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Preface 
 
OMG 

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry 
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and 
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information 
Technology vendors, end users, government agencies, and academia.  
OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s 
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach 
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking 
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling 
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel); 
and industry-specific standards for dozens of vertical markets. 
More information on the OMG is available at https://www.omg.org/. 

OMG Specifications 

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications 
are available from the OMG website at: 
https://www.omg.org/spec 

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG 
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, 
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at: 
 

OMG Headquarters 
109 Highland Avenue 
Needham, MA 02494 
USA 
Tel: +1-781-444-0404 
Fax: +1-781-444-0320 
Email: pubs@omg.org 

Certain OMG specifications are also available as ISO standards. Please consult https://www.iso.org 
 
Issues 

The reader is encouraged to report any technical or editing issues/problems with this specification to: 
https://issues.omg.org/issues/create-new-issue 
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1 Scope  
1.1 Purpose 
This specification of a UMLTM profile adds capabilities to UML for a comprehensive facility to structure information in 
support of model-based analysis for architecture optimization and system design. This extension is called UPR: the UML 
profile for ROSETTA, in reference to its underlying mathematical foundation (the Relational Oriented Systems 
Engineering Technology Tradeoff and Analysis framework, for which an overview is provided in Clause 6.2). The 
relational orientation of the framework further supports model transformation between architecture design and detailed 
system design.  

 

1.2 Challenges being addressed 
A comprehensive facility has been lacking to support information structuring and integration for architecture 
optimization and Constraint-Driven Design analysis across distributed domain experts in a system design team. The 
facility must also support efficient and effective transformation of the system architecture into detailed system design. In 
current international standards [REF1], system architecture description is conceptualized using elements and 
relationships between elements. 

1.3 Meeting the challenges 
UPR provides an object-oriented facility to structure information in support of a variety of systems analyses for relational 
oriented architecture description and transformation into design. The core concepts refined in this profile build on 
existing OMG models and descriptions. The intent is not to define new techniques for model-based analysis and 
optimization; but rather to provide new facilities to support analysis. To accomplish this, the profile: 

• Supports information structuring and integration for architecture optimization and Constraint-Driven Design 
analysis.  

• Provides a facility for identification of conflicting and harmonious Design Objectives. 

• Implements a mathematically based framework using precise object-oriented syntax and semantics for relational 
orientation and transformation. 

The profile facilitates annotation of models to identify information required to perform analysis. The underlying 
framework enables precise and efficient structuring of the information. No new diagrams are proposed for UPR. 

1.4 Demonstration of the general applicability 
UPR should be beneficial to software and system architects in their collaboration with systems engineers and designers. 
Two case studies will be used to demonstrate the general applicability of the facility: 

• Embedded system design and analysis 
• Engineering a complex system across distributed domain experts  

These case studies are provided in the annexes to the profile. The embedded system case study can be used to 
demonstrate how the relational viewpoint on models in UPR can be used to provide the software architect and the system 
engineer an integrated system of models that supports the design and development of a real-time embedded system. The 
second case study provides an end-to-end example of how UPR can support architecture analysis and Constraint-Driven 
Design of a complex system across a distributed team of domain experts. 
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2 Conformance 
Conforming implementations of the profile must conform to UML 2.5 (or greater). In addition, the conforming 
implementation should also comply with the following conformance points: 

• Syntax Conformance: At a minimum, the tool must comply with the abstract syntax, i.e., stereotypes that are 
defined in the normative clauses, of UPR. A tool demonstrating abstract syntax conformance provides a user 
interface that enables instances of concrete UPR stereotypes (which are applications of stereotypes to instances 
of UML metaclasses) to be created, read, updated, and deleted. The tool shall also provide a way to validate the 
stereotypes against their constraints defined in the profile. 
 

• Semantic Conformance: For a given well-formed model that conforms to the Syntax Conformance, the tool must 
be able to extract the information modeled by the stereotypes according to the domain models provided in the 
specification. The normative force of the domain models in subclauses 7.2, 9.2, 10.2 and 11.2 are to ensure that 
UPR stereotypes correctly capture the semantic knowledge and the structure of the semantic knowledge that are 
supported by the ROSETTA framework. 

3 References 
3.1 Normative references 
The following normative documents are referenced in this specification: 

Reference  Description 

[OCL] Object Constraint Language (OCL™). Available at 

https://www.omg.org/spec/OCL/  

[UML] Unified Modeling Language™ (UML®). Available at 

https://www.omg.org/spec/UML/  

 

3.2 Non-normative references 
The following informative documents are referenced in this specification: 

Reference  Description 

[SML] OMG System Modeling Language™ (SysML®). Available at 

https://www.omg.org/spec/SysML/ 

[REF1] ISO/IEC/IEEE 42010:2011, Systems and software engineering - Architecture description, 

Technical Committee ISO/IEC JTC 1/SC 7, December 2011 

[REF2] Mavris, D. N., Griendling, K., & Dickerson, C. E. (2013). Relational-oriented systems 

engineering and technology tradeoff analysis framework. Journal of Aircraft, 50(5), 

1564-1575. 

https://www.omg.org/spec/OCL/
https://www.omg.org/spec/UML/
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[REF3] Dickerson, C. E. (2011, June). Mathematical foundations for relational oriented systems 

engineering (ROSE). In System of Systems Engineering (SoSE), 2011 6th International 

Conference on (pp. 197-202). IEEE. 

[REF4] Dickerson, C. E., & Mavris, D. N. (2011, June). Relational oriented systems engineering 

(ROSE): Preliminary report. In System of Systems Engineering (SoSE), 2011 6th 

International Conference on (pp. 149-154). IEEE. 

[REF5] Tarski, A. (1954, 1945). Contributions to the theory of models I, II, III (Vol 57, pp. 572-

581, 582-588; Vol58, pp. 56-64).  Nederl. Aka. Wetensch. Proc. Ser. A. 

[REF6] Bell, J. L. & Slomson, A. B.  (1969). Models and Ultraproducts. North-Holland / American 

Elsevier, New York 

[REF7] Suh, N. P. (1998). Axiomatic design theory for systems. Research in engineering 

design, 10(4), 189-209. 

[REF8] Akao, Y. (1990). Quality function deployment.  Cambridge, MA: Productivity Press 

[REF9] Dickerson, C. E., & Mavris, D. (2013). A brief history of models and model based systems 

engineering and the case for relational orientation. IEEE Systems Journal, 7(4), 581-592. 

[REF10] Dickerson, C. E. (2013). A relational oriented approach to system of systems assessment 

of alternatives for data link interoperability. IEEE Systems Journal, 7(4), 549-560. 

[REF11] Sowa, J. F. (2000). Knowledge representation: logical, philosophical, and computational 

foundations (Vol. 13). Pacific Grove: Brooks/Cole. 

[REF12] Dickerson, C., & Holden, T. (2014). Relational oriented systems engineering framework 

for flight training. The Journal of Defense Modeling and Simulation, 11(2), 103-113. 

[REF13] Rudakov, S., & Dickerson, C. E. (2017). Harmonization of IEEE 1012 and IEC 60880 

standards regarding verification and validation of nuclear power plant safety systems 

software using model-based methodology. Progress in Nuclear Energy, 99, 86-95. 

[REF14] Dickerson, C. E., Ji, S., & Roslan, R. (2016, June). Formal methods for a system of systems 

analysis framework applied to traffic management. In System of Systems Engineering 

Conference (SoSE), 2016 11th (pp. 1-6). IEEE. 

[REF15] ISO/IEC/IEEE 15288:2015, Systems and software engineering -- System life cycle 

processes, Technical Committee ISO/IEC JTC 1/SC 7, May 2015 
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4 Terms and definitions 
This clause provides the definitions and explanation of the terms and concepts used in the UPR. To assist the readers to 
have a collective understanding of these terms, they are not organized in the conventional alphabetical order.  

Constraint-Driven Design A system design approach in which design constraints are a central concern. 
A solution obtained from such a design approach aims to satisfy all design 
constraints.   

Variable An attribute (used to describe system property or parameter) that can take on 
a range of values. 

Mathematical Constraint A mathematical relation that associates a variable with a constant value in a 
way that limits the range of values of the variable, e.g. with a comparison 
operator to express equalities and inequalities. 

Design Objective A measurable attribute, such as performance or a physical property that can 
be expressed as a variable and used to compare systems.  

Design Objective Constraint A mathematical constraint applied to a Design Objective.   
Design Variable A variable associated with a system that is used to define the system; and is 

under the design authority of the engineer. 
Design Variable Constraint A mathematical constraint applied to a Design Variable. It is further 

categorized into Design Range and Feasible Range in UPR.  
Design Range A defined range of values of a Design Variable; mathematically, this is the 

domain of the variable. 
Design Space A (multi-dimensional) Space formed by the collective Design Ranges. 
Feasible Range The Feasible Range refines the Design Range of a Design Variable to 

provide a subset of feasible solutions. In Constraint Driven Design this 
subset of the Design Space is implied by a given set of Design Objective 
Constraints.  

Feasible Design Space A (multi-dimensional) Space formed by Feasible Ranges. 
Sensitivity A mathematical-based relation between two variables that indicate how the 

variation in one variable affects the variation in the other variable. In UPR, 
Sensitivity is specified through using Polynomial coefficients. 

Polynomial An expression consisting of variables and coefficients, that involves only the 
operations of addition, subtraction, multiplication, and non-negative integer 
exponents of variables, e.g., 𝑥𝑥2 + 3𝑦𝑦4 + 𝑧𝑧. A Design Objective, within the 
scope of UPR, can be expressed as a univariate polynomial function of a 
Design Variable.    

Univariate Polynomial A polynomial that has only one variable, e.g., 1 + 𝑥𝑥 + 𝑥𝑥2 + 3𝑥𝑥4. 
Relation A relation is an association (or mathematical function) of one or more 

arguments (logical or metric variables) whose range is the set of truth values 
{true, false}. Note that the statement: 𝑥𝑥1 < 𝑥𝑥2 cannot be assigned a truth 
value until it is interpreted as a relation on a defined set. 

Relational Structure A defined collection of relations.  
Relational Transformation Relational Transformation refers to transformations that preserve Relational 

Structure. There are two types of Relational Transformation defined and 
specified in this profile: Binary (Clause 6.2.4) and Unary (Clause 6.2.5). 

