 8 𝑥𝑥 > 2 

Table 6-1 Design information related to the CDD problem  

 
An inverse mapping that allows the transformation of constraints on Design Objective into constraints on 
Design Variables (Feasible Ranges) is referred to as a Unary Transformation (RT-U) in UPR. For complex 
CDD problems that involve multi-Design Objectives and multi-Design Variables, inverse mapping is no longer 
straightforward, while the determination of Feasible Ranges requires more advanced design algorithms based on 
the concept of RT-U. Nonetheless, UPR aims to facilitate the modeling and structuring information required to 
conduct advanced transformation algorithms, in order to determine Feasible Ranges.  
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 Language Architecture  
Figure 6-3 depicts the relation of UPR to OMG Specifications. 

 
Figure 6-3 UPR Language Architecture 

UPR consists of five normative packages: Foundations, Operators, Design Objective Constraint, Design 
Variable Constraint, and Relational Structure and Design packages. The five sub profiles are on the same 
hierarchical level.  

 
Figure 6-4 UPR Profile Packages 
 

 How to Read this Specification 

 Technical Clause Structure 
The rest of this specification consists of technical clauses (Clause 7 to Clause 11). Each technical clause covers 
a particular profile package and is organized in the following way:  
 

• Each clause starts with a sub clause to provide an overview of the UPR package. 

• Then, each clause continues with a sub clause providing a domain view in which the domain model 
(where relevant) is provided and explained to illustrate the modeling concept. It is recommended to the 
reader of this profile to refer to Clause 6.2 for explanations on the theoretical aspects and the 
underlying mathematical construct of the modeling concept.  

• In its last sub clause, each technical clause introduces UML stereotypes contained in the profile 
package. A profile diagram consisting of the stereotype is provided. Stereotype extensions always 
include the abstract syntax that identifies which metaclasses a stereotype extends. Each stereotype is 
defined with a general description, and the semantics are explained in terms of extensions, 
generalizations, association ends, attributes, operations and constraints. Each constraint consists of a 
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textual description and is followed by a formal constraint expressed in OCL. If there is any ambiguity 
between the two, the OCL statement of the constraint takes precedence. If relevant, the sub clause then 
provides simple examples to show how defined stereotypes can be applied to annotate UML and/or 
SysML models.  

 Annexes 
 
The Annexes of this profile do not introduce new stereotypes or metaclasses. These annexes provide examples3 
to show applications of UPR to practical engineering problems. In Annex A, a straightforward application of 
UPR stereotypes in the design of an elevator dispatcher is provided to demonstrate how UPR can be used to 
model a CDD problem in UML. Annex B demonstrates how multiple CDD problems (defined in different 
domains based on engineering practices) can be modeled based on a high-level vehicle architecture modeled in 
SysML. This annex also illustrates how UPR stereotypes facilitate design integration and tradeoff analysis. 

 Conventions and Typography 
 
In this specification, the following conventions have been adopted: 

• While referring to stereotypes, metaclasses, metaassociations, metaattributes, etc. in the text, the exact 
names as they appear in the model are always used.  

• If a sub clause is not applicable, it is not included. 

• Stereotype, metaclass and meta-association names: initial embedded capitals are used (e.g., 
“ModelElement,” “ElementReference”. 

• Enumeration types: always end with “Kind” (e.g., “DSTypeKind”)Enumeration types: always end with 
“Type” (e.g., “OperatorType”). 
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3 Note that real world engineering correctness of the examples provided is not of relevance for the illustration of the 

modeling capabilities provided by this profile. 
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 UPR Foundations 
 Overview 

This Clause aims to establish the foundation for UPR to facilitate the modeling of CDD problems based on 
discussion provided in Clause 6.2. To achieve comprehensive and sophisticated modeling of a CDD problem, 
UPR introduces two abstract stereotypes. Constraints, which are often defined mathematically, are the central 
elements in the definition of a CDD problem. UPR extends UML Constraints to facilitate the modeling of 
mathematical-based constraints. Then, in order to determine how designs are affected by the defined constraints, 
UPR extends UML Dependencies to facilitate the modeling of mathematical-based relations between entities 
that can be system elements and variables. 

 Domain View 
The domain model for the Foundation package is depicted in Figure 7-1. 

 

 
Figure 7-1 Systems (UPR Foundations) Domain Model  

There are various definitions of the word: system. For instance, based on ISO/IEC/IEEE 15288 [REF14], a 
System is defined as “a combination of interacting elements organized to achieve one or more stated purposes”. 
Despite whichever definition is used, a System has properties, which are observables that can be described by 
some metrics. For example, a property of a vehicle can be fuel consumption; and a specific system (vehicle) can 
have a very low value on this property. In this example, “very low” is the metric used in the process of 
describing the fuel consumption. Similarly, in some situations, quantifiable metrics can be used to specify the 
properties, e.g. the average fuel consumption of the vehicle is 80mpg (miles per gallon). DesignData is an 
abstract class introduced to refer to the properties of a System. In particular, it can be specialized into two 
subsets: DesignObjective and DesignVariable. The definition of Design Objective and Design Variable are 
provided in Clause 4. In simple terms, in a design process, DesignObjectives refer to the properties that the 
System aims to achieve while DesignVariables refer to what the designer can change to achieve the 
DesignObjectives.   

DesignData can be mathematically constrained by DesignConstraints. For example, in the design of a vehicle, 
customer demand on vehicle 0-60mph acceleration time to be less than 5 seconds can be considered as a 
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constrained DesignObjective. Mathematically, this constraint can be expressed by using inequality as 𝒂𝒂𝒂𝒂𝒂𝒂 <
𝟓𝟓𝐬𝐬 , where 𝒂𝒂𝒂𝒂𝒂𝒂 is a variable used to denote 0-60mph time and s denotes second. A constraint on 
DesignObjective may impose limitations in the design specification of the system. Following the above example 
on vehicle design, a constrained DesignObjective on the acceleration time may then restrict possible design in 
the mass of the vehicle and the engine power to ensure the desired acceleration time is met. As such, we 
conclude that two DesignVariables, vehicle mass and engine power, are identified for the designer to decide in 
order to achieve the constrained DesignObjective.  

