

Date: May 2018

UML Testing Profile 2 (UTP 2)

Version 2.0

(with change bars)

__

OMG Document Number: ptc/18-06-06
Normative reference: http://www.omg.org/spec/UTP/2.0
Machine readable file(s): http://www.omg.org/spec/UTP/20180501/

 ptc/2018-06-02
http://www.omg.org/spec/UTP/20180501/utp2.xmi

 ptc/2018-06-03
http://www.omg.org/spec/UTP/20180501/utp2_typeslibrary.xmi

 ptc/2018-06-04
http://www.omg.org/spec/UTP/20180501/utp2_library.xmi

Normative: ---

Informative: ---

__

Issue UMLTP2-1

IPR mode: non-assert

Copyright © 2014-2018, Fraunhofer FOKUS

Copyright © 2014-2018, Grand Software Testing

Copyright © 2014-2018, Hamburg University of Applied Science

Copyright © 2014-2018, KnowGravity Inc.

Copyright © 2014-2018, Object Management Group, Inc.

Copyright © 2014-2018, PTC Inc.

Copyright © 2014-2018, Simula Research Lab

Copyright © 2014-2018, SELEX

Copyright © 2014-2018, SOFTEAM

Copyright © 2014-2018, University of Cantabria

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,

conditions and notices set forth below. This document does not represent a commitment to implement any portion of

this specification in any company's products. The information contained in this document is subject to change

without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-

free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute

copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed

to have infringed the copyright in the included material of any such copyright holder by reason of having used the

specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a

fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use

this specification to create and distribute software and special purpose specifications that are based upon this

specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:

(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;

(2) the use of the specifications is for informational purposes and will not be copied or posted on any network

computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)

no modifications are made to this specification. This limited permission automatically terminates without notice if

you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the

specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may

require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which

a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or

scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only.

Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications

regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.

No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,

electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--

without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY

CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES

LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO

THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,

IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR

PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE

COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING

LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN

CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This

disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)

(ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph

(c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as

specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R.

12.212 of the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners

are as indicated above and may be contacted through the Object Management Group, 109 Highland Avenue,

Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT

GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®,

OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube

Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names

mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its

designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer

software to use certification marks, trademarks or other special designations to indicate compliance with these

materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if

and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the

specification. Software developed only partially matching the applicable compliance points may claim only that the

software was based on this specification, but may not claim compliance or conformance with this specification. In

the event that testing suites are implemented or approved by Object Management Group, Inc., software developed

using this specification may claim compliance or conformance with the specification only if the software

satisfactorily completes the testing suites.

http://www.omg.org/legal/tm_list.htm

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage

readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting

Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue.

UML Testing Profile 2 (UTP 2), Version 2.0 i

Table of Contents

1 Scope .. 1
2 Conformance .. 3
3 References .. 5

3.1 Normative References ... 5
3.2 Informative References ... 5

4 Terms and Definitions .. 8
5 Symbols .. 13
6 Additional Information ... 14

6.1 How to read this document ... 14
6.2 Typographical conventions ... 15
6.3 Typical Use Cases of UTP 2 ... 16
6.4 Relation to testing-relevant standards ... 19
6.5 Relation to model-based testing .. 22
6.6 Relation to keyword-driven testing ... 22
6.7 Relation to the MARTE Profile .. 23
6.8 Acknowledgements ... 24

7 (Informative) Conceptual Model .. 25
7.1 General .. 25
7.2 Test Planning... 25

7.2.1 Test Analysis ... 25
7.2.1.1 Test Context Overview .. 25
7.2.1.2 Test Requirement and Test Objective Overview ... 26
7.2.1.3 Concept Descriptions ... 27

7.2.2 Test Design .. 28
7.2.2.1 Test Design Facility Overview .. 28
7.2.2.2 Concept Descriptions ... 29

7.3 Test Architecture ... 30
7.3.1 Test Architecture Overview... 30
7.3.2 Concept Descriptions... 30

7.4 Test Behavior .. 32
7.4.1 Test Cases .. 32

7.4.1.1 Test Case Overview ... 32
7.4.1.2 Concept Descriptions ... 33

7.4.2 Test-specific Procedures .. 33
7.4.2.1 Test Procedures .. 33
7.4.2.2 Concept Descriptions ... 35

7.4.3 Test-specific Actions ... 37
7.4.3.1 Overview of test-specific actions ... 37
7.4.3.2 Concept Descriptions ... 38

7.5 Test Data ... 40
7.5.1 Test Data Concepts .. 40
7.5.2 Concept Descriptions... 41

7.6 Test Evaluation ... 43
7.6.1 Arbitration Specifications .. 43

7.6.1.1 Arbitration & Verdict Overview .. 43
7.6.1.2 Concept Descriptions ... 44

7.6.2 Test Logging.. 46
7.6.2.1 Test Log Overview .. 46
7.6.2.2 Concept Descriptions ... 48

8 Profile Specification ... 50
8.1 Language Architecture .. 50

ii UML Testing Profile 2 (UTP 2), Version 2.0

8.2 Profile Summary ... 51
8.3 Test Planning... 53

8.3.1 Test Analysis ... 54
8.3.1.1 Test Context Overview .. 54
8.3.1.2 Test-specific Contents of Test Context .. 55
8.3.1.3 Test Objective Overview ... 56
8.3.1.4 Stereotype Specifications ... 57

8.3.1.4.1 TestContext .. 57
8.3.1.4.2 TestObjective ... 59
8.3.1.4.3 TestRequirement .. 60
8.3.1.4.4 TestSet .. 62
8.3.1.4.5 verifies .. 63

8.3.2 Test Design .. 63
8.3.2.1 Test Design Facility ... 64
8.3.2.2 Generic Test Design Capabilities ... 65
8.3.2.3 Predefined high-level Test Design Techniques .. 66
8.3.2.4 Predefined data-related Test Design Techniques ... 67
8.3.2.5 Predefined state-transition-based Test Design Techniques .. 68
8.3.2.6 Predefined experience-based Test Design Techniques .. 68
8.3.2.7 Stereotype Specifications ... 70

8.3.2.7.1 BoundaryValueAnalysis ... 70
8.3.2.7.2 CauseEffectAnalysis .. 70
8.3.2.7.3 ChecklistBasedTesting ... 70
8.3.2.7.4 ClassificationTreeMethod .. 71
8.3.2.7.5 CombinatorialTesting ... 71
8.3.2.7.6 DecisionTableTesting... 71
8.3.2.7.7 EquivalenceClassPartitioning ... 72
8.3.2.7.8 ErrorGuessing .. 72
8.3.2.7.9 ExperienceBasedTechnique ... 72
8.3.2.7.10 ExploratoryTesting ... 72
8.3.2.7.11 GenericTestDesignDirective .. 73
8.3.2.7.12 GenericTestDesignTechnique .. 73
8.3.2.7.13 NSwitchCoverage .. 73
8.3.2.7.14 PairwiseTesting .. 74
8.3.2.7.15 StateCoverage .. 74
8.3.2.7.16 StateTransitionTechnique ... 74
8.3.2.7.17 TestDesignDirective ... 75
8.3.2.7.18 TestDesignDirectiveStructure .. 76
8.3.2.7.19 TestDesignInput ... 77
8.3.2.7.20 TestDesignTechnique ... 77
8.3.2.7.21 TestDesignTechniqueStructure .. 78
8.3.2.7.22 TransitionCoverage .. 78
8.3.2.7.23 TransitionPairCoverage .. 78
8.3.2.7.24 UseCaseTesting .. 79

8.4 Test Architecture ... 79
8.4.1 Test Architecture Overview... 79
8.4.2 Stereotype Specifications .. 80

8.4.2.1 RoleConfiguration ... 80
8.4.2.2 TestComponent .. 81
8.4.2.3 TestComponentConfiguration .. 81
8.4.2.4 TestConfiguration .. 82
8.4.2.5 TestConfigurationRole ... 83
8.4.2.6 TestItem ... 83
8.4.2.7 TestItemConfiguration ... 84

8.5 Test Behavior .. 84
8.5.1 Test-specific Procedures .. 84

UML Testing Profile 2 (UTP 2), Version 2.0 iii

8.5.1.1 Test Case Overview ... 85
8.5.1.2 Stereotype Specifications ... 86

8.5.1.2.1 TestProcedure ... 86
8.5.1.2.2 TestCase ... 88
8.5.1.2.3 TestExecutionSchedule .. 92

8.5.2 Procedural Elements .. 94
8.5.2.1 Procedural Elements Overview .. 95
8.5.2.2 Compound Procedural Elements Overview ... 96
8.5.2.3 Stereotype Specifications ... 97

8.5.2.3.1 Alternative .. 97
8.5.2.3.2 AtomicProceduralElement ... 98
8.5.2.3.3 CompoundProceduralElement.. 98
8.5.2.3.4 Loop ... 99
8.5.2.3.5 Negative ... 99
8.5.2.3.6 OpaqueProceduralElement ... 100
8.5.2.3.7 Parallel ... 101
8.5.2.3.8 ProceduralElement ... 102
8.5.2.3.9 ProcedureInvocation... 103
8.5.2.3.10 Sequence .. 104

8.5.2.4 Enumeration Specifications ... 105
8.5.3 Test-specific Actions ... 105

8.5.3.1 Test-specific actions Overview .. 106
8.5.3.2 Tester Controlled Actions .. 106
8.5.3.3 Test Item Controlled Actions ... 107
8.5.3.4 Stereotype Specifications ... 108

8.5.3.4.1 CheckPropertyAction ... 108
8.5.3.4.2 CreateLogEntryAction ... 110
8.5.3.4.3 CreateStimulusAction .. 111
8.5.3.4.4 ExpectResponseAction... 113
8.5.3.4.5 SuggestVerdictAction .. 117

8.5.3.5 Enumeration Specifications ... 118
8.6 Test Data ... 118

8.6.1 Data Specifications .. 118
8.6.1.1 Data Specifications Overview .. 118
8.6.1.2 Stereotype Specifications ... 119

8.6.1.2.1 Complements.. 119
8.6.1.2.2 DataPartition .. 119
8.6.1.2.3 DataPool ... 120
8.6.1.2.4 DataProvider .. 120
8.6.1.2.5 DataSpecification ... 120
8.6.1.2.6 Extends ... 121
8.6.1.2.7 Morphing .. 121
8.6.1.2.8 Refines ... 122

8.6.2 Data Values ... 122
8.6.2.1 Data Value Extensions ... 123
8.6.2.2 Stereotype Specifications ... 123

8.6.2.2.1 AnyValue ... 123
8.6.2.2.2 overrides ... 124
8.6.2.2.3 RegularExpression ... 125

8.7 Test Evaluation ... 125
8.7.1 Arbitration Specifications .. 125

8.7.1.1 Test Procedure Arbitration Specifications ... 126
8.7.1.1.1 Arbitration Specifications Overview .. 126
8.7.1.1.2 Stereotype Specifications ... 127

8.7.1.2 Procedural Element Arbitration Specifications .. 131
8.7.1.2.1 Arbitration of AtomicProceduralElements ... 131

iv UML Testing Profile 2 (UTP 2), Version 2.0

8.7.1.2.2 Arbitration of CompoundProceduralElements ... 132
8.7.1.2.3 Stereotype Specifications ... 133

8.7.1.3 Test-specific Action Arbitration Specifications ... 138
8.7.1.3.1 Arbitration of Test-specific Actions ... 138
8.7.1.3.2 Stereotype Specifications ... 139

8.7.2 Test Logging.. 141
8.7.2.1 Test Logging Overview ... 141
8.7.2.2 Stereotype Specifications ... 142

8.7.2.2.1 TestCaseLog ... 142
8.7.2.2.2 TestLog .. 143
8.7.2.2.3 TestLogStructure .. 144
8.7.2.2.4 TestLogStructureBinding ... 145
8.7.2.2.5 TestSetLog ... 145

9 Model Libraries .. 147
9.1 UTP Types Library ... 147
9.2 UTP Auxiliary Library .. 148

9.2.1 UTP Auxiliary Library .. 148
9.2.1.1 The UTP auxiliary library .. 148
9.2.1.2 ISTQB Library ... 149

9.2.1.2.1 Overview of the ISTQB library .. 149
9.2.1.3 Test Design Facility Library .. 153

9.2.1.3.1 The UTP test design facility library ... 153
9.2.1.3.2 Predefined Test Design Techniques ... 153
9.2.1.3.3 Predefined Test Design Technique Structures.. 155

Annex A (Informative): Examples .. 157
A.1 Croissants Example ... 157

A.1.1 The Test Item .. 157
A.1.2 Test Requirements .. 158
A.1.3 Test Design ... 159
A.1.4 Test Configuration .. 159
A.1.4.1 Test Cases .. 160

A.1.4.2 Test Set "Manual croissants test" ... 160
A.2 LoginServer Example .. 162

A.2.1 Requirements Specification .. 162
A.2.2 Test Planning .. 163
A.2.3 Test Analysis .. 164

A.2.3.1 Derivation and Modeling of Test Requirements .. 164
A.2.3.2 Modeling the Type System and Logical Interfaces .. 166
A.2.3.3. Modeling Test Data... 167

A.2.4 Test Design ... 168
A.2.4.1 Test Architecture and Test Configuration .. 168
A.2.4.2 Specification of Complex Test Data .. 169
A.2.4.3 Test Requirements Realization .. 170
A.2.4.4 Design of Test Case Procedures ... 171

A.2.5 Mapping to TTCN-3 ... 173
A.2.5.1 Mapping the Test Type System ... 173
A.2.5.2 Mapping Interface Descriptions ... 174
A.2.5.3 Mapping the Test Architecture .. 174
A.2.5.4 Mapping the Test Data Specification ... 174
A.2.5.5 Mapping Test Cases and Test Configuration ... 175

A.3 Videoconferencing Example ... 177
A.3.1 Given Requirements on the Test Item .. 177
A.3.2 Modeling the Structure of the System .. 177
A.3.3 Modeling the Behavior of the System .. 178
A.3.4 The TRUST Test Generator ... 180
A.3.5 Mapping to Code .. 181

UML Testing Profile 2 (UTP 2), Version 2.0 v

A.3.6 References .. 181
A.4 Subsea Production System Example ... 182

A.4.1 Description of Case Study .. 182
A.4.2 Functionality to Test ... 182
A.4.3 Test Design Inputs .. 183
A.4.4 Generation of Test Sets and Abstract Test Cases ... 184
A.4.5 References .. 186

A.5 ATM Example ... 187
A.5.1 General ... 187
A.5.2 Unit Test Example .. 188
A.5.3 Integration Testing Example .. 192
A.5.4 System Test Example ... 197
A.5.5 References .. 202

Annex B (Informative): Mappings .. 203
B.1 Mapping between UTP 1 and UTP 2... 203

Annex C (Informative): Value Specification Extensions .. 206
C.1 Profile Summary ... 206
C.2 Non-normative data value extensions.. 206

C.2.1 Overview of non-normative ValueSpecification Extensions ... 206
C.2.2 Stereotype Specifications .. 207

C.2.2.1 ChoiceOfValues ... 207
C.2.2.2 CollectionExpression ... 208
C.2.2.3 ComplementedValue .. 208
C.2.2.4 MatchingCollectionExpression .. 208
C.2.2.5 RangeValue .. 209

Annex D: Index ... 211

vi UML Testing Profile 2 (UTP 2), Version 2.0

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer

industry standards consortium that produces and maintains computer industry specifications for interoperable,

portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes

Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s

specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle

approach to enterprise integration that covers multiple operating systems, programming languages, middleware and

networking infrastructures, and software development environments. OMG’s specifications include: UML® (Unified

Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse

Metamodel™); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG

Specifications are available from the OMG website at:

http://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing

OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and

PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management

Group, Inc. at:

OMG Headquarters

109 Highland Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

http://www.iso.org/

UML Testing Profile 2 (UTP 2), Version 2.0 1

1 Scope

In 2001, a working group at the OMG started developing a UML Profile dedicated to Model-based testing, called

UML Testing Profile (UTP). It is a standardized language based on OMG’s Unified Modeling Language (UML) for

designing, visualizing, specifying, analyzing, constructing, and documenting the artifacts commonly used in and

required for various testing approaches, in particular model-based testing (MBT) approaches. UTP has the potential

to assume the same important role for model-based testing approaches as UML assumes for model-driven system

engineering.

UTP is a part of the UML ecosystem (see figure below), and as such, it can be combined with other profiles of that

ecosystem in order to associate test-related artifacts with other relevant system artifacts, e.g. requirements, risks, use

cases, business processes, system specifications etc. This enables requirements engineers, system engineers and test

engineers to bridge the communication gap among different engineering disciplines.

Figure 1.1 - The UML Ecosystem

Issue UMLTP2-1

As the interest of industry in model-based testing approaches and languages increased, UTP attracted more and more

users. UTP was the first standardized language for model-based approaches to help in the validation and verification

of software-intensive systems. Model-based test specifications expressed with the UML Testing Profile are

independent of any methodology, domain, environment or type of system.

Eight years later, the UTP working group (WG) has agreed on consolidating the experiences and achievements of

UTP in order to justify the move from UTP 1.2 to a successor specification. These efforts resulted in a Request For

Information (RFI) for UML Testing Profile 2 (UTP 2), which was aimed at eliciting and gathering the shortcomings

of the current UTP and the most urgent requirements for a successor specification from the OMG and model-based

testing community.

Some of the main issues in the RFI responses are that UTP 2 should:

 be able to design test models of different test levels.

 address testing of non-functional requirements.

 be able to reuse test logs for further test evaluation and test generation.

 meet industry-relevant standards.

 integrate with SysML for requirements traceability.

 and so forth.

2 UML Testing Profile 2 (UTP 2), Version 2.0

The UML Testing Profile 2 (UTP 2) was designed to meet the requirements derived from the RFI responses.

People may use the UML Testing Profile in addition to UML to:

 Specify the design and the configuration of a test system: Designing a test system includes the

identification of the test item (also known as system under test or abbreviated as SUT), its boundaries, the

derivation of test components, and the identification of communication channels between interconnected

test items test components over which data can be exchanged.

 Build the model-based test plans on top of already existing system models: The possibility to reuse already

existing (system) artifacts, e.g. requirements, interface definitions, type definitions etc.

 Model test cases: The specification of test cases is an essential task of each test process in order to assess

the quality of the test item and to verify whether the test item complies with its specification.

 Model test environments: A test environment contains hardware, instrumentation, simulators, software

tools, and other support elements needed to conduct a test (according to IEEE 610).

 Model deployment specifications of test-specific artifacts: By relying on the UML’s deployment

specification capabilities, the actual deployment of a test system can be done in a model-based way.

 Model data: Modeling of data includes the data values being used as stimuli into the test item as well as for

responses expected from the test item such as the test oracle.

 Provide necessary information pertinent to test scheduling optimization: Test scheduling optimization can

be based on priorities, risk-related information, costs etc.

 Document test case execution results: To associate test cases with the actual outcome of their execution

within the very same model in order to perform further analysis, calculate specific metrics, etc.

 Document traceability to requirements and other UML model artifacts: Requirements traceability within

test specification is important to document and evaluate test coverage and to calculate other metrics such as

progress reports. Native traceability is given by the underlying UML capabilities. UTP does not offer

different concepts for traceability other than that provided by UML,

The intended audience for the UML Testing Profile are users who are able to read model-based test specifications

expressed within the UML Testing Profile models including:

 Test engineers

 Requirements Engineers

 System/Software Engineers

 Domain experts

 Customer/Stakeholder

 Certification authorities

 Testing tools (test case generators, data generators, schedulers, reporting engines, test script generators,

etc.).

The intended audience of this UML Testing Profile specification itself includes, among others:

 People who want to implement UML Testing Profile-compliant tools.

 People who need to/want to/like to teach the UML Testing Profile.

 People who want to improve the UML Testing Profile specification.

 People who want to tailor the UML Testing Profile to satisfy needs of their specific

project/domain/process.

UML Testing Profile 2 (UTP 2), Version 2.0 3

2 Conformance

As a native profile specification of the UML, the UTP 2 has to abide by the conformance types declared for

compliant UML profiles. The corresponding conformance types of UML can be found in section 2 "Conformance"

of the current UML specification [UML]. This guarantees that the underlying environment of any UTP 2

implementation is a UML modeling environment that is conformant with the UML. The UTP 2 adopted version of

UML's conformance types are defined as follows:

 Abstract syntax conformance: All concrete stereotypes and tags are implemented in the profile

implementation

 Concrete syntax conformance: Support for the visual representation (i.e. icons) of the UTP concepts is

provided by the profile implementation

 Model interchange conformance: (delegated to underlying UML)

 Diagram interchange conformance: (delegated to underlying UML)

 Semantic conformance: All UTP constraints are enforced, either directly in the model with OCL (assuming

underlying OCL support) or indirectly by any other suitable means of the underlying modeling

environment

In addition to the fundamental conformance types of the UML and its profiling mechanism, UTP 2 specifies two

compliance levels for its respective concepts:

 mandatory: concepts that are deemed mandatory have to be implemented in order to claim UTP 2

compliance;

 optional: concepts that are deemed optional might be implemented. If they are implemented, they have to

be implemented exactly how they have been specified by the UTP 2 specification - i.e., optional concepts

are still normative, but when they are implemented, they have to abide by the conformance types imposed

by the underlying UML and its profiling mechanism.

The decisions, which concepts are considered as mandatory and optional, have been based on the typical use cases

of UTP 2 (see section 6.3 Typical Use Cases of UTP 2). The main objective of UTP 2 is to design test cases,

potentially in an automated manner, and to describe the test architecture in order to execute test cases, potentially in

an automated manner. Except from that, UTP 2 provides further helpful concepts for the design and implementation

of a test environment that supports various activities of the test process, such as test analysis, manual and automated

test design, test execution and evaluation. The concepts required for these activities are grouped by corresponding

sections within this specification. The following relates the test process activities with the respective sections of the

UTP 2 specification and indicates whether a feature (a set of concepts grouped in a setion) is normative, mandatory

or optional:

4 UML Testing Profile 2 (UTP 2), Version 2.0

Test Process Phase Normative Mandatory

 Test Analysis Activities

- Section 8.3.1 Test Analysis X -

 Test Design Activities

- Section 8.3.2 Test Design X -

- Section 8.4 Test Architecture X X

- Section 8.5.1 Test-specific Procedures X X

- Section 8.5.1 Procedural Elements X X

- Section 8.5.1 Test-specific Actions X X

- Section 8.6.1 Data Specifications X -

 Test Execution and Evaluation Activities

- Section 8.6.2 Data Values X -

- Annex C Non-normative data value extensions - -

- Section 8.7.1 Arbitration Specifications X -

- Section 8.7.2 Test Logging X -

In addition to these concepts, UTP 2 specifies three model libraries for UTP 2. The conformance considerations for

the libraries are as follows:

UTP 2 Model Libraries

Issue UMLTP2-24 Normative Mandatory

 Section 9.1 UTP Types Library X X

 Section 9.2 UTP Auxiliary Library X -

Any implementation that wants to claim conformance with UTP 2 specification has to abide by the adopted UTP 2

conformance types for each normative concept. If the concept is deemed mandatory in addition, any implementation

that wants to claim conformance with the UTP 2 specification, has to provide those mandatory concepts to the user.

UML Testing Profile 2 (UTP 2), Version 2.0 5

3 References

3.1 Normative References

Issue UMLTP2-1

[MOF] http://www.omg.org/spec/MOF/

Object Management Group: “Meta Object Facility™ (MOF™) - Version 2.5.1”,

November 2016, formal/2016-11-01

[OCL] http://www.omg.org/spec/OCL/

Object Management Group: “Object Constraint Language™ (OCL™) - Version 2.4”,

February 2014, formal/2014-02-03

[UML] http://www.omg.org/spec/UML

Object Management Group: “OMG Unified Modeling Language™ (OMG UML) -

Version 2.5”, March 2015, formal/2015-03-01

[XMI] http://www.omg.org/spec/XMI/

Object Management Group: “XML Metadata Interchange (XMI) Specification -

Version 2.5.1”, June 2015, formal/2015-06-07

3.2 Informative References

Issue UMLTP2-1

[BMM] http://www.omg.org/spec/BMM

Object Management Group: “Business Motivation Model - Version 1.3”, May 2015,

formal/2015-05-19

[DD] http://www.omg.org/spec/DD/

Object Management Group: “Diagram Definition™ (DD) - Version 1.1”, June 2015,

formal/2015-06-01

[ES20187301] http://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.07.01_60/es_20187301v

040701p.pdf

ETSI ES 201 873-1: “Methods for Testing and Specifications (MTS) - The Testing and

Test Control Notation version 3 - Part 1: TTCN-3 Core Language”; V4.7.1 (2015-06)

[ES202951] http://www.etsi.org/deliver/etsi_es/202900_202999/202951/01.01.01_60/es_202951v0101

01p.pdf

ETSI ES 202 951: “Requirements for Modeling Notations. ETSI Standard, Methods

for Testing and Specification (MTS)”; Model-Based Testing (MBT). V1.1.1 (2011-07)

[ES20311901] http://www.etsi.org/deliver/etsi_es/203100_203199/20311901/01.02.01_60/es_20311901v

010201p.pdf

ETSI ES 203 119-1: “Methods for Testing and Specifications (MTS) - The Test

Description Language (TDL) - Part 1: Abstract Syntax and Associated Semantics”;

V1.2.1 (2015-06)

[ES20311902] http://www.etsi.org/deliver/etsi_es/203100_203199/20311902/01.01.01_60/es_20311902v

010101p.pdf

ETSI ES 203 119-1: “Methods for Testing and Specifications (MTS) - The Test

Description Language (TDL) - Part 2: Graphical Syntax”; V1.1.1 (2015-06)

[ES20311903] http://www.etsi.org/deliver/etsi_es/203100_203199/20311902/01.01.01_60/es_20311902v

010101p.pdf

http://www.omg.org/spec/MOF/
http://www.omg.org/spec/OCL/
http://www.omg.org/spec/UML
http://www.omg.org/spec/XMI/
http://www.omg.org/spec/BMM
http://www.omg.org/spec/DD/
http://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.07.01_60/es_20187301v040701p.pdf
http://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.07.01_60/es_20187301v040701p.pdf
http://www.etsi.org/deliver/etsi_es/202900_202999/202951/01.01.01_60/es_202951v010101p.pdf
http://www.etsi.org/deliver/etsi_es/202900_202999/202951/01.01.01_60/es_202951v010101p.pdf
http://www.etsi.org/deliver/etsi_es/203100_203199/20311901/01.02.01_60/es_20311901v010201p.pdf
http://www.etsi.org/deliver/etsi_es/203100_203199/20311901/01.02.01_60/es_20311901v010201p.pdf
http://www.etsi.org/deliver/etsi_es/203100_203199/20311902/01.01.01_60/es_20311902v010101p.pdf
http://www.etsi.org/deliver/etsi_es/203100_203199/20311902/01.01.01_60/es_20311902v010101p.pdf
http://www.etsi.org/deliver/etsi_es/203100_203199/20311902/01.01.01_60/es_20311902v010101p.pdf
http://www.etsi.org/deliver/etsi_es/203100_203199/20311902/01.01.01_60/es_20311902v010101p.pdf

6 UML Testing Profile 2 (UTP 2), Version 2.0

ETSI ES 203 119-1: “Methods for Testing and Specifications (MTS) - The Test

Description Language (TDL) - Part 3: Exchange Format”; V1.1.1 (2015-06)

[ES20311904] http://www.etsi.org/deliver/etsi_es/203100_203199/20311904/01.01.01_60/es_20311904v

010101p.pdf

ETSI ES 203 119-1: “Methods for Testing and Specifications (MTS) - The Test

Description Language (TDL) - Part 4: Structured Test Objective Specification

(Extension)”; V1.1.1 (2015-06)

[FUML] http://www.omg.org/spec/FUML/

Object Management Group: “Semantics of a Foundational Subset for Executable UML

Models (fUML) - Version 1.2.1”, January 2016, formal/2016-01-05

[HWT2012] R. Hametner, D. Winkler, and A. Zoitl, “Agile testing concepts based on keyword-driven

testing for industrial automation systems” in IECON 2012-38th Annual Conference on

IEEE Industrial Electronics Society, 2012, pp. 3727-3732

[IEC61508] http://www.iec-normen.de/dokumente/preview-pdf/info_iec61508-1%7Bed2.0%7Db.pdf

IEC: “Functional safety of electrical/electronic/programmable electronic safety-

related

systems—Part 1: General Requirements”, Edition 2.0, IEC 61508-1, 2010-04

[ISO1087-1] ISO: “Terminology work - Vocabulary - Part 1: Theory and application”, ISO 1087-

1:2000(E/F), 15-OCT-2000

[ISO25010] ISO/IEC: “System and software engineering - Systems and software Quality

Requirements and Evaluation (SQuaRE) - Systems and software quality models”,

ISO/IEC 25010:2011, ISO, 2011-03-01

[ISO29119] http://www.softwaretestingstandard.org/

ISO/IEC/IEEE: “Software Testing - The International Software Testing Standard”

[ISO9126] ISO/IEC: “Software engineering—Product quality—Part 1: Quality model”, ISO/IEC

9126-1:2001, ISO, 2001

[ISTQB] http://www.istqb.org

ISTQB: “International Software Testing Qualifications Board”

[MDA] http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf

Object Management Group: “MDA Guide - Version 1.0.1”, June 2003, omg/2003-06-01

[MDAa] http://www.omg.org/mda/papers.htm

Object Management Group: “OMG Architecture Board, “Model Driven Architecture -

A Technical Perspective””

[MDAb] http://www.omg.org/mda/papers.htm

Object Management Group: “Developing in OMG’s Model Driven Architecture

(MDA)”

[MDAd] http://www.omg.org/mda

Object Management Group: “MDA “The Architecture of Choice for a Changing

World””

[OSLC] http://open-services.net/bin/view/Main/QmSpecificationV2

Open Services for Lifecycle Collaboration (OSLC): “Open Services for Lifecycle

Collaboration Quality Management Specification Version 2.0”

[SBVR] http://www.omg.org/spec/SBVR

Object Management Group: “Semantics of Business Vocabularies and Business Rules

(SBVR) - Version 1.3”, May 2015, formal/2015-05-07

[SEP2014a] http://plato.stanford.edu/archives/win2015/entries/category-theory/

Marquis, Jean-Pierre, “Category Theory”, The Stanford Encyclopedia of Philosophy

(Winter 2015 Edition), Edward N. Zalta (ed.)

http://www.etsi.org/deliver/etsi_es/203100_203199/20311904/01.01.01_60/es_20311904v010101p.pdf
http://www.etsi.org/deliver/etsi_es/203100_203199/20311904/01.01.01_60/es_20311904v010101p.pdf
http://www.omg.org/spec/FUML/
http://www.iec-normen.de/dokumente/preview-pdf/info_iec61508-1%7Bed2.0%7Db.pdf
http://www.softwaretestingstandard.org/
http://www.istqb.org/
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://www.omg.org/mda/papers.htm
http://www.omg.org/mda/papers.htm
http://www.omg.org/mda
http://open-services.net/bin/view/Main/QmSpecificationV2
http://www.omg.org/spec/SBVR
http://plato.stanford.edu/archives/win2015/entries/category-theory/

UML Testing Profile 2 (UTP 2), Version 2.0 7

[SysML] http://www.omg.org/spec/SysML

Object Management Group: “OMG Systems Modeling Language (OMG SysML™) -

Version 1.4”, September 2015, formal/2015-06-03

[TCM2008] J. Tang, X. Cao, and A. Ma, “Towards adaptive framework of keyword driven

automation testing” in Automation and Logistics, 2008. ICAL 2008. IEEE International

Conference on, 2008, pp. 1631-1636

[TestIF] http://www.omg.org/spec/TestIF/

Object Management Group: “Test Information Interchange Format (TestIF)

Specification - Version 1.0”, May 2015, formal/2015-05-05

[UL2007] Utting, M., Legeard, B.: “Practical Model-Based Testing: A Tools Approach”, Morgan-

Kaufmann, 2007

[UPL2012] http://dx.doi.org/10.1002/stvr.456

Utting, M., Pretschner, A., and Legeard, B.: “A taxonomy of model-based testing

approaches”, in Softw. Test. Verif. Reliab. 22, 5, August 2012, p. 297-312

[UTP] http://www.omg.org/spec/UTP

Object Management Group: “UML Testing Profile - Version 1.2”, April 2013,

formal/2013-04-03

[WikiCT] https://en.wikipedia.org/wiki/Category_theory

Wikipedia: “Category Theory”

[WikiM] https://en.wikipedia.org/wiki/Morphism

Wikipedia: “Morphism”

http://www.omg.org/spec/SysML
http://www.omg.org/spec/TestIF/
http://dx.doi.org/10.1002/stvr.456
http://www.omg.org/spec/UTP
https://en.wikipedia.org/wiki/Category_theory
https://en.wikipedia.org/wiki/Morphism

8 UML Testing Profile 2 (UTP 2), Version 2.0

4 Terms and Definitions

Issue UMLTP2-6

The following terms and definitions are a sumary of the Conceptual Model described in clause 7. For further

examples and details refer to the respective sub-section in Clause 7.

Name Description Source

abstract test case A test case that declares at least one formal parameter. UTP 2 WG

abstract test

configuration

A test configuration that specifies the test item, test components

and their interconnections as well as configuration data that should

be abstract test data.

UTP 2 WG

actual data pool A specification of an actual implementation of a data pool. UTP 2 WG

actual parameter A concrete value that is passed over to the procedure and replaces

the formal parameter with its concrete value.

UTP 2 WG

alternative A compound procedural element that executes only a subset of its

contained procedural elements based on the evaluation of a

boolean expression.

UTP 2 WG

arbitration

specification

A set of rules that calculates the eventual verdict of an executed

test case, test set or procedural element.

UTP 2 WG

artifact An object produced or modified during the execution of a process. UTP 2 WG

atomic procedural

element

A procedural element that cannot be further decomposed. UTP 2 WG

boolean expression An expression that may be evaluated to either of these values:

"TRUE" or "FALSE".

UTP 2 WG

check property

action

A test action that instructs the tester to check the conformance of a

property of the test item and to set the procedural element verdict

according to the result of this check.

UTP 2 WG

complement A morphism that inverts data)i.e., that replaces the data items of a

given set of data items by their opposites).

UTP 2 WG

compound

procedural element

A procedural element that can be further decomposed. UTP 2 WG

concrete test case A test case that declares no formal parameter. UTP 2 WG

concrete test

configuration

A test configuration that specifies the test item, test components

and their interconnections as well as configuration data that should

be concrete data.

UTP 2 WG

constraint An assertion that indicates a restriction that must be satisfied by

any valid realization of the model containing the constraint.

[UML]

create log entry

action

A test action that instructs the tester to record the execution of a

test action, potentially including the outcome of that test action in

the test case log.

UTP 2 WG

create stimulus

action

A test action that instructs the tester to submit a stimulus

(potentially including data) to the test item.

UTP 2 WG

data A usually named set of data items. UTP 2 WG

data item Either a value or an instance. UTP 2 WG

data partition A role that some data plays with respect to some other data

(usually being a subset of this other data) with respect to some data

specification.

UTP 2 WG

data pool Some data that is an explicit or implicit composition of other data

items.

UTP 2 WG

data provider A test component that is able to deliver (i.e., either select and/or

generate) data according to a data specification.

UTP 2 WG

data specification A named boolean expression composed of a data type and a set of

constraints applicable to some data in order to determine whether

UTP 2 WG

UML Testing Profile 2 (UTP 2), Version 2.0 9

Name Description Source

or not its data items conform to this data specification.

data type A type whose instances are identified only by their value. [UML]

duration The duration from the start of a test action until its completion. UTP 2 WG

Error An indication that an unexpected exception has occurred while

executing a specific test set, test case, or test action.

UTP 2 WG

executing entity An executing entity is a human being or a machine that is

responsible for executing a test case or a test set.

UTP 2 WG

expect response

action

A test action that instructs the tester to check the occurrence of one

or more particular responses from the test item within a given time

window and to set the procedural element verdict according to the

result of this check.

UTP 2 WG

extension A morphism that increases the amount of data (i.e., that adds more

data items to a given set of data items).

UTP 2 WG

Fail A verdict that indicates that the test item did not comply with the

expectations defined by a test set, test case, or test action during

execution.

UTP 2 WG

formal parameter A placeholder within a procedure that allows for execution of the

procedure with different formal parameters that are provided by

the procedure invocation.

UTP 2 WG

Inconclusive A verdict that indicates that the compliance of a test item against

the expectations defined by a test set, test case, or test action could

not be determined during execution.

UTP 2 WG

loop A compound procedural element that repeats the execution of its

contained procedural elements.

UTP 2 WG

main procedure

invocation

A procedure invocation that is considered as the main part of a test

case by the test case arbitration specification.

UTP 2 WG

morphism A structure-preserving map from one mathematical structure to

another.

[WikiM]

negative A compound procedural element that prohibits the execution of its

contained procedural elements in the specified structure.

UTP 2 WG

None A verdict that indicates that the compliance of a test item against

the expectations defined by a test set, test case, or test action has

not yet been determined (i.e., it is the initial value of a verdict

when a test set, test case, or test action was started).

UTP 2 WG

parallel A compound procedural element that executes its contained

procedural elements in parallel to each other.

UTP 2 WG

Pass A verdict that indicates that the test item did comply with the

expectations defined by a test set, test case, or test action during

execution.

UTP 2 WG

PE end duration The duration between the end of the execution of a procedural

element and the end of the execution of the subsequent procedural

element.

UTP 2 WG

PE start duration The duration between the end of the execution of a procedural

element and the beginning of the execution of the subsequent

procedural element.

UTP 2 WG

postcondition A boolean expression that is guaranteed to be True after a test case

execution has been completed.

UTP 2 WG

preconditon A boolean expression that must be met before a test case may be

executed.

UTP 2 WG

procedural element An instruction to do, to observe, and/or to decide. UTP 2 WG

procedural element

verdict

A verdict that indicates the result (i.e., the conformance of the

actual properties of the test item with its expected properties) of

executing a test action on a test item.

UTP 2 WG

10 UML Testing Profile 2 (UTP 2), Version 2.0

Name Description Source

procedure A specification that constrains the execution order of a number of

procedural elements.

UTP 2 WG

procedure

invocation Issue UMLTP2-1

An atomic procedural element of a procedure that invokes another

procedure and waits for its completion.

UTP 2 WG

property A basic or essential attribute shared by all members of a class of

test items.

UTP 2 WG

refinement A morphism that decreases the amount of data (i.e., that removes

data items from a given set of data items).

UTP 2 WG

response A set of data that is sent by the test item to its environment (often

as a reaction to a stimulus) and that is typically used to assess the

behavior of the test item.

UTP 2 WG

sequence A compound procedural element that executes its contained

procedural elements sequentially.

UTP 2 WG

setup procedure

invocation

A procedure invocation that is considered as part of the setup by

the arbitration specification and that is invoked before any main

procedure invocation.

UTP 2 WG

stimulus A set of data that is sent to the test item by its environment (often

to cause a response as a reaction) and that is typically used to

control the behavior of the test item.

UTP 2 WG

suggest verdict

action

A test action that instructs the tester to suggest a particular

procedural element verdict to the arbitration specification of the

test case for being taken into account in the final test case verdict.

UTP 2 WG

teardown procedure

invocation

A procedure invocation that is considered as part of the teardown

by the responsible arbitration specification and that is invoked

after any main procedure invocation.

UTP 2 WG

test action An atomic procedural element that is an instruction to the tester

that needs to be executed as part of a test procedure of a test case

within some time frame.

UTP 2 WG

test case A procedure that includes a set of preconditions, inputs and

expected results, developed to drive the examination of a test item

with respect to some test objectives.

UTP 2 WG

test case log A test log that captures relevant information on the execution of a

test case.

UTP 2 WG

test case verdict A verdict that indicates the result (i.e., the conformance of the

actual properties of the test item with its expected properties) of

executing a test case against a test item.

UTP 2 WG

test component A role of an artifact within a test configuration that is required to

perform a test case.

UTP 2 WG

test component

configuration

A set of configuration options offered by an artifact in the role of a

test component chosen to meet the requirements of a particular test

configuration.

UTP 2 WG

test configuration
Issue UMLTP2-1

A specification of the test item and test components as well as

their interconnection and configuration data.

UTP 2 WG

test context
Issue UMLTP2-1

A set of information that is prescriptive for testing activities which

can be organized and managed together for deriving or selecting

test objectives, test design techniques, test design inputs and

UTP 2 WG

UML Testing Profile 2 (UTP 2), Version 2.0 11

Name Description Source

eventually test cases.

test design directive A test design directive is an instruction for a test designing entity

to derive test artifacts such as test sets, test cases, test

configurations, data or test execution schedules by applying test

design techniques on a test design input. The set of assembled test

design techniques are referred to as the capabilities a test designing

entity must possess in order to carry out the test design directive,

regardless whether it is carried out by a human tester or a test

generator. A test design directive is a means to support the

achievement of a test objective.

UTP 2 WG

test design input Any piece of information that must or has been used to derive

testing artifacts such as test cases, test configuration, and data.

UTP 2 WG

test design

technique

A specification of a method used to derive or select test

configurations, test cases and data. test design techniques are

governed by a test design directive and applied to a test design

input. Such test design techniques can be monolithically applied or

in combination with other test design techniques. Each test design

technique has clear semantics with respect to the test design input

and the artifacts it derives from the test design input.

UTP 2 WG

test execution

schedule

A procedure that constrains the execution order of a number of test

cases.

UTP 2 WG

test item A role of an artifact that is the object of testing within a test

configuration.

UTP 2 WG

test item

configuration

A set of configuration options offered by an artifact in the role of a

test item chosen to meet the requirements of a particular test

configuration.

UTP 2 WG

test level A specification of the boundary of a test item that must be

addressed by a specific test context.

UTP 2 WG

test log A test log is the instance of a test log structure that captures

relevant information from the execution of a test case or test set.

The least required information to be logged is defined by the test

log structure of the test log.

UTP 2 WG

test log structure
Issue UMLTP2-1

A test log structure specifies the information that is deemed

relevant during execution of a test case or a test set. There is an

implicit default test log structure that prescribes at least the start

time point, the duration, the finally calculated verdict and the

executing entity of a test case or test set execution which should be

logged.

UTP 2 WG

test objective
Issue UMLTP2-6

A desired effect that a test case or test set intends to achieve.

UTP 2 WG

test procedure A procedure that constrains the execution order of a number of test

actions.

UTP 2 WG

test requirement A desired property on a test case or test set, referring to some

aspect of the test item to be tested.

UTP 2 WG

test set A set of test cases that share some common purpose. UTP 2 WG

test set log A test log that captures relevant information from the execution of

a test set.

UTP 2 WG

test set purpose A statement that explains the rationale for grouping test cases

together.

UTP 2 WG

test set verdict A verdict that indicates the result (i.e., the conformance of the UTP 2 WG

12 UML Testing Profile 2 (UTP 2), Version 2.0

Name Description Source

actual properties of the test item with its expected properties) of

executing a test set against a test item.

test type A quality attribute of a test item that must be addressed by a

specific test context.

UTP 2 WG

time point The time point at which a test action is initiated. UTP 2 WG

verdict A statement that indicates the result (i.e., the conformance of the

actual properties of the test item with its expected properties) of

executing a test set, a test case, or a test action against a test item.

UTP 2 WG

UML Testing Profile 2 (UTP 2), Version 2.0 13

5 Symbols

No special symbols have been used in this specification.

14 UML Testing Profile 2 (UTP 2), Version 2.0

6 Additional Information

6.1 How to read this document

Issue UMLTP2-6

This specification is intended to be read by the audience listed below in order to learn, apply, implement and support

UTP 2. To understand how UTP 2 relates to other testing standards, all readers are encouraged to read Clause 6

(Additional Information). In order to learn more about the conformance of UML and UTP 2 as well as the

compliance levels between the UTP 2 specification and the UTP 2 tool implementation, please read Clause 2

(Conformance). Some references to other standards are listed in Chapter 3 (References). For convenience, Clause 4

(Terms and Definitions) contains a brief summary of the concepts described in more detail in Clause 7

((Informative) Conceptual Model [STUB]).

The definition of the UML Testing Profile itself can be found in the Chapters 7-9. Clause 7 ((Informative)

Conceptual Model [STUB]) starts with the definition of a pure conceptual model of UTP 2 independent of any

implementation measures. The conceptual model is informative (i.e. non-normative) but provides the big picture of

the intended scope of UTP 2. The mapping of the conceptual model to the UML profile specification is described in

Clause 8 (Profile Specification [STUB]). The stereotype mappings abide by the semantics of the conceptual

elements in general. Only additional aspects of the semantics regarding the integration of a stereotype with related

UML metaclasses will be added in Clause 8.

Issue UMLTP2-24

Clause 9 (Model Libraries) describes the predefined UTP 2 model libraries. The UTP Auxiliary Library provides

predefined elements for reuse across multiple modeling projects. The UTP Types Library provides additional types

that have been proven helpful for the definition of tests.

The Annex sections provide further informative material for UTP 2, in particular an examples section that shows

different methodologies how to apply UTP 2 technically and conceptually. The Annex sections are living sections

that means they may change among future versions.

Modeling tool vendors should read the whole document, including the annex chapters. Modelers and engineers are

encouraged to read Annex A to understand how the language is applied to examples.

This document may be read in both sequential and non-sequential manner.

UML Testing Profile 2 (UTP 2), Version 2.0 15

6.2 Typographical conventions

A set of typographical conventions have been applied to the editorial part of this specification that should help the

reader in understanding and relating things to their proper context. These conventions are subsequently explained:

 Concepts of the conceptual model are written in lower letters and colored blue, indicating a link to the

section of the conceptual element. Example: test context

 UML metaclasses start with an upper case letter and are written in camel-case. Example: Constraint,

BehavioredClassifier

 Stereotypes are start with an upper case letter and are written in camel-case, surrounded by guillemets.

Example: «TestContext»

 Properties of metaclasses or tag definitions of stereotypes are stated in italic: Examples:

constrainedElement (from UML metaclass Constraint), arbitrationSpecification (from stereotype

«ProceduralElement»)

 Values of Properties or tagged values of tag definitions are stated italic: Examples: false, true

 OCL constraints as formalization of natural language Constraint descriptions are set in Courier. Example:

context TestComponent:

not self.base_Property.class.getAppliedStereotype('UTP::TestItem')->
oclIsUndefined()

16 UML Testing Profile 2 (UTP 2), Version 2.0

6.3 Typical Use Cases of UTP 2

This section briefly summarizes typical use cases of UML Testing Profile V2 (UTP 2) by means of a simple UML

use case model. It is intended to give the interested reader an initial idea of who and what for UTP 2 may be used in

the context of developing and testing complex systems.

The following use case diagram summarizes typical UTP 2 users and their use cases of UTP 2.

Figure 6.1 - UTP 2 Use Cases

The following table characterizes the users (represented as UML actors) introduced in the diagram above and lists

for each user the use cases related to UTP 2 she or he may directly or indirectly carry-out.

User Type Description Use Cases

UML Testing Profile 2 (UTP 2), Version 2.0 17

Certifier A role of a person responsible for

certifying a safety-critical or mission-

critical system or product.

 check traceability

 review test specifications

Human Test Executor A role of a person responsible for

executing test cases and/or evaluating their

outcomes.

 evaluate test results

 execute test cases

Machine Test Executor A machine or device that executes test

cases and/or evaluates their outcomes.
 evaluate test results

 execute test cases

Product Manager A role of a person having the overall

responsibility for a system or product.
 determine test coverage

 check traceability

 review test specifications

Project Manager A role of a person having the overall

responsibility for the development,

procurement, implementation, or adaption

of a system or product or a part of it.

 determine test coverage

 check traceability

QA Manager A role of a person responsible to guarantee

the appropriate quality of a system or

product.

 determine test coverage

 check traceability

 review test specifications

Requirements Engineer A role of a person responsible for

gathering, expression and managing the

requirements on a system or product.

 design test cases

 design acceptance tests

 design integration tests

 design system tests

 design test cases for a data-

intensive system

 design test data

 design test cases for a system that

includes humans

 design test cases for a system with

time-critical behavior

 design unit tests

 generate test case instances

 review test specifications

 check traceability

System Designer A role of a person that designs, builds,

extends, maintains or updates a system or

product.

 implement automatic test case

execution

 implement onboard test cases

 implement test components

 select test data

System Operator A role of a person that utilizes a system or

product.
 review test specifications

 check traceability

Test Designer A role of a person that designs, builds,

extends, maintains or updates test

specifications of a system.

 design test cases

 design acceptance tests

 design integration tests

 design system tests

 design test cases for a data-

intensive system

 design test data

 design test cases for a system that

includes humans

 design test cases for a system with

time-critical behavior

 design unit tests

 generate test case instances

18 UML Testing Profile 2 (UTP 2), Version 2.0

 design test specifications

 implement automatic test case

execution

 implement onboard test cases

 implement test components

 provide test data

 select test data

 update test specifications

Tool Vendor A role of a person that develops a tool

implementing at least some aspects of the

UTP 2 specification.

 implement tool support for UTP 2

 implement automatic test case

execution

 implement onboard test cases

 implement test components

 select test data

Table 6.1 - Typical UTP 2 Users

The following table briefly describes the use cases introduced in the diagram above.