 
Matrix Representation A Matrix Representation in this profile refers to a graphical representation that the structure of 
which can be represented by a mathematical n-by-m matrix.   
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5 Symbols 
Acronym Name, description 

DO DesignObjective (acronym used to shorten certain stereotype names) 

DoE Design of Experiment 

DV DesignVariable (acronym used to shorten certain stereotype names) 

DPF Diesel Particulate Filter 

ELM Element (refer to system element, acronym used to shorten certain 
stereotype names) 

FE Fuel Economy 

MARTE Modeling and Analysis of Real-Time Embedded Systems 

MBSE Model Based Systems Engineering 

MDS Minimum Detectable Signal 

MTL Minimum Triggering Level 

OCL Object Constraint Language 

PM Particulate Matter 

QFD Quality Function Deployment 

ROSETTA Relational Oriented System Engineering Technology Trade-off Analysis 

RT-B Binary Transformation 

RT-U Unary Transformation 

UML Unified Modeling Language 

UPR UML Profile for ROSETTA 

SysML Systems Modeling Language 

 

 

 

 

 



6 UPR: UML Profile for ROSETTA, v1.0 

 

 

 

 

 

 

 

This page intentionally left blank. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



UPR: UML Profile for ROSETTA, v1.0 7 

 

6 Additional information 
6.1 Related standards 
UPR is related to the following normative OMG specifications: 

• UML: Like any other UML profile, UPR is defined on the basis of the metamodel provided in the UML 2.5 
Specification. 

• OCL: UPR uses OMG’s Object Constraint Language (OCL) to precisely formalize the constraints stated in 
natural language for the abstract syntax.  
 

6.2 Background for Constraint-Driven Design 

6.2.1  ROSETTA Framework 

UPR is an object-oriented implementation of an underlying mathematical formalism that is referred to as the Relational 
Oriented Systems Engineering Technology Tradeoff and Analysis framework [REF2]. When the term framework is used 
in association with ROSETTA, it will refer to the mathematical formalism; whereas when the term profile is used, it will 
refer to an object-oriented implementation. One of the challenges of developing UPR has been to specify the profile in a 
way that is consistent with the underlying mathematical concepts. 

This clause offers a brief background on the underlying formalism and its relation to mathematical modeling and systems 
engineering.  When reading this 6.2.1 clause, it is important to keep in mind that the framework is written in the language 
of mathematical logic and set theory. The conceptualization that follows must be read from this point of view if the 
reader is to understand it. The concepts in the subsequent clauses in the RFC are written in the language of UML [UML]. 

The framework is a model-based formalism that integrates and extends the concepts of relational structures and relational 
homomorphism in universal algebra to systems engineering [REF3, REF4]. It admits a graphical interpretation that lends 
itself to the graphical representations of models in UML and SysML[SML]. The formalism of the framework is rooted in 
the Tarski theory of models in mathematical logic [REF5, REF6] but has been adapted to the practice of engineering 
[REF2, REF4]. Put succinctly, a model in the Tarski theory is defined to be a relational structure (in the sense of 
mathematical set theory) that is the image of an injective mapping of one or more sentences in the first order predicate 
calculus (a sentence being a fully quantified well-formed formula). In other words, the model ‘faithfully’ realizes the 
sentences. This concept of model in mathematical logic is similar to a PIM – PSM transformation in MDATM for software 
development.   

The ROSETTA formalism further supports the rigorous development of structures for the design of systems and the 
assemblage of systems that mathematically interpret the methods of Nam Suh on Axiomatic Design theory [REF7]. It is 
also similar to the Quality Function Deployment (QFD) House of Quality [REF8]; but can translate expert opinion into 
mathematical relations [REF2, REF9]. For this reason, the name of the (mathematical) framework bears an intentional 
similarity to the Rosetta stone which provided the means to interpret between the Greek, Egyptian and Hieroglyphics 
demotic languages. Similarly, ROSETTA provides a facility for interpretation of concepts between systems engineers 
and software and system architects.  

The relational oriented viewpoint on systems supports a general systems methodology that employs a principle of model 
specification and relational transformation for the purpose of system description, analysis, and design. As summarized in 
[REF10], in the relational viewpoint, the specification of a model associated with a system is the specification of: 

• Entities associated with the system 
• Sentences (declarations) about the entities 
• Modeling elements to instantiate the sentences 
• A semantic structure on the modeling elements 
• Interpretations of the sentences into the semantic structure 

Entities are abstractions that admit logical or physical existence. The entities of the system can include attributes, classes 
(components), and the functionality of the system. There can also be entities associated with the system which are not 
part of it, e.g., the operating environment and context of the system. 
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The sentences are the basis for system specification. A system model is valid when the interpretation of each sentence is 
true within the semantic structure of the model. The validation process is facilitated by two types of semantic structures: 
relational structures (i.e., a collection of mathematical relations) and graphical representations (e.g., an Activity diagram 
or a Conceptual Graph). A graphical representation of a model is a collection of vertices and edges for encoding the 
semantic information captured by the sentences. The modeling elements in this case are the vertices. The edges, which 
represent relationships between vertices, are represented as pairs of vertices. The underlying structure is a (discrete) 
graph which therefore also has a matrix representation. 

Semantic structure is a concept which seeks to formalize the intended meaning of natural language through some type of 
mathematical organization. It can be thought of as structured knowledge about the system.  

The term structure is offered without definition but is assumed to have locations and relations between the locations. A 
predicate in the first order logic is an example of a structure. The symbols for the variables and constants are locations 
(for information/ interpretation) and the Predicate Letter is the symbol for a relation between the variables and constants.  
By itself, a predicate is not semantic; it requires interpretation, e.g. into a relational structure. The combination of a 
predicate sentence with knowledge (e.g. ontology) can provide a language that can express relationships about the 
entities of a domain of interest [REF11]. An architectural domain relates to a type of knowledge about the system or to 
one or more system components.  

Relational frames are specified as ordered pairs (M, R). The modeling elements are specified by M and the semantic 
structure is specified by R. This type of frame provides a static structure for organizing knowledge about the system 
using predefined internal relations specified by the model that reflect the relational structure of the semantic information 
captured by the sentences and their interpretation into the structure. This follows a line of reasoning for knowledge 
representation similar to the use of frames to represent structure as expressed in [REF11]. 

This is also a mathematical representation of knowledge similar to the concept of object-oriented frames used in software 
engineering, which is primarily concerned with the classes and objects of software architecture, their responsibilities and 
collaborations, and the threads of control. The mathematical representation in relational orientation admits matrix 
representation that can be used by systems engineers in practical ways to employ the concepts of relational structures and 
relational homomorphism. If (M, R) is a relational frame, then a matrix representation of the frame will be denoted as M. 
Similarly, for another frame, (N, S), the notation would be N. 

Model elements are related by belonging to: (i) n-ary mathematical relations, (ii) hierarchical decomposition, or (iii) 
association with elements of another model by transformation. The special case n = 1 for n-ary relations is called a unary 
relation, i.e. a defined subset of elements. The case n = 2 is a binary relation. The types (i) and (ii) of mathematical 
relation are concerned with the internal structure of a model. The associated relational frames will be referred to simply 
as frames. The third type of relation is an association external to a model, although hierarchical decomposition into sub-
models can also admit transformations. The type (iii) frame will be referred to as a transformational frame and denoted 
as Q = (M, N; Q) where M and N are the model elements of two models and Q is an association between the elements of 
the frames. A matrix notation for the transformational frame Q will be denoted as Q. Note that although the frame is an 
ordered triple, the association Q is not preferential to the direction of transformation. 

 

Figure 6-1 Simple example of a Transformational Frame (Q) in matrix form 
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A simple transformational frame in matrix form is depicted in Figure 6-1. The symbols y1, y2, and y3 in this example 
represent Design Objectives. Similarly, x1, x2, and x3 represent Design Variables. In an automotive emissions problem, 
the objectives might be metrics for fuel economy, particulate matter (in the emissions), and the efficiency of a Diesel 
Particulate Filter (DPF). On the other hand, the mathematical modeling elements of a system specification might be 
metrics associated with two functionalities of the system, such as operating the engine at a high temperature and burning 
the soot; while the third variable could be associated with a choice of DPF technology. Two of the three frames in matrix 
form, i.e., N and Q, in the figure are therefore specified explicitly. The semantic of the (xi, xj) binary relation is that x1 has 
a dependency on xj. For example, (x2, x3) means the burning of soot depends on the DPF technology. Similarly, the Q 
frame states that the Design Objectives depend on the Design Variables. For example, (y3, x3) means that the DPF 
efficiency depends on the DPF technology. 

We shall see that a semantic structure on the remaining frame (M) is implied by the other two (c.f. Clause 6.2.4). 
Specifically, this structure is the pair of binary relations in the matrix M depicted in Figure 6-1. 

A relational transformation is specified as an association between the elements of two models of a system that induces a 
mapping between the relationships expressed in the models and preserves the structure of these relationships. For 
example, a relational transformation of a graph can be understood as a multi-valued association of the vertices of the 
graph (of a source model) that preserves the relationships of the edges to the vertices (in the target model).  

An example can be seen in the emissions example, where the association Q when viewed as an injective mapping from N 
to M, gives rise to the two new binary relations in M. Thus, dependencies between the Design Variables give rise to 
dependencies in the Design Objectives, which otherwise had been considered to be independent. Note that these relations 
of dependency could be specified by expert opinion (as with QFD [REF8]) or could be derived using chain rule 
calculations for multivariate calculus (c.f. Clause 6.2.4).  

Note that the figure is the form of the structures and transformations used in Tarski model theory. In the figure, the 
source model represents the binary relations that would be the predicates represented by the matrix N. The Q matrix is 
injective. The result of the transformation would be a matrix representation of the binary structure of the mathematical 
relation into the ‘target model’ that images the predicates in the ‘source model’.   

When two models of a system are related by a relational transformation, the collective three frames will be referred to as 
a framework. The M-Q-N structure of the example in the figure is representative of one form of a ROSETTA framework.  

The matrix representation provides a mathematical facility to structure knowledge for a variety of systems analyses. 
Reference [REF2] is an example in aerospace; [REF10] is an example in data links; [REF12] is in flight training; 
[REF13] is commercial nuclear standards; and reference [REF14] is an example of emerging formal methods for safety 
analysis in urban traffic management systems. 

In relational orientation, systems are modeled using multiple frameworks, which represent the various knowledge 
domains and components of the system. Frameworks are integrated into a framework structure by sharing common 
frames or by transformations between frames. The specification of frameworks is complete when they form a framework 
structure that is adequate for system specification, analysis and design. This resultant framework structure provides an 
abstraction that can be used for specifying and integrating the models of the system. 

6.2.2 Mathematical-based Constraint Modeling 
 

In the context of engineering, constraints can be classified into two types. On the one hand, there is the type of 
constraints that can be expressed mathematically by equalities and inequalities, e.g., the mass of a laptop must not be 
greater than two kilograms, which can be mathematically written as 𝑀𝑀 ≤ 2𝑘𝑘𝑘𝑘. On the other hand, there is the other type 
of constraints that cannot be easily expressed mathematically, e.g., the component must be in the shape of a triangle. 
UPR models mathematical-based constraints, referred to as Mathematical Constraints, using the following generic 
mathematical relation: ‘a variable’ is related to ‘a value’ by a ‘comparison operator’, where: 

• A Variable represents the element being constrained. It can take on any real number when being unconstrained.  

