
Date: May 2020

UML Testing Profile 2 (UTP 2)
Version 2.1 with change bars

__
OMG Document Number: formal/20-08-06
ISSUE UMLTP21-19

Normative reference: https://www.omg.org/spec/UTP2
Machine readable file(s):
ISSUE UMLTP21-19

Normative:
https://www.omg.org/spec/UTP2/20190501/utp2.xmi
https://www.omg.org/spec/UTP2/20190501/utp2_typeslibrary.xmi
https://www.omg.org/spec/UTP2/20190501/utp2_library.xmi

__

Copyright © 2014-2018, Fraunhofer FOKUS
Copyright © 2014-2018, Grand Software Testing
Copyright © 2014-2018, Hamburg University of Applied Science
Copyright © 2014-2018, KnowGravity Inc.
Copyright © 2014-2020, Object Management Group, Inc.
Copyright © 2014-2018, PTC Inc.
Copyright © 2014-2018, Simula Research Lab
Copyright © 2014-2018, SELEX
Copyright © 2014-2018, SOFTEAM
Copyright © 2014-2018, University of Cantabria

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change
without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-
free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute
copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed
to have infringed the copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:
(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;
(2) the use of the specifications is for informational purposes and will not be copied or posted on any network
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this specification. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which
a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or
scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only.
Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.
No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR
PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE
COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING
LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph
(c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as
specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R.
12.212 of the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners
are as indicated above and may be contacted through the Object Management Group, 109 Highland Avenue,
Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT
GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®,
OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube
Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In
the event that testing suites are implemented or approved by Object Management Group, Inc., software developed
using this specification may claim compliance or conformance with the specification only if the software
satisfactorily completes the testing suites.

http://www.omg.org/legal/tm_list.htm

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page https://www.omg.org, under Documents, Report a Bug/Issue.

UML Testing Profile 2 (UTP 2), Version 2.1 i

Table of Contents

1 Scope .. 1
2 Conformance .. 3
3 Terms and Definitions .. 5
4 References .. 9

4.1 Normative References ... 9
4.2 Informative References ... 9

5 Symbols .. 12
6 Additional Information ... 13

6.1 How to read this document ... 13
6.2 Typographical conventions ... 14
6.3 Typical Use Cases of UTP 2 ... 15
6.4 Relation to testing-relevant standards ... 18
6.5 Relation to model-based testing .. 21
6.6 Relation to keyword-driven testing ... 21
6.7 Relation to the MARTE Profile .. 22
6.8 Acknowledgements ... 23

7 (Informative) Conceptual Model .. 24
7.1 Test Planning... 24

7.1.1 Test Analysis ... 24
7.1.1.1 Test Context Overview .. 24
7.1.1.2 Test Requirement and Test Objective Overview ... 25
7.1.1.3 Concept Descriptions ... 26

7.1.2 Test Design .. 27
7.1.2.1 Test Design Facility Overview .. 27
7.1.2.2 Concept Descriptions ... 28

7.2 Test Architecture ... 29
7.2.1 Test Architecture Overview .. 29
7.2.2 Concept Descriptions... 29

7.3 Test Behavior .. 31
7.3.1 Test Cases .. 31

7.3.1.1 Test Case Overview ... 31
7.3.1.2 Concept Descriptions ... 31

7.3.2 Test-specific Procedures .. 32
7.3.2.1 Test Procedures .. 32
7.3.2.2 Concept Descriptions ... 33

7.3.3 Test-specific Actions ... 36
7.3.3.1 Overview of test-specific actions ... 36
7.3.3.2 Concept Descriptions ... 37

7.4 Test Data ... 38
7.4.1 Test Data Concepts .. 38
7.4.2 Concept Descriptions... 39

7.5 Test Evaluation ... 41
7.5.1 Arbitration Specifications .. 41

7.5.1.1 Arbitration & Verdict Overview .. 41
7.5.1.2 Concept Descriptions ... 42

7.5.2 Test Logging .. 43
7.5.2.1 Test Log Overview .. 43
7.5.2.2 Concept Descriptions ... 45

8 Profile Specification ... 47
8.1 Language Architecture .. 47
8.2 Profile Summary ... 47

ii UML Testing Profile 2 (UTP 2), Version 2.1

8.3 Test Planning... 51
8.3.1 Test Analysis ... 51

8.3.1.1 Test Context Overview .. 52
8.3.1.2 Test-specific Contents of Test Context .. 52
8.3.1.3 Test Objective Overview ... 53
8.3.1.4 Stereotype Specifications ... 54

8.3.1.4.1 TestContext .. 54
8.3.1.4.2 TestObjective ... 56
8.3.1.4.3 TestRequirement .. 57
8.3.1.4.4 TestSet .. 58
8.3.1.4.5 verifies .. 59

8.3.2 Test Design .. 59
8.3.2.1 Test Design Facility ... 60
8.3.2.2 Generic Test Design Capabilities ... 60
8.3.2.3 Predefined high-level Test Design Techniques .. 61
8.3.2.4 Predefined data-related Test Design Techniques ... 62
8.3.2.5 Predefined state-transition-based Test Design Techniques .. 62
8.3.2.6 Predefined experience-based Test Design Techniques .. 63
8.3.2.7 Stereotype Specifications ... 65

8.3.2.7.1 BoundaryValueAnalysis ... 65
8.3.2.7.2 CauseEffectAnalysis .. 65
8.3.2.7.3 ChecklistBasedTesting ... 65
8.3.2.7.4 ClassificationTreeMethod .. 66
8.3.2.7.5 CombinatorialTesting ... 66
8.3.2.7.6 DecisionTableTesting... 66
8.3.2.7.7 EquivalenceClassPartitioning ... 67
8.3.2.7.8 ErrorGuessing .. 67
8.3.2.7.9 ExperienceBasedTechnique ... 67
8.3.2.7.10 ExploratoryTesting ... 67
8.3.2.7.11 GenericTestDesignDirective .. 68
8.3.2.7.12 GenericTestDesignTechnique .. 68
8.3.2.7.13 NSwitchCoverage .. 68
8.3.2.7.14 PairwiseTesting .. 69
8.3.2.7.15 StateCoverage .. 69
8.3.2.7.16 StateTransitionTechnique ... 69
8.3.2.7.17 TestDesignDirective ... 70
8.3.2.7.18 TestDesignDirectiveStructure .. 72
8.3.2.7.19 TestDesignInput ... 72
8.3.2.7.20 TestDesignTechnique ... 73
8.3.2.7.21 TestDesignTechniqueStructure .. 74
8.3.2.7.22 TransitionCoverage .. 74
8.3.2.7.23 TransitionPairCoverage .. 74
8.3.2.7.24 UseCaseTesting .. 74

8.4 Test Architecture ... 75
8.4.1 Test Architecture Overview .. 75
8.4.2 Stereotype Specifications .. 76

8.4.2.1 RoleConfiguration ... 76
8.4.2.2 TestComponent .. 76
8.4.2.3 TestComponentConfiguration .. 77
8.4.2.4 TestConfiguration .. 78
8.4.2.5 TestConfigurationRole ... 78
8.4.2.6 TestItem ... 79
8.4.2.7 TestItemConfiguration ... 79

8.5 Test Behavior .. 80
8.5.1 Test-specific Procedures .. 80

8.5.1.1 Test Case Overview ... 80

UML Testing Profile 2 (UTP 2), Version 2.1 iii

8.5.1.2 Stereotype Specifications ... 81
8.5.1.2.1 TestProcedure ... 81
8.5.1.2.2 TestCase ... 83
8.5.1.2.3 TestExecutionSchedule .. 86

8.5.2 Procedural Elements .. 88
8.5.2.1 Procedural Elements Overview .. 89
8.5.2.2 Compound Procedural Elements Overview ... 89
8.5.2.3 Stereotype Specifications ... 90

8.5.2.3.1 Alternative .. 90
8.5.2.3.2 AtomicProceduralElement ... 91
8.5.2.3.3 CompoundProceduralElement .. 91
8.5.2.3.4 Loop ... 92
8.5.2.3.5 Negative ... 92
8.5.2.3.6 OpaqueProceduralElement ... 93
8.5.2.3.7 Parallel ... 93
8.5.2.3.8 ProceduralElement ... 94
8.5.2.3.9 ProcedureInvocation... 95
8.5.2.3.10 Sequence .. 96

8.5.2.4 Enumeration Specifications ... 96
8.5.3 Test-specific Actions ... 97

8.5.3.1 Test-specific actions Overview .. 97
8.5.3.2 Tester Controlled Actions .. 98
8.5.3.3 Test Item Controlled Actions ... 99
8.5.3.4 Stereotype Specifications ... 100

8.5.3.4.1 CheckPropertyAction ... 100
8.5.3.4.2 CreateLogEntryAction ... 101
8.5.3.4.3 CreateStimulusAction .. 102
8.5.3.4.4 ExpectResponseAction ... 104
8.5.3.4.5 SuggestVerdictAction .. 107

8.5.3.5 Enumeration Specifications ... 108
8.6 Test Data ... 108

8.6.1 Data Specifications .. 109
8.6.1.1 Data Specifications Overview .. 109
8.6.1.2 Stereotype Specifications ... 109

8.6.1.2.1 Complements.. 109
8.6.1.2.2 DataPartition .. 110
8.6.1.2.3 DataPool ... 110
8.6.1.2.4 DataProvider .. 110
8.6.1.2.5 DataSpecification ... 111
8.6.1.2.6 Extends ... 111
8.6.1.2.7 Morphing .. 112
8.6.1.2.8 Refines ... 112

8.6.2 Data Values ... 112
8.6.2.1 Data Value Extensions ... 113
8.6.2.2 Stereotype Specifications ... 114

8.6.2.2.1 AnyValue ... 114
8.6.2.2.2 overrides ... 115
8.6.2.2.3 RegularExpression ... 116

8.7 Test Evaluation ... 116
8.7.1 Arbitration Specifications .. 116

8.7.1.1 Test Procedure Arbitration Specifications ... 117
8.7.1.1.1 Arbitration Specifications Overview .. 117
8.7.1.1.2 Stereotype Specifications ... 118

8.7.1.2 Procedural Element Arbitration Specifications .. 121
8.7.1.2.1 Arbitration of AtomicProceduralElements ... 121
8.7.1.2.2 Arbitration of CompoundProceduralElements ... 122

iv UML Testing Profile 2 (UTP 2), Version 2.1

8.7.1.2.3 Stereotype Specifications ... 123
8.7.1.3 Test-specific Action Arbitration Specifications ... 127

8.7.1.3.1 Arbitration of Test-specific Actions ... 127
8.7.1.3.2 Stereotype Specifications ... 128

8.7.2 Test Logging .. 130
8.7.2.1 Test Logging Overview ... 130
8.7.2.2 Test Log Entries Overview .. 131
8.7.2.3 Test Log Entries Details .. 132
8.7.2.4 Invocation Test Log Entry Details ... 133
8.7.2.5 Stereotype Specifications ... 134

8.7.2.5.1 TestLogElement ... 134
8.7.2.5.2 TestLog .. 135
8.7.2.5.3 TestSetLog ... 136
8.7.2.5.4 TestCaseLog ... 136
8.7.2.5.5 TestLogStructure .. 137
8.7.2.5.6 TestLogEntry.. 137
8.7.2.5.7 AtomicProceduralElementLogEntry .. 138
8.7.2.5.8 InvocationLogEntryStructure ... 138
8.7.2.5.9 FormalParameterReference .. 139
8.7.2.5.10 InvocationLogEntry ... 139
8.7.2.5.11 ActualParameterValue ... 140
8.7.2.5.12 ProcedureInvocationLogEntryStructure ... 140
8.7.2.5.13 ProcedureInvocationLogEntry ... 140
8.7.2.5.14 MessageEventLogEntryStructure ... 141
8.7.2.5.15 MessageEventLogEntry ... 141
8.7.2.5.16 CreateStimulusLogEntry .. 142
8.7.2.5.17 ActualResponseLogEntry ... 142
8.7.2.5.18 CheckPropertyLogEntry ... 142
8.7.2.5.19 SuggestVerdictLogEntry .. 143
8.7.2.5.20 CreateLogEntryLogEntry ... 143
8.7.2.5.21 OpaqueProceduralElementLogEntry .. 143
8.7.2.5.22 TestLogStructureBinding ... 144

8.8 Test Directives .. 144
8.8.1 Test Directive Facility ... 145
8.8.2 Stereotype Specifications .. 145

8.8.2.1 TestDirective .. 145
8.8.2.2 TestDirectiveStructure ... 146
8.8.2.3 TestTechnique .. 146
8.8.2.4 TestTechniqueStructure ... 147

9 Model Libraries .. 148
9.1 UTP Types Library ... 148

9.1.1 Predefined types .. 148
9.1.2 Predefined verdict instances .. 148

9.2 UTP Auxiliary Library .. 149
9.2.1 UTP Auxiliary Library .. 149

9.2.1.1 The UTP auxiliary library .. 149
9.2.1.2 ISTQB Library ... 150

9.2.1.2.1 Overview of the ISTQB library .. 150
9.2.1.3 Test Design Facility Library .. 153

9.2.1.3.1 The UTP test design facility library ... 154
9.2.1.3.2 Predefined Test Design Techniques ... 154
9.2.1.3.3 Predefined Test Design Technique Structures.. 156