Use Case Description

check traceability Verification of the traceability between requirements and test cases in order to

determine the coverage of a system by a set of test cases.

design acceptance tests The design of test cases that are used to perform an acceptance test of a system

or product, i.e. that the sponsor/customer may decide on the acceptance of that

system or product.

design integration tests The design of test cases that are used to perform an integration test of a system

or product, i.e. the verification of the interoperability among its internal

components as well as with its environment conforms to its specification.

design system tests The design of test cases that are used to perform a system test of a system or

product, i.e. the verification that the system or product (typically viewed as a

black box) fulfills its requirements.

design test cases The design, elaboration and adaptation of test sets comprising test cases in

order to verify the requirements and/or to validate the goals of a system or

product.

design test cases for a data-

intensive system

The design of test cases for a system whose functionality includes complex

processing of data that is of a highly complex structure and/or of large data

volumes.

design test cases for a system

that includes humans

The design of test cases for a sociotechnical system that includes technical

systems as well as humans collaboratively performing complex processes.

design test cases for a system

with time-critical behavior

The design of test cases for a system that must comply to soft or hard real-time

constraints on its behavior.

design test data The design and production of data that is of a highly complex structure and/or

of large data volumes.

design test specifications The elaboration and compilation of all information necessary for carrying-out

verification and validation procedures of a system or product. This includes

specifying test objectives, test strategies, test procedures, test data, test

configurations, evaluation criteria and more.

design unit tests The design of test cases that are used to perform functional tests of an

individual component of a system or product.

determine test coverage The examination of test sets and test cases with the focus on the coverage

provided by of those test sets and test cases with respect to the requirements

and/or implementation aspects of a system or product in order to determine the

suitability of the test sets and test cases for a given purpose.

evaluate test results The examination of the results of an executed test set or executed test case in

order to determine the verdict of the test set or test case.

UML Testing Profile 2 (UTP 2), Version 2.0 19

execute test cases The manual or automatic execution of test procedures according to a given test

specification composed of sets and/or test cases.

generate test case instances The manual or automatic production of specific test case instances from a

given test specification composed of generic sets and/or test cases.

implement automatic test case

execution

The implementation, provisioning and configuration of test infrastructure

required to perform and evaluate test sets or test cases automatically.

implement onboard test cases The implementation of test components and test procedures as part of a system

or product in order to make it able to perform self-tests while it is in operation.

implement test components The implementation, provisioning and configuration of auxiliary test

components in order to automate or at least to simplify the execution of test

sets or test cases.

implement tool support for UTP

2

The implementation, provisioning or configuration of a tool in order to

supports the utilization of UTP 2. This could e.g. be a UML Profile

implementing UTP 2 for a particular UML modeling tool or a test execution

tool that supports the concepts of UTP 2.

provide test data The provisioning of dedicated data that is used to perform test sets or test

cases.

review test specifications The quality assurance of a particular test specification in order to fulfill given

quality goals.

select test data The selection and potentially transformation of available operational data in

order to use this data during the execution of test sets or test cases.

update test specifications The adaption of test objectives, test strategies, test procedures, test data, test

configurations, evaluation criteria etc. according to changing requirements and

goals of an already existing system or product.

Table 6.2 - Typical UTP 2 Use Cases

6.4 Relation to testing-relevant standards

The landscape of software/system testing standards is diversified. Many domain-specific standards (e.g.,

[IEC61508]) set requirements on how a test process should be conducted. In addition, there are a number of domain-

and methodology-independent testing-relevant standards (e.g., [ISO29119]), to which UTP 2 can define integration

points. In the following section, the specification describes some of these standards and discusses how they can be

integrated with UTP 2.

ISO/IEC/IEEE 29119 Software Testing Standard

The ISO/IEC/IEEE 29119 Software Testing Standard is a family of standards for software testing, which consists of

five parts:

 Concepts and definitions

 Test processes

 Test documentation

 Test techniques

 Keyword-driven testing

[ISO29119] is a conceptual standard, in the sense that it does not define technical solutions, specific languages or

methodologies, in contrast to UTP 2. Instead, [ISO29119] standardizes a number of concepts and definitions, some

of which have been adopted by UTP 2. [ISO29119]-2 specifies the structure of test processes and distinguishes

different levels for test processes: organizational, test management and dynamic test processes. The first two

processes deal with management-related aspects of test processes, and the dynamic test process is mainly about

deriving test cases, implementing and executing test cases and evaluating executed test cases.

UTP 2 is designed to support the dynamic test process. That means, it provides concepts that enable the

derivation/generation, specification, visualization and documentation of test artifacts such as test cases, data, test

configurations, test sets and test contexts. Furthermore, UTP 2 provides necessary concepts to generate [ISO29119]-

3-compliant test reports and documentations out of a UTP 2 model.

20 UML Testing Profile 2 (UTP 2), Version 2.0

A set of standardized test design techniques, such as equivalence partitioning or state-based testing, has been

adopted in [ISO29119]-4 made technically explicit as part of the UTP 2 language. Test engineers can utilize UTP 2

to specify test design techniques to be applied on a certain test design input (e.g., a description of the intended

behavior of the test item, which is represented as a state machine or interaction). In addition to these standardized

test design techniques, test engineers may define additional test design techniques if required.

The relation to [ISO29119]-5, which deals with standardizing the concepts of the keyword-driven testing paradigm,

is of an implicit nature. UTP 2 can be effectively employed to setup and drive keyword-driving testing approaches.

For further information on the relation of UTP 2 to keyword-driven testing see section Relation to keyword-driven

testing.

ISTQB and its glossary

The ISQTB [ISTQB] and its glossary defines a set of globally standardized terminologies and definitions of testing-

related concepts. The ISTQB nomenclature was deemed equally important for the definition of UTP 2 concepts as

the [ISO29119] definitions. Hence, UTP 2 adopted a set of definitions, terminologies and even test design

techniques from the ISTQB glossary and syllabi.

To keep the analogy with [ISO29119], UTP 2 is designed to support activities of test analysis and test design of the

ISTQB fundamental test process. Test implementation and test execution are supported rather indirectly by means of

arbitration specifications, precise semantics of test actions and the definition of test execution schedules.

Test evaluation activities are supported by means of the test logging capability of UTP 2, which enables a system-

independent representation of a test execution. For example, UTP 2 test logs can be exploited for metrics

calculations or supporting other analysis.

ETSI Testing and Test Control Notation 3 (TTCN-3)

ETSI TTCN-3 [ES20187301] standardizes a test programming language and architecture of a test execution system.

It enables a platform-independent implementation of executable test cases. As such, it provides test engineers a set

of language features that has been proven efficient in the development of large and complex test suites for software-

intensive systems of various domains, including telecommunication, transportation, and automotive airborne

software. In addition, TTCN-3 provides concepts that address reusability and simplicity in the specification of large

test suites, such as using wildcard values to ease the definition of expected responses from the test item.

UTP 2, as a successor of UTP 1, is influenced by the capabilities of TTCN-3. UTP 2 adopts some TTCN-3 concepts

such as test components, test configurations and test actions. Moreover, some of the TTCN-3 wildcards definitions

(e.g., regular expression, any value) have been adopted by UTP.

Although UTP 2 defines test cases (due to being dependent on UML) at a much higher level of abstraction than

TTCN-3, it is possible (and has been done in numerous approaches) to generate TTCN-3 modules from UTP 2 test

models.

ETSI Test Description Language (TDL)

The Test Description Language (TDL) standardized by ETSI ([ES20311901], [ES20311902],[ES20311903],

[ES20311904]) is a MOF-based graphical modeling language for describing test scenarios (not test cases) by a

similar notation to Message sequence Charts (MSC) or UML sequence Diagrams (SD). TDL represents the next

generation of testing languages in the ETSI testing technology stack and exploits the advantages of MBT. TDL is

used primarily - but not exclusively - for functional testing. According to ETSI, TDL can bring a number of benefits,

including:

 higher quality tests through better design

 easier to review by non-testing experts

 better, faster test development

 seamless integration of methodology and tools

TDL and UTP 2 share a set of common concepts such as test component, test configuration and procedural

elements. This is partially due to the same origin of TDL and UTP 2: TTCN-3. In that regard the two languages are

UML Testing Profile 2 (UTP 2), Version 2.0 21

compatible. However, UTP 2 has a bigger scope than TDL, which so far mainly focuses on functional testing and

the manual definition of test scenarios. UTP 2 offers several features beyond the capability of TDL, such as

specifying test design techniques and application thereof onto a test design input. UTP 2 offers explicit concepts for

test generation. Another feature of UTP 2 is the flexible handling of arbitration specifications. Finally, UTP 2 offers

concepts to organize testing activities based on test management concepts such as test contexts, which resemble the

semantics of [ISO29119] test process or test sub-process, test types, test objectives and test sets.

22 UML Testing Profile 2 (UTP 2), Version 2.0

6.5 Relation to model-based testing

Model-Based Testing (MBT) is a testing technique that uses models of a software-intensive system under test to

perform certain testing activities such as test analysis, test design and test implementation in both an automated (e.g.,

generation of test cases and data) and manual manner. Such a system under test is called a test item in the context of

the UTP.

The UTP definition of MBT is adopted and slightly adjusted from the [ES202951] definition. "Model-based testing

(MBT) is an umbrella of techniques that uses semi-formal models as engineering artifacts in order to specify and/or

generate testing-relevant artifacts, such as test cases, test scripts, and reports." Other valid definitions of MBT are:

 "Testing based on or involving models" ([ISTQB], Glossary)

 "An umbrella of techniques that generates tests from models" [ES202951]

MBT has been thoroughly investigated in the academic literature and has also been of great interest in a variety of

industry domains [UPL2012], [UL2007]. The idea of MBT is to utilize models (so called test models in the context

of UTP 2) that represent the expected behavior of the test item or test cases of the test item at a higher level of

abstraction. Such abstraction enables test engineers to focus exclusively on the logical aspects of the test item,

instead of being bothered by technical details of the eventual implementation. Low level details of test cases, for

example, syntactical details of a scripting language or completeness of data, can be taken care of by domain specific

generators eventually producing executable test cases, which can finally be executed against the test item.

UTP 2 is an industrial standard that dedicatedly supports MBT by relying on UML. UTP covers a variety of

concepts that are deemed mandatory such test case, data, and Arbitration & verdict. It also dedicatedly and

exclusively defines concepts to govern the derivation of test-relevant information (such as test cases, data etc.) by

means of test directives and test design techniques. Additionally, it also provides a few test management-related

concepts that are required for defining complete test specification documents (compatible with [ISO29119]) such as

test contexts (called test process/test sub-process in [ISO29119]), test level, test type and test logs.

UTP 2 is agnostic of any MBT methodology, and thus, supports a variety of MBT approaches. Some of the key

aspects include: 1) Modeling test cases for a test item using stereotypes from the profile; 2) Modeling the expected

behavior of the test item for test derivation using stereotypes from the profile; 3) Modeling test case specifications in

domain specific languages implementing UTP.

Based on the philosophy of (test) modeling, UTP allows creating test models at various levels of abstraction ranging

from test models that have no concrete data, test models that have some data, and test models that have all concrete

data available.

6.6 Relation to keyword-driven testing

Keyword-driven testing (KDT) is an industrial de-facto standard that is suitable for both manual and automated test

execution. KDT methodologies define logical functions that can be performed on the test item in an implementation-

independent format (i.e., keyword) at a higher level of abstraction. Keywords are used to design so called keyword

test cases (see [ISO29119]-5). In order to execute the keyword test cases against the test item, it is required that

implementations of the keywords can be executed by a keyword-based test execution system. Keyword

implementations are usually organized in a test library. The keyword-based test execution system is responsible to

establish a connection between the keyword implementations and the actual implementation of the test item, run

keyword test cases, and execute the keyword implementations against the actual implementation of the test item.

In the literature, there exist a number of keyword-driven testing frameworks. For example, Tang et al. [TCM2008]

proposed a keyword-driven testing framework to transform keyword-based test cases into different kinds of test

scripts. Hametner et al. [HWT2012] proposed a keyword-driven testing approach to specify keyword test cases in a

high abstraction level, as tabular format using predefined keywords, and automatically generated executable test

cases from the keyword test case. There are a number of commercial and open source tools available for KDT.

UTP 2 is defined to facilitate MBT but it does not explicitly cope with the design and implementation of test

execution systems. However, UTP 2 defines concepts such as, abstract test cases and data specification explicitly to

enable automated generation of concrete test cases and data from abstract ones. This idea conforms to the idea of

UML Testing Profile 2 (UTP 2), Version 2.0 23

KDT in terms of raising the level of abstractions by defining keyword test cases.

Keywords can be represented by numerous concepts of the underlying UML within UTP 2. For example, Operations

of Interfaces may be interpreted as the logical functions that can be performed on the test item. Additionally, UTP 2

can be used to define or generate test cases that are based on these UML-based keyword representations. UML

behaviors such as Activities or Interactions are suitable means to represent keywords in test cases in UTP 2, which

are eventually exported into the keyword format required by the utilized keyword-based test execution system. As

such, UTP 2 is suitable to be used as a standardized and visual language for keywords and keyword test cases.

UTP 2 could even go one step further. Due to the fact that UTP 2 is based on UML, it is even possible to provide an

executable specification of the test library (i.e., the implementation of a keyword) by means of other standards such

as fUML.

As a summary, UTP 2 can be efficiently leveraged as the language for the (automated or manual) design,

visualization, documentation and communication of keywords, keyword test cases and even implementations

thereof.

6.7 Relation to the MARTE Profile

Modeling and Analysis of Real-Time and Embedded Systems (MARTE) is a UML profile that is specifically

designed for modelling and supporting analyses (e.g., performance and schedulability) for real-time and embedded

systems. MARTE is developed to replace its predecessor UML profile, i.e., the UML profile for the Schedulability,

Performance, and Time specification (SPTP).

At a very high level, the MARTE profile is organized into four main packages: MARTE foundations, MARTE

design model, MARTE analysis model, and MARTE annexes including: MARTE model libraries, Value

Specification Language, and Repetitive Structure Modeling. Out of these four packages MARTE analysis model is

outside the scope of UTP since it doesn’t aim to support analyses such as performance and schedulability but rather

focuses on the test case generation. Nonetheless, UTP may be used for supporting model-based performance and

schedulability testing and such modelling can be supported with MARTE foundation package on which MARTE

analysis model relies on.

The most relevant packages for UTP from MARTE include Non-Functional Properties Modeling (NFP), Time

Modelling (Time), and MARTE Library. The NFP package provides a generic framework for modelling NFPs using

UML modeling elements. The package defines stereotypes such as «Nfp» to define new NFPs for a particular

application and «Unit» for defining new measurement units by extending the existing ones provided in the MARTE

model library such as TimeUnitKind and PowerUnitKind. Notice that NFPs defined in MARTE can be used

together with UTP to support test case generation.

The Time package is specifically designed for modelling time and its related concepts specifically for real-time and

embedded systems. Since Time and behavior are tightly coupled, MARTE’s Time modelling can be used in

conjunction with the UTP for supporting model-based testing of real-time embedded software/system with a focus

on time behavior. The extensive model library of MARTE provides extended basic data types such as Real and

DateTime and a rich collection of operations on them. In addition, it also provides a wide variety of measurement

units such as TimeUnitKind and LengthUnitKind, general data types such as IntegerVector and IntegerInterval,

predefined data types such as NFP_Percentage and NFP_DataSize and TimeLibrary supporting modelling such as

logical and ideal clocks. These types can be used for modelling test items and test components that require extended

data types rather than the basic data types supported by the UML. In addition, the modelling support for a variety of

clocks, i.e., logical and ideal clocks, can be used for modelling complex time behavior of test items and test

components.

24 UML Testing Profile 2 (UTP 2), Version 2.0

6.8 Acknowledgements

The following OMG member organizations submitted this specification (in alphabetic order):

 Fraunhofer FOKUS, Germany.

 SOFTEAM, France.

The following OMG and non-OMG member organizations supported this specification (in alphabetic order):

 PTC Inc., United Kingdom and USA.

 Hamburg University of Applied Science, Germany.

 KnowGravity Inc., Switzerland.

 Grand Software Testing, USA.

 SELEX ES, Italy.

 Simula Research Lab, Norway.

Special Acknowledgments

The following persons were members of the core teams that contributed to the content of this document (in

alphabetic order):

 Shaukat Ali, shaukat@simula.no

 Alessandra Bagnato, alessandra.bagnato@softeam.fr

 Etienne Brosse, etienne.brosse@softeam.fr

 Gabriella Carrozza, gcarrozza@sesm.it

 Zhen Ru Dai, dai@informatik.haw-hamburg.de

 Rolf Gubser, rolf.gubser@knowgravity.com

 Jon D. Hagar, embedded@ecentral.com

 Andreas Hoffmann, andreas.hoffmann@fokus.fraunhofer.de

 Andreas Korff, akorff@ptc.com

 Markus Schacher, markus.schacher@knowgravity.com

 Ina Schieferdecker, ina.schieferdecker@fokus.fraunhofer.de

 Marc-Florian Wendland, marc-florian.wendland@fokus.fraunhofer.de

 Tao Yue, tao@simula.no

UML Testing Profile 2 (UTP 2), Version 2.0 25

7 (Informative) Conceptual Model

7.1 General

This section is informative, i.e. non-normative and not relevant for actual profile implementations. However, it is

included here to help the reader to get a better understanding of the concepts behind UTP 2. This section illustrates

some of the semantics for the concepts defined in this document by means of a pragmatic application of the OMG

specification "Semantics of Business Rules and Vocabularies" [SBVR]. This pragmatic application of SBVR

includes the following:

 A number of concept diagrams visualize the concepts as well as their interrelationships (in SBVR called

"verb concepts") organized around different subject areas. Furthermore, any SBVR definitional rule related

to the concepts shown is also visualized on the diagram.

 For each concept diagram, the rule statements of each definitional rule shown are listed. The styling of

those rule statements is simplified compared to [SBVR] in the sense that no colors/formatting is used. The

only styling that is shown is that concepts defined within the document are shown underlined and represent

an intra-document hyperlink.

 For each concept diagram, the semantics of each concept shown on the diagram is defined, usually by

means of an intensional definition as suggested by [ISO1087-1]. Here underlined words also represent

hyperlinks to the mentioned concepts. When defined, additional properties of concepts such as synonyms,

examples, generalizations, specialization, etc. are also listed. Furthermore, for each concept the source of

its definition is specified.

7.2 Test Planning

7.2.1 Test Analysis

7.2.1.1 Test Context Overview
The following concept diagram represents important semantic aspects of test context and associated other concepts

such as test set, test case, data and test design input.

A test context is defined as a hub for information that specifies test type, test level, prescribes test design technique,

and refers to data, data pool, test design input, arbitration specification, test set and test case. A test context also

refers to other important test model elements, such as the set of test cases, data and the test design input. A test

context also provides information for test management, where planning and strategies for the test are defined.

26 UML Testing Profile 2 (UTP 2), Version 2.0

Figure 7.1 - Test Context Overview

Definitional Rules shown on "Test Context Overview"

Name Rule statement

DRTA01 It is necessary that each test context specifies at most one test level.

DRTA02 It is necessary that each test context specifies at most one test type.

DRTA03 It is necessary that each test set refers to at most one arbitration specification.

Table 7.1 - Structural rules shown on Test Context Overview

7.2.1.2 Test Requirement and Test Objective Overview
The following concept diagram represents important semantic aspects of test objectives and test requirements and

how they relate to requirements on a system to be tested.

A test requirement is designed to meet test objectives and test context specifies test objectives. A test case is

designed to meet one or more test objectives and thus the test case must satisfy the associated test requirements of

test objectives. In other words, a test objective specifies the goal of a test case and is defined for a certain test

context. A test objective is realized by test requirement and implemented by test cases.

The diagram below also shows how test requirements are related to concepts in [SysML]. A test requirement refers to

system specification item and associated with requirements of the system. A requirement is further specialized into

functional requirement and non-functional requirement.

UML Testing Profile 2 (UTP 2), Version 2.0 27

Figure 7.2 - Test Requirement and Test Objective Overview

7.2.1.3 Concept Descriptions

Issue UMLTP2-1

test context

Definition A set of information that is prescriptive for testing activities which can be

organized and managed together for deriving or selecting test objectives, test

design techniques, test design inputs and eventually test cases.

Examples acceptance test, smoke test, system test, ...

Source UTP 2 WG

test level

Definition A specification of the boundary of a test item that must be addressed by a

specific test context.

Examples integration test, system test, component test, ...

Source UTP 2 WG

Issue UMLTP2-6

test objective

Definition A desired effect that a test case or test set intends to achieve.

Examples Provision of information about the qualities of the product to a

certification authority or other stakeholders

 Provision of information that the product has met stakeholder

expectations

 Provision of information that requirements of a product are fulfilled

(i.e. regulatory, design, contractual, etc.)

Source UTP 2 WG

28 UML Testing Profile 2 (UTP 2), Version 2.0

test requirement

Definition A desired property on a test case or test set, referring to some aspect of the test

item to be tested.

Synonyms test condition

Examples Test case must ensure 80% path coverage of use case XY.

 Test case must check that an IPv6 multicast message is carried out over

a GeoBroadcast message into the correct geographical area, with a GVL

manually configured.

Source UTP 2 WG

Is a requirement

test set

Definition A set of test cases that share some common purpose.

Source UTP 2 WG

test set purpose

Definition A statement that explains the rationale for grouping test cases together.

Source UTP 2 WG

test type

Definition A quality attribute of a test item that must be addressed by a specific test context.

Examples functionality test, usability test, conformance test, interoperability test,

performance test, ...

Source UTP 2 WG

7.2.2 Test Design

7.2.2.1 Test Design Facility Overview
The following diagram summarizes the concepts of UTP 2 test design facility. The test design facility enables the

specification of test design techniques that must be applied on a test design input in order to derive test artifacts such

as test sets, test cases, test configurations, required data or test execution schedules. Whether the test derivation

process according to the specified test design techniques is carried out manually or automatically does not matter

whatsoever. Such test design techniques are assembled and governed by a test design directive. Thus, the test design

directive is a specification of the capabilities a test designing entity (e.g. a human tester or test generator) must offer

in order to perform the derivation activities according to the assembled test design techniques. The UTP 2 test

design facility is agnostic of any implementation- or tool-specific details and simply offers the ability to describe,

select and extend the set of potentially available and applicable test design techniques.

UML Testing Profile 2 (UTP 2), Version 2.0 29

Figure 7.3 - Test Design Facility Overview

7.2.2.2 Concept Descriptions
test design directive

Definition A test design directive is an instruction for a test designing entity to derive test

artifacts such as test sets, test cases, test configurations, data or test execution

schedules by applying test design techniques on a test design input. The set of

assembled test design techniques are referred to as the capabilities a test

designing entity must possess in order to carry out the test design directive,

regardless whether it is carried out by a human tester or a test generator. A test

design directive is a means to support the achievement of a test objective.

Source UTP 2 WG

test design input

Definition Any piece of information that must or has been used to derive testing artifacts

such as test cases, test configuration, and data.

Examples a state machine specifying some expected behavior of the test item used to

derive some test cases, a requirements catalog used to derive some test cases, ...

Source UTP 2 WG

Is a model

test design technique

Definition A specification of a method used to derive or select test configurations, test cases

and data. test design techniques are governed by a test design directive and

applied to a test design input. Such test design techniques can be monolithically

applied or in combination with other test design techniques. Each test design

technique has clear semantics with respect to the test design input and the

artifacts it derives from the test design input.

Examples equivalence testing, structural coverage,

Source UTP 2 WG

30 UML Testing Profile 2 (UTP 2), Version 2.0

7.3 Test Architecture

7.3.1 Test Architecture Overview
The following concept diagram represents important semantic aspects in the context of test configuration and

associated other concepts such as test component, test items and test cases. A test case relies on at least one test

configuration to execute. A test configuration specifies how the test item and test components are interconnected and

what configuration data are needed. Configuration data are specified as part of the test item configuration and test

component configuration for the test item and each test component.

We explicitly classify test configuration into two categories: abstract test configuration and concrete test

configuration such that enabling the generation of concrete test configurations from an abstract test configuration

would be possible.

Figure 7.4 - Test Architecture Overview

Definitional Rules shown on "Test Architecture Overview"

Issue UMLTP2-12

Name Rule statement

DRTR01 It is necessary that each test item configuration specifies the configuration of at least one test

item.

DRTR02 It is necessary that each test component configuration specifies the configuration of at least one

test component.

Table 7.2 - Structural rules shown on Test Architecture Overview

7.3.2 Concept Descriptions
abstract test configuration

Definition A test configuration that specifies the test item, test components and their

interconnections as well as configuration data that should be abstract test data.

Source UTP 2 WG

Is a test configuration

UML Testing Profile 2 (UTP 2), Version 2.0 31

artifact

Definition An object produced or modified during the execution of a process.

Synonyms work product

Examples Software XY.

 Software Requirements Specification.

 Coffee machine.

 Coffee bean.

Source UTP 2 WG

concrete test configuration

Definition A test configuration that specifies the test item, test components and their

interconnections as well as configuration data that should be concrete data.

Source UTP 2 WG

Is a test configuration

test component

Definition A role of an artifact within a test configuration that is required to perform a test

case.

Examples A test driver

 A test stub

 Coffee machine that grinds the coffee beans to be tested.

Source UTP 2 WG

Sub categories data provider

Is role of artifact

test component configuration

Definition A set of configuration options offered by an artifact in the role of a test

component chosen to meet the requirements of a particular test configuration.

Source UTP 2 WG

Issue UMLTP2-1

test configuration

Definition A specification of the test item and test components as well as their

interconnection and configuration data.

Source UTP 2 WG

Sub categories abstract test configuration

 concrete test configuration

test item

Definition A role of an artifact that is the object of testing within a test configuration.

Synonyms System Under Test, SUT

Examples Software XY to be tested.

 Software Requirements Specification to be reviewed.

 Coffee machine to be tested.

 Coffee beans to be tested.

Abbreviation SUT

Source UTP 2 WG

Is role of artifact

test item configuration

Definition A set of configuration options offered by an artifact in the role of a test item

chosen to meet the requirements of a particular test configuration.

32 UML Testing Profile 2 (UTP 2), Version 2.0

Source UTP 2 WG

7.4 Test Behavior

7.4.1 Test Cases

7.4.1.1 Test Case Overview
The following concept diagram represents important semantic aspects in the context of what a test case is and what

its components are. A test case invokes a test procedure describing the execution order of individual test actions (not

shown here, see Test Procedures and Test-specific Actions for details). A test case is specialized into abstract test

case and concrete test case depending on the availability of data. If all the data required for a test case is available, it

is classified as a concrete test case and abstract test case otherwise.

As shown in Test Context Overview, test cases may be grouped into test sets. A test execution schedule prescribes

execution order of this set of test cases. All, test cases, test procedure, and test execution schedule may require a

preconditon and may guarantee a postcondition, each of which play the role of boolean expression.

Figure 7.5 - Test Case Overview

Definitional Rules shown on "Test Case Overview"

Name Rule statement

DRTC01 It is necessary that each test case invokes at least one test procedure.

DRTC02 It is necessary that each test execution schedule requires at most one preconditon.

DRTC03 It is necessary that each test case requires at most one preconditon.

DRTC04 It is necessary that each test procedure requires at most one preconditon.

DRTC05 It is necessary that each test execution schedule guarantees at most one postcondition.

DRTC06 It is necessary that each test case guarantees at most one postcondition.

DRTC07 It is necessary that each test procedure guarantees at most one postcondition.

DRTC08 It is impossible that a test execution schedule invokes a test procedure.

Table 7.3 - Structural rules shown on Test Case Overview

UML Testing Profile 2 (UTP 2), Version 2.0 33

7.4.1.2 Concept Descriptions
abstract test case

Definition A test case that declares at least one formal parameter.

Source UTP 2 WG

Is a test case

boolean expression

Definition An expression that may be evaluated to either of these values: "TRUE" or

"FALSE".

Synonyms predicate

Source UTP 2 WG

concrete test case

Definition A test case that declares no formal parameter.

Source UTP 2 WG

Is a test case

postcondition

Definition A boolean expression that is guaranteed to be True after a test case execution has

been completed.

Source UTP 2 WG

Is role of boolean expression

preconditon

Definition A boolean expression that must be met before a test case may be executed.

Source UTP 2 WG

Is role of boolean expression

test case

Definition A procedure that includes a set of preconditions, inputs and expected results,

developed to drive the examination of a test item with respect to some test

objectives.

Source UTP 2 WG

Is a procedure

Sub categories abstract test case

 concrete test case

test execution schedule

Definition A procedure that constrains the execution order of a number of test cases.

Source UTP 2 WG

Is a procedure

7.4.2 Test-specific Procedures

7.4.2.1 Test Procedures
The following concept diagram represents important semantic aspects of procedures as they are used in UTP. UTP

distinguishes three different types of procedures: test execution schedules, test cases and test procedures, which are

all special forms of procedures. In general, procedures may invoke other procedures. Furthermore, all procedures

may declare one or more formal parameters which are replaced by actual parameters upon procedure invocation.

A procedure prescribes the execution order of a set of procedural elements, which are either atomic procedural

elements (such as procedure invocations or individual test actions) or compound procedural elements. A compound

34 UML Testing Profile 2 (UTP 2), Version 2.0

procedural element is a container that groups a set of procedural elements into sequences, loops, and other control

structures.

Any procedural element may be constrained by time which is expressed by its possible fact statements of time points

and durations. A procedural element may be constrained on when it is to be performed as well as how long it is to be

performed by the tester.

Issue UMLTP2-24

Figure 7.6 - Test Procedures

Definitional Rules shown on "Test Procedures"

Name Rule statement

DRTP01 It is necessary that the PE start duration of a procedural element is smaller than the PE end

duration of the same procedural element.

DRTP02 It is necessary that each procedure prescribes the execution order of at least one procedural

element.

DRTP03 It is necessary that each test procedure prescribes the execution order of at least one test action.

DRTP04 It is necessary that each test case invokes at least one test procedure as a main procedure

invocation.

Table 7.4 - Structural rules shown on Test Procedures

UML Testing Profile 2 (UTP 2), Version 2.0 35

7.4.2.2 Concept Descriptions
actual parameter

Definition A concrete value that is passed over to the procedure and replaces the formal

parameter with its concrete value.

Source UTP 2 WG

alternative

Definition A compound procedural element that executes only a subset of its contained

procedural elements based on the evaluation of a boolean expression.

Source UTP 2 WG

Is a compound procedural element

atomic procedural element

Definition A procedural element that cannot be further decomposed.

Source UTP 2 WG

Is a procedural element

Sub categories procedure invocation

 test action

compound procedural element

Definition A procedural element that can be further decomposed.

Source UTP 2 WG

Is a procedural element

Sub categories alternative

 loop

 negative

 parallel

 sequence

duration

Definition The duration from the start of a test action until its completion.

Source UTP 2 WG

Is a duration

formal parameter

Definition A placeholder within a procedure that allows for execution of the procedure with

different formal parameters that are provided by the procedure invocation.

Source UTP 2 WG

loop

Definition A compound procedural element that repeats the execution of its contained

procedural elements.

Source UTP 2 WG

Is a compound procedural element

main procedure invocation

Definition A procedure invocation that is considered as the main part of a test case by the

test case arbitration specification.

Source UTP 2 WG

Is a procedure invocation

negative

Definition A compound procedural element that prohibits the execution of its contained

36 UML Testing Profile 2 (UTP 2), Version 2.0

procedural elements in the specified structure.

Source UTP 2 WG

Is a compound procedural element

parallel

Definition A compound procedural element that executes its contained procedural elements

in parallel to each other.

Source UTP 2 WG

Is a compound procedural element

PE end duration

Definition The duration between the end of the execution of a procedural element and the

end of the execution of the subsequent procedural element.

Source UTP 2 WG

Is role of duration

PE start duration

Definition The duration between the end of the execution of a procedural element and the

beginning of the execution of the subsequent procedural element.

Source UTP 2 WG

Is role of duration

procedural element

Definition An instruction to do, to observe, and/or to decide.

Source UTP 2 WG

Sub categories atomic procedural element

 compound procedural element

procedure

Definition A specification that constrains the execution order of a number of procedural

elements.

Source UTP 2 WG

Sub categories test case

 test execution schedule

 test procedure

Issue UMLTP2-24

procedure invocation

Definition An atomic procedural element of a procedure that invokes another procedure and

waits for its completion.

Source UTP 2 WG

Is a atomic procedural element

Sub categories main procedure invocation

 setup procedure invocation

 teardown procedure invocation

sequence

Definition A compound procedural element that executes its contained procedural elements

sequentially.

Source UTP 2 WG

Is a compound procedural element

UML Testing Profile 2 (UTP 2), Version 2.0 37

setup procedure invocation

Definition A procedure invocation that is considered as part of the setup by the arbitration

specification and that is invoked before any main procedure invocation.

Source UTP 2 WG

Is a procedure invocation

teardown procedure invocation

Definition A procedure invocation that is considered as part of the teardown by the

responsible arbitration specification and that is invoked after any main procedure

invocation.

Source UTP 2 WG

Is a procedure invocation

test procedure

Definition A procedure that constrains the execution order of a number of test actions.

Source UTP 2 WG

Is a procedure

time point

Definition The time point at which a test action is initiated.

Source UTP 2 WG

Is a time point

7.4.3 Test-specific Actions

7.4.3.1 Overview of test-specific actions
The following concept diagram represents important semantic aspects of test actions as parts of test procedures. A

test action is a specialization of an atomic procedural element and is to be interpreted as an instruction to the tester

responsible for executing a test case. Any test action leads to a procedural element verdict (i.e., influences the final

test case verdict).

Most test actions check certain aspects of the test item. The most important aspects of the test item are its observable

behavior (i.e., its responses) and its measurable properties.

38 UML Testing Profile 2 (UTP 2), Version 2.0

Figure 7.7 - Overview of test-specific actions

Definitional Rules shown on "Overview of test-specific actions"

Name Rule statement

DRTA01 It is necessary that a create stimulus action permits to send at least one stimulus.

DRTA02 It is necessary that a expect response action expects to receive at least one response.

DRTA03 It is necessary that a check property action checks at least one property of the test item against

the data.

Table 7.5 - Structural rules shown on Overview of test-specific actions

7.4.3.2 Concept Descriptions
check property action

Definition A test action that instructs the tester to check the conformance of a property of

the test item and to set the procedural element verdict according to the result of

this check.

Source UTP 2 WG

Is a test action

create log entry action

Definition A test action that instructs the tester to record the execution of a test action,

potentially including the outcome of that test action in the test case log.

UML Testing Profile 2 (UTP 2), Version 2.0 39

Source UTP 2 WG

Is a test action

create stimulus action

Definition A test action that instructs the tester to submit a stimulus (potentially including

data) to the test item.

Source UTP 2 WG

Is a test action

expect response action

Definition A test action that instructs the tester to check the occurrence of one or more

particular responses from the test item within a given time window and to set the

procedural element verdict according to the result of this check.

Source UTP 2 WG

Is a test action

property

Definition A basic or essential attribute shared by all members of a class of test items.

Source UTP 2 WG

response

Definition A set of data that is sent by the test item to its environment (often as a reaction to

a stimulus) and that is typically used to assess the behavior of the test item.

Source UTP 2 WG

stimulus

Definition A set of data that is sent to the test item by its environment (often to cause a

response as a reaction) and that is typically used to control the behavior of the

test item.

Source UTP 2 WG

suggest verdict action

Definition A test action that instructs the tester to suggest a particular procedural element

verdict to the arbitration specification of the test case for being taken into

account in the final test case verdict.

Source UTP 2 WG

Is a test action

test action

Definition An atomic procedural element that is an instruction to the tester that needs to be

executed as part of a test procedure of a test case within some time frame.

Synonyms test step

Source UTP 2 WG

Is a atomic procedural element

Sub categories check property action

 create log entry action

 create stimulus action

 expect response action

 suggest verdict action

40 UML Testing Profile 2 (UTP 2), Version 2.0

7.5 Test Data

7.5.1 Test Data Concepts
The following concept diagram represents important semantic aspects of test data. Test data or more generally just

data may be modeled at two different levels:

 Extensional level: model elements that actually represent some data composed as a set of individual data

items

 Intensional level: model elements that specify some criteria that some data must comply with, i.e. the

specification of the meaning of data

At the extensional level data always represents a specific set of data items and is covered by concepts such as data

pool, actual data pool, and data partition. The concepts data pool and actual data pool represent containers of data, the

former is a logical container, the latter a physical container such as a concrete database. A data partition represents a

subset of another set of data items in which all data item are conformant to a particular data specification.

In contrast, at the intensional level data is represented by a boolean expression that may be used to qualify data items

as member of data, i.e. it represents the intended meaning of data and is covered by concepts such as data specification,

data type, and constraint. A data specification is composed of a basic data type plus a set of constraints on that data

type. The entire concept of a data specification may be considered as a category in the sense of "Category Theory" in

mathematics (see for example [WikiCT] or [SEP2014a]). Thus, two data specifications might be interpreted as

categories that are related to each other by means of different dependencies called "morphisms". These may be

considered as structure-preserving maps supporting the following three informal semantics:

 A morphism of type "extension" increases the amount of data, i.e. they add more data items to a given set of

data items

 A morphism of type "refinement" decreases the amount of data, i.e. they remove data items from a given set

of data items

 A morphism of type "complement" inverts data, i.e. it replaces the data items of a given set of data items by

their opposites.

A data provider is a test component that is able to deliver (i.e. either select and/or generate) data according to a data

specification.

In the context of a test case, different places of a test case typically refer to different levels of test data

 test cases typically refer to data used as preconditions as well as data to be supplied with stimuli to be sent

to the test item

 test cases typically refer to data specifications in postconditions or data returned by responses in order to

determine or influence the verdict of the test case.

UML Testing Profile 2 (UTP 2), Version 2.0 41

Figure 7.8 - Test Data Concepts

Definitional Rules shown on "Test Data Concepts"

Name Rule statement

DRTD01 It is necessary that each data specification specifies at least one data type.

DRTD02 It is necessary that each data specification specifies at least one constraint.

DRTD03 It is necessary that a morphism emanates from exactly one data specification.

DRTD04 It is necessary that a morphism targets exactly one data specification.

DRTD05 It is necessary that each data provider provides data according to at least one data specification.

Table 7.6 - Structural rules shown on Test Data Concepts

7.5.2 Concept Descriptions
actual data pool

Definition A specification of an actual implementation of a data pool.

Examples the specification of the database of type "Customers" on disk DK13 on

machine XYZ.

Source UTP 2 WG

Is a data pool

complement

Definition A morphism that inverts data)i.e., that replaces the data items of a given set of

data items by their opposites).

Source UTP 2 WG

Is a morphism

constraint

Definition An assertion that indicates a restriction that must be satisfied by any valid

realization of the model containing the constraint.

Source [UML]

42 UML Testing Profile 2 (UTP 2), Version 2.0

data

Definition A usually named set of data items.

Synonyms concrete data

Examples 42.

 "John".

 "Some people": {"John", "Greg", "Barb", "Aline"}

 "Example customer": Sherlock Holmes, living at Baker Street in

London

 The contents of a database "CUST-PRD" containing customers.

Source UTP 2 WG

Sub categories data pool

Is instance of data structure

data item

Definition Either a value or an instance.

Source UTP 2 WG

data partition

Definition A role that some data plays with respect to some other data (usually being a

subset of this other data) with respect to some data specification.

Source UTP 2 WG

Is role of data

data pool

Definition Some data that is an explicit or implicit composition of other data items.

Examples the specification of a database type named "Customers"

Source UTP 2 WG

Is a data

Sub categories actual data pool

data provider

Definition A test component that is able to deliver (i.e., either select and/or generate) data

according to a data specification.

Source UTP 2 WG

Is a test component

data specification

Definition A named boolean expression composed of a data type and a set of constraints

applicable to some data in order to determine whether or not its data items

conform to this data specification.

Synonyms abstract data

Examples 40...50.

 "Jo(h)?n".

 "odd numbers", i.e. numbers where self mod 2 = 1

 "right-angled triangles", i.e. triangles where a^2 + b^2 = c^2

 "young, German-speaking customers" i.e., customers, where language=

'German' and age < 18

 any/all/295 customers having the forename "John" and living in

London.

Source UTP 2 WG

Sub categories data type

UML Testing Profile 2 (UTP 2), Version 2.0 43

data type

Definition A type whose instances are identified only by their value.

Source [UML]

Is a data specification

extension

Definition A morphism that increases the amount of data (i.e., that adds more data items to

a given set of data items).

Source UTP 2 WG

Is a morphism

morphism

Definition A structure-preserving map from one mathematical structure to another.

Source [WikiM]

Sub categories complement

 extension

 refinement

refinement

Definition A morphism that decreases the amount of data (i.e., that removes data items

from a given set of data items).

Source UTP 2 WG

Is a morphism

7.6 Test Evaluation

7.6.1 Arbitration Specifications

7.6.1.1 Arbitration & Verdict Overview
The following concept diagram represents important semantic aspects of verdicts and how they are derived.

An arbitration specification is defined as a set of rules that should be followed to determine the instance of a verdict

of an executed test case. An arbitration specification should be specified for a procedure which describes the

behavior of test case (test procedure) or a test execution schedule (associated to the execution of a set of test cases).

An arbitration specification calculates a verdict which can be Fail, Pass, Inconclusive and None.

44 UML Testing Profile 2 (UTP 2), Version 2.0

Issue UMLTP2-14

Figure 7.9 - Arbitration & Verdict Overview

Definitional Rules shown on "Arbitration & Verdict Overview"

Name Rule statement

DRAS01 It is necessary that an arbitration specification determines exactly one verdict.

DRAS02 It is necessary that a arbitration specification determines exactly one of a test set verdict, a test

case verdict or a procedural element verdict.

DRTA03 It is necessary that each test set refers to at most one arbitration specification.

DRTC09 It is necessary that each test case refers to at most one arbitration specification.

Table 7.7 - Structural rules shown on Arbitration & Verdict Overview

7.6.1.2 Concept Descriptions
arbitration specification

Definition A set of rules that calculates the eventual verdict of an executed test case, test set

or procedural element.

Source UTP 2 WG

Error

Definition An indication that an unexpected exception has occurred while executing a

specific test set, test case, or test action.

Source UTP 2 WG

Is instance of verdict

Fail

Definition A verdict that indicates that the test item did not comply with the expectations

defined by a test set, test case, or test action during execution.

Source UTP 2 WG

Is instance of verdict

Issue UMLTP2-14

Inconclusive

Definition A verdict that indicates that the compliance of a test item against the

expectations defined by a test set, test case, or test action could not be

determined during execution.

UML Testing Profile 2 (UTP 2), Version 2.0 45

Source UTP 2 WG

Is instance of verdict

None

Definition A verdict that indicates that the compliance of a test item against the

expectations defined by a test set, test case, or test action has not yet been

determined (i.e., it is the initial value of a verdict when a test set, test case, or test

action was started).

Source UTP 2 WG

Is instance of verdict

Pass

Definition A verdict that indicates that the test item did comply with the expectations

defined by a test set, test case, or test action during execution.

Source UTP 2 WG

Is instance of verdict

procedural element verdict

Definition A verdict that indicates the result (i.e., the conformance of the actual properties

of the test item with its expected properties) of executing a test action on a test

item.

Source UTP 2 WG

Is a verdict

test case verdict

Definition A verdict that indicates the result (i.e., the conformance of the actual properties

of the test item with its expected properties) of executing a test case against a

test item.

Source UTP 2 WG

Is a verdict

test set verdict

Definition A verdict that indicates the result (i.e., the conformance of the actual properties

of the test item with its expected properties) of executing a test set against a test

item.

Source UTP 2 WG

Is a verdict

verdict

Definition A statement that indicates the result (i.e., the conformance of the actual

properties of the test item with its expected properties) of executing a test set, a

test case, or a test action against a test item.

Source UTP 2 WG

Sub categories procedural element verdict

 test case verdict

 test set verdict

Instances Pass

 Inconclusive

 None

 Error

 Fail

46 UML Testing Profile 2 (UTP 2), Version 2.0

7.6.2 Test Logging

7.6.2.1 Test Log Overview
As defined by [ISTQB] a test log is “a chronological record of relevant details about the execution of tests” and as

such is an important means for test evaluation and reporting activities. Thus, the purpose of the UTP 2 test logging

facility is twofold:

1.) It helps establish a trace link between a test case or an entire test set and one or potentially more executions

thereof. Essential information of a test log are, for example, the date and the duration when the corresponding test

case was executed; the executing entity (i.e., a human tester or automated test execution system) or entities (in some

domains it is not uncommon that test cases are executed over several days by potentially more than one executing

entity), and finally, the test case verdict. These so called test log header information are the minimal required

information in order to achieve full traceability between test objectives, test requirements, test cases/test sets and

finally the execution thereof. Full traceability among those artifacts enables the computation of test metrics such as

the status of test execution (how many test cases have eventually been executed at a certain point in time), coverage

of requirements (not part of UTP), test requirements or test objectives, etc.

2.) It supports a deeper analysis of what was going on during the execution of a test case or test set. Since the

execution of test case or test set is a transient set of test actions performed by an executing entity against the test

item, the capturing of detailed information about the performed test actions in a test log is the only way for a

stakeholder, usually a test analyst or test manager, to be able to comprehend what has really happened during

execution without being part of the executing entities. Such a chronological record of detailed information of an

executed test case or test set is in UTP 2 called test log body information. They optionally supplement the test log

header information of UTP.

Since the understanding of what information is really relevant during the execution of a test case or test set heavily

depends on domain- and/or project-specific requirements, UTP 2 enables the definition of user-defined test log

structures that specify what information or data deemed relevant in the respective (test) context and additionally the

minimal required header information mentioned above.

Representing test logs on model level contributes to a harmonized and homogeneous view on relevant test log

information in the dynamic test process. Usually, a test execution toolscape comprises more than just one tool. Tools

for functional testing might be complemented by specialized tools such as those for performance testing (stress, load

etc.), security testing or UI testing. The test logs of such heterogeneous toolscapes are basically heterogeneous, too.

Thus, a comprehensive, detailed analysis (e.g., for the calculation of metrics over tools etc.) requires access to the

proprietary structures of each tool’s test log format. The UTP 2 test logging facility mitigates the heterogeneity of

test logs by offering an extensible framework to describe arbitrary complex and structured test log formats. The

following use cases depict the scenarios the UTP 2 test logging facility was intended to cope with:

UML Testing Profile 2 (UTP 2), Version 2.0 47

Figure 7.10 - Use Cases of UTP 2 test logging Facility

The use case “Specify test log structure” enables testers to specify which information is deemed relevant during the

execution of in the given test process in addition to the predefined minimal required information. If no additional

information is desired, the tester can rely on the implicit default test log structure. This ensures that testers can

employ the UTP 2 test logging facilities immediately out of the box.

The use case “Capture test log information” is about capturing the information deemed as relevant that actually

appeared during the execution of a test case, test set or even a test action in accordance with the test log structure.

Incorporating the test log header information is mandatory, while representing the body part, in contrast, is optional.