• A Comparison Operator, such as ‘=’ and ‘<’, are mathematical symbols defined to indicate equality and 
inequalities.   

• A Value is a real number. In UPR, it is unitless.  

The example, 𝑀𝑀 ≤ 2, without the unit being specified, is an example that follows the above construct1. There can be 
multiple constraints on one variable. For instance, as mass is always positive, this creates an additional constraint on 𝑀𝑀, 
which says, 𝑀𝑀 ≥ 0. Although, mathematically, it is possible to combine these two constraints into a single mathematical 

 
1 Note that the unit here is an intrinsic property of the element that the variable represents, and can be modeled through other means 

than UPR, for example, using the SysML UnitAndQuantityKind model library.  
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expression as 0 ≤ 𝑀𝑀 ≤ 2. However, this does not follow the construct adopted by UPR. In this case, UPR requires two 
constraints to be defined separately on the same variable. 

To facilitate the modeling of Constraint-Driven Design (CDD) problem, UPR focuses on developing a facility to 
accommodate the modeling of mathematical-based constraints in a structured way. In brief, Mathematical Constraints are 
divided into two types: 

• Design Objective Constraints: These are constraints on Design Objectives. An example of a Design Objective 
Constraint can be ‘a vehicle must achieve a top speed of greater than 100 miles per hour (mph)’.  A Design 
Objective is measurable attribute, such as performance or a physical property that can be expressed as a variable 
and used to compare systems. Sometimes, Design Objectives are to be optimized. For example, the cost of the 
system to be designed needs to be minimized, or the power output of the system to be designed shall be 
maximized. In these cases, there are no limits (constraints) specified for these Design Objectives. Hence, they 
can be considered as unbounded or unconstrained.  CDD is only concerned with Design Objectives that are 
constrained. However, it is worth noting that adopting a CDD approach to system design is not in conflict with 
design approaches such as design optimization techniques.  

• Design Variable Constraints: A Design Variable is a variable associated with a system that is used to define the 
system; and is under the design authority of the engineer. Using the examples stated above, system designer may 
want to consider finding combinations of engine power and engine torque to achieve the desired top speed. In 
this case, engine power and engine torque can be defined as Design Variables. A Design Variable Constraints is 
simply a constraint applied to the Design Variable that limits the possible design choices on that Design 
Variable. Further details on the classification of Design Variable Constraints are discussed in sub clause 6.2.5. 

It is worth noting that although we have divided Mathematical Constraints into two types, there is not a fine line between 
them unless a CDD problem is formulated. Design Variable Constraint in one CDD problem may become a Design 
Objective Constraint in another CDD problem. This is because a Design Variable after being specified in one design 
problem may become a Design Objective (a requirement) in the design of another system or subsystem. This is often 
seen in engineering complex system that has multiple hierarchical levels. For instance, following the example stated 
above, after the engine power and engine torque have been specified by the vehicle designer, this may then become a 
Design Objective Constraint (requirement) for the engine designers and manufacturers. 

6.2.3 Mathematical-based Relation Modeling 
 

In the context of engineering, relations between variables can sometimes be quantified mathematically. Where an exact 
mathematical relation between two variables is known, it is possible to express such a relation using analytics. For 
example, based on Newton’s 2nd Law, to achieve a desired acceleration, 𝑎𝑎, an object with mass, 𝑚𝑚, would need a net 
force of, 𝐹𝐹 = 𝑚𝑚𝑚𝑚. Where an exact mathematical relation is unknown, there may be a need to express a qualitative 
representation of the relations between the variables using a subjective scale. For instance, using the correlation concept 
used in Quality Functional Deployment (QFD) [REF8], on a scale from -3 to +3, it is possible to express two variables 
having a weak positive correlation by a correlation value, +1; and two variables having a strong negative correlation by a 
correlation value, -3.  

In either of the above cases, the relation between two variables can be expressed by an abstract expression, referred to as 
the Sensitivity in UPR. In general, Sensitivity is understood as a mathematical-based relation between two variables that 
indicate how the variation in one variable affects the variation in the other variable. For two generic variables, x and y, 
partial differentiation can be used to calculate the Sensitivity between them as, 

Sensitivity =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

Equation 6-12 

For instance, based on Newton’s 2nd Law, the Sensitivity between the forces required to increase the velocity of a mass at 
a constant acceleration of 5ms-2 can be calculated as,   

Sensitivity =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑎𝑎 = 5ms-2 

Equation 6-2 

For the case of using the subjective correlation in using QFD technique, the Sensitivity is equivalent to the defined 
correlation value, e.g., Sensitivity = 3 for two strongly correlated variables.  

 
2 Note that the partial derivative becomes exact if 𝑦𝑦 only depends on 𝑥𝑥 
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Sometimes, the mathematical relation between two variables y and x can be non-linear. In this case, the Sensitivity value, 
as calculated by using Equation 6-1, will be dependent on the value of x. For example, let us consider a 2nd order 
polynomial of the form, 

y = 2𝑥𝑥 + 3𝑥𝑥2 

Equation 6-3 

Using Equation 1, it can be concluded that at 𝑥𝑥 = 1, Sensitivity is 8; while at 𝑥𝑥 = 2, Sensitivity is 14. Due to the varying 
Sensitivity, differentiating the polynomial does not provide a useful result. However, by keeping the coefficients in the 
polynomial, Sensitivity can be obtained as long as these coefficients are available. For an n-th order polynomial that 
reads, 

y = 𝑐𝑐0 + 𝑐𝑐1𝑥𝑥 + 𝑐𝑐2𝑥𝑥2 + ⋯ = �𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖
𝑖𝑖=0

 

Equation 6-4 

the Sensitivity can be generically expressed as,  

Sensitivity =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑐𝑐1 + 2𝑐𝑐2𝑥𝑥 + ⋯ = �𝑖𝑖𝑐𝑐1𝑥𝑥𝑖𝑖−1
𝑖𝑖=1

 

Equation 6-5 

In addition to facilitating the modeling of single valued Sensitivity, UPR thereby also aims to facilitate the modeling of 
the coefficients in polynomials of arbitrary degree. A single valued Sensitivity, such as the ones in previous examples 
using QFD correlations, can be approximated as a 1st order polynomial with 𝑐𝑐0 = 0 and 𝑐𝑐1 being the Sensitivity specified. 
This then allows the modeling of Sensitivity in the two different cases to be integrated by using polynomial coefficients 
alone. 

6.2.4 Binary Transformation for Dependency Analysis 
 

In systems engineering and design, knowing the relationships between Design Objectives can be useful. For example, 
this knowledge is essential in determining what tradeoff analysis will be most valuable. However, without empirical 
evidence or detailed knowledge of the system, it is almost impossible to determine which of these relationships 
(conflicting, harmonious, or independent) are present. In SysML [SML], Design Objectives can be modeled using 
Requirements in a SysML Requirement diagram. To better facilitate the modeling of requirement relations, SysML 
further extends UML Dependency to include additional Dependency types such as Verify and Refine. These Dependency 
types are very useful in representing requirement traceability. However, neither UML nor SysML are capable of 
expressing that harmonious, conflicting, or no significant relationship exists between two Design Objectives. UPR aims 
to provide a facility to model these relationships as well as facilitate transformations that can be used to identify these 
relationships.  

Where prior knowledge of harmony, conflict and independence is not available, a means to establish this knowledge is of 
great value. Sensitivities introduced in the UPR shall facilitate the identification of harmonious and conflicting relations 
between Design Objectives. Although identification method is not part of the UPR profile, a particular method, referred 
to as Binary Transformation (RT-B), is introduced in the rest of this sub clause to show how UPR can facilitate this 
transformation for the identification of relationships between Design Objectives. RT-B is originated from the ROSETTA 
Framework [REF2]. And note that this method is informative only. The principle of the stereotypes defined in UPR is to 
support such an identification method.   

In general, a relational transformation is specified as an association between the elements or parameters of two models of 
a system, that induces a further mapping between the relationships in the models. The mathematical formalism of RT-B 
can be expressed as, 

�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� ∈ 𝐍𝐍 with (𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑘𝑘), (𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑙𝑙) ∈ 𝐐𝐐 implies(𝑦𝑦𝑘𝑘,𝑦𝑦𝑙𝑙) ∈ 𝐌𝐌 

Equation 6-6 Binary Relation Transformation 

where 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗  are used to denote two system elements or parameters; and 𝑦𝑦𝑘𝑘 and 𝑦𝑦𝑙𝑙  are used to denote two Design 
Objectives. Then, Equation 6-6 says that if the two system elements (parameters) are related as captured in a relational 
set, N; and if the system element 𝑥𝑥𝑖𝑖 relates to the Design Objective 𝑦𝑦𝑘𝑘 and that the system element 𝑥𝑥𝑗𝑗 relates to the other 
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Design Objective 𝑦𝑦𝑙𝑙, which are both captured in a relational set, Q; then there is an implied relation between the two 
Design Objectives, defined as 𝑀𝑀 ≡ 𝑁𝑁Q.  
Using the RT-B, it is then possible to identify whether two Design Objectives are related or not by tracing their 
relationships to system elements or parameters. The semantic meaning, i.e., the type of the dependency (relation), of the 
implied relation between the Design Objectives, depends on the semantic meanings of the existing relations used. Here, 
as we are interested in whether the related Design Objectives are mathematically harmonious, conflicting or independent, 
we can use the concept of Sensitivity introduced in Clause 6.2.2. For example, for the relation between Design Objective, 
𝑦𝑦𝑘𝑘 and system element, 𝑥𝑥𝑖𝑖 , we have    

Sensitivity =
𝜕𝜕𝑦𝑦𝑘𝑘
𝜕𝜕𝑥𝑥𝑖𝑖

 

Equation 6-7 

Using the same concept, it is possible to mathematically determine the Sensitivity between the two related Design 
Objectives by  

𝑑𝑑𝑦𝑦𝑘𝑘
𝑑𝑑𝑦𝑦𝑙𝑙

=
𝜕𝜕𝑦𝑦𝑘𝑘
𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝑥𝑥𝑗𝑗
𝜕𝜕𝑦𝑦𝑙𝑙

 

Equation 6-8 

If this equation yields a positive value, a (mathematically) harmonious relation is identified; while if it yields a negative 
value, a (mathematically) conflicting relation is identified.  

Sometimes, it can be useful to normalize the yield values into a unitless scale for the sake of comparing the strength of 
relations among Design Objectives.  

Again, the above transformational method is not normative. Users of UPR can use any method to conduct the 
dependency analysis by using the information modeled. The stereotypes introduced in UPR facilitate transformational 
methods of similar kinds to achieve the identification of harmonious and conflicting relations between Design 
Objectives.  