10 Annex A (Informative): Examples.. 158
10.1 Croissants Example ... 158

10.1.1 The Test Item ... 158
10.1.1.1 Given Requirements on the Test Item .. 158

UML Testing Profile 2 (UTP 2), Version 2.1 v

10.1.2 Test Requirements ... 159
10.1.2.1 Given Test Objectives .. 159
10.1.2.2 Given Requirements .. 159

10.1.3 Test Design .. 160
10.1.3.1 Test Design Strategies shown on "Test Strategy" .. 160
10.1.3.2 Test Directives shown on "Test Strategy" ... 160

10.1.4 Test Configuration ... 160
10.1.5 Test Cases .. 161

10.1.5.1 Test Set "Manual croissants test" ... 161
10.2 LoginServer Example ... 164

10.2.1 Requirements Specification ... 164
10.2.2 Test Planning ... 165
10.2.3 Test Analysis ... 165

10.2.3.1 Derivation and Modeling of Test Requirements .. 166
10.2.3.2 Modeling the Type System and Logical Interfaces .. 167
10.2.3.3 Modeling Test Data ... 168

10.2.4 Test Design .. 169
10.2.4.1 Test Architecture and Test Configuration .. 169
10.2.4.2 Specification of Complex Test Data .. 170
10.2.4.3 Test Requirements Realization .. 171
10.2.4.4 Design of Test Case Procedures .. 172

10.2.5 Mapping to TTCN-3 .. 174
10.2.5.1 Mapping the Test Type System ... 174
10.2.5.2 Mapping Interface Descriptions ... 175
10.2.5.3 Mapping the Test Architecture .. 175
10.2.5.4 Mapping the Test Data Specification ... 175
10.2.5.5 Mapping Test Cases and Test Configuration ... 176

10.3 Videoconferencing Example ... 179
10.3.1 Given Requirements on the Test Item ... 179
10.3.2 Modeling the Structure of the System ... 179
10.3.3 Modeling the Behavior of the System ... 180
10.3.4 The TRUST Test Generator .. 182
10.3.5 Mapping to Code ... 183
10.3.6 References ... 183

10.4 Subsea Production System Example ... 185
10.4.1 Description of Case Study ... 185
10.4.2 Functionality to Test .. 185
10.4.3 Test Design Inputs ... 185
10.4.4 Generation of Test Sets and Abstract Test Cases .. 187
10.4.5 References ... 189

10.5 ATM Example ... 191
10.5.1 General .. 191
10.5.2 Unit Test Example ... 192
10.5.3 Integration Testing Example ... 196
10.5.4 System Test Example .. 201
10.5.5 References ... 206

11 Annex B (Informative): Mappings.. 207
11.1 Mapping between UTP 1 and UTP 2 .. 207

12 Annex C (Informative): Value Specification Extensions .. 212
12.1 Profile Summary ... 212
12.2 Non-normative data value extensions ... 212

12.2.1 Overview of non-normative ValueSpecification Extensions ... 212
12.2.2 Stereotype Specifications .. 213

12.2.2.1 ChoiceOfValues ... 213
12.2.2.2 CollectionExpression ... 214
12.2.2.3 ComplementedValue ... 214

vi UML Testing Profile 2 (UTP 2), Version 2.1

12.2.2.4 MatchingCollectionExpression .. 214
12.2.2.5 RangeValue .. 215

12.2.3 Enumeration Specifications ... 215
13 Index ... 217

UML Testing Profile 2 (UTP 2), Version 2.1 vii

Preface

OMG
Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer
industry standards consortium that produces and maintains computer industry specifications for interoperable,
portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle
approach to enterprise integration that covers multiple operating systems, programming languages, middleware and
networking infrastructures, and software development environments. OMG’s specifications include: UML® (Unified
Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse
Metamodel™); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG
Specifications are available from the OMG website at:
http://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and
PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management
Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

http://www.iso.org/

UML Testing Profile 2 (UTP 2), Version 2.1 1

1 Scope
In 2001, a working group at the OMG started developing a UML Profile dedicated to Model-based testing, called
UML Testing Profile (UTP). It is a standardized language based on OMG’s Unified Modeling Language (UML) for
designing, visualizing, specifying, analyzing, constructing, and documenting the artifacts commonly used in and
required for various testing approaches, in particular model-based testing (MBT) approaches. UTP has the potential
to assume the same important role for model-based testing approaches as UML assumes for model-driven system
engineering.

UTP is a part of the UML ecosystem (see figure below), and as such, it can be combined with other profiles of that
ecosystem in order to associate test-related artifacts with other relevant system artifacts, e.g. requirements, risks, use
cases, business processes, system specifications etc. This enables requirements engineers, system engineers and test
engineers to bridge the communication gap among different engineering disciplines.

Figure 1.1 - The UML Ecosystem

As the interest of industry in model-based testing approaches and languages increased, UTP attracted more and more
users. UTP was the first standardized language for model-based approaches to help in the validation and verification
of software-intensive systems. Model-based test specifications expressed with the UML Testing Profile are
independent of any methodology, domain, environment or type of system.

Eight years later, the UTP working group (WG) has agreed on consolidating the experiences and achievements of
UTP in order to justify the move from UTP 1.2 to a successor specification. These efforts resulted in a Request For
Information (RFI) for UML Testing Profile 2 (UTP 2), which was aimed at eliciting and gathering the shortcomings
of the current UTP and the most urgent requirements for a successor specification from the OMG and model-based
testing community.

Some of the main issues in the RFI responses are that UTP 2 should:
• be able to design test models of different test levels.
• address testing of non-functional requirements.
• be able to reuse test logs for further test evaluation and test generation.
• meet industry-relevant standards.
• integrate with SysML for requirements traceability.
• and so forth.

The UML Testing Profile 2 (UTP 2) was designed to meet the requirements derived from the RFI responses.

People may use the UML Testing Profile in addition to UML to:
• Specify the design and the configuration of a test system: Designing a test system includes the identification of

the test item (also known as system under test or abbreviated as SUT), its boundaries, the derivation of test

2 UML Testing Profile 2 (UTP 2), Version 2.1

components, and the identification of communication channels between interconnected test items test
components over which data can be exchanged.

• Build the model-based test plans on top of already existing system models: The possibility to reuse already
existing (system) artifacts, e.g. requirements, interface definitions, type definitions etc.

• Model test cases: The specification of test cases is an essential task of each test process in order to assess the
quality of the test item and to verify whether the test item complies with its specification.

• Model test environments: A test environment contains hardware, instrumentation, simulators, software tools, and
other support elements needed to conduct a test (according to IEEE 610).

• Model deployment specifications of test-specific artifacts: By relying on the UML’s deployment specification
capabilities, the actual deployment of a test system can be done in a model-based way.

• Model data: Modeling of data includes the data values being used as stimuli into the test item as well as for
responses expected from the test item such as the test oracle.

• Provide necessary information pertinent to test scheduling optimization: Test scheduling optimization can be
based on priorities, risk-related information, costs etc.

• Document test case execution results: To associate test cases with the actual outcome of their execution within
the very same model in order to perform further analysis, calculate specific metrics, etc.

• Document traceability to requirements and other UML model artifacts: Requirements traceability within test
specification is important to document and evaluate test coverage and to calculate other metrics such as progress
reports. Native traceability is given by the underlying UML capabilities. UTP does not offer different concepts
for traceability other than that provided by UML,

The intended audience for the UML Testing Profile are users who are able to read model-based test specifications
expressed within the UML Testing Profile models including:
• Test engineers
• Requirements Engineers
• System/Software Engineers
• Domain experts
• Customer/Stakeholder
• Certification authorities
• Testing tools (test case generators, data generators, schedulers, reporting engines, test script generators, etc.).

The intended audience of this UML Testing Profile specification itself includes, among others:
• People who want to implement UML Testing Profile-compliant tools.
• People who need to/want to/like to teach the UML Testing Profile.
• People who want to improve the UML Testing Profile specification.
• People who want to tailor the UML Testing Profile to satisfy needs of their specific project/domain/process.

UML Testing Profile 2 (UTP 2), Version 2.1 3

2 Conformance
As a native profile specification of the UML, the UTP 2 has to abide by the conformance types declared for
compliant UML profiles. The corresponding conformance types of UML can be found in section 2 "Conformance"
of the current UML specification [UML]. This guarantees that the underlying environment of any UTP 2
implementation is a UML modeling environment that is conformant with the UML. The UTP 2 adopted version of
UML's conformance types are defined as follows:

• Abstract syntax conformance: All concrete stereotypes and tags are implemented in the profile implementation
• Concrete syntax conformance: Support for the visual representation (i.e. icons) of the UTP concepts is provided

by the profile implementation
• Model interchange conformance: (delegated to underlying UML)
• Diagram interchange conformance: (delegated to underlying UML)
• Semantic conformance: All UTP constraints are enforced, either directly in the model with OCL (assuming

underlying OCL support) or indirectly by any other suitable means of the underlying modeling environment

In addition to the fundamental conformance types of the UML and its profiling mechanism, UTP 2 specifies two
compliance levels for its respective concepts:
• mandatory: concepts that are deemed mandatory have to be implemented in order to claim UTP 2 compliance;
• optional: concepts that are deemed optional might be implemented. If they are implemented, they have to be

implemented exactly how they have been specified by the UTP 2 specification - i.e., optional concepts are still
normative, but when they are implemented, they have to abide by the conformance types imposed by the
underlying UML and its profiling mechanism.

The decisions, which concepts are considered as mandatory and optional, have been based on the typical use cases
of UTP 2 (see section 6.3 Typical Use Cases of UTP 2). The main objective of UTP 2 is to design test cases,
potentially in an automated manner, and to describe the test architecture in order to execute test cases, potentially in
an automated manner. Except from that, UTP 2 provides further helpful concepts for the design and implementation
of a test environment that supports various activities of the test process, such as test analysis, manual and automated
test design, test execution and evaluation. The concepts required for these activities are grouped by corresponding
sections within this specification. The following relates the test process activities with the respective sections of the
UTP 2 specification and indicates whether a feature (a set of concepts grouped in a setion) is normative, mandatory
or optional:

4 UML Testing Profile 2 (UTP 2), Version 2.1

Test Process Phase Normative Mandatory
• Test Analysis Activities

- Section 8.3.1 Test Analysis X -

• Test Design Activities

- Section 8.3.2 Test Design X -
- Section 8.4 Test Architecture X X
- Section 8.5.1 Test-specific Procedures X X
- Section 8.5.1 Procedural Elements X X
- Section 8.5.1 Test-specific Actions X X
- Section 8.6.1 Data Specifications X -

• Test Execution and Evaluation Activities

- Section 8.6.2 Data Values X -
- Annex C Non-normative data value extensions - -
- Section 8.7.1 Arbitration Specifications X -
- Section 8.7.2 Test Logging X -

In addition to these concepts, UTP 2 specifies three model libraries for UTP 2. The conformance considerations for
the libraries are as follows:

UTP 2 Model Libraries Normative Mandatory
• Section 9.1 UTP Types Library X X
• Section 9.2 UTP Auxiliary Library X -

Any implementation that wants to claim conformance with UTP 2 specification has to abide by the adopted UTP 2
conformance types for each normative concept. If the concept is deemed mandatory in addition, any implementation
that wants to claim conformance with the UTP 2 specification, has to provide those mandatory concepts to the user.

UML Testing Profile 2 (UTP 2), Version 2.1 5

3 Terms and Definitions
The following terms and definitions are a sumary of the Conceptual Model described in clause 7. For further
examples and details refer to the respective sub-section in Clause 7.

Name Description Source
abstract test case A test case that declares at least one formal parameter. UTP 2 WG
abstract test
configuration

A test configuration that specifies the test item, test components
and their interconnections as well as configuration data that should
be abstract test data.

UTP 2 WG

actual data pool A specification of an actual implementation of a data pool. UTP 2 WG
actual parameter A concrete value that is passed over to the procedure and replaces

the formal parameter with its concrete value.
UTP 2 WG

alternative A compound procedural element that executes only a subset of its
contained procedural elements based on the evaluation of a
boolean expression.

UTP 2 WG

arbitration
specification

A set of rules that calculates the eventual verdict of an executed
test case, test set or procedural element.

UTP 2 WG

artifact An object produced or modified during the execution of a process. UTP 2 WG
atomic procedural
element

A procedural element that cannot be further decomposed. UTP 2 WG

boolean expression An expression that may be evaluated to either of these values:
"TRUE" or "FALSE".

UTP 2 WG

check property
action

A test action that instructs the tester to check the conformance of a
property of the test item and to set the procedural element verdict
according to the result of this check.

UTP 2 WG

complement A morphism that inverts data)i.e., that replaces the data items of a
given set of data items by their opposites).

UTP 2 WG

compound
procedural element

A procedural element that can be further decomposed. UTP 2 WG

concrete test case A test case that declares no formal parameter. UTP 2 WG
concrete test
configuration

A test configuration that specifies the test item, test components
and their interconnections as well as configuration data that should
be concrete data.

UTP 2 WG

constraint An assertion that indicates a restriction that must be satisfied by
any valid realization of the model containing the constraint.

[UML]

create log entry
action

A test action that instructs the tester to record the execution of a
test action, potentially including the outcome of that test action in
the test case log.

UTP 2 WG

create stimulus
action

A test action that instructs the tester to submit a stimulus
(potentially including data) to the test item.

UTP 2 WG

data A usually named set of data items. UTP 2 WG
data item Either a value or an instance. UTP 2 WG
data partition A role that some data plays with respect to some other data

(usually being a subset of this other data) with respect to some data
specification.

UTP 2 WG

data pool Some data that is an explicit or implicit composition of other data
items.

UTP 2 WG

data provider A test component that is able to deliver (i.e., either select and/or
generate) data according to a data specification.