The use case “Visualize captured test logs” deals with exposing the captured test log information in an appropriate

representation. Since there is no common definition of the most appropriate format of test logs, UTP 2 does not

prescribe how that information must be visualized. Thus, it is up to tool vendors to decide about the most

appropriate and helpful visual representation(s) of captured test log information.

Apply UTP 2
test logging facilities

Specify test log
structure

Extend default test
log structure

«extends»

Capture test log
information

«includes»

Capture logs of
test cases

Capture logs of
test suites

Capture logs of
test actions

Visualize captured
test logs

«includes»

Capture test log header
information

Capture test log body
information

«includes» «extends»

48 UML Testing Profile 2 (UTP 2), Version 2.0

Figure 7.11 - Test Log Overview

Definitional Rules shown on "Test Log Overview"

Name Rule statement

DRTL01 It is necessary that each test case log captures exactly one test case verdict.

DRTL02 It is necessary that each test case log captures execution of exactly one test case.

Table 7.8 - Structural rules shown on Test Log Overview

7.6.2.2 Concept Descriptions
executing entity

Definition An executing entity is a human being or a machine that is responsible for

executing a test case or a test set.

Source UTP 2 WG

test case log

Definition A test log that captures relevant information on the execution of a test case.

Source UTP 2 WG

Is a test log

test log

Definition A test log is the instance of a test log structure that captures relevant information

from the execution of a test case or test set. The least required information to be

logged is defined by the test log structure of the test log.

Source UTP 2 WG

Sub categories test case log

 test set log

Is instance of test log structure

Issue UMLTP2-1

test log structure

Definition A test log structure specifies the information that is deemed relevant during

execution of a test case or a test set. There is an implicit default test log structure

that prescribes at least the start time point, the duration, the finally calculated

verdict and the executing entity of a test case or test set execution which should

be logged.

Source UTP 2 WG

Instances test log

UML Testing Profile 2 (UTP 2), Version 2.0 49

test set log

Definition A test log that captures relevant information from the execution of a test set.

Source UTP 2 WG

Is a test log

50 UML Testing Profile 2 (UTP 2), Version 2.0

8 Profile Specification

This section specifies the stereotypes that are defined by the UML Testing Profile.

8.1 Language Architecture

The UML Testing Profile consists of the profile definition and three normative model libraries, which can be

imported and applied if required. The profile itself is independent of these libraries, and is a self-contained package.

The normative model library UTP Auxiliary Library uses concepts from UTP and defines concepts that can be used,

extended or specialized by the users.

The UTP Types Library offers helpful types and values, in particular the default verdict type and the default verdict

instances. Since some of the definitions and constraints in the profile are based on predefined types, the profile

imports the UTP Types Library.

Issue UMLTP2-24

The UTP Auxiliary Library offers the following concepts:

 ISTQB terms for test levels and test set purposes

 Predefined test design techniques and test design technique structures.

Overview of the technical, high-level UML Testing Profile language architecture is given next.

UML Testing Profile 2 (UTP 2), Version 2.0 51

Issue UMLTP2-24

Figure 8.1 - Language Architecture

8.2 Profile Summary

The following table gives a brief summary on the stereotypes introduced by the UML Testing Profile 2 (listed in the

second column of the table). The first column specifies the mapping to the conceptual model shown in the previous

section and the third column specifies the UML 2.5 metaclasses that are extended by the stereotypes.

Stereotype UML 2.5 Metaclasses Concepts

Alternative CombinedFragment,

StructuredActivityNode

alternative

AlternativeArbitrationSpecifica

tion

BehavioredClassifier arbitration specification

AnyValue Expression data specification

Issue UMLTP2-24

ArbitrationResult

InstanceSpecification

ArbitrationSpecification BehavioredClassifier arbitration specification

AtomicProceduralElement atomic procedural element

AtomicProceduralElementArbit

rationSpecification

BehavioredClassifier arbitration specification

BoundaryValueAnalysis InstanceSpecification test design technique

52 UML Testing Profile 2 (UTP 2), Version 2.0

CauseEffectAnalysis InstanceSpecification test design technique

ChecklistBasedTesting InstanceSpecification test design technique

CheckPropertyAction Constraint, ObjectFlow check property action

CheckPropertyArbitrationSpeci

fication

BehavioredClassifier arbitration specification

ClassificationTreeMethod InstanceSpecification test design technique

CombinatorialTesting InstanceSpecification test design technique

Complements Dependency complement

CompoundProceduralElement CombinedFragment,

StructuredActivityNode

compound procedural element

CompoundProceduralElementA

rbitrationSpecification

BehavioredClassifier arbitration specification

CreateLogEntryAction InvocationAction create log entry action

CreateLogEntryArbitrationSpec

ification

BehavioredClassifier arbitration specification

CreateStimulusAction InvocationAction, Message create stimulus action

CreateStimulusArbitrationSpeci

fication

BehavioredClassifier arbitration specification

DataPartition Classifier data pool

DataPool Classifier data pool

DataProvider Classifier, Property data provider

DataSpecification Constraint data specification

DecisionTableTesting InstanceSpecification test design technique

EquivalenceClassPartitioning InstanceSpecification test design technique

ErrorGuessing InstanceSpecification test design technique

ExpectResponseAction Message, Trigger expect response action

ExpectResponseArbitrationSpe

cification

BehavioredClassifier arbitration specification

ExperienceBasedTechnique InstanceSpecification test design technique

ExploratoryTesting InstanceSpecification test design technique

Extends Dependency extension

GenericTestDesignDirective InstanceSpecification test design directive

GenericTestDesignTechnique InstanceSpecification test design technique

Loop CombinedFragment,

StructuredActivityNode

loop

LoopArbitrationSpecification BehavioredClassifier arbitration specification

Morphing Dependency morphism

Negative CombinedFragment,

StructuredActivityNode

negative

NegativeArbitrationSpecificatio

n

BehavioredClassifier arbitration specification

NSwitchCoverage InstanceSpecification test design technique

OpaqueProceduralElement NamedElement procedural element

overrides Dependency morphism

PairwiseTesting InstanceSpecification test design technique

Parallel CombinedFragment,

StructuredActivityNode

parallel

ParallelArbitrationSpecification BehavioredClassifier arbitration specification

ProceduralElement procedural element

ProceduralElementArbitrationS

pecification

BehavioredClassifier arbitration specification

ProcedureInvocation CallBehaviorAction, InteractionUse procedure invocation

UML Testing Profile 2 (UTP 2), Version 2.0 53

ProcedureInvocationArbitration

Specification

BehavioredClassifier arbitration specification

Refines Dependency refinement

RegularExpression Expression data specification

RoleConfiguration Constraint test configuration

Sequence CombinedFragment,

StructuredActivityNode

sequence

SequenceArbitrationSpecificati

on

BehavioredClassifier arbitration specification

StateCoverage InstanceSpecification test design technique

StateTransitionTechnique InstanceSpecification test design technique

SuggestVerdictAction InvocationAction suggest verdict action

SuggestVerdictArbitrationSpeci

fication

BehavioredClassifier arbitration specification

TestCase Behavior, BehavioredClassifier test case

 abstract test case

 concrete test case

TestCaseArbitrationSpecificatio

n

BehavioredClassifier arbitration specification

TestCaseLog InstanceSpecification test case log

TestComponent Classifier, Property test component

TestComponentConfiguration Constraint test component configuration

TestConfiguration StructuredClassifier test configuration

TestConfigurationRole Classifier, Property test configuration

TestContext Package test context

TestDesignDirective InstanceSpecification Test Design Directive

TestDesignDirectiveStructure Classifier test design directive

TestDesignInput NamedElement test design input

TestDesignTechnique InstanceSpecification test design technique

TestDesignTechniqueStructure Classifier test design technique

TestExecutionSchedule Behavior test execution schedule

TestItem Classifier, Property test item

TestItemConfiguration Constraint test item configuration

TestLog InstanceSpecification test log

TestLogStructure Classifier test log structure

TestLogStructureBinding Dependency test log structure

TestObjective Class test objective

TestProcedure Behavior test procedure

TestRequirement Class test requirement

TestSet Package test set

TestSetArbitrationSpecification BehavioredClassifier arbitration specification

TestSetLog InstanceSpecification test set log

TransitionCoverage InstanceSpecification test design technique

TransitionPairCoverage InstanceSpecification test design technique

UseCaseTesting InstanceSpecification test design technique

verifies Dependency

8.3 Test Planning

Test analysis and test design deals with determining the identifying test basis for specific testing activities,

determination of test objectives, and eventually the selection and application of appropriate the test design

techniques to achieve those test objectives. UTP organizes concepts provided for carrying out test analysis and

54 UML Testing Profile 2 (UTP 2), Version 2.0

design activities into two parts: concepts for describing test contexts, test objectives, test requirements, and concepts

to specify test design activities.

8.3.1 Test Analysis
The test analysis concepts are means to argue and justify why certain testing activities have to be carried out as well

as how these testing activities with all required or helpful artifacts are organized.

In order to group artifacts and information that are deemed necessary for certain testing activities, the test context

concept (represented by the stereotype «TestContext») is introduced. It offers the capability to bundle artifacts (e.g.,

any PackageableElement) in a shared scope (e.g., the Namespace), to hide information from other scopes and to

import elements from other scopes. This enables a high degree of organizational reusability of information.

In dynamic testing, test cases are eventually produced by the test design activities in order to execute them. For

certain reasons, test cases are often assembled and executed together in a test set (or test suite, which is a synonym

of a test set). In UTP, a test set is represented by the stereotype «TestSet» which has the ability to assemble, import

and reuse test cases.

The definition of certain coverage criteria and/or objectives that the testing activities have to meet is essential for

test planning. In UTP, the planning activities are supported by means of the concepts test objective (implemented by

the stereotype «TestObjective»), test requirement (implemented by the stereotype «TestRequirement»), a

verification dependency among development artifacts and test objectives or test requirements (represented by the

stereotype «verifies»). In order to stay as close as possible to the SysML definition of requirements [SysML], both

test objective and test requirements are designed as extensions to the UML metaclass Class. Such a stereotyped

Class is capable of defining new properties solely, whereas most of the capabilities of the metaclass Class are

forbidden by constraint, such as owning Ports, Operations, Behaviors etc.. The stereotype «verifies» extends the

UML metaclass Dependency in order to be technically compatible with SysML [SysML], too.

These concepts enable testers to adhere to well-known and established industrial testing standards such as ISTQB

[ISTQB] or ISO 29119 [ISO29119] when creating model-based test specifications. Whereas test objectives are

intended to describe higher level goals the testing activities have to achieve in a certain context (e.g., coverage of all

high priority requirements at system level testing), test requirements are intended to pinpoint a single and testable

aspect of the test item. As such, test objectives describe often the test ending criteria for the testing activities in a

certain context (e.g., system level testing), and test requirements leverage the development of test design input

definitions or test cases. Eventually, test requirements are realized by test cases, which is similar to the coverage of

test requirements. Test requirements contribute to the fulfilment of test objectives.

Both test objectives and test requirements can be used independently of each other or in joint manner or not at all.

This is contextually up to the respective testing methodology. UTP does not prescribe the use of these concepts.

8.3.1.1 Test Context Overview
The stereotypes «TestContext» and «TestSet» are defined in UTP. Both represent a container for dedicated

elements, thus, they are extensions of the UML Package. As such they inherit the concept of nested Packages,

Package templates, owned and imported members as well as visibility. However, it is not prescribed that the

visibility concepts have to be respected by any conforming UTP tooling. The decision whether or not to utilize the

visibility and import mechanism of UML is up to the tool implementation. However, the derived associations of

«TestContext» and «TestSet», however, are based on UML visibility and import.

UML Testing Profile 2 (UTP 2), Version 2.0 55

Issue UMLTP2-33

Figure 8.2 - Test Context Overview

8.3.1.2 Test-specific Contents of Test Context
The UML profile specification for the test context concepts is shown in the following diagram. Most of the

relationships among the concepts of the Conceptual Model are already covered by the underlying UML metamodel.

In order to allow users of the UTP an easy access to related elements, a set of derived associations is defined that

retrieves the desired element for a currently processed stereotype. As an example for the design decision, please see

the derived associations between «TestContext» and «TestCase». In the Conceptual Model it is stated that a test

context refers to a set of test cases. Since «TestContext» extends the UML metaclass Package and «TestCase»

extends a subclass of a PackageableElement, there are several native (i.e., given by the UML metamodel)

possibilities on how to reflect the conceptual 'refers to' relationship. First, a Package may contain

PackageableElements; second, a Package may import PackageableElement, either by using ElementImport (i.e.,

only that specific element) or by PackageImport (i.e., all visible and accessible elements in the imported Package).

The derived associations of the UTP stereotypes follow the UML metamodel capabilities to collect all concrete

PackageableElements stereotyped with «TestCase» that are either contained in or imported by the underlying

«TestContext» Package. The advantage is that the test engineer does not have to implement or even know the details

of the UML metamodel to retrieve the desired elements.

56 UML Testing Profile 2 (UTP 2), Version 2.0

Figure 8.3 - Test-specific Contents of Test Context

8.3.1.3 Test Objective Overview
The following diagram shows the abstract syntax for the test objectives concepts.

Issue UMLTP2-30

Figure 8.4 - Test Objective Overview

UML Testing Profile 2 (UTP 2), Version 2.0 57

8.3.1.4 Stereotype Specifications

8.3.1.4.1 TestContext

Description TestContext: A set of information that is prescriptive for testing activities which

can be organized and managed together for deriving or selecting test objectives,

test design techniques, test design inputs and eventually test cases.

A test context may import the packaged elements of another test context in order

to access and reuse visible elements of the imported test context. This is

inherently given by the native UML concepts PackageImport or ElementImport.

Whether or not the visibility of elements contained in a test context is respected

is up to the tool implementation.

Since a «TestContext» is an extended Package, it is possible to decompose test

contexts into more fine-grained test contexts. For example, a test context defined

for the test level 'System testing' might be decomposed in accordance to the test

types that are addressed at that test level (e.g., functional system testing, security

system testing etc.).

Extension Package

Attributes
Issue UMLTP2-33

ID : String [0..1]

An optional identifier to unambiguously distinguish between any two test

contexts. If it is set, it has to be unique for all the test contexts in the scope of the

model.

Associations /testCase : TestCase [*]

The test cases that are accessible by the given «TestContext». This feature is

derived by the set of directly owned or via ElementImport or PackageImport for

imported test cases.

testLevel : ValueSpecification [*]

The test levels that the testing activities within the given «TestContext» have to

cope with.

testType : ValueSpecification [*]

The test types that the testing activities within the given «TestContext» have to

cope with.

/testSet : TestSet [*]

Refers to the test sets that are known by this test context. It is derived from both

contained and imported Packages with «TestSet» applied.

/testObjective : TestObjective [*]

Refers to the test objectives that are known by this test context. It is derived from

both contained and imported Classes with «TestObjective» applied.

/testRequirement : TestRequirement [*]

Refers to the test requirements that are known by this test context. It is derived

from both contained and imported Classes with «TestRequirement» applied.

/testConfiguration : StructuredClassifier [*]

Refers to the test configurations that are known by this test context. It is derived

from both contained and imported StructuredClassifier with

«TestConfiguration» applied.

58 UML Testing Profile 2 (UTP 2), Version 2.0

/testDesignInput : NamedElement [*]

Refers to the test design inputs that are known by this test context. It is derived

from both contained and imported NamedElements with «TestDesignInput»

applied and the NamedElements that are referenced by all known

«TestDesignDirective» as their test design input (i.e., referenced by the tag

definition testDesignInput). The latter part of the derivation algorithm is

necessary, because the use of the «TestDesignInput» stereotype is not

mandatory, and sometimes even not possible.

/testDesignDirective : TestDesignDirective [*]

Refers to the test design directives that are known by this test context. It is

derived from both contained and imported InstanceSpecifications with a

concrete subclass of «TestDesignDirective» applied.

/testDesignTechnique : TestDesignTechnique [*]

Refers to the test design techniques that are known by this test context. It is

derived from both contained and imported InstanceSpecifications with a

concrete subclass of «TestDesignTechnique» applied.

/arbitrationSpecification : ArbitrationSpecification

[*]

Refers to the arbitration specifications that are known by this test context. It is

derived from both contained and imported BehavioredClassifiers with

«TestDesignTechnique» applied.

/testLog : TestLog [*]

Refers to the test logs that are known by this test context. It is derived from both

contained and imported InstanceSpecification with a concrete subclass of

«TestLog» applied

Constraints
Issue UMLTP2-1

Issue UMLTP2-16

Restriction of extendable metaclasses

«TestContext» shall not be applied to instances of the metaclass Profile.

Change from UTP 1.2 Changed from UTP 1.2. In UTP 1.2 «TestContext» extended

StructuredClassifier and BehavioredClassifier as well as incorporated the

concepts TestSet, TestExecutionSchedule and TestConfiguration into a single

concept.

UML Testing Profile 2 (UTP 2), Version 2.0 59

8.3.1.4.2 TestObjective

Description TestObjective: A desired effect that a test case or test set intends to achieve.

The stereotype «TestObjective» extends Class. test objectives enables tester to

define the test ending criteria for the testing activities in a certain test context. A

test objective can be expressed with detail or very abstractly, depending on the

underlying methodology.

As pure test analysis concept, it is very likely that test objectives have to be

traceable to and from test environment tools, which first and foremost would be

test management tools. Therefore, test objectives have the ability to specify a

unique identifier represented by the tag definition ID. However, the use of the

explicit identifier is optional and simply enables the most primitive kind of

traceability within a test environment.

The specification of a test objective, i.e., the reason why test cases are created

and eventually executed, is expressed by means of the tag definition

specification. Although it is typed by the PrimitiveType String, the test objective

might be specified by means of a formal or structured language.

If a BMM profile (see [BMM]) is also loaded into a model containing the UTP

2.0 profile, this stereotype may be considered as a BMM objective (i.e., merged

with a BMM objective).

Extension Class

Attributes ID : String [0..1]

A unique identifier that unambiguously identifies the test objective.

Associations : TestDesignDirective

/referencedBy : TestContext [*]

Issue UMLTP2-30

specification : ValueSpecification [0..1]

The specification of the test objective. It might be represented in both

unstructured and structured text or any other concrete sub-class of

ValueSpecification.

Constraints
Issue UMLTP2-1

Issue UMLTP2-16

Restriction of extendable metaclasses

«TestObjective» shall only be applied to instances of the metaclass Class.

Change from UTP 1.2 Changed from UTP 1.2. In UTP 1.2, «TestObjective» was called

«TestObjectiveSpecification».

60 UML Testing Profile 2 (UTP 2), Version 2.0

8.3.1.4.3 TestRequirement

Description TestRequirement: A desired property on a test case or test set, referring to some

aspect of the test item to be tested.

The stereotype «TestRequirement» extends Class (for integration with the

SysML stereotype «requirement»). A test requirement enables testers to

decompose single and distinct testable aspects of the test item prior to test

design. As such, it is part of the test analysis facility of UTP. test requirements

are deemed helpful for both the derivation of test cases, test procedures and in

particular test design input definitions. test requirements are said to be realized

by test design input definitions, test case or test procedures. The default UML

metaclass Realize is intended to be utilized to express this relationship.

As a pure test analysis concept, it is very likely that test requirements have to be

traceable to and from test environment tools, first and foremost test management

tools. Therefore, test requirements have the ability to specify a unique identifier

represented by the tag definition ID. However, the use of the explicit identifier is

optional and simply enables the most primitive kind of traceability within a test

environment.

The specification of a test requirement (i.e., the textual description of a single

testable aspect of a test requirement) is expressed by means of the tag definition

specification. Although it is typed by the PrimitiveType String, the test

requirement might be specified by means of a more formal or structured

language (e.g., using the Test Purpose Language (TPLan) standardized by

ETSI).

Additional references to external resources (e.g., relevant standards, guidelines,

documents, websites etc.) can be added via the tag definition references.

If SysML [SysML] is also loaded into a model containing the UTP 2.0 profile,

this stereotype may be considered as (i.e., merged with) the SysML stereotype

«requirement».

Extension Class

Attributes ID : String [0..1]

A unique identifier that unambiguously identifies the test requirement.

references : String [*]

Includes any additional references that are deemed relevant for the definition of

the test requirement (such as relevant standards, papers, or any other meaningful

artifact)

Associations /realizedBy : TestCase [*]

References the test cases that realize the given test requirement. They are derived

from the set of UML Realization dependencies that point to the base Class of

this stereotype and stem from a BehavioredClassifier or Behavior stereotyped

with «TestCase».

/referencedBy : TestContext [*]

Issue UMLTP2-30

specification : ValueSpecification [0..1]

The specification of the test requirement. It might be represented in both

unstructured and structured text or any other concrete sub-class of

ValueSpecification.

UML Testing Profile 2 (UTP 2), Version 2.0 61

Constraints
Issue UMLTP2-1

Issue UMLTP2-16

Restriction of extendable metaclasses

«TestRequirement» shall only be applied to instances of the metaclass Class.

Change from UTP 1.2 «TestRequirement» has been newly introduced into UTP 2.

62 UML Testing Profile 2 (UTP 2), Version 2.0

8.3.1.4.4 TestSet

Description TestSet: A set of test cases that share some common purpose.

A test set assembles test cases either via ownership or import. These test cases

are called the members of the test set. Ownership assembly is based on the

ability of UML Packages to nest any PackageableElement. Import assembly is

based on the ability of UML Packages to import PackageableElements either

directly or indirectly by importing the Package that contains the

PackageableElement to be imported. A test case is transitively an extension of

PackageableElement, thus, the import mechanisms given by UML can be reused

to group test cases in test sets by either assembly kind.

Visibility of test cases within a test set is defined in accordance with the

visibility of NamedElement in Namespaces as defined by UML. Since the use of

visibility is not mandatory by UML, it is also not mandatory to utilize visibility

in UTP. However, if visibility is desired, it must comply with the UML

semantics.

A test set can have an arbitrary number of test execution schedules (extends

Behavior) either by ownership or import, similar to test case assembly. A test

execution schedule must only schedule the execution of test cases that are

members of the respective test sets. If a test set does not contain an explicit test

execution schedule, it is semantically equivalent to an implicitly owned test

execution schedule that schedules the execution of all test cases assembled by

the current test set in an arbitrary order. If a test set is supposed to be executed,

the decision which test execution schedule will be taken into account for

scheduling is not defined UTP, since a test set may have more than just one test

execution schedule defined. A viable method is to use the UML deployment

specification to implement the desired test execution schedule for eventual

execution by an executing entity.

If a test set assembles another test set, the assembling test set has access to all

visible test cases assembled by the assembled test set. In addition, the

assembling test set has access to all visible test execution schedules of the

assembled test set. This enables the composition and decomposition of test sets

and their respective test execution schedules.

The purpose of a test set is set of a ValueSpecifications that can be shared with

other test sets. If a test set has more than one purpose, the purposes are logically

combined by AND (i.e., if a test set has the two purposes 'Manual Testing' and

'Regression Testing' it should be read as follows 'The test set's purpose is

'manual regression testing').

Graphical syntax

Extension Package

Attributes
Issue UMLTP2-33

ID : String [0..1]

An optional identifier to unambiguously distinguish between any two test sets. If

it is set, it has to be unique for all the test sets in the scope of the model.

Associations purpose : ValueSpecification [*]

Denotes the purposes why the test set has been assembled.

UML Testing Profile 2 (UTP 2), Version 2.0 63

/testSetMember : TestCase [1..*]

Refers to the TestCases that are assembled, either via ownership or import, by

the given TestSet, and thus, are members of that TestSet. A TestCase can be a

member of more than one TestSet.

 : TestSetLog [*]

testSetAS : TestSetArbitrationSpecification [0..1]

/referencedBy : TestContext [*]

Constraints
Issue UMLTP2-1

Issue UMLTP2-16

Restriction of extendable metaclass

«TestSet» shall not only be applied to instances of the metaclass Profile.

Change from UTP 1.2 «TestSet» has been newly introduced by UTP 2. It was part of the TestContext

in UTP 1.2.

8.3.1.4.5 verifies

Description The stereotype «verifies» extends Dependency and is intended to express

relationships among elements that are supposed to be verified (e.g., a

requirement, an interface operation, a use case, a user story, a single transition or

state, and so forth) and elements that support the verification thereof (e.g., a test

objective, a test requirement, a test case, a test set).

A «verifies» Dependency as a means to establish traceability within UML-based

model elements. It weakens the constraints applied on SysML «Verify» in a

sense that UTP «verifies» allows targeting elements different than SysML

«requirement». This limitation is too restrictive for UTP, in particular in setups

where, for example, use cases are the elements to be verified.

Since the semantics of Dependencies with respect to n:m-ary in contrast to

binary, 1:m-ary, or n:1-ary Dependencies are not precisely defined, UTP

considers by default no difference among all the different ways on how

«verifies» Dependencies can be expressed between more than two elements.

If a SysML profile (see [SysML]) is also loaded into a model containing the

UTP 2.0 profile, this stereotype may be considered as the SysML «Verify»

stereotype (i.e. merged with the SysML «Verify» stereotype).

Extension Dependency

Change from UTP 1.2 «verifies» has been newly introduced into UTP 2. In UTP 1.2 the «verify»

stereotype from SysML was recommended.

8.3.2 Test Design
The UTP 2 test design facility describes a language framework for the specification of test design techniques and

their application to a test design input element. This includes behavioral descriptions (e.g., UML state machines), or

structural information (e.g., interface definitions). test design techniques are usually assembled by so called test

design directive which is responsible for establishing the associations between a set of test design techniques and the

test design input element those test design techniques must operate on. A test design directive may also link the test

design outputs elements that have been generated or derived by the set of applied test design techniques. This allows

for a more comprehensible test design phase and is the key to comprehensive traceability among test objectives/test

requirements, test design techniques, test design input and eventually test design output elements.

The UTP 2 test design facility only represents the very core of the language framework. Since the stereotypes of the

64 UML Testing Profile 2 (UTP 2), Version 2.0

core framework are based on abstract stereotypes and mostly derived (and read-only unions) associations, it is

possible to concretize and extend the test design facility as required by using stereotype specialization and property

subsetting. A built-in concretization of the core framework was done by means of the generic test design capabilities

and the predefined test design techniques. It enables test engineers to immediately utilize the test design facility or

develop proprietary test design directives and test design techniques. Tailoring of the UTP test design facility can be

done at metalevel M1 (model level) and metalevel M2 (metamodel level). The different mechanism for tailoring are:

 Tailoring through structural features: Both «TestDesignTechnique» and «TestDesignDirective» extend the

UML metaclass InstanceSpecification with implicit attributes predefined by the respective stereotypes. In

addition to these predefined attributes, user may add additional attributes to these two elements by using the

genuine InstanceSpecification-Classifier association. Since both stereotypes extend InstanceSpecification,

it is possible to classify these InstanceSpecifications with multiple Classifiers. For this purpose, UTP

provides the stereotypes «TestDesignDirectiveStructure» and «TestDesignTechniqueStructure». As a

result, the user may add as many additional attributes as desired or required to a «TestDesignDirective» and

«TestDesignTechnique».

 Tailoring through use of «GenericTestDesignDirective» and «GenericTestDesignTechnique»: By means of

the predefined stereotypes «GenericTestDesignTechnique» and «GenericTestDesignDirective», users can

build on proprietary test design directives and test design techniques by simply providing dedicated names

to the underlying InstanceSpecification (i.e., the InstanceSpecification with «GenericTestDesignDirective»

or «GenericTestDesignTechnique» applied. In combination with the extension through structural features

as just described above, the use of «GenericTestDesignTechnique» and «GenericTestDesignDirective»

provides a flexible and powerful mechanism to tailor the UTP test design facility for user-specific

purposes. For example, an InstanceSpecification with «TestDesignTechnique» applied and name set to

'PathCoverage' is one way to provide the test engineer with a new test design techniques that represents

path coverage.

 Profile extension: The third and most powerful tailoring to user-specific needs comes along with profile

extension. Similar to the provision of specialized stereotypes of the abstract stereotypes

«TestDesignTechnique» and «TestDesignDirective» as predefined concepts of the language itself, users or

vendors may introduce proprietary stereotypes that specialize the abstract stereotypes provided by the test

design facility of UTP.

8.3.2.1 Test Design Facility
The following picture shows the abstract syntax of the very core of the UTP test design facility.

UML Testing Profile 2 (UTP 2), Version 2.0 65

Figure 8.5 - Test Design Facility

8.3.2.2 Generic Test Design Capabilities
The generic test design capabilities of UTP 2 enable tester to immediately start off with specifying test design

directives and defining proprietary, user-defined or project-specific test design techniques, if the predefined test

design techniques does not suffice.

66 UML Testing Profile 2 (UTP 2), Version 2.0

Figure 8.6 - Generic Test Design Capabilities

8.3.2.3 Predefined high-level Test Design Techniques
The following diagram shows the predefined high-level test design techniques. They belong to the so called

specification-based test design techniques as categorized by [ISO29119]-4.

UML Testing Profile 2 (UTP 2), Version 2.0 67

Figure 8.7 - Predefined high-level Test Design Techniques

8.3.2.4 Predefined data-related Test Design Techniques
The following diagram shows the predefined data-related test design techniques. They belong to the so called

specification-based test design techniques as categorized by [ISO29119]-4.

Figure 8.8 - Predefined data-related Test Design Techniques

68 UML Testing Profile 2 (UTP 2), Version 2.0

8.3.2.5 Predefined state-transition-based Test Design Techniques
The following diagram shows the predefined state-transition based test design techniques. They belong to the so

called specification-based test design techniques as categorized by [ISO29119]-4.

Figure 8.9 - Predefined state-transition-based Test Design Techniques

8.3.2.6 Predefined experience-based Test Design Techniques
The following diagram shows the predefined experienced-based test design techniques as categorized by

[ISO29119]-4.

UML Testing Profile 2 (UTP 2), Version 2.0 69

Figure 8.10 - Predefined experience-based Test Design Techniques

70 UML Testing Profile 2 (UTP 2), Version 2.0

8.3.2.7 Stereotype Specifications

8.3.2.7.1 BoundaryValueAnalysis

Description According to [ISTQB]: Black box testing is a test design technique in which test

cases are designed based on boundary values.

«BoundaryValueAnalysis» is an extension of «EquivalenceClassPartitioning»

that takes also values at the boundaries (left and right or upper and lower

boundary) into account. A boundary value is defined by ISTQB as "an input

value or output value which is on the edge of an equivalence partition or at the

smallest incremental distance on either side of an edge, for example the

minimum and maximum value of a range."

Since the boundary values already define representatives of an equivalence class,

the ordinary (i.e. non-boundary) representatives are usually of less interest.

Therefore, the inherited property nRepresentatives is redefined to obtain the

default value 0. This ensures that no additional ordinary representatives of the

equivalence class are selected. However, it is still possible to specify that in

addition to the boundary values, ordinary representatives of the corresponding

equivalence class will be selected by setting the value of nRepresentatives to a

value greater than 0.

See [ISO29119]-4 clause 5.2.3 BoundaryValueAnalysis for further information.

Extension InstanceSpecification

Super Class EquivalenceClassPartitioning

Attributes nBoundaryRepresentatives : Integer [1] = 1

Specifies the number of boundary representatives that have to be covered by the

resulting test cases. Default is 1.

nRepresentatives {redefines nRepresentatives} :

UnlimitedNatural [1] = 0

Redefines the number of representatives to 0, in addition to the boundary values,

meaning that by default only the boundary values will be selected.

Change from UTP 1.2 «BoundaryValueAnalysis» has been newly introduced by UTP 2.

8.3.2.7.2 CauseEffectAnalysis

Description According to [ISTQB]: A black box test design technique in which test cases are

designed from cause-effect graphs.

See also [ISO29119]-4, clause 5.2.7 Cause-Effect Graphing for further

information.

Extension InstanceSpecification

Super Class TestDesignTechnique

Change from UTP 1.2 «CauseEffectAnalysis» has been newly introduced by UTP 2.

8.3.2.7.3 ChecklistBasedTesting

Description According to [ISTQB]: An experience-based test design technique whereby the

experienced tester uses a high-level list of items to be noted, checked, or

remembered, or a set of rules or criteria against which a product has to be

verified.

Extension InstanceSpecification

Super Class ExperienceBasedTechnique

Change from UTP 1.2 «ChecklistBasedTesting» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.0 71

8.3.2.7.4 ClassificationTreeMethod

Description According to [ISTQB]: A black box test design technique in which test cases,

described by means of a classification tree, are designed to execute combinations

of representatives of input and/or output domains. A classification tree is a tree

showing equivalence partitions hierarchically ordered, which are used to design

test cases in the classification tree method.

See also [ISO29119]-4, clause 5.2.2 Classification Tree Method for further

information.

Extension InstanceSpecification

Super Class TestDesignTechnique

Change from UTP 1.2 «ClassificationTreeMethod» has been newly introduced by UTP 2.

8.3.2.7.5 CombinatorialTesting

Description According to [ISTQB]: A means to identify a suitable subset of test

combinations to achieve a predetermined level of coverage when testing an

object with multiple input parameters and where those parameters themselves

each have several values.

The Property nCombinations specifies the number of how many parameters must

be combined with each other. The higher the number of combinations, the higher

the number of derived test cases. By default, all combinations of input

parameters will be covered, which is indicated by the asterisk (*). However, the

value of the Property nCombination has to be less than the number of the input

parameters.

See [ISO29119]-4 clause 5.2.5 Combinatorial Test Design Technqiues for

further information.

Extension InstanceSpecification

Super Class TestDesignTechnique

Sub Class PairwiseTesting

Attributes nCombination : UnlimitedNatural [1] = *

The number of combinations of input parameters

Change from UTP 1.2 «CombinatorialTesting» has been newly introduced by UTP 2.

8.3.2.7.6 DecisionTableTesting

Description According to [ISTQB]: A black box test design technique in which test cases are

designed to execute combinations of inputs and/or stimuli (causes) shown in a

decision table. A decision table is a table showing combinations of inputs and/or

stimuli (causes) with their associated outputs and/or actions (effects), which can

be used to design test cases.

See also [ISO29119]-4, clause 5.2.6 Decision Table Testing for further

information.

Extension InstanceSpecification

Super Class TestDesignTechnique

Change from UTP 1.2 «DecisionTableTesting» has been newly introduced by UTP 2.

72 UML Testing Profile 2 (UTP 2), Version 2.0

8.3.2.7.7 EquivalenceClassPartitioning

Description According to [ISTQB]: A black box test design technique in which test cases are

designed to execute representatives from equivalence partitions. In principle test

cases are designed to cover each partition at least once.

Usually, the number of the representatives of each equivalence class that will be

used to derive the test cases is set to 1 in order to keep the number of test cases

as low as possible. In certain situations it might be, for whatever reason, desired

to select more than just one representative per equivalence class. The property

nRepresentatives enables the tester to set any number desired number of

representatives per equivalence class. By default, the value is set to 1 (reflecting

the usual application of that test design technique). If the value is set to

unlimited (i.e., the asterisk (*)), all possible representatives of an equivalence

class have to be selected.

See [ISO29119]-4 clause 5.2.1 Equivalence Partitioning for further information.

Extension InstanceSpecification

Super Class TestDesignTechnique

Sub Class BoundaryValueAnalysis

Attributes nRepresentatives : UnlimitedNatural [1] = 1

Indicates the desired number of minimal representatives that should be derived

for a given equivalence class.

Change from UTP 1.2 «EquivalenceClassPartitioning» has been newly introduced by UTP 2.

8.3.2.7.8 ErrorGuessing

Description According to [ISTQB]: A test design technique where the experience of the

tester is used to anticipate what defects might be present in the component or test

item as a result of Errors made and to design tests specifically to expose them.

See [ISO29119]-4 clause 5.4 Error Guessing for further information.

Extension InstanceSpecification

Super Class ExperienceBasedTechnique

Change from UTP 1.2 «ErrorGuessing» has been newly introduced by UTP 2.

8.3.2.7.9 ExperienceBasedTechnique

Description According to [ISTQB]: A procedure to derive and/or select test cases based the

tester’s experience, knowledge and intuition.

Experienced-based test design techniques are usually informal techniques

potentially supported by checklists or Error taxonomies.

Extension InstanceSpecification

Super Class TestDesignTechnique

Sub Class ChecklistBasedTesting, ErrorGuessing, ExploratoryTesting

Change from UTP 1.2 «ExperienceBasedTechnique» has been newly introduced by UTP 2.

8.3.2.7.10 ExploratoryTesting

Description According to [ISTQB]: An informal test design technique where the tester

actively controls the design of the tests as those tests are performed and uses

information gained while testing to design new and better tests.

Extension InstanceSpecification

Super Class ExperienceBasedTechnique

UML Testing Profile 2 (UTP 2), Version 2.0 73

Change from UTP 1.2 «ExploratoryTesting» has been newly introduced by UTP 2.

8.3.2.7.11 GenericTestDesignDirective

Description A predefined test design directive that is able to assemble any test design

technique available or known in a certain context, including any user-defined

«GenericTestDesignTechnique». As such, the generic test design directive

makes no assumptions about the capabilities of a test designing entity a priori.

Additional required information can be introduced by utilizing the test design

directive structure concept.

Extension InstanceSpecification

Super Class TestDesignDirective

Associations {subsets capability} appliedTestDesignTechnique :

TestDesignTechnique [1..*]

Enables a generic test design directive to apply any known test design technique

for the test design activity.

{subsets subDirective} genericSubDirective :

TestDesignDirective [*]

Enables a generic test design directive to be potentially refined by any other

known test design directive.

Change from UTP 1.2 «GenericTestDesignDirective» has been newly introduced by UTP 2.

8.3.2.7.12 GenericTestDesignTechnique

Description The predefined generic test design technique is a semantic-free test design

technique that is intended to be used to specify proprietary test design techniques

that are not part of the predefined UTP 2 test design facility. The name of the

underlying InstanceSpecification determines the name of the test design

technique, potentially extended by structural information.

Extension InstanceSpecification

Super Class TestDesignTechnique

Change from UTP 1.2 «GenericTestDesignTechnique» has been newly introduced by UTP 2.

8.3.2.7.13 NSwitchCoverage

Description According to [ISTQB]: A form of state transition testing in which test cases are

designed to execute all valid sequences of N+1 transitions.

N-Switch coverage was initially developed by [Chow], where n defines the

number of switch states among a sequence of consecutive transitions. The

default is 0, meaning that a test case may only consist of a single transition.

However, the entirety of all transitions will be captured by the resulting test

cases.

Extension InstanceSpecification

Super Class StateTransitionTechnique

Sub Class TransitionPairCoverage

Attributes switchStates : Integer [1] = 0

Specifies the number of switch states, and thus, implicitly the sequence of

transitions that will at least be covered by the resulting test cases.

Change from UTP 1.2 «NSwitchCoverage» has been newly introduced by UTP 2.

74 UML Testing Profile 2 (UTP 2), Version 2.0

8.3.2.7.14 PairwiseTesting

Description According to [ISTQB]: A black box test design technique in which test cases are

designed to execute all possible discrete combinations of each pair of input

parameters.

«PairwiseTesting» is a specialized «CombinatorialTesting» test design technique

whose property nCombination is refined and set to the read-only value 2,

meaning, that at least each pair of input parameters will be covered in the

resulting test cases.

See [ISO29119]-4 clause 5.2.5.4 Pair-wise Testing for further information.

Extension InstanceSpecification

Super Class CombinatorialTesting

Attributes nCombination {redefines nCombination} :

UnlimitedNatural [1] = 2

The number of combinations for each input parameter is set to exactly 2 (i.e.,

each combination of every pair of input parameters must at least be covered).

Change from UTP 1.2 «PairwiseTesting» has been newly introduced by UTP 2.

8.3.2.7.15 StateCoverage

Description According to [ISTQB]: A black box test design technique in which test cases are

designed that cover at least the execution of a set of referenced states.

If no State is referenced by the property toBeCovered, all States in the related

state machine will be covered.

Extension InstanceSpecification

Super Class StateTransitionTechnique

Associations toBeCovered : State [*]

Refers to a set of States that will at least be covered by the test designer.

Change from UTP 1.2 «StateCoverage» has been newly introduced by UTP 2.

8.3.2.7.16 StateTransitionTechnique

Issue UMLTP2-1

Issue UMLTP2-16

Description According to [ISTQB]: A black box test design technique in which test cases are

designed to execute valid and invalid state transitions.

Test design directives that assemble a concrete state-transition technique must

refer to at least one state machine as its test design input. If more than one state

machine is referenced as test design input, the concrete state-transition

techniques are applied to all state machines.

See also [ISO29119]-4, clause 5.2.8 State-Transition Testing for further

information.

Extension InstanceSpecification

Super Class TestDesignTechnique

Sub Class NSwitchCoverage, StateCoverage, TransitionCoverage

Change from UTP 1.2 «StateTransitionTechnique» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.0 75

8.3.2.7.17 TestDesignDirective

Description TestDesignDirective: A test design directive is an instruction for a test designing

entity to derive test artifacts such as test sets, test cases, test configurations, data

or test execution schedules by applying test design techniques on a test design

input. The set of assembled test design techniques are referred to as the

capabilities a test designing entity must possess in order to carry out the test

design directive, regardless whether it is carried out by a human tester or a test

generator. A test design directive is a means to support the achievement of a test

objective.

The abstract stereotype «TestDesignDirective» extends InstanceSpecification

and brings all relevant information together that is required for automatically or

manually derive test artifacts from a test design input. The derivation process is

steered by the set of test design techniques, which the current test design

directives refers to.

Each test design directive has a basic set of structural elements, given by the tag

definitions of the «TestDesignDirective» stereotype. The fundamental and

implicit structure can be extended by means of UML. Since

«TestDesignDirective» extends InstanceSpecification, it is possible to add

Classifiers to the underlying InstanceSpecification which then define additional

structural information deemed necessary in a specific context. This is the easiest

and UML native mechanism to tailor test design directive to specific needs.

The test design techniques that will be applied on the test design input are

captured in the association end capabilities. This is a derived union, since it

cannot be foreseen which test design techniques are required. Concrete subtypes

have to subset the derived union capabilities (see for example

«GenericTestDesignDirective») in order to enable certain test design techniques

for a test design directive. Those test design techniques can be combined with

each other by a test design directive.

A test design directive refers to a set of NamedElements as the input for the

eventual test design activities performed by a test designing entity. This input

yields the association end TestDesignInput. It is not required that a referenced

NamedElement has the stereotype «TestDesignInput» applied. The assembled

test design techniques by the given test design directive are then applied on the

test design input in order to produce the test design output artifacts.

A test design directive may provide sub-directives by means of the association

end subDirective. Providing a sub test design directive enables testers to refine

the test design activities for certain elements contained in the test design input.

As an example, this specification assumes a parent test design directive refers to

a StateMachine as its test design input. The test design directive also assembles a

set of state-transition and data-related test design techniques that will be applied

to the StateMachine by a test designing entity. This specification further assume

that the StateMachine contains a submachine State (i.e., a reference of another

StateMachine that is considered to be copied to the location of the submachine

State) which is referred to as test design input by a sub test design directive. This

enables the composition of different kinds of test design directives in order to

meet different test objectives.

Extension InstanceSpecification

Sub Class GenericTestDesignDirective

Associations meet : TestObjective [*]

The test objectives that have to be fulfilled by putting the given test design

directive into effect.

76 UML Testing Profile 2 (UTP 2), Version 2.0

/{read-only, union} capability : TestDesignTechnique

[1..*]

Refers to the set test design techniques that are assembled by the given test

design directive. The set is referred to as the capabilities a test designing entity

(e.g., a generator in automated test design or human tester in manual test design)

has to offer in order to be able to perform the test design activities imposed by

the test design directive.

 : TestDesignDirective [*]

{read-only, union} subDirective : TestDesignDirective

[*]

Refers to one or more test design directives that further refine the instructions

given by the parent test design directive.

 : GenericTestDesignDirective [*]

testDesignOutput : Element [*]

The outcome of the test design activities produced by the given test design

directives.

testDesigningEntity : ValueSpecification [*]

Identifies the test designing entity (e.g. a generator in automated test design or a

human tester in manual test design) that has produced (parts of) the test design

output.

/instanceOf : TestDesignDirectiveStructure [*]

Refers to the test design directive structure of which the given test design

directive is an instance of. The test design directive structure is derived from all

Classifiers with «TestDesignDirectiveStructure» applied that are referred as
classifiers by the underlying InstanceSpecification.

testDesignInput : NamedElement [1..*]

Refers to the model elements that have to be incorporated by the test designer

(e.g. a generator in automated test design or a human tester in manual test

design) as input to the derivation process.

/referencedBy : TestContext [*]

dataProvider : DataProvider [*]

References the data providers that are supposed to deliver or produce the

required test data.

Change from UTP 1.2 «TestDesignDirective» has been newly introduced by UTP 2.

8.3.2.7.18 TestDesignDirectiveStructure

Description A TestDesignDirectiveStructure describes user-defined or context-specific

additional information that may augment any given TestDesignDirective. A

Classifier with «TestDesignDirectiveStructure» applied might be of arbitrary

complexity. It enables the provision of information that are deemed relevant in a

certain context but not required in a different context.

Extension Classifier

Associations : TestDesignDirective

Change from UTP 1.2 «TestDesignDirectiveStructure» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.0 77

8.3.2.7.19 TestDesignInput

Description TestDesignInput: Any piece of information that must or has been used to derive

testing artifacts such as test cases, test configuration, and data.

The stereotype «TestDesignInput» is an explicit, yet optional means to indicate

that the purpose of a given model element is to use it for test design activities

(i.e., usually the derivation of test cases, test data, test configurations etc.). The

application of this stereotype is declared as optional, because in general any kind

of model element might be used as input for the test design activities.

Extension NamedElement

Change from UTP 1.2 «TestDesignInput» has been newly introduced by UTP 2.

8.3.2.7.20 TestDesignTechnique

Description TestDesignTechnique: A specification of a method used to derive or select test

configurations, test cases and data. test design techniques are governed by a test

design directive and applied to a test design input. Such test design techniques

can be monolithically applied or in combination with other test design

techniques. Each test design technique has clear semantics with respect to the

test design input and the artifacts it derives from the test design input.

The abstract stereotype «TestDesignTechnique» extends InstanceSpecification

and integrates test design techniques with test design directives. A test design

technique is a concrete action, technique or procedure to derive test design

output from a test design input. A test design technique is basically independent

of a dedicated test design input element, but can be reused across multiple test

design input elements. Some test design techniques only make sense if a certain

test design input element was selected (e.g., state-transition test design

techniques make only sense if the test design input element is a StateMachine).

Each test design technique has a basic set of structural elements given by the tag

definitions of the «TestDesignTechnique» stereotype. The fundamental (and

implicit) structure can be extended by means of UML. Since

«TestDesignTechnique» extends InstanceSpecification, it is possible to add

Classifiers to the underlying InstanceSpecification which then define additional

structural information deemed necessary in a specific context. This is the easiest

and UML native mechanism to tailor test design techniques to specific needs.

A test design technique may provide sub-techniques by means of the association

end subTechnique. Providing a sub test design technique enables testers to refine

the test design techniques for certain elements contained in the test design input

and also to enrich existing (potentially pre-defined) test design techniques in a

certain context.

Extension InstanceSpecification

Sub Class CauseEffectAnalysis, ClassificationTreeMethod, CombinatorialTesting,

DecisionTableTesting, EquivalenceClassPartitioning,

ExperienceBasedTechnique, GenericTestDesignTechnique,

StateTransitionTechnique, UseCaseTesting

Associations : TestDesignDirective [*]

 : TestDesignTechnique [*]

{read-only, union} subTechnique : TestDesignTechnique

[*]

Refers to one or more test design techniques that may further refine the parent

test design technique.

 : GenericTestDesignDirective [*]

78 UML Testing Profile 2 (UTP 2), Version 2.0

/instanceOf : TestDesignTechniqueStructure [*]

Refers to additional structural information of the given test design technique.

The test design technique structures are derived from all Classifiers with

«TestDesignTechniqueStructure» applied that are referred to as classifiers by the

underlying InstanceSpecification.

/referencedBy : TestContext [*]

Change from UTP 1.2 «TestDesignTechnique» has been newly introduced by UTP 2.

8.3.2.7.21 TestDesignTechniqueStructure

Description A test design technique structure describes user-defined or context-specific

additional information that may augment any given test design technique. A

Classifier with «TestDesignTechniqueStructure» applied might be of arbitrary

complexity. It enables the provision of information that is deemed relevant in a

certain context but not required in a different context.