An instance of DesignData can be mathematically-dependent on other instance or instances of DesignData. This 
mathematical dependency is captured by an abstract concept, Sensitivity (c.f. Clause 6.2.3). This captures how 
sensitive a DesignData is to another. Sensitivity provides an intuitive indication on direction of improvement or 
otherwise. Again, with the example on vehicle design, we know that 0-60mph time is sensitive to the mass of 
the vehicle: the heavier the vehicle, the longer it will take the vehicle to reach 60mph from stationary. Then, this 
positive correlation can be modeled by a positive, single valued polynomialCoefficient in Sensitivity, e.g. 5. 
Similarly for engine power, the higher the engine power, the rate of acceleration of the vehicle is increased, 
hence reducing the 0-60mph time. This negative correlation can be modeled by a negative, single valued 
Sensitivity, e.g. -3, on a same scale. Instead of using a subjective metric to specify the Sensitivity, the modeler 
may also want to use historical data or simulation models to derive a more accurate measure of the Sensitivity. 
In this case, using regression techniques, to the second order, the 0-60mph time-to-vehicle mass Sensitivity may 
be derived as a polynomial that reads 𝒂𝒂𝒂𝒂𝒂𝒂 = 𝟎𝟎.𝟑𝟑 + 𝟔𝟔.𝟖𝟖𝟓𝟓𝟖𝟖 + 𝟎𝟎.𝟏𝟏𝟖𝟖𝟐𝟐, where 𝟖𝟖 is the vehicle mass in ton4. 
The three constants in this polynomial are then modeled using polynomialCoefficients of Sensitivity. Depending 
on the source of the modeled polynomialCoefficients, different sensitivity analysis techniques can be used for 
the purpose of design. The source of the polynomialCoefficients is defined through the enumeration, 
DataSourceTypeKind. Its specific types of data sources are explained in the following: 

When a DataSourceTypeKind is defined as estimated, it indicates that the value(s) defined for the Sensitivity is 
based on subjective quantification. These values, in practice, are often obtained from empirical evidence and 
tacit knowledge of the system designers. Although, in principle, there is no restriction on the order of the 
polynomial that one can estimate up to, given the uncertainty nature of estimation, it is more reasonable to use a 
single value only to model the Sensitivity as a first order polynomial coefficient.  

When a DataSourceTypeKind is defined as derived, it indicates that the value(s) defined for the Sensitivity is 
based on applying techniques such as polynomial regression on a data set. The coefficient(s) derived from data 
sets provide a higher fidelity in comparison to estimated value(s) in understanding how sensitive one entity is to 
another.  

When a DataSourceTypeKind is defined as implied, it indicates that the value defined for the Sensitivity is not 
specified by the modeler, but is obtained from an implementation of the UT-B as defined in Clause 4 and 
explained in detail in Clause 9. The implied Sensitivity, which is a single value, is obtained from applying the 
UT-B on Sensitivities (that are estimated or derived into first order polynomial) defined by the modeler.   
 

 UML Representation 
This clause describes the UML extensions required to support the concept of constraint modeling and sensitivity 
modeling.  

 Profile Diagrams 
Figure 7-2 depicts the UML extensions for modeling UPRConstraints and Sensitivities. The descriptions for the 
introduced stereotypes and their properties are provided in the following sub clause. 
 

                                                           
4 Note that this polynomial model is for illustration only.  
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Figure 7-2 Foundations Profile Diagram5 

 Profile Elements Description 

 DSTypeKind (Enumeration) 

 
Literals 
• estimated 

Specifies that the attribute owned by the sensitivity stereotype is an estimated value based on subjective 
decision. 

• derived 
Specifies that the set of values in Sensitivity::polynomialCoefficient are derived from data. 

• implied 
Specifies that the attribute owned by the sensitivity stereotype is an implied value determined from the 
Binary Transformation (RT-B). 

                                                           
5 Note that (i) package membership of a class from an external package is shown in brackets underneath the name of the 

class; and (ii) Operations defined for the stereotypes are depicted in the “Owned Operation” rather than the conventional 
Class Operation due to limitation of the specific modeling tool used.  

 The above two conventions are also applied to profile diagrams in the rest of this profile.   

Commented [SJ40]: UPR-29: Non-standard usage in profile 
diagrams 
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 UPRConstraint (Abstract Stereotype) 
An UPR constraint stereotype extends the UML Constraint metaclass which is used for specifying Design 
Objective Constraints and Design Variable Constraints. The specification of the UPR constraint is in the form of 
a comparison operator and a real number. Note that the UPR library provides a set of predefined comparison 
operators. 
 
Extends 
• Constraint (from UML) 
 
Association Ends 
• base_Constraint : Constraint [1] 
 
Operations 
• comparisonOperator() : OperatorSemanticsClass [1]comparisonOperator () : invalid [1] 

bodyCondition: 
UPR::Operators::OperatorSemantics.allInstances()->any(o | 
o.notation.symbol()-
>includes(self.base_Constraint.specification.stringValue()))bodyCondit
ion: 
let symbol: String = 
self.specification.oclAsType(OpaqueExpression)._body->first() in 
OperatorSemanticsClass.allInstances()->any(o | o.symbol() = symbol) 
 

• constrainedProperty () : Property [1] 
bodyCondition: 
self.base_Constraint.constrainedElement->at(1).oclAsType(UML::Property) 

• evaluate (in slot : Slot) : Boolean [1] 
Precondition(s): 
slot.definingFeature = self.constrainedProperty() 
 
bodyCondition: 
self.comparisonOperator.applyTo(self.base_Constraint) 

• evaluate () : Boolean [1] 
bodyCondition: 
self.comparisonOperator.applyTo(self.base_Constraint) 

• name () : String [1] 
bodyCondition: 
self.base_Constraint.name 

• value () : ValueSpecification [1] 
bodyCondition: 
self.base_Constraint.constrainedElement-
>at(2).oclAsType(UML::ValueSpecification) 

 
Constraints 

• constrainedElement1_ property 
The first constrained element shall be a property 

self.base_Constraint.constrainedElement->at(1).oclIsKindOf(Property) 

• constrainedElement2_ value_specification 
The first constrained element shall be a value  specification 

self.base_Constraint.constrainedElement-
>at(2).oclIsKindOf(ValueSpecification) 

• two_constrained_elements 
An UPRConstraint constraint shall have 2 constrained elements 

Commented [SJ41]: UPR-4, UPR-5, UPR-26 (merged): 
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self.base_Constraint.constrainedElement->size()=2 

 Sensitivity (Abstract Stereotype) 
The Sensitivity abstract stereotype extends the UML Dependency to model the Sensitivity between two 
NamedElements. 
 
Extends 
• Dependency (from UML) 
 
Attributes 
• dataSourceType : DSTypeKind [1] 

Represent the data source (DSTypeKind enumeration) used to specify Sensitivity 
• polynomialBase : Real [1] 

Base of the polynomial, i.e. the coefficient of the polynomial term with degree 0. If not specified 0 is used 
as the default value. 

• polynomialCoefficient : Real [0..*] 
Provide the list of coefficients to be used for the univariate polynomial approximation of the mathematical 
relation between two variables. First element maps to the coefficient of the term of degree 1, the second to 
that of the term of degree 2, and so on. The base of the polynomial is supported by the specific attribute: 
'polynomialBase'. 

 
Association Ends 
• base_Dependency : Dependency [1] 
 
Constraints 

• is_binary 
A Sensitivity is a binary relationship 

self.base_Dependency.supplier->size() = 1 and 
self.base_Dependency.client->size() = 1 
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 Operators 
 Overview 

A mathematical-based constraint may require the use of different comparison operators. To facilitate the use of 
various kinds of comparison operators to model mathematical-based constraints, this clause establishes an 
extendable library of comparison operators. Each defined operator has a unique text-based name and a notation. 
Implementers and users of UPR can refine and extend the library as needed. 

 UML Representation 
This clause describes the UML extensions required to support the construction of the Operator Library.  

 Profile Diagrams 
Figure 8-1 depicts the UML extensions contained in Operators package and Figure 8-2 depicts the currently 
defined Operators in the Library. The descriptions corresponding to the introduced stereotypes and their 
properties are provided in the following sub clause. 
 