UTP 2 WG

data specification A named boolean expression composed of a data type and a set of
constraints applicable to some data in order to determine whether
or not its data items conform to this data specification.

UTP 2 WG

data type A type whose instances are identified only by their value. [UML]

6 UML Testing Profile 2 (UTP 2), Version 2.1

Name Description Source
duration The duration from the start of a test action until its completion. UTP 2 WG
Error An indication that an unexpected exception has occurred while

executing a specific test set, test case, or test action.
UTP 2 WG

executing entity An executing entity is a human being or a machine that is
responsible for executing a test case or a test set.

UTP 2 WG

expect response
action

A test action that instructs the tester to check the occurrence of one
or more particular responses from the test item within a given time
window and to set the procedural element verdict according to the
result of this check.

UTP 2 WG

extension A morphism that increases the amount of data (i.e., that adds more
data items to a given set of data items).

UTP 2 WG

Fail A verdict that indicates that the test item did not comply with the
expectations defined by a test set, test case, or test action during
execution.

UTP 2 WG

formal parameter A placeholder within a procedure that allows for execution of the
procedure with different formal parameters that are provided by
the procedure invocation.

UTP 2 WG

Inconclusive A verdict that indicates that the compliance of a test item against
the expectations defined by a test set, test case, or test action could
not be determined during execution.

UTP 2 WG

loop A compound procedural element that repeats the execution of its
contained procedural elements.

UTP 2 WG

main procedure
invocation

A procedure invocation that is considered as the main part of a test
case by the test case arbitration specification.

UTP 2 WG

morphism A structure-preserving map from one mathematical structure to
another.

[WikiM]

negative A compound procedural element that prohibits the execution of its
contained procedural elements in the specified structure.

UTP 2 WG

None A verdict that indicates that the compliance of a test item against
the expectations defined by a test set, test case, or test action has
not yet been determined (i.e., it is the initial value of a verdict
when a test set, test case, or test action was started).

UTP 2 WG

parallel A compound procedural element that executes its contained
procedural elements in parallel to each other.

UTP 2 WG

Pass A verdict that indicates that the test item did comply with the
expectations defined by a test set, test case, or test action during
execution.

UTP 2 WG

PE end duration The duration between the end of the execution of a procedural
element and the end of the execution of the subsequent procedural
element.

UTP 2 WG

PE start duration The duration between the end of the execution of a procedural
element and the beginning of the execution of the subsequent
procedural element.

UTP 2 WG

postcondition A boolean expression that is guaranteed to be True after a test case
execution has been completed.

UTP 2 WG

preconditon A boolean expression that must be met before a test case may be
executed.

UTP 2 WG

procedural element An instruction to do, to observe, and/or to decide. UTP 2 WG
procedural element
verdict

A verdict that indicates the result (i.e., the conformance of the
actual properties of the test item with its expected properties) of
executing a test action on a test item.

UTP 2 WG

procedure A specification that constrains the execution order of a number of
procedural elements.

UTP 2 WG

UML Testing Profile 2 (UTP 2), Version 2.1 7

Name Description Source
procedure
invocation

An atomic procedural element of a procedure that invokes another
procedure and waits for its completion.

UTP 2 WG

property A basic or essential attribute shared by all members of a class of
test items.

UTP 2 WG

refinement A morphism that decreases the amount of data (i.e., that removes
data items from a given set of data items).

UTP 2 WG

response A set of data that is sent by the test item to its environment (often
as a reaction to a stimulus) and that is typically used to assess the
behavior of the test item.

UTP 2 WG

sequence A compound procedural element that executes its contained
procedural elements sequentially.

UTP 2 WG

setup procedure
invocation

A procedure invocation that is considered as part of the setup by
the arbitration specification and that is invoked before any main
procedure invocation.

UTP 2 WG

stimulus A set of data that is sent to the test item by its environment (often
to cause a response as a reaction) and that is typically used to
control the behavior of the test item.

UTP 2 WG

suggest verdict
action

A test action that instructs the tester to suggest a particular
procedural element verdict to the arbitration specification of the
test case for being taken into account in the final test case verdict.

UTP 2 WG

teardown procedure
invocation

A procedure invocation that is considered as part of the teardown
by the responsible arbitration specification and that is invoked
after any main procedure invocation.

UTP 2 WG

test action An atomic procedural element that is an instruction to the tester
that needs to be executed as part of a test procedure of a test case
within some time frame.

UTP 2 WG

test case A procedure that includes a set of preconditions, inputs and
expected results, developed to drive the examination of a test item
with respect to some test objectives.

UTP 2 WG

test case log A test log that captures relevant information on the execution of a
test case.

UTP 2 WG

test case verdict A verdict that indicates the result (i.e., the conformance of the
actual properties of the test item with its expected properties) of
executing a test case against a test item.

UTP 2 WG

test component A role of an artifact within a test configuration that is required to
perform a test case.

UTP 2 WG

test component
configuration

A set of configuration options offered by an artifact in the role of a
test component chosen to meet the requirements of a particular test
configuration.

UTP 2 WG

test configuration A specification of the test item and test components as well as
their interconnection and configuration data.

UTP 2 WG

test context A set of information that is prescriptive for testing activities which
can be organized and managed together for deriving or selecting
test objectives, test design techniques, test design inputs and
eventually test cases.

UTP 2 WG

test design directive A test design directive is an instruction for a test designing entity
to derive test artifacts such as test sets, test cases, test
configurations, data or test execution schedules by applying test
design techniques on a test design input. The set of assembled test
design techniques are referred to as the capabilities a test designing
entity must possess in order to carry out the test design directive,
regardless whether it is carried out by a human tester or a test
generator. A test design directive is a means to support the
achievement of a test objective.

UTP 2 WG

8 UML Testing Profile 2 (UTP 2), Version 2.1

Name Description Source
test design input Any piece of information that must or has been used to derive

testing artifacts such as test cases, test configuration, and data.
UTP 2 WG

test design
technique

A specification of a method used to derive or select test
configurations, test cases and data. test design techniques are
governed by a test design directive and applied to a test design
input. Such test design techniques can be monolithically applied or
in combination with other test design techniques. Each test design
technique has clear semantics with respect to the test design input
and the artifacts it derives from the test design input.

UTP 2 WG

test execution
schedule

A procedure that constrains the execution order of a number of test
cases.

UTP 2 WG

test item A role of an artifact that is the object of testing within a test
configuration.

UTP 2 WG

test item
configuration

A set of configuration options offered by an artifact in the role of a
test item chosen to meet the requirements of a particular test
configuration.

UTP 2 WG

test level A specification of the boundary of a test item that must be
addressed by a specific test context.

UTP 2 WG

test log A test log is the instance of a test log structure that captures
relevant information from the execution of a test case or test set.
The least required information to be logged is defined by the test
log structure of the test log.

UTP 2 WG

test log structure A test log structure specifies the information that is deemed
relevant during execution of a test case or a test set. There is an
implicit default test log structure that prescribes at least the start
time point, the duration, the finally calculated verdict and the
executing entity of a test case or test set execution which should be
logged.

UTP 2 WG

test objective A desired effect that a test case or test set intends to achieve. UTP 2 WG
test procedure A procedure that constrains the execution order of a number of test

actions.
UTP 2 WG

test requirement A desired property on a test case or test set, referring to some
aspect of the test item to be tested.

UTP 2 WG

test set A set of test cases that share some common purpose. UTP 2 WG
test set log A test log that captures relevant information from the execution of

a test set.
UTP 2 WG

test set purpose A statement that explains the rationale for grouping test cases
together.

UTP 2 WG

test set verdict A verdict that indicates the result (i.e., the conformance of the
actual properties of the test item with its expected properties) of
executing a test set against a test item.

UTP 2 WG

test type A quality attribute of a test item that must be addressed by a
specific test context.

UTP 2 WG

time point The time point at which a test action is initiated. UTP 2 WG
verdict A statement that indicates the result (i.e., the conformance of the

actual properties of the test item with its expected properties) of
executing a test set, a test case, or a test action against a test item.

UTP 2 WG

UML Testing Profile 2 (UTP 2), Version 2.1 9

4 References
4.1 Normative References

[MOF] http://www.omg.org/spec/MOF/

Object Management Group: “Meta Object Facility™ (MOF™) - Version 2.5.1”,
November 2016, formal/2016-11-01

[OCL] http://www.omg.org/spec/OCL/

Object Management Group: “Object Constraint Language™ (OCL™) - Version 2.4”,
February 2014, formal/2014-02-03

[UML] http://www.omg.org/spec/UML

Object Management Group: “OMG Unified Modeling Language™ (OMG UML) -
Version 2.5”, March 2015, formal/2015-03-01

[XMI] http://www.omg.org/spec/XMI/

Object Management Group: “XML Metadata Interchange (XMI) Specification -
Version 2.5.1”, June 2015, formal/2015-06-07

4.2 Informative References
[BMM] http://www.omg.org/spec/BMM

Object Management Group: “Business Motivation Model - Version 1.3”, May 2015,
formal/2015-05-19

[DD] http://www.omg.org/spec/DD/

Object Management Group: “Diagram Definition™ (DD) - Version 1.1”, June 2015,
formal/2015-06-01

[ES20187301] http://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.07.01_60/es_20187301v
040701p.pdf

ETSI ES 201 873-1: “Methods for Testing and Specifications (MTS) - The Testing and
Test Control Notation version 3 - Part 1: TTCN-3 Core Language”; V4.7.1 (2015-06)

[ES202951] http://www.etsi.org/deliver/etsi_es/202900_202999/202951/01.01.01_60/es_202951v0101
01p.pdf

ETSI ES 202 951: “Requirements for Modeling Notations. ETSI Standard, Methods
for Testing and Specification (MTS)”; Model-Based Testing (MBT). V1.1.1 (2011-07)

[ES20311901] http://www.etsi.org/deliver/etsi_es/203100_203199/20311901/01.02.01_60/es_20311901v
010201p.pdf

ETSI ES 203 119-1: “Methods for Testing and Specifications (MTS) - The Test
Description Language (TDL) - Part 1: Abstract Syntax and Associated Semantics”;
V1.2.1 (2015-06)

[ES20311902] http://www.etsi.org/deliver/etsi_es/203100_203199/20311902/01.01.01_60/es_20311902v
010101p.pdf

ETSI ES 203 119-1: “Methods for Testing and Specifications (MTS) - The Test
Description Language (TDL) - Part 2: Graphical Syntax”; V1.1.1 (2015-06)

[ES20311903] http://www.etsi.org/deliver/etsi_es/203100_203199/20311902/01.01.01_60/es_20311902v
010101p.pdf

ETSI ES 203 119-1: “Methods for Testing and Specifications (MTS) - The Test
Description Language (TDL) - Part 3: Exchange Format”; V1.1.1 (2015-06)

http://www.omg.org/spec/MOF/
http://www.omg.org/spec/OCL/
http://www.omg.org/spec/UML
http://www.omg.org/spec/XMI/
http://www.omg.org/spec/BMM
http://www.omg.org/spec/DD/
http://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.07.01_60/es_20187301v040701p.pdf
http://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.07.01_60/es_20187301v040701p.pdf
http://www.etsi.org/deliver/etsi_es/202900_202999/202951/01.01.01_60/es_202951v010101p.pdf
http://www.etsi.org/deliver/etsi_es/202900_202999/202951/01.01.01_60/es_202951v010101p.pdf
http://www.etsi.org/deliver/etsi_es/203100_203199/20311901/01.02.01_60/es_20311901v010201p.pdf
http://www.etsi.org/deliver/etsi_es/203100_203199/20311901/01.02.01_60/es_20311901v010201p.pdf
http://www.etsi.org/deliver/etsi_es/203100_203199/20311902/01.01.01_60/es_20311902v010101p.pdf
http://www.etsi.org/deliver/etsi_es/203100_203199/20311902/01.01.01_60/es_20311902v010101p.pdf
http://www.etsi.org/deliver/etsi_es/203100_203199/20311902/01.01.01_60/es_20311902v010101p.pdf
http://www.etsi.org/deliver/etsi_es/203100_203199/20311902/01.01.01_60/es_20311902v010101p.pdf

10 UML Testing Profile 2 (UTP 2), Version 2.1

[ES20311904] http://www.etsi.org/deliver/etsi_es/203100_203199/20311904/01.01.01_60/es_20311904v
010101p.pdf

ETSI ES 203 119-1: “Methods for Testing and Specifications (MTS) - The Test
Description Language (TDL) - Part 4: Structured Test Objective Specification
(Extension)”; V1.1.1 (2015-06)

[FUML] http://www.omg.org/spec/FUML/

Object Management Group: “Semantics of a Foundational Subset for Executable UML
Models (fUML) - Version 1.2.1”, January 2016, formal/2016-01-05

[HWT2012] R. Hametner, D. Winkler, and A. Zoitl, “Agile testing concepts based on keyword-driven
testing for industrial automation systems” in IECON 2012-38th Annual Conference on
IEEE Industrial Electronics Society, 2012, pp. 3727-3732

[IEC61508] http://www.iec-normen.de/dokumente/preview-pdf/info_iec61508-1%7Bed2.0%7Db.pdf

IEC: “Functional safety of electrical/electronic/programmable electronic safety-
related
systems—Part 1: General Requirements”, Edition 2.0, IEC 61508-1, 2010-04

[ISO1087-1] ISO: “Terminology work - Vocabulary - Part 1: Theory and application”, ISO 1087-
1:2000(E/F), 15-OCT-2000

[ISO25010] ISO/IEC: “System and software engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - Systems and software quality models”,
ISO/IEC 25010:2011, ISO, 2011-03-01

[ISO29119] http://www.softwaretestingstandard.org/

ISO/IEC/IEEE: “Software Testing - The International Software Testing Standard”
[ISO9126] ISO/IEC: “Software engineering—Product quality—Part 1: Quality model”, ISO/IEC

9126-1:2001, ISO, 2001
[ISTQB] http://www.istqb.org

ISTQB: “International Software Testing Qualifications Board”
[MDA] http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf

Object Management Group: “MDA Guide - Version 1.0.1”, June 2003, omg/2003-06-01
[MDAa] http://www.omg.org/mda/papers.htm

Object Management Group: “OMG Architecture Board, “Model Driven Architecture -
A Technical Perspective””

[MDAb] http://www.omg.org/mda/papers.htm

Object Management Group: “Developing in OMG’s Model Driven Architecture
(MDA)”

[MDAd] http://www.omg.org/mda

Object Management Group: “MDA “The Architecture of Choice for a Changing
World””

[OSLC] http://open-services.net/bin/view/Main/QmSpecificationV2

Open Services for Lifecycle Collaboration (OSLC): “Open Services for Lifecycle
Collaboration Quality Management Specification Version 2.0”

[SBVR] http://www.omg.org/spec/SBVR

Object Management Group: “Semantics of Business Vocabularies and Business Rules
(SBVR) - Version 1.3”, May 2015, formal/2015-05-07

[SEP2014a] http://plato.stanford.edu/archives/win2015/entries/category-theory/

Marquis, Jean-Pierre, “Category Theory”, The Stanford Encyclopedia of Philosophy
(Winter 2015 Edition), Edward N. Zalta (ed.)