Extension Classifier

Associations : TestDesignTechnique [1..*]

Change from UTP 1.2 «TestDesignTechniqueStructure» has been newly introduced by UTP 2.

8.3.2.7.22 TransitionCoverage

Description According to [ISTQB]: A black box test design technique in which test cases are

designed that cover at least the execution of a set of references states.

If no Transition is referenced by the property toBeCovered, all States in the

related state machine will be covered.

Extension InstanceSpecification

Super Class StateTransitionTechnique

Associations toBeCovered : Transition [*]

Refers to a set of Transitions that will at least be covered by the test designer.

Change from UTP 1.2 «TransitionCoverage» has been newly introduced by UTP 2.

8.3.2.7.23 TransitionPairCoverage

Description The «TransitionPairCoverage» test design technique is a specific (and often

used) «NSwitchCoverage» test design technique that redefines the Property

switchStates to the read-only value 1. That means that the resulting test cases

should at least cover all sequences of any two consecutive Transitions.

The semantics of transition pair coverage and N-Switch coverage with

nSwitches set to 1 is semantically equivalent.

Extension InstanceSpecification

Super Class NSwitchCoverage

Attributes switchStates {redefined switchStates} : Integer [1] =

1

Restricts the number of switch states to exactly one, meaning, that every pair of

subsequent Transitions will at least be covered.

Change from UTP 1.2 «TransitionPairCoverage» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.0 79

8.3.2.7.24 UseCaseTesting

Description According to [ISTQB]: A black box test design technique in which test cases are

designed to execute scenarios of use cases.

See also [ISO29119]-4, clause 5.2.9 Scenario Testing for further information.

Extension InstanceSpecification

Super Class TestDesignTechnique

Change from UTP 1.2 «UseCaseTesting» has been newly introduced by UTP 2.

8.4 Test Architecture

Test architecture concepts specify structural aspects of a test environment, including a test configuration, necessary

to eventually execute test cases against the test item(s). The test environment comprises everything that is necessary

to execute test cases (e.g., test components, hardware, simulators, test execution tools etc.). The test configuration

describes how those parts of the test environment and represented test components, are connected with the test item.

Building a reliable test configuration is required for any test case, because it determines the test item(s) and how the

test environment (in UTP represented by test components) interfaces to the test item(s).

Test architectures are mainly expressed by means of UML class and composite structure diagrams. In contrast to

UTP 1.2, both test components and test items can be represented either as a standalone type or as a role that a certain

type may assume in a specific test configuration. However, UTP does not prescribe which option to use for

describing test architecture and both have advantages and disadvantages.

The test architecture concepts consist of

 test configuration, implemented by the stereotype «TestConfiguration»;

 test configuration role, implemented by the abstract stereotype «TestConfigurationRole» as a superclass for

any known (even future) role a test configuration may assume;

 role configuration, implemented by the abstract stereotype «RoleConfiguration» as superclass for

configurations of concrete roles;

 test component, implemented by the stereotype «TestComponent» that specializes

«TestConfigurationRole»;

 test component configuration, implemented by the stereotype «TestComponentConfiguration» that

specializes «RoleConfiguration»;

 test item, implemented by the stereotype «TestItem» that specializes «TestConfigurationRole»;

 test item configuration, implemented by the stereotype «TestItemConfiguration» that specializes

«RoleConfiguration»;

8.4.1 Test Architecture Overview
The diagram below shows the abstract syntax of the test architecture concepts.

80 UML Testing Profile 2 (UTP 2), Version 2.0

Figure 8.11 - Test Architecture Overview

8.4.2 Stereotype Specifications

8.4.2.1 RoleConfiguration
Description The abstract stereotype «RoleConfiguration» extends the metaclass Constraint

and is used to specify the configuration of test configuration role within a certain

test configuration.

There are at least two ways a role configuration can be associated with a test

configuration role, both stemming from the underlying UML Constraints

metamodel:

 Classifier-oriented: A Constraint with a concrete substereotype of

«RoleConfiguration» applied is contained by a Classifier as its context

with a concrete substereotype of «TestConfigurationRole» applied, or it

refers to a set of such Classifiers by means of the meta-association

constrainedElement; and

 Property-oriented: A Constraint with a concrete substereotype of

«RoleConfiguration» applied refers to one or more Properties with

«TestConfigurationRole» applied by means of the meta-association

constrainedElement

The Classifier-oriented way has the advantage that all parts of test configurations

which are typed by a Classifier with a concrete substereotype of

«TestConfigurationRole» applied, must abide by the configurations defined for

that Classifier. On the downside, this might prevent reuse, because it is not

possible to get rid of configurations (similar to the handling of Constraints in

UML) expressed on Classifier level.

The Property-oriented way has the advantage that it enables the dedicated

configuration of single test component roles within a test configuration.

Extension Constraint

Sub Class TestComponentConfiguration, TestItemConfiguration

Associations /role {ready-only, union} : TestConfigurationRole

[1..*]

Refers to the set of at least one test configuration roles.

Change from UTP 1.2 «RoleConfiguration» is newly introduced in UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.0 81

8.4.2.2 TestComponent

Issue UMLTP2-1

Issue UMLTP2-16

Description TestComponent: A role of an artifact within a test configuration that is required

to perform a test case.

The stereotype «TestComponent» specializes «TestConfigurationRole» and

declares that a certain element (i.e., either a Classifier or Property) is responsible

for driving the execution of a test case. The use of the stereotype

«TestComponent» on Classifier is optional but, if it is used, all Properties of that

type must also have «TestComponent» applied, if they are used in a test

configuration.

Extension Classifier, Property

Super Class TestConfigurationRole

Sub Class DataProvider

Associations /configuration {subsets roleConfiguration} :

TestComponentConfiguration [*]

Refers to the configurations that are defined for this «TestComponent». This set

of configurations is derived from all Constraints with

«TestComponentConfiguration» applied that are either owned rules (in case of

«TestComponent» is applied on a Classifier) of the «TestComponent» or

inversely referring to the «TestComponent» (in case of

«TestComponentConfíguration» is applied on Constraint without having a

context, but using Constraint.constrainedElement to refer to the

«TestComponent»).

Change from UTP 1.2 Changed from UTP 1.2. In UTP 1.2., «TestComponent» only extended Class.

8.4.2.3 TestComponentConfiguration
Description TestComponentConfiguration: A set of configuration options offered by an

artifact in the role of a test component chosen to meet the requirements of a

particular test configuration.

The stereotype «TestComponentConfiguration» specializes the abstract

stereotype «RoleConfiguration». The eventual set of configurations for a

NamedElement with «TestComponent» applied is derived from the union of all

test component configurations declared for that NamedElement (i.e., either on

Classifier or Property level).

Extension Constraint

Super Class RoleConfiguration

Associations /testComponent {subsets role} : TestComponent [1..*]

Refers to the set of at least one test components that are configured by the given

test component configuration. The resulting set is derived from both the

Classifier stereotyped with «TestComponent» that is the context of the

underlying Constraint and all test components regardless of whether Classifier or

Property that are referenced by the underlying Constraint.constrainedElement.

Constraints
Issue UMLTP2-1

Issue UMLTP2-16

Ownership of «TestComponentConfiguration»

Each «TestComponentConfiguration» shall refer to at least one

82 UML Testing Profile 2 (UTP 2), Version 2.0

«TestComponent», i.e., there is no «TestComponentConfiguration» that exists

without referring to a «TestComponent».

Change from UTP 1.2 «TestComponentConfiguration» has been newly introduced into UTP 2.

8.4.2.4 TestConfiguration
Description TestConfiguration: A specification of the test item and test components as well

as their interconnection and configuration data.

The stereotype «TestConfiguration» extends StructuredClassifier which

effectively extends a variety of UML metaclasses such as Class, Collaboration,

and Component, etc. The test configuration then refers to the composite structure

of the underlying StructuredClassifier. Every test configuration must have at

least one member stereotyped «TestItem» which is connected to at least one

member stereotyped with «TestComponent».

The test configurations of any two distinct test procedures that are intended to be

executed together, as part of a potentially third test procedure, and must have a

compatible test configuration. Compatibility of test configurations is partially

defined by UML and the substitution principle of Liskov, but also by means of

the idea of EncapsulatedClassifiers. The attempt to invoke test procedures

together will most likely fail due to technical incompatibility.

Test cases or test procedures may come along with their own test configurations

expressed by means of their respective composite structures. In that case, the

application of the «TestConfiguration» stereotype will be done in addition to

«TestCase» or «TestProcedure». In case of shared test configurations it is

recommended, though not required, to facilitate the UML concept of a

«TestConfiguration» stereotyped Collaboration. Collaborations are meant to be

reused by other StructuredClassifiers, including Behaviors, by means of

CollaborationUse and role bindings. Inheritance and redefinition, as defined by

UML, are additional means to express shared and reusable test configurations, as

well.

Extension StructuredClassifier

Attributes ID : String [0..1]

A unique identifier that unambiguously identifies the given test configuration.

Associations /part : TestConfigurationRole [*]

Refers to the test configuration parts that are involved in this test configuration.

They are derived from all members of the underlying StructuredClassifier that

has a subclass of the abstract stereotype «TestConfigurationRole» applied.

Constraints
Issue UMLTP2-1

Issue UMLTP2-16

Minimal test configuration

A StructuredClassifier with «TestConfiguration» applied must at least specify

one part having «TestItem» applied.

Change from UTP 1.2 «TestConfiguration» has been newly introduced into UTP 2. It was conceptually

represented by the composite structure of a «TestContext» in UTP 1.2.

UML Testing Profile 2 (UTP 2), Version 2.0 83

8.4.2.5 TestConfigurationRole

Issue UMLTP2-1

Issue UMLTP2-16

Description The abstract stereotype «TestConfigurationRole» extends both Classifier and

Property.

The advantage of assigning the role to a certain part assumes in a test

configuration that the very same Type of this part (i.e., Class or Component) can

be reused in different test configuration with different roles. This entails that the

application of a concrete subclass of «TestConfigurationRole» on a Classifier is

not required at all and limits reusability of this Classifier. If a concrete

substereotype of «TestConfigurationRole» is applied on a Classifier, any part of

a test configuration must have the very same concrete substereotype applied.

Extension Classifier, Property

Sub Class TestComponent, TestItem

Associations /roleConfiguration {read-only, union} :

RoleConfiguration [*]

Refers to the role configuration that is defined for this test configuration role.

 : TestConfiguration

Change from UTP 1.2 «TestConfigurationRole» is newly introduced in UTP 2.

8.4.2.6 TestItem

Issue UMLTP2-1

Issue UMLTP2-16

Description TestItem: A role of an artifact that is the object of testing within a test

configuration.

The stereotype «TestItem» always indicates that a certain artifact (i.e., either

applied on Classifier or Property) specifies (parts of) the system under test. The

use of the stereotype «TestItem» on a Classifier is optional, but if it is used, all

Properties of that type within a test configuration must also have «TestItem»

applied, if they are used in a test configuration.

Extension Classifier, Property

Super Class TestConfigurationRole

Associations /configuration {subsets roleConfiguration} :

TestItemConfiguration [*]

Refers to the configurations that are defined for this test item. This set of

configurations is derived from all Constraints with «TestItemConfiguration»

applied that are either owned rules of the «TestItem» (in case of «TestItem» is

applied on a Classifier) or that refer to the given test item using the underlying

Constraint's constrainedElement attribute.

Change from UTP 1.2 «TestItem» has been newly introduced into UTP 2 and supersedes the «SUT»

stereotype in UTP 1.

84 UML Testing Profile 2 (UTP 2), Version 2.0

8.4.2.7 TestItemConfiguration
Description TestItemConfiguration: A set of configuration options offered by an artifact in

the role of a test item chosen to meet the requirements of a particular test

configuration.

The stereotype «TestItemConfiguration» specializes the abstract stereotype

«RoleConfiguration». The eventual set of configurations for a NamedElement

with «TestItem» applied is derived from the union of all test item configurations

declared for that NamedElement (i.e., either on Classifier or Property level).

Extension Constraint

Super Class RoleConfiguration

Associations /testItem {subsets role} : TestItem [1..*]

Refers to the set of at least one test items that are configured by the given

configuration. The resulting set is derived from both the Classifier stereotyped

with «TestItem» that is the context of the underlying Constraint and all

«TestItem» elements, regardless whether Classifier or Property, that are

referenced by the underlying Constraint.constrainedElement.

Constraints
Issue UMLTP2-1

Issue UMLTP2-16

Ownership of «TestItemConfiguration»

Each «TestItemConfiguration» shall refer to at least one «TestItem», i.e., there is

no «TestItemConfiguration» that exists without referring to a «TestItem».

Change from UTP 1.2 «TestItemConfiguration» has been newly introduced into UTP 2.

8.5 Test Behavior

Test behavior is a collective term for concepts that can be executed as part of a test set or test case. Since the

behavioral descriptions of UML are orthogonal to each other to a certain extent, UTP introduces a set of test

execution-relevant stereotypes independently of the underlying UML Behaviors or its constituting parts. Integration

with these Behaviors is done via partially multiple extensions.

The concepts for test behaviors are separated into the following blocks:

 Concepts for test-specific procedures (see section Test-specific Procedures)

 Concepts for procedural element (see section Procedural Elements)

 Concepts for test-specific actions (see section Test-specific Actions)

8.5.1 Test-specific Procedures

Issue UMLTP2-24

The fundamental executable concept in UTP is a procedure. Any UML Behavior without «TestCase»,

«TestExecutionSchedule» or «TestProcedure» applied is considered as a procedure. A procedure comprises

procedural elements regardless whether the building blocks are called InteractionFragments (if the procedure is

realized as Interaction) or Action (if the procedure is realized as Activity). For example, the procedural element loop

is represented by the stereotype «Loop» and denotes a repeated execution of procedural elements that are contained

in that loop. «Loop» extends the UML metaclasses CombinedFragment (integrating with Interactions) and the

StructuredActivityNode loop (integrating with Activities). Furthermore, it adds some test-specific information such

as the ability to provide arbitration specifications, when the loop is part of a test procedure.

Issue UMLTP2-24

Test-specific procedures are procedures that deliver a verdict (i.e., they can, or must in the case of a test case, be

UML Testing Profile 2 (UTP 2), Version 2.0 85

arbitrated (see section Arbitration Specifications for further information about arbitration). This includes that its

constituting procedural elements are arbitrated as well and provide their respective verdict to a test case arbitration

specification, which potentially provides its test case verdict to a test set arbitration specification. UTP defines three

different test-specific procedures for:

 test procedure, represented by the stereotype «TestProcedure»;

 test case, represented by the stereotype «TestCase»; and

 test execution schedule, represented by the stereotype «TestExecutionSchedule»

A test procedure is a reusable behavior that comprises procedural elements and runs on a test configuration. A test

case invokes one or more test procedures and assigns either of these roles: setup, main or teardown to the invoked

test procedure. A test execution schedule represents the invocation order of a test set's test cases.

The allowed invocation scheme for test-specific procedures is as follows:

 test execution schedule must only invoke other test execution schedules, test cases or procedures. The

invocation of test procedures by a test execution schedule is not allowed;

 test case must only invoke test procedures or procedures, but must invoke at least one test procedure as its

main part. The invocation of test cases or test execution schedules is not allowed;

 test procedure must only invoke other test procedures or procedures. The invocation of test cases or test

execution schedules is not allowed.

The test configuration of the invoking test case or test procedure must be compatible with the test configuration of

the invoked test procedure. In the case of contained test configurations and inheritance thereof, compatibility is

given by the substitution principle of Liskov. In the case of shared test configurations based on Collaboration,

compatibility is defined by UML.

8.5.1.1 Test Case Overview
The following diagram shows the abstract syntax of the test-specific procedures.

Issue UMLTP2-24

Figure 8.12 - Test Case Overview

86 UML Testing Profile 2 (UTP 2), Version 2.0

8.5.1.2 Stereotype Specifications

8.5.1.2.1 TestProcedure

Description TestProcedure: A procedure that constrains the execution order of a number of

test actions.

A test procedure is a reusable Behavior that constitutes the building blocks for

other test procedures or test cases. A test procedure consists of procedural

elements, in particular test actions.

A test procedure must always run on a test configuration (i.e., its constituting

procedural elements are either executed by a test component or a test item).

Since «TestProcedure» extends Behavior (as such both StructuredClassifier as

well as BehavioredClassifier), a test procedure may provide its own dedicated

test configuration defined by its composite structures. In that case, compatibility

with the test configuration of any invoking test-specific procedure (i.e., test

procedure or test case) must be ensured.

A test procedure must only invoke other test procedures or procedures and must

only be invoked by other test procedures or test cases. If invoked by a test case, a

test procedure may assume either of these roles: main, setup or teardown. If a

test procedure invokes another test procedure by means of

«ProcedureInvocation» the attribute role of «ProcedureInvocation» must not be

set. A test procedure is not allowed to determine the role of other test

procedures, because this role can only be determined by test cases. Implicitly,

any test procedure assigns their current role assigned by the invoking test case to

any other test procedure they invoke. This transitive assignment will be

recursively continued until no more test procedures are available. This recursion

ensures consistency for the invoking test case.

Extension Behavior

Constraints
Issue UMLTP2-1

Issue UMLTP2-16

Test procedure operates on test configuration

A TestProcedure must always run on a (potentially implicit) TestConfiguration

comprising at least one instance of a TestComponent connected to a TestItem

Allowed invocation scheme

A TestProcedure must only invoke other TestProcedures or procedures.

Use of «ProcedureInvocation»

A TestProcedure must not make use of the role attribute of

«ProcedureInvocation» when used as ProceduralElement of the given

TestProcedure.

Test case invokes one main procedure

DRTP04: It is necessary that each test case invokes at least one test procedure as

a main procedure invocation.

Procedure sequentializes procedural element

DRTP02: It is necessary that each procedure prescribes the execution order of at

least one procedural element.

Test procedure sequencializes test action

DRTP03: It is necessary that each test procedure prescribes the execution order

of at least one test action.

UML Testing Profile 2 (UTP 2), Version 2.0 87

One postcondition per test procedure

DRTC07: It is necessary that each test procedure guarantees at most one

postcondition.

One precondition per test procedure

DRTC04: It is necessary that each test procedure requires at most one

preconditon.

Change from UTP 1.2 «TestProcedure» has been newly introduced by UTP 2.

88 UML Testing Profile 2 (UTP 2), Version 2.0

8.5.1.2.2 TestCase

UML Testing Profile 2 (UTP 2), Version 2.0 89

Description TestCase: A procedure that includes a set of preconditions, inputs and expected

results, developed to drive the examination of a test item with respect to some

test objectives.

«TestCase» extends both BehavioredClassifier and Behavior. According to the

conceptual model, a test case must provide different functionality like defining

pre-/postconditions, being executable etc., and the UML allows different ways

for implementing the test case concept. In general, a test case can be either

defined as a standalone Behavior stereotyped with «TestCase» or as a compound

construct consisting of a «TestCase» BehavioredClassifier, and a «TestCase»

Behavior set as the classifierBehavior of the «TestCase» BehavioredClassifier.

In the second alternative, both the BehavioredClassifier and its

classifierBehavior are semantically treated as a single concept.

A test case describes the interplay of the test item with its controlled

environment, the so called test environment, consisting of test components. A

test case has to operate on a test configuration. The composite structure of a

StructuredClassifier with «TestConfiguration» applied determines the different

roles the composite structures assume for that test case. Test cases may define

their own test configurations as part of their dedicated composite structure (e.g.

in case the stereotype «TestCase» is applied on an instance of

StructuredClassifier>, or it may operate on a shared «TestConfiguration»

StructuredClassifier such as a Collaboration. If a «TestCase» Behavior invokes a

«TestProcedure» Behavior, the invoked test procedure has to operate on the

same or a compatible test configuration.

The pre- and postconditions of a test case are always declared by the Behavior

with «TestCase» applied by means of the underlying UML capability that each

Behavior may contain a number of Constraints as pre- and postconditions. A test

case must be parameterizable. This feature is also determined by the Behavior

with «TestCase» applied. Again, the underlying capability of a UML Behavior is

reused by UTP.

A test case may only invoke test procedures as main, setup or teardown part or

ordinary procedures. A test case must invoke at least one test procedure as its

main part. This can be either done explicitly using the stereotype

«ProcedureInvocation» or by using the underlying native UML elements for

Behavior invocation (e.g., CallBehaviorAction, InteractionUse,

BehaviorExecutionSpecification etc.) If a native UML Behavior invocation

element is used and refers to a Behavior with «TestProcedure» applied, it is

semantically equivalent with explicitly applying the stereotype

«ProcedureInvocation» on the UML Behavior invocation element and setting the

tagged value of role to main. Any procedural element that is directly contained

in Behavior with «TestCase» applied is considered semantically equivalent to an

explicit Behavior with «TestProcedure» applied that contains the procedural

element and the use of «ProcedureInvocation» within the «TestCase» instead of

the procedural elements. This ensures flexibility and guarantees simplicity when

defining test cases.

Issue UMLTP2-24

The semantics of the default arbitration specification of a test case is defined by

«TestCaseArbitrationSpecification». The default arbitration specification is

always active, unless an explicit «TestCaseArbitrationSpecification» is bound to

the «TestCase».

90 UML Testing Profile 2 (UTP 2), Version 2.0

Graphical syntax

Extension Behavior, BehavioredClassifier

Attributes ID : String [0..1]

A unique identifier to unambiguously distinguish between any two test cases.

This is mainly intended to interface easier with management tools such as test

management tools.

description : String [0..1]

Usually, a narrative description of the given test case.

Associations /utilizedBy : TestContext [*]

/realizes : TestRequirement [*]

The test requirements that are realized by the given test case.

They are derived from the set of UML Realization dependencies that point from

the base BehavioredClassifier to UML Classes stereotyped by

«TestRequirement».

 : TestSet [0..1]

 : TestCaseLog [*]

testCaseAS : TestCaseArbitrationSpecification [0..1]

Refers to the explicit static test case arbitration specification that overrides the

implicit default test case arbitration specification.

Constraints
Issue UMLTP2-1

Issue UMLTP2-16

Each test case returns a verdict statement

Any Behavior stereotyped as «TestCase» returns a ValueSpecification typed by

verdict after arbitration had happened.

Use of BehavioredClassifier

If «TestCase» is applied to a BehavioredClassifier that is not an instance of the

metaclass Behavior, the 'classifierBehavior' of that BehavioredClassifier shall be

Behavior with «TestCase» applied.

Allowed invocation scheme

A TestCase must only invoke TestProcedure or procedures, but not other

TestCases or TestExecutionSchedule.

One precondition per test case

DRTC03: It is necessary that each test case requires at most one preconditon.

One postcondition per test case

DRTC06: It is necessary that each test case guarantees at most one

postcondition.

Owned UseCases not allowed

A BehavioredClassifier or Behavior with «TestCase» applied must not own

UseCases with «TestCase» applied.

Nested Classifier not allowed

?

UML Testing Profile 2 (UTP 2), Version 2.0 91

A Behavior with «TestCase» applied must not nest any other Behavior that has

«TestCase» applied.

Change from UTP 1.2 Changed from UTP 1.2. «TestCase» extended Behavior and Operation in UTP

1.2.

92 UML Testing Profile 2 (UTP 2), Version 2.0

8.5.1.2.3 TestExecutionSchedule

UML Testing Profile 2 (UTP 2), Version 2.0 93

Description TestExecutionSchedule: A procedure that constrains the execution order of a

number of test cases.

A test execution schedule is a Behavior with «TestExecutionSchedule» applied

that schedules the execution order of a number of TestCases.

A test execution schedule can be either defined standalone or related to one or

more test sets. If a test execution schedule is related to a test set, the test

execution schedule is only allowed to schedule the execution of test cases that

belong to its related test set. This holds true, even if many test sets share the

same test execution schedule. However, it is possible, due to the semantics of

Behavior, to specialize, invoke or redefine test execution schedules. This enables

the composition and decomposition of test execution schedules, which, in turn,

fosters reusability. A standalone test execution schedule has the same semantics

like defining a test set that owns the test execution schedule and assembles all

the test cases scheduled for execution by the standalone test execution schedule.

Standalone test execution schedules may specialize or invoke non-standalone

test execution schedules. However, the semantics of the standalone test

execution schedule remains the same.

Issue UMLTP2-24

A test execution schedule may produce a test set verdict, calculated by an

implicit or explicit arbitration specification for that test execution schedule. The

semantics of the default arbitration specification of a test execution schedule is

defined by «TestSetArbitrationSpecification». The default arbitration

specification is always active, unless an explicit

«TestSetArbitrationSpecification» is bound to the «TestExecutionSchedule».

A test execution schedule may invoke other test execution schedules, test cases

or auxiliary procedures (e.g., to retrieve required test data), however, a test

execution schedule is not allowed to invoke a test procedure directly (see

«ProcedureInvocation» for further information on the allowed invocation

schemes). Invocation of Behaviors relies on the underlying UML concepts for

invoking Behaviors. These are for Activities and StateMachines

CallBehaviorAction, StartObjectBehaviorAction and

StartClassifierBehaviorAction, and for Interactions InteractionUse. If such an

invocation element is stereotyped with «ProcedureInvocation», and part of a

«TestExecutionSchedule» Behavior, e.g., such as an Activity, the following

Behaviors can be invoked:

 Behaviors with «TestExecutionSchedule» applied: Useful for

decomposing and reusing test execution schedules. If the user assigns a

ProcedurePhaseKind to the invoked «TestExecutionSchedule», it will

not have an effect.

 Behaviors with «TestCase» applied: Useful for decomposing and

reusing test cases. If the user assigns a ProcedurePhaseKind to the

invoked «TestCase», it will not have an effect.

 Behaviors without «TestExecutionSchedule», «TestCase» or

«TestProcedure» applied: Such a Behavior invoked by a

«ProcedureInvocation» is considered as auxiliary Behavior required to

prepare the execution of succeeding «TestExecutionSchedules», and

thus, «TestCase». The user may mark the invoked Behavior as setup or

teardown activity by means of the role attribute.

In the last case, a role might be assigned to an invoked Behavior. This role is

94 UML Testing Profile 2 (UTP 2), Version 2.0

either of setup or teardown. If the role main is assigned, it will not have an

effect. Behaviors executed as setup or teardown Behaviors will not be arbitrated

by a corresponding arbitration specification. The meaning of the

ProcedurePhaseKind in the context of an test execution schedule are as follows:

 Setup: A means to declare that the executed Behavior is responsible to

prepare the execution of succeeding arbitrated test cases contained in

that test execution schedule. UTP does not prescribe which verdict will

be assigned in case something goes wrong while executing the setup

phase of an arbitrated test execution schedule.

 Teardown: A means to declare that the executed Behavior is

responsible to clean-up after the arbitrated test cases of this test

execution schedule have been executed. UTP does not prescribe which

verdict will be assigned in case something goes wrong while executing

the teardown phase.

Extension Behavior

Attributes
Issue UMLTP2-24

ID : String [0..1]

A unique identifier to unambiguously distinguish between any two test execution

schedules. This is mainly intended to interface easier with management tools

such as test management tools.

Associations testSetAS : TestSetArbitrationSpecification [0..1]

Refers to the explicit static test set arbitration specification that overrides the

implicit default test set arbitration specification. An explicit test set arbitration

specification has only an effect, if the attribute isArbitrated is set to true.

Constraints
Issue UMLTP2-1

Issue UMLTP2-16

Allowed invocation scheme

If a Behavior with «TestExecutionSchedule» contains an Element with

«ProcedureInvocation» applied, the invoked Behavior shall have either none or

one of the stereotypes «TestExecutionSchedule» or «TestCase» applied. The

direct invocation of «TestProcedure» Behaviors is not allowed from within a

«TestExecutionSchedule» Behavior.

One precondition per test execution schedule

DRTC02: It is necessary that each test execution schedule requires at most one

preconditon.

One postcondition per test execution schedule

DRTC05: It is necessary that each test execution schedule guarantees at most

one postcondition.

Change from UTP 1.2 «TestExecutionSchedule» has been newly introduced by UTP 2. It was

conceptually represented as the classifier behavior of a «TestContext» in UTP

1.2.

8.5.2 Procedural Elements
Procedural elements constitute the building blocks of procedures and test procedures. They can be realized by any

building block of UML Behaviors (e.g., InteractionFragments in case of Interactions, Actions in case of Activities

and Transitions/Vertices in case of StateMachines). The stereotypes for procedural elements reflect the minimal

language concepts that are deemed necessary for testers to specify test-specific procedures. Each procedural element

in a test-specific procedure has an effective arbitration specification assigned that delivers a procedural element

verdict to the surrounding arbitration specification at runtime.

UML Testing Profile 2 (UTP 2), Version 2.0 95

Issue UMLTP2-24

Since the UML Behavior building blocks outnumber the UTP procedural elements, test-specific procedures may

consist of more than just the few predefined procedural elements. CombinedFragments of Interactions, for example,

offer more than just the four predefined compound procedural elements of UTP. Such a plain UML Behavior

building block provides implicitly the predefined verdict instances none to the surrounding arbitration specification.

This default semantics can be overridden by means of «OpaqueProceduralElement».

In general, UTP provides the following procedural elements out of the box:

 procedural element represented by the abstract stereotype «ProceduralElement»

 atomic procedural element represented by the abstract stereotype «AtomicProceduralElements»

 compound procedural element represented by the abstract stereotype «CompoundProceduralElement»

 opaque procedural element represented by the stereotype «OpaqueProceduralElement»

Specialized compound procedural elements comprises:

 loop represented by the stereotype «Loop»

 sequence represented by the stereotype «Sequence»

 parallel represented by the stereotype «Parallel»

 alternative represented by the stereotype «Alternative»

 negative represented by the stereotype «Negative»

 procedure invocation represented by the stereotype «ProcedureInvocation»

Specialized atomic procedural elements are described by the test-specific actions (see section Test-specific Actions).

The procedural elements have been introduced by UTP to offer a harmonized view on technically different UML

behavioral building blocks.

8.5.2.1 Procedural Elements Overview
The following diagram shows the abstract syntax of the core procedural elements.

96 UML Testing Profile 2 (UTP 2), Version 2.0

Issue UMLTP2-24

Figure 8.13 - Procedural Elements Overview

8.5.2.2 Compound Procedural Elements Overview
The following diagram shows the abstract syntax of the compound procedural elements.

UML Testing Profile 2 (UTP 2), Version 2.0 97

Issue UMLTP2-24

Figure 8.14 - Compound Procedural Elements Overview

8.5.2.3 Stereotype Specifications

8.5.2.3.1 Alternative

Description Alternative: A compound procedural element that executes only a subset of its

contained procedural elements based on the evaluation of a boolean expression.

If «Alternative» is applied to CombinedFragement, the underlying

CombinedFragment must have the InteractionOperatorKind alt or opt set.

In an Activity, «Alternative» must only be applied to CondititonalNode.

Extension CombinedFragment, StructuredActivityNode

Super Class CompoundProceduralElement

Associations arbitrationSpecification {redefines

arbitrationSpecification} :

AlternativeArbitrationSpecification [0..1]

Refers to an alternative arbitration specification that overrides the default and

implicit arbitration specification, if set. It redefines the Property

arbitrationSpecification of CompoundProceduralElement.

Constraints
Issue UMLTP2-1

Issue UMLTP2-16

Application in Interactions

If «Alternative» is applied to CombinedFragment, the underlying

98 UML Testing Profile 2 (UTP 2), Version 2.0

CombinedFragment must have the InteractionOperatorKind alt or opt set.

Application in Activities

In an Activity, «Alternative» must only be applied to CondititonalNode.

Change from UTP 1.2 «Alternative» has been newly introduced by UTP 2.

8.5.2.3.2 AtomicProceduralElement

Description AtomicProceduralElement: A procedural element that cannot be further

decomposed.

«AtomicProceduralElement» is an abstract stereotype that does not extend UML

metaclass at all. This means that its substereotypes have to define suitable UML

metaclass for extension.

Atomic procedural elements resembles the semantics of UML Behavior building

blocks that are not able to be further decomposed. Message and

CallOperationAction are examples for concrete UML Behavior building block

that adhere to the definition of atomic procedural element. In contrast,

CombinedFragment or LoopNode are examples for compound procedural

elements for they contain potentially further procedural elements.

Super Class ProceduralElement

Sub Class CheckPropertyAction, CreateLogEntryAction, CreateStimulusAction,

ExpectResponseAction, ProcedureInvocation, SuggestVerdictAction

Associations arbitrationSpecification {redefines

arbitrationSpecification} :

AtomicProceduralElementArbitrationSpecification [0..1]

Refers to an atomic arbitration specification that overrides the default and

implicit arbitration specification if set. It redefines the Property

arbitrationSpecification of procedural element.

Change from UTP 1.2 «AtomicProceduralElement» has been newly introduced by UTP 2.

8.5.2.3.3 CompoundProceduralElement

Issue UMLTP2-24

Description CompoundProceduralElement: A procedural element that can be further

decomposed.

«CompoundProceduralElement» is an abstract stereotype that extends

CombinedFragment and StructuredActivityNode to interface with the UML

Behaviors Interaction and Activity.

A compound procedural element resembles the semantics of UML Behavior

building blocks that consist of other procedural element. As such, it may obtain

the verdicts of its contained executed procedural elements in order to calculate

its own procedural element verdict. The difference between an atomic procedural

element verdict and compound procedural element verdict is that the latter is

potentially composed out of multiple atomic procedural element verdicts.

Extension CombinedFragment, StructuredActivityNode

Super Class ProceduralElement

Sub Class Alternative, Loop, Negative, Parallel, Sequence

UML Testing Profile 2 (UTP 2), Version 2.0 99

Associations arbitrationSpecification {redefines

arbitrationSpecification} :

CompoundProceduralElementArbitrationSpecification

[0..1]

Change from UTP 1.2 «CompoundProceduralElement» has been newly introduced by UTP 2.

8.5.2.3.4 Loop

Description
Issue UMLTP2-24

Loop: A compound procedural element that repeats the execution of its

contained procedural elements.

If «Loop» is applied to CombinedFragement, the underlying CombinedFragment

must have the InteractionOperatorKind loop set.

In an Activity, «Loop» must only be applied to LoopNode.

The nature of the loop (i.e., counter-controlled loop, conditional-controlled loop

or collection-controlled loop) is determine by the configuration of the underlying

UML element for expressing loops.

Extension CombinedFragment, StructuredActivityNode

Super Class CompoundProceduralElement

Associations arbitrationSpecification {redefines

arbitrationSpecification} :

LoopArbitrationSpecification [0..1]

Refers to a loop arbitration specification that overrides the default and implicit

arbitration specification if set. It redefines the Property arbitrationSpecification

of CompoundProceduralElement.

Constraints
Issue UMLTP2-1

Issue UMLTP2-16

Application in Interactions

If «Loop» is applied to CombinedFragment, the underlying CombinedFragment

must have the InteractionOperatorKind loop set.

Application in Activities

In an Activity, «Loop» must only be applied to LoopNode.

Change from UTP 1.2 «Loop» has been newly introduced by UTP 2.

8.5.2.3.5 Negative

Description Negative: A compound procedural element that prohibits the execution of its

contained procedural elements in the specified structure.

If «Negative» is applied to CombinedFragement, the underlying

CombinedFragment must have the InteractionOperatorKind neg set.

In an Activity, «Negative» must only be applied to StructuredActivityNode.

Extension CombinedFragment, StructuredActivityNode

Super Class CompoundProceduralElement

100 UML Testing Profile 2 (UTP 2), Version 2.0

Associations arbitrationSpecification {redefines

arbitrationSpecification} :

NegativeArbitrationSpecification [0..1]

Constraints
Issue UMLTP2-1

Issue UMLTP2-16

Application in Interactions

If «Negative» is applied to CombinedFragment, the underlying

CombinedFragment must have the InteractionOperatorKind neg set.

Application in Activities

In an Activity, «Negative» must only be applied to StructuredActivityNode.

Change from UTP 1.2 «Negative» has been newly introduced by UTP 2.

8.5.2.3.6 OpaqueProceduralElement

Description «OpaqueProceduralElement» adds the possibility to assign arbitration

specifications to UML Behavior building blocks that are not covered by UTP

procedural elements. Thus, it is a plain technical stereotype introduced for

flexibility of UTP. Similar to the semantics of opaque elements in UML (i.e.,

OpaqueBehavior, OpaqueExpression, OpaqueAction), there is no additional

semantics for «OpaqueProceduralElement» given apart from the ability to assign

arbitration specifications to UML elements for which no dedicated procedural

element stereotype has been defined.

Extension NamedElement

Super Class ProceduralElement

Constraints
Issue UMLTP2-1

Issue UMLTP2-16

Only applicable to UML Behavior building blocks

«OpaqueProceduralElement» must only be applied on instances of the UML

metaclass Action, InteractionFragment, Vertex and Transition.

Change from UTP 1.2 «OpaqueProceduralElement» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.0 101

8.5.2.3.7 Parallel

Description Parallel: A compound procedural element that executes its contained procedural

elements in parallel to each other.

If «Parallel» is applied to CombinedFragement, the underlying

CombinedFragment must have the InteractionOperatorKind par set.

If used in Activities, the metaclass ConditionalNode is reused to describe

parallel execution of procedural elements (i.e., ExecutableNodes). The branches

that must be executed in parallel are defined by the Clauses that are contained in

a ConditionalNode with «Parallel» applied. If such a ConditionalNode is

activated and ready for execution, the evaluation of the Clauses by executing the

test parts are executed as described by UML. In contrast to a plain

ConditionalNode, where at most one Clause's body part will be executed, even if

more than one Clause's test part eventually enabled the Clause, all enabled

Clause's body parts are executed in parallel, if the ConditionalNode has

«Parallel» applied.

Extension CombinedFragment, StructuredActivityNode

Super Class CompoundProceduralElement

Associations arbitrationSpecification {redefines

arbitrationSpecification} :

ParallelArbitrationSpecification [0..1]

Refers to a parallel arbitration specification that overrides the default and

implicit arbitration specification if set. It redefines the Property

arbitrationSpecification of CompoundProceduralElement.

Constraints
Issue UMLTP2-1

Issue UMLTP2-16

Application in Interactions

If «Parallel» is applied to CombinedFragment, the underlying

CombinedFragment must have the InteractionOperatorKind par set.

Application in Activities

In an Activity, «Parallel» must only be applied to SequenceNode

Change from UTP 1.2 «Parallel» has been newly introduced by UTP 2.

102 UML Testing Profile 2 (UTP 2), Version 2.0

8.5.2.3.8 ProceduralElement

Description ProceduralElement: An instruction to do, to observe, and/or to decide.

«ProceduralElement» is an abstract stereotype that does not extend any UML

metaclass. This means that its substereotypes have to define suitable UML

metaclasses for extension.

Issue UMLTP2-24

A procedural element is the lowest common denominator for the building blocks

of the different UML Behaviors. If used as constituting part (possibly

transitively) of a test case execution, every procedural element delivers a verdict

depending on both the execution of the respective procedural element and the

effective arbitration specification of that procedural element. Every procedural

element has an effective arbitration specification assigned at evaluation time.

This effective arbitration specification is either the default arbitration

specification of the respective procedural element or an explicitly bound

arbitration specification. If no explicit arbitration specification is bound to the

procedural element, the default arbitration specification becomes the effective

arbitration specification.

A procedural element adds the ability to specify the expected starting and end

point of the execution of procedural element related to a previously executed

procedural element, represented by the tag definitions startAfterPrevious and

endAfterPrevious. These timing-related characteristics are represented by means

of explicit tag definitions in addition to the existing simple time concepts of

UML and time-related information potentially available by further UML profiles

such as MARTE. UTP 2 does not prescribe which of these timing-related

concepts should be used. As a recommendation, users should not mix different

mechanisms to express timing-related information.

Sub Class AtomicProceduralElement, CompoundProceduralElement,

OpaqueProceduralElement

Associations arbitrationSpecification :

ProceduralElementArbitrationSpecification [0..1]

Refers to a procedural element arbitration specification that overrides the default

and implicit arbitration specification for procedural elements.

startAfterPrevious : Duration [0..1]

endAfterPrevious : Duration [0..1]

Constraints
Issue UMLTP2-1

Valid duration

DRTP01: It is necessary that the PE start duration of a procedural element is

smaller than the PE end duration of the same procedural element.

Change from UTP 1.2 «ProceduralElement» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.0 103

8.5.2.3.9 ProcedureInvocation

Description ProcedureInvocation: An atomic procedural element of a procedure that invokes

another procedure and waits for its completion.

Issue UMLTP2-24

«ProcedureInvocation» is a means to invoke procedures from within other

procedures. Since the constituents of UML Behaviors are not based on an

integrated metaclass, the concrete metaclasses for «ProcedureInvocation»

depend on the Behavior kind in which the «ProcedureInvocation» is used. If it

represents a building block of an Activity or StateMachine,

«ProcedureInvocation» must only be applied on the metaclass

CallBehaviorAction, StartObjectBehaviorAction or

StartClassifierBehaviorAction. If it represents a building block of an Interaction,

«ProcedureInvocation» must only be applied on the metaclass InteractionUse.

The allowed invocation scheme for a «ProcedureInvocation» is as follows:

 If it constitutes a procedural element of a test execution schedule, only

test execution schedules, test cases or procedures must be invoked.

 If it constitutes a procedural element of a test case, only test procedures

and procedures must be invoked.

 If it constitutes a procedural element of a test procedure, only test

procedure or procedures must be invoked.

If procedure invocation is part of a test case it must assign a role to the invoked

test procedure. This role is either main, setup or teardown. The semantics of

these roles in UTP are:

 main: A test procedure that implements the reason why the invoking

test case has been designed, i.e., it contribute to the coverage of a test

objective or test requirement. The main part of a test case is relevant for

calculating coverage and controlling the progress.

 setup: A means to declare that the executed test procedure is

responsible to prepare the main part of a test case.

 teardown: A means to declare that the executed test procedure is

responsible to clean-up after the main part of a test case has been

executed.

If procedure invocation is part of a test execution schedule it may assign a role to

an invoked Behavior. This role is either of setup or teardown. The semantics of

these roles in UTP are:

 setup: A means to declare that the executed Behavior is responsible to

prepare the execution of arbitrated test cases contained in that test case.

 teardown: A means to declare that the executed Behavior is responsible

to clean-up after the arbitrated test cases of this test execution schedule

have been executed.

Extension CallBehaviorAction, InteractionUse

Super Class AtomicProceduralElement

Attributes role : ProcedurePhaseKind [0..1]

The role, the invoked procedure assumes within the invoking test-specific

procedure.

104 UML Testing Profile 2 (UTP 2), Version 2.0

Associations arbitrationSpecification {redefines

arbitrationSpecification} :

ProcedureInvocationArbitrationSpecification [0..1]

Refers to a procedure invocation arbitration specification that overrides the

default and implicit arbitration specification if set. It redefines the Property

arbitrationSpecification of «CompoundProceduralElement».

Issue UMLTP2-24

/invokedProcedure : Behavior

The procedure that was invoked by that «ProcedureInvocation». If

«ProcedureInvocation» is applied to CallBehaviorAction, it is derived from the

property 'behavior' of the underlying CallBehaviorAction. If

«ProcedureInvocation» is applied to InteractionUse, it is derived from the

property 'refersTo' of the underlying InteractionUse.

Constraints
Issue UMLTP2-1

Issue UMLTP2-24

Role only in context of test cases relevant

If «ProcedureInvocation» is part of a «TestProcedure» Behavior, the tag

definition role must be empty. If it is empty, it will be ignored.

Change from UTP 1.2 «ProcedureInvocation» has been newly introduced by UTP 2.

8.5.2.3.10 Sequence

Description Sequence: A compound procedural element that executes its contained

procedural elements sequentially.

If «Sequence» is applied to CombinedFragement, the underlying

CombinedFragment must have the InteractionOperatorKind strict or seq applied.

In an Activity, «Sequence» must only be applied to SequenceNode.

Extension CombinedFragment, StructuredActivityNode

Super Class CompoundProceduralElement

Associations arbitrationSpecification {redefines

arbitrationSpecification} :

SequenceArbitrationSpecification [0..1]

Refers to a SequenceArbitrationSpecification that overrides the default and

implicit ArbitrationSpecification if set. It redefines the Property

arbitrationSpecification of CompoundProceduralElement.

Constraints
Issue UMLTP2-1

Application in Interactions

If applied on a CombinedFragment, the underlying CombinedFragment must

have set InteractionOperatorKind::seq or InteractionOperatorKind::strict as the

interactionOperator.

Application in Activities

If applied on a StructuredActivityNode, the StructuredActivityNode must be a

SequenceNode.

Change from UTP 1.2 «Sequence» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.0 105

Issue UMLTP2-30

8.5.2.4 Enumeration Specifications

Name Description Enumeration literals

ProcedurePhaseKin

d

An enumeration of the three

possible values a procedure or

test procedure can assume.

setup

The invoked procedure or test procedure is considered

as a preamble of the test case or a test execution

schedule, intended to prepare the execution of test

cases.

teardown

The invoked procedure or test procedure is considered

as a postamble of the test case or a test execution

schedule, intended to clean-up or finalize the execution

of test cases.

main

The invoked test procedure is considered as the

essential part of a test case's execution with respect to

coverage.

8.5.3 Test-specific Actions
UTP introduces dedicated test-specific actions that denote actions a tester, regardless whether this is an automated or

human tester, can carry out in order to communicate with the test item. In context of dynamic testing,

communicating with a test item either means to stimulate the test item with a create stimulus action (implemented

as stereotype «CreateStimulusAction») or observing and evaluating its actual responses with the expected ones

(represented by the stereotypes «ExpectResponseAction», «CheckPropertyAction»).

Test-specific actions are specialized procedural elements. As such, they contribute a dedicated procedural element

verdict to the eventual calculation of a test case or test set verdict. The test-specific actions can be categorized by the

entity that contributes information to the calculation of the respective procedural element verdict.

The procedural element verdicts of the following test-specific actions are calculated by taking into consideration the

information provided by the test component or tester. These test-specific actions are henceforth called test

component controlled actions, because an erroneous execution of these test actions indicates a misbehavior of the

test component (submitting the wrong stimulus, performing a test-specific action too late/too early) or technical

issues in the test environment (e.g., breakdown of connectivity etc.):

 Create stimulus action represented by the stereotype «CreateStimulusAction»

 Suggest verdict action represented by the stereotype «SuggestVerdictAction»

 Create log entry action represented by the stereotype «CreateLogEntryAction»

Issue UMLTP2-24

It is highly recommended that the verdicts calculated by these test component controlled actions should only result

in the predefined verdict instances pass or error.

The verdict of following test-specific actions is calculated by taken into consideration information received by the

test items. These test-specific actions are henceforth called test item controlled actions, because the arbitration of

these test-specific actions depend on the responses of the test items during execution and as such indicate deviations

between the expected response and actual response:

 Expect response action represented by the stereotype «ExpectResponseAction»

 Check property action represented by the stereotype «CheckPropertyAction»

It is highly recommended that the verdicts calculated by test component controlled actions should only result in the

106 UML Testing Profile 2 (UTP 2), Version 2.0

predefined verdict instances pass or error.

8.5.3.1 Test-specific actions Overview
The following diagram shows the abstract syntax of the test action.

Figure 8.15 - Test-specific actions Overview

8.5.3.2 Tester Controlled Actions
The following diagram shows the details of the test component controlled test actions.

UML Testing Profile 2 (UTP 2), Version 2.0 107

Figure 8.16 - Tester Controlled Actions

8.5.3.3 Test Item Controlled Actions
The following diagram shows the details of the test item controlled test actions.

Issue UMLTP2-29

Figure 8.17 - Test Item Controlled Actions

108 UML Testing Profile 2 (UTP 2), Version 2.0

8.5.3.4 Stereotype Specifications

8.5.3.4.1 CheckPropertyAction

Description CheckPropertyAction: A test action that instructs the tester to check the

conformance of a property of the test item and to set the procedural element

verdict according to the result of this check.

The stereotype «CheckPropertyAction» extends Constraint (for integration with

Interaction's StateInvariant and StateMachines), and ObjectFlow (for integration

with Activities) and enables the test component to check certain properties of the

test item that cannot be checked via the publicly available or known APIs of the

test item. Thus, it is not defined how the test component accesses the test item's

property.