 
Figure 8-1 Operators 
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Figure 8-2 Operator Library 

 

 Profile Elements Description 

 ComparisonOperator (Stereotype) 
A ComparisonOperator stereotype allows defining a logical operator that can be used with UPRConstraints in 
order to quantify a relationship between a variable and a specific value. The Literal String that this stereotype 
extends defines the symbol to use in order to refer to that operator. The corresponding semantics is specified by 
the semantics attributes of the stereotype. 
 
Extends 
• LiteralString (from UML) 
 
Association Ends 
• base_LiteralString : LiteralString [1] 

Commented [SJ44]: UPR-4, UPR-5, UPR-26 (merged): 
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• semantics : OperatorSemantics [1] 
 
Operations 
• applyTo (in c : UPRConstraint) : Boolean [1] 

This operation evaluates an UPRConstraint base on the semantics specified for that operator 
bodyCondition: 
self.applyTo(c.base_Constraint.constrainedElement->at(1), 
c.base_Constraint.constrainedElement->at(2)) 

• symbol () : String [1] 
bodyCondition: 
self.base_LiteralString.value 

 OperatorSemantics (Stereotype) 
An OperatorSemantics stereotype is applied on a Class that can be used for specifying the semantics of a 
ComparisonOperator that a UPRConstraints can refer to. Typically the Base Class is a specialization of the 
OperatorSemanticsClass 
 
Extends 
• Class (from UML) 
 
Association Ends 
• base_Class : Class [1] 
• notation : ComparisonOperator [0..*] 
 
Operations 
• applyTo (in x : Element, in y : Element) : Boolean [1] 

bodyCondition: 
self.base_Class.oclAsType(OperatorSemanticsClass).applyTo(x, y) 

 
Constraints 

• has_applyto_operation 
self.base_Class.oclIsKindOf(OperatorSemanticsClass) 

 OperatorSemanticsClass (Abstract Class) 
Provides an abstract base class for defining the semantics of a ComparisonOperator 
 
Operations 
• applyTo (in x : ValueSpecification,in y : ValueSpecification) : Boolean [1] 

This operation is used for specifying how the result of the comparison shall be computed. It has to be 
defined in each concrete subclass according to the expected semantics of the corresponding operator. 

• symbol () : String [1] 
This operation is intended to be defined in each concrete subclass in order to return the string representing 
the operator symbol as a constant value. 

• applyTo (in x : Element, in y : Element) : Boolean [1] 
This operation is used for specifying how the result of the comparison shall be computed 

 

 Library (Package) 

8.2.2.2.1 EQ_Operator (Class) 
This class defines the semantics for an “equal to” relationship 
 
Generalizations 
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• OperatorSemanticsClass (from Operators) 
 
Operations 
• applyTo (in x : ValueSpecification,in y : ValueSpecification) : Boolean [1] 

bodyCondition: 
if x.realValue()->notEmpty() and y.realValue()->notEmpty() then 
 x.realValue()= y.realValue() 
else 
 OclInvalid 
endif 

• symbol () : String [1] 
bodyCondition: 
'=' 

8.2.2.2.2 GTE_Operator (Class) 
This class defines the semantics for a “greater than or equal to” relationship 
 
Generalizations 
• OperatorSemanticsClass (from Operators) 
 
Operations 
• applyTo (in x : ValueSpecification,in y : ValueSpecification) : Boolean [1] 

bodyCondition: 
if x.realValue()->notEmpty() and y.realValue()->notEmpty() then 
 x.realValue()>= y.realValue() 
else 
 OclInvalid 
endif 

• symbol () : String [1] 
bodyCondition: 
'>=' 

8.2.2.2.3 GT_Operator (Class) 
This class defines the semantics for a “greater than” relationship 
 
Generalizations 
• OperatorSemanticsClass (from Operators) 
 
Operations 
• applyTo (in x : ValueSpecification,in y : ValueSpecification) : Boolean [1] 

bodyCondition: 
if x.realValue()->notEmpty() and y.realValue()->notEmpty() then 
 x.realValue()> y.realValue() 
else 
 OclInvalid 
endif 

• symbol () : String [1] 
bodyCondition: 
'>' 

8.2.2.2.4 LTE_Operator (Class) 
This class defines the semantics for a “less than or equal to” relationship 
 
Generalizations 
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• OperatorSemanticsClass (from Operators) 
 
Operations 
• applyTo (in x : ValueSpecification,in y : ValueSpecification) : Boolean [1] 

bodyCondition: 
if x.realValue()->notEmpty() and y.realValue()->notEmpty() then 
 x.realValue()<= y.realValue() 
else 
 OclInvalid 
endif 

• symbol () : String [1] 
bodyCondition: 
'<=' 

8.2.2.2.5 LT_Operator (Class) 
This class defines the semantics for a “less than” relationship 
 
Generalizations 
• OperatorSemanticsClass (from Operators) 
 
Operations 
• applyTo (in x : ValueSpecification,in y : ValueSpecification) : Boolean [1] 

bodyCondition: 
if x.realValue()->notEmpty() and y.realValue()->notEmpty() then 
 x.realValue()< y.realValue() 
else 
 OclInvalid 
endif 

• symbol () : String [1] 
bodyCondition: 
'<' 

8.2.2.2.6 NEQ_Operator (Class) 
This class defines the semantics for a “not equal to” relationship 
 
Generalizations 
• OperatorSemanticsClass (from Operators) 
 
Operations 
• applyTo (in x : ValueSpecification,in y : ValueSpecification) : Boolean [1] 

bodyCondition: 
if x.realValue()->notEmpty() and y.realValue()->notEmpty() then 
 x.realValue()<> y.realValue() 
else 
 OclInvalid 
endif 

• symbol () : String [1] 
bodyCondition: 
'!=' 

8.2.2.2.2 EQ_Operator (Class) 
This class defines the semantics for an “equal to” relationship 
 
Generalizations 
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• OperatorSemanticsClass (from Operators) 
 
Operations 
• applyTo (in x : Element, in y : Element) : Boolean [1] 

bodyCondition: 
if (x.oclIsKindOf(Real) and y.oclIsKindOf(Real)) then 
 x.oclAsType(Real) = y.oclAsType(Real) 
else 
 OclInvalid 
endif 

8.2.2.2.3 GTE_Operator (Class) 
This class defines the semantics for a “greater than or equal to” relationship 
 
Generalizations 
• OperatorSemanticsClass (from Operators) 
 
Operations 
• applyTo (in x : Element, in y : Element) : Boolean [1] 

bodyCondition: 
if (x.oclIsKindOf(Real) and y.oclIsKindOf(Real)) then 
 x.oclAsType(Real) >= y.oclAsType(Real) 
else 
 OclInvalid 
endif 

8.2.2.2.4 GT_Operator (Class) 
This class defines the semantics for a “greater than” relationship 
 
Generalizations 
• OperatorSemanticsClass (from Operators) 
 
Operations 
• applyTo (in x : Element, in y : Element) : Boolean [1] 

bodyCondition: 
if (x.oclIsKindOf(Real) and y.oclIsKindOf(Real)) then 
 x.oclAsType(Real) > y.oclAsType(Real) 
else 
 OclInvalid 
endif 