[SysML] http://www.omg.org/spec/SysML

Object Management Group: “OMG Systems Modeling Language (OMG SysML™) -

http://www.etsi.org/deliver/etsi_es/203100_203199/20311904/01.01.01_60/es_20311904v010101p.pdf
http://www.etsi.org/deliver/etsi_es/203100_203199/20311904/01.01.01_60/es_20311904v010101p.pdf
http://www.omg.org/spec/FUML/
http://www.iec-normen.de/dokumente/preview-pdf/info_iec61508-1%7Bed2.0%7Db.pdf
http://www.softwaretestingstandard.org/
http://www.istqb.org/
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://www.omg.org/mda/papers.htm
http://www.omg.org/mda/papers.htm
http://www.omg.org/mda
http://open-services.net/bin/view/Main/QmSpecificationV2
http://www.omg.org/spec/SBVR
http://plato.stanford.edu/archives/win2015/entries/category-theory/
http://www.omg.org/spec/SysML

UML Testing Profile 2 (UTP 2), Version 2.1 11

Version 1.4”, September 2015, formal/2015-06-03
[TCM2008] J. Tang, X. Cao, and A. Ma, “Towards adaptive framework of keyword driven

automation testing” in Automation and Logistics, 2008. ICAL 2008. IEEE International
Conference on, 2008, pp. 1631-1636

[TestIF] http://www.omg.org/spec/TestIF/

Object Management Group: “Test Information Interchange Format (TestIF)
Specification - Version 1.0”, May 2015, formal/2015-05-05

[UL2007] Utting, M., Legeard, B.: “Practical Model-Based Testing: A Tools Approach”, Morgan-
Kaufmann, 2007

[UPL2012] http://dx.doi.org/10.1002/stvr.456

Utting, M., Pretschner, A., and Legeard, B.: “A taxonomy of model-based testing
approaches”, in Softw. Test. Verif. Reliab. 22, 5, August 2012, p. 297-312

[UTP] http://www.omg.org/spec/UTP

Object Management Group: “UML Testing Profile - Version 1.2”, April 2013,
formal/2013-04-03

[WikiCT] https://en.wikipedia.org/wiki/Category_theory

Wikipedia: “Category Theory”
[WikiM] https://en.wikipedia.org/wiki/Morphism

Wikipedia: “Morphism”

http://www.omg.org/spec/TestIF/
http://dx.doi.org/10.1002/stvr.456
http://www.omg.org/spec/UTP
https://en.wikipedia.org/wiki/Category_theory
https://en.wikipedia.org/wiki/Morphism

12 UML Testing Profile 2 (UTP 2), Version 2.1

5 Symbols
No special symbols have been used in this specification.

UML Testing Profile 2 (UTP 2), Version 2.1 13

6 Additional Information
6.1 How to read this document
This specification is intended to be read by the audience listed below in order to learn, apply, implement and support
UTP 2. To understand how UTP 2 relates to other testing standards, all readers are encouraged to read Clause 6
(Additional Information). In order to learn more about the conformance of UML and UTP 2 as well as the
compliance levels between the UTP 2 specification and the UTP 2 tool implementation, please read Clause 2
(Conformance). Some references to other standards are listed in Chapter 3 (References). For convenience, Clause 4
(Terms and Definitions) contains a brief summary of the concepts described in more detail in Clause 7
((Informative) Conceptual Model [STUB]).

The definition of the UML Testing Profile itself can be found in the Chapters 7-9. Clause 7 ((Informative)
Conceptual Model [STUB]) starts with the definition of a pure conceptual model of UTP 2 independent of any
implementation measures. The conceptual model is informative (i.e. non-normative) but provides the big picture of
the intended scope of UTP 2. The mapping of the conceptual model to the UML profile specification is described in
Clause 8 (Profile Specification [STUB]). The stereotype mappings abide by the semantics of the conceptual
elements in general. Only additional aspects of the semantics regarding the integration of a stereotype with related
UML metaclasses will be added in Clause 8.

Clause 9 (Model Libraries) describes the predefined UTP 2 model libraries. The UTP Auxiliary Library provides
predefined elements for reuse across multiple modeling projects. The UTP Types Library provides additional types
that have been proven helpful for the definition of tests.

The Annex sections provide further informative material for UTP 2, in particular an examples section that shows
different methodologies how to apply UTP 2 technically and conceptually. The Annex sections are living sections
that means they may change among future versions.

Modeling tool vendors should read the whole document, including the annex chapters. Modelers and engineers are
encouraged to read Annex A to understand how the language is applied to examples.

This document may be read in both sequential and non-sequential manner.

14 UML Testing Profile 2 (UTP 2), Version 2.1

6.2 Typographical conventions
A set of typographical conventions have been applied to the editorial part of this specification that should help the
reader in understanding and relating things to their proper context. These conventions are subsequently explained:
• Concepts of the conceptual model are written in lower letters and colored blue, indicating a link to the section of

the conceptual element. Example: test context
• UML metaclasses start with an upper case letter and are written in camel-case. Example: Constraint,

BehavioredClassifier
• Stereotypes are start with an upper case letter and are written in camel-case, surrounded by guillemets. Example:

«TestContext»
• Properties of metaclasses or tag definitions of stereotypes are stated in italic: Examples: constrainedElement

(from UML metaclass Constraint), arbitrationSpecification (from stereotype «ProceduralElement»)
• Values of Properties or tagged values of tag definitions are stated italic: Examples: false, true
• OCL constraints as formalization of natural language Constraint descriptions are set in Courier. Example:

context TestComponent:
not self.base_Property.class.getAppliedStereotype('UTP::TestItem')->
oclIsUndefined()

UML Testing Profile 2 (UTP 2), Version 2.1 15

6.3 Typical Use Cases of UTP 2
This section briefly summarizes typical use cases of UML Testing Profile V2 (UTP 2) by means of a simple UML
use case model. It is intended to give the interested reader an initial idea of who and what for UTP 2 may be used in
the context of developing and testing complex systems.

The following use case diagram summarizes typical UTP 2 users and their use cases of UTP 2.

Figure 6.1 - UTP 2 Use Cases

The following table characterizes the users (represented as UML actors) introduced in the diagram above and lists
for each user the use cases related to UTP 2 she or he may directly or indirectly carry-out.

16 UML Testing Profile 2 (UTP 2), Version 2.1

Table 6.1 Typical UTP 2 Users

User Type Description Use Cases
Certifier A role of a person responsible for

certifying a safety-critical or mission-
critical system or product.

• check traceability
• review test specifications

Human Test Executor A role of a person responsible for
executing test cases and/or evaluating their
outcomes.

• evaluate test results
• execute test cases

Machine Test Executor A machine or device that executes test
cases and/or evaluates their outcomes.

• evaluate test results
• execute test cases

Product Manager A role of a person having the overall
responsibility for a system or product.

• determine test coverage
• check traceability
• review test specifications

Project Manager A role of a person having the overall
responsibility for the development,
procurement, implementation, or adaption
of a system or product or a part of it.

• determine test coverage
• check traceability

QA Manager A role of a person responsible to guarantee
the appropriate quality of a system or
product.

• determine test coverage
• check traceability
• review test specifications

Requirements Engineer A role of a person responsible for
gathering, expression and managing the
requirements on a system or product.

• design test cases
• design acceptance tests
• design integration tests
• design system tests
• design test cases for a data-

intensive system
• design test data
• design test cases for a system that

includes humans
• design test cases for a system with

time-critical behavior
• design unit tests
• generate test case instances
• review test specifications
• check traceability

System Designer A role of a person that designs, builds,
extends, maintains or updates a system or
product.

• implement automatic test case
execution

• implement onboard test cases
• implement test components
• select test data

System Operator A role of a person that utilizes a system or
product.

• review test specifications
• check traceability

Test Designer A role of a person that designs, builds,
extends, maintains or updates test
specifications of a system.

• design test cases
• design acceptance tests
• design integration tests
• design system tests
• design test cases for a data-

intensive system
• design test data
• design test cases for a system that

includes humans
• design test cases for a system with

time-critical behavior

UML Testing Profile 2 (UTP 2), Version 2.1 17

• design unit tests
• generate test case instances
• design test specifications
• implement automatic test case

execution
• implement onboard test cases
• implement test components
• provide test data
• select test data
• update test specifications

Tool Vendor A role of a person that develops a tool
implementing at least some aspects of the
UTP 2 specification.

• implement tool support for UTP 2
• implement automatic test case

execution
• implement onboard test cases
• implement test components
• select test data

The following table briefly describes the use cases introduced in the diagram above.

Use Case Description
check traceability Verification of the traceability between requirements and test cases in order to

determine the coverage of a system by a set of test cases.
design acceptance tests The design of test cases that are used to perform an acceptance test of a system

or product, i.e. that the sponsor/customer may decide on the acceptance of that
system or product.

design integration tests The design of test cases that are used to perform an integration test of a system
or product, i.e. the verification of the interoperability among its internal
components as well as with its environment conforms to its specification.

design system tests The design of test cases that are used to perform a system test of a system or
product, i.e. the verification that the system or product (typically viewed as a
black box) fulfills its requirements.

design test cases The design, elaboration and adaptation of test sets comprising test cases in
order to verify the requirements and/or to validate the goals of a system or
product.

design test cases for a data-
intensive system

The design of test cases for a system whose functionality includes complex
processing of data that is of a highly complex structure and/or of large data
volumes.

design test cases for a system
that includes humans

The design of test cases for a sociotechnical system that includes technical
systems as well as humans collaboratively performing complex processes.

design test cases for a system
with time-critical behavior

The design of test cases for a system that must comply to soft or hard real-time
constraints on its behavior.

design test data The design and production of data that is of a highly complex structure and/or
of large data volumes.

design test specifications The elaboration and compilation of all information necessary for carrying-out
verification and validation procedures of a system or product. This includes
specifying test objectives, test strategies, test procedures, test data, test
configurations, evaluation criteria and more.

design unit tests The design of test cases that are used to perform functional tests of an
individual component of a system or product.

determine test coverage The examination of test sets and test cases with the focus on the coverage
provided by of those test sets and test cases with respect to the requirements
and/or implementation aspects of a system or product in order to determine the
suitability of the test sets and test cases for a given purpose.

evaluate test results The examination of the results of an executed test set or executed test case in

18 UML Testing Profile 2 (UTP 2), Version 2.1

order to determine the verdict of the test set or test case.
execute test cases The manual or automatic execution of test procedures according to a given test

specification composed of sets and/or test cases.
generate test case instances The manual or automatic production of specific test case instances from a

given test specification composed of generic sets and/or test cases.
implement automatic test case
execution

The implementation, provisioning and configuration of test infrastructure
required to perform and evaluate test sets or test cases automatically.

implement onboard test cases The implementation of test components and test procedures as part of a system
or product in order to make it able to perform self-tests while it is in operation.

implement test components The implementation, provisioning and configuration of auxiliary test
components in order to automate or at least to simplify the execution of test
sets or test cases.

implement tool support for UTP
2

The implementation, provisioning or configuration of a tool in order to
supports the utilization of UTP 2. This could e.g. be a UML Profile
implementing UTP 2 for a particular UML modeling tool or a test execution
tool that supports the concepts of UTP 2.

provide test data The provisioning of dedicated data that is used to perform test sets or test
cases.

review test specifications The quality assurance of a particular test specification in order to fulfill given
quality goals.

select test data The selection and potentially transformation of available operational data in
order to use this data during the execution of test sets or test cases.

update test specifications The adaption of test objectives, test strategies, test procedures, test data, test
configurations, evaluation criteria etc. according to changing requirements and
goals of an already existing system or product.

Table 6.2 - Typical UTP 2 Use Cases

6.4 Relation to testing-relevant standards
The landscape of software/system testing standards is diversified. Many domain-specific standards (e.g.,
[IEC61508]) set requirements on how a test process should be conducted. In addition, there are a number of domain-
and methodology-independent testing-relevant standards (e.g., [ISO29119]), to which UTP 2 can define integration
points. In the following section, the specification describes some of these standards and discusses how they can be
integrated with UTP 2.