6.2.5 Unary Transformation to determine Feasible Designs 
 

Two things can be potentially achieved with a specified Sensitivity (in terms of a set of polynomial coefficients) between 
a Design Objective and a Design Variable. Firstly, one can use it to verify a design specification, i.e., values of the 
Design Variables, against Design Objective Constraints. And secondly, one can use it to determine possible design 
solutions through an inverse mapping of the Design Objective Constraints into the Design Space. This subclause explains 
this concept of inverse mapping through a simple example.  

The following simple example illustrates how a Design Objective Constraint imposes a constraint on a Design Variable. 
Let us consider a Design Objective, 𝑦𝑦, is constrained by two Design Objective Constraints, 𝑦𝑦 < 10 and 𝑦𝑦 > 4 . This 
Design Objective is related to a Design Variable by a first order polynomial such that,  

𝑦𝑦 = 2𝑥𝑥 
Equation 6-9 

The Design Variable has a physical limit such that it can only be positive numbers and has to be less than 8. These can be 
expressed as two Design Variable Constraints, 𝑥𝑥 > 0 and < 8 . These types of constraint are referred to as Design 
Ranges. Constraints on Design Variables that are derived from empirical knowledge or previous designs are also 
considered as Design Range. Basically, the collective Design Ranges on a Design Variable defines the solution search 
space. For multiple Design Variables, the collection of all Design Ranges is referred to as a Design Space.    

Now, substituting the two Design Objective Constraints into the polynomial, it can be determined that the Design 
Variable must be less than 5, i.e. 𝑥𝑥 < 5 and at the same time, greater than 2, i.e., 𝑥𝑥 > 2, in order to not violate the Design 
Objective Constraints. From the above calculation, it is realized that Design Objective Constraints can impose new 
constraints on Design Variables. The type of these new constraints on the Design Variable is referred to as Feasible 
Range. The word ‘feasible’ is used to indicate that design solutions lie within the Feasible Range, which will satisfy the 
Design Objective Constraints. For multiple Design Variables, the collection of all Feasible Ranges is referred to as a 
Feasible Design Space. For a multi-dimensional Design Space, a continuous Feasible Design Space may not be unique.  

Depending on the detailed specification of the constraints in the CDD problem, through an inverse mapping, a Design 
Range can sometimes become a Feasible Range. In this case, instead of revising the Design Range into a Feasible Range, 
UPR recommends keeping the original Design Range and defining a new Feasible Range. This is particularly useful for 
having a multi-dimensional Design Space, where Feasible Design Spaces, as discussed, may not be unique. 
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To help visualize the above solved CDD problem, Figure 6-2 depicts the inverse mapping, while the other information 
relevant to this CDD problem are captured in Table 6-1. 

 

Figure 6-2 An inverse mapping: from Design Objective Constraints into Feasible Ranges (Design Variable 
Constraints) 
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𝑦𝑦 𝑦𝑦 < 10 𝑦𝑦 = 2𝑥𝑥 𝑥𝑥 𝑥𝑥 > 0 𝑥𝑥 < 5 

𝑦𝑦 > 4 𝑥𝑥 < 8 𝑥𝑥 > 2 

      

Table 6-1 Design information related to the CDD problem  

An inverse mapping that allows the transformation of constraints on Design Objective into constraints on Design 
Variables (Feasible Ranges) is referred to as a Unary Transformation (RT-U) in UPR. For complex CDD problems that 
involve multi-Design Objectives and multi-Design Variables, inverse mapping is no longer straightforward, while the 
determination of Feasible Ranges requires more advanced design algorithms based on the concept of RT-U. Nonetheless, 
UPR aims to facilitate the modeling and structuring information required to conduct advanced transformation algorithms, 
in order to determine Feasible Ranges. 

6.3 Language Architecture 
Figure 6-3 depicts the relation of UPR to OMG Specifications. 

 

Figure 6-3 UPR Language Architecture 
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UPR consists of five normative packages: Foundations, Operators, Design Objective Constraint, Design Variable 
Constraint, and Relational Structure and Design packages. The five sub profiles are on the same hierarchical level.  

 

Figure 6-4 UPR Profile Packages 

6.4 How to Read this Specification 

6.4.1 Technical Clause Structure 
 

The rest of this specification consists of technical clauses (Clause 7 to Clause 11). Each technical clause covers a 
particular profile package and is organized in the following way:  

• Each clause starts with a sub clause to provide an overview of the UPR package. 

• Then, each clause continues with a sub clause providing a domain view in which the domain model (where 
relevant) is provided and explained to illustrate the modeling concept. It is recommended to the reader of this 
profile to refer to Clause 6.2 for explanations on the theoretical aspects and the underlying mathematical 
construct of the modeling concept.  

In its last sub clause, each technical clause introduces UML stereotypes contained in the profile package. A profile 
diagram consisting of the stereotype is provided. Stereotype extensions always include the abstract syntax that identifies 
which metaclasses a stereotype extends. Each stereotype is defined with a general description, and the semantics are 
explained in terms of extensions, generalizations, association ends, attributes, operations and constraints. Each constraint 
consists of a textual description and is followed by a formal constraint expressed in OCL. If there is any ambiguity 
between the two, the OCL statement of the constraint takes precedence. If relevant, the sub clause then provides simple 
examples to show how defined stereotypes can be applied to annotate UML and/or SysML models. 

6.4.2 Annexes 
 

The Annexes of this profile do not introduce new stereotypes or metaclasses. These annexes provide examples3 to show 
applications of UPR to practical engineering problems. In Annex A, a straightforward application of UPR stereotypes in 
the design of an elevator dispatcher is provided to demonstrate how UPR can be used to model a CDD problem in UML. 
Annex B demonstrates how multiple CDD problems (defined in different domains based on engineering practices) can be 
modeled based on a high-level vehicle architecture modeled in SysML. This annex also illustrates how UPR stereotypes 
facilitate design integration and tradeoff analysis. 

6.4.3 Conventions and Typography 
 

In this specification, the following conventions have been adopted: 

• While referring to stereotypes, metaclasses, metaassociations, metaattributes, etc. in the text, the exact names as 
they appear in the model are always used.  

 
3 Note that real world engineering correctness of the examples provided is not of relevance for the illustration of the modeling 

capabilities provided by this profile. 
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• If a sub clause is not applicable, it is not included. 

• Stereotype, metaclass and meta-association names: initial embedded capitals are used (e.g., “ModelElement,” 
“ElementReference”. 

• Enumeration types: always end with “Kind” (e.g., “DSTypeKind”). 
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7 UPR Foundations  
7.1 Overview 
This Clause aims to establish the foundation for UPR to facilitate the modeling of CDD problems based on discussion 
provided in Clause 6.2. To achieve comprehensive and sophisticated modeling of a CDD problem, UPR introduces two 
abstract stereotypes. Constraints, which are often defined mathematically, are the central elements in the definition of a 
CDD problem. UPR extends UML Constraints to facilitate the modeling of mathematical-based constraints. Then, in 
order to determine how designs are affected by the defined constraints, UPR extends UML Dependencies to facilitate the 
modeling of mathematical-based relations between entities that can be system elements and variables. 

7.2 Domain View 
The domain model for the Foundation package is depicted in Figure 7-1. 

 

Figure 7-1 Systems (UPR Foundations) Domain Model  

There are various definitions of the word: system. For instance, based on ISO/IEC/IEEE 15288 [REF14], a System is 
defined as “a combination of interacting elements organized to achieve one or more stated purposes”. Despite whichever 
definition is used, a System has properties, which are observables that can be described by some metrics. For example, a 
property of a vehicle can be fuel consumption; and a specific system (vehicle) can have a very low value on this property. 
In this example, “very low” is the metric used in the process of describing the fuel consumption. Similarly, in some 
situations, quantifiable metrics can be used to specify the properties, e.g., the average fuel consumption of the vehicle is 
80mpg (miles per gallon). DesignData is an abstract class introduced to refer to the properties of a System. In particular, 
it can be specialized into two subsets: DesignObjective and DesignVariable. The definition of Design Objective and 
Design Variable are provided in Clause 4. In simple terms, in a design process, DesignObjectives refer to the properties 
that the System aims to achieve while DesignVariables refer to what the designer can change to achieve the 
DesignObjectives.   

DesignData can be mathematically constrained by DesignConstraints. For example, in the design of a vehicle, customer 
demand on vehicle 0-60mph acceleration time to be less than 5 seconds can be considered as a constrained 
DesignObjective. Mathematically, this constraint can be expressed by using inequality as 𝒂𝒂𝒂𝒂𝒂𝒂 < 𝟓𝟓𝐬𝐬 , where 𝒂𝒂𝒂𝒂𝒂𝒂 is a 
variable used to denote 0-60mph time and s denotes second. A constraint on DesignObjective may impose limitations in 
the design specification of the system. Following the above example on vehicle design, a constrained DesignObjective on 
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the acceleration time may then restrict possible design in the mass of the vehicle and the engine power to ensure the 
desired acceleration time is met. As such, we conclude that two DesignVariables, vehicle mass and engine power, are 
identified for the designer to decide in order to achieve the constrained DesignObjective.  

An instance of DesignData can be mathematically-dependent on other instance or instances of DesignData. This 
mathematical dependency is captured by an abstract concept, Sensitivity (c.f. Clause 6.2.3). This captures how sensitive a 
DesignData is to another. Sensitivity provides an intuitive indication on direction of improvement or otherwise. Again, 
with the example on vehicle design, we know that 0-60mph time is sensitive to the mass of the vehicle: the heavier the 
vehicle, the longer it will take the vehicle to reach 60mph from stationary. Then, this positive correlation can be modeled 
by a positive, single valued polynomialCoefficient in Sensitivity, e.g., 5. Similarly, for engine power, the higher the 
engine power, the rate of acceleration of the vehicle is increased, hence reducing the 0-60mph time. This negative 
correlation can be modeled by a negative, single valued Sensitivity, e.g., -3, on a same scale. Instead of using a subjective 
metric to specify the Sensitivity, the modeler may also want to use historical data or simulation models to derive a more 
accurate measure of the Sensitivity. In this case, using regression techniques, to the second order, the 0-60mph time-to-
vehicle mass Sensitivity may be derived as a polynomial that reads 𝒂𝒂𝒂𝒂𝒂𝒂 = 𝟎𝟎.𝟑𝟑 + 𝟔𝟔.𝟖𝟖𝟖𝟖𝟖𝟖 + 𝟎𝟎.𝟏𝟏𝒎𝒎𝟐𝟐, where 𝒎𝒎 is the 
vehicle mass in ton4. The three constants in this polynomial are then modeled using polynomialCoefficients of 
Sensitivity. Depending on the source of the modeled polynomialCoefficients, different sensitivity analysis techniques can 
be used for the purpose of design. The source of the polynomialCoefficients is defined through the enumeration, 
DataSourceTypeKind. Its specific types of data sources are explained in the following: 

When a DataSourceTypeKind is defined as estimated, it indicates that the value(s) defined for the Sensitivity is based on 
subjective quantification. These values, in practice, are often obtained from empirical evidence and tacit knowledge of 
the system designers. Although, in principle, there is no restriction on the order of the polynomial that one can estimate 
up to, given the uncertainty nature of estimation, it is more reasonable to use a single value only to model the Sensitivity 
as a first order polynomial coefficient.  