8.2.2.2.5 LTE_Operator (Class) 
This class defines the semantics for a “less than or equal to” relationship 
 
Generalizations 
• OperatorSemanticsClass (from Operators) 
 
Operations 
• applyTo (in x : Element, in y : Element) : Boolean [1] 

bodyCondition: 
if (x.oclIsKindOf(Real) and y.oclIsKindOf(Real)) then 
 x.oclAsType(Real) <= y.oclAsType(Real) 
else 
 OclInvalid 
endif 
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8.2.2.2.6 LT_Operator (Class) 
This class defines the semantics for a “less than” relationship 
 
Generalizations 
• OperatorSemanticsClass (from Operators) 
 
Operations 
• applyTo (in x : Element, in y : Element) : Boolean [1] 

bodyCondition: 
if (x.oclIsKindOf(Real) and y.oclIsKindOf(Real)) then 
 x.oclAsType(Real) < y.oclAsType(Real) 
else 
 OclInvalid 
endif 

8.2.2.2.7 NEQ_Operator (Class) 
This class defines the semantics for a “not equal to” relationship 
 
Generalizations 
• OperatorSemanticsClass (from Operators) 
 
Operations 
• applyTo (in x : Element, in y : Element) : Boolean [1] 

bodyCondition: 
if (x.oclIsKindOf(Real) and y.oclIsKindOf(Real)) then 
 x.oclAsType(Real) <> y.oclAsType(Real) 
else 
 OclInvalid 
endif 
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 Design Objective Constraints Modeling 
 Overview  

This clause describes the Design Objective Constraints package of UPR. This package specializes the 
stereotypes defined in the Foundations package to facilitate: 
 

• the modeling of mathematical-based Design Objective Constraints; 

• the modeling of mathematical-based harmonious and conflicting relations between system elements 
and variables, e.g. Design Objectives; 

• and the identification of mathematical-based harmonious and conflicting relations between Design 
Objectives. 

 

 Domain View  
The domain model for the Design Variable package is depicted in Figure 9-1. 
 

 
Figure 9-1 Design Objective Constraints Domain Model 
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The Design Objective Constraints package is concerned with the modeling of constraints on Design Objectives 
and relations between System::DesignData such as a harmonious relation between two 
System::DesignObjectives.   

A DesignObjectiveConstraint, being a specialized type of System::DesignConstraint, defines a mathematical 
constraint on a System::DesignObjective by using a comparison operator (listed as below) and a value (c.f. 
Clause 6.2.2 for the defined structure of mathematical constraints on variables within the scope of UPR). There 
can be multiple DesignObjectiveConstraints defined on the same DesignObjective. Based on the comparison 
operator used, the DesignObjectiveConstraint can be classified into the following forms including but not 
limited to: 

• DesignObjectiveConstraint_EQ: an equal constraint, e.g. gear modes = 5; 
• DesignObjectiveConstraint_NEQ: a not-equal constrain6; 
• DesignObjectiveConstraint_GT: a greater than constraint, e.g. vehicle frontal area (m2) ≥ 2.2  
• DesignObjectiveConstraint_GE: a greater than or equal to constraint, e.g. vehicle top speed (mph) ≥ 

200 
• DesignObjectiveConstraint_LT : a less than constraint, e.g. CO emission (g/km) < 0.5 
• DesignObjectiveConstraint_LE: a less than or equal to constraint, e.g. vehicle weight (kg) ≤ 2000 

Sensitivities between two System::DesignObjectives are specialized as DOtoDOSensitivities. Sensitivities 
between a System::DesignObjective and a DesignData (a system property that is neither defined as a Design 
Objective nor as a Design Variable, c.f. Clause 4) are defined as a DOtoELMSensitivities. Sensitivities between 
two DesignData (system properties that both are neither defined as Design Objectives nor as Design Variables) 
are defined as ELMtoELMSensitivities. These specialized Sensitivities are essential for carrying out a RT-B for 
the identification of harmonious, conflicting or independent relations between two Design Objectives (c.f. 
Clause 6.2.4).  
 

 UML Representation 
This clause describes the UML extensions required to support the modeling of Design Objective Constraints.  

 Profile Diagrams 
Figure 9-2 depicts the UML extensions contained in the Design Objective Constraints package for modeling 
Design Objective Constraints and their relations. The semantic descriptions corresponding to the introduced 
stereotypes and their properties are provided in the next sub clause. 
 

 

                                                           
6 In practical engineering, a not-equal constraint is rarely used. However, for the sake of completeness, this type of 

DesignObjectiveConstraint is still included. 
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Figure 9-2 Design Objective Constraints Profile Diagram 

 Profile Elements Description 

 DOtoDOSensitivity (Stereotype) 
The DOtoDOSensitivity stereotype specializes the Sensitivity stereotype to model a sensitivity-based relation 
between two Design Objectives that are constrained. 
 
Extends 
• Dependency (from UML) 
 
Generalizations 
• Sensitivity (from Foundations) 
 
Constraints 

• client_and_supplier_designobjectives 
Both the client and the supplier shall be constrained by a DesignObjectiveConstraint 

self.base_Dependency.client->union(self.base_Dependency.supplier)-
>forAll(p | 
DesignObjectiveConstraint.allInstances().constrainedProperty()-
>includes(p)) 

 DOtoELMSensitivity (Stereotype) 
The DOtoELMSensitivity stereotype specializes the Sensitivity stereotype to model a sensitivity-based relation 
between a Design Objective that is constrained and a NamedElement. 
 
Extends 
• Dependency (from UML) 
 
Generalizations 
• Sensitivity (from Foundations) 
 
Constraints 

• client_designobjective 
The client shall be constrained by a DesignObjectiveConstraint 

self.base_Dependency.client->forAll(p | 
DesignObjectiveConstraint.allInstances().constrainedProperty()-

Commented [SJ46]: UPR-29: Non-standard usage in profile 
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>includes(p)) 

 DesignObjectiveConstraint (Stereotype) 
The DesignObjectiveConstraint stereotype specializes the UPRConstraint stereotype for specifying a Design 
Constraint. 
 
Extends 
• Constraint (from UML) 
 
Generalizations 
• UPRConstraint (from Foundations) 
 
Attributes 
• docID : String [1] 

This attribute represents the unique Identification Number of a Design Objective Constraint. 

 ELMtoELMSensitivity (Stereotype) 
The ELMtoELMSensitivity stereotype extends the UML Dependency to model a sensitivity-based relation 
between two NamedElements. 
 
Extends 
• Dependency (from UML) 
 
Generalizations 
• Sensitivity (from Foundations) 

 

 Example 
This sub-clause illustrates how Sensitivity stereotypes can be used to model mathematical-based relations 
between system elements. It also demonstrates how Sensitivity information can be used to identify harmonious 
and conflicting relations between Design Objectives that are constrained.  

To achieve the above, the vehicle design problem discussed in Clause 6.2.1 is elaborated in this sub clause. In 
particular, we model three Design Objective Constraints:  

1) Vehicle Fuel Economy (FE) to be not less than a value of 23 Mile per Gallon (MPG) in a standard 
drive cycle. Mathematically, we have the Design Objective, FE (MPG), constrained by a Design 
Objective Constraint, FE ≥ 23. 