ISO/IEC/IEEE 29119 Software Testing Standard
The ISO/IEC/IEEE 29119 Software Testing Standard is a family of standards for software testing, which consists of
five parts:
• Concepts and definitions
• Test processes
• Test documentation
• Test techniques
• Keyword-driven testing

[ISO29119] is a conceptual standard, in the sense that it does not define technical solutions, specific languages or
methodologies, in contrast to UTP 2. Instead, [ISO29119] standardizes a number of concepts and definitions, some
of which have been adopted by UTP 2. [ISO29119]-2 specifies the structure of test processes and distinguishes
different levels for test processes: organizational, test management and dynamic test processes. The first two
processes deal with management-related aspects of test processes, and the dynamic test process is mainly about
deriving test cases, implementing and executing test cases and evaluating executed test cases.

UTP 2 is designed to support the dynamic test process. That means, it provides concepts that enable the
derivation/generation, specification, visualization and documentation of test artifacts such as test cases, data, test
configurations, test sets and test contexts. Furthermore, UTP 2 provides necessary concepts to generate [ISO29119]-

UML Testing Profile 2 (UTP 2), Version 2.1 19

3-compliant test reports and documentations out of a UTP 2 model.

A set of standardized test design techniques, such as equivalence partitioning or state-based testing, has been
adopted in [ISO29119]-4 made technically explicit as part of the UTP 2 language. Test engineers can utilize UTP 2
to specify test design techniques to be applied on a certain test design input (e.g., a description of the intended
behavior of the test item, which is represented as a state machine or interaction). In addition to these standardized
test design techniques, test engineers may define additional test design techniques if required.

The relation to [ISO29119]-5, which deals with standardizing the concepts of the keyword-driven testing paradigm,
is of an implicit nature. UTP 2 can be effectively employed to setup and drive keyword-driving testing approaches.
For further information on the relation of UTP 2 to keyword-driven testing see section Relation to keyword-driven
testing.

ISTQB and its glossary
The ISQTB [ISTQB] and its glossary defines a set of globally standardized terminologies and definitions of testing-
related concepts. The ISTQB nomenclature was deemed equally important for the definition of UTP 2 concepts as
the [ISO29119] definitions. Hence, UTP 2 adopted a set of definitions, terminologies and even test design
techniques from the ISTQB glossary and syllabi.

To keep the analogy with [ISO29119], UTP 2 is designed to support activities of test analysis and test design of the
ISTQB fundamental test process. Test implementation and test execution are supported rather indirectly by means of
arbitration specifications, precise semantics of test actions and the definition of test execution schedules.

Test evaluation activities are supported by means of the test logging capability of UTP 2, which enables a system-
independent representation of a test execution. For example, UTP 2 test logs can be exploited for metrics
calculations or supporting other analysis.

ETSI Testing and Test Control Notation 3 (TTCN-3)
ETSI TTCN-3 [ES20187301] standardizes a test programming language and architecture of a test execution system.
It enables a platform-independent implementation of executable test cases. As such, it provides test engineers a set
of language features that has been proven efficient in the development of large and complex test suites for software-
intensive systems of various domains, including telecommunication, transportation, and automotive airborne
software. In addition, TTCN-3 provides concepts that address reusability and simplicity in the specification of large
test suites, such as using wildcard values to ease the definition of expected responses from the test item.

UTP 2, as a successor of UTP 1, is influenced by the capabilities of TTCN-3. UTP 2 adopts some TTCN-3 concepts
such as test components, test configurations and test actions. Moreover, some of the TTCN-3 wildcards definitions
(e.g., regular expression, any value) have been adopted by UTP.

Although UTP 2 defines test cases (due to being dependent on UML) at a much higher level of abstraction than
TTCN-3, it is possible (and has been done in numerous approaches) to generate TTCN-3 modules from UTP 2 test
models.

ETSI Test Description Language (TDL)
The Test Description Language (TDL) standardized by ETSI ([ES20311901], [ES20311902],[ES20311903],
[ES20311904]) is a MOF-based graphical modeling language for describing test scenarios (not test cases) by a
similar notation to Message sequence Charts (MSC) or UML sequence Diagrams (SD). TDL represents the next
generation of testing languages in the ETSI testing technology stack and exploits the advantages of MBT. TDL is
used primarily - but not exclusively - for functional testing. According to ETSI, TDL can bring a number of benefits,
including:
• higher quality tests through better design
• easier to review by non-testing experts
• better, faster test development
• seamless integration of methodology and tools

TDL and UTP 2 share a set of common concepts such as test component, test configuration and procedural

20 UML Testing Profile 2 (UTP 2), Version 2.1

elements. This is partially due to the same origin of TDL and UTP 2: TTCN-3. In that regard the two languages are
compatible. However, UTP 2 has a bigger scope than TDL, which so far mainly focuses on functional testing and
the manual definition of test scenarios. UTP 2 offers several features beyond the capability of TDL, such as
specifying test design techniques and application thereof onto a test design input. UTP 2 offers explicit concepts for
test generation. Another feature of UTP 2 is the flexible handling of arbitration specifications. Finally, UTP 2 offers
concepts to organize testing activities based on test management concepts such as test contexts, which resemble the
semantics of [ISO29119] test process or test sub-process, test types, test objectives and test sets.

UML Testing Profile 2 (UTP 2), Version 2.1 21

6.5 Relation to model-based testing
Model-Based Testing (MBT) is a testing technique that uses models of a software-intensive system under test to
perform certain testing activities such as test analysis, test design and test implementation in both an automated (e.g.,
generation of test cases and data) and manual manner. Such a system under test is called a test item in the context of
the UTP.

The UTP definition of MBT is adopted and slightly adjusted from the [ES202951] definition. "Model-based testing
(MBT) is an umbrella of techniques that uses semi-formal models as engineering artifacts in order to specify and/or
generate testing-relevant artifacts, such as test cases, test scripts, and reports." Other valid definitions of MBT are:
• "Testing based on or involving models" ([ISTQB], Glossary)
• "An umbrella of techniques that generates tests from models" [ES202951]

MBT has been thoroughly investigated in the academic literature and has also been of great interest in a variety of
industry domains [UPL2012], [UL2007]. The idea of MBT is to utilize models (so called test models in the context
of UTP 2) that represent the expected behavior of the test item or test cases of the test item at a higher level of
abstraction. Such abstraction enables test engineers to focus exclusively on the logical aspects of the test item,
instead of being bothered by technical details of the eventual implementation. Low level details of test cases, for
example, syntactical details of a scripting language or completeness of data, can be taken care of by domain specific
generators eventually producing executable test cases, which can finally be executed against the test item.

UTP 2 is an industrial standard that dedicatedly supports MBT by relying on UML. UTP covers a variety of
concepts that are deemed mandatory such test case, data, and Arbitration & verdict. It also dedicatedly and
exclusively defines concepts to govern the derivation of test-relevant information (such as test cases, data etc.) by
means of test directives and test design techniques. Additionally, it also provides a few test management-related
concepts that are required for defining complete test specification documents (compatible with [ISO29119]) such as
test contexts (called test process/test sub-process in [ISO29119]), test level, test type and test logs.

UTP 2 is agnostic of any MBT methodology, and thus, supports a variety of MBT approaches. Some of the key
aspects include: 1) Modeling test cases for a test item using stereotypes from the profile; 2) Modeling the expected
behavior of the test item for test derivation using stereotypes from the profile; 3) Modeling test case specifications in
domain specific languages implementing UTP.

Based on the philosophy of (test) modeling, UTP allows creating test models at various levels of abstraction ranging
from test models that have no concrete data, test models that have some data, and test models that have all concrete
data available.

6.6 Relation to keyword-driven testing
Keyword-driven testing (KDT) is an industrial de-facto standard that is suitable for both manual and automated test
execution. KDT methodologies define logical functions that can be performed on the test item in an implementation-
independent format (i.e., keyword) at a higher level of abstraction. Keywords are used to design so called keyword
test cases (see [ISO29119]-5). In order to execute the keyword test cases against the test item, it is required that
implementations of the keywords can be executed by a keyword-based test execution system. Keyword
implementations are usually organized in a test library. The keyword-based test execution system is responsible to
establish a connection between the keyword implementations and the actual implementation of the test item, run
keyword test cases, and execute the keyword implementations against the actual implementation of the test item.

In the literature, there exist a number of keyword-driven testing frameworks. For example, Tang et al. [TCM2008]
proposed a keyword-driven testing framework to transform keyword-based test cases into different kinds of test
scripts. Hametner et al. [HWT2012] proposed a keyword-driven testing approach to specify keyword test cases in a
high abstraction level, as tabular format using predefined keywords, and automatically generated executable test
cases from the keyword test case. There are a number of commercial and open source tools available for KDT.

UTP 2 is defined to facilitate MBT but it does not explicitly cope with the design and implementation of test
execution systems. However, UTP 2 defines concepts such as, abstract test cases and data specification explicitly to
enable automated generation of concrete test cases and data from abstract ones. This idea conforms to the idea of

22 UML Testing Profile 2 (UTP 2), Version 2.1

KDT in terms of raising the level of abstractions by defining keyword test cases.

Keywords can be represented by numerous concepts of the underlying UML within UTP 2. For example, Operations
of Interfaces may be interpreted as the logical functions that can be performed on the test item. Additionally, UTP 2
can be used to define or generate test cases that are based on these UML-based keyword representations. UML
behaviors such as Activities or Interactions are suitable means to represent keywords in test cases in UTP 2, which
are eventually exported into the keyword format required by the utilized keyword-based test execution system. As
such, UTP 2 is suitable to be used as a standardized and visual language for keywords and keyword test cases.

UTP 2 could even go one step further. Due to the fact that UTP 2 is based on UML, it is even possible to provide an
executable specification of the test library (i.e., the implementation of a keyword) by means of other standards such
as fUML.

As a summary, UTP 2 can be efficiently leveraged as the language for the (automated or manual) design,
visualization, documentation and communication of keywords, keyword test cases and even implementations
thereof.

6.7 Relation to the MARTE Profile
Modeling and Analysis of Real-Time and Embedded Systems (MARTE) is a UML profile that is specifically
designed for modelling and supporting analyses (e.g., performance and schedulability) for real-time and embedded
systems. MARTE is developed to replace its predecessor UML profile, i.e., the UML profile for the Schedulability,
Performance, and Time specification (SPTP).

At a very high level, the MARTE profile is organized into four main packages: MARTE foundations, MARTE
design model, MARTE analysis model, and MARTE annexes including: MARTE model libraries, Value
Specification Language, and Repetitive Structure Modeling. Out of these four packages MARTE analysis model is
outside the scope of UTP since it doesn’t aim to support analyses such as performance and schedulability but rather
focuses on the test case generation. Nonetheless, UTP may be used for supporting model-based performance and
schedulability testing and such modelling can be supported with MARTE foundation package on which MARTE
analysis model relies on.

The most relevant packages for UTP from MARTE include Non-Functional Properties Modeling (NFP), Time
Modelling (Time), and MARTE Library. The NFP package provides a generic framework for modelling NFPs using
UML modeling elements. The package defines stereotypes such as «Nfp» to define new NFPs for a particular
application and «Unit» for defining new measurement units by extending the existing ones provided in the MARTE
model library such as TimeUnitKind and PowerUnitKind. Notice that NFPs defined in MARTE can be used
together with UTP to support test case generation.

The Time package is specifically designed for modelling time and its related concepts specifically for real-time and
embedded systems. Since Time and behavior are tightly coupled, MARTE’s Time modelling can be used in
conjunction with the UTP for supporting model-based testing of real-time embedded software/system with a focus
on time behavior. The extensive model library of MARTE provides extended basic data types such as Real and
DateTime and a rich collection of operations on them. In addition, it also provides a wide variety of measurement
units such as TimeUnitKind and LengthUnitKind, general data types such as IntegerVector and IntegerInterval,
predefined data types such as NFP_Percentage and NFP_DataSize and TimeLibrary supporting modelling such as
logical and ideal clocks. These types can be used for modelling test items and test components that require extended
data types rather than the basic data types supported by the UML. In addition, the modelling support for a variety of
clocks, i.e., logical and ideal clocks, can be used for modelling complex time behavior of test items and test
components.

UML Testing Profile 2 (UTP 2), Version 2.1 23

6.8 Acknowledgements
The following OMG member organizations submitted this specification (in alphabetic order):
• Fraunhofer FOKUS, Germany.
• SOFTEAM, France.

The following OMG and non-OMG member organizations supported this specification (in alphabetic order):
• PTC Inc., United Kingdom and USA.
• Hamburg University of Applied Science, Germany.
• KnowGravity Inc., Switzerland.
• Grand Software Testing, USA.
• SELEX ES, Italy.
• Simula Research Lab, Norway.