When a DataSourceTypeKind is defined as derived, it indicates that the value(s) defined for the Sensitivity is based on 
applying techniques such as polynomial regression on a data set. The coefficient(s) derived from data sets provide a 
higher fidelity in comparison to estimated value(s) in understanding how sensitive one entity is to another.  

When a DataSourceTypeKind is defined as implied, it indicates that the value defined for the Sensitivity 
is not specified by the modeler, but is obtained from an implementation of the UT-B as defined in Clause 
4 and explained in detail in Clause 9. The implied Sensitivity, which is a single value, is obtained from 
applying the UT-B on Sensitivities (that are estimated or derived into first order polynomial) defined by 
the modeler.   

7.3 UML Representation 
This clause describes the UML extensions required to support the concept of constraint modeling and sensitivity 
modeling. 

7.3.1 Profile Diagrams 

Figure 7-2 depicts the UML extensions for modeling UPRConstraints and Sensitivities. The descriptions for the 
introduced stereotypes and their properties are provided in the following sub clause. 

 

 
4 Note that this polynomial model is for illustration only.  
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Figure 7-2 Foundations Profile Diagram5 

7.3.2 Profile Elements Description 

7.3.2.1 DSTypeKind (Enumeration) 
Literals 
• estimated 

Specifies that the attribute owned by the sensitivity stereotype is an estimated value based on subjective decision. 
• derived 

Specifies that the set of values in Sensitivity:polynomialCoefficient are derived from data. 
• implied 

Specifies that the attribute owned by the sensitivity stereotype is an implied value determined from the Binary 
Transformation (RT-B). 

7.3.2.2 UPRConstraint (Abstract Stereotype) 
 

An UPR constraint stereotype extends the UML Constraint metaclass which is used for specifying Design Objective 
Constraints and Design Variable Constraints. The specification of the UPR constraint is in the form of a comparison 
operator and a real number. Note that the UPR library provides a set of predefined comparison operators. 
Extends 
• Constraint (from UML) 
 
Association Ends 
• base_Constraint : Constraint [1] 
 
Operations 
• comparisonOperator() : OperatorSemanticsClass [1] 

bodyCondition: 
let symbol: String = 
self.specification.oclAsType(OpaqueExpression)._body->first() in 
OperatorSemanticsClass.allInstances()->any(o | o.symbol() = symbol) 
 

• constrainedProperty () : Property [1] 
bodyCondition: 
self.base_Constraint.constrainedElement->at(1).oclAsType(UML::Property) 

• evaluate (in slot : Slot) : Boolean [1] 
Precondition(s): 

 
5 Note that (i) package membership of a class from an external package is shown in brackets underneath the name of the class; and (ii) 

Operations defined for the stereotypes are depicted in the “Owned Operation” rather than the conventional Class Operation due to 
limitation of the specific modeling tool used.  

 The above two conventions are also applied to profile diagrams in the rest of this profile.   
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slot.definingFeature = self.constrainedProperty() 
 
bodyCondition: 
self.comparisonOperator.applyTo(self.base_Constraint) 

• name () : String [1] 
bodyCondition: 
self.base_Constraint.name 

• value () : ValueSpecification [1] 
bodyCondition: 
self.base_Constraint.constrainedElement->at(2).oclAsType(UML::ValueSpecifica
tion) 

Constraints 
• constrainedElement1_ property 

The first constrained element shall be a property 
self.base_Constraint.constrainedElement->at(1).oclIsKindOf(Property) 

• constrainedElement2_ value_specification 
The first constrained element shall be a value  specification 

self.base_Constraint.constrainedElement->at(2).oclIsKindOf(ValueSpecificatio
n) 

• two_constrained_elements 
An UPRConstraint constraint shall have 2 constrained elements 

self.base_Constraint.constrainedElement->size()=2 

7.3.2.3 Sensitivity (Abstract Stereotype) 
 

The Sensitivity abstract stereotype extends the UML Dependency to model the Sensitivity between two NamedElements. 

Extends 
• Dependency (from UML) 
Attributes 
• dataSourceType : DSTypeKind [1] 

Represent the data source (DSTypeKind enumeration) used to specify Sensitivity 
• polynomialBase : Real [1] 

Base of the polynomial, i.e. the coefficient of the polynomial term with degree 0. If not specified 0 is used as the 
default value. 

• polynomialCoefficient : Real [0..*] 
Provide the list of coefficients to be used for the univariate polynomial approximation of the mathematical relation 
between two variables. First element maps to the coefficient of the term of degree 1, the second to that of the term of 
degree 2, and so on. The base of the polynomial is supported by the specific attribute: polynomialBase.  

Association Ends 
• base_Dependency : Dependency [1] 
Constraints 

• is_binary 
A Sensitivity is a binary relationship 

self.base_Dependency.supplier->size() = 1 and 
self.base_Dependency.client->size() = 1 
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8 Operators 
8.1 Overview 
A mathematical-based constraint may require the use of different comparison operators. To facilitate the use of various 
kinds of comparison operators to model mathematical-based constraints, this clause establishes an extendable library of 
comparison operators. Each defined operator has a unique text-based name and a notation. Implementers and users of 
UPR can refine and extend the library as needed. 

8.2 UML Representation 
This clause describes the UML extensions required to support the construction of the Operator Library.  

8.2.1 Profile Diagrams 
 

Figure 8-1 depicts the UML extensions contained in Operators package and Figure 8-2 depicts the currently defined 
Operators in the Library. The descriptions corresponding to the introduced stereotypes and their properties are provided 
in the following sub clause. 

 
Figure 8-1 Operators 

 
Figure 8-2 Operator Library 
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8.2.2 Profile Elements Description 

8.2.2.1 OperatorSemanticsClass (Abstract Class) 
 

Provides an abstract base class for defining the semantics of a ComparisonOperator 

8.2.2.2 Library (Package) 

Operations 
• applyTo (in x : ValueSpecification,in y : ValueSpecification) : Boolean [1] 

This operation is used for specifying how the result of the comparison shall be computed. It has to be defined in each 
concrete subclass according to the expected semantics of the corresponding operator. 

• symbol () : String [1] 
This operation is intended to be defined in each concrete subclass in order to return the string representing the 
operator symbol as a constant value. 

8.2.2.2.1 EQ_Operator (Class) 
 
This class defines the semantics for an “equal to” relationship 
Generalizations 
• OperatorSemanticsClass (from Operators) 
Operations 
• applyTo (in x : ValueSpecification,in y : ValueSpecification) : Boolean [1] 

bodyCondition: 
if x.realValue()->notEmpty() and y.realValue()->notEmpty() then 
 x.realValue()= y.realValue() 
else 
 OclInvalid 
endif 

• symbol () : String [1] 
bodyCondition: 
'=' 

 

 

8.2.2.2.2 GTE_Operator (Class) 
 

This class defines the semantics for a “greater than or equal to” relationship 
Generalizations 
• OperatorSemanticsClass (from Operators) 
Operations 
• applyTo (in x : ValueSpecification,in y : ValueSpecification) : Boolean [1] 

bodyCondition: 
if x.realValue()->notEmpty() and y.realValue()->notEmpty() then 
 x.realValue()>= y.realValue() 
else 
 OclInvalid 
endif 

• symbol () : String [1] 
bodyCondition: 
'>=' 

8.2.2.2.3 GT_Operator (Class) 
 

This class defines the semantics for a “greater than” relationship 
Generalizations 
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• OperatorSemanticsClass (from Operators) 
Operations 
• applyTo (in x : ValueSpecification,in y : ValueSpecification) : Boolean [1] 

bodyCondition: 
if x.realValue()->notEmpty() and y.realValue()->notEmpty() then 
 x.realValue()> y.realValue() 
else 
 OclInvalid 
endif 

• symbol () : String [1] 
bodyCondition: 
'>' 
 

8.2.2.2.4 LTE_Operator (Class) 
 

This class defines the semantics for a “less than or equal to” relationship 
Generalizations 
• OperatorSemanticsClass (from Operators) 
Operations 
• applyTo (in x : ValueSpecification,in y : ValueSpecification) : Boolean [1] 

bodyCondition: 
if x.realValue()->notEmpty() and y.realValue()->notEmpty() then 
 x.realValue()<= y.realValue() 
else 
 OclInvalid 
endif 

• symbol () : String [1] 
bodyCondition: 
'<=' 

 

 

8.2.2.2.5 LT_Operator (Class) 
 

This class defines the semantics for a “less than” relationship 
Generalizations 
• OperatorSemanticsClass (from Operators) 
Operations 
• applyTo (in x : ValueSpecification,in y : ValueSpecification) : Boolean [1] 

bodyCondition: 
if x.realValue()->notEmpty() and y.realValue()->notEmpty() then 
 x.realValue()< y.realValue() 
else 
 OclInvalid 
endif 

• symbol () : String [1] 
bodyCondition: 
'<' 

8.2.2.2.6 NEQ_Operator (Class) 
 

This class defines the semantics for a “not equal to” relationship 

Generalizations 
• OperatorSemanticsClass (from Operators) 
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Operations 
• applyTo (in x : ValueSpecification,in y : ValueSpecification) : Boolean [1] 

bodyCondition: 
if x.realValue()->notEmpty() and y.realValue()->notEmpty() then 
 x.realValue()<> y.realValue() 
else 
 OclInvalid 
endif 

• symbol () : String [1] 
bodyCondition: 
'!=' 
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9 Design Objective Constraints Modeling 

9.1 Overview 
This clause describes the Design Objective Constraints package of UPR. This package specializes the stereotypes defined 
in the Foundations package to facilitate: 

• the modeling of mathematical-based Design Objective Constraints; 

• the modeling of mathematical-based harmonious and conflicting relations between system elements and 
variables, e.g., Design Objectives; 

• and the identification of mathematical-based harmonious and conflicting relations between Design Objectives. 

9.2 Domain View 
The domain model for the Design Variable package is depicted in Figure 9-1. 

 
Figure 9-1 Design Objective Constraints Domain Model 
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The Design Objective Constraints package is concerned with the modeling of constraints on Design Objectives and 
relations between System::DesignData such as a harmonious relation between two System::DesignObjectives.   