If used in Interactions, check property action is used as Constraint of a

StateInvariant that covers a test component. Such a Constraint must be contained

by StateInvariants. The specification of the StateInvariant's

«CheckPropertyAction» Constraint is intended to determine the Property of the

test item that must be checked and the value the Property has to match with. As

specification of the «CheckPropertyAction» Constraint, any kind of suitable

ValueSpecification can be utilized. For example, the «CheckPropertyAction»

Constraint may specify location expressions with OCL or Alf for declaring

access and expected values of the test item's Property.

If used in StateMachines, check property action is expressed as stateInvariant

attribute of a State. Since the stateInvariant attribute is of type Constraint, the

usage, application and semantics is similar to the check property action used in

Interactions (i.e., use of StateInvariant in Interactions).

If used in Activities, check property action is expressed as

«CheckPropertyAction» ObjectFlow that emanates from a

ReadStructuralFeatureAction and is used to access a StructuralFeature of the test

item. The expected value of the checked Property is defined by the guard

condition of the CheckPropertyAction» ObjectFlow.

In addition, it is possible to point directly to the Property that will be checked by

the check property action by means of the tag definition checkedProperty. This

information is helpful, if, for example, natural language is used to describe

«CheckPropertyAction» Constraint.

Issue UMLTP2-24

The default arbitration specification for the check property action is described by

«CheckPropertyArbitrationSpecification».

Graphical syntax

Extension Constraint, ObjectFlow

Super Class AtomicProceduralElement

Associations arbitrationSpecification {redefines

arbitrationSpecification} :

CheckPropertyArbitrationSpecification [0..1]

Refers to a check property action arbitration specification that overrides the

UML Testing Profile 2 (UTP 2), Version 2.0 109

default and implicit arbitration specification, if set. It redefines the Property

arbitrationSpecification of test action.

checkedProperty : Property [*]

Refers to set of Properties of a test item that is supposed to be checked by the

check property action.

Constraints
Issue UMLTP2-1

Issue UMLTP2-16

Owner of Constraint

If applied on a Constraint, the owner of this Constraint must only be a State

(referring to the Constraint as StateInvariant) or StateInvariant.

Owner of Property

If 'checkedProperty' is not empty, the referenced Property must belong to a

TestItem participating in the current test-specific procedure.

At least one property

DRTA03: It is necessary that a check property action checks at least one

property of the test item against the data.

Change from UTP 1.2 «CheckPropertyAction» has been newly introduced by UTP 2.

110 UML Testing Profile 2 (UTP 2), Version 2.0

8.5.3.4.2 CreateLogEntryAction

Description CreateLogEntryAction: A test action that instructs the tester to record the

execution of a test action, potentially including the outcome of that test action in

the test case log.

The stereotype «CreateLogEntryAction» extends InvocationAction which allows

for using a variety of metaclasses for application. The create log entry action is a

test action that instructs the tester or the test execution system to log certain

information about the execution of a test case. This information is henceforth

called content to be logged. The content to be logged has to be provided as the

argument InputPin of the underlying InvocationAction. It is not specified how

the variety of potentially logable contents is eventually be represented in the log.

Test execution systems are responsible for eventually writing the content to be

logged into the actual test log.

If used in an Interaction, the InvocationAction that is stereotyped with

«CreateLogEntryAction» should be referenced from an

ActionExecutionSpecification that indirectly covers a Lifeline that represents a

test component role in the underlying test configuration. Indirectly means that

the corresponding start and end OccurenceSpecification of the

ActionExecutionSpecification cover the test component lifeline.

If used in Activities or StateMachines, e.g., CallOperationAction could be used

to invoke a (not standardized, yet proprietary) logging interface operation.

Another possibility is to use SendObjectAction without specifying the target Pin

which has the semantics to submit the information to be logged to the logging

facility of the test execution system without needing a dedicated interface.

However, during test execution the create log entry action must be made

executable and eventually carried out. This may include manually writing some

information into a paper-based document.

Issue UMLTP2-24

The default arbitration specification for the create log entry action is described

by «CreateLogEntryArbitrationSpecification».

Graphical syntax

Extension InvocationAction

Super Class AtomicProceduralElement

Associations arbitrationSpecification {redefines

arbitrationSpecification} :

CreateLogEntryArbitrationSpecification [0..1]

Refers to a create log entry action arbitration specification that overrides the

default and implicit arbitration specification if set. It redefines the Property

arbitrationSpecification of test action.

Change from UTP 1.2 «CreateLogEntryAction» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.0 111

8.5.3.4.3 CreateStimulusAction

Description CreateStimulusAction: A test action that instructs the tester to submit a stimulus

(potentially including data) to the test item.

«CreateStimulusAction» extends Message (for integration with Interaction) and

InvocationAction (for integration with Activities and StateMachines).

The create stimulus action is performed by an instance of a test component and

represents a set of possible invocations of the test item, potentially conveyed by

a payload. Invocation means that either a BehavioralFeature of the test item is

invoked (e.g. using a Message or a SendSignalAction respectively

CallOperationAction) or by simply sending a stimulus to the test items (e.g.,

SendObjectAction or BroadcastSignalAction).

The set of stimuli to be sent is derived from the arguments of the underlying

UML element and the elements specified by the tag definition permittedElement.

This set is then reduced by the elements yield by forbiddenElement. If the set of

stimuli is empty (i.e., neither the underlying UML element yields arguments nor

the permittedElement tag definition yields an element), it is semantically

equivalent to a situation where any possible and known by the invoking test

component stimuli at this point in time can be send to the test item. This set of

any possible and known stimuli is potentially reduced by the elements yield by

forbiddenElement. In case the set of permitted elements and the set of forbidden

elements are overlapping, the elements in the intersection belong to the set of

forbidden elements. If both sets are empty, every known stimuli can be send to

the test item.

Issue UMLTP2-24

The default arbitration specification for the create stimulus action is described by

«CreateStimulusArbitrationSpecification».

Extension InvocationAction, Message

Super Class AtomicProceduralElement

Associations arbitrationSpecification {redefines

arbitrationSpecification} :

CreateStimulusArbitrationSpecification [0..1]

Refers to a create stimulus action arbitration specification that overrides the

default and implicit arbitration specification if set. It redefines the Property

arbitrationSpecification of test action.

forbiddenElement : NamedElement [*]

A set of elements that are explicitly removed from the set of stimuli to be sent.

permittedElement : NamedElement [*]

Additional set of stimuli that contribute to the set of permitted stimuli.

Constraints
Issue UMLTP2-1

Issue UMLTP2-16

Issue UMLTP2-29

Type of forbidden elements

The tag definition 'forbiddenElement' shall only contain instances of the

following metaclasses: Message, Event, Signal, BehavioralFeature, Trigger,

InstanceSpecification.

112 UML Testing Profile 2 (UTP 2), Version 2.0

Type of permitted elements

The tag definition 'permittedElement' shall only contain instances of the

following metaclasses: Message, Event, Signal, BehavioralFeature, Trigger,

InstanceSpecification.

At least one stimulus

DRTA01: It is necessary that a create stimulus action permits to send at least one

stimulus.

Change from UTP 1.2 «CreateStimulusAction» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.0 113

8.5.3.4.4 ExpectResponseAction

114 UML Testing Profile 2 (UTP 2), Version 2.0

Description ExpectResponseAction: A test action that instructs the tester to check the

occurrence of one or more particular responses from the test item within a given

time window and to set the procedural element verdict according to the result of

this check.

Issue UMLTP2-29

The stereotype «ExpectResponseAction» extends Message (for integration with

Interactions) and Trigger (for integration with StateMachines and Activities) and

denotes the expectation of the test component to receive an actual response,

potentially conveyed by some payload, from the test item at a certain point in

time during test execution.

Actually received information from the test item can be classified into one of the

following three sets:

 expected elements: The actually received element is expected by the

test component.

 ignored elements: The actually received element may be received from

the test item, but if it is received, it will be ignored by the test

component.

 forbidden elements: The actually received element is forbidden to be

received from the test item.

The classification of received elements as member of one of the three sets helps

calculating the verdict by the arbitration specification of the executed expect

response action. The classification itself does not prescribe which verdict will be

be produced for the currently executed expect response action. It is the

responsibility of the associated arbitration specification to derive a verdict from

the received elements and their classification. For further details of the semantics

of the default «ExpectResponseArbitrationSpecification», refer to the

corresponding sub-section.

Basiscally, only two sets are required to be explicity stated, the third set is then

derived from the complement set of the union of the other two sets. The

decision, which set shall be derived by the complement set of the union of the

other two sets is determined by the tag definition 'expectationKind'. In case of

overlapping sets the following precedences are given: forbidden elements >

ignored elements > expected elements. The reason for this precedence is to

reduce the possibily of 'false negative' results.

In case of a Message extension, the expected response is defined by the

Message’s signature and its arguments, if any. If more than one response type is

expected at the same point in time, the tag definition 'expectedElement' can be

used to denote further expected responses in addition to the expected response

denoted by the Message's argument. The eventual number of expected responses

is the union of the Message with «ExpectResponseAction» applied, inclusing its

arguments, joined with the elements of the tag definition 'expectedElement'. If

the signature of the Message is left empty, the expect response action accepts

and consumes any kind of actual responses from the test item. In that case, the

tag definition 'expectationKind' shall be set to 'implicitExcept' only. The

effective set of expected elements is eventually determined by the complement

set of the union of forbidden elements and ignored elements.

In case of Trigger extension, the expected responses are the union of the

MessageEvents obtained from the underlying Trigger and the expected

responses yield by the expectedElement tag definition, if any. A Trigger with

«ExpectResponseAction» that defines an AnyReceiveEvent excepts and

UML Testing Profile 2 (UTP 2), Version 2.0 115

consumes any kind of actual responses from the test item. In that case, the tag

definition 'expectationKind' shall be set to 'implicitExcept' only. The effective

set of expected elements is eventually determined by the complement set of the

union of forbidden elements and ignored elements.

Issue UMLTP2-24

The default arbitration specification for the expect response action is described

by «ExpectResponseArbitrationSpecification».

Extension Message, Trigger

Super Class AtomicProceduralElement

Attributes
Issue UMLTP2-29

expectationKind : ImplicitExpectationKind [1] =

implicitForbid

The expectation kind determines which of the three explicit sets in the context of

an ExpectResponseAction is implicitly merged (union) with the complement set

of the union of the other two sets. The following possibilities are:

 forbidden elements are implicitly unified (implicitForbid): Any

received element that does not belong to the set of expected or ignored

elements will be unified with the explicit set of forbidden elements

during test execution. This prevents (or reduces the likelihood of) 'false

negatives'.

 ignored elements are implicitly unified (implicitIgnore): Any received

element that does not belong to the set of expected or forbidden

elements will be unified with the explicit set of ignored elements during

test execution. Care must be taken when going for this mechanism,

since it is prone to 'false negative' results in case a forbidden element

was forgotten to be explicitly defined in the corresponding set.

 expected elements are implicitly unified (implicitExpect): Any received

element that does not belong to the set of ignored or forbidden elements

will be unified with the explicit set of expected elements during test

execution. Care must be taken when going for this mechanism, since it

is prone to 'false negative' results in case a forbidden element was

forgotten to be explicitly defined in the corresponding set.

Associations
Issue UMLTP2-29

expectedElement : NamedElement [*]

A set of elements that are expected from the test item during test execution.

Depending on the expectationKind for this «ExpectResponseAction» this set

might be implicitly joined with the complement set of union of the sets

'forbiddenElement' and 'ignoredElement'.

arbitrationSpecification {redefines

arbitrationSpecification} :

ExpectResponseArbitrationSpecification [0..1]

Refers to an expect response action arbitration specification that overrides the

default and implicit arbitration specification if set. It redefines the Property

arbitrationSpecification of test action.

116 UML Testing Profile 2 (UTP 2), Version 2.0

Issue UMLTP2-29

forbiddenElement : NamedElement [*]

A set of elements that are forbidden to be received from the test item during test

execution. Depending on the expectationKind for this «ExpectResponseAction»

this set might be implicitly joined with the complement set of union of the sets

'expectedElement' and 'ignoredElement'.

Issue UMLTP2-29

ignoredElement : NamedElement [*]

A set of elements that are ignored when being received from the test item during

test execution. Depending on the expectationKind for this

«ExpectResponseAction» this set might be implicitly joined with the

complement set of union of the sets 'expectedElement' and 'forbiddenElement'.

Constraints
Issue UMLTP2-1

Issue UMLTP2-16

Issue UMLTP2-29

Type of elements for the explicit sets

The tag definitions 'forbiddenElement', 'expectedElement' and 'ignoredElement'

shall only contain instances of the following metaclasses: Message, Event,

Signal, BehavioralFeature, Trigger, InstanceSpecification.

At least one response

DRTA02: It is necessary that a expect response action expects to receive at least

one response.

Enforced expectation kind 'implicitExcept'

In the cases, when «ExpectResponseAction» is applied to a Message in the

context of an Interaction, and the Message's signature is left empty, or when

«ExpectResponseAction» is applied to a Trigger that yields an

AnyReceiveEvent, the 'expectationKind' of the «ExpectResponseAction» shall

be set to 'implicitExpect'.

Change from UTP 1.2 «ExpectResponseAction» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.0 117

8.5.3.4.5 SuggestVerdictAction

Description SuggestVerdictAction: A test action that instructs the tester to suggest a

particular procedural element verdict to the arbitration specification of the test

case for being taken into account in the final test case verdict.

Stereotype «SuggestVerdictAction» extends InvocationAction which allows for

using a variety of metaclasses for application. However, there must be at least

one argument InputPin defined for the InvocationAction of the predfefined type

verdict or subclasses thereof.

For example, a CallOperationAction could be used to invoke a (not standardized,

yet proprietary) arbiter-specific interface operation. Another possibility is to use

SendObjectAction without specifying the target Pin, which has the semantics of

providing the Verdict instance to the arbitrating facility of a test execution

system without needing a dedicated Interface. However, during test execution

the suggest verdict action must be made executable. This may include manually

writing the verdict instance into a paper-based document.

If used in an Interaction, the InvocationAction that is stereotyped with

«SuggestVerdictAction» must be referenced from an

ActionExecutionSpecification that indirectly covers a Lifeline that represents a

test component role in the underlying test configuration. Indirectly means that

the corresponding start and end OccurenceSpecification of the

ActionExecutionSpecification cover the test component lifeline.

Issue UMLTP2-24

The default arbitration specification for the suggest verdict action is described by

«SuggestVerdictArbitrationSpecification».

Graphical syntax

Extension InvocationAction

Super Class AtomicProceduralElement

Associations arbitrationSpecification {redefines

arbitrationSpecification} :

SuggestVerdictArbitrationSpecification [0..1]

Refers to a suggest verdict action arbitration specification that overrides the

default and implicit arbitration specification if set. It redefines the Property

arbitrationSpecification of test action.

Constraints
Issue UMLTP2-1

Type of Argument

The type of the argument InputPin must be the predefined verdict type or a

subtype thereof.

Change from UTP 1.2 «SuggestVerdictAction» has been newly introduced by UTP 2.

118 UML Testing Profile 2 (UTP 2), Version 2.0

Issue UMLTP2-29

8.5.3.5 Enumeration Specifications

Name Description Enumeration literals

ImplicitExpectation

Kind

Determines, which of the three

received element sets in the

context of an

ExpectResponseAction is

implicitly joined with the

complement set of the union of

the other two sets. The three

sets of elements that are

meaningful in the context of an

«ExpectResponseAction» are

the expected elements, ignored

element and forbidden

elements. Two of these sets

have to be stated explicitly in

the context of an

ExpectResponseAction, the

third one is implicitly derived

from the complement set of the

union of the two explicit sets.

implicitForbid

Determines that the explicit set of forbidden elements

is implicitly joined with the complement set of the

union of the explicitly expected and ignored element

sets.

implicitIgnore

Determines that the explicit set of ignored elements is

implicitly joined with by the complement set of the

union of the explicitly expected and element sets.

implicitExpect

Determines that the explicit set of expected elements is

implicitly joined with the complement set of the union

of the explicitly forbidden and ignored element sets.

8.6 Test Data

Testing is mainly about the exchange of data and the ability to compare actual responses and their payload received

from the test item at test execution with the expected one stated in the test case. Therefore, testers usually have to

take at least two data-related concepts into account. First, the specification of data, i.e., the known types and the

constraints applied on these types for deriving data values that abide by these constraints. Second, a flexible

mechanism to specify data values and their allowed matching mechanisms for test case execution.

Data specification-related concepts are provided and further described by the concepts of the Data Specifications

chapter.

Data value-related concepts are provided and further described by the concepts of the Data Values chapter.

8.6.1 Data Specifications
This section specifies the stereotypes to implement the data specification concepts introduced in section Test Data of

the Conceptual Model.

8.6.1.1 Data Specifications Overview
The diagram below shows abstract syntax of the data specifications package.

UML Testing Profile 2 (UTP 2), Version 2.0 119

Figure 8.18 - Data Specifications Overview

8.6.1.2 Stereotype Specifications

8.6.1.2.1 Complements

Description Complements: A morphism that inverts data)i.e., that replaces the data items of

a given set of data items by their opposites).

The stereotype «Complements» specializes the abstract stereotype «Morphing»

and logically negates the specification of the morphed data specifications within

the morphing data specification. That means that complement morphism result

in a complementing data specification that is the difference set of the

complemented or morphed data specification.

Extension Dependency

Super Class Morphing

Change from UTP 1.2 «Complements» has been newly introduced by UTP 2.

8.6.1.2.2 DataPartition

Description DataPartition: A role that some data plays with respect to some other data

(usually being a subset of this other data) with respect to some data specification.

The stereotype «DataPartition» extends a UML Classifier and represents a set of

data that complies with one or more data specifications.

Extension Classifier

Associations dataSpecification : DataSpecification [*]

Change from UTP 1.2 «DataPartition» has been newly introduced by UTP 2.

120 UML Testing Profile 2 (UTP 2), Version 2.0

8.6.1.2.3 DataPool

Description DataPool: Some data that is an explicit or implicit composition of other data

items.

The stereotype «DataPool» extends a UML Classifier and represents a set of

physical data without complying to any particular data specification.

Graphical syntax

Extension Classifier

Change from UTP 1.2 Changed from UTP 1.2. In UTP 1.2 «DataPool» extended both Classifier and

Property.

8.6.1.2.4 DataProvider

Description DataProvider: A test component that is able to deliver (i.e., either select and/or

generate) data according to a data specification.

The stereotype «DataProvider» is a specialization of stereotype

«TestComponent». Such a test component is used to provide a data partition,

represented as a Constraint extended by the stereotype «DataPartition», by

generating some new data or by selecting some existing data from another data

partition or a data pool according to some data specifications (represented as a

Constraint extended by the stereotype «DataSpecification»).

Extension Classifier, Property

Super Class TestComponent

Associations : TestDesignDirective

dataSpecifications : DataSpecification [1..*]

Change from UTP 1.2 «DataProvider» has been newly introduced by UTP 2.

8.6.1.2.5 DataSpecification

Description DataSpecification: A named boolean expression composed of a data type and a

set of constraints applicable to some data in order to determine whether or not its

data items conform to this data specification.

The stereotype «DataSpecification» extends Constraint and is used to describe

the constraints within the context of one or more types, instances of those types

have to comply with. DataSpecifications are used to build and define

DataPartitions.

Since «DataSpecification» is an extension of Constraint the specification of the

Constraint is defined by a ValueSpecification. This specification might be as

simple as a LiteralString (e.g., natural language describing the constraint) or as

complex as a formal language statement (e.g., Alf or OCL). UTP does not

prescribe the notation used for describing the specification of a

«DataSpecification» Constraint.

In case a Constraint with «DataSpecification» is directly contained in Classifier,

it is considered semantically equivalent to «DataSpecification» Constraint

defined outside of this Classifier and with a «Refines» Dependency established

between the «DataSpecification» Constraint and the Classifier.

Extension Constraint

 : DataProvider [*]

UML Testing Profile 2 (UTP 2), Version 2.0 121

Associations : DataPartition [*]

Constraints
Issue UMLTP2-1

Issue UMLTP2-16

DataType in DataSpecification

DRTD01: It is necessary that each data specification specifies at least one data

type.

Change from UTP 1.2 «DataSpecification» has been newly introduced by UTP 2.

8.6.1.2.6 Extends

Description Extends: A morphism that increases the amount of data (i.e., that adds more data

items to a given set of data items).

The stereotype «Extends» specialized the abstract stereotype «Morphing» and

logically OR-combines the specification of the morphed data specifications

within the morphing data specification. That means that extension morphism

result in a data specification that is more general than the extended or morphed

data specifications.

Extension Dependency

Super Class Morphing

Change from UTP 1.2 «Extends» has been newly introduced by UTP 2.

8.6.1.2.7 Morphing

Description Morphing: A structure-preserving map from one mathematical structure to

another.

The abstract stereotype «Morphing» extends Dependency and is used to derive

data specifications from other data specifications. This enables a high degree of

reusability of existing data specifications. «Morphing» is intended to be

subclassed and simply acts as a common superclass for shared semantics and

constraints.

A Dependency stereotyped with a subclass of «Morphing» always emanates

from a Constraint with «DataSpecification» applied. It must point to a UML

Classifier, to a UML Package containing some UML Classifiers, or to a

Constraint with «DataSpecification» applied. If it targets a «DataSpecification»

Constraint, it morphs the definitions of that data specification (called the

morphed data specification) into a new data specification (called morphing data

specification). If it targets a Classifier (or a set of Classifiers contained in a

Package), all constraints applied on those Classifiers or their attributes are

considered as an implicit morphed data specification attached to the Classifier

which is eventually morphed into a morphing data specification.

The exact effect of morphing a data specification into another data specification

is defined by the concrete subclasses of the stereotype «Morphing».

Extension Dependency

Sub Class Complements, Extends, Refines

Constraints
Issue UMLTP2-1

Issue UMLTP2-16

Clients of a «Morphing» Dependency

122 UML Testing Profile 2 (UTP 2), Version 2.0

DRTD03: As clients of a Dependency stereotyped with a concrete substereotype

of «Morphing» only the following elements are allowed: Constraint with

«DataSpecification» applied.

Suppliers of a «Morphing» Dependency

DRTD04: As suppliers of a Dependency stereotyped with a concrete

substereotype of «Morphing» only the following elements are allowed:

Constraint with «DataSpecification» applied, UML Classifier, and UML

Package.

Change from UTP 1.2 «Morphing» has been newly introduced by UTP 2.

8.6.1.2.8 Refines

Description Refines: A morphism that decreases the amount of data (i.e., that removes data

items from a given set of data items).

The stereotype «Refines» specialized the abstract stereotype «Morphing» and

logically AND-combines the specification of the morphed data specifications

within the morphing data specification. That means that refinement morphism

result in a data specification that is more specific than the refined or morphed

data specifications.

Extension Dependency

Super Class Morphing

Change from UTP 1.2 «Refines» has been newly introduced by UTP 2.

8.6.2 Data Values
The payload of an expect response action is also called expected response argument value as opposed to the actual

response argument value. During arbitration specification, usually a comparator evaluates whether the actual

response matches with the expected ones in terms of event type and its payload. It is then the task of the arbitration

specification to decide on the verdict that has to be assigned. In UTP data values are expressed by means of

ValueSpecifications to specify both the payload for a stimulus and the payload of expected responses. In case of an

expected response, the ValueSpecification does also implicitly define a matching mechanism used by a comparator

during arbitration in order to evaluate whether the expected payload matches the actual payload.

The implicitly applied matching mechanism is determined by the ValueSpecification used to describe an expected

payload argument in the context of an expected response. The prescribed matching mechanisms semantics,

inherently bound to ValueSpecifications, are defined by UTP as follows:

 ValueSpecification (abstract metaclass): In general, any native UML ValueSpecification infers an equality

matching mechanism, i.e., the actual payload, also known as response argument value, must be exactly the

same as the expected payload. Any deviation will result in a mismatch.

 LiteralInteger: Checks for equality of the expected and actual response Integer-typed argument value.

 LiteralString: Checks for equality of the expected and actual response String-typed argument value.

 LiteralReal: Checks for equality of the expected and actual response Real-typed argument value.

 LiteralBoolean: Checks for equality of the expected and actual response Boolean-typed argument value.

 LiteralUnlimitedNatural: Checks for equality of the expected and actual response Integer-typed argument

value including infinity.

 LiteralNull: Checks for absence of an actual response argument value of any type.

 InstanceValue: Checks for equality of the expected and actual response complex data type instance

argument value.

All these equality matching mechanisms are natively given by UML, whereas UTP adds just a few more

ValueSpecifications that provide matching mechanisms currently not given by UML. These kinds of

ValueSpecifications are sometimes called Wildcards (TTCN-3) or Facets (XML Schema):

UML Testing Profile 2 (UTP 2), Version 2.0 123

 AnyValue: Represents a set of all possible values for a given type and checks if actual response argument

value is contained in this set. In case of optionality, the set of known values includes the absence of a value.

This is implemented as stereotype «AnyValue».

 RegularExpression: Represents a set of values for a given type described by a regular expression and

checks if the actual response argument value belongs to that set. This is implemented as stereotype

«RegularExpression».

Both stimuli and expected responses yield data values for distinct signature elements. A signature element is defined

as instance of either a Parameter or Property (i.e., this specification introduces a virtual metaclass SignatureElement

that is the joint superclass of Property and Parameter and has at least the following attributes: type : UML::Type,

lower : Integer, upper : UnlimitedNatural). Given by UML [UML25], a "... Type specifies a set of allowed values

known as the instances of the Type." This specification denotes this set in the context of a SignatureElement

expressed as type(se), with type(se) as SignatureElement.type, and use T as abbreviation for type(se).

We specify

with se instance of SignatureElement and lower(se) as SignatureElement.lower and denote it by SE type.
A ValueSpecification V as an argument for a SignatureElement is specified as

These basic definitions are further used for the specific ValueSpecification matching mechanism extensions

introduced by UTP.

8.6.2.1 Data Value Extensions
The diagram below shows the abstract syntax of the ValueSpecification extensions introduced by UTP.

Figure 8.19 - Data Value Extensions

8.6.2.2 Stereotype Specifications

8.6.2.2.1 AnyValue

Description
Issue UMLTP2-2

The stereotype «AnyValue» extends ValueSpecification and represents an

implicit set of known values for a given type. The expected response argument

value matches with each actual response argument value, as long as type-

compliance is given. In case of optionality, the set of known values includes the

absence of a value.

Extension Expression

Change from UTP 1.2 Changed and renamed from UTP 1.2. In UTP 1.2, «AnyValue» was called

«LiteralAny» and extended LiteralSpecification.

124 UML Testing Profile 2 (UTP 2), Version 2.0

8.6.2.2.2 overrides

Description Overrides is a relationship between at least two InstanceSpecifications, i.e., the

modifying InstanceSpecification and the modified InstanceSpecification.

Modifying InstanceSpecifications constitute the client elements of the

underlying dependency, and consequently, modified InstanceSpecifications

constitute the supplier elements of the underlying dependency.

A modifying InstanceSpecification reuses all slot values of the modified

InstanceSpecification in a way as if the slot values would have been copied into

the modifying InstanceSpecification as its owned slots. Furthermore, the

modifying InstanceSpecification is allowed to specify slots, which have not been

declared by the modified InstanceSpecification at all. This enables user to

gradually complete InstanceSpecifications and to reuse already or maybe

partially defined InstanceSpecifications in order to create large sets of data by

avoiding redundancy.

Additionally, a modifying InstanceSpecification is able to overwrite slots with

new values. A slot is considered to be overwritten if a modifying

InstanceSpecification defines an owned slot that refers to the very same defining

feature as the owned slot of the modified InstanceSpecification, or to a feature

that redefines, directly or transitively, the slot's defining feature. An overwriting

slot‘s value list entirely replaces the value list of the slot that is overwritten.

Modification requires type compatibility between the modifying and modified

InstanceSpecifications. Type compatibility is given if a modifying

InstanceSpecification’s classifier list is compatible with the modified

InstanceSpecification’s classifier list. Two classifier lists are compatible if the

modifying InstanceSpecification’s classifier list is a proper subset of the

modified InstanceSpecification’s classifier list. A proper subset is considered to

be given if each classifier of the modifying InstanceSpecification’s classifier list

is type compatible with at least one classifier of the modified

InstanceSpecification classifier list. Type compatibility between classifiers is

defined in the UML specifications.

Cyclic modifications are not allowed. A cyclic modification describes a situation

in which a modifying InstanceSpecification establishes a modification to a

modified InstanceSpecification and the latter one already modifies, directly or

transitively, the modifying InstanceSpecification.

Extension Dependency

Constraints
Issue UMLTP2-1

Issue UMLTP2-16

Restriction of client and supplier

As client and supplier of the underlying Dependency, only InstanceSpecification

are allowed.

Cyclic modifications

Cyclic override are not allowed. A cyclic override means that an overridden

InstanceSpecification transitively overrides its overriding InstanceSpecification.

Change from UTP 1.2 «overrides» was renamed by UTP 2. In UTP 1.2, it was named «modifies».

UML Testing Profile 2 (UTP 2), Version 2.0 125

8.6.2.2.3 RegularExpression

Description The stereotype «RegularExpression» extends Expression and represents an

implicit set of values for a given type described by a regular expression. The

expected response argument value matches with each actual response argument

value if the actual one belongs to the set of values defined by the regular

expression.

A RegularExpression can be used for test data generation or to compare whether

an actual response matches with expected response.

The attribute symbol of the underlying Expression must contain the String that is

evaluated as the regular expression. It might be omitted, in that case the

operands of the underlying Expression must be used as abstract syntax tree for

the regular expression.

Extension Expression

Change from UTP 1.2 «RegularExpression» has been newly introduced by UTP 2.

8.7 Test Evaluation

The concepts for test evaluation are necessary to decide about the outcome of the dynamic test process activities.

They implement in the specification of (proprietary) arbitration specifications on test set, test case and procedural

element level, as well as in the ability to incorporate the test logs produced during the execution of a test-specific

procedure and its procedural element in a platform-independent, but user-specific way.

8.7.1 Arbitration Specifications

Issue UMLTP2-24

In dynamic testing, the term Arbitration describes the application of a certain rule set on the outcome of a test

execution activity, usually captured as test log for comprehensibility, in order to derive the final verdict of an

execution test set or test case. Thus the arbitration of an executed test set or test case is the most important activity of

the test evaluation activities with respect to requirements, test requirement or test objective coverage. Arbitration can

both happen immediately during test execution (dynamic arbitration) and after test execution based on the captured

test logs (post-execution arbitration). Due to whatever reason (organizational, technical etc.), one might be preferred

over the other.

The UTP arbitration facility offers stereotypes for specifying proprietary arbitration specifications that vary from the

default arbitration specifications in terms of their verdict calculation algorithm. Users can define user-specific

arbitration specifications for test sets, test execution schedules, test cases and procedural elements by simply

applying the stereotypes offered by the UTP arbitration facility to applicable metaclasses. The degree of formalism

of a user-defined arbitration specification is left open. An arbitration specification might be represented by

something as simple as an identifier (referring to an implementation), by natural language describing the arbitration

rules, by any kind of UML Behavior or by something formal as executable specifications or mathematical

definitions.

Arbitration specifications are usually implemented (or interpreted) by an arbiter component that belongs to the

utilized the test execution tool. UTP does not prescribe any implementation details of an arbiter component as part

of an test execution tool, nor how or when information from test sets, test cases and procedural elements are passed

to an arbiter component.

It is left open, if the arbitration activities are carried out automatically or by a human.

UTP introduces three different kinds of verdicts that can be produced:

 procedural element verdicts: Verdicts produced by a procedural element arbitration specification;

 test case verdicts: Verdicts produced by a test case arbitration specification;

126 UML Testing Profile 2 (UTP 2), Version 2.0

 test set verdicts: Verdicts produced by a test set arbitration specification.

The fundamental verdict calculation and provisioning schema is as follows:

 test set arbitration specifications: they derive the test set verdict from the test case verdicts that have been

executed as part of the test set (i.e., the test case verdicts are passed to the arbitration specification of the

surrounding test set);

 test case arbitration specifications: they derive the test case verdicts from the procedural element verdicts

(first and foremost the test action verdicts) that have been executed as part of the test case (i.e., the

procedural element verdicts are assembled and passed on to the test case arbitration specification);

 procedural element arbitration specifications: they derive procedural element verdicts from the information

conveyed by the procedural element, or in case of a compound procedural element, the procedural element

verdicts received from the arbitration specifications of the contained procedural elements.

8.7.1.1 Test Procedure Arbitration Specifications
The most important element that produces a verdict in UTP is the test case case. UTP offers a dedicated arbitration

specification stereotype (i.e., «TestCaseArbitrationSpecification») to define proprietary test case arbitration

specifications binding. Arbitration specifications for test sets can be set either as part of the test set itself (i.e., set via

the attribute testSetAS of the stereotype «TestSet») or as part of a corresponding test execution schedule (i.e., set via

the attribute testSetAS of the stereotype «TestExecutionSchedule»).

8.7.1.1.1 Arbitration Specifications Overview

Issue UMLTP2-27

The following figure shows the foundations of the arbitration specification facility of UTP. In general, test cases,

test execution schedules (as the executable part of test sets) and procedural elements are (possibly implicitly)

processed according to a (possibly implcit) arbitration specification for verdict calculation. That means that these

elements return verdicts after the arbitration process has finished its operation. The outcome of an executed

arbitration specification is stored in an «ArbitrationResult». The most important, yet not the sole information

conveyed by an «ArbitrationResult» is the verdict. Due to the design of the stereotype «ArbitrationResult» it is

easily possible to incoporate further, yet proprietary information into the «ArbitrationResult» using UML's ordinary

InstanceSpecification mechanism.

Issue UMLTP2-24

UML Testing Profile 2 (UTP 2), Version 2.0 127

Issue UMLTP2-27

Figure 8.20 - Arbitration Specifications Overview

8.7.1.1.2 Stereotype Specifications

Issue UMLTP2-27

8.7.1.1.2.1 ArbitrationResult

Description «ArbitrationResult» stores information about the execution and the outcome of

an arbitration specification, usually performed by an arbiter implementation.

Arbitration results can be calcualted for test sets, test cases and procedural

elements. The nature of the «ArbitrationResult» is determined by the

«ArbitrationSpecification» of which the «ArbitrationResult» represents an

instance of.

The most important information an arbitration specification conveys is the

calculated verdict. Other helpful, but not standardized information may include

the timestamp of the arbiter execution, the arbiter implementation (or even a

human being) that produced the result, the outcome of the comparison process of

actual and expected value including deviation details in case of mismatches, etc.

Additional information can be incorporated by using the ordinary underlying

UML InstanceSpecification mechanism.

An «ArbitrationResult» points to the corresponding «TestLog» (i.e., either a

«TestCaseLog» or «TestSetLog») that provides the actual information captured

during test execution. The expected information are specified by the

corresponding «TestSet», «TestCase» and in particular the «ProceduralEement».

All information that were involved in calculating the verdict are accessable for

analysis or understanding.

«ArbitrationResult»s may link with other «ArbitrationResult»s. An arbitration

result of a test set is usually calculated by the arbitration result of the executed

test cases, which, in turn, are calculated by the arbitration result of the executed

procedural elements. The tag definitions 'subresults' and 'parent' of

«ArbitrationResult» enable keeping depending «ArbitrationResults» closely

connected to one another.

Extension InstanceSpecification

128 UML Testing Profile 2 (UTP 2), Version 2.0

Associations verdict : ValueSpecification

The verdict that was produced for a given test case, test set or procedural

element according to the respective bound arbitration specification and the actual

information captured in the corresponding test log.

/instanceOf : ArbitrationSpecification [0..1]

The arbitration specification whose rules were used to produce the verdict. The

arbitration specification is derived from the underlying InstanceSpecification's

set of Classifiers with «ArbitrationSpecification» applied or specializations

thereof. There can be more than one Classifier set for an «ArbitrationResult»

InstanceSpecification, but only one of these Classifiers are allowed to be

stereotyped with «ArbitrationSpecification» or a specialization thereof.

resultFor : TestLog [0..1]

The corresponding test log (i.e., either test case log or test set log) for which the

given «ArbitrationResult» captures the calculated verdict and any other relevant

information.

subresult : ArbitrationResult [*]

A set of linked «ArbitrationResult»s that influenced the calculation of the

current verdict.

In case of a compound procedural element, it is possible (not mandatory, though)

to link all the «ArbitrationResult»s produced for the procedural elements

contained by the compound procedural element.

parent : ArbitrationResult [0..1]

The superior «ArbitrationResult» the current «ArbitrationResult» has an impact

on.

Constraints Type of verdict ValueSpecification

The type of the ValueSpecification referenced by the tag definition verdict must

be of type verdict (or a subtype thereof) as defined in the UTP Types Library.

Change from UTP 1.2 «ArbitrationResult» has been newly introduced by UTP 2.

Issue UMLTP2-27

8.7.1.1.2.2 ArbitrationSpecification

UML Testing Profile 2 (UTP 2), Version 2.0 129

Issue UMLTP2-24

Description ArbitrationSpecification: A set of rules that calculates the eventual verdict of an

executed test case, test set or procedural element.

The stereotype «ArbitrationSpecification» extends BehavioredClasifier and is

used to specify the decision process for verdicts. It is an abstract stereotype that

is specialized by stereotypes that deal with the verdicts of test sets, test cases,

and procedural elements (i.e. test set verdicts, test case verdicts, and procedural

element verdicts).

The concept of an arbitration specification allows for specifying user-defined

algorithms for the calculation of the verdict based on the executed test cases or

the captured test case logs.

The semantics of the default arbitration specification defines a default

precedence of the predefined instances, which is: None < Pass < Inconclusive <

Fail < Error.

That means that verdicts with lower precedence can be overwritten with verdicts

of higher precedence, but not vice versa.

Other default arbitration specifications defined by UTP adhere by that

precedence rule defined by «ArbitrationSpecification» and complement it with

their specific semantics. User-defined arbitration specifications may override

that default semantics as well as the precedence of verdicts.

The result of an arbitration specification is stored in an «ArbitrationResult» that

contains the eventual verdict and links the «ArbitrationSpecification» to the

element it was applied to..

Graphical syntax

Extension BehavioredClassifier

Sub Class ProceduralElementArbitrationSpecification, TestCaseArbitrationSpecification,

TestSetArbitrationSpecification

Attributes ID : String [1]

A unique identifier that unambiguously identifies the given arbitration

specification.

Associations /referencedBy : TestContext [*]

/instances : ArbitrationResult [*]

Constraints
Issue UMLTP2-1

Verdict of ArbitrationSpecification

DRAS01: It is necessary that an arbitration specification determines exactly one

verdict.

Change from UTP 1.2 «ArbitrationSpecification» has been newly introduced into UTP 2.

130 UML Testing Profile 2 (UTP 2), Version 2.0

Issue UMLTP2-27

8.7.1.1.2.3 TestCaseArbitrationSpecification

Description TestCaseArbitrationSpecification: A set of rules that calculates the eventual

verdict of an executed test case, test set or procedural element.

A «TestCaseArbitrationSpecification» specifies the rules for the eventual

calculation of a test case verdict based on the procedural element verdicts that

have been executed in the context of the corresponding test case.

Issue UMLTP2-24

The semantics of the default «TestCaseArbitrationSpecification» complements

the semantics of «ArbitrationSpecification» by defining the rule that determines

the assignment of test case verdicts. The rule of the default test case arbitration

specification is as follows:

 None: The verdict 'None' is assigned when the test case was not yet

executed or no other procedural element verdict was produced yet.

 Pass: The verdict 'Pass' is assigned, if all procedural elements that

participate in the arbitration process of that specific test case evaluate to

'Pass'.

 Inconclusive: The verdict 'Inconclusive' is assigned, if at least one

procedural element that participates in the arbitration process of that

test case, evaluates to 'Inconclusive', while the remaining procedural

elements evaluate to 'Pass' or 'None'.

 Fail: The verdict 'Fail' is assigned, if at least one procedural element

that participates in the arbitration process of that test case evaluates to

'Fail', while the remaining procedural elements evaluate to

'Inconclusive', 'Pass' or 'None'.

 Error: The verdict 'Error' is assigned, if at least one procedural element

that participates in the arbitration process of that test case evaluates to

'Error', or the arbitration process itself failed with a technical error.

Extension BehavioredClassifier

Super Class ArbitrationSpecification

Associations : TestCase [*]

Change from UTP 1.2 Newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.0 131

Issue UMLTP2-27

8.7.1.1.2.4 TestSetArbitrationSpecification

Description TestSetArbitrationSpecification: A set of rules that calculates the eventual

verdict of an executed test case, test set or procedural element.

Issue UMLTP2-24

A «TestSetArbitrationSpecification» specifies the rules of how a test set verdict

will be calculated based on the verdicts of the test cases that have been executed

in the context of the corresponding test set. A test set arbitration specification is

used by both «TestSet» and «TestExecutionSchedule».

The semantics of the default «TestSetArbitrationSpecification» complements the

semantics of «ArbitrationSpecification» by defining the rule that determines the

assignment of test set verdicts. The rule of the default test set arbitration

specification is as follows:

 None: The verdict 'None' is assigned when the test set was not yet

executed, i.e., any test case assembled or contained in the test set had

produced a test case verdict yet.

 Pass: The verdict 'Pass' is assigned, if all executed test cases that

participate in the arbitration process of that specific test set also

evaluated to 'Pass'.

 Inconclusive: The verdict 'Inconclusive' is assigned, if at least one

executed test case that participates in the arbitration process of that test

set evaluates to 'Inconclusive', while the remaining test cases evaluate

to 'Pass' or 'None'.

 Fail: The verdict 'Fail' is assigned, if at least one executed test case that

participates in the arbitration process of that test set evaluates to 'Fail',

while the remaining test cases evaluate to 'Inconclusive', 'Pass' or

'None'.

 Error: The verdict 'Error' is assigned, if at least one executed test case

that participates in the arbitration process of that test set evaluates to

'Error', or the arbitration process itself failed with a technical error.

Extension BehavioredClassifier

Super Class ArbitrationSpecification

Associations : TestSet [*]

 : TestExecutionSchedule [*]

Change from UTP 1.2 Newly introduced by UTP 2.

8.7.1.2 Procedural Element Arbitration Specifications
The procedural element arbitration specification sections summarize the different type of arbitration specifications

that can be used to define proprietary procedural element arbitration specifications.

8.7.1.2.1 Arbitration of AtomicProceduralElements
The diagram below shows the abstract syntax of arbitration specification elements for atomic procedural elements.

132 UML Testing Profile 2 (UTP 2), Version 2.0

Figure 8.21 - Arbitration of AtomicProceduralElements

8.7.1.2.2 Arbitration of CompoundProceduralElements
The diagram below shows the abstract syntax of arbitration specification elements for compound procedural

elements.

UML Testing Profile 2 (UTP 2), Version 2.0 133

Figure 8.22 - Arbitration of CompoundProceduralElements

8.7.1.2.3 Stereotype Specifications

8.7.1.2.3.1 AlternativeArbitrationSpecification

Description An «AlternativeArbitrationSpecification» calculates a verdict for a set of

procedural elements that are executed in mutually exclusive branches.

Issue UMLTP2-24

«AlternativeArbitrationSpecification» adheres by the semantics of the default

«CompoundProceduralElementArbitrationSpecification».

Extension BehavioredClassifier

Super Class CompoundProceduralElementArbitrationSpecification

Associations : Alternative [*]

134 UML Testing Profile 2 (UTP 2), Version 2.0

Change from UTP 1.2 Newly introduced by UTP 2.

8.7.1.2.3.2 AtomicProceduralElementArbitrationSpecification

Description An «AtomicProceduralElementArbitrationSpecification» calculates a verdict for

a single atomic procedural element.

Issue UMLTP2-24

«AtomicProceduralElementArbitrationSpecification» adheres by the semantics

of the default «ProceduralElementArbitrationSpecification».

Extension BehavioredClassifier

Super Class ProceduralElementArbitrationSpecification

Sub Class CheckPropertyArbitrationSpecification,

CreateLogEntryArbitrationSpecification,

CreateStimulusArbitrationSpecification,

ExpectResponseArbitrationSpecification,

ProcedureInvocationArbitrationSpecification,

SuggestVerdictArbitrationSpecification

Associations : AtomicProceduralElement [*]

Change from UTP 1.2 Newly introduced by UTP 2.

8.7.1.2.3.3 CompoundProceduralElementArbitrationSpecification

Description A «CompoundProceduralElementArbitrationSpecification» calculates a verdict

for a set of procedural elements that are executed together. The verdict is derived

from all or parts of the verdicts calculated of their respective arbitration

specifications.

Issue UMLTP2-24

The semantics of the default

«CompoundProceduralElementArbitrationSpecification» refines the semantics

of «ProceduralElementArbitrationSpecification» with respect to the following

verdicts:

 Fail: The verdict 'Fail' is assigned, if any of the procedural elements,

that were executed in the scope of the «CompoundProceduralElement»,

evaluates to 'Fail'.

Extension BehavioredClassifier

Super Class ProceduralElementArbitrationSpecification

Sub Class AlternativeArbitrationSpecification, LoopArbitrationSpecification,

NegativeArbitrationSpecification, ParallelArbitrationSpecification,

SequenceArbitrationSpecification

Associations : CompoundProceduralElement [*]

Change from UTP 1.2 Newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.0 135

8.7.1.2.3.4 LoopArbitrationSpecification

Description A «LoopArbitrationSpecification» calculates a verdict for a set of procedural

elements that are sequentially executed in a loop.

Issue UMLTP2-24

«LoopArbitrationSpecification» adheres by the semantics of the default

«CompoundProceduralElementSpecification». In addition, the maximal and

minimal loop counters are part of the arbitration process for loops. With respect

to verdict calculation, the following semantics is predefined for the default

«LoopArbitrationSpecification»:

 Minimal number of loops violated: Verdict 'Error' is assigned.

 Maximal number of loops violated: Verdict 'Error' is assigned.

Extension BehavioredClassifier

Super Class CompoundProceduralElementArbitrationSpecification

Associations : Loop [*]

Change from UTP 1.2 Newly introduced by UTP 2.

8.7.1.2.3.5 NegativeArbitrationSpecification

Description A «NegativeArbitrationSpecification» calculates a verdict for set of procedural

elements that are forbidden to be executed in this sequence.

Issue UMLTP2-24

«NegativeArbitrationSpecification» adheres by the semantics of the default

«CompoundProceduralElementArbitrationSpecification», but refines it with an

inversion of the verdicts 'Pass' and 'Fail'. In cases where a 'Fail' would be

produced, a verdict 'Pass' shall be assigned. In cases where a 'Pass' would be

produced, a verdict 'Fail' shall be assigned.

Extension BehavioredClassifier

Super Class CompoundProceduralElementArbitrationSpecification

Associations : Negative [*]

Change from UTP 1.2 Newly introduced by UTP 2.

8.7.1.2.3.6 ParallelArbitrationSpecification

Description A «ParallelArbitrationSpecification» calculates a verdict for a set of procedural

elements that were executed in parallel.

Issue UMLTP2-24

«ParallelArbitrationSpecification» adheres by the semantics of the default

«CompoundProceduralElementArbitrationSpecification».

Extension BehavioredClassifier

Super Class CompoundProceduralElementArbitrationSpecification

Associations : Parallel [*]

Change from UTP 1.2 Newly introduced by UTP 2.

136 UML Testing Profile 2 (UTP 2), Version 2.0

8.7.1.2.3.7 ProceduralElementArbitrationSpecification

UML Testing Profile 2 (UTP 2), Version 2.0 137

Description A «ProceduralElementArbitrationSpecification» calculates a verdict for a single

or a set of procedural elements.

Issue UMLTP2-24

A procedural element arbitration specification incorporates sequence

information about when and how long the execution of a corresponding

procedural element happened, because procedural elements define an execution

window in which their execution shall happen. This execution window is either

defined by means of ordering (i.e., after the execution of a previous procedural

element, or after the start of a test case execution) or by means of time. When

using a time-based execution window, it is possible to specify the earliest and

latest point in time when the execution of the procedural element as well as the

maximum duration the execution of the procedural element may have. UTP

does not prescribe how to specify time-based execution windows. Using UML

Simple Time might be one solution, the time concepts of MARTE another one.