2) Particulate Matter (PM) emission to be less than 0.005g/km as regulated by Euro 6 Emissions Standard. 
Mathematically, we have the Design Objective, PM (g/km), constrained by a Design Objective 
Constraint, PM < 0.005. 

3) The Diesel Particulate Filter (DPF) to have a filtration efficiency of greater than 90%. Mathematically, 
we have the Design Objective, DPF-eff (%), constrained by a Design Objective Constraint, DPF-eff >
90. 

For domain experts, particularly Chemical Engineers who work on vehicle after-treatment systems, it is known 
to them that: 

1) Design Objectives 2 and 3 are harmonious to each other since a high efficiency of DPF helps to keep 
the emissions of Particulate Matter at a significantly low level; 

2) Design Objective 1 is in general, conflicting with both of Design Objective 2 and Design Objective 3. 
This is because the way a DPF works is to filter and store the PM from the exhaust gas over time. 
When the stored PM reaches a limit, the engine will be requested to run at very high temperature such 
that the high temperature exhaust gas can burn the stored PM. When the engine operates at very high 
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temperature, it has a greater fuel consumption compared to the normal operating condition. Hence, 
reducing PM in general means decreasing FE. 

The above points are referred to as information 1 and 2 respectively later. However, to demonstrate the use of 
the Design Objective Constraints package, we assume that the user of UPR has no prior knowledge to the above 
relations between the Design Objectives. The system architecture that captures the relationships between system 
elements and Design Objectives are captured in Figure 9-3. The set of Design Objective Constraints are 
provided in the table depicted in Figure 9-4. They are traceable to requirements modeled in SysML 
Requirements7 as shown in Figure 9-3 via satisfy Dependencies. 
 

 
Figure 9-3 System Relations 
 

 
Figure 9-4 Design Objective Constraints  

After modeling the Design Objective Constraints, we continue to establish a set of stereotypes to capture 
Sensitivity information and to facilitate RT-B for identification of relations between Design Objectives. For 
simplicity, in the following discussion, we will use a Sensitivity scale (estimated) of -1, 0 and +1 to show if two 
model elements are conflicting, independent and harmonious. A complex scale can be used if the degree of 
conflict and harmony can be reasonably modeled. Using this scale, for the modeled relations shown in the 
System Relations (Figure 9-3), we have: 
1) Design Objective, FE, relates to a system function modeled by an Activity as to “Operate Engine at High 

Temperature”. When the engine operates at a high temperature, FE decreases. Therefore, based on the 
DesignObjectiveConstraint 1 in which it is required to increase FE to meet the target, the relation between 

                                                           
7 Textual descriptions of Design Objectives are modeled in SysML Requirements. However, this is not mandatory. Also, 

UPR can be applied to SysML models even though there is no direct relation to SysML as in Conformance Clause.  
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FE and the “Operate Engine at High Temperature” Activity is stereotyped into a DOtoELMSensitivity with 
an estimated single valued Sensitivity, -1, to show that they are conflicting with each other.  

2) Design Objective, PM, relates to a system function modeled by an Activity as to “Burn PM”. This function 
is one of the most viable methods to reduce PM. The function converts PM chemically through burning. 
Hence, from a verification perspective, this Activity ensures that DesignObjectiveConstraint can be 
satisfied. For this reason, we stereotype the relation between PM and the Activity, “Burn PM” into a 
DOtoELMSensitivity with an estimated positive single valued Sensitivity, 1. 

3) Design Objective, DPF-Eff, relates to a system component modeled by a Block, named “Silicon Carbide 
Wall Flow Filter”, which is a type of DPF that can achieve filtration efficiency over 90%. For the same 
reason as discussed in 2) above, we stereotype the relation between DEP-Eff and the Block, “Silicon 
Carbide Wall Flow Filters” into a DOtoELMSensitivity with an estimated positive single valued Sensitivity, 
1. 

It is worth noting that the three relations modeled above correspond to the three relations captured in the matrix 
Q in Figure 6-1 

Now, looking at these system elements, when modeling the allocation of system functions to system 
components, it can be observed that both of the Activities are allocated to the same Block, “Silicon Carbide 
Wall Flow Filter”. We therefore stereotype these allocation Dependencies into ELMtoELMSensitivities with an 
estimated positive single valued Sensitivity, 1, also to show the harmoniousness. It is worth noting that the two 
allocation Dependencies correspond to the two relations captured in the matrix N in Figure 6-1. 

The above modeled Sensitivities are summarized in the table depicted in Figure 9-5.  

 
Figure 9-5 Sensitivities Modeling (estimated) 

With the modeled DesignObjectiveConstraints, DOtoELMSensitivities, and ELMtoELMSensitivities, we now 
apply RT-B based on Equation 6-6 in Clause 6.2.4 to identify implied DOtoDOSensitivities and their associated 
Sensitivity values. It is important to emphasize here again that UML and SysML, as modeling languages, are not 
platforms that offer the implementation of analysis capabilities such as relational transformations, e.g. RT-B. 
Therefore, RT-B, as an analysis capability, has to be implemented in a third party tool. This, however, is not a 
conformance point for UPR. In this case, this tool shall read the sensitivities and implemented RT-B in a way as 
discussed in Clause 6.2.4. Then, the resultant sensitivity after the relational transformation is annotated on the 
relevant parts (DOtoDOSensitivities as in this example) of the model. 

The resultant (implied) DOtoDOSensitivities obtained from the transformation are depicted in the table depicted 
in Figure 9-6. Firstly, PM and DPF-Eff are identified to be positively correlated due to a multiplication of three 
+1s. The outcome result agrees with the previously discussed information item (1). Secondly, FE and DPF-Eff 
are identified to be negatively correlated due to a multiplication of two +1s and a -1. The outcome result agrees 
with the previously discussed information item (2). As these DOtoDOSensitivities are obtained through RT-B 
rather than original modeled by the user of UPR, the DataSourceType should be ‘implied’. It is worth noting 
that the two implied relations correspond to the two relations captured in the matrix M in Figure 6-1.  

In addition to the two ‘implied’ Sensitivities, it is also possible to specify the DOtoDOSensitivity between FE 
and PM by using a set of polynomial coefficients ‘derived’ from the stoichiometry during engine combustion. 
Here, a 3rd order polynomial representing the relation of FE to PM is provided (see row 3 in the table in Figure 
9-6); and note that the values provided here are for demonstration only.   
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Figure 9-6 Sensitivities Modeling (implied and derived) 
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 Design Variable Constraints Modeling 
 Overview 

This clause describes the Design Variable Constraints package of UPR. This package specializes the 
UPRConstraint stereotype defined in the Foundations package to facilitate the modeling of Design Variable 
Constraints.  
 

 Domain View 
The domain model for the Design Variable Constraints package is depicted in Figure 10-1.   
 

 
Figure 10-1 Design Variable Constraints Domain Model 

The Design Objective Constraints package is concerned with the modeling of constraints on Design Variables.    