A DesignObjectiveConstraint, being a specialized type of System::DesignConstraint, defines a mathematical constraint 
on a System::DesignObjective by using a comparison operator (listed as below) and a value (c.f. Clause 6.2.2 for the 
defined structure of mathematical constraints on variables within the scope of UPR). There can be multiple 
DesignObjectiveConstraints defined on the same DesignObjective. Based on the comparison operator used, the 
DesignObjectiveConstraint can be classified into the following forms including but not limited to: 

• DesignObjectiveConstraint_EQ: an equal constraint, e.g., gear modes = 5; 
• DesignObjectiveConstraint_NEQ: a not-equal constrain6; 
• DesignObjectiveConstraint_GT: a greater than constraint, e.g., vehicle frontal area (m2) ≥ 2.2  
• DesignObjectiveConstraint_GE: a greater than or equal to constraint, e.g. vehicle top speed (mph) ≥ 200 
• DesignObjectiveConstraint_LT : a less than constraint, e.g., CO emission (g/km) < 0.5 
• DesignObjectiveConstraint_LE: a less than or equal to constraint, e.g. vehicle weight (kg) ≤ 2000 

Sensitivities between two System::DesignObjectives are specialized as DOtoDOSensitivities. Sensitivities between a 
System::DesignObjective and a DesignData (a system property that is neither defined as a Design Objective nor as a 
Design Variable, c.f. Clause 4) are defined as a DOtoELMSensitivities. Sensitivities between two DesignData (system 
properties that both are neither defined as Design Objectives nor as Design Variables) are defined as 
ELMtoELMSensitivities. These specialized Sensitivities are essential for carrying out a RT-B for the identification of 
harmonious, conflicting or independent relations between two Design Objectives (c.f. Clause 6.2.4).  

9.3 UML Representation 
This clause describes the UML extensions required to support the modeling of Design Objective Constraints.  

9.3.1 Profile Diagrams 
 

Figure 9-2 depicts the UML extensions contained in the Design Objective Constraints package for modeling Design 
Objective Constraints and their relations. The semantic descriptions corresponding to the introduced stereotypes and their 
properties are provided in the next sub clause. 

 
Figure 9-2 Design Objective Constraints Profile Diagram 

 

 

 

 
6 In practical engineering, a not-equal constraint is rarely used. However, for the sake of completeness, this type of 

DesignObjectiveConstraint is still included. 
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9.3.2 Profile Elements Description 

9.3.2.1 DOtoDOSensitivity (Stereotype) 
 

The DOtoDOSensitivity stereotype specializes the Sensitivity stereotype to model a sensitivity-based relation between 
two Design Objectives that are constrained. 
Extends 
• Dependency (from UML) 
Generalizations 
• Sensitivity (from Foundations) 
Constraints 

• client_and_supplier_designobjectives 
Both the client and the supplier shall be constrained by a DesignObjectiveConstraint 

self.base_Dependency.client->union(self.base_Dependency.supplier)->forAll(p 
| 
DesignObjectiveConstraint.allInstances().constrainedProperty()->includes(p)) 

9.3.2.2 DOtoELMSensitivity (Stereotype) 
 

The DOtoELMSensitivity stereotype specializes the Sensitivity stereotype to model a sensitivity-based relation between a 
Design Objective that is constrained and a NamedElement. 
Extends 
• Dependency (from UML) 
Generalizations 
• Sensitivity (from Foundations) 
Constraints 

• client_designobjective 
The client shall be constrained by a DesignObjectiveConstraint 

self.base_Dependency.client->forAll(p | 
DesignObjectiveConstraint.allInstances().constrainedProperty()->includes(p)) 

9.3.2.3 DesignObjectiveConstraint (Stereotype) 
 

The DesignObjectiveConstraint stereotype specializes the UPRConstraint stereotype for specifying a Design Constraint. 
Extends 
• Constraint (from UML) 
Generalizations 
• UPRConstraint (from Foundations) 
Attributes 
• docID : String [1] 

This attribute represents the unique Identification Number of a Design Objective Constraint. 

9.3.2.4 ELMtoELMSensitivity (Stereotype) 
 

The ELMtoELMSensitivity stereotype extends the UML Dependency to model a sensitivity-based relation between two 
NamedElements. 
Extends 
• Dependency (from UML) 
Generalizations 
• Sensitivity (from Foundations) 
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9.3.3 Example 
 

This sub-clause illustrates how Sensitivity stereotypes can be used to model mathematical-based relations between 
system elements. It also demonstrates how Sensitivity information can be used to identify harmonious and conflicting 
relations between Design Objectives that are constrained.  

To achieve the above, the vehicle design problem discussed in Clause 6.2.1 is elaborated in this sub clause. In particular, 
we model three Design Objective Constraints:  

1) Vehicle Fuel Economy (FE) to be not less than a value of 23 Mile per Gallon (MPG) in a standard drive cycle. 
Mathematically, we have the Design Objective, FE (MPG), constrained by a Design Objective Constraint, FE ≥
23. 

2) Particulate Matter (PM) emission to be less than 0.005g/km as regulated by Euro 6 Emissions Standard. 
Mathematically, we have the Design Objective, PM (g/km), constrained by a Design Objective Constraint, 
PM < 0.005. 

3) The Diesel Particulate Filter (DPF) to have a filtration efficiency of greater than 90%. Mathematically, we have 
the Design Objective, DPF-eff (%), constrained by a Design Objective Constraint, DPF-eff > 90. 

For domain experts, particularly Chemical Engineers who work on vehicle after-treatment systems, it is known to them 
that: 

1) Design Objectives 2 and 3 are harmonious to each other since a high efficiency of DPF helps to keep the 
emissions of Particulate Matter at a significantly low level; 

2) Design Objective 1 is in general, conflicting with both of Design Objective 2 and Design Objective 3. This is 
because the way a DPF works is to filter and store the PM from the exhaust gas over time. When the stored PM 
reaches a limit, the engine will be requested to run at very high temperature such that the high temperature 
exhaust gas can burn the stored PM. When the engine operates at very high temperature, it has a greater fuel 
consumption compared to the normal operating condition. Hence, reducing PM in general means decreasing FE. 
 

The above points are referred to as information 1 and 2 respectively later. However, to demonstrate the use of the Design 
Objective Constraints package, we assume that the user of UPR has no prior knowledge to the above relations between 
the Design Objectives. The system architecture that captures the relationships between system elements and Design 
Objectives are captured in Figure 9-3. The set of Design Objective Constraints are provided in the table depicted in 
Figure 9-4. They are traceable to requirements modeled in SysML Requirements7 as shown in Figure 9-3 via satisfy 
Dependencies. 

 

 
7 Textual descriptions of Design Objectives are modeled in SysML Requirements. However, this is not mandatory. Also, UPR can be 

applied to SysML models even though there is no direct relation to SysML as in Conformance Clause.  
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Figure 9-3 System Relations 

 

 

Figure 9-4 Design Objective Constraints  
 

After modeling the Design Objective Constraints, we continue to establish a set of stereotypes to capture Sensitivity 
information and to facilitate RT-B for identification of relations between Design Objectives. For simplicity, in the 
following discussion, we will use a Sensitivity scale (estimated) of -1, 0 and +1 to show if two model elements are 
conflicting, independent and harmonious. A complex scale can be used if the degree of conflict and harmony can be 
reasonably modeled. Using this scale, for the modeled relations shown in the System Relations (Figure 9-3), we have: 

1) Design Objective, FE, relates to a system function modeled by an Activity as to “Operate Engine at High 
Temperature”. When the engine operates at a high temperature, FE decreases. Therefore, based on the 
DesignObjectiveConstraint 1 in which it is required to increase FE to meet the target, the relation between FE and 
the “Operate Engine at High Temperature” Activity is stereotyped into a DOtoELMSensitivity with an estimated 
single valued Sensitivity, -1, to show that they are conflicting with each other.  

2) Design Objective, PM, relates to a system function modeled by an Activity as to “Burn PM”. This function is one of 
the most viable methods to reduce PM. The function converts PM chemically through burning. Hence, from a 
verification perspective, this Activity ensures that DesignObjectiveConstraint can be satisfied. For this reason, we 
stereotype the relation between PM and the Activity, “Burn PM” into a DOtoELMSensitivity with an estimated 
positive single valued Sensitivity, 1. 

3) Design Objective, DPF-Eff, relates to a system component modeled by a Block, named “Silicon Carbide Wall Flow 
Filter”, which is a type of DPF that can achieve filtration efficiency over 90%. For the same reason as discussed in 2) 
above, we stereotype the relation between DEP-Eff and the Block, “Silicon Carbide Wall Flow Filters” into a 
DOtoELMSensitivity with an estimated positive single valued Sensitivity, 1. 

It is worth noting that the three relations modeled above correspond to the three relations captured in the matrix Q in 
Figure 6-1. 

Now, looking at these system elements, when modeling the allocation of system functions to system components, it can 
be observed that both of the Activities are allocated to the same Block, “Silicon Carbide Wall Flow Filter”. We therefore 
stereotype these allocation Dependencies into ELMtoELMSensitivities with an estimated positive single valued 
Sensitivity, 1, also to show the harmoniousness. It is worth noting that the two allocation Dependencies correspond to the 
two relations captured in the matrix N in Figure 6-1. 

The above modeled Sensitivities are summarized in the table depicted in Figure 9-5.  

 

Figure 9-5 Sensitivities Modeling (estimated) 

With the modeled DesignObjectiveConstraints, DOtoELMSensitivities, and ELMtoELMSensitivities, we now apply RT-
B based on Equation 6-6 in Clause 6.2.4 to identify implied DOtoDOSensitivities and their associated Sensitivity values. 
It is important to emphasize here again that UML and SysML, as modeling languages, are not platforms that offer the 
implementation of analysis capabilities such as relational transformations, e.g., RT-B. Therefore, RT-B, as an analysis 
capability, has to be implemented in a third-party tool. This, however, is not a conformance point for UPR. In this case, 
this tool shall read the sensitivities and implemented RT-B in a way as discussed in Clause 6.2.4. Then, the resultant 
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sensitivity after the relational transformation is annotated on the relevant parts (DOtoDOSensitivities as in this example) 
of the model. 

The resultant (implied) DOtoDOSensitivities obtained from the transformation are depicted in the table depicted in 
Figure 9-6. Firstly, PM and DPF-Eff are identified to be positively correlated due to a multiplication of three +1s. The 
outcome result agrees with the previously discussed information item (1). Secondly, FE and DPF-Eff are identified to be 
negatively correlated due to a multiplication of two +1s and a -1. The outcome result agrees with the previously 
discussed information item (2). As these DOtoDOSensitivities are obtained through RT-B rather than original modeled 
by the user of UPR, the DataSourceType should be ‘implied’. It is worth noting that the two implied relations correspond 
to the two relations captured in the matrix M in Figure 6-1.  

In addition to the two ‘implied’ Sensitivities, it is also possible to specify the DOtoDOSensitivity between FE and PM by 
using a set of polynomial coefficients ‘derived’ from the stoichiometry during engine combustion. Here, a 3rd order 
polynomial representing the relation of FE to PM is provided (see row 3 in the table in Figure 9-6); and note that the 
values provided here are for demonstration only.   