If no time execution windows are defined, the ordering execution window is

implicitly set, i.e., the execution of a procedural element shall happen after the

execution of its previous procedural element has finished.

Specific procedural element arbitration specifications (e.g., expect response

action arbitration specification) incorporate the Boolean statement whether

expected data values, that belong to the corresponding procedural element,

match with the actual data values that were used during execution of the

corresponding procedural element. Those data values of interest comprise actual

parameters in case of a procedure invocation, actual payload of a creat stimulus

action or expect response action or the actual value obtained from a checked

property in case of a check property action. In UTP, the matching semantics of

data values are defined by the semantics of ValueSpecifications and the UTP-

specific (normative and non-normative) data value extensions.

The semantics of the default «ProceduralElementArbitrationSpecification»

complements the semantics of «ArbitrationSpecification» by defining the

general rule that determines the assignment of verdicts. All other sub-classes of

«ProceduralElementArbitrationSpecification» either adhere by, complement or

refine that semantics. The semantics of the default procedural element arbitration

specification is as follows:

 None: The verdict 'None' is assigned when the procedural element was

not yet executed.

 Pass: The verdict 'Pass' is assigned, when the expected execution of the

procedural element matches with the actual execution of the procedural

element, including sequence information and potentially data value

comparison.

 Inconclusive: The verdict 'Inconclusive' is never assigned by default

arbitration specifications.

 Fail: The verdict 'Fail' can only be assigned by the following arbitration

specifications: compound procedural element arbitration specification,

expect response arbitration specification, suggest verdict arbitration

specification and check property arbitration specification. The default

semantics these specific arbitration specifications will be described by

these respective stereotypes.

 Error: The verdict 'Error' is assigned, if the execution of a procedural

element was not correctly performed (by a human or a test execution

tool).

138 UML Testing Profile 2 (UTP 2), Version 2.0

Extension BehavioredClassifier

Super Class ArbitrationSpecification

Sub Class AtomicProceduralElementArbitrationSpecification,

CompoundProceduralElementArbitrationSpecification

Associations : ProceduralElement [*]

Change from UTP 1.2 Newly introduced by UTP 2.

8.7.1.2.3.8 ProcedureInvocationArbitrationSpecification

Description A «ProcedureInvocationArbitrationSpecification» calculates a verdict for an

executed procedure invocation.

Issue UMLTP2-24

«ProcedureInvocationArbitrationSpecification» complements the semantics of

the default «ProceduralElementArbitrationSpecification»:

Procedure invocations may pass actual parameter values to the invoked

procedure. If there is a mismatch between the expected actual parameter values,

prescribed by a «ProcedureInvocation», and the actual execution of the

«ProcedureInvocation», the verdict 'Error' shall be assigned.

Extension BehavioredClassifier

Super Class AtomicProceduralElementArbitrationSpecification

Associations : ProcedureInvocation [*]

Change from UTP 1.2 Newly introduced by UTP 2.

8.7.1.2.3.9 SequenceArbitrationSpecification

Description A «SequenceArbitrationSpecification» calculates a verdict for a sequence of

executed procedural elements.

Issue UMLTP2-24

«SequenceArbitrationSpecification» adheres by the semantics of the default

«CompoundProceduralElementArbitrationSpecification».

Extension BehavioredClassifier

Super Class CompoundProceduralElementArbitrationSpecification

Associations : Sequence [*]

Change from UTP 1.2 Newly introduced by UTP 2.

8.7.1.3 Test-specific Action Arbitration Specifications
The test action arbitration specification sections summarize the different types of arbitration specifications that can

be used to define proprietary arbitration specifications for prescribing test action.

8.7.1.3.1 Arbitration of Test-specific Actions
The diagram below shows the abstract syntax of the arbitration specifications for dedicated test actions.

UML Testing Profile 2 (UTP 2), Version 2.0 139

Figure 8.23 - Arbitration of Test-specific Actions

8.7.1.3.2 Stereotype Specifications

8.7.1.3.2.1 CreateStimulusArbitrationSpecification

Description An «AtomicProceduralElementArbitrationSpecification» that specifies the

verdict calculation rule for a create stimulus action.

Issue UMLTP2-24

«CreateStimulusArbitrationSpecification» complements the semantics of the

default «AtomicProceduralElementArbitrationSpecification»:

The semantics of the default «CreateStimulusArbitrationSpecification» shall

include an evaluation of permitted and forbidden elements. If an element was

sent to the test item that was declared as forbiddenElement, the verdict 'error'

shall be assigned. If an element was sent to the test item that was declared as

permittedElement (including potential arguments of the

«CreateStimulusAction») and the expected data values of that element does not

match with the actual data values of the actually sent element, the verdict 'error'

shall be assigned.

Extension BehavioredClassifier

Super Class AtomicProceduralElementArbitrationSpecification

Associations : CreateStimulusAction [*]

Change from UTP 1.2 Newly introduced by UTP 2.

140 UML Testing Profile 2 (UTP 2), Version 2.0

8.7.1.3.2.2 ExpectResponseArbitrationSpecification

Description An «AtomicProceduralElementArbitrationSpecification» that specifies the

verdict calculation rule for an expect response action.

Issue UMLTP2-24

«ExpectResponseArbitrationSpecification» complements the semantics of the

default «AtomicProceduralElementArbitrationSpecificationn» with respect to

sequence information and data value matching:

If the expected execution time window of an «ExpectResponseAction» does not

match with the actual execution time point, the verdict 'fail' shall be assigned. If

the actual ordering of the execution of an «ExpectResponseAction» does not

match with the expected ordering, the verdict 'error' shall be assigned.

If the actual data values, that convey the «ExpectResponseAction» as its

payload, obtained from the test item do not match with the expected payload

data values, the verdict 'fail' shall be assigned.

The semantics of the default «ExpectResponseArbitrationSpecification» includes

an evaluation of the ignored, forbidden and expected elements declaration. If a

received element is declared as forbiddenElement, the verdict 'fail' shall be

assigned. If a received element is declared as ignoredElement, it shall be

discarded and not contribute to the «ExpectResponseArbitrationSpecification»

for further evaluation. If a received element is declared as expected element, the

verdict 'pass' shall be assigned.

Extension BehavioredClassifier

Super Class AtomicProceduralElementArbitrationSpecification

Associations : ExpectResponseAction [*]

Change from UTP 1.2 Newly introduced by UTP 2.

8.7.1.3.2.3 CheckPropertyArbitrationSpecification

Description An «AtomicProceduralElementArbitrationSpecification» that specifies the

verdict calculation rule for a check property action.

Issue UMLTP2-24

«CheckPropertyArbitrationSpecification» adheres by the semantics of the

default «AtomicProceduralElementArbitrationSpecification».

Extension BehavioredClassifier

Super Class AtomicProceduralElementArbitrationSpecification

Associations : CheckPropertyAction [*]

Change from UTP 1.2 Newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.0 141

8.7.1.3.2.4 SuggestVerdictArbitrationSpecification

Description An «AtomicProceduralElementArbitrationSpecification» that specifies the

verdict calculation rule for a suggest verdict action.

Issue UMLTP2-24

«SuggestVerdictArbitrationSpecification» complements the semantics of the

default «AtomicProceduralElementArbitrationSpecification» with respect to the

provision of the suggested verdict to the «TestCaseArbitrationSpecification»:

In case, the «SuggestVerdictArbitrationSpecification» evaluates to a 'pass', the

suggested verdict is passed to the «TestCaseArbitrationSpecification». It will be

discarded, if the «SuggestVerdictArbitrationSpecification» evaluates to 'error'.

Extension BehavioredClassifier

Super Class AtomicProceduralElementArbitrationSpecification

Associations : SuggestVerdictAction [*]

Change from UTP 1.2 Newly introduced by UTP 2.

8.7.1.3.2.5 CreateLogEntryArbitrationSpecification

Description An «AtomicProceduralElementArbitrationSpecification» specification that

specifies the verdict calculation rule for a create log entry action.

Issue UMLTP2-24

«CreateLogEntryArbitrationSpecification» adheres by the semantics of the

default «AtomicProceduralElementArbitrationSpecification».

Extension BehavioredClassifier

Super Class AtomicProceduralElementArbitrationSpecification

Associations : CreateLogEntryAction [*]

Change from UTP 1.2 Newly introduced by UTP 2.

8.7.2 Test Logging
The test logging facility allows incorporating details about the execution of test-specific procedures, such as test

execution schedules and test cases, but also of procedural elements. UTP prescribes certain information that are

essential for any kind of test log, but ensures the required degree of flexibility in order to cope with the variety of

existing (including proprietary) test log formats and contents of arbitrary test execution systems.

The test logging facility comprises the following concepts and their manifestations.

 test log, implemented as the abstract stereotype «TestLog»;

 test set log, implemented as stereotype «TestSetLog» that specializes «TestLog»

 test case log, implemented as stereotype «TestCaseLog» that specializes «TestLog»

 test log structure, implemented as stereotype «TestLogStructure»;

 test log structure binding, implemented as stereotype «TestLogStructureBinding».

8.7.2.1 Test Logging Overview
The following diagram shows the abstract syntax of the test logging facility.

142 UML Testing Profile 2 (UTP 2), Version 2.0

Issue UMLTP2-27

Figure 8.24 - Test Logging Overview

8.7.2.2 Stereotype Specifications

8.7.2.2.1 TestCaseLog

Description TestCaseLog: A test log that captures relevant information on the execution of a

test case.

A test case log captures the least relevant information on the execution of a test

case by an executing entity. The at least required information is defined by the

corresponding and potentially implicit test log structure of the test case log.

Extension InstanceSpecification

Super Class TestLog

Associations : TestSetLog [*]

executedTestCase : TestCase

Refers to the TestCase whose execution was captured by means of the given

TestCaseLog.

Change from UTP 1.2 Newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.0 143

8.7.2.2.2 TestLog

Description TestLog: A test log is the instance of a test log structure that captures relevant

information from the execution of a test case or test set. The least required

information to be logged is defined by the test log structure of the test log.

A test log captures information on the execution of a test case or test set that

actually happened according to the specification required by its test log structure.

Each test log is, at least, an instance of the implicitly defined default test log

structure. This is reflected by its tag definitions that comprise the required log

information. If further information is not required for capturing by an executing

entity, a test log may not refer to an explicit test log structure (i.e., the Classifier

of the underlying InstanceSpecification remains empty).

In addition to the information given by the implicit default test log structure,

users may set an explicitly defined a test log structure of arbitrary complex

internal structures. In that case, the underlying InstanceSpecification may

capture the additional information by relying on the native UML

InstanceSpecification mechanism, namely Slots.

Extension InstanceSpecification

Sub Class TestCaseLog, TestSetLog

Associations executionStart : TimeExpression

Denotes the point in time when the execution of the test case or test set began.

executionDuration : Duration [0..1]

Denotes how long the execution of the test case or test set lasted.

executingEntity : ValueSpecification [*]

Lists all the entities (human tester or test execution tool) that carried out the

execution of a test case or test set.

Issue UMLTP2-27

/instanceOf : TestLogStructure [*]

Refers to set of «TestLogStructure»s of which the given «TestLog» represents

an instance of. The set is derived from the set of Classifier with

«TestLogStructure» applied of the underlying InstanceSpecification of the given

«TestLog». If this set is empty, the respective test log is only an instance of the

implied default test log structure. This is reflected by the tag defintions offered

by the stereotype «TestLog» and its concrete sub-stereotypes.

/referencedBy : TestContext [*]

Constraints
Issue UMLTP2-1

Issue UMLTP2-16

Issue UMLTP2-27

Restriction of extendable metaclasses

«TestLog» shall not be applied to EnumerationLiteral.

Change from UTP 1.2 Changed from UTP 1.2. In UTP 1.2 «TestLog» was used to capture the

execution of a test case or a test set (called test content in UTP 1.2). In UTP 2,

two dedicated concepts have been newly introduced therefore (i.e.,

«TestCaseLog» and «TestSetLog»).

144 UML Testing Profile 2 (UTP 2), Version 2.0

8.7.2.2.3 TestLogStructure

Description A test log structure enables the specification of user-defined structures that must

be logged by an executing entity, such as human tester or a test execution tool,

during the execution of test suites, test cases or test execution schedules. This

information is also called the least required log information, because executing

entities are not restricted to capturing only information mentioned in the test log

structure. A test log structure may describe both the required information for the

header part as well as the body part of a test log.

There is an implicit default (undefined) test log structure available in UTP that

every user-defined test log structure complies with. The default test log structure

represents the least required log information for the header part. This

information comprises

 one or more of an executing entity;

 a point in time where the execution of the test case, test suite or test

execution schedule began;

 the duration the execution of the test case, test suite or test schedule

lasted; and

 the final verdict that was calculated by the corresponding arbitration

specification.

Those pieces of information of the default (implicit) test log structure are

represented as tag definitions of the stereotype test log solely because they are

eventually instantiated when a test log is created.

Extension Classifier

Associations : TestLog [*]

Constraints
Issue UMLTP2-1

Issue UMLTP2-16

Restriction of extendable metaclasses

«TestLogStructure» shall only be applied to instances of ther metaclass Datatype

or Class.

Specialization of TestLogStructure Classifier

Classifiers with «TestLogStructure» applied must only extend Classifier with

«TestLogStructure» applied.

Internal structure of TestLogStructure Classifier

Classifiers with «TestLogStructure» applied must only own Properties.

CollaborationUse not allowed

A «TestLogStructure» Classifier must not participate in Collaborations.

Change from UTP 1.2 Newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.0 145

8.7.2.2.4 TestLogStructureBinding

Description A test log structure binding is responsible to explicitly bind test log structures to

test cases or test sets.

It is possible to reuse the very same test log structure at different locations. Since

there are different possibilities how to model this, UTP suggests three methods

to achieve multiple binding of test log structures:

 Single Dependency/many suppliers method: This method binds many

test cases or test sets as suppliers of the «TestLogStructureBinding»

Dependency to a single «TestLogStructure» Classifier client.

 Multiple Dependencies/single suppliers method: This method binds a

single test case or test set as supplier of the «TestLogStructureBinding»

Dependency to a single «TestCase» BehavioredClassifier client.

 Combined method: This method combines the first two methods.

The sum of all bound test log structures for a test case or test set is calculated by

merging all suppliers of all visible «TestLogStructureBinding» Dependencies in

a certain logical or technical scope. Visibility of test log structure binding is not

defined by this specification. Moreover, this specification neither prescribes how

test log structure bindings are finally put into effect by an executing entity nor

how to select them for later use by an executing entity. Since Dependency is a

PackageableElement, a possible method could be to use the UML deployment

capabilities in order to implement the desired «TestLogStructureBinding»

Dependency to putting it into effect in the test execution system.

Extension Dependency

Constraints
Issue UMLTP2-1

Issue UMLTP2-16

Specification of Dependency client

A Dependency with «TestLogStructureBinding» must have exactly one client

containing a Classifier with «TestLogStructure» applied.

Specification of Dependency supplier

A Dependency with «TestLogStructureBinding» must have at least one but an

unlimited number of suppliers containing a BehavioredClassifier with

«TestCase» applied.

Change from UTP 1.2 Newly introduced by UTP 2.

8.7.2.2.5 TestSetLog

Description A test set log captures the least required information on the execution of a test

set by an executing entity. The least required information is defined by the

corresponding (potentially implicit) test log structure of the test set log.

A test set log consists mainly of the logs of the executed test cases that are

members of the test set. Since not all test cases of a test set must necessarily be

executed by an executing entity, a test set log may only refer to the test case logs

of a subset of the test set’s test cases.

Extension InstanceSpecification

Super Class TestLog

Associations executedTestSetMember : TestCaseLog [1..*]

Refers to the test cases that are the members of the test set log's corresponding

test set and whose execution were captured as a result of the execution of the test

set.

146 UML Testing Profile 2 (UTP 2), Version 2.0

executedTestSet : TestSet

Refers to the test set whose execution was captured by means of the given test

case log.

Constraints Executed test cases and definition of test set members must be consistent

A «TestSetLog» must only refer to «TestCaseLog»s of «TestCase»s that are

members of the executed «TestSet».

Change from UTP 1.2 Newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.0 147

9 Model Libraries

This section describes a set of type libraries relevant to UTP.

9.1 UTP Types Library

The following diagram shows the predefined types provided by UTP 2.

Issue UMLTP2-14

Figure 9.1 - Predefined types

Name Description

AnyType The pre-defined type AnyType is the least common ancestor of any type

known in the context of a certain test type system. As a result,

StructuralFeatures typed with AnyType can be assigned any value, regardless

whether primitive or complex.

verdict The pre-defined type verdict represents the basis for the verdict-related

mechanisms and user-specfic extensions thereof. Tester may subclass the

verdict type in order to define specialized verdict types.

Issue UMLTP2-14

Figure 9.2 - Predefined verdict instances

Issue UMLTP2-14

The verdict instances predefined by UTP 2 are none, pass, inconclusive, fail and error. Test modellers can make use

of those predefined verdicts out of the box to avoid redundancy.

There is a predefined (default) precedence rule for these verdicts, with ascending precedence from left to right: none

< pass < inconclusive < fail < error. That means that setting a verdict is a one-way street. It is not permitted to re-

assign a verdict with lower precedence to a test set, test case or procedural element, whereas the other way round,

verdicts with higher precedence may override verdicts with lower precedence at any point in time during vedict

calculation process. The default verdict precedence reflects the default arbitration specification semantics. This

semantics can be modified or even completely overriden by user-defined arbitration specifications. If any additional

user-defined verdict types are introduced (e.g., complex verdict types and user-defined instances thereof), it is left

open how precedence of those user-defined verdicts and the default verdicts integrate with each other.

Even though the predefined verdict instances are expressed using InstanceSpecifications, it is not forbidden to use

other representation formats such as LiteralString, Expression or even OpaqueExpression to express user-defined

verdict instances in a UTP-based test model.

Name Description

error
Issue UMLTP2-14

The predefined verdict 'error' indicates a result of a test set, test case or

procedural element, where a non-test item related problem occured. This

might be a technical problem in the test environment (e.g., breakdown of a

148 UML Testing Profile 2 (UTP 2), Version 2.0

Name Description

network connection that is required for executing the test case), a malfunction

of a component in the test environment or an incorrectly executed test

procedure, test case or test set. 'Error' differs from a 'fail' in a sense that the

test item did not caused the deviation between the expected and the actual

responses.

fail
Issue UMLTP2-14

The predefined verdict 'fail' indicates a result of a test set, test case or

procedural element, where the test item does not react as expected.

inconclusive The predefined verdict 'inconclusive' indicates that a situation where it is not

possible to determine whether the test item behaved as expected or not. It is,

however, not predefined when the verdict 'inconclusive' shall bet assigned.

This depends on the rules of the applied arbitration specification. The default

arbitration specifications do not utilize this verdict instance.

The concept was obtained from [ISO/IEC 9646-1] where it says: "Test verdict

given when the observed test outcome is such that neither a pass nor a fail

verdict can be given"

none
Issue UMLTP2-14

The predefined verdict 'none' indicates that a situation where either a test set,

test case or procedural element has not yet been executed, or verdict

calculation has not yet taken place (e.g., in post-execution comparison).

pass
Issue UMLTP2-14

The predefined verdict 'pass' indicates a result of a test set, test case or

procedural element, where both the tester but in particular the test item

behaved, respectively responded as expected.

9.2 UTP Auxiliary Library

9.2.1 UTP Auxiliary Library
The UTP auxiliary library collects well-established and commonly accepted information whose use is optional. The

purpose of the auxiliary library is to provide users with a set of useful and predefined types and values to foster

reusability across modeling tools and approaches. For example, the ISO 25010 quality model is supposed to be used

by multiple organizational units within the test process. Instead of building proprietary and potentially technically

conflicting representations of the very same quality model, users may reuse the ISO 25010 [ISO25010] quality

model that comes along with UTP itself. Of course, such types and values are often tailored to specific needs (e.g.,

Robustness testing is a frequently used testing type which is actually given in ISO 9216 or ISO 25010), but still

needs to be specified. However, the existence of the UTP auxiliary model does not prevent such an approach.

9.2.1.1 The UTP auxiliary library
Overview of the UTP auxiliary library.

UML Testing Profile 2 (UTP 2), Version 2.0 149

Figure 9.3 - The UTP auxiliary library

9.2.1.2 ISTQB Library
The ISTQB library offers concepts that can be used to organize some aspects of the test process, if required. In

particular, the ISTQB library offers a commonly used set of test levels and test set purposes.

9.2.1.2.1 Overview of the ISTQB library
The following diagram shows the predefined test process library provided by UTP to be used for the specification of

test contexts and test sets.

150 UML Testing Profile 2 (UTP 2), Version 2.0

Figure 9.4 - Overview of the ISTQB library

Name Description Enumeration literals

ISTQB Agile Test

Set Purpose

 Build verification test

"A set of automated tests which validates the integrity

of each new build and verifies its key/core

functionality, stability and testability. It is an industry

practice when a high frequency of build releases occurs

(e.g., Agile projects) and it is run on every new build

before the build is released for further testing."

[ISTQB]

Feature acceptance testing

Acceptance testing of a feature, often broken down

into Feature verification testing and Feature validation

testing.

Feature verification testing

Usually carried out automatically may be done by

developers or testers, and involves testing against the

user story’s acceptance criteria.

Feature validation testing

Usually carried out manually and can involve

developers, testers, and business stakeholders working

collaboratively to determine whether the feature is fit

for use, to improve visibility of the progress made, and

UML Testing Profile 2 (UTP 2), Version 2.0 151

Name Description Enumeration literals

to receive real feedback from the business

stakeholders.

ISTQB Test Level A common set of test levels. A

test level is considered as a set

of testing activities related to

the outermost boundaries of the

test items.

component test level

A test designed to provide information about the

quality of the component.

integration test level

A test designed to provide information about the direct

interface between two integrated components for

example in the form of a parameter list.

system test level

A test designed to assess the quality of the complete

system after integration.

acceptance test level

A test designed to demonstrate to the customer the

acceptability of the final system in terms of their

specified requirements.

ISTQB Test Set

Purpose

A set of reasons why test sets

might have been assembled.

Smoke Test

"A subset of all defined/planned test cases that cover

the main functionality of a component or system, to

ascertaining that the most crucial functions of a

program work, but not bothering with finer details."

[ISTQB]

Intake Test

"A special instance of a smoke test to decide if the

component or system is ready for detailed and further

testing. An intake test is typically carried out at the

start of the test execution phase." [ISTQB]

Manual Test

A test set whose test cases will be executed manually.

Automated Test

A test set whose test cases will be executed

automatically.

Negative Test

"Tests aimed at showing that a component or system

does not work." [ISTQB]

Regression Testing

"Testing of a previously tested program following

modification to ensure that defects have not been

introduced or uncovered in unchanged areas of the

software, as a result of the changes made." [ISTQB]

Alpha Testing

"Simulated or actual operational testing by potential

customers/users or an independent test team at the

software developers’ site, but outside the development

organization. Alpha testing is employed for off-the-

shelf software as a form of internal acceptance testing."

[ISTQB]

152 UML Testing Profile 2 (UTP 2), Version 2.0

Name Description Enumeration literals

Beta Testing

"Operational testing by potential and/or existing

customers/users at an external site not otherwise

involved with the developers, to determine whether or

not a component of system satisfies the user needs and

fits within the business processes. Note: Beta testing is

often employed as a form of external acceptance

testing in order to acquire feedback from the market."

[ISTQB]

API Testing

"Testing the code which enables communication

between different processes, programs and/or systems.

API testing often involves negative testing, e.g., to

validate the robustness of error handling." [ISTQB]

Failover Test

"Testing by simulating failure modes or actually

causing failures in a controlled environment.

Following a failure, the failover mechanism is tested to

ensure that data is not lost or corrupted and that any

agreed service levels are maintained (e.g., function

availability or response times)." [ISTQB]

Stress Testing

"A type of performance testing conducted to evaluate a

system or component at or beyond the limits of its

anticipated or specified workloads, or with reduced

availability of resources such as access to memory or

servers. [After IEEE 610]" [ISTQB]

Load Testing

"A type of performance testing conducted to evaluate

the behavior of a component or system with increasing

load, e.g. number of parallel users and/or numbers of

transactions to determine what load can be handled by

the component or system." [ISTQB]

Recoverability Test

"The process of testing to determine the recoverability

of a software product." [ISTQB]

Interface testing

"An integration test type that is concerned with testing

the interfaces between components or systems."

[ISTQB]

Acceptance testing

"Formal testing with respect to user needs,

requirements, and business processes conducted to

determine whether or not a system satisfies the

acceptance criteria and to enable the user, customers or

other authorized entity to determine whether or not to

accept the system." [ISTQB]

UML Testing Profile 2 (UTP 2), Version 2.0 153

9.2.1.3 Test Design Facility Library
The test design facility library provides a set of test design techniques as well as some default test design technique

structures that can be used out of the box for the specification of the test design activities. Since these test design

techniques are by definition not dependent upon the test design input element, they are called context-free test

design techniques.

9.2.1.3.1 The UTP test design facility library
The following diagram shows the predefined test design techniques provided by UTP 2 to be used for the

specification of test directives.

Figure 9.5 - The UTP test design facility library

9.2.1.3.2 Predefined Test Design Techniques
UTP offers a set of context-free test design techniques, meaning that these test design techniques do not require any

further information from the test design input of the assembling test design directive. They can be immediately used

by the generic test design directive or any other predefined or specialized test design technique or test design

directive.

9.2.1.3.2.1 Predefined context-free test design techniques
The following diagram depicts the predefined and ready-to-use test design technique provided by UTP 2.

154 UML Testing Profile 2 (UTP 2), Version 2.0

Figure 9.6 - Predefined context-free test design techniques

h

Name Description

AllCombinations A predefined instance of the CombinatorialTesting TestDesignTechnique

ready for being assembled by TestDesignDirectives. The semantics is that all

possible combinations of input parameters must be covered by the resulting

test cases.

AllRepresentatives A predefined instance of the EquivalenceClassPartitioning

TestDesignTechnique ready for being assembled by TestDesignDirectives. All

representatives of the equivalence classes must be selected.

AllStates The predefined instance of the StateCoverage TestDesignTechnique ready for

being assembled by TestDesignDirectives. The default semantics is that all

States of the corresponding State Machine(s) must be covered by the resulting

test cases.

AllTransitions The predefined instance of the TransitionCoverage TestDesignTechnique

ready for being assembled by TestDesignDirectives. The default semantics is

that all Transitions of the corresponding State Machine(s) must be covered by

UML Testing Profile 2 (UTP 2), Version 2.0 155

Name Description

the resulting test cases.

DefaultCBT The predefined instance of the ChecklistBasedTesting TestDesignTechnique

ready for being assembled by TestDesignDirectives.

DefaultCET The predefined instance of the CauseEffectAnalysis TestDesignTechnique

ready for being assembled by TestDesignDirectives.

DefaultCTM The predefined instance of the ClassificationTreeMethod

TestDesignTechnique ready for being assembled by TestDesignDirectives.

DefaultDTT The predefined instance of the DecisionTableTesting TestDesignTechnique

ready for being assembled by TestDesignDirectives.

DefaultEG The predefined instance of the ErrorGuessing TestDesignTechnique ready for

being assembled by TestDesignDirectives.

DefaultET The predefined instance of the ExploratoryTesting TestDesignTechnique

ready for being assembled by TestDesignDirectives.

DefaultPT The predefined instance of the PairwiseTesting TestDesignTechnique ready

for being assembled by TestDesignDirectives.

DefaultTPT The predefined instance of the TransitionPairTesting TestDesignTechnique

ready for being assembled by TestDesignDirectives. The default semantics is

that at least all pairs of subsequent Transitions must be covered by the

resulting test cases.

OneBoundaryValue The predefined instance of the BoundaryValueAnalysis TestDesignTechnique

ready for being assembled by TestDesignDirectives. The default semantics is

that a single value at the boundaries of the equivalence class must be selected.

OneRepresentative A predefined instance of the EquivalenceClassPartitioning

TestDesignTechnique ready for being assembled by TestDesignDirectives.

Exactly one representative of each equivalence class must be selected.

9.2.1.3.3 Predefined Test Design Technique Structures
The predefined test design technique structures offer some structural information to enrich test design techniques, if

required.

9.2.1.3.3.1 Overview of the predefined test design technique structures
The following diagram depicts the predefined and ready-to-use test design technique structures provided by UTP.

They can be used to build proprietary generic test design techniques or to augment the predefined test design

techniques.

Figure 9.7 - Overview of the predefined test design technique structures

Name Description

GraphTraversalStructure A test design technique structure that enables testers to specify the traversal

algorithm a test designing entity must apply.

156 UML Testing Profile 2 (UTP 2), Version 2.0

Name Description

SimpleChecklistBasedStructure A checklist-based test design technique that enables test engineers to refer to

some checklists that should be used for test design.

SimpleErrorGuessingStructure An error guessing test design technique that enables test engineers to refer to

some error taxonomies that should be used for test design.

Name Description Enumeration literals

GraphTraversalAlg

orithmKind

A set of graph traversal

strategies.

random

A test designing entity must take a random walk

through the graph in order to achieve a certain

coverage criterion of the test design input element.

shortest

A test designing entity must take the shortest path

possible in order to achieve a certain coverage criterion

of the test design input element.

longest

A test designing entity must take the longest path

possible to achieve a certain coverage criterion of the

test design input element.

Issue UMLTP2-24

UML Testing Profile 2 (UTP 2), Version 2.0 157

Annex A (Informative): Examples

This section illustrates some concepts of the UML Testing Profile by means of different examples. These examples

were provided by different companies reflecting different approaches to MBT, different interpretations of MBT with

UTP and finally different methodologies for applying UTP. It underlines the flexibility and open-endedness of UTP.

A.1 Croissants Example

A.1.1 The Test Item
This example illustrates some of the major concepts of UTP 2 on the "not so serious" test item (French)

"Croissants". This is a particularly interesting example since the test item is not a software system (at least not in the

classical sense ;-), but a rather common physical system (i.e., croissants).

Figure A.1 - The Croissants Example

Table A.0.1 Given Requirements on the Test Item

Id Type Description Req. on

RQ-0001 functional Each croissant shall have a chocolate core Croissant

RQ-0002 functional Each croissant shall have a consistency of

greater than 3

Croissant

RQ-0003 functional Each croissant shall be considered as "good

tasting" by more than 80% of ordinary

people

Croissant

158 UML Testing Profile 2 (UTP 2), Version 2.0

A.1.2 Test Requirements
The following diagram shows the hierarchy of test objectives as well as the constraints on this test series expressed

as test requirements.

Figure A.2 - Test Objectives

Table A.0.2 Given Test Objectives

Name Description Priority

TO00: Quality

verified

The high quality of the croissants we enjoy during our working

meetings is ensured.

n/a

TO01: Taste

verified

The quality of the flavor of the croissants we enjoy during our

working meetings is ensured.

high

TO02: Structure

verified

The physical composition of the croissants we enjoy during our

working meetings is ensured.

medium

TO03: Color

verified

The tasteful look of the croissants we enjoy during our working

meetings is ensured.

high

Table A.0.3 Given Requirements

TR01: Humans

Description Taste shall be verified by at least 5 humans

Requirement type project constraint

Requirement kind Quality

UML Testing Profile 2 (UTP 2), Version 2.0 159

TR02: Waste

Description Don't waste more than 10 croissants

Requirement type project constraint

Requirement kind Resource Consumption

A.1.3 Test Design
The following diagram shows the applied test design strategy as well as the test directives derived from that test

design strategy.

Figure A.3 - Test Strategy

Table A.0.4 Test Design Strategies shown on "Test Strategy"

TDS01

Description At least 5 members of the UTP 2 WG will take a bite of a croissant.

Table A.0.5 Test Directives shown on "Test Strategy"

Chocolate test

Description Keep every piece of chocolate at least 10 seconds on your tongue.

Applies to Chocolate Portion

Requires capability Gustaoceptionary Proficiency

CR-X1072-B

Description Apply Croissant-Standard CR-X1072-B to test them.

Applies to Croissant

Requires capability Knowledge of CR-X1072-B

A.1.4 Test Configuration
The figure below shows the Test Configuration of the Croissants abstracted as a UML class diagram.

160 UML Testing Profile 2 (UTP 2), Version 2.0

Figure A.4 - Objects

Based on this description, the following figure shows the concrete test configuration instantiated as a composite

structure diagram.

Figure A.5 - Test Configuration

A.1.4.1 Test Cases
The test cases (particularly the test procedures) in this test set are not specified fully and formally but rather in a

structured informal way. This is to show that test cases in UTPs don't always have to be fully formalized.

A.1.4.2 Test Set "Manual croissants test"
The following diagram shows the Test Set "Manual croissants test" containing the relevant test cases and how they

relate to the stated test objectives. Further, the test requirements constraining this test set also are shown.

UML Testing Profile 2 (UTP 2), Version 2.0 161

Figure A.6 - Test Map

Table A.0.6 Test Cases shown on "Test Map"

TC01: test taste

Test objectives TO01: Taste verified

Priority high

Precondition There must be a Croissant available

Test procedure Apply the following steps:

 Break the Croissant in its middle

 Check whether there is chocolate in it

 Bite into the Croissant

 Evaluate its taste

 Eat the remains or throw them into the waste basket

Postcondition The Croissant is eaten

Verifies TO01: Taste verified

Estimated effort 10 seconds

Is abstract FALSE

TC02: test structure

Test objectives TO02: Structure verified

Priority low

Precondition There must be a Croissant available

 The Croissant must not be broken

Test procedure Apply the following steps:

 Press the Croissant with two fingers

 Check the elasticity of the Croissant

162 UML Testing Profile 2 (UTP 2), Version 2.0

 Bend the Croissant until it breaks

 Check the breaking angle

 Eat the remains or throw them into the waste basket

Postcondition The Croissant is broken

Verifies TO02: Structure verified

Estimated effort 20 seconds

Is abstract FALSE

TC03: test color

Test objectives TO03: Color verified

Priority medium

Precondition There must be a Croissant available

Test procedure Apply the following steps:

 Look at the Croissant

 Evaluate its color

Postcondition There is still a Croissant available

Verifies TO03: Color verified

Estimated effort 5 seconds

Is abstract FALSE

A.2 LoginServer Example

The LoginServer example represents a simplified version of a real case study taken from the EU FP7 research

project REMICS. It was optimized for the initial submission section to demonstrate the core concepts of UTP 2 that

are stable enough and unlikely to be substantially changed in the revised submissions. The LoginServer offers

functionality to log into a system (in the mentioned REMICS project, the login functionality was integrated into a

Cloud-based system for managing travel excursions). In this example section, the following capabilities of UTP 2

are demonstrated:

 Defining the structure of a test plan using test contexts as well as test level and test types

 Specification of test requirements as a result of the test analysis activities

 Modeling of the logical interfaces of the test item (also known as test item - test item) optimized for

deriving logical test cases

 Modeling of the test type system and data specifications required for deriving appropriate data

 Specification of structural aspects of the test environment, in particular the required test components, test

configuration and connection between the test environment and the test item

 Modeling of logical test cases using sequence diagrams (i.e., Interactions)

 Informal and rough description of a mapping from UTP 2 test cases expressed as sequence diagrams (i.e.

Interactions) to semantically equivalent TTCN-3 test scripts

This example demonstrates the Test Model-only approach to model-based testing. There are no further (e.g., design

or requirements) models available for reuse. In addition, the methodology follows the so called test

requirement/requirements analysis , since the test design activities are guided by test requirements which, in turn, are

derived from the test basis. Both the applied MBT approach and the test approach (which is called test practice in

ISO 29119) of the LoginServer example are just a single interpretation how UTP 2 could be used and embedded into

a methodology. The described test process and its distinct phases (e.g., test planning, test analysis, etc.) are inspired

by the ISTQB fundamental test process.

A.2.1 Requirements Specification
The following table shows a simplified excerpt of the requirements for the LoginServer example. These few

requirements suffice to demonstrate most of the core concepts of UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.0 163

Table A.0.7 LoginServer Requirements

Id Name Description

F1 User login The user shall be able to log into the system using a valid

ID/password combination.

F2 Failed user login The system shall reject the login request and answer with an
appropriate error message, if the user tries to log into the system
with a known ID but invalid password.

F3 Unknown user login The system shall reject the login request and answer with an
appropriate error message, if an unknown user (i.e., a non-
registered ID) requests a login.

F4 User banishing The system shall banish an ID and answer with an appropriate
message, if a user tries to log into system three times in a row
with an invalid ID/password combination.

F5 Mail address modification A user who is logged into the system shall be able to update his

mail address. A valid mail address complies to the following

regular expression: [a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-

Z]{2,4}

F6 User logout A user who is logged in shall be able to log out from the system.

F7 Login response time The system shall respond to login request within 5 seconds.

A.2.2 Test Planning
In the test planning phase, the test manager usually starts specifying the test plan. This means that the resources for

testing are estimated, requested and allocated. Furthermore, the test process is broken down into so called test sub-

processes, each strives to fulfil the test objectives of this test sub-process. These test sub-processes are called test

context in UTP 2.

Based on the knowledge about the system to be tested (also known as test item or test item), the test manager

decides on the number of test sub-processes, their objectives and the strategies used to fulfil those test objectives.

The diagram below shows the corresponding structure of the test specification for the LoginServer test item.

164 UML Testing Profile 2 (UTP 2), Version 2.0

Figure A.7 - The LoginServer Test Context

Due to the simplicity of the LoginServer, the entire test plan only consists of a single test context. In more

sophisticated test processes, the test plan is usually sub-structured into multiple test (sub-)plans, so called master and

level test plans. The test context copes with this need, since it allows for sub-structure test contexts. The diagram

above also demonstrate the use of two model libraries provided by the UTP Auxiliary library in order to specify the

test level and test type that are addressed by the given test context. In this example, the test context LoginServer Test

Specification targets functional system testing. Each test case accessible to the test context is considered to be

designed for the mentioned test level and test type. This enables tester to apply the very same test case to different

test types and test levels (if needed). For example, it is a good practice to reuse functional test cases with different

data sets or a different, yet compatible test configuration for security or performance testing.

The LoginServer Test Specification contains two ordinary packages for storing the test objectives and test

requirements. Whereas the specification of test objectives is not shown in this example, the derivation of test

requirements as one of the most important outcomes of the test analysis phase will be shown in the next section.

A.2.3 Test Analysis
The activities in the test analysis phase are, first and foremost, dedicated to analyze the test basis in order to

comprehend both the test item and what is expected from the test item. Test basis is an abstract concept that

comprises any information that helps deriving test cases for a certain test item with respect to the test objectives of

the given test sub-process (i.e., test context). The requirements specification usually represents an important part of

the test basis for functional system testing.

A.2.3.1 Derivation and Modeling of Test Requirements
In UTP, test requirements specify which features of a requirement should be verified by corresponding test cases.

test requirements are an important means to establish traceability between test cases and the test basis, in particular

the requirements. The degree of detail of test requirements varies between test processes and depends on different

aspects like the applied test methodology, details of the test basis, sufficient time available to actually specify,

review and validate those test requirements etc.

UML Testing Profile 2 (UTP 2), Version 2.0 165

For the given example, only a subset of all possible test requirements is derived from the functional system

requirements. For later submission, this specification will provide a more elaborated and complete example.

Table A.0.8 Test Requirements

Id Description Covers Comments

TR-F1-1 Ensure that a user successfully logs

into the system, if the login request is

performed using a valid ID and

corresponding password.

User login No information about response of the

definition of valid ID yet. Req.

change request submitted (RCR-ID:

0015)

TR-F1-2 Ensure that the system responses with

an error message “Invalid ID” if an

invalid ID was provided with the

login request.

User login Invalid ID behavior discussed with

system architect. An according req.

change request was submitted (RCR-

ID: 0016)

TR-F5-1 Ensure that the system responses with

a message “Mail address updated” if

the modification request was

successful. This requires a valid mail

address.

Valid mail addresses shall comply

with the following regular

expression:

[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-

]+\.[a-zA-Z]{2,4}

Mail address

modification

No information about response of the

system available yet. Req. change

request submitted (CR-ID: 0064).

The current expected result is very

likely to change in future.

TR-F5-2 Ensure that the system issues an error

message “Invalid Format” if the mail

address the user submitted for

modification does not comply with

the regular expression given in F5.

Mail address

modification

No information about response of the

system available yet. Req. change

request submitted (CR-ID: 0065).

The current expected result is very

likely to change in future.

TR-F5-3 Ensure that the system rejects the

modification request if the user is not

logged into the system with the error

message “Login required”.

Mail address

modification

No information about response of the

system available yet. Req. change

request submitted (CR-ID: 0065).

The current expected result is very

likely to change in future.

TR-F6-1 Ensure that a user, who is currently

logged into the system and requests a

logout from the system, is actually

logged out. The system shall

responds with a message “User

logged out”

User logout

TR-F6-2 Ensure that the system responds with

an error message “Logout requires to

be logged in” if a user who is not

logged into the system sends a logout

request.

User logout

TR-F7-1 Ensure that the system responds to

login requests within 5 seconds.

Login

response time

The diagram below depicts the content of the corresponding test requirement package. To keep the diagram clean,

only unique identifier of the test requirements are shown. In this methodology, test requirements do not have a

name, so the name is automatically (by virtue of a UTP 2 tool) kept in synch with the unique identifier.

Unfortunately and deliberately for this example, the targeted requirements are not available as model artifacts, but

stored somewhere else (e.g., a dedicated requirements management tool like DOORS or even Excel). Traceability

from test requirements to requirements (i.e., from the test specification to the test basis) by means of UTP 2 can at

most be established informally.

166 UML Testing Profile 2 (UTP 2), Version 2.0

Figure A.8 - Test Requirements

A.2.3.2 Modeling the Type System and Logical Interfaces
Since the test model is designed in a standalone manner, it is in the responsibilities of the test analysts to identify

and specify the means for interacting with the test item. test requirements usually provide further information for the

design of the logical interfaces of the test item and the test type system used for information exchange. For example,

the phrase “a user … logs into the system if the login request is performed using a valid ID and corresponding

Password.” indicates that has to be an operation that allows providing an ID and a Password for a login request. Of

course, the same holds true, of course, for the specification of constraints on data in order to build data

specifications. The test requirements TR-F1-1 and TR-F5-1 are examples in which constraints on data are specified.

These data constraints could be exploited for data-based test design strategies like equivalence class partitioning or

boundary value analysis. Whatever test design technique will be applied, UTP 2 offers the required capabilities to

capture such data constraints and explicitly specify data specifications as means of equivalence classes or even

classification trees.

The diagram below shows the logical interface operations and test type systems derived from the test requirements

TR-F1-1, TR-F2-1, TR-F6-1 and TR-F6-2.

UML Testing Profile 2 (UTP 2), Version 2.0 167

Figure A.9 - Logical Interface of LoginServer (1)

The diagram below depicts the logical interface operations and test type systems derived from the test requirements

TR-F5-1, TR-F52, and TR-F5-3.

Figure A.10 - Logical Interface of LoginServer (2)

A.2.3.3. Modeling Test Data
The data specification MailAddress specialized the primitive type String (provided by the UML PrimitiveTypes

package imported by the surrounding test context) and restricts the values for this type according to requirement F5

and test requirements TR-F5-1. The actual specification of the Constraint ‘format’ is represented by a LiteralString

(this cannot be inferred by the means of the diagram). The diagram below shows the corresponding object diagram

of the relevant parts of the diagram above.

168 UML Testing Profile 2 (UTP 2), Version 2.0

Figure A.11 - Object Diagram specifying data

Both names and representation of derived artifacts are just examples how UTP 2 could be applied to support test

analysis and depend on the respective methodology.

A.2.4 Test Design
The main target of the test design activity is to derive test cases by following either systematic test design techniques

or in an ad-hoc manner. However performed, the test design activity is responsible for

 Deriving according test data based on the test type system

 Deriving the test architecture and test configuration including the communication channels between the test

components and the test item

 Designing test cases based on the findings of the test analysis activities

 Link test cases to test objectives and/or test requirements

A.2.4.1 Test Architecture and Test Configuration
The test architecture comprises of the test item and the corresponding test components required driving the

execution of test cases against the test item. The diagram below depicts the specification of two components within

the LoginServer Test Specification. The decision made to go for two distinct interfaces for the LoginServer instead

of a single interface results in a bigger modeling efforts, since an interface component (see BasicPortConfiguration)

is required in order to offer multi-offering Ports. This diagram does not make use of any UTP 2 stereotypes but

relies completely on the class modeling capabilities of UML. The Port ~basicPort of type Client is a conjugated Port

typed by BasicPortConfiguration.

Figure A.12 - LoginServer Component Specification

UML Testing Profile 2 (UTP 2), Version 2.0 169

The role each of those components will play in the given test context is not prescribed. Binding of roles for types is

accomplished by the test configuration. The test configuration also describes the communication channels over

which information exchange among the test component(s) and the test item will be established later. UTP 2 allows

for at least two ways to specify the test configuration:

 Shared test configuration: The shared test configuration mechanism enables the test analyst to bind test

cases to a previously defined test configuration. By doing so, the test configuration might be reused by

different test cases. One means to shared test configuration is by utilizing Collaborations. This is not shown

in this example.

 Isolated test configuration: In contrast to shared test configuration, the isolated test configuration builds the

test configuration every time from scratch. This option is only possible, if «TestCase» is applied on (a

subclass of) Behavior directly. Since Behavior is a StructuredClassifier it is possible to directly make use of

the stereotypes «TestItem» and «TestComponent» within the composite structure of the respective

Behavior. However, this prevents the advantages of reuse.

The diagram below denotes the very simple test configuration contained in the test case TC1_F1. The test case could

be seen as a test case declaration which can be created and fostered very early in the test process. The test

configuration comprises two parts, one being stereotyped as «TestComponent» and the other stereotyped as

«TestItem», whose compatible Ports are connected by Connector c1. The Connector is an important means for

specifying over which communication channel the information exchange between test component(s) and test items

are supposed to take place during the execution of the test case.

Figure A.13 - LoginServer Test Configuration

UTP 2 does not prescribe nor emphasize which variant to be used. Often, this depends on the applied test modeling

methodology, the applied tooling, and the acceptance of the test analysts. For example, if generative approaches to

test design are applied, then it might not be important to reuse test configurations throughout several test cases for

the test configurations would be automatically derived from the boundary descriptions of the «TestItem».

A.2.4.2 Specification of Complex Test Data
The test type system specifies which data types are supposed to be exchanged within test cases among the test

components and the test item. For the actual specification of test cases, values or instances for the test type systems

need to be defined. This is in particular necessary for complex data types (e.g., DataType, Class, Signal etc.). The

diagram below shows the InstanceSpecifications for the data types LoginReq and User required for the realization of

test cases.

170 UML Testing Profile 2 (UTP 2), Version 2.0

Figure A.14 - Test Data Specification

The interesting aspect in the data specification is the difference in dealing with the mail address attribute in the User-

type InstanceSpecification. In the first case (user1), the Slot value is set to the regular expression, which was taken

over from the type definition of MailAddress. It will later on be used to define expected results of the login

operation. The semantics of such a concept is that as long as the actual response for a user’s mail address complies

with the stated regular expression, the actual response matches the expect response action and will not cause the test

case to Fail.

The InstanceSpecification user1reduced omits all slots that are not required for a user object. This will later on be

used for the modification of a user’s mail address. In the last case (user1mod) a concrete and very precise mail

address was stated for the very same user. This InstanceSpecification is used as part of the profile modification

response (i.e., data type ProfileModRes) after an update of the mail address was requested. This is necessary, since it

is important to see that the modification of was actually successful. All other data values are defined directly within

the test cases as ordinary ValueSpecifications.

A.2.4.3 Test Requirements Realization
The actual design of test cases is the most important part of the test design phase. According to the applied

methodology for the given example, test requirements are supposed to be realized by test cases, and thus, test case

transitively verify or falsify the requirements that are covered by test requirements. The assignment of test

requirements to test cases is part of the test design phase and results in our case in the following (partially shown)

assignments (see diagram below).

UML Testing Profile 2 (UTP 2), Version 2.0 171

Figure A.15 - Realization of Test Requirements

The respective test configuration for each test case is not shown in the diagram for the sake of comprehensibility,

but is present nevertheless for each test case and identical to the test configuration shown above.