A DesignObjectiveConstraint, being a specialized type of System::DesignConstraint, defines a mathematical 
constraint on a System::DesignVariable by using a comparison operator (listed as below) and a value. There can 
be multiple DesignVariableConstraints defined on the same DesignVariable. Based on the comparison operator 
used, the DesignObjectiveConstraint can be classified into the following forms including but not limited to: 

• DesignVariableConstraint _EQ 
• DesignVariableConstraint_NEQ 
• DesignVariableConstraint_GT 
• DesignVariableConstraint_GE 
• DesignVariableConstraint_LT  
• DesignVariableConstraint_LE 

 
A DesignVariableConstraint has two different kinds in nature: DesignRange and FeasibleRange. When a 
DesignVariableConstraint describes a DesignRange, it means that the constraint specifies a design limit on the 
corresponding Design Variable without the consideration of any DesignObjectiveConstraints. This is often 
derived from a physical limit or a limit that is inherited from legacy designs. When DesignObjectiveConstraints 
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are considered, certain design choices within the specified DesignRange (design limit) may no longer be 
viablem, due to violation of the defined DesignObjectiveConstraints. Using UPR terminology (c.f. Clause 4 and 
Clause 6.2.5), the initial design limit on a Design Variable is referred to as Design Range; and a refined Design 
Range representing a subset of the feasible design choices is referred to as a Feasible Range. A Feasible Range 
is modeled by a DesignVariableConstraint with its kind specified as FeasibleRange. 

The current design choice on the Design Variable is referred to as an InitialDesign in the Domain Model. 

  

 UML Representation 
This clause describes the UML extensions required to support the modeling of Design Variable Constraints. 

 Profile Diagrams 
Figure 10-2 depicts the UML extensions for modeling Design Variables. The semantic descriptions 
corresponding to the introduced stereotypes and their properties are provided in the following sub clause. 
 

 
Figure 10-2 Design Variable Constraints Profile Diagram 

Commented [SJ47]: UPR-29: Non-standard usage in profile 
diagrams 
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 Profile Elements Description 

 RangeKind (Enumeration) 
A RangeKind describes the nature of the specified mathematical constraint on a Design Variable. Note that there 
can be multiple DesignVariableConstraints specified for one Design Variable, but each 
DesignVariableConstraint stereotype is only associated to one of the RangeKind as specified below: 
 
Literals 
• designRange 

Indicates that the constraint specified for the Design Variable is a Design Range that is attributed to physical 
limit or design knowledge. Not every design point within this range is necessarily a feasible solution. 

• feasibleRange 
Indicates that the constraint specified for the Design Variable is a Feasible Range that is imposed by a set of 
Design Objective Constraints. Every design point within this range is a feasible solution. 

 DesignVariableConstraint (Stereotype) 
The DesignVariableConstraint stereotype specializes the UPRConstraint stereotype for specifying Design 
Range(s) and Feasible Range(s) for a Design Variable. In addition, the initial value to be used for the design 
optimization is provided by the initialDesign property. 
 
Extends 
• Constraint (from UML) 
 
Generalizations 
• UPRConstraint (from Foundations) 
 
Attributes 
• dvcID : String [1] 

This attribute represents the unique Identification Number of a Design Variable Constraint. 
• initialDesign : ValueSpecification [0..1] 

This attribute represents the initial design choice for the Design Variable. 
• kind : RangeKind [1] 

This attribute represents the kind of range, i.e. designRange or feasibleRange, being specified for the 
Design Variable Constraint. 

 

 Example 
Examples for Design Variable Constraints definition are given in Clause 10.3.3 in conjunction with the 
application of stereotypes defined in the Relational Structure and Design package in Clause 10. This is because 
that complete usage of DesignVariableConstraint stereotype requires the definition of Feasible Ranges on a 
Design Variable, which are constraints that are imposed by Design Objective Constraints through the 
mathematical relations, e.g. polynomials, between the Design Objective and the Design Variable.  
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 Relational Structure and Design Modeling 
 Overview 

Having both the Design Objective Constraint and Design Variable Constraints defined, to complete the 
formulation of a CDD problem, it is required to define the mathematical relations between the specified Design 
Objectives and Design Variables. This clause is concerned with the modeling of these mathematical relations in 
the form of polynomial coefficients (c.f. Clause 6.2.3). The collective representation of these mathematical 
relations creates a Relational Structure. This structure facilitates Unary Transformation (RT-U) to determine 
feasible design solutions for a CDD problem.  

The objective of this clause is to describe the Relational Structure and Design package of UPR. This package 
specializes the Sensitivity abstract stereotype defined in the Foundations package to facilitate:  
 

• the modeling of the relational structure between Design Objective Constraints and Design Variable 
Constraints; 

• and the determination of Feasible Ranges for the Design Variables with a given set of Design Objective 
Constraints, by using Unary Transformation (RT-U). 

 Domain View 
The domain model for the Relational Structure and Design is depicted in Figure 11-1.  
 

 
Figure 11-1 Relational Structure and Design Domain Model 
Having introduced both DesignObjectiveConstraint and DesignVariableConstraint in the domain models in 
previous clauses, the Relational Structure and Design package concerns with the modeling of Sensitivities 
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between a Design Objective and Design Variable by using a DOtoDVSensitivity that specializes 
System::Sensitivity. As seen in the domain model, a System::DesignObjective and a System::DesignVariable 
may be related to each other via a DOtoDVSensitivity, where the DesignObjective is constrained by one or 
more DesignObjectiveConstraints and the DesignVariable is constrained by one or more 
DesignVariableConstraints. 

 UML Representation 
This clause describes the UML extensions required to support the modeling of Relational Structure and Design.  

 Profile Diagrams 
Figure 9.1 depicts the UML extensions for modeling the Relational Structure and Design. The semantic 
descriptions corresponding to the introduced stereotypes and their properties are provided in the next sub clause. 
 

 

Figure 11-2 Relational Structure and Design Profile Diagram 

 Profile Elements Description 

 DOtoDVSensitivity (Stereotype) 
The DOtoDVSensitivity stereotype specializes the Sensitivity stereotype to model a sensitivity-based relation 
between a Design Objective that is constrained by DesignObjectiveConstraints and a Design Variable that is 
constrained by DesignVariableConstraints. 

Commented [SJ48]: UPR-29: Non-standard usage in profile 
diagrams 
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Extends 
• Dependency (from UML) 
 
Generalizations 
• Sensitivity (from Foundations) 
 
Constraints 

• client_designobjective 
The client shall be constrained by a DesignObjectiveConstraint 

self.base_Dependency.client->forAll(p | 
DesignObjectiveConstraint.allInstances().constrainedProperty()-
>includes(p)) 

• supplier_designvariable 
shall be constrained by a DesignVariableConstraint 

self.base_Dependency.supplier->forAll(p | 
DesignVariableConstraint.allInstances().constrainedProperty()-
>includes(p)) 

 Example  
In this sub clause, we will be using a simple constraint-driven Radar design problem as an example to 
demonstrate the application of the Relational Structure and Design package. As the DOtoDVSensitivity 
stereotype connects a DesignObjectiveConstraint and a DesignVariableConstraint, we start with modeling the 
Design Objective Constraints and Design Variable Constraints of the system based on a simplified Radar system 
requirements and architecture modeled in SysML. The Design Objectives of interest are depicted in the SysML 
Requirement diagram in Figure 11-3. These are the power received at the aircraft transponder, which must 
exceed the Minimum Triggering Level (MTL) and the power received at the radar antenna, which must exceed 
the Minimum Detectable Signal (MDS). Note the units used to measure these variables are rescaled into decibel 
(dB).  