 

 

Figure 9-6 Sensitivities Modeling (implied and derived) 
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10 Design Variable Constraints Modeling 

10.1 Overview 
This clause describes the Design Variable Constraints package of UPR. This package specializes the UPRConstraint 
stereotype defined in the Foundations package to facilitate the modeling of Design Variable Constraints.  

10.2 Domain View 
The domain model for the Design Variable Constraints package is depicted in Figure 10-1. 

 
Figure 10-1 Design Variable Constraints Domain Model 

The Design Objective Constraints package is concerned with the modeling of constraints on Design Variables.    

A DesignObjectiveConstraint, being a specialized type of System::DesignConstraint, defines a mathematical constraint 
on a System::DesignVariable by using a comparison operator (listed as below) and a value. There can be multiple 
DesignVariableConstraints defined on the same DesignVariable. Based on the comparison operator used, the 
DesignObjectiveConstraint can be classified into the following forms including but not limited to: 

• DesignVariableConstraint _EQ 
• DesignVariableConstraint_NEQ 
• DesignVariableConstraint_GT 
• DesignVariableConstraint_GE 
• DesignVariableConstraint_LT  
• DesignVariableConstraint_LE 

 

A DesignVariableConstraint has two different kinds in nature: DesignRange and FeasibleRange. When a 
DesignVariableConstraint describes a DesignRange, it means that the constraint specifies a design limit on the 
corresponding Design Variable without the consideration of any DesignObjectiveConstraints. This is often derived from 
a physical limit or a limit that is inherited from legacy designs. When DesignObjectiveConstraints are considered, certain 
design choices within the specified DesignRange (design limit) may no longer be viablem, due to violation of the defined 
DesignObjectiveConstraints. Using UPR terminology (c.f. Clause 4 and Clause 6.2.5), the initial design limit on a Design 
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Variable is referred to as Design Range; and a refined Design Range representing a subset of the feasible design choices 
is referred to as a Feasible Range. A Feasible Range is modeled by a DesignVariableConstraint with its kind specified as 
FeasibleRange. 

The current design choice on the Design Variable is referred to as an InitialDesign in the Domain Model. 

10.3 UML Representation 
This clause describes the UML extensions required to support the modeling of Design Variable Constraints. 

10.3.1 Profile Diagrams 
 

Figure 10-2 depicts the UML extensions for modeling Design Variables. The semantic descriptions corresponding to the 
introduced stereotypes and their properties are provided in the following sub clause. 

 
Figure 10-2 Design Variable Constraints Profile Diagram 

10.3.2 Profile Elements Description 

10.3.2.1 RangeKind (Enumeration) 
 

A RangeKind describes the nature of the specified mathematical constraint on a Design Variable. Note that there can be 
multiple DesignVariableConstraints specified for one Design Variable, but each DesignVariableConstraint stereotype is 
only associated to one of the RangeKind as specified below: 
Literals 
• designRange 

Indicates that the constraint specified for the Design Variable is a Design Range that is attributed to physical limit or 
design knowledge. Not every design point within this range is necessarily a feasible solution. 

• feasibleRange 
Indicates that the constraint specified for the Design Variable is a Feasible Range that is imposed by a set of Design 
Objective Constraints. Every design point within this range is a feasible solution. 

10.3.2.2 DesignVariableConstraint (Stereotype) 
 

The DesignVariableConstraint stereotype specializes the UPRConstraint stereotype for specifying Design Range(s) and 
Feasible Range(s) for a Design Variable. In addition, the initial value to be used for the design optimization is provided 
by the initialDesign property. 
Extends 
• Constraint (from UML) 
Generalizations 
• UPRConstraint (from Foundations) 
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Attributes 
• dvcID : String [1] 

This attribute represents the unique Identification Number of a Design Variable Constraint. 
• initialDesign : ValueSpecification [0..1] 

This attribute represents the initial design choice for the Design Variable. 
• kind : RangeKind [1] 

This attribute represents the kind of range, i.e. designRange or feasibleRange, being specified for the Design 
Variable Constraint. 

10.3.3 Example 
 

Examples for Design Variable Constraints definition are given in Clause 10.3.3 in conjunction with the application of 
stereotypes defined in the Relational Structure and Design package in Clause 10. This is because that complete usage of 
DesignVariableConstraint stereotype requires the definition of Feasible Ranges on a Design Variable, which are 
constraints that are imposed by Design Objective Constraints through the mathematical relations, e.g., polynomials, 
between the Design Objective and the Design Variable.  
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11 Relational Structure and Design Modeling 

11.1 Overview 
Having both the Design Objective Constraint and Design Variable Constraints defined, to complete the formulation of a 
CDD problem, it is required to define the mathematical relations between the specified Design Objectives and Design 
Variables. This clause is concerned with the modeling of these mathematical relations in the form of polynomial 
coefficients (c.f. Clause 6.2.3). The collective representation of these mathematical relations creates a Relational 
Structure. This structure facilitates Unary Transformation (RT-U) to determine feasible design solutions for a CDD 
problem.  

The objective of this clause is to describe the Relational Structure and Design package of UPR. This package specializes 
the Sensitivity abstract stereotype defined in the Foundations package to facilitate:  

• the modeling of the relational structure between Design Objective Constraints and Design Variable Constraints; 

• and the determination of Feasible Ranges for the Design Variables with a given set of Design Objective 
Constraints, by using Unary Transformation (RT-U). 

11.2 Domain View 
The domain model for the Relational Structure and Design is depicted in Figure 11-1.  

 
Figure 11-1 Relational Structure and Design Domain Model 
Having introduced both DesignObjectiveConstraint and DesignVariableConstraint in the domain models in previous 
clauses, the Relational Structure and Design package concerns with the modeling of Sensitivities between a Design 
Objective and Design Variable by using a DOtoDVSensitivity that specializes System::Sensitivity. As seen in the domain 
model, a System::DesignObjective and a System::DesignVariable may be related to each other via a DOtoDVSensitivity, 
where the DesignObjective is constrained by one or more DesignObjectiveConstraints and the DesignVariable is 
constrained by one or more DesignVariableConstraints. 
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11.3 UML Representation 
This clause describes the UML extensions required to support the modeling of Relational Structure and Design.  

11.3.1 Profile Diagrams 
 

Figure 9.1 depicts the UML extensions for modeling the Relational Structure and Design. The semantic descriptions 
corresponding to the introduced stereotypes and their properties are provided in the next sub clause. 

 
Figure 11-2 Relational Structure and Design Profile Diagram 

11.3.2 Profile Elements Description 

11.3.2.1 DOtoDVSensitivity (Stereotype) 
 

The DOtoDVSensitivity stereotype specializes the Sensitivity stereotype to model a sensitivity-based relation between a 
Design Objective that is constrained by DesignObjectiveConstraints and a Design Variable that is constrained by 
DesignVariableConstraints. 
 
Extends 
• Dependency (from UML) 
Generalizations 
• Sensitivity (from Foundations) 
Constraints 

• client_designobjective 
The client shall be constrained by a DesignObjectiveConstraint 

self.base_Dependency.client->forAll(p | 
DesignObjectiveConstraint.allInstances().constrainedProperty()->includes(p)) 

• supplier_designvariable 
shall be constrained by a DesignVariableConstraint 

self.base_Dependency.supplier->forAll(p | 
DesignVariableConstraint.allInstances().constrainedProperty()->includes(p)) 
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11.3.3 Example  
In this sub clause, we will be using a simple constraint-driven Radar design problem as an example to demonstrate the 
application of the Relational Structure and Design package. As the DOtoDVSensitivity stereotype connects a 
DesignObjectiveConstraint and a DesignVariableConstraint, we start with modeling the Design Objective Constraints 
and Design Variable Constraints of the system based on a simplified Radar system requirements and architecture 
modeled in SysML. The Design Objectives of interest are depicted in the SysML Requirement diagram in Figure 11-3. 
These are the power received at the aircraft transponder, which must exceed the Minimum Triggering Level (MTL) and 
the power received at the radar antenna, which must exceed the Minimum Detectable Signal (MDS). Note the units used 
to measure these variables are rescaled into decibel (dB).  

 
Figure 11-3 Design Objectives (Requirements) for a Radar System 

 
Based on the texts given in the Requirements, constraints on these Design Objectives are modeled by the 
DesignObjectiveConstraint stereotype and are provided in the table depicted in Figure 11-4. 

 
Figure 11-4 Design Objective Constraints for the Radar System 

 

The modeled radar system components and their relations are presented in a SysML internal block diagram, as depicted 
in Figure 11-5. We identify two Design Variables that are affected by the defined Design Objective Constraints. They 
are: 

• The power of the transmitter, 𝑃𝑃𝑇𝑇. This Property directly affects whether or not the signal transmitted to the 
aircraft can trigger the transponder with a MTL of -103dBW. 

• The aperture of the Antenna, 𝐴𝐴𝑒𝑒. This Property directly affects whether or not the Radar system can receive a 
signal from an aircraft with -100 dBm. 
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Figure 11-5 Radar system component architecture 

Based on legacy designs or empirical knowledge, Design Ranges for the two Design Variables can be defined. These 
Design Ranges are modeled by the DesignVariableConstraints (c.f. Clause 10) and are provided in the table depicted in 
Figure 11-6. As shown, the Design Range specified for the power of the radar transmitter in dBW is less than or equal to 
40, i.e. 𝑃𝑃𝑇𝑇 ≤ 40. And the initial design specified for 𝑃𝑃𝑇𝑇 is 20. The Design Range specified for the aperture of the radar 
antenna in dBsm is less than or equal to 10, i.e. 𝐴𝐴𝑒𝑒 ≤ 10. And the initial design specified for 𝐴𝐴𝑒𝑒 is 3. 

 

 
Figure 11-6 Design Variable Constraints for the Radar System 

 

To model the polynomial coefficients of the DOtoDVSensitivities, radar physics principles are used, where the 𝑃𝑃𝑅𝑅𝑅𝑅 and 
𝑃𝑃𝑅𝑅𝑅𝑅 are related to the 𝑃𝑃𝑇𝑇 and 𝐴𝐴𝑒𝑒 through the following set of mathematical models:  

𝑃𝑃𝑅𝑅𝑅𝑅 =
𝑃𝑃𝑇𝑇𝐴𝐴𝑒𝑒
 4πR2 

Equation 11-1 

𝑃𝑃𝑅𝑅𝑅𝑅 =
𝑃𝑃𝑇𝑇𝑇𝑇𝐴𝐴𝑒𝑒
 4πR2  

Equation 11-2 

where 𝑃𝑃𝑇𝑇𝑇𝑇 is the power of the aircraft transponder with an assumed value of 20 dBW,  𝑅𝑅 is the distance between the 
aircraft and the radar, and in this case, is equal to 30nmi based on the given requirements.  