Special Acknowledgments
The following persons were members of the core teams that contributed to the content of this document (in
alphabetic order):
• Shaukat Ali, shaukat@simula.no
• Alessandra Bagnato, alessandra.bagnato@softeam.fr
• Etienne Brosse, etienne.brosse@softeam.fr
• Gabriella Carrozza, gcarrozza@sesm.it
• Zhen Ru Dai, dai@informatik.haw-hamburg.de
• Rolf Gubser, rolf.gubser@knowgravity.com
• Jon D. Hagar, embedded@ecentral.com
• Andreas Hoffmann, andreas.hoffmann@fokus.fraunhofer.de
• Andreas Korff, akorff@ptc.com
• Markus Schacher, markus.schacher@knowgravity.com
• Ina Schieferdecker, ina.schieferdecker@fokus.fraunhofer.de
• Marc-Florian Wendland, marc-florian.wendland@fokus.fraunhofer.de
• Tao Yue, tao@simula.no

24 UML Testing Profile 2 (UTP 2), Version 2.1

7 (Informative) Conceptual Model
This section is informative, i.e. non-normative and not relevant for actual profile implementations. However, it is
included here to help the reader to get a better understanding of the concepts behind UTP 2. This section illustrates
some of the semantics for the concepts defined in this document by means of a pragmatic application of the OMG
specification "Semantics of Business Rules and Vocabularies" [SBVR]. This pragmatic application of SBVR
includes the following:
• A number of concept diagrams visualize the concepts as well as their interrelationships (in SBVR called "verb

concepts") organized around different subject areas. Furthermore, any SBVR definitional rule related to the
concepts shown is also visualized on the diagram.

• For each concept diagram, the rule statements of each definitional rule shown are listed. The styling of those rule
statements is simplified compared to [SBVR] in the sense that no colors/formatting is used. The only styling that
is shown is that concepts defined within the document are shown underlined and represent an intra-document
hyperlink.

• For each concept diagram, the semantics of each concept shown on the diagram is defined, usually by means of
an intensional definition as suggested by [ISO1087-1]. Here underlined words also represent hyperlinks to the
mentioned concepts. When defined, additional properties of concepts such as synonyms, examples,
generalizations, specialization, etc. are also listed. Furthermore, for each concept the source of its definition is
specified.

7.1 Test Planning

7.1.1 Test Analysis

7.1.1.1 Test Context Overview
The following concept diagram represents important semantic aspects of test context and associated other concepts
such as test set, test case, data and test design input.

A test context is defined as a hub for information that specifies test type, test level, prescribes test design technique,
and refers to data, data pool, test design input, arbitration specification, test set and test case. A test context also
refers to other important test model elements, such as the set of test cases, data and the test design input. A test
context also provides information for test management, where planning and strategies for the test are defined.

UML Testing Profile 2 (UTP 2), Version 2.1 25

Figure 7.1 - Test Context Overview

Definitional Rules shown on "Test Context Overview"

Name Rule statement
DRTA01 It is necessary that each test context specifies at most one test level.
DRTA02 It is necessary that each test context specifies at most one test type.
DRTA03 It is necessary that each test set refers to at most one arbitration specification.

Table 7.1 - Structural rules shown on Test Context Overview

7.1.1.2 Test Requirement and Test Objective Overview
The following concept diagram represents important semantic aspects of test objectives and test requirements and
how they relate to requirements on a system to be tested.

A test requirement is designed to meet test objectives and test context specifies test objectives. A test case is
designed to meet one or more test objectives and thus the test case must satisfy the associated test requirements of
test objectives. In other words, a test objective specifies the goal of a test case and is defined for a certain test
context. A test objective is realized by test requirement and implemented by test cases.

The diagram below also shows how test requirements are related to concepts in [SysML]. A test requirement refers to
system specification item and associated with requirements of the system. A requirement is further specialized into
functional requirement and non-functional requirement.

26 UML Testing Profile 2 (UTP 2), Version 2.1

Figure 7.2 - Test Requirement and Test Objective Overview

7.1.1.3 Concept Descriptions
test context
Definition A set of information that is prescriptive for testing activities which can be organized

and managed together for deriving or selecting test objectives, test design
techniques, test design inputs and eventually test cases.

Examples acceptance test, smoke test, system test, ...
Source UTP 2 WG

test level
Definition A specification of the boundary of a test item that must be addressed by a specific

test context.
Examples integration test, system test, component test, ...
Source UTP 2 WG

test objective
Definition A desired effect that a test case or test set intends to achieve.
Examples • Provision of information about the qualities of the product to a certification

authority or other stakeholders
• Provision of information that the product has met stakeholder expectations
• Provision of information that requirements of a product are fulfilled (i.e.

regulatory, design, contractual, etc.)
Source UTP 2 WG

test requirement
Definition A desired property on a test case or test set, referring to some aspect of the test item

to be tested.
Synonyms test condition

UML Testing Profile 2 (UTP 2), Version 2.1 27

Examples • Test case must ensure 80% path coverage of use case XY.
• Test case must check that an IPv6 multicast message is carried out over a

GeoBroadcast message into the correct geographical area, with a GVL manually
configured.

Source UTP 2 WG
Is a requirement

test set
Definition A set of test cases that share some common purpose.
Source UTP 2 WG

test set purpose
Definition A statement that explains the rationale for grouping test cases together.
Source UTP 2 WG

test type
Definition A quality attribute of a test item that must be addressed by a specific test context.
Examples functionality test, usability test, conformance test, interoperability test, performance

test, ...
Source UTP 2 WG

7.1.2 Test Design

7.1.2.1 Test Design Facility Overview
The following diagram summarizes the concepts of UTP 2 test design facility. The test design facility enables the
specification of test design techniques that must be applied on a test design input in order to derive test artifacts such
as test sets, test cases, test configurations, required data or test execution schedules. Whether the test derivation
process according to the specified test design techniques is carried out manually or automatically does not matter
whatsoever. Such test design techniques are assembled and governed by a test design directive. Thus, the test design
directive is a specification of the capabilities a test designing entity (e.g. a human tester or test generator) must offer
in order to perform the derivation activities according to the assembled test design techniques. The UTP 2 test
design facility is agnostic of any implementation- or tool-specific details and simply offers the ability to describe,
select and extend the set of potentially available and applicable test design techniques.

28 UML Testing Profile 2 (UTP 2), Version 2.1

Figure 7.3 - Test Design Facility Overview

7.1.2.2 Concept Descriptions
test design directive
Definition A test design directive is an instruction for a test designing entity to derive test

artifacts such as test sets, test cases, test configurations, data or test execution
schedules by applying test design techniques on a test design input. The set of
assembled test design techniques are referred to as the capabilities a test designing
entity must possess in order to carry out the test design directive, regardless whether
it is carried out by a human tester or a test generator. A test design directive is a
means to support the achievement of a test objective.

Source UTP 2 WG

test design input
Definition Any piece of information that must or has been used to derive testing artifacts such

as test cases, test configuration, and data.
Examples a state machine specifying some expected behavior of the test item used to derive

some test cases, a requirements catalog used to derive some test cases, ...
Source UTP 2 WG
Is a model

test design technique
Definition A specification of a method used to derive or select test configurations, test cases

and data. test design techniques are governed by a test design directive and applied
to a test design input. Such test design techniques can be monolithically applied or
in combination with other test design techniques. Each test design technique has
clear semantics with respect to the test design input and the artifacts it derives from
the test design input.

Examples equivalence testing, structural coverage,
Source UTP 2 WG

UML Testing Profile 2 (UTP 2), Version 2.1 29

7.2 Test Architecture

7.2.1 Test Architecture Overview
The following concept diagram represents important semantic aspects in the context of test configuration and
associated other concepts such as test component, test items and test cases. A test case relies on at least one test
configuration to execute. A test configuration specifies how the test item and test components are interconnected and
what configuration data are needed. Configuration data are specified as part of the test item configuration and test
component configuration for the test item and each test component.

We explicitly classify test configuration into two categories: abstract test configuration and concrete test
configuration such that enabling the generation of concrete test configurations from an abstract test configuration
would be possible.

Figure 7.4 - Test Architecture Overview

Definitional Rules shown on "Test Architecture Overview"

Name Rule statement
DRTR01 It is necessary that each test item configuration specifies the configuration of at least one test

item.
DRTR02 It is necessary that each test component configuration specifies the configuration of at least one

test component.
Table 7.2 - Structural rules shown on Test Architecture Overview

7.2.2 Concept Descriptions
abstract test configuration
Definition A test configuration that specifies the test item, test components and their

interconnections as well as configuration data that should be abstract test data.
Source UTP 2 WG
Is a test configuration

30 UML Testing Profile 2 (UTP 2), Version 2.1

artifact
Definition An object produced or modified during the execution of a process.
Synonyms work product
Examples • Software XY.

• Software Requirements Specification.
• Coffee machine.
• Coffee bean.

Source UTP 2 WG

concrete test configuration
Definition A test configuration that specifies the test item, test components and their

interconnections as well as configuration data that should be concrete data.
Source UTP 2 WG
Is a test configuration

test component
Definition A role of an artifact within a test configuration that is required to perform a test

case.
Examples • A test driver

• A test stub
• Coffee machine that grinds the coffee beans to be tested.

Source UTP 2 WG
Sub categories data provider
Is role of artifact

test component configuration
Definition A set of configuration options offered by an artifact in the role of a test component

chosen to meet the requirements of a particular test configuration.
Source UTP 2 WG

test configuration
Definition A specification of the test item and test components as well as their interconnection

and configuration data.
Source UTP 2 WG
Sub categories • abstract test configuration

• concrete test configuration

test item
Definition A role of an artifact that is the object of testing within a test configuration.
Synonyms System Under Test, SUT
Examples • Software XY to be tested.

• Software Requirements Specification to be reviewed.
• Coffee machine to be tested.
• Coffee beans to be tested.

Abbreviation SUT
Source UTP 2 WG
Is role of artifact

test item configuration
Definition A set of configuration options offered by an artifact in the role of a test item chosen

to meet the requirements of a particular test configuration.
Source UTP 2 WG

UML Testing Profile 2 (UTP 2), Version 2.1 31

7.3 Test Behavior

7.3.1 Test Cases

7.3.1.1 Test Case Overview
The following concept diagram represents important semantic aspects in the context of what a test case is and what
its components are. A test case invokes a test procedure describing the execution order of individual test actions (not
shown here, see Test Procedures and Test-specific Actions for details). A test case is specialized into abstract test
case and concrete test case depending on the availability of data. If all the data required for a test case is available, it
is classified as a concrete test case and abstract test case otherwise.

As shown in Test Context Overview, test cases may be grouped into test sets. A test execution schedule prescribes
execution order of this set of test cases. All, test cases, test procedure, and test execution schedule may require a
preconditon and may guarantee a postcondition, each of which play the role of boolean expression.

Figure 7.5 - Test Case Overview

Definitional Rules shown on "Test Case Overview"

Name Rule statement
DRTC01 It is necessary that each test case invokes at least one test procedure.
DRTC02 It is necessary that each test execution schedule requires at most one preconditon.
DRTC03 It is necessary that each test case requires at most one preconditon.
DRTC04 It is necessary that each test procedure requires at most one preconditon.
DRTC05 It is necessary that each test execution schedule guarantees at most one postcondition.
DRTC06 It is necessary that each test case guarantees at most one postcondition.
DRTC07 It is necessary that each test procedure guarantees at most one postcondition.
DRTC08 It is impossible that a test execution schedule invokes a test procedure.

Table 7.3 - Structural rules shown on Test Case Overview

7.3.1.2 Concept Descriptions
abstract test case
Definition A test case that declares at least one formal parameter.
Source UTP 2 WG

32 UML Testing Profile 2 (UTP 2), Version 2.1

Is a test case

boolean expression
Definition An expression that may be evaluated to either of these values: "TRUE" or "FALSE".
Synonyms predicate
Source UTP 2 WG

concrete test case
Definition A test case that declares no formal parameter.
Source UTP 2 WG
Is a test case

postcondition
Definition A boolean expression that is guaranteed to be True after a test case execution has

been completed.
Source UTP 2 WG
Is role of boolean expression

preconditon
Definition A boolean expression that must be met before a test case may be executed.
Source UTP 2 WG
Is role of boolean expression

test case
Definition A procedure that includes a set of preconditions, inputs and expected results,

developed to drive the examination of a test item with respect to some test
objectives.

Source UTP 2 WG
Is a procedure
Sub categories • abstract test case

• concrete test case

test execution schedule
Definition A procedure that constrains the execution order of a number of test cases.
Source UTP 2 WG
Is a procedure

7.3.2 Test-specific Procedures

7.3.2.1 Test Procedures
The following concept diagram represents important semantic aspects of procedures as they are used in UTP. UTP
distinguishes three different types of procedures: test execution schedules, test cases and test procedures, which are
all special forms of procedures. In general, procedures may invoke other procedures. Furthermore, all procedures
may declare one or more formal parameters which are replaced by actual parameters upon procedure invocation.

A procedure prescribes the execution order of a set of procedural elements, which are either atomic procedural
elements (such as procedure invocations or individual test actions) or compound procedural elements. A compound
procedural element is a container that groups a set of procedural elements into sequences, loops, and other control
structures.

Any procedural element may be constrained by time which is expressed by its possible fact statements of time points
and durations. A procedural element may be constrained on when it is to be performed as well as how long it is to be
performed by the tester.