 
Figure 11-3 Design Objectives (Requirements) for a Radar System 
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Based on the texts given in the Requirements, constraints on these Design Objectives are modeled by the 
DesignObjectiveConstraint stereotype and are provided in the table depicted in Figure 11-4. 
 

 
Figure 11-4 Design Objective Constraints for the Radar System 
 

The modeled radar system components and their relations are presented in a SysML internal block diagram, as 
depicted in Figure 11-5. We identify two Design Variables that are affected by the defined Design Objective 
Constraints. They are: 

• The power of the transmitter, 𝑃𝑃𝑇𝑇 . This Property directly affects whether or not the signal transmitted to 
the aircraft can trigger the transponder with a MTL of -103dBW. 

• The aperture of the Antenna, 𝐴𝐴𝑒𝑒. This Property directly affects whether or not the Radar system can 
receive a signal from an aircraft with -100 dBm. 

 
Figure 11-5 Radar system component architecture 
 

Based on legacy designs or empirical knowledge, Design Ranges for the two Design Variables can be defined. 
These Design Ranges are modeled by the DesignVariableConstraints (c.f. Clause 10) and are provided in the 
table depicted in Figure 11-6. As shown, the Design Range specified for the power of the radar transmitter in 
dBW is less than or equal to 40, i.e. 𝑃𝑃𝑇𝑇 ≤ 40. And the initial design specified for 𝑃𝑃𝑇𝑇  is 20. The Design Range 
specified for the aperture of the radar antenna in dBsm is less than or equal to 10, i.e. 𝐴𝐴𝑒𝑒 ≤ 10. And the initial 
design specified for 𝐴𝐴𝑒𝑒 is 3. 
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Figure 11-6 Design Variable Constraints for the Radar System 

 

To model the polynomial coefficients of the DOtoDVSensitivities, radar physics principles are used, where the 
𝑃𝑃𝑅𝑅𝑅𝑅 and 𝑃𝑃𝑅𝑅𝑅𝑅 are related to the 𝑃𝑃𝑇𝑇  and 𝐴𝐴𝑒𝑒 through the following set of mathematical models:  

𝑃𝑃𝑅𝑅𝑅𝑅 =
𝑃𝑃𝑇𝑇𝐴𝐴𝑒𝑒
 4πR2 

Equation 11-1 

𝑃𝑃𝑅𝑅𝑅𝑅 =
𝑃𝑃𝑇𝑇𝑅𝑅𝐴𝐴𝑒𝑒
 4πR2  

Equation 11-2 

where 𝑃𝑃𝑇𝑇𝑅𝑅 is the power of the aircraft transponder with an assumed value of 20 dBW,  𝑅𝑅 is the distance 
between the aircraft and the radar, and in this case, is equal to 30nmi based on the given requirements.  
 
For typical Radar design problems, it is convenient to work with decibel (dB) as this linearizes the mathematical 
model. For instance,  4πR with 𝑅𝑅 = 30nmi, can be converted into 106 dBsm, where ‘sm’ stands for square 
meter. The linearized model in dB then reads, 

 

�𝑃𝑃𝑅𝑅𝑅𝑅 = −106 dBsm + 𝑃𝑃𝑇𝑇 dBW + 𝐴𝐴𝑒𝑒  dBsm
𝑃𝑃𝑅𝑅𝑅𝑅 = −86 dBsm +  𝐴𝐴𝑒𝑒 dBsm  

Equation 11-3 

At given initial design values for  𝑃𝑃𝑇𝑇  and 𝐴𝐴𝑒𝑒 , based on the above linearized mathematical models, a first order 
univariate polynomial can be constructed for each of the mathematical relations between Design Objectives and 
Design Variables. For example, at  𝑃𝑃𝑇𝑇 = 20 and 𝐴𝐴𝑒𝑒 = 3, 𝑃𝑃𝑅𝑅𝑅𝑅 can be written as a first order polynomial 
of 𝐴𝐴𝑒𝑒 as  

𝑃𝑃𝑅𝑅𝑅𝑅 = −86 + 𝐴𝐴𝑒𝑒  
Equation 11-4 

where the units are dropped for simplicity. The coefficients (including the constant term) can now be modeled 
by polynomialCoefficient and polynomialBase as shown in the first row of the table provided in Figure 11-7. 
The derivation of the rest of the polynomials will not be given, but their coefficients are also provided in this 
table.  
 

 
Figure 11-7 Relational Structure for the Design of the Radar System 

 
Using the information captured by the stereotypes, a CDD problem can be formulated and a RT-U can be 
applied to determine Feasible Ranges for the Design Variables. Using the initial designs as an initial condition, 
the results obtained are provided in the table depicted in Figure 11-8.  
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Figure 11-8 Feasible Ranges on Radar System Design Variables 
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Annex A Elevator Dispatcher System 
(informative) 

 
In this annex, UPR stereotypes are applied to model a CDD of an elevator dispatcher. The aim of this annex is to 
illustrate how UPR is used to annotate an existing system model to formulate a CDD problem. The system 
(elevator dispatcher) is modeled in UML. UPR stereotypes are applied to define Design Objective Constraints, 
Design Variables Constraints and Sensitivities for every Design Objective - Design Variable pair.  
 
System Narrative 
An elevator dispatcher needs to provide commands to a group of elevators so that they move in a manner to best 
meet the hall call and car call demands that emanate from passengers using the system. The system is real-time 
in the sense that it needs to be responsive to the passengers who arrive and leave the system and take into 
account the dynamics involved in moving the elevators themselves. A typical elevator dispatch system will re-
calculate (or at least partially re-calculate) a new set of elevator demands many times in a second. Figure A-1 
depicts the use cases of an elevator dispatcher system.   
 

 
Figure A-1 Elevator Dispatcher Use Case Diagram 
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System Behavior 
A real-time embedded elevator system needs to be capable of responding to both asynchronous and synchronous 
events. In this example, the arrival of passenger is an asynchronous event and this is signaled by the pressing of 
the hall call button. The car call could be considered as a second asynchronous event, but here it is assumed that 
the individual cars will monitor these events as part of their movement calculations. The synchronous events are 
the regular recalculation of the destinations of the cars by the dispatcher and the regular updating of the car 
destination (such a calculation will definitely require a model of the car dynamics if the system is being 
simulated, and will probably still require such a model if operating on a real physical elevator system). The 
activity diagram illustrating the real-time interrupt-driven nature of this application and incorporating the 
recording of objective values is shown in Figure A-2. 
 