For typical Radar design problems, it is convenient to work with decibel (dB) as this linearizes the mathematical model. 
For instance,  4πR with 𝑅𝑅 = 30nmi, can be converted into 106 dBsm, where ‘sm’ stands for square meter. The linearized 
model in dB then reads, 
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�𝑃𝑃𝑅𝑅𝑅𝑅 = −106 dBsm + 𝑃𝑃𝑇𝑇 dBW +  𝐴𝐴𝑒𝑒 dBsm
𝑃𝑃𝑅𝑅𝑅𝑅 = −86 dBsm +  𝐴𝐴𝑒𝑒 dBsm  

Equation 11-3 

At given initial design values for  𝑃𝑃𝑇𝑇 and 𝐴𝐴𝑒𝑒 , based on the above linearized mathematical models, a first order univariate 
polynomial can be constructed for each of the mathematical relations between Design Objectives and Design Variables. 
For example, at  𝑃𝑃𝑇𝑇 = 20 and 𝐴𝐴𝑒𝑒 = 3, 𝑃𝑃𝑅𝑅𝑅𝑅 can be written as a first order polynomial of 𝐴𝐴𝑒𝑒 as  

𝑃𝑃𝑅𝑅𝑅𝑅 = −86 + 𝐴𝐴𝑒𝑒 

Equation 11-4 

where the units are dropped for simplicity. The coefficients (including the constant term) can now be modeled by 
polynomialCoefficient and polynomialBase as shown in the first row of the table provided in Figure 11-7. The derivation 
of the rest of the polynomials will not be given, but their coefficients are also provided in this table.  

 

 
Figure 11-7 Relational Structure for the Design of the Radar System 

 

Using the information captured by the stereotypes, a CDD problem can be formulated and a RT-U can be applied to 
determine Feasible Ranges for the Design Variables. Using the initial designs as an initial condition, the results obtained 
are provided in the table depicted in Figure 11-8.  

 
Figure 11-8 Feasible Ranges on Radar System Design Variables 
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Annex A Elevator Dispatcher System 
                           (informative) 
 

In this annex, UPR stereotypes are applied to model a CDD of an elevator dispatcher. The aim of this annex is to 
illustrate how UPR is used to annotate an existing system model to formulate a CDD problem. The system (elevator 
dispatcher) is modeled in UML. UPR stereotypes are applied to define Design Objective Constraints, Design Variables 
Constraints and Sensitivities for every Design Objective - Design Variable pair.  

System Narrative 
An elevator dispatcher needs to provide commands to a group of elevators so that they move in a manner to best meet the 
hall call and car call demands that emanate from passengers using the system. The system is real-time in the sense that it 
needs to be responsive to the passengers who arrive and leave the system and take into account the dynamics involved in 
moving the elevators themselves. A typical elevator dispatch system will re-calculate (or at least partially re-calculate) a 
new set of elevator demands many times in a second. Figure A-1 depicts the use cases of an elevator dispatcher system.   

 
Figure A-1 Elevator Dispatcher Use Case Diagram 

System Behavior 
A real-time embedded elevator system needs to be capable of responding to both asynchronous and synchronous events. 
In this example, the arrival of passenger is an asynchronous event and this is signaled by the pressing of the hall call 
button. The car call could be considered as a second asynchronous event, but here it is assumed that the individual cars 
will monitor these events as part of their movement calculations. The synchronous events are the regular recalculation of 
the destinations of the cars by the dispatcher and the regular updating of the car destination (such a calculation will 
definitely require a model of the car dynamics if the system is being simulated, and will probably still require such a 
model if operating on a real physical elevator system). The activity diagram illustrating the real-time interrupt-driven 
nature of this application and incorporating the recording of objective values is shown in Figure A-2. 
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Figure A-2 Elevator Dispatcher Activity Diagram 

System Structure 
A Class Diagram for the elevator dispatcher is shown in Figure A-3 where the system components are modeled in 
Classes. Note that hall and car call buttons and indicators are good candidates for additional classes, but these have been 
incorporated into the hall and car classes respectively to keep the design simple and allow concentration on the relational 
aspects of the problem. 

  
Figure A-3 Elevator Dispatcher Class Diagram 

There are many Design Objective Constraints that are limiting the design space of an elevator system, and also many 
system elements that can be considered as Design Variables which are affected by Design Objective Constraints. For the 
purpose of illustration, only passenger waiting time and car energy usage are considered as Design Objective Constraints, 
and only car capacity (in terms of the maximum number of passengers in each car) and the number of cars (fewer cars 
means less usable floor space is taken in the building) are considered as relevant Design Variables.  

 

A list of specified Design Objective Constraints and Design Variables Constraints are captured in the tables depicted in 
Figure A-4 and Figure A-5 respectively. 
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Figure A-4 Design Objective Constraints annotation with UPR stereotypes 

 

 

 
Figure A-5 Design Variable Constraints annotation with UPR stereotypes 

 
Consequently, a suitable relational structure can be created. This is given in the table shown in Figure A-6. As the exact 
mathematical model for the relations is not known to the authors, for the purpose of demonstration, estimated polynomial 
coefficients are used to model Sensitivities.  

 
Figure A-6  Relational structure (Sensitivities) annotation with UPR stereotypes 
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Annex B Vehicle Design 
                  (informative) 
 

In this annex, we demonstrate how UPR is applied to multiple domains in order to model domain-specific CDD 
problems, while also demonstrating how the stereotypes facilitate cross-domain trade-offs. The example used in this 
annex is primarily for demonstrating UPR, therefore any engineering values or design is purely for illustrative purposes 
only.  

The vehicle system can be considered as a system of systems. The vehicle design task in practice is often decomposed 
into several domain-specific designs. Each design team is given a particular design task to design a subsystem of the 
vehicle. The design of different subsystems may be driven by different Design Objectives (that may or may not be 
constrained) as well as the same Design Objectives. In addition, two different design teams may have shared or 
dependent Design Variables. As such, when integrating subsystems designs together to form the overall vehicle design, 
there may be potential issues. For instance, there can be conflicts between the recommendations on solutions to Design 
Variables; there can also be situations where the design solution for one subsystem causes the solution of another 
subsystem to fail a Design Objective Constraints. We shall demonstrate how UPR can facilitate design trade-offs without 
the need of building cross-domain analytics and simulations models.  

B.1 Vehicle System Models 
The vehicle system architecture is modeled in SysML as shown in a SysML Block Definition Diagram in Figure B-1 and 
an Activity Diagram Figure B-2. In Figure B-1, major vehicle components and their properties are provided. This model 
is a greatly simplified compared to real world vehicle design. However, the components are representative and sufficient 
for the purpose of demonstrating how UPR facilitates the modeling and analysis of CDD problems. In Figure B-2, typical 
vehicle behavior during a drive cycle is given. It involves major vehicle functions relevant to the drive cycle emissions 
test.  

 
Figure B-1 Vehicle subsystems and properties 
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Figure B-2 Vehicle behavior in a drive cycle 

 

The following system requirements, as depicted in the SysML Requirement diagram in Figure B-3, are provided as the 
basis to define system-level Design Objectives (captured by value properties as in Blocks, Figure B-3) and Design 
Objective Constraints using UPR. The constraints are provided in the table in Figure B-4.  
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Figure B-3 Vehicle system-level requirements 

 

 

 
Figure B-4 Vehicle system-level Design Objective Constraints 
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Based on typical engineering practices and the models provided, the following subsystem design can be defined: 

1. Body design 

2. Engine design 

3. Aftertreatment systems design 

4. Transmission system design 

5. Chassis design 

6. Cooling system design 

To limit the scope of this example, only the first three subsystem designs will be considered. However, it is worth 
emphasizing that the application of UPR is not limited by the scope and that increasing the number of subsystem designs 
does not add modeling complexity, with UPR, to individual domains.  

B.2 Vehicle Body Design  
In the Body design, the following table in Figure B-5 provides a list of modeled Design Variables Constraints. 

 

 
Figure B-5 Vehicle Body Design Variable Constraints  

 

A relational structure for the Body CDD problem is then modeled using a set of DOtoDVSensitivities in the table 
depicted in Figure B-6. The polynomial coefficients presented are illustrative figures.  

 

 
Figure B-6 Relational structure for the vehicle Body CDD 

 

B.3 Vehicle Engine Design  
In the Engine design, the following table in Figure B-7 provides a list of modeled Design Variables Constraints. 
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Figure B-7 Vehicle Engine Design Variable Constraints 

 

A relational structure for the engine systems CDD problem is then modeled using a set of DOtoDVSensitivities in the 
table depicted in Figure B-8. The polynomial coefficients presented are illustrative figures.  

 
Figure B-8 Relational structure for the vehicle Engine CDD 

 

B.4 Vehicle Aftertreatment Systems Design  
In the Aftertreatment Systems design, the following table in Figure B-9 provides a list of modeled Design Variables 
Constraints. 
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Figure B-9 Vehicle Aftertreatment System Design Variable Constraints 

A relational structure for the vehicle aftertreatment systems CDD problem is then modeled using a set of 
DOtoDVSensitivities in the table depicted in Figure B-10. The polynomial coefficients presented are illustrative figures.  

 

 
Figure B-10 Relational structure for the vehicle Aftertreatment Systems CDD 

 

B.5 Design Integration 
Using derived polynomials, it is possible to determine Feasible Ranges with design algorithms that implement RT-U. 
However, this is not within the scope of UPR. Nonetheless, when integrating the domain designs into the final vehicle 
design, based on the above models, it is recognized that EXT and EXMF are two Design Variables shared by both the 
Engine design team and the Aftertreatment System design team. It shall now be assumed that the following Feasible 
Ranges8 , as shown in the table depicted in Figure B-11, are determined:  

 

 

 

 

 

 
8 These numbers illustrative purposes only and do not represent a real product.  
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Figure B-11 Design integration for shared Design Variables 

 

In this table, it is recognized that there is an overlap between the two Feasible Ranges on EXT determined by the two 
domain teams. Therefore, it is relatively obvious to conclude that an integrated solution range should be simply 500 ≤
EXT ≤ 630. And it is obvious that any point-based solution within this solution range will ensure that relevant Design 
Objective Constraints will be satisfied. There is certainly no need to create a mathematical model that combines the two 
domains to obtain feasible designs that satisfies Design Objective Constraints affecting the two domains.     

However, it is also recognized that there is not such a similar overlap between the two Feasible Ranges on EXMF. In 
these cases, a further tradeoff analysis is required. For instance, the engine team can iterate their design solutions and 
adjust Feasible Ranges on other Design Variables, to create larger margins for EXMF. If both teams sacrifice some of the 
margins in other Design Variables that are not shared between the two domains, it is very likely that an overlapping 
region will suffice. This tradeoff analysis again does not require a new mathematical model to be built.    

Finally, for completeness, it is possible to integrate all domain-specific CDDs into a single CDD by merging all the 
DesignObjectiveConstraints, DesignVariableConstraints, and DOtoDVSensitivities into one design package. 
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