UML Testing Profile 2 (UTP 2), Version 2.1 33

Figure 7.6 - Test Procedures

Definitional Rules shown on "Test Procedures"

Name Rule statement
DRTP01 It is necessary that the PE start duration of a procedural element is smaller than the PE end

duration of the same procedural element.
DRTP02 It is necessary that each procedure prescribes the execution order of at least one procedural

element.
DRTP03 It is necessary that each test procedure prescribes the execution order of at least one test action.
DRTP04 It is necessary that each test case invokes at least one test procedure as a main procedure

invocation.
Table 7.4 - Structural rules shown on Test Procedures

7.3.2.2 Concept Descriptions
actual parameter
Definition A concrete value that is passed over to the procedure and replaces the formal

parameter with its concrete value.
Source UTP 2 WG

alternative
Definition A compound procedural element that executes only a subset of its contained

procedural elements based on the evaluation of a boolean expression.
Source UTP 2 WG

34 UML Testing Profile 2 (UTP 2), Version 2.1

Is a compound procedural element

atomic procedural element
Definition A procedural element that cannot be further decomposed.
Source UTP 2 WG
Is a procedural element
Sub categories • procedure invocation

• test action

compound procedural element
Definition A procedural element that can be further decomposed.
Source UTP 2 WG
Is a procedural element
Sub categories • alternative

• loop
• negative
• parallel
• sequence

duration
Definition The duration from the start of a test action until its completion.
Source UTP 2 WG
Is a duration

formal parameter
Definition A placeholder within a procedure that allows for execution of the procedure with

different formal parameters that are provided by the procedure invocation.
Source UTP 2 WG

loop
Definition A compound procedural element that repeats the execution of its contained

procedural elements.
Source UTP 2 WG
Is a compound procedural element

main procedure invocation
Definition A procedure invocation that is considered as the main part of a test case by the test

case arbitration specification.
Source UTP 2 WG
Is a procedure invocation

negative
Definition A compound procedural element that prohibits the execution of its contained

procedural elements in the specified structure.
Source UTP 2 WG
Is a compound procedural element

parallel
Definition A compound procedural element that executes its contained procedural elements in

parallel to each other.
Source UTP 2 WG
Is a compound procedural element

UML Testing Profile 2 (UTP 2), Version 2.1 35

PE end duration
Definition The duration between the end of the execution of a procedural element and the end

of the execution of the subsequent procedural element.
Source UTP 2 WG
Is role of duration

PE start duration
Definition The duration between the end of the execution of a procedural element and the

beginning of the execution of the subsequent procedural element.
Source UTP 2 WG
Is role of duration

procedural element
Definition An instruction to do, to observe, and/or to decide.
Source UTP 2 WG
Sub categories • atomic procedural element

• compound procedural element

procedure
Definition A specification that constrains the execution order of a number of procedural

elements.
Source UTP 2 WG
Sub categories • test case

• test execution schedule
• test procedure

procedure invocation
Definition An atomic procedural element of a procedure that invokes another procedure and

waits for its completion.
Source UTP 2 WG
Is a atomic procedural element
Sub categories • main procedure invocation

• setup procedure invocation
• teardown procedure invocation

sequence
Definition A compound procedural element that executes its contained procedural elements

sequentially.
Source UTP 2 WG
Is a compound procedural element

setup procedure invocation
Definition A procedure invocation that is considered as part of the setup by the arbitration

specification and that is invoked before any main procedure invocation.
Source UTP 2 WG
Is a procedure invocation

teardown procedure invocation
Definition A procedure invocation that is considered as part of the teardown by the responsible

arbitration specification and that is invoked after any main procedure invocation.
Source UTP 2 WG
Is a procedure invocation

36 UML Testing Profile 2 (UTP 2), Version 2.1

test procedure
Definition A procedure that constrains the execution order of a number of test actions.
Source UTP 2 WG
Is a procedure

time point
Definition The time point at which a test action is initiated.
Source UTP 2 WG
Is a time point

7.3.3 Test-specific Actions

7.3.3.1 Overview of test-specific actions
The following concept diagram represents important semantic aspects of test actions as parts of test procedures. A
test action is a specialization of an atomic procedural element and is to be interpreted as an instruction to the tester
responsible for executing a test case. Any test action leads to a procedural element verdict (i.e., influences the final
test case verdict).

Most test actions check certain aspects of the test item. The most important aspects of the test item are its observable
behavior (i.e., its responses) and its measurable properties.

Figure 7.7 - Overview of test-specific actions

UML Testing Profile 2 (UTP 2), Version 2.1 37

Definitional Rules shown on "Overview of test-specific actions"

Name Rule statement
DRTA01 It is necessary that a create stimulus action permits to send at least one stimulus.
DRTA02 It is necessary that a expect response action expects to receive at least one response.
DRTA03 It is necessary that a check property action checks at least one property of the test item against

the data.
Table 7.5 - Structural rules shown on Overview of test-specific actions

7.3.3.2 Concept Descriptions
check property action
Definition A test action that instructs the tester to check the conformance of a property of the

test item and to set the procedural element verdict according to the result of this
check.

Source UTP 2 WG
Is a test action

create log entry action
Definition A test action that instructs the tester to record the execution of a test action,

potentially including the outcome of that test action in the test case log.
Source UTP 2 WG
Is a test action

create stimulus action
Definition A test action that instructs the tester to submit a stimulus (potentially including data)

to the test item.
Source UTP 2 WG
Is a test action

expect response action
Definition A test action that instructs the tester to check the occurrence of one or more

particular responses from the test item within a given time window and to set the
procedural element verdict according to the result of this check.

Source UTP 2 WG
Is a test action

property
Definition A basic or essential attribute shared by all members of a class of test items.
Source UTP 2 WG

response
Definition A set of data that is sent by the test item to its environment (often as a reaction to a

stimulus) and that is typically used to assess the behavior of the test item.
Source UTP 2 WG

stimulus
Definition A set of data that is sent to the test item by its environment (often to cause a

response as a reaction) and that is typically used to control the behavior of the test
item.

Source UTP 2 WG

suggest verdict action
Definition A test action that instructs the tester to suggest a particular procedural element

verdict to the arbitration specification of the test case for being taken into account in

38 UML Testing Profile 2 (UTP 2), Version 2.1

the final test case verdict.
Source UTP 2 WG
Is a test action

test action
Definition An atomic procedural element that is an instruction to the tester that needs to be

executed as part of a test procedure of a test case within some time frame.
Synonyms test step
Source UTP 2 WG
Is a atomic procedural element
Sub categories • check property action

• create log entry action
• create stimulus action
• expect response action
• suggest verdict action

7.4 Test Data

7.4.1 Test Data Concepts
The following concept diagram represents important semantic aspects of test data. Test data or more generally just
data may be modeled at two different levels:
• Extensional level: model elements that actually represent some data composed as a set of individual data items
• Intensional level: model elements that specify some criteria that some data must comply with, i.e. the specification

of the meaning of data

At the extensional level data always represents a specific set of data items and is covered by concepts such as data
pool, actual data pool, and data partition. The concepts data pool and actual data pool represent containers of data, the
former is a logical container, the latter a physical container such as a concrete database. A data partition represents a
subset of another set of data items in which all data item are conformant to a particular data specification.

In contrast, at the intensional level data is represented by a boolean expression that may be used to qualify data items
as member of data, i.e. it represents the intended meaning of data and is covered by concepts such as data specification,
data type, and constraint. A data specification is composed of a basic data type plus a set of constraints on that data
type. The entire concept of a data specification may be considered as a category in the sense of "Category Theory" in
mathematics (see for example [WikiCT] or [SEP2014a]). Thus, two data specifications might be interpreted as
categories that are related to each other by means of different dependencies called "morphisms". These may be
considered as structure-preserving maps supporting the following three informal semantics:
• A morphism of type "extension" increases the amount of data, i.e. they add more data items to a given set of data

items
• A morphism of type "refinement" decreases the amount of data, i.e. they remove data items from a given set of

data items
• A morphism of type "complement" inverts data, i.e. it replaces the data items of a given set of data items by their

opposites.

A data provider is a test component that is able to deliver (i.e. either select and/or generate) data according to a data
specification.

In the context of a test case, different places of a test case typically refer to different levels of test data
• test cases typically refer to data used as preconditions as well as data to be supplied with stimuli to be sent to the

test item
• test cases typically refer to data specifications in postconditions or data returned by responses in order to

determine or influence the verdict of the test case.

UML Testing Profile 2 (UTP 2), Version 2.1 39

Figure 7.8 - Test Data Concepts

Definitional Rules shown on "Test Data Concepts"

Name Rule statement
DRTD01 It is necessary that each data specification specifies at least one data type.
DRTD02 It is necessary that each data specification specifies at least one constraint.
DRTD03 It is necessary that a morphism emanates from exactly one data specification.
DRTD04 It is necessary that a morphism targets exactly one data specification.
DRTD05 It is necessary that each data provider provides data according to at least one data specification.

Table 7.6 - Structural rules shown on Test Data Concepts

7.4.2 Concept Descriptions
actual data pool
Definition A specification of an actual implementation of a data pool.
Examples • the specification of the database of type "Customers" on disk DK13 on machine

XYZ.
Source UTP 2 WG
Is a data pool

complement
Definition A morphism that inverts data)i.e., that replaces the data items of a given set of data

items by their opposites).
Source UTP 2 WG
Is a morphism

constraint
Definition An assertion that indicates a restriction that must be satisfied by any valid

realization of the model containing the constraint.
Source [UML]

40 UML Testing Profile 2 (UTP 2), Version 2.1

data
Definition A usually named set of data items.
Synonyms concrete data
Examples • 42.

• "John".
• "Some people": {"John", "Greg", "Barb", "Aline"}
• "Example customer": Sherlock Holmes, living at Baker Street in London
• The contents of a database "CUST-PRD" containing customers.

Source UTP 2 WG
Sub categories data pool
Is instance of data structure

data item
Definition Either a value or an instance.
Source UTP 2 WG

data partition
Definition A role that some data plays with respect to some other data (usually being a subset

of this other data) with respect to some data specification.
Source UTP 2 WG
Is role of data

data pool
Definition Some data that is an explicit or implicit composition of other data items.
Examples • the specification of a database type named "Customers"
Source UTP 2 WG
Is a data
Sub categories actual data pool

data provider
Definition A test component that is able to deliver (i.e., either select and/or generate) data

according to a data specification.
Source UTP 2 WG
Is a test component

data specification
Definition A named boolean expression composed of a data type and a set of constraints

applicable to some data in order to determine whether or not its data items conform
to this data specification.

Synonyms abstract data
Examples • 40...50.

• "Jo(h)?n".
• "odd numbers", i.e. numbers where self mod 2 = 1
• "right-angled triangles", i.e. triangles where a^2 + b^2 = c^2
• "young, German-speaking customers" i.e., customers, where language= 'German'

and age < 18
• any/all/295 customers having the forename "John" and living in London.

Source UTP 2 WG
Sub categories data type

data type
Definition A type whose instances are identified only by their value.
Source [UML]

UML Testing Profile 2 (UTP 2), Version 2.1 41

Is a data specification

extension
Definition A morphism that increases the amount of data (i.e., that adds more data items to a

given set of data items).
Source UTP 2 WG
Is a morphism

morphism
Definition A structure-preserving map from one mathematical structure to another.
Source [WikiM]
Sub categories • complement

• extension
• refinement

refinement
Definition A morphism that decreases the amount of data (i.e., that removes data items from a

given set of data items).
Source UTP 2 WG
Is a morphism

7.5 Test Evaluation

7.5.1 Arbitration Specifications

7.5.1.1 Arbitration & Verdict Overview
The following concept diagram represents important semantic aspects of verdicts and how they are derived.

An arbitration specification is defined as a set of rules that should be followed to determine the instance of a verdict
of an executed test case. An arbitration specification should be specified for a procedure which describes the
behavior of test case (test procedure) or a test execution schedule (associated to the execution of a set of test cases).
An arbitration specification calculates a verdict which can be Fail, Pass, Inconclusive and None.

Figure 7.9 - Arbitration & Verdict Overview

Definitional Rules shown on "Arbitration & Verdict Overview"

Name Rule statement
DRAS01 It is necessary that an arbitration specification determines exactly one verdict.

42 UML Testing Profile 2 (UTP 2), Version 2.1

Name Rule statement
DRAS02 It is necessary that a arbitration specification determines exactly one of a test set verdict, a test

case verdict or a procedural element verdict.
DRTA03 It is necessary that each test set refers to at most one arbitration specification.
DRTC09 It is necessary that each test case refers to at most one arbitration specification.

Table 7.7 - Structural rules shown on Arbitration & Verdict Overview

7.5.1.2 Concept Descriptions
arbitration specification
Definition A set of rules that calculates the eventual verdict of an executed test case, test set or

procedural element.
Source UTP 2 WG

Error
Definition An indication that an unexpected exception has occurred while executing a specific

test set, test case, or test action.
Source UTP 2 WG
Is instance of verdict

Fail
Definition A verdict that indicates that the test item did not comply with the expectations

defined by a test set, test case, or test action during execution.
Source UTP 2 WG
Is instance of verdict

Inconclusive
Definition A verdict that indicates that the compliance of a test item against the expectations

defined by a test set, test case, or test action could not be determined during
execution.

Source UTP 2 WG
Is instance of verdict

None
Definition A verdict that indicates that the compliance of a test item against the expectations

defined by a test set, test case, or test action has not yet been determined (i.e., it is
the initial value of a verdict when a test set, test case, or test action was started).

Source UTP 2 WG
Is instance of verdict

Pass
Definition A verdict that indicates that the test item did comply with the expectations defined

by a test set, test case, or test action during execution.
Source UTP 2 WG
Is instance of verdict

procedural element verdict
Definition A verdict that indicates the result (i.e., the conformance of the actual properties of

the test item with its expected properties) of executing a test action on a test item.
Source UTP 2 WG
Is a verdict

test case verdict
Definition A verdict that indicates the result (i.e., the conformance of the actual properties of

UML Testing Profile 2 (UTP 2), Version 2.1 43

the test item with its expected properties) of executing a test case against a test item.
Source UTP 2 WG
Is a verdict

test set verdict
Definition A verdict that indicates the result (i.e., the conformance of the actual properties of

the test item with its expected properties) of executing a test set against a test item.
Source UTP 2 WG
Is a verdict

verdict
Definition A statement that indicates the result (i.e., the conformance of the actual properties of

the test item with its expected properties) of executing a test set, a test case, or a test
action against a test item.