A.2.4.4 Design of Test Case Procedures
Based on both the specification of the test requirements what to test and the precise specification of the test

configuration in order to realize how to test what has to be tested, the test case procedures can be derived. As already

shown, in this example sequence diagrams (i.e., Interactions) are going to be used as a test procedure. The semantics

of these test case interactions is that any deviation from the described interactions and message arguments will cause

the test case to Fail. However, if the actual response matches the expected ones during test execution, the test case

will Pass.

The two diagrams below show the test procedures of two test cases for the test requirements TR-F1-1, TR-F1-2 and

TR-F7-1. This specification deliberately neglected the parameterization of test cases due to an unresolved issue filed

against UML Interactions.

172 UML Testing Profile 2 (UTP 2), Version 2.0

Figure 0.16 - Two Test Procedures

The DurationConstraints ensure that any response to the login request that is recognized later than 5 time units (in

this case seconds) after the actual request will violate the DurationConstraint, and thus, cause the test case to Fail.

The message arguments used in these test cases are represented by InstanceValues that have the same name as the

InstanceSpecifications they refer to. Successful and InvalidPassword are EnumerationLiterals of the Enumeration

LoginRes. The messages are sent via the Connector connector1 of the corresponding test configuration. This enables

a precise definition of the Ports that should be used for sending stimuli and receiving expect response actions.

The diagram below depicts a test case for the successful modification of a logged in user’s mail address. It reuses

(actually reimplements for no explicit reuse - by means of InteractionUse of the test procedure of test case TC1_F1)

the behavioral description for a successful user login request. The is usually called the preamble of the test case

(although the current version of UTP 2 has no means to explicitly denote parts of the behavioral description as

preamble or postamble; this is intended for revised submission).

UML Testing Profile 2 (UTP 2), Version 2.0 173

Figure A.17 - Successful Test Case

The only technical deviation from the previously shown test cases is that the mailModAddress request message uses

a LiteralString with value “maximus@tld.com” as message argument. Otherwise, no further peculiarities need to be

discussed.

Note: The use of arguments of a message represented in curly brackets below the message arrow is not UML-

compliant, but was chosen for the sake of clarity.

A.2.5 Mapping to TTCN-3
The Testing and Test Control Notation version 3 (TTCN-3) standardized by the European Telecommunications

Standardization Institute (ETSI) prescribes a dedicated test language and test system framework that abide by the

keyword-driven testing principle. Since its final adoption is has been heavily used within the telecommunications

and automotive domain, but is in general, like UTP, independent of any domain. As TTCN-3 similarly to OMG

standards is not restricted to certain methodology, the following described mapping represents just one possible way

to translate UTP 2 test cases to TTCN-3. For example, it is restricted to Interactions for test case procedures,

whereas in principle each of the UML behavior kinds could be used for specifying test procedures.

A.2.5.1 Mapping the Test Type System
TTCN-3 comes along with a fine-grained and powerful type system that resembles the one provided by UML, which

was taken over by UTP. The following snippet shows the corresponding TTCN-3 code for the LoginServer test type

system starting with primitive types, over enumerations to complex types.

type charstring MailAddress

 (pattern "\[a-zA-Z0-9._%+-\]+@\[a-zA-Z0-9.- \]+\.\

 [a-zA-Z\]\{2,4\}");

type enumerated LoginRes

 {InvalidID, InvalidPassword, UnknownUser, UserBanned, Successfull};

type enumerated LogoutRes

 {Successfull, LogoutRequiresLogin};

type enumerated ModMessage

 {Successfull, InvalidFormat, LoginRequired};

174 UML Testing Profile 2 (UTP 2), Version 2.0

type record LoginReq

{

 charstring id,

 charstring password

}

type record User

{

 charstring id,

 charstring name optional,

 charstring mail optional

}

type record ProfileModRes

{

 User user,

 ModMessage status

}

A.2.5.2 Mapping Interface Descriptions
In TTCN-3, interface operations are represented by so called signature types. A signature is a type that can be

instantiated and resembles the invocation of an operation. The concept of an Interface as grouping namespace for

Operations has no correspondent concept in TTCN-3. In case of ambiguous signature names (i.e., two Operation

with the same name contained in different Interfaces) the qualified name of the Operation could be used as name of

the signature since TTCN-3 does not offer type overloading. The mapping presented in this example utilizes the

TTCN-3 group concept to logically cluster the signature types according to their containing UTP Interfaces;

however, one has to be aware of the fact that a TTCN-3 group has no further semantics than to group elements. A

TTCN-3 group is neither comparable to a UML Package nor any other Namespace for it does not have scoping

semantics. The suggested mapping of the LoginServer interface descriptions is shown in the following snippet:

group ServerLoginInterface

{

 signature login (LoginReq request, out LoginRes msg) return User;

 signature logout (User user) return LogoutRes;

}

group UserProfileInterface

{

 signature modMailAddress (User user, MailAddress newMail) return ProfileModRes;

}

A.2.5.3 Mapping the Test Architecture
TTCN-3 relies on a component- and port-based architecture. That fits quite well with the offered concepts by UML,

and thus, UTP. The following snippet demonstrates the mapping of the LoginServer test architecture to TTCN-3:

type port BasicPortConfiguration procedure

{

 inout login, logout, modMailInterface;

}

type component LoginSever

{

 port BasicPortConfiguration basicPort;

}

type component Client

{

 port BasicPortConfiguration basicPortConjugated;

}

A.2.5.4 Mapping the Test Data Specification
Data values utilized in message exchanges are called templates in TTCN-3. A template resembles an

InstanceSpecification or dedicated ValueSpecification in UTP (actually UML). Templates can be either defined

explicitly outside of a test case (called global templates), and thus, being reused by multiple test cases, or directly

within in a message (called inline). At first this specification is going to show the mapping of global templates:

UML Testing Profile 2 (UTP 2), Version 2.0 175

template LoginReq user1valid() :=

{

 id := "mustermann2014",

 password := "TustNo1"

};

template LoginReq user1invalid() :=

{

 id := "mustermann2014",

 password := "WhyNot"

};

template User user1() :=

{

 id := "mustermann2014",

 name := "Max Mustermann",

 mail := (pattern "\[a-zA-Z0-9._%+-\]+@\[a-zA-Z0-9.- \]+\.\

 [a-zA-Z\]\{2,4\}")

};

template User user1reduced() :=

{

 id := "mustermann2014",

 name := omit,

 mail := omit

};

template User user1mod() :=

{

 id := "mustermann2014",

 name := "Max Mustermann",

 mail := "maximus@tld.com"

};

template ProfileModRes mailModSuccessfull() :=

{

 user := user1mod,

 status := Successful

};

A.2.5.5 Mapping Test Cases and Test Configuration
In TTCN-3 a test configuration is inherently bound to a test case, whereas in UTP a test configuration could be

potentially shared across multiple test cases (even though this feature is not shown in the given example). The

following snippet shows the mapping of the test case TC1_F1:

//determines the roles for Client and LoginSever

//runs on declares Client as TestComponent

//system declares LoginServer as TestItem

testcase TC1_F1() runs on Client system LoginServer

 {

 //establishes the Connector connector1

 map(self:basicPortConjugated, system:basicPort);

 //invokes the login operation by sending an instance of the

 //signature type login and starts an implicit timer with the

 //duration of 5 seconds

 basicPortConjugated.call(login:{user1valid,-}, 5000.0)

 {

 //continually checks whether the expected response is received

 //by the test system

 []basicPortConjugated.getreply(login:{-,Successfull}

 value user1)

 {

 //indicates that the test case has passed

 setverdict(pass);

 }

 //continually checks whether any other response is received

 []basicPortConjugated.getreply

 {

 //indicates that the test case has failed due to mismatch

 //between actual and expected response

 setverdict(fail)p;

 }

176 UML Testing Profile 2 (UTP 2), Version 2.0

 //continually checks whether the implicit timer expired

 []basicPortConjugated.catch(timeout)

 {

 //indicates that the test case has failed due to timout

 setverdict(fail);

 }

 }

 }

UML Testing Profile 2 (UTP 2), Version 2.0 177

A.3 Videoconferencing Example

This example is inspired from the case study about a Videoconferencing System (VS) that is reported in [1] with the

aim of demonstrating the application of UTPV.2. This example illustrates some of the major concepts of UTP 2 on

the software of the VS such as test item, test item configuration, and test component configuration on the three key

features of the VS. One focuses on the establishing the videoconference, the second one related to sending

presentations in addition to the videoconference, and third one focuses on modeling behavior of VS in the presence

of packet loss.

The rest of this section is organized as follows. Section Given Requirements on the Test Item lists the key

requirements that are focused for modelling in this section, Section Modeling the Structure of the System

demonstrates how this specification models structure of the VS using the UML class diagrams with UTP, Section

Modeling the Behavior of the System demonstrates how this specification modeled the three key requirements as

UML State Machines and UTP, Section The TRUST Test Generator shows our test generator that generates

executable test cases from UML Class Diagrams and UML State Machines, and Section Mapping to Code shows an

example of mapping from the models to code.

A.3.1 Given Requirements on the Test Item
In this section, this specification will demonstrate modelling the four key functionalities of a VS that must be tested.

These functionalities are listed in the table below:

Table A.9 Videoconferencing Requirements

Id Type Description

R-0001 functional A VS should be able to connect to maximum n number of VSs at the same

time.

R-0002 functional A VS should be able to start presentation even it is not in the

videoconference. In this case, the presentation will be only shown to the VS

itself.

R-0003 functional A VS should be able to start presentation when it is in a videoconference. In

this case, the presentation will be transmitted to all the connected VSs

(referred as end points).

R-0004 non-functional A VS should be able to handle packet loss. If the VS cannot handle packet

loss of greater than x% for t minutes, it disconnects the current active call.

A.3.2 Modeling the Structure of the System
In this section, this specification models the structure of VS that is modeled as a UML class diagram. A VS can

establish calls with 1 to * number of endpoints, i.e., other VSs. The VS is stereotyped as «TestItem» and

«TestDesignInput» to label the system being tested, whereas other endpoints (i.e., Endpoint) is stereotyped as

«TestComponent». The VS has five attributes, NumberOfParticipants, MaximumParticipants, Presentation, H323,

and packetLoss representing the current number of endpoints in a videoconference, maximum number of calls

supported by the VS, if the VS is in presentation or not, if H323 mode is on or not, and percentage of packet loss it

is facing. The packetLoss attribute is of type NFP_Percentage from the MARTE profile. The VS class has five

operations to support dialing to an endpoint (connectCall()), disconnecting a participant from a videoconference

(disconnectCall()), starting presentation (presentationOn()), stopping presentation (presentationOff()), and

disconnecting all the participants in a call (disconnectAll()). In addition, this specification defines a constraint in

OCL on VS to model configuration for testing:

context VS inv:

self.H323

This constraint demonstrates that the VS must be configured to support a videoconference with h323 conferencing

protocol. The constraint is stereotyped as «TestItemConfiguration» to signify that the constraint is a configuration

for VS and is handled accordingly by test generator. In addition, «TestItem» has an attribute configuration {subsets

178 UML Testing Profile 2 (UTP 2), Version 2.0

roleConfiguration} , which is linked to this OCL constraint with «TestItemConfiguration» (not shown in the figure).

A similar constraint for Endpoint is also specified in the figure below and is stereotyped as

«TestComponentConfiguration».

Figure A.18 - UML Class Diagram

A.3.3 Modeling the Behavior of the System
The figure below shows the behavior of the VS modeled as a UML state machine stereotyped as «TestDesignInput»

to instruct test generator that the state machine should be used for generation of test cases. In our context it is

important to stereotype a state machine that must be used for generation of test cases since not all the state machines

are used for generation of test cases. The state machine has three regions: 1) The first region models first

requirement for testing, i.e., establishing videoconference, 2) The second region models the second two

requirements related to presenting while in a videoconference and presenting without a conference, and 3) The third

region models the fourth requirement.

UML Testing Profile 2 (UTP 2), Version 2.0 179

Figure A.19 - UML State Machine Diagram

In the first region, this specification models the behavior of a VS related to establishing a videoconference. The first

region has two states, i.e., Idle and In Call demonstrating that the VS is Idle state and the VS is in a videoconference

respectively. Each state has a state invariant defined as an OCL constraint based on the attributes defined in the VS

class diagram. For example, the Idle state has the following state invariant specified as an OCL constraint:

context VS inv:

self.NumberOfPartcipants = 0

The state invariant is stereotyped as «CheckPropertyAction» to instruct the test generator to use the constraint to

generate code that compares the actual state of VS at the runtime (e.g., value of NumberOfParticipants in this

example) with the one specified as CheckPropertyAction. If the state matches then it means everything is fine,

however, if the state doesn’t match it means there is a fault. The attributes of «CheckPropertyAction» are shown

below in the figure. For example, the checkedProperty attribute is linked to the NumberOfParticipants in the VS

class (only shown as Entries:1). The value of expected is set to true meaning that the expected evaluation value of

this constraint is true.

Figure A.20 - Attribute values of «CheckPropertyAction»

Transitions in the state machine are modeled with Call Events corresponding to the operations defined in the VS

class. For example, from the Idle state, the transition with connectCall() trigger will lead to InCall if the call is

established successfully. In addition, some of the transitions have guard conditions with the stereotype

«DataSpecification». Recall that DataSpecification is "A named boolean expression composed of a data type and a

set of constraints applicable to some data in order to determine whether or not its data items are conformant to this

data specification" as defined in the conceptual model. A DataSpecification (e.g., guard condition in this example)

signifies that the transition from the Idle state to the In Call state with a guard condition number>=100 and number

<=4000, (i.e., an OCL constraint) can only be triggered by calling the connectCall(number:Integer) Call Event with

180 UML Testing Profile 2 (UTP 2), Version 2.0

a number between the range of values specified by the guard condition. In our context, this guard condition, i.e., an

OCL constraint is used by the test generator to generate valid values within the range to trigger a transition, for

example, the connectCall() operation in this case.

The second region of the state machine models the behavior of VS related to starting the presentation in parallel to

the videoconference. The region has two states (i.e., Not Presenting and In Presentation) showing the states that the

VS is not presenting and presenting respectively. As with the first region, each state has a state invariant modeled as

an OCL constraint. Similarly, the third region models the behavior of VS in presence of packet loss.

A.3.4 The TRUST Test Generator
The figure below shows a very high level architecture of test case generator. The full details of the test generator can

be found in [3]. At a high level, the test generator called as TRUST takes UML State Machines and UML Class

Diagrams with stereotypes from UTP as input and generates executable test cases based on various coverage criteria

such as All State coverage and All Transition coverage (e.g., ts:TestStrategy with «StateTransitionTechnique») [3].

According to [ISTQB] StateTransitionTechnique is "A black box test design technique in which Test Cases are

designed to execute valid and invalid state transitions". In addition, TRUST has a built in algorithm that flattens the

state machines with hierarchy and concurrency before generating test cases. The details of the algorithm can also be

found in [3]. TRUST also invokes a test data generation tool called EsOCL that takes input an OCL constraint

(specified in class diagrams and state machines) and provides a set of data that satisfy the constraint based on a test

data generation strategy (e.g., td:TestDataGenerationStrategy with the«BoundaryValueAnalysis» stereotype).

According to [ISTQB], BoundaryValueAnalysis is "A black box test design technique in which Test Cases are

designed based on boundary values". The details of EsOCL can be found in [4].

Figure A.21 - Test Generator

The figure below shows a high level architecture of our Test Driver. The test driver takes input a test case and

executes it on the VS that communicates with the n number of endpoints. The test driver also sends commands to

configure endpoints based on test configurations specified in the test case. In our current example, the test driver

executes only test cases on one VS; however, in reality it can execute test cases on multiple VSs in a

videoconference. During the execution, test driver invokes an OCL Evaluator called DresdenOCL (www.dresden-

ocl.org/) to evaluate OCL constraints that were stereotyped as «CheckPropertyAction» against the actual state of the

VS that eventually determines the success or failure of the execution of test cases.

UML Testing Profile 2 (UTP 2), Version 2.0 181

Figure A.22 - Test Driver

A.3.5 Mapping to Code
Below, this specification shows a sample code corresponding to test item configuration and test component

configuration. Line 1 and Line 2 reserves VS (A) and Endpoint (B) for the execution of test cases, whereas Line 3

enables H323 mode on test item based on the constraints with stereotype in «TestItemConfiguration».

Line 1: self.A=test.api.initialize(‘a’)

Line 2: self.B=test.api.initialize(‘b’)

Line 3: self.A.H323 = true

Below, this specification shows the code corresponding to the start and stop presentation behavior and also the code

that checks state of the VS. Line 1 executes presentation start command on the VS and Line 2 checks whether the

VS is in correct state by checking the value for the Presentation attribute of the VS, which should be equal to true.

Line 1: Execute.Command(“Command.Presentation.Start()”, self.A)

Line 2: self.assertFalse(self.A.Presentation == true)

A.3.6 References
[1] Ali, Shaukat, Lionel Claude Briand, and Hadi Hemmati. "Modeling Robustness Behavior Using Aspect-Oriented

Modeling to Support Robustness Testing of Industrial Systems." Software and Systems Modeling 11 (2012): 633-

670.

[2] Ali, Shaukat, Lionel Claude Briand, Andrea Arcuri, and Suneth Walawege. An Industrial Application of

Robustness Testing Using Aspect-Oriented Modeling, UML/MARTE, and Search Algorithms In ACM/IEEE 14th

International Conference on Model Driven Engineering Languages and Systems (Models 2011), Edited by Jon

Whittle, Tony Clark and Thomas Kühne. .: ACM/IEEE, 2011.

[3] Ali, Shaukat, Hadi Hemmati, Nina Elisabeth Holt, Erik Arisholm, and Lionel Briand. Model Transformations As

a Strategy to Automate Model-Based Testing - a Tool and Industrial Case Studies. Simula Research Laboratory,

2010.

[4] Ali, Shaukat, Muhammad Zohaib Iqbal, Andrea Arcuri, and Lionel Claude Briand. "Generating Test Data From

OCL Constraints With Search Techniques." IEEE Transactions on Software Engineering 39 (2013).

182 UML Testing Profile 2 (UTP 2), Version 2.0

A.4 Subsea Production System Example

A.4.1 Description of Case Study
A subsea production system is a cyber-physical system that produces oil and gas from subsea. Typically such subsea

production systems are highly configurable in the sense that their hardware topologies and software parameters can

be configured based on requirements customer such as the size of a subsea field and its natural environment (e.g.,

depth of sea). A subsea production system is composed of two sets of systems: topside and subsea systems.

Umbilical connections (e.g., cables or hoses which supply air, power, electrical power, fiber optics to subsea

equipment) are established to connect topside and subsea. Commands (e.g., opening valves) are sent by operators

via topside systems to subsea systems, which control different kinds of subsea actuators (e.g., choke and valve) and

monitor various sensors (e.g., pressure and temperature).

Please note that the case study is designed to demonstrate that the UTP 2 stereotypes can be used for developing

domain specific language based MBT methodologies such as RTCM [3].

A.4.2 Functionality to Test
To demonstrate the application of UTP 2 to this case study, this specification specifies one of the key functionalities

of Subsea Electronic Module (SEM), which has configurable software deployed to control subsea instruments. This

functionality OpenValve is specified using the Restricted Use Case Modeling methodology (RUCM) [1][2] and the

RUCM Editor, as shown in the figure below. Notice that the use case model (i.e., UCModel) is indicated as a

TestRequirement using <<TestRequirement>>, which is a UTP 2 stereotype.

Figure A.23 - Use Case OpenValve (Specified in RUCM)

UML Testing Profile 2 (UTP 2), Version 2.0 183

A.4.3 Test Design Inputs
To test the OpenValve functionality presented in the figure above, this specification defines four test design inputs,

as shown in the figure below. Notice that this specification aims to test the functionality of OpenValve of SEM using

a simulator that is particularly designed for testing SEM.

Figure A.24 - The Four TestDesignInput and one procedure

The test objective of the test context SubseaElectronicModule (SEM) is defined as the description of the test

context: “<<TestObjective>> The goal of these tests is for system testing of the functionalities of <<TestItem>>

SEM.”

In the figure below, this specification presents the test design input of TestOpenValve, which is specified/modeled

using the Restricted Test Case Specification methodology (RTCM) [3]. Notice that the test case specification is

annotated with UTP 2 stereotypes using stereotype notations. For example, steps 3, 4 and 10 of the basic flow (i.e.,

<<Sequence>>Pass) are annotated as <<ExpectResponseAction>>. Step 1 is annotated with

<<CreateStimulusAction>> and steps 2, 6, 8 and 9 are annotated with <<ProcedureInvocation>> as these four steps

invoke other test case specifications with keywords INCLUDE TC SPEC. Steps with keyword VERIFIES THAT

are annotated with either <<ExpectResponseAction>> or <<CheckPropertyAction>>. TestSetup is annotated with

<<TestConfiguration>> and can be reused across test case specifications.

184 UML Testing Profile 2 (UTP 2), Version 2.0

Figure A.25 - test design input TestOpenValve

A.4.4 Generation of Test Sets and Abstract Test Cases
By taking the test design inputs as the input, the test generator of RTCM [3] automatically generates abstract test

cases, as shown in the figure below. Based on different coverage criteria, from the test design input of

TestOpenValve, the generator can generate three test sets, which contain various numbers of abstract test cases.

UML Testing Profile 2 (UTP 2), Version 2.0 185

Figure A.26 - Generated test sets

The automated generation is possible due to the fact that use case specifications in RUCM and test case

specifications in RTCM can all be formalized as instances of the UCMeta [2] and TCMeta [3][4] metamodels

respectively. Paths can then be automatically generated from formalized specifications/paths by following various

coverage strategies (e.g., All Sentence Coverage and All FlowOfEvents Coverage).

One example of the abstract test cases generated from the test design input of TestOpenValve is provided in the

figure below for reference. The step marked with the red color means the step failed. The step marked with the

Green color means the step passes.

186 UML Testing Profile 2 (UTP 2), Version 2.0

Figure A.27 - An Example of a generated abstract test case

A.4.5 References
[1] Tao Yue, Lionel Briand, and Yvan Labiche, “Facilitating the Transition from Use Case Models to Analysis

Models: Approach and Experiments”, in Transactions on Software Engineering and Methodology (TOSEM),

Volume 22, Issue 1, 2013.

[2] Tao Yue, Lionel Briand, and Yvan Labiche. "Toucan: an Automated Framework to Derive UML Analysis

Models From Use Case Models.", in ACM Transactions on Software Engineering and Methodology (TOSEM) 24,

no. 3 (2015).

[3] Tao Yue, Shaukat Ali, and Man Zhang. Applying A Restricted Natural Language Based Test Case Generation

Approach in An Industrial Context, in International Symposium on Software Testing and Analysis (ISSTA)., 2015.

[4] Man Zhang, Tao Yue, Shaukat Ali, Huihui Zhang and Ji Wu. “A Systematic Approach to Automatically Derive

Test Cases From Use Cases Specified in Restricted Natural Lan-guages”, 8th System Analysis and Modelling

Conference (SAM), 2014

UML Testing Profile 2 (UTP 2), Version 2.0 187

A.5 ATM Example

A.5.1 General
This annex contains the Banking example introduced in the earlier version of UTP [UTP1.2]. The following model

has been updated for the current UTP standard. It shows how to utilize UTP, version 2, to specify test models for

unit level tests, component level tests and system tests.

The given example is motivated by an interbank exchange scenario in which a customer with an EU Bank account

wishes to deposit money into that account from an Automated Teller Machine (ATM) in the United States. The

figure below provides an overview of the architecture of the system. The ATM used by this customer interconnects

to the EU Bank, through the SWIFT Network1, which plays the role of a gateway between the logical networks of

the US Bank and the EU Bank.

Figure A.28 - Overview on the InterBank Exchange Network (IBEN)

The figure below shows the UML system model2 of the InterBank Exchange Network. In the model, five UML

packages called ATM, Bank, SWIFTNetwork, HWControl and Money are provided. The dashed arrows between the

packages show their import dependencies.

The following sub-sections demonstrate the use of UTP 2 for:

 unit test modeling on Money classes (Subsection 2),

 integration test modeling of the components ATM, HWControl and Bank (Subsection 3), and

 system test modeling of IBEN system (Subsection 4).

1 SWIFT = Society for Worldwide Interbank Financial Telecommunication
2 The diagrams of this example are modelled in Papyrus.

188 UML Testing Profile 2 (UTP 2), Version 2.0

Figure A.29 - Packages of the InterBank Exchange Network (IBEN) System Model

A.5.2 Unit Test Example
This sub-section illustrates the use of UTP version 2 in order to define unit test level test cases. It reuses and extends

the Money and MoneyBag classes provided as examples of the well-known JUnit test framework ([JUnit_web],

[JUnit_Example]).

Before starting modeling tests, the test item is first explained. The figure below shows the package Money (blue

color) which will be tested.

Figure A.30 - Package Money with Test Items for Unit Test of IBEN

The figure below shows the classes defined in the package Money3. It shows an interface class called IMoney, which

is realized by the class Money, and class MoneyBag.

3 Even though the naming of the package Money and of the class Money may lead to misunderstanding, the definition of the

example provided by www.junit.org. is still used

UML Testing Profile 2 (UTP 2), Version 2.0 189

Figure A.31 - Classes in Package Money in IBEN Modell

The ATM uses these classes in order to count the bills entered by a user when making a deposit in cash. Two test

requirements are defined:

 Verify that the Money class is appropriately counting the bills added by the user, when bills from the same

currency are entered;

 Verify that the Money and MoneyBag classes are appropriately recognizing the bills added by the user

when bills from different currencies are entered.

The figure below shows the test configuration between the test component named unitTestComponent and the test

items called myMoney1 and myMoney2 of class Money and myMoneyBag of class MoneyBag. The test configuration

is modeled as UML Collaboration in order to be able to apply as CollaborationUse to the test cases.

Figure A.32 - Unit Test Configuration

The figure below shows the application of the unit test configuration to the test case addSameMoney_TC. By using

the UML CollaborationUse the binding between the test configuration and the test case is guaranteed.

190 UML Testing Profile 2 (UTP 2), Version 2.0

Figure A.33 - Use of Test Configuration for Test Case AddSameMoney_TC

The figure below shows the test context of the unit test UnitTest_Banking_Example. Class Money is the item to be

tested. It is defined in package Money which is imported from the system model. The package must be imported in

order to get access during test execution. The test requirements approveAddSameMoney and

approveAddDifferentMoney should approve that the addition of two money objects returns an object of class Money

with the correct amount and currency. In the former requirement, money of the same currency will be added. In the

latter, money of different currencies are to be added. The test cases called addSameMoney and addDifferentMoney

verify the test test requirements.

Figure A.34 - Test Context for the Unit Test

The figure below specifies the behavior of the test case called addSameMoney verifying the test requirement

approveAddSameMoney. In this test scenario, two objects of class Money are created, namely myMoney1 with 20

USD and myMoney2 with 50 USD. Afterward, myMoney2 is added to myMoney1. The result is sent back to the test

component for approval.

UML Testing Profile 2 (UTP 2), Version 2.0 191

Figure A.35 - Test case addSameMoney_TC

The correctness of the response is checked in either the default arbitration specification4, or as in this case, by the

user-defined arbitration specification called arbitrationSpecification_addMoney. Finally, the figure shows that in

case the result of add() is 70 USD, the arbitration specification sets the test verdict to Pass, otherwise to Fail.

Figure A.36 - User-Defined Arbitration Specification

The second test requirement approveAddDifferentMoney is verified by test case addDifferentMoney (see figure

below). For this test case, a third test item of class MoneyBag is needed in order to be able to distinguish money of

different currencies. This test case uses the default arbitration specifications that should be provided by the tool

vendor.

4 The default arbitration is provided by the tool vendor.

192 UML Testing Profile 2 (UTP 2), Version 2.0

Figure A.37 - Test Case AddDifferentMoney

A.5.3 Integration Testing Example
This section illustrates how UTP 2 can be used for specifying tests at integration test level. The main focus of

integration testing is the communication of the test item and its test components.

The test requirements are to verify the logic of the ATM machine when a user initiates a money deposit transaction

to an account in another part of the world. Thus, the test requirements include:

 The hardware terminal (HWControl) provides user’s card and user’s pin-code. The ATM shall authorize

this card and its pin-code.

 After a successful authorization of user’s data, money shall be deposited into the bank. The ATM shall

assure a correct transaction communication with the Bank.

Since the logic of ATM itself is being tested, the rest of the IBEN (i.e. HWControl, Bank, and SWIFTNetwork) shall

be emulated. The figure below shows the test items of blue color.

UML Testing Profile 2 (UTP 2), Version 2.0 193

Figure A.38 - Test Items for Integration Test of IBEN

The logic of the ATM is specified in the figure below. It imports both the HWControl and the Bank packages where

only the interfaces to the hardware and the bank are needed. Component ATM controls the logic of ATM and is the

test item for our integration test. It provides the IATM interface for the control logic and communicates with the

hardware and the bank via interface. Since the hardware and the bank are emulated in the test, only the interface

classes of the HWControl and Bank packages are needed (see the following three figures).

Figure A.39 - Classes and Interface in Package ATM

194 UML Testing Profile 2 (UTP 2), Version 2.0

Figure 0.40 - Interface Class in Package Bank

Figure A.41 - Interface Class in Package HWControl

The figure below shows the test configuration of the test. It specifies the relationship between the test item, the

emulated test components for the hardware and bank (hw and be), and a card data management component (card).

Figure A.42 - Integration Test Configuration

The figure below shows the binding of the test configuration to test case invalidPIN_TCI.

UML Testing Profile 2 (UTP 2), Version 2.0 195

Figure A.43 - Binding of Test Configuration to Test Case invalidPIN_TC

The ATM integration test package (see figure below) shows the model elements necessary to specify integration

tests. It imports the ATM package of the system model in order to get access to the elements to be tested. The

package contains two test components: BankEmulator and HWEmulator and three testcases: validWiring,

invalidPIN, and authorizeCard. The test components BankEmulator and HWEmulator realize the interfaces of the

HWControl and Bank packages and serve as emulators in order to communicate with the ATM.

Figure A.44 - Test Context for Integration Test

The following section only concentrates on the modeling of the test case invalidPIN, which approves the

requirement of a correct authorization mentioned on earlier. The objective of this test is:

 Verify that if a valid card is inserted, and an invalid pin-code is entered, the user is prompted to re-enter the

pin-code.

Behaviors of a test case can be specified using any UML behavior Diagrams (e.g. Interaction Diagram, State

Machine, Sequence Diagram etc.). In this case, UML Sequence Diagram has been chosen (see figure below).

The signals between the test components are all stereotyped by UTP 2 actions (e.g. <<CreateStimulus-Action>>).

By doing so, the default arbitration specifications are activated and it is assured that unexpected behavior is caught

within the arbitration specifications. In parallel, the setting of test case verdicts is also done in the arbitration

specifications. The response time of isPinCorrect should last no more than 3 seconds, otherwise the arbitration

196 UML Testing Profile 2 (UTP 2), Version 2.0

specification <<ExpectResponseAction>> will be carried out.

Figure A.45 - Test Case invalidPIN_TC

In many cases, there’s a need to specify the detailed behavior of individual test components (e.g., for test generation

purposes). Therefore, state machines provide good means. The figure below shows an excerpt of test behavior for

the HWEmulator test component which corresponds to test case invalidPIN_TC. The validation action

<<ExpectResponseAction>> evaluates the test result and sets the test case verdict.

UML Testing Profile 2 (UTP 2), Version 2.0 197

Figure A.46 - Statemachine for the Hardware Emulator

A.5.4 System Test Example
This chapter shows the UTP2 model for system level tests. The test model shows an interbank exchange scenario

where a customer with an EU bank account deposits money into his/her account from an ATM in the United States.

Figure A.47 - Packages with Test Items for System Test of IBEN

In order to perform the system testing of IBEN, all the five packages in the system model are needed. The packages

198 UML Testing Profile 2 (UTP 2), Version 2.0

ATM, Money, and HWControl are known from the previous examples. The figure below illustrates the contents of

the Bank package. The IBank interface provides methods to find, credit, and debit accounts. It checks credentials and

wires money from one account to another. The IAccount interface also provides operations to credit and debit

accounts, in addition to checking the balance of an account.

Figure A.48 - Classes and Components in Bank Package

The figure below shows the content of the SWIFTNetwork package. The ISWIFT interface provides an operation to

transfer a given amount from a source account to a target account. Since system testing is a black-box test strategy,

only the communication between the interfaces is of interest.

Figure A.49 - Classes and Components in the SWIFTNetwork Package

For the system testing, the following test requirements are defined:

1. EU and US initiated transactions must behave correctly.

2. Money can be transferred rom an US account to an EU account, and vice-versa.

3. An invalid transfer should be identified and canceled.

4. The system should handle up to 1000000 transactions in parallel without system failure.

The figure below shows the system test context. The test items are the SWIFTNetwork, the US and EU Banks, and

the ATM systems. Three test cases called runUSTrxn, runEUTrxn and loadTest are specified in this test context. The

test cases runUSTrxn or runEUTrxn approve that a transaction that is initiated from the US ATM will be transferred

UML Testing Profile 2 (UTP 2), Version 2.0 199

to the EU Bank, or vice versa. The test case loadTest verifies a non-functional test requirement. It shall approve that

IBEN behaves correctly even by high transaction requests. Two additional test components called

TransactionController and LoadManager provide the capability to execute and verify that the money is transferred

correctly.

Figure A.50 - System Test Context

The test configuration is illustrated in the figure below. The TransactionController drives both ATMs on the

European and US sides and is used to represent the accounts for both the US and EU banks. The LoadManager

provides and controls the workload of the load test. It has access to the test data in the SystemTestDataPool.

Figure A.51 - System Test Configuration

200 UML Testing Profile 2 (UTP 2), Version 2.0

The figure below shows data used for the system test. TrxnData defines the transaction data.

Figure A.52 - Test Data and its Variations

The data pool SystemTestDataPool contains instances of TrxnData called EU1, EU2, US1 and US2 (see figure

below. Two data partitions are defined in order to distinguish the EU transactions from the US transactions. These

data partitions are chosen from the data pool and have two data samples each. Data instance EU1 is shown in the

diagram explicitly by all its attribute values5. Another data instance called Fred defines a modification of EU1,

where 500 override the balance of 10000.

5 This diagram only shows the data values of EU1. Those of EU2, US1 and US2 are equivalently defined.

UML Testing Profile 2 (UTP 2), Version 2.0 201

Figure A.53 - Data Instances and its Modification

The figure below illustrates the behavior of test case loadTest which shall verify the test requirement 4 listed above.

This test case shall approve that minimum 100 and maximum 1000000 transactions can be successfully handled in

parallel. The LoadArbitrationSpecification will assure that whenever a transaction fails, the whole test will fail.

202 UML Testing Profile 2 (UTP 2), Version 2.0

Figure A.54 - Test Case loadTest

A.5.5 References
[UTP1.2] Object Management Group: "UML Testing Profile, version 1.2", OMG Document Number: formal/2013-

04-03

[JUnit_Example] http://junit.sourceforge.net/doc/cookbook/cookbook.htm

[JUnit_web] www.junit.org

UML Testing Profile 2 (UTP 2), Version 2.0 203

Annex B (Informative): Mappings

B.1 Mapping between UTP 1 and UTP 2

The following table summarizes the changes on stereotypes of UTP 2 compared with UTP 1.2:

Name Change from UTP 1.2

Alternative «Alternative» has been newly introduced by UTP 2.

AlternativeArbitrationSpecifica

tion

Newly introduced by UTP 2.

AnyValue Changed and renamed from UTP 1.2. In UTP 1.2, «AnyValue» was called

«LiteralAny» and extended LiteralSpecification.

ArbitrationResult «ArbitrationResult» has been newly introduced by UTP 2.

ArbitrationSpecification «ArbitrationSpecification» has been newly introduced into UTP 2.

AtomicProceduralElement «AtomicProceduralElement» has been newly introduced by UTP 2.

AtomicProceduralElementArbit

rationSpecification

Newly introduced by UTP 2.

BoundaryValueAnalysis «BoundaryValueAnalysis» has been newly introduced by UTP 2.

CauseEffectAnalysis «CauseEffectAnalysis» has been newly introduced by UTP 2.

ChecklistBasedTesting «ChecklistBasedTesting» has been newly introduced by UTP 2.

CheckPropertyAction «CheckPropertyAction» has been newly introduced by UTP 2.

CheckPropertyArbitrationSpeci

fication

Newly introduced by UTP 2.

ChoiceOfValues «ChoiceOfValues» has been newly introduced by UTP 2.

ClassificationTreeMethod «ClassificationTreeMethod» has been newly introduced by UTP 2.

CollectionExpression

CombinatorialTesting «CombinatorialTesting» has been newly introduced by UTP 2.

ComplementedValue «ComplementedValue» has been newly introduced by UTP 2.

Complements «Complements» has been newly introduced by UTP 2.

CompoundProceduralElement «CompoundProceduralElement» has been newly introduced by UTP 2.

CompoundProceduralElementA

rbitrationSpecification

Newly introduced by UTP 2.

CreateLogEntryAction «CreateLogEntryAction» has been newly introduced by UTP 2.

CreateLogEntryArbitrationSpec

ification

Newly introduced by UTP 2.

CreateStimulusAction «CreateStimulusAction» has been newly introduced by UTP 2.

CreateStimulusArbitrationSpeci

fication

Newly introduced by UTP 2.

DataPartition «DataPartition» has been newly introduced by UTP 2.

DataPool Changed from UTP 1.2. In UTP 1.2 «DataPool» extended both Classifier and

Property.

DataProvider «DataProvider» has been newly introduced by UTP 2.

DataSpecification «DataSpecification» has been newly introduced by UTP 2.

DecisionTableTesting «DecisionTableTesting» has been newly introduced by UTP 2.

EquivalenceClassPartitioning «EquivalenceClassPartitioning» has been newly introduced by UTP 2.

ErrorGuessing «ErrorGuessing» has been newly introduced by UTP 2.

ExpectResponseAction «ExpectResponseAction» has been newly introduced by UTP 2.

ExpectResponseArbitrationSpe

cification

Newly introduced by UTP 2.

ExperienceBasedTechnique «ExperienceBasedTechnique» has been newly introduced by UTP 2.

ExploratoryTesting «ExploratoryTesting» has been newly introduced by UTP 2.

Extends «Extends» has been newly introduced by UTP 2.

GenericTestDesignDirective «GenericTestDesignDirective» has been newly introduced by UTP 2.

204 UML Testing Profile 2 (UTP 2), Version 2.0

Name Change from UTP 1.2

GenericTestDesignTechnique «GenericTestDesignTechnique» has been newly introduced by UTP 2.

Loop «Loop» has been newly introduced by UTP 2.

LoopArbitrationSpecification Newly introduced by UTP 2.

MatchingCollectionExpression «CollectionExpression» has been newly introduced by UTP 2.

Morphing «Morphing» has been newly introduced by UTP 2.

Negative «Negative» has been newly introduced by UTP 2.

NegativeArbitrationSpecificatio

n

Newly introduced by UTP 2.

NSwitchCoverage «NSwitchCoverage» has been newly introduced by UTP 2.

OpaqueProceduralElement «OpaqueProceduralElement» has been newly introduced by UTP 2.

overrides «overrides» was renamed by UTP 2. In UTP 1.2, it was named «modifies».

PairwiseTesting «PairwiseTesting» has been newly introduced by UTP 2.

Parallel «Parallel» has been newly introduced by UTP 2.

ParallelArbitrationSpecification Newly introduced by UTP 2.

ProceduralElement «ProceduralElement» has been newly introduced by UTP 2.

ProceduralElementArbitrationS

pecification

Newly introduced by UTP 2.

ProcedureInvocation «ProcedureInvocation» has been newly introduced by UTP 2.

ProcedureInvocationArbitration

Specification

Newly introduced by UTP 2.

RangeValue «RangeValue» has been newly introduced by UTP 2.

Refines «Refines» has been newly introduced by UTP 2.

RegularExpression «RegularExpression» has been newly introduced by UTP 2.

RoleConfiguration «RoleConfiguration» is newly introduced in UTP 2.

Sequence «Sequence» has been newly introduced by UTP 2.

SequenceArbitrationSpecificati

on

Newly introduced by UTP 2.

StateCoverage «StateCoverage» has been newly introduced by UTP 2.

StateTransitionTechnique «StateTransitionTechnique» has been newly introduced by UTP 2.

SuggestVerdictAction «SuggestVerdictAction» has been newly introduced by UTP 2.

SuggestVerdictArbitrationSpeci

fication

Newly introduced by UTP 2.

TestCase Changed from UTP 1.2. «TestCase» extended Behavior and Operation in UTP

1.2.

TestCaseArbitrationSpecificatio

n

Newly introduced by UTP 2.

TestCaseLog Newly introduced by UTP 2.

TestComponent Changed from UTP 1.2. In UTP 1.2., «TestComponent» only extended Class.

TestComponentConfiguration «TestComponentConfiguration» has been newly introduced into UTP 2.

TestConfiguration «TestConfiguration» has been newly introduced into UTP 2. It was

conceptually represented by the composite structure of a «TestContext» in

UTP 1.2.

TestConfigurationRole «TestConfigurationRole» is newly introduced in UTP 2.

TestContext Changed from UTP 1.2. In UTP 1.2 «TestContext» extended

StructuredClassifier and BehavioredClassifier as well as incorporated the

concepts TestSet, TestExecutionSchedule and TestConfiguration into a single

concept.

TestDesignDirective «TestDesignDirective» has been newly introduced by UTP 2.

TestDesignDirectiveStructure «TestDesignDirectiveStructure» has been newly introduced by UTP 2.

TestDesignInput «TestDesignInput» has been newly introduced by UTP 2.

TestDesignTechnique «TestDesignTechnique» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.0 205

Name Change from UTP 1.2

TestDesignTechniqueStructure «TestDesignTechniqueStructure» has been newly introduced by UTP 2.

TestExecutionSchedule «TestExecutionSchedule» has been newly introduced by UTP 2. It was

conceptually represented as the classifier behavior of a «TestContext» in UTP

1.2.

TestItem «TestItem» has been newly introduced into UTP 2 and supersedes the «SUT»

stereotype in UTP 1.

TestItemConfiguration «TestItemConfiguration» has been newly introduced into UTP 2.

TestLog Changed from UTP 1.2. In UTP 1.2 «TestLog» was used to capture the

execution of a test case or a test set (called test content in UTP 1.2). In UTP 2,

two dedicated concepts have been newly introduced therefore (i.e.,

«TestCaseLog» and «TestSetLog»).

TestLogStructure Newly introduced by UTP 2.

TestLogStructureBinding Newly introduced by UTP 2.

TestObjective Changed from UTP 1.2. In UTP 1.2, «TestObjective» was called

«TestObjectiveSpecification».

TestProcedure «TestProcedure» has been newly introduced by UTP 2.

TestRequirement «TestRequirement» has been newly introduced into UTP 2.

TestSet «TestSet» has been newly introduced by UTP 2. It was part of the TestContext

in UTP 1.2.

TestSetArbitrationSpecification Newly introduced by UTP 2.

TestSetLog Newly introduced by UTP 2.

TransitionCoverage «TransitionCoverage» has been newly introduced by UTP 2.

TransitionPairCoverage «TransitionPairCoverage» has been newly introduced by UTP 2.

UseCaseTesting «UseCaseTesting» has been newly introduced by UTP 2.

verifies «verifies» has been newly introduced into UTP 2. In UTP 1.2 the «verify»

stereotype from SysML was recommended.

The three primitive data types including Timepoint, Duration, and Timezone are also removed from UTP 2.

The following stereotypes are also removed from UTP 2: «GetTimeZoneAction», «SetTimeZoneAction»,

«DataSelector», «CodingRule», «LiteralAnyOrNull», and «TestLogEntry».

206 UML Testing Profile 2 (UTP 2), Version 2.0

Annex C (Informative): Value Specification Extensions

C.1 Profile Summary

The following table gives a brief summary on the stereotypes introduced by the UML Testing Profile 2 (listed in the

second column of the table). The first column specifies the mapping to the conceptual model shown in the previous

section and the third column specifies the UML 2.5 metaclasses that are extended by the stereotypes.

Stereotype UML 2.5 Metaclasses Concepts

ChoiceOfValues Expression data

CollectionExpression Expression data

ComplementedValue ValueSpecification data

MatchingCollectionExpression Expression data

 data specification

RangeValue Expression data specification

C.2 Non-normative data value extensions

In addition to the normative ValueSpecification extensions of UTP, for sake of simplicity, UTP provides also some

more extensions as part of this non-normative annex. These kinds of ValueSpecifications are:

 Complemented: Represents a set of expected response argument values for a known type described by a the

complemented set of values described the underlying ValueSpecifciation and checks if actual response

argument value belongs to that set.

 RangeValue: Represents a set of ordered expected response argument values for a known type described by

its upper and lower boundaries. The Actual response argument value matches with each expected one if the

actual one belongs to the set defined by its boundaries.

 ChoiceOfValues: Represents a set of expected response argument values for a known type described by an

enumeration of values. The actual response argument value matches with expected one if the actual one

belongs to the set defined by the enumeration.

 MatchingCollectionExpression: Represents a set of expected response argument collection values for a

known type described by the members of the expected collection and the matching kind operator. The

actual response argument collection value match with the expected ones if the actual one belongs to the set

of collections values defined by members and the collection matching kind.

 CollectionExpression: Represents a collection value used for defining argument collection values for

stimuli or expected response values. If used as expected response argument collection value the actual

response argument collection value matches with the expected one if their respective members match with

each other. In case ordering is important, the members should also occur in the exact same order.

Implementations of the profile are free to decide how to incorporate and offer the non-normative extensions to the

users.

C.2.1 Overview of non-normative ValueSpecification Extensions
The diagram below shows some additional, non-normative extensions to the UML ValueSpecifications metamodel.

These UTP ValueSpecification extensions are deemed helpful for testers in order to be express data values used to

specify the payload for stimuli and expected responses. It is treated as non-normative extension nonetheless, because

all the given extensions could also be expressed by means of the OCL, which is considered as integral part of UML.

However, OCL imposes additional knowledge on the test engineers which may result in a reduced acceptance by the

industrial testing community. Therefore, this non-normative extension to the UTP provides dedicated concepts as

special ValueSpecifications which can be immediately used by the testers without knowing anything about OCL at

all. All these extended ValueSpecifications have been taken over from [TTCN-3] where they have been proven

beneficial for the design of executable test cases in the industry since many years.

UML Testing Profile 2 (UTP 2), Version 2.0 207

Figure C.1 - Overview of non-normative ValueSpecification Extensions

C.2.2 Stereotype Specifications

C.2.2.1 ChoiceOfValues
Description

Issue UMLTP2-2

ChoiceOfValues represents an enumeration of possible values defined for the

payload of an expected response, out of which at least one entry must match

with the payload of the actual response.

If a choice of possible values is used in a check response data action, then the

enumerated values denote several possible check response data actions out of

which one possible value must match with the actually received response data.

The list of possible values is expressed as the list of ValueSpecifications

composed by the underlying Expression’s operand attribute. As defined above,

any available ValueSpecification can be enumerated as choice of possible

values.

As a recommendation, ChoiceOfValues must either be only in check response

data actions in test cases or for test generation. It is highly recommended to not

use ChoiceofValues as payload for create stimulus action for it may negatively

affect the repeatability of test case executions.

Extension Expression

Change from UTP 1.2 «ChoiceOfValues» has been newly introduced by UTP 2.

208 UML Testing Profile 2 (UTP 2), Version 2.0

C.2.2.2 CollectionExpression
Description A CollectionExpression enables the modelling of collections based on the

ValueSpecification metaclass Expression. Using collections values is essential

when specifying stimuli and expected responses of a test case. By means of the

stereotype «CollectionExpression» it is possible to describe inline values for a

given ConnectableElement (i.e., Property or Parameter) and use those collections

values as payload for a stimulus or an expected response as required. The kind

(i.e., order and uniqueness) of the CollectionExpression is prescribed by the

related MultiplicityElement (i.e., Property or Parameter) of this

CollectionExpression.