 
Figure A-2 Elevator Dispatcher Activity Diagram 
 

System Structure 
A Class Diagram for the elevator dispatcher is shown in Figure A-3 where the system components are modeled 
in Classes. Note that hall and car call buttons and indicators are good candidates for additional classes, but these 
have been incorporated into the hall and car classes respectively to keep the design simple and allow 
concentration on the relational aspects of the problem. 
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Figure A-3 Elevator Dispatcher Class Diagram 

There are many Design Objective Constraints that are limiting the design space of an elevator system, and also 
many system elements that can be considered as Design Variables which are affected by Design Objective 
Constraints. For the purpose of illustration, only passenger waiting time and car energy usage are considered as 
Design Objective Constraints, and only car capacity (in terms of the maximum number of passengers in each 
car) and the number of cars (fewer cars means less usable floor space is taken in the building) are considered as 
relevant Design Variables.  
 
A list of specified Design Objective Constraints and Design Variables Constraints are captured in the tables 
depicted in Figure A-4 and Figure A-5 respectively. 
 

 
Figure A-4 Design Objective Constraints annotation with UPR stereotypes 
 

 
Figure A-5 Design Variable Constraints annotation with UPR stereotypes 

 
Consequently, a suitable relational structure can be created. This is given in the table shown in Figure A-6. As 
the exact mathematical model for the relations is not known to the authors, for the purpose of demonstration, 
estimated polynomial coefficients are used to model Sensitivities.  
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Figure A-6  Relational structure (Sensitivities) annotation with UPR stereotypes 
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Annex B Vehicle Design 
(informative) 

 
In this annex, we demonstrate how UPR is applied to multiple domains in order to model domain-specific CDD 
problems, while also demonstrating how the stereotypes facilitate cross-domain tradeoffs. The example used in 
this annex is primarily for demonstrating UPR, therefore any engineering values or design is purely for 
illustrative purposes only.  
 
The vehicle system can be considered as a system of systems. The vehicle design task in practice is often 
decomposed into several domain-specific designs. Each design team is given a particular design task to design a 
subsystem of the vehicle. The design of different subsystems may be driven by different Design Objectives (that 
may or may not be constrained) as well as the same Design Objectives. In addition, two different design teams 
may have shared or dependent Design Variables. As such, when integrating subsystems designs together to form 
the overall vehicle design, there may be potential issues. For instance, there can be conflicts between the 
recommendations on solutions to Design Variables; there can also be situations where the design solution for 
one subsystem causes the solution of another subsystem to fail a Design Objective Constraints. We shall 
demonstrate how UPR can facilitate design tradeoffs without the need of building cross-domain analytics and 
simulations models.  
 

B.1 Vehicle System Models  
The vehicle system architecture is modeled in SysML as shown in a SysML Block Definition Diagram in Figure 
B-1 and an Activity Diagram Figure B-2. In Figure B-1, major vehicle components and their properties are 
provided. This model is a greatly simplified compared to real world vehicle design. However, the components 
are representative and sufficient for the purpose of demonstrating how UPR facilitates the modeling and analysis 
of CDD problems. In Figure B-2, typical vehicle behavior during a drive cycle is given. It involves major 
vehicle functions relevant to the drive cycle emissions test.  
 

 
Figure B-1 Vehicle subsystems and properties 
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Figure B-2 Vehicle behavior in a drive cycle 
 

The following system requirements, as depicted in the SysML Requirement diagram in Figure B-3, are provided 
as the basis to define system-level Design Objectives (captured by value properties as in Blocks, Figure B-3) 
and Design Objective Constraints using UPR. The constraints are provided in the table in Figure B-4.  
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Figure B-3 Vehicle system-level requirements 
 

 
Figure B-4 Vehicle system-level Design Objective Constraints  
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Based on typical engineering practices and the models provided, the following subsystem design can be defined: 

1. Body design 

2. Engine design 

3. Aftertreatment systems design 

4. Transmission system design 

5. Chassis design 

6. Cooling system design 

To limit the scope of this example, only the first three subsystem designs will be considered. However, it is 
worth emphasizing that the application of UPR is not limited by the scope and that increasing the number of 
subsystem designs does not add modeling complexity, with UPR, to individual domains.  

B.2 Vehicle Body Design  
In the Body design, the following table in Figure B-5 provides a list of modeled Design Variables Constraints. 
 

 
Figure B-5 Vehicle Body Design Variable Constraints  

 
A relational structure for the Body CDD problem is then modeled using a set of DOtoDVSensitivities in the 
table depicted in Figure B-6. The polynomial coefficients presented are illustrative figures.  
 

 
Figure B-6 Relational structure for the vehicle Body CDD 
 

B.3 Vehicle Engine Design  
In the Engine design, the following table in Figure B-7 provides a list of modeled Design Variables Constraints. 
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Figure B-7 Vehicle Engine Design Variable Constraints 
 

A relational structure for the engine systems CDD problem is then modeled using a set of DOtoDVSensitivities 
in the table depicted in Figure B-8. The polynomial coefficients presented are illustrative figures.  
 

 
Figure B-8 Relational structure for the vehicle Engine CDD 
 

B.4 Vehicle Aftertreatment Systems Design  
In the Aftertreatment Systems design, the following table in Figure B-9 provides a list of modeled Design 
Variables Constraints. 
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Figure B-9 Vehicle Aftertreatment System Design Variable Constraints 

A relational structure for the vehicle aftertreatment systems CDD problem is then modeled using a set of 
DOtoDVSensitivities in the table depicted in Figure B-10. The polynomial coefficients presented are illustrative 
figures.  
 

 
Figure B-10 Relational structure for the vehicle Aftertreatment Systems CDD 
 

B.5 Design Integration 
Using derived polynomials, it is possible to determine Feasible Ranges with design algorithms that implement 
RT-U. However, this is not within the scope of UPR. Nonetheless, when integrating the domain designs into the 
final vehicle design, based on the above models, it is recognized that EXT and EXMF are two Design Variables 
shared by both the Engine design team and the Aftertreatment System design team. It shall now be assumed that 
the following Feasible Ranges8 , as shown in the table depicted in Figure B-11, are determined:  

 

                                                           
8 These numbers illustrative purposes only and do not represent a real product.  
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Figure B-11 Design integration for shared Design Variables 

In this table, it is recognized that there is an overlap between the two Feasible Ranges on EXT determined by 
the two domain teams. Therefore, it is relatively obvious to conclude that an integrated solution range should be 
simply 500 ≤ EXT ≤ 630. And it is obvious that any point-based solution within this solution range will ensure 
that relevant Design Objective Constraints will be satisfied. There is certainly no need to create a mathematical 
model that combines the two domains to obtain feasible designs that satisfies Design Objective Constraints 
affecting the two domains.     

However, it is also recognized that there is not such a similar overlap between the two Feasible Ranges on 
EXMF. In these cases, a further tradeoff analysis is required. For instance, the engine team can iterate their 
design solutions and adjust Feasible Ranges on other Design Variables, to create larger margins for EXMF. If 
both teams sacrifice some of the margins in other Design Variables that are not shared between the two 
domains, it is very likely that an overlapping region will suffice. This tradeoff analysis again does not require a 
new mathematical model to be built.    

Finally, for completeness, it is possible to integrate all domain-specific CDDs into a single CDD by merging all 
the DesignObjectiveConstraints, DesignVariableConstraints, and DOtoDVSensitivities into one design package. 
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