«CollectionExpression» might be used as payload for both stimulus and

expected responses. If it represents the payload of an expected response, the

payload of the actual responses must match with the expected

CollectionExpression with respect to both, items listed in the collection and their

respective index in the actual payload collection, if the corresponding

ConnectableElement (i.e., Property or Parameter) is ordered. Any deviation is

supposed to result in a mismatch.

Extension Expression

Sub Class MatchingCollectionExpression

C.2.2.3 ComplementedValue
Description

Issue UMLTP2-2

A ComplementedValue specifies a set of values that are not contained in the set

specified by the genuine ValueSpecification.

Extension ValueSpecification

Change from UTP 1.2 «ComplementedValue» has been newly introduced by UTP 2.

C.2.2.4 MatchingCollectionExpression
Description A MatchingCollectionExpression is a CollectionExpression that enables the

tester to define matching criteria when used as the payload of an expected

response. Thus, it is not allowed to use a MatchingCollectionExpression as

payload for a stimulus, but only as payload for expected responses.

The CollectionMatchingKind attribute of the CollectionExpression determines

the matching mechanism that must be applied on the actual payload when

received in order to calculate a match or mismatch of actual and expected

responses. These matching kinds are the following:

 subset (default)

 superset

 permutation

If the corresponding MultiplicityElement (i.e., Property or Parameter) has is

ordered (i.e., isOrdered = true), the collection items in the payload of the actual

response have to occur in the exact same order as the elements in the expected

response. Whether nested CollectionExpressions are considered to be flattened

for the comparison of expected and actual responses is not defined in UTP 2.

Extension Expression

Super Class CollectionExpression

Attributes matchingKind : CollectionMatchingKind [0..1] = subset'

UML Testing Profile 2 (UTP 2), Version 2.0 209

Constraints
Issue UMLTP2-1

Must be used as payload for an expected responses

A MatchingCollectionExpression must only specify the payload of an expected

response.

Use of permutation matching kind

The matchingKind permutation must only be applied if the corresponding

ConnectableElement (i.e., Property or Parameter) of the expected response has

set isOrdered to false.

Change from UTP 1.2 «CollectionExpression» has been newly introduced by UTP 2.

C.2.2.5 RangeValue
Description A RangeValue represents a range between two naturally ordered boundaries, the

upper and the lower bound. A RangeValue can be used as wildcard value (i.e.

qualified) instead of a concrete value (i.e. quantified). Conceptually, a range

represents an enumeration of the values between the min and max values;

however, it does not represent a set or collection of values. In that sense,

RangeValue is semantically equivalent to a ChoiceOfValue: ValueSpecification

would explicitly enumerate all value between the min and max boundary. The

eventual min value must always be less or equal than the eventual max value. In

case that the min and max evaluate to the very same value, the range spans only

a single value.

If minInclusive is set to true, the lower boundary (represented by the min value)

is included in the range, otherwise it is excluded. Default is true (i.e., the min

value is included). If maxInclusive is set to true, the upper boundary (represented

by the max value) is included in the range, otherwise it is excluded. Default is

true, i.e., the max value is included. For example, if the min value evaluates to

10 and minInclusive is set to false, the actual lowerBoundary is 11.

If a RangeValue is used in combination with an Integer- or Real-typed element,

the lower and upper bounds describes the lowest and highest number of that

numeric instance. If a RangeValue used in combination with a String-typed

element (or subclasses thereof), the lower and upper bounds determine the

minimal and maximal length of that String's instance. Users are allowed to

define other proprietary natural orderings (e.g., complex types and re-use

RangeValue to denote upper and lower boundaries for these types). The

semantics how the ordering is defined; however, is out of scope of the

RangeValue concept.

If applied to an expected response, a RangeValue matches with the actual

received value from the test item, and if the actual value is within the boundaries

of the expected RangeValue.

Extension Expression

Attributes maxInclusive : Boolean [1] = `true`

minInclusive : Boolean [1] = `true`

Associations min : ValueSpecification

max : ValueSpecification

Constraints
Issue UMLTP2-1

Operands shall be empty

The attribute operand of the underlying Expression must be empty.

210 UML Testing Profile 2 (UTP 2), Version 2.0

Change from UTP 1.2 «RangeValue» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.0 211

Annex D: Index

(
(Informative) Conceptual Model [STUB], 13

/
/instanceOf, 114

/instances, 115

/realizedBy, 57

/realizes, 83

/testCase, 54

/utilizedBy, 83

[
[BMM], 9, 55

[DD], 9

[ES20187301], 9, 19

[ES202951], 9, 21

[ES20311901], 9, 19

[ES20311902], 9, 19

[ES20311903], 9, 19

[ES20311904], 9, 19

[FUML], 10

[HWT2012], 10, 21

[IEC61508], 10, 18

[ISO1087-1], 10, 24

[ISO25010], 10, 133

[ISO29119], 10, 18, 19, 20, 21, 51, 61, 62, 63, 65, 66,

67, 69, 74

[ISO9126], 10

[ISTQB], 10, 19, 21, 44, 51, 65, 66, 67, 68, 69, 73,

74, 136, 137, 165

[MDA], 10

[MDAa], 10

[MDAb], 10

[MDAd], 10

[MOF], 9

[OCL], 9

[OSLC], 10

[SBVR], 10, 24

[SEP2014a], 10, 39

[SysML], 10, 25, 51, 56, 59

[TCM2008], 11, 21

[TestIF], 11

[UL2007], 11, 21

[UML], 3, 5, 6, 9, 40, 41

[UPL2012], 11, 21

[UTP], 11

[WikiCT], 11, 39

[WikiM], 6, 11, 42

[XMI], 9

{
{read-only, union} capability, 71

{read-only, union} subDirective, 71

{read-only, union} subTechnique, 72

{subsets capability} appliedTestDesignTechnique, 68

{subsets subDirective} genericSubDirective, 68

A
a, 31, 33, 40, 92

abstract test case, 5, 21, 31, 32, 50

abstract test configuration, 5, 29, 30

acceptance test level, 136

Acceptance testing, 137

Action, 86, 91

actual data pool, 5, 39, 40, 41

actual parameter, 5, 32, 33, 122

Additional Information, 13

against, 37, 99

AllCombinations, 139

Allowed invocation scheme, 80, 83, 86

AllRepresentatives, 139

AllStates, 139

AllTransitions, 139

Alpha Testing, 136

alternative, 5, 33, 34, 49, 82

Alternative, 49, 87, 88, 89, 188

AlternativeArbitrationSpecification, 49, 119, 120,

188

AnyType, 132

AnyValue, 49, 109, 110, 188

API Testing, 137

Application in Activities, 88, 90, 91, 94

Application in Interactions, 88, 90, 91, 94

Arbitration & Verdict Overview, 42

Arbitration of AtomicProceduralElements, 117, 118

Arbitration of CompoundProceduralElements, 118,

119

Arbitration of Test-specific Actions, 123, 124

arbitration specification, 5, 6, 7, 19, 20, 24, 25, 34,

35, 38, 42, 43, 49, 50, 51, 79, 85, 86, 91, 92, 98,

99, 100, 102, 104, 109, 112, 113, 115, 117, 118,

120, 122, 123, 129, 133, 176, 180, 181

Arbitration Specifications, 42, 112

Arbitration Specifications Overview, 113

ArbitrationResult, 49, 113, 114, 115, 188

arbitrationSpecification, 55, 92

ArbitrationSpecification, 49, 115, 116, 117, 122, 188

arbitrationSpecification {redefines

arbitrationSpecification}, 88, 89, 90, 91, 93, 94,

98, 100, 103, 104

artifact, 1, 2, 5, 7, 8, 18, 21, 27, 28, 30, 44, 51, 70, 72,

76, 78, 150, 153

at least one, 29, 31, 33, 37, 40, 81, 99, 101, 104, 108

At least one property, 99

At least one response, 104

At least one stimulus, 101

at most one, 25, 31, 43, 81, 83, 86

ATM Example, 172

212 UML Testing Profile 2 (UTP 2), Version 2.0

atomic procedural element, 5, 7, 32, 34, 35, 36, 38,

49, 87, 89, 117, 120

AtomicProceduralElement, 49, 87, 89, 92, 93, 98, 99,

100, 103, 104, 188

AtomicProceduralElementArbitrationSpecification,

49, 120, 122, 123, 124, 125, 126, 188

Automated Test, 136

B
Behavior, 50, 51, 58, 79, 80, 82, 83, 85, 86, 93, 94

BehavioredClassifier, 49, 50, 51, 82, 83, 115, 116,

117, 119, 120, 121, 122, 123, 124, 125, 126, 130

Beta Testing, 137

boolean expression, 5, 6, 31, 32, 33, 41, 88, 107

BoundaryValueAnalysis, 49, 65, 67, 140, 165, 188

Build verification test, 135

C
CallBehaviorAction, 50, 93

captures, 46

captures execution of, 46

CauseEffectAnalysis, 49, 65, 72, 188

Certifier, 16

check property action, 5, 37, 38, 49, 98, 99, 122, 125

check traceability, 16, 17

checkedProperty, 99, 164

ChecklistBasedTesting, 49, 65, 67, 188

CheckPropertyAction, 49, 89, 95, 98, 164, 165, 168,

188

CheckPropertyArbitrationSpecification, 49, 98, 120,

125, 188

checks, 37, 99

Chocolate Portion, 144

Chocolate test, 144

ChoiceOfValues, 188, 191, 192

Class, 51, 55, 56

ClassificationTreeMethod, 49, 66, 72, 188

Classifier, 49, 50, 71, 73, 76, 77, 78, 106, 107, 108,

128, 129, 130

Clients of a «Morphing» Dependency, 108

CollaborationUse not allowed, 129

CollectionExpression, 188, 191, 193

CollectionMatchingKind, 195

CombinatorialTesting, 49, 66, 69, 72, 188

CombinedFragment, 49, 50, 88, 89, 90, 91, 94

complement, 5, 39, 40, 42, 45, 49, 106, 115

ComplementedValue, 188, 191, 193

Complements, 49, 106, 108, 188

component test level, 136

compound procedural element, 5, 6, 7, 32, 33, 34, 35,

49, 86, 87, 88, 89, 90, 91, 94, 113, 118

Compound Procedural Elements Overview, 87, 88

CompoundProceduralElement, 49, 87, 88, 89, 90, 91,

92, 94, 188

CompoundProceduralElementArbitrationSpecificatio

n, 49, 119, 120, 121, 122, 123, 188

Conceptual Model, 5, 52, 105

concrete test case, 5, 21, 31, 32, 50

concrete test configuration, 5, 29, 30, 145

configuration {subsets roleConfiguration}, 76, 78,

163

Conformance, 13

constraint, 3, 5, 39, 40, 41, 51, 59, 105, 107

Constraint, 49, 50, 75, 76, 78, 98, 99, 107, 108

create log entry action, 5, 37, 38, 49, 99, 126

create stimulus action, 5, 37, 38, 49, 95, 100, 101,

124, 192

CreateLogEntryAction, 49, 89, 95, 99, 188

CreateLogEntryArbitrationSpecification, 49, 99, 120,

126, 188

CreateStimulusAction, 49, 89, 95, 100, 124, 168, 188

CreateStimulusArbitrationSpecification, 49, 100,

120, 124, 188

Croissant, 142, 144, 146, 147

Croissants, 145

Croissants Example, 142

CR-X1072-B, 144

Cyclic modifications, 111

D
data, 2, 4, 5, 6, 7, 8, 18, 21, 24, 27, 28, 30, 31, 37, 38,

39, 40, 41, 42, 62, 70, 72, 85, 99, 100, 105, 106,

107, 108, 109, 111, 112, 122, 147, 149, 155, 191,

192

data item, 5, 6, 7, 39, 40, 41, 42, 106, 107, 108, 109

data partition, 5, 39, 41, 107, 185

data pool, 5, 24, 39, 40, 41, 49, 107, 185

data provider, 5, 30, 39, 40, 41, 49

data specification, 5, 21, 39, 40, 41, 42, 49, 50, 105,

106, 107, 108, 109, 147, 151, 152, 191

Data Specifications, 105

Data Specifications Overview, 105, 106

data structure, 41

data type, 5, 6, 39, 40, 41, 107, 108, 109

Data Value Extensions, 110

Data Values, 105, 109

DataPartition, 49, 106, 107, 188

DataPool, 49, 107, 188

dataProvider, 71

DataProvider, 49, 76, 107, 188

dataSpecification, 106

DataSpecification, 49, 107, 108, 164, 188

dataSpecifications, 107

DataType in DataSpecification, 108

DecisionTableTesting, 49, 66, 72, 188

DefaultCBT, 140

DefaultCET, 140

DefaultCTM, 140

DefaultDTT, 140

DefaultEG, 140

DefaultET, 140

DefaultPT, 140

DefaultTPT, 140

Dependency, 49, 50, 51, 59, 106, 108, 109, 111, 130

Derivation and Modeling of Test Requirements, 149

UML Testing Profile 2 (UTP 2), Version 2.0 213

description, 56, 59, 83

Description of Case Study, 167

design acceptance tests, 16, 17

design integration tests, 16, 17

Design of Test Case Procedures, 156

design system tests, 16, 17

design test cases, 16, 17

design test cases for a data-intensive system, 16, 17

design test cases for a system that includes humans,

16, 17

design test cases for a system with time-critical

behavior, 16, 17

design test data, 16, 17

design test specifications, 16, 17

design unit tests, 16, 17

determine test coverage, 16, 17

determines, 42, 43, 115

DRAS01, 42, 115

DRAS02, 43

DRTA01, 25, 37, 101

DRTA02, 25, 37, 104

DRTA03, 25, 37, 43, 99

DRTC01, 31

DRTC02, 31, 86

DRTC03, 31, 83

DRTC04, 31, 81

DRTC05, 31, 86

DRTC06, 31, 83

DRTC07, 31, 81

DRTC08, 31

DRTC09, 43

DRTD01, 40, 108

DRTD02, 40

DRTD03, 40, 108

DRTD04, 40, 108

DRTD05, 40

DRTL01, 46

DRTL02, 46

DRTP01, 33, 92

DRTP02, 33, 81

DRTP03, 33, 81

DRTP04, 33, 81

DRTR01, 29

DRTR02, 29

duration, 6, 8, 32, 34, 35, 44, 46, 129

E
each, 25, 29, 31, 33, 40, 43, 46, 81, 83, 86, 108

Each test case returns a verdict statement, 83

emanates from, 40

endAfterPrevious, 92

Enforced expectation kind 'implicitExcept', 104

EquivalenceClassPartitioning, 49, 65, 67, 72, 139,

188

error, 95, 124, 125, 132

Error, 6, 43, 44, 67, 115

ErrorGuessing, 49, 67, 188

evaluate test results, 16, 17

exactly one, 40, 42, 43, 46, 115

execute test cases, 16, 18

Executed test cases and definition of test set members

must be consistent, 131

executedTestCase, 127

executedTestSet, 130

executedTestSetMember, 130

executing entity, 6, 44, 46, 58, 127, 128, 129, 130

executingEntity, 128

executionDuration, 128

executionStart, 128

expect response action, 6, 37, 38, 49, 102, 104, 109,

122, 125, 155, 157

expectationKind, 103, 104

expectedElement, 103, 104

ExpectResponseAction, 49, 89, 95, 102, 103, 104,

105, 125, 168, 188

ExpectResponseArbitrationSpecification, 49, 102,

120, 125, 188

expects to receive, 37, 104

ExperienceBasedTechnique, 49, 65, 67, 72, 188

ExploratoryTesting, 49, 67, 188

Expression, 49, 50, 110, 112, 191, 192, 193, 194

Extends, 49, 108, 188

extension, 6, 39, 42, 49, 51, 52, 58, 60, 65, 79, 89, 92,

107, 108, 110, 191

F
fail, 125, 132, 133

Fail, 6, 42, 43, 44, 115, 155, 156, 157, 176

Failed user login, 148

Failover Test, 137

Feature acceptance testing, 135

Feature validation testing, 135

Feature verification testing, 135

forbiddenElement, 100, 103, 104, 124, 125

formal parameter, 5, 6, 31, 32, 33, 34

Functionality to Test, 167

G
General, 172

generate test case instances, 16, 18

Generation of Test Sets and Abstract Test Cases, 169

Generic Test Design Capabilities, 61

GenericTestDesignDirective, 49, 60, 68, 70, 189

GenericTestDesignTechnique, 49, 60, 68, 72, 189

Given Requirements on the Test Item, 162

GraphTraversalAlgorithmKind, 141

GraphTraversalStructure, 140

guarantees, 31, 81, 83, 86

Gustaoceptionary Proficiency, 144

H
Human Test Executor, 16

I
ID, 54, 56, 58, 77, 83, 86, 115

ignoredElement, 103, 104, 125

implement automatic test case execution, 16, 17, 18

214 UML Testing Profile 2 (UTP 2), Version 2.0

implement onboard test cases, 16, 17, 18

implement test components, 16, 17, 18

implement tool support for UTP 2, 17, 18

implicitExpect, 104, 105

ImplicitExpectationKind, 105

implicitForbid, 105

implicitIgnore, 105

inconclusive, 132, 133

Inconclusive, 6, 42, 43, 44, 115

Informative References, 9

instance, 5, 6, 8, 41, 46, 128

instanceOf, 71, 73, 128

InstanceSpecification, 49, 50, 51, 65, 66, 67, 68, 69,

70, 72, 73, 74, 111, 114, 127, 128, 130

Intake Test, 136

integration test level, 136

Integration Testing Example, 177

Interaction, 79

InteractionFragment, 79, 86, 91

InteractionUse, 50, 93

Interface testing, 137

Internal structure of TestLogStructure Classifier, 129

InvocationAction, 49, 50, 99, 100, 104

invokedProcedure, 93

invokes, 31, 33, 81

is smaller than, 33, 92

ISTQB Agile Test Set Purpose, 135

ISTQB Library, 134

ISTQB Test Level, 136

ISTQB Test Set Purpose, 136

It is impossible that, 31

It is necessary that, 25, 29, 31, 33, 37, 40, 42, 43, 46,

81, 83, 86, 92, 99, 101, 104, 108, 115

K
Knowledge of CR-X1072-B, 144

L
Language Architecture, 48

leads to, 36

Load Testing, 137

Login response time, 148, 150

LoginServer Example, 147

longest, 141

loop, 6, 32, 34, 49, 79, 90, 120

Loop, 49, 79, 87, 89, 90, 189

LoopArbitrationSpecification, 50, 120, 189

M
Machine Test Executor, 16

Mail address modification, 148, 150

main, 94

main procedure invocation, 6, 7, 33, 34, 35, 81

Manual Test, 136

Mapping Interface Descriptions, 159

Mapping Test Cases and Test Configuration, 160

Mapping the Test Architecture, 159

Mapping the Test Data Specification, 159

Mapping the Test Type System, 158

Mapping to Code, 162, 166

Mapping to TTCN-3, 158

MatchingCollectionExpression, 189, 191, 193

matchingKind, 193, 194

max, 194

maxInclusive, 194

meet, 70

Message, 49, 100, 103

min, 194

Minimal test configuration, 77

minInclusive, 194

model, 28

Model Libraries, 13

Modeling Test Data, 152

Modeling the Behavior of the System, 162, 163

Modeling the Structure of the System, 162

Modeling the Type System and Logical Interfaces,

151
Morphing, 50, 106, 108, 109, 189

morphism, 5, 6, 7, 39, 40, 42, 50, 106, 108, 109

Must be used as payload for an expected responses,

193

N
NamedElement, 50, 72, 91

nBoundaryRepresentatives, 65

nCombination, 66

nCombination {redefines nCombination}, 69

negative, 6, 34, 50

Negative, 50, 87, 89, 90, 189

Negative Test, 136

NegativeArbitrationSpecification, 50, 120, 121, 189

Nested Classifier not allowed, 83

none, 132, 133

None, 6, 42, 43, 44, 115

Non-normative data value extensions, 191

Normative References, 9

nRepresentatives, 67

nRepresentatives {redefines nRepresentatives}, 65

NSwitchCoverage, 50, 68, 69, 73, 189

O
Object Management Group, Inc. (OMG), vi

ObjectFlow, 49, 98

Objects, 145

of, 33, 43, 92

OMG specifications, vi

One postcondition per test case, 83

One postcondition per test execution schedule, 86

One postcondition per test procedure, 81

One precondition per test case, 83

One precondition per test execution schedule, 86

One precondition per test procedure, 81

OneBoundaryValue, 140

OneRepresentative, 140

Only applicable to UML Behavior building blocks,

91
OpaqueProceduralElement, 50, 86, 87, 91, 92, 189

UML Testing Profile 2 (UTP 2), Version 2.0 215

Operands shall be empty, 194

Operation, 51

or, 43

overrides, 50, 111, 189

Overview of non-normative ValueSpecification

Extensions, 191, 192

Overview of test-specific actions, 36, 37

Overview of the ISTQB library, 134, 135

Overview of the predefined test design technique

structures, 140

Owned UseCases not allowed, 83

Owner of Constraint, 99

Owner of Property, 99

Ownership of «TestComponentConfiguration», 76

Ownership of «TestItemConfiguration», 78

P
Package, 50, 51, 54, 58, 108

PairwiseTesting, 50, 66, 69, 189

parallel, 6, 34, 50, 121

Parallel, 50, 87, 89, 91, 189

ParallelArbitrationSpecification, 50, 120, 121, 189

parent, 114

part, 77

pass, 95, 125, 132, 133

Pass, 6, 42, 43, 44, 115, 151, 156, 176

PE end duration, 6, 33, 35, 92

PE start duration, 6, 33, 35, 92

permits to send, 37, 101

permittedElement, 100, 101, 124

permutation, 195

postcondition, 6, 31, 32, 81, 82, 83, 86

preconditon, 6, 31, 32, 81, 83, 86

Predefined context-free test design techniques, 138,

139

Predefined data-related Test Design Techniques, 62

Predefined experience-based Test Design

Techniques, 63, 64

Predefined high-level Test Design Techniques, 61, 62

Predefined state-transition-based Test Design

Techniques, 63

Predefined Test Design Technique Structures, 140

Predefined Test Design Techniques, 138

Predefined types, 132

Predefined verdict instances, 132

prescribes the execution order of, 32, 33, 81

procedural element, 5, 6, 7, 19, 32, 33, 34, 35, 50, 79,

80, 81, 82, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,

112, 113, 115, 117, 119, 120, 121, 122, 123, 126,

133

Procedural Element Arbitration Specifications, 117

procedural element verdict, 5, 6, 7, 36, 37, 38, 43, 44,

86, 89, 95, 98, 102, 104, 112, 113, 115, 116

Procedural Elements, 79, 86

Procedural Elements Overview, 87

ProceduralElement, 14, 50, 87, 89, 91, 92, 189

ProceduralElementArbitrationSpecification, 50, 115,

120, 122, 189

procedure, 5, 6, 7, 8, 32, 33, 34, 35, 36, 42, 67, 72,

79, 80, 81, 82, 83, 85, 86, 93, 94, 112, 126, 156,

158

procedure invocation, 6, 7, 32, 34, 35, 36, 50, 87, 93,

122, 123

Procedure sequentializes procedural element, 81

ProcedureInvocation, 50, 80, 82, 85, 87, 89, 93, 94,

168, 189

ProcedureInvocationArbitrationSpecification, 50,

120, 123, 189

ProcedurePhaseKind, 94

Product Manager, 16

Profile Specification [STUB], 13

Project Manager, 16

property, 5, 7, 37, 38, 59, 65, 67, 69, 73, 98, 99, 122

Property, 49, 50, 76, 77, 78, 99, 107, 193, 194

provide test data, 16, 18

provides data according to, 40

purpose, 58

Q
QA Manager, 16

R
random, 141

RangeValue, 189, 191, 194

Recoverability Test, 137

referencedBy, 56, 57, 59, 71, 73, 115, 128

references, 56

References, 13, 166, 171, 187

refers to, 25, 43

refinement, 7, 39, 42, 50, 109

Refines, 50, 107, 108, 109, 189

Regression Testing, 136

RegularExpression, 50, 109, 112, 189

Relation to keyword-driven testing, 19

requirement, 27

Requirements Engineer, 16

Requirements Specification, 147

requires, 31, 81, 83, 86

response, 2, 6, 7, 19, 36, 37, 38, 95, 102, 104, 105,

109, 110, 112, 191, 192, 193, 194, 195

Restriction of client and supplier, 111

Restriction of extendable metaclass, 59

Restriction of extendable metaclasses, 55, 56, 57,

128, 129

resultFor, 114

review test specifications, 16, 18

role, 93, 94

role {ready-only, union}, 75

Role only in context of test cases relevant, 94

RoleConfiguration, 50, 74, 75, 76, 78, 189

roleConfiguration {read-only, union}, 78

RQ-0001, 142

RQ-0002, 142

RQ-0003, 142

216 UML Testing Profile 2 (UTP 2), Version 2.0

S
select test data, 16, 17, 18

Semantics of Business Rules and Vocabularies, 24

sequence, 7, 19, 32, 34, 35, 50, 68, 73, 87, 121, 123

Sequence, 50, 89, 94, 168, 189

SequenceArbitrationSpecification, 50, 120, 123, 189

setup, 94

setup procedure invocation, 7, 35

shortest, 141

SimpleChecklistBasedStructure, 141

SimpleErrorGuessingStructure, 141

Smoke Test, 136

Specialization of TestLogStructure Classifier, 129

specification, 56, 57

Specification of Complex Test Data, 154

Specification of Dependency client, 130

Specification of Dependency supplier, 130

specifies, 25, 40, 108

specifies the configuration of, 29

startAfterPrevious, 92

State, 99

StateCoverage, 50, 69, 189

StateInvariant, 99

StateTransitionTechnique, 50, 68, 69, 72, 73, 165,

189

stimulus, 5, 7, 37, 38, 95, 100, 101, 109, 193

Stress Testing, 137

StructuredActivityNode, 49, 50, 88, 89, 90, 91, 94

StructuredClassifier, 50, 77

subresult, 114

Subsea Production System Example, 167

subset, 195

suggest verdict action, 7, 38, 50, 104, 125

SuggestVerdictAction, 50, 89, 95, 104, 189

SuggestVerdictArbitrationSpecification, 50, 104,

120, 125, 189

superset, 195

Suppliers of a «Morphing» Dependency, 108

switchStates, 68

switchStates {redefined switchStates}, 73

System Designer, 16

System Operator, 16

System Test Example, 182

system test level, 136

T
targets, 40

TC01

test taste, 146

TC02

test structure, 146

TC03

test color, 147

TDS01, 144

teardown, 94

teardown procedure invocation, 7, 35

Terms and Definitions, 13

test action, 5, 6, 7, 8, 19, 31, 32, 33, 34, 36, 37, 38,

43, 44, 45, 80, 81, 95, 96, 97, 98, 99, 100, 102,

104, 113, 123

Test Analysis, 4, 24, 51, 149

Test Architecture, 29, 74

Test Architecture and Test Configuration, 153

Test Architecture Overview, 29, 74, 75

Test Behavior, 31, 79

test case, 2, 3, 5, 6, 7, 8, 16, 17, 18, 19, 21, 22, 24,

25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38,

39, 42, 43, 44, 45, 46, 50, 51, 52, 54, 55, 56, 57,

58, 59, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 79,

80, 81, 82, 83, 85, 92, 93, 95, 99, 104, 105, 112,

113, 115, 116, 117, 122, 126, 127, 128, 129, 130,

133, 145, 147, 149, 153, 154, 155, 156, 157, 158,

159, 160, 162, 166, 169, 170, 173, 174, 175, 176,

179, 180, 181, 183, 184, 186, 192, 193

Test case invokes one main procedure, 81

test case log, 5, 7, 37, 46, 50, 99, 115, 126, 127, 130

Test Case Overview, 31, 79, 80

test case verdict, 7, 36, 38, 43, 44, 46, 104, 112, 113,

115, 116, 180, 181

Test Cases, 31, 145, 165

test component, 1, 2, 5, 7, 19, 22, 29, 30, 39, 41, 50,

74, 75, 76, 80, 82, 95, 96, 98, 99, 100, 102, 104,

107, 147, 153, 154, 174, 175, 177, 179, 180, 181,

184

test component configuration, 7, 29, 30, 50, 74, 76,

162, 166

test configuration, 5, 7, 8, 18, 19, 27, 28, 29, 30, 50,

70, 72, 74, 75, 76, 77, 78, 79, 80, 82, 99, 104, 147,

149, 154, 156, 157, 160, 174, 179, 184

Test Configuration, 145

test context, 7, 8, 14, 18, 20, 21, 24, 25, 26, 27, 50,

51, 52, 54, 55, 134, 147, 148, 149, 152, 154, 175,

183

Test Context Overview, 24, 25, 31, 52

Test Data, 39, 105

Test Data Concepts, 39, 40

Test Design, 4, 27, 59, 144, 153

test design directive, 7, 8, 27, 28, 49, 50, 59, 60, 61,

68, 70, 72, 138

Test Design Directive, 50

Test Design Facility, 60

Test Design Facility Library, 138

Test Design Facility Overview, 27, 28

test design input, 7, 8, 19, 20, 24, 26, 27, 28, 50, 51,

54, 56, 59, 69, 70, 72, 138, 169, 170

Test Design Inputs, 168

test design technique, 7, 8, 19, 20, 21, 24, 26, 27, 28,

49, 50, 51, 54, 59, 60, 61, 62, 63, 65, 66, 67, 68,

69, 70, 72, 73, 74, 138, 140, 141, 151, 165

Test Designer, 16

Test Evaluation, 42, 112

test execution schedule, 7, 8, 19, 27, 28, 31, 32, 35,

42, 50, 58, 70, 79, 85, 86, 93, 113, 126, 129

UML Testing Profile 2 (UTP 2), Version 2.0 217

test item, 1, 2, 5, 6, 7, 8, 19, 21, 22, 26, 27, 29, 30,

32, 36, 37, 38, 39, 43, 44, 50, 51, 56, 67, 74, 78,

80, 82, 95, 97, 98, 99, 100, 102, 103, 105, 133,

142, 147, 148, 151, 153, 154, 162, 166, 173, 174,

176, 177, 178, 179, 183, 194

test item configuration, 8, 29, 30, 50, 74, 78, 162, 166

Test Item Controlled Actions, 97

test level, 1, 8, 21, 24, 25, 26, 54, 134, 147, 149, 173,

177

test log, 1, 7, 8, 19, 21, 44, 45, 46, 47, 50, 99, 112,

126, 127, 128, 129

Test Log Overview, 44, 46

test log structure, 8, 45, 46, 50, 126, 127, 128, 129,

130

Test Logging, 44, 126

Test Logging Overview, 126, 127

Test Map, 146

test objective, 7, 8, 18, 20, 25, 26, 28, 32, 44, 51, 53,

54, 55, 56, 59, 70, 82, 93, 112, 148, 149

Test Objective Overview, 53

Test Objectives, 143

Test Planning, 24, 51, 148

test procedure, 8, 18, 31, 32, 33, 35, 36, 42, 51, 56,

77, 79, 80, 81, 82, 85, 86, 93, 94, 145, 156, 157,

158

Test Procedure Arbitration Specifications, 113

Test procedure operates on test configuration, 80

Test procedure sequencializes test action, 81

Test Procedures, 31, 32, 33

test requirement, 8, 25, 26, 44, 51, 56, 57, 59, 93,

112, 147, 149, 150, 151, 152, 155, 156, 174, 175,

176, 177, 183, 184, 186

Test Requirement and Test Objective Overview, 25,

26

Test Requirements, 143

Test Requirements Realization, 155

test set, 6, 7, 8, 17, 18, 20, 24, 25, 26, 27, 28, 31, 43,

44, 45, 46, 47, 51, 55, 56, 58, 59, 70, 79, 85, 112,

113, 115, 117, 128, 130, 133, 134, 136, 145

Test Set "Manual croissants test", 145

test set log, 8, 46, 47, 51, 126, 130

test set purpose, 8, 27, 134

test set verdict, 8, 43, 44, 85, 95, 113, 115

Test Strategy, 144

test type, 8, 20, 21, 24, 25, 27, 54, 147, 149, 151,

152, 154

TestCase, 50, 52, 57, 77, 79, 82, 83, 85, 130, 131,

154, 189

TestCaseArbitrationSpecification, 50, 115, 116, 125,

189

testCaseAS, 83

TestCaseLog, 50, 126, 127, 128, 131, 189

TestComponent, 14, 50, 74, 76, 77, 78, 107, 154,

162, 189

testComponent {subsets role}, 76

TestComponentConfiguration, 50, 74, 75, 76, 163,

189

testConfiguration, 54

TestConfiguration, 50, 74, 77, 82, 168, 189

TestConfigurationRole, 50, 74, 75, 76, 77, 78, 189

TestContext, 14, 50, 51, 52, 54, 55, 189

testDesignDirective, 55

TestDesignDirective, 50, 60, 68, 70, 71, 139, 140,

189

TestDesignDirectiveStructure, 50, 60, 71, 189

testDesigningEntity, 71

testDesignInput, 54, 71

TestDesignInput, 50, 70, 72, 162, 163, 189

testDesignOutput, 71

testDesignTechnique, 55

TestDesignTechnique, 50, 60, 65, 66, 67, 68, 69, 72,

74, 139, 140, 190

TestDesignTechniqueStructure, 50, 60, 73, 190

Tester Controlled Actions, 96

TestExecutionSchedule, 50, 79, 83, 85, 86, 113, 117,

190

TestItem, 14, 50, 74, 77, 78, 99, 154, 162, 163, 168,

190

testItem {subsets role}, 78

TestItemConfiguration, 50, 74, 75, 78, 162, 163, 166,

190

testLevel, 54

testLog, 55

TestLog, 50, 126, 127, 128, 130, 190

TestLogStructure, 50, 126, 129, 130, 190

TestLogStructureBinding, 50, 126, 130, 190

testObjective, 54

TestObjective, 51, 55, 168, 190

TestProcedure, 51, 77, 79, 80, 82, 83, 85, 94, 190

testRequirement, 54

TestRequirement, 51, 56, 57, 83, 167, 190

testSet, 54

TestSet, 51, 52, 58, 59, 113, 117, 131, 190

TestSetArbitrationSpecification, 51, 115, 117, 190

testSetAS, 59, 86

TestSetLog, 51, 126, 128, 130, 131, 190

testSetMember, 58

Test-specific Action Arbitration Specifications, 123

Test-specific Actions, 31, 36, 79, 87, 95

Test-specific actions Overview, 95, 96

Test-specific Contents of Test Context, 52, 53

Test-specific Procedures, 32, 79

testType, 54

the, 33, 37, 92, 99

the same, 33, 92

The Test Item, 142

The TRUST Test Generator, 162, 165

The UTP auxiliary library, 133, 134

The UTP test design facility library, 138

time point, 8, 32, 36, 46

TO00

218 UML Testing Profile 2 (UTP 2), Version 2.0

Quality verified, 143

TO01

Taste verified, 143, 146

TO02

Structure verified, 143, 146, 147

TO03

Color verified, 143, 147

toBeCovered, 69, 73

Tool Vendor, 17

TR01

Humans, 143

TR02

Waste, 144

Transition, 86, 91

TransitionCoverage, 51, 69, 73, 190

TransitionPairCoverage, 51, 68, 73, 190

Trigger, 49, 103

Type of Argument, 105

Type of elements for the explicit sets, 104

Type of forbidden elements, 100

Type of permitted elements, 101

Type of verdict ValueSpecification, 115

Typical Use Cases of UTP 2, 3

U
UML Testing Profile, 15

Unit Test Example, 173

Unknown user login, 148

update test specifications, 16, 18

Use of «ProcedureInvocation», 81

Use of BehavioredClassifier, 83

Use of permutation matching kind, 194

UseCaseTesting, 51, 72, 74, 190

User banishing, 148

User login, 148, 150

User logout, 148, 150

UTP 2 Use Cases, 15

UTP 2 WG, 5, 6, 7, 8, 26, 27, 28, 29, 30, 31, 32, 33,

34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 46, 47, 144

UTP Auxiliary Library, 13, 48, 133

UTP Types Library, 48, 115

V
Valid duration, 92

value, 5, 6, 41

ValueSpecification, 115, 191, 193

verdict, 5, 6, 7, 8, 21, 39, 42, 43, 44, 79, 83, 85, 89,

92, 95, 102, 104, 105, 109, 112, 113, 114, 115,

116, 117, 119, 120, 121, 122, 123, 124, 125, 126,

128, 129, 132, 133, 176

Verdict of ArbitrationSpecification, 115

verifies, 51, 59, 190

Videoconferencing Example, 162

	1 Scope
	2 Conformance
	3 References
	3.1 Normative References
	3.2 Informative References

	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 How to read this document
	6.2 Typographical conventions
	6.3 Typical Use Cases of UTP 2
	6.4 Relation to testing-relevant standards
	6.5 Relation to model-based testing
	6.6 Relation to keyword-driven testing
	6.7 Relation to the MARTE Profile
	6.8 Acknowledgements

	7 (Informative) Conceptual Model
	7.1 General
	7.2 Test Planning
	7.2.1 Test Analysis
	7.2.1.1 Test Context Overview
	7.2.1.2 Test Requirement and Test Objective Overview
	7.2.1.3 Concept Descriptions

	7.2.2 Test Design
	7.2.2.1 Test Design Facility Overview
	7.2.2.2 Concept Descriptions

	7.3 Test Architecture
	7.3.1 Test Architecture Overview
	7.3.2 Concept Descriptions

	7.4 Test Behavior
	7.4.1 Test Cases
	7.4.1.1 Test Case Overview
	7.4.1.2 Concept Descriptions

	7.4.2 Test-specific Procedures
	7.4.2.1 Test Procedures
	7.4.2.2 Concept Descriptions

	7.4.3 Test-specific Actions
	7.4.3.1 Overview of test-specific actions
	7.4.3.2 Concept Descriptions

	7.5 Test Data
	7.5.1 Test Data Concepts
	7.5.2 Concept Descriptions

	7.6 Test Evaluation
	7.6.1 Arbitration Specifications
	7.6.1.1 Arbitration & Verdict Overview
	7.6.1.2 Concept Descriptions

	7.6.2 Test Logging
	7.6.2.1 Test Log Overview
	7.6.2.2 Concept Descriptions

	8 Profile Specification
	8.1 Language Architecture
	8.2 Profile Summary
	8.3 Test Planning
	8.3.1 Test Analysis
	8.3.1.1 Test Context Overview
	8.3.1.2 Test-specific Contents of Test Context
	8.3.1.3 Test Objective Overview
	8.3.1.4 Stereotype Specifications
	8.3.1.4.1 TestContext
	8.3.1.4.2 TestObjective
	8.3.1.4.3 TestRequirement
	8.3.1.4.4 TestSet
	8.3.1.4.5 verifies

	8.3.2 Test Design
	8.3.2.1 Test Design Facility
	8.3.2.2 Generic Test Design Capabilities
	8.3.2.3 Predefined high-level Test Design Techniques
	8.3.2.4 Predefined data-related Test Design Techniques
	8.3.2.5 Predefined state-transition-based Test Design Techniques
	8.3.2.6 Predefined experience-based Test Design Techniques
	8.3.2.7 Stereotype Specifications
	8.3.2.7.1 BoundaryValueAnalysis
	8.3.2.7.2 CauseEffectAnalysis
	8.3.2.7.3 ChecklistBasedTesting
	8.3.2.7.4 ClassificationTreeMethod
	8.3.2.7.5 CombinatorialTesting
	8.3.2.7.6 DecisionTableTesting
	8.3.2.7.7 EquivalenceClassPartitioning
	8.3.2.7.8 ErrorGuessing
	8.3.2.7.9 ExperienceBasedTechnique
	8.3.2.7.10 ExploratoryTesting
	8.3.2.7.11 GenericTestDesignDirective
	8.3.2.7.12 GenericTestDesignTechnique
	8.3.2.7.13 NSwitchCoverage
	8.3.2.7.14 PairwiseTesting
	8.3.2.7.15 StateCoverage
	8.3.2.7.16 StateTransitionTechnique
	8.3.2.7.17 TestDesignDirective
	8.3.2.7.18 TestDesignDirectiveStructure
	8.3.2.7.19 TestDesignInput
	8.3.2.7.20 TestDesignTechnique
	8.3.2.7.21 TestDesignTechniqueStructure
	8.3.2.7.22 TransitionCoverage
	8.3.2.7.23 TransitionPairCoverage
	8.3.2.7.24 UseCaseTesting

	8.4 Test Architecture
	8.4.1 Test Architecture Overview
	8.4.2 Stereotype Specifications
	8.4.2.1 RoleConfiguration
	8.4.2.2 TestComponent
	8.4.2.3 TestComponentConfiguration
	8.4.2.4 TestConfiguration
	8.4.2.5 TestConfigurationRole
	8.4.2.6 TestItem
	8.4.2.7 TestItemConfiguration

	8.5 Test Behavior
	8.5.1 Test-specific Procedures
	8.5.1.1 Test Case Overview
	8.5.1.2 Stereotype Specifications
	8.5.1.2.1 TestProcedure
	8.5.1.2.2 TestCase
	8.5.1.2.3 TestExecutionSchedule

	8.5.2 Procedural Elements
	8.5.2.1 Procedural Elements Overview
	8.5.2.2 Compound Procedural Elements Overview
	8.5.2.3 Stereotype Specifications
	8.5.2.3.1 Alternative
	8.5.2.3.2 AtomicProceduralElement
	8.5.2.3.3 CompoundProceduralElement
	8.5.2.3.4 Loop
	8.5.2.3.5 Negative
	8.5.2.3.6 OpaqueProceduralElement
	8.5.2.3.7 Parallel
	8.5.2.3.8 ProceduralElement
	8.5.2.3.9 ProcedureInvocation
	8.5.2.3.10 Sequence

	8.5.2.4 Enumeration Specifications

	8.5.3 Test-specific Actions
	8.5.3.1 Test-specific actions Overview
	8.5.3.2 Tester Controlled Actions
	8.5.3.3 Test Item Controlled Actions
	8.5.3.4 Stereotype Specifications
	8.5.3.4.1 CheckPropertyAction
	8.5.3.4.2 CreateLogEntryAction
	8.5.3.4.3 CreateStimulusAction
	8.5.3.4.4 ExpectResponseAction
	8.5.3.4.5 SuggestVerdictAction

	8.5.3.5 Enumeration Specifications

	8.6 Test Data
	8.6.1 Data Specifications
	8.6.1.1 Data Specifications Overview
	8.6.1.2 Stereotype Specifications
	8.6.1.2.1 Complements
	8.6.1.2.2 DataPartition
	8.6.1.2.3 DataPool
	8.6.1.2.4 DataProvider
	8.6.1.2.5 DataSpecification
	8.6.1.2.6 Extends
	8.6.1.2.7 Morphing
	8.6.1.2.8 Refines

	8.6.2 Data Values
	8.6.2.1 Data Value Extensions
	8.6.2.2 Stereotype Specifications
	8.6.2.2.1 AnyValue
	8.6.2.2.2 overrides
	8.6.2.2.3 RegularExpression

	8.7 Test Evaluation
	8.7.1 Arbitration Specifications
	8.7.1.1 Test Procedure Arbitration Specifications
	8.7.1.1.1 Arbitration Specifications Overview
	8.7.1.1.2 Stereotype Specifications
	8.7.1.1.2.1 ArbitrationResult
	8.7.1.1.2.2 ArbitrationSpecification
	8.7.1.1.2.3 TestCaseArbitrationSpecification
	8.7.1.1.2.4 TestSetArbitrationSpecification

	8.7.1.2 Procedural Element Arbitration Specifications
	8.7.1.2.1 Arbitration of AtomicProceduralElements
	8.7.1.2.2 Arbitration of CompoundProceduralElements
	8.7.1.2.3 Stereotype Specifications
	8.7.1.2.3.1 AlternativeArbitrationSpecification
	8.7.1.2.3.2 AtomicProceduralElementArbitrationSpecification
	8.7.1.2.3.3 CompoundProceduralElementArbitrationSpecification
	8.7.1.2.3.4 LoopArbitrationSpecification
	8.7.1.2.3.5 NegativeArbitrationSpecification
	8.7.1.2.3.6 ParallelArbitrationSpecification
	8.7.1.2.3.7 ProceduralElementArbitrationSpecification
	8.7.1.2.3.8 ProcedureInvocationArbitrationSpecification
	8.7.1.2.3.9 SequenceArbitrationSpecification

	8.7.1.3 Test-specific Action Arbitration Specifications
	8.7.1.3.1 Arbitration of Test-specific Actions
	8.7.1.3.2 Stereotype Specifications
	8.7.1.3.2.1 CreateStimulusArbitrationSpecification
	8.7.1.3.2.2 ExpectResponseArbitrationSpecification
	8.7.1.3.2.3 CheckPropertyArbitrationSpecification
	8.7.1.3.2.4 SuggestVerdictArbitrationSpecification
	8.7.1.3.2.5 CreateLogEntryArbitrationSpecification

	8.7.2 Test Logging
	8.7.2.1 Test Logging Overview
	8.7.2.2 Stereotype Specifications
	8.7.2.2.1 TestCaseLog
	8.7.2.2.2 TestLog
	8.7.2.2.3 TestLogStructure
	8.7.2.2.4 TestLogStructureBinding
	8.7.2.2.5 TestSetLog

	9 Model Libraries
	9.1 UTP Types Library
	9.2 UTP Auxiliary Library
	9.2.1 UTP Auxiliary Library
	9.2.1.1 The UTP auxiliary library
	9.2.1.2 ISTQB Library
	9.2.1.2.1 Overview of the ISTQB library

	9.2.1.3 Test Design Facility Library
	9.2.1.3.1 The UTP test design facility library
	9.2.1.3.2 Predefined Test Design Techniques
	9.2.1.3.2.1 Predefined context-free test design techniques

	9.2.1.3.3 Predefined Test Design Technique Structures
	9.2.1.3.3.1 Overview of the predefined test design technique structures

	Annex A (Informative): Examples
	A.1 Croissants Example
	A.1.1 The Test Item
	A.1.2 Test Requirements
	A.1.3 Test Design
	A.1.4 Test Configuration
	A.1.4.1 Test Cases
	A.1.4.2 Test Set "Manual croissants test"

	A.2 LoginServer Example
	A.2.1 Requirements Specification
	A.2.2 Test Planning
	A.2.3 Test Analysis
	A.2.3.1 Derivation and Modeling of Test Requirements
	A.2.3.2 Modeling the Type System and Logical Interfaces
	A.2.3.3. Modeling Test Data

	A.2.4 Test Design
	A.2.4.1 Test Architecture and Test Configuration
	A.2.4.2 Specification of Complex Test Data
	A.2.4.3 Test Requirements Realization
	A.2.4.4 Design of Test Case Procedures

	A.2.5 Mapping to TTCN-3
	A.2.5.1 Mapping the Test Type System
	A.2.5.2 Mapping Interface Descriptions
	A.2.5.3 Mapping the Test Architecture
	A.2.5.4 Mapping the Test Data Specification
	A.2.5.5 Mapping Test Cases and Test Configuration

	A.3 Videoconferencing Example
	A.3.1 Given Requirements on the Test Item
	A.3.2 Modeling the Structure of the System
	A.3.3 Modeling the Behavior of the System
	A.3.4 The TRUST Test Generator
	A.3.5 Mapping to Code
	A.3.6 References

	A.4 Subsea Production System Example
	A.4.1 Description of Case Study
	A.4.2 Functionality to Test
	A.4.3 Test Design Inputs
	A.4.4 Generation of Test Sets and Abstract Test Cases
	A.4.5 References

	A.5 ATM Example
	A.5.1 General
	A.5.2 Unit Test Example
	A.5.3 Integration Testing Example
	A.5.4 System Test Example
	A.5.5 References

	Annex B (Informative): Mappings
	B.1 Mapping between UTP 1 and UTP 2

	Annex C (Informative): Value Specification Extensions
	C.1 Profile Summary
	C.2 Non-normative data value extensions
	C.2.1 Overview of non-normative ValueSpecification Extensions
	C.2.2 Stereotype Specifications
	C.2.2.1 ChoiceOfValues
	C.2.2.2 CollectionExpression
	C.2.2.3 ComplementedValue
	C.2.2.4 MatchingCollectionExpression
	C.2.2.5 RangeValue

	Annex D: Index