Source UTP 2 WG
Sub categories • procedural element verdict

• test case verdict
• test set verdict

Instances • Pass
• Inconclusive
• None
• Error
• Fail

7.5.2 Test Logging

7.5.2.1 Test Log Overview
As defined by [ISTQB] a test log is “a chronological record of relevant details about the execution of tests” and as
such is an important means for test evaluation and reporting activities. Thus, the purpose of the UTP 2 test logging
facility is twofold:

1.) It helps establish a trace link between a test case or an entire test set and one or potentially more executions
thereof. Essential information of a test log are, for example, the date and the duration when the corresponding test
case was executed; the executing entity (i.e., a human tester or automated test execution system) or entities (in some
domains it is not uncommon that test cases are executed over several days by potentially more than one executing
entity), and finally, the test case verdict. These so called test log header information are the minimal required
information in order to achieve full traceability between test objectives, test requirements, test cases/test sets and
finally the execution thereof. Full traceability among those artifacts enables the computation of test metrics such as
the status of test execution (how many test cases have eventually been executed at a certain point in time), coverage
of requirements (not part of UTP), test requirements or test objectives, etc.

2.) It supports a deeper analysis of what was going on during the execution of a test case or test set. Since the
execution of test case or test set is a transient set of test actions performed by an executing entity against the test
item, the capturing of detailed information about the performed test actions in a test log is the only way for a
stakeholder, usually a test analyst or test manager, to be able to comprehend what has really happened during
execution without being part of the executing entities. Such a chronological record of detailed information of an
executed test case or test set is in UTP 2 called test log body information. They optionally supplement the test log
header information of UTP.

Since the understanding of what information is really relevant during the execution of a test case or test set heavily
depends on domain- and/or project-specific requirements, UTP 2 enables the definition of user-defined test log
structures that specify what information or data deemed relevant in the respective (test) context and additionally the
minimal required header information mentioned above.

44 UML Testing Profile 2 (UTP 2), Version 2.1

Representing test logs on model level contributes to a harmonized and homogeneous view on relevant test log
information in the dynamic test process. Usually, a test execution toolscape comprises more than just one tool. Tools
for functional testing might be complemented by specialized tools such as those for performance testing (stress, load
etc.), security testing or UI testing. The test logs of such heterogeneous toolscapes are basically heterogeneous, too.
Thus, a comprehensive, detailed analysis (e.g., for the calculation of metrics over tools etc.) requires access to the
proprietary structures of each tool’s test log format. The UTP 2 test logging facility mitigates the heterogeneity of
test logs by offering an extensible framework to describe arbitrary complex and structured test log formats. The
following use cases depict the scenarios the UTP 2 test logging facility was intended to cope with:

Figure 7.10 - Use Cases of UTP 2 test logging Facility

The use case “Specify test log structure” enables testers to specify which information is deemed relevant during the
execution of in the given test process in addition to the predefined minimal required information. If no additional
information is desired, the tester can rely on the implicit default test log structure. This ensures that testers can
employ the UTP 2 test logging facilities immediately out of the box.

The use case “Capture test log information” is about capturing the information deemed as relevant that actually
appeared during the execution of a test case, test set or even a test action in accordance with the test log structure.
Incorporating the test log header information is mandatory, while representing the body part, in contrast, is optional.

The use case “Visualize captured test logs” deals with exposing the captured test log information in an appropriate
representation. Since there is no common definition of the most appropriate format of test logs, UTP 2 does not
prescribe how that information must be visualized. Thus, it is up to tool vendors to decide about the most
appropriate and helpful visual representation(s) of captured test log information.

Apply UTP 2

test logging facilities

Specify test log

structure

Extend default test

log structure

«extends»

Capture test log

information
«includes»

Capture logs of

test cases
Capture logs of

test suites
Capture logs of

test actions

Visualize captured

test logs
«includes»

Capture test log header

information
Capture test log body

information

«includes» «extends»

UML Testing Profile 2 (UTP 2), Version 2.1 45

Figure 7.11 - Test Log Overview

Definitional Rules shown on "Test Log Overview"

Name Rule statement
DRTL01 It is necessary that each test case log captures exactly one test case verdict.
DRTL02 It is necessary that each test case log captures execution of exactly one test case.

Table 7.8 - Structural rules shown on Test Log Overview

7.5.2.2 Concept Descriptions
executing entity
Definition An executing entity is a human being or a machine that is responsible for executing

a test case or a test set.
Source UTP 2 WG

test case log
Definition A test log that captures relevant information on the execution of a test case.
Source UTP 2 WG
Is a test log

test log
Definition A test log is the instance of a test log structure that captures relevant information

from the execution of a test case or test set. The least required information to be
logged is defined by the test log structure of the test log.

Source UTP 2 WG
Sub categories • test case log

• test set log
Is instance of test log structure

test log structure
Definition A test log structure specifies the information that is deemed relevant during

execution of a test case or a test set. There is an implicit default test log structure
that prescribes at least the start time point, the duration, the finally calculated verdict
and the executing entity of a test case or test set execution which should be logged.

Source UTP 2 WG
Instances test log

46 UML Testing Profile 2 (UTP 2), Version 2.1

test set log
Definition A test log that captures relevant information from the execution of a test set.
Source UTP 2 WG
Is a test log

UML Testing Profile 2 (UTP 2), Version 2.1 47

8 Profile Specification
This section specifies the stereotypes that are defined by the UML Testing Profile.

8.1 Language Architecture
The UML Testing Profile consists of the profile definition and three normative model libraries, which can be
imported and applied if required. The profile itself is independent of these libraries, and is a self-contained package.
The normative model library UTP Auxiliary Library uses concepts from UTP and defines concepts that can be used,
extended or specialized by the users.

The UTP Types Library offers helpful types and values, in particular the default verdict type and the default verdict
instances. Since some of the definitions and constraints in the profile are based on predefined types, the profile
imports the UTP Types Library.

The UTP Auxiliary Library offers the following concepts:
• ISTQB terms for test levels and test set purposes
• Predefined test design techniques and test design technique structures.

Overview of the technical, high-level UML Testing Profile language architecture is given next.

Figure 8.1 - Language Architecture

48 UML Testing Profile 2 (UTP 2), Version 2.1

8.2 Profile Summary
The following table gives a brief summary on the stereotypes introduced by the UML Testing Profile 2 (listed in the
second column of the table). The first column specifies the mapping to the conceptual model shown in the previous
section and the third column specifies the UML 2.5 metaclasses that are extended by the stereotypes.

Stereotype UML 2.5 Metaclasses Concepts

UMLTP21-3

ActualParameterValue

UMLTP21-3

Slot

UMLTP21-3

actual parameter

UMLTP21-3

ActualResponseLogEntry

UMLTP21-3

InstanceSpecification

Alternative CombinedFragment,
StructuredActivityNode

alternative

AlternativeArbitrationSpecifica
tion

BehavioredClassifier arbitration specification

AnyValue Expression data specification
ArbitrationResult InstanceSpecification
ArbitrationSpecification BehavioredClassifier arbitration specification
AtomicProceduralElement atomic procedural element
AtomicProceduralElementArbit
rationSpecification

BehavioredClassifier arbitration specification

UMLTP21-3

AtomicProceduralElementLogE
ntry

UMLTP21-3

InstanceSpecification

BoundaryValueAnalysis InstanceSpecification test design technique
CauseEffectAnalysis InstanceSpecification test design technique
ChecklistBasedTesting InstanceSpecification test design technique
CheckPropertyAction Constraint, ObjectFlow check property action
CheckPropertyArbitrationSpeci
fication

BehavioredClassifier arbitration specification

UMLTP21-3

CheckPropertyLogEntry

UMLTP21-3

InstanceSpecification

ClassificationTreeMethod InstanceSpecification test design technique
CombinatorialTesting InstanceSpecification test design technique
Complements Dependency complement
CompoundProceduralElement CombinedFragment,

StructuredActivityNode
compound procedural element

CompoundProceduralElementA
rbitrationSpecification

BehavioredClassifier arbitration specification

CreateLogEntryAction InvocationAction create log entry action
CreateLogEntryArbitrationSpec
ification

BehavioredClassifier arbitration specification

UMLTP21-3

CreateLogEntryLogEntry

UMLTP21-3

InstanceSpecification

CreateStimulusAction InvocationAction, Message create stimulus action

UML Testing Profile 2 (UTP 2), Version 2.1 49

CreateStimulusArbitrationSpeci
fication

BehavioredClassifier arbitration specification

UMLTP21-3

CreateStimulusLogEntry

UMLTP21-3

InstanceSpecification

DataPartition Classifier data pool
DataPool Classifier data pool
DataProvider Classifier, Property data provider
DataSpecification Constraint data specification
DecisionTableTesting InstanceSpecification test design technique
EquivalenceClassPartitioning InstanceSpecification test design technique
ErrorGuessing InstanceSpecification test design technique
ExpectResponseAction Message, Trigger expect response action
ExpectResponseArbitrationSpe
cification

BehavioredClassifier arbitration specification

ExperienceBasedTechnique InstanceSpecification test design technique
ExploratoryTesting InstanceSpecification test design technique
Extends Dependency extension
FormalParameterReference Property formal parameter
GenericTestDesignDirective InstanceSpecification test design directive
GenericTestDesignTechnique InstanceSpecification test design technique

UMLTP21-3

InvocationLogEntry

UMLTP21-3

InstanceSpecification

UMLTP21-3

InvocationLogEntryStructure

UMLTP21-3

Classifier

Loop CombinedFragment,
StructuredActivityNode

loop

LoopArbitrationSpecification BehavioredClassifier arbitration specification

UMLTP21-3

MessageEventLogEntry

UMLTP21-3

InstanceSpecification

UMLTP21-3

MessageEventLogEntryStructur
e

UMLTP21-3

Classifier

Morphing Dependency morphism
Negative CombinedFragment,

StructuredActivityNode
negative

NegativeArbitrationSpecificatio
n

BehavioredClassifier arbitration specification

NSwitchCoverage InstanceSpecification test design technique
OpaqueProceduralElement NamedElement procedural element

UMLTP21-3

OpaqueProceduralElementLog
Entry

UMLTP21-3

InstanceSpecification

overrides Dependency morphism
PairwiseTesting InstanceSpecification test design technique

50 UML Testing Profile 2 (UTP 2), Version 2.1

Parallel CombinedFragment,
StructuredActivityNode

parallel

ParallelArbitrationSpecification BehavioredClassifier arbitration specification
ProceduralElement procedural element
ProceduralElementArbitrationS
pecification

BehavioredClassifier arbitration specification

ProcedureInvocation CallBehaviorAction, InteractionUse procedure invocation
ProcedureInvocationArbitration
Specification

BehavioredClassifier arbitration specification

UMLTP21-3

ProcedureInvocationLogEntry

UMLTP21-3

InstanceSpecification

UMLTP21-3

ProcedureInvocationLogEntryS
tructure

UMLTP21-3

Classifier

Refines Dependency refinement
RegularExpression Expression data specification
RoleConfiguration Constraint test configuration
Sequence CombinedFragment,

StructuredActivityNode
sequence

SequenceArbitrationSpecificati
on

BehavioredClassifier arbitration specification

StateCoverage InstanceSpecification test design technique
StateTransitionTechnique InstanceSpecification test design technique
SuggestVerdictAction InvocationAction suggest verdict action
SuggestVerdictArbitrationSpeci
fication

BehavioredClassifier arbitration specification

UMLTP21-3

SuggestVerdictLogEntry

UMLTP21-3

InstanceSpecification

TestCase Behavior, BehavioredClassifier • test case
• abstract test case
• concrete test case

TestCaseArbitrationSpecificatio
n

BehavioredClassifier arbitration specification

TestCaseLog InstanceSpecification test case log
TestComponent Classifier, Property test component
TestComponentConfiguration Constraint test component configuration
TestConfiguration StructuredClassifier test configuration
TestConfigurationRole Classifier, Property test configuration
TestContext Package test context
TestDesignDirective InstanceSpecification Test Design Directive
TestDesignDirectiveStructure Classifier test design directive
TestDesignInput NamedElement test design input
TestDesignTechnique InstanceSpecification test design technique
TestDesignTechniqueStructure Classifier test design technique

UMLTP21-2

TestDirective

UMLTP21-2

InstanceSpecification

UML Testing Profile 2 (UTP 2), Version 2.1 51

UMLTP21-2

TestDirectiveStructure

UMLTP21-2

Classifier

TestExecutionSchedule Behavior test execution schedule
TestItem Classifier, Property test item
TestItemConfiguration Constraint test item configuration
TestLog InstanceSpecification test log

UMLTP21-3

TestLogElement

UMLTP21-3

InstanceSpecification

UMLTP21-3

TestLogEntry

UMLTP21-3

InstanceSpecification

TestLogStructure Classifier test log structure
TestLogStructureBinding Dependency test log structure
TestObjective Class test objective
TestProcedure Behavior test procedure
TestRequirement Class test requirement
TestSet Package test set
TestSetArbitrationSpecification BehavioredClassifier arbitration specification
TestSetLog InstanceSpecification test set log

UMLTP21-2

TestTechnique

UMLTP21-2

InstanceSpecification

UMLTP21-2

TestTechniqueStructure

UMLTP21-2

Classifier

TransitionCoverage InstanceSpecification test design technique
TransitionPairCoverage InstanceSpecification test design technique
UseCaseTesting InstanceSpecification test design technique
verifies Dependency

8.3 Test Planning
Test analysis and test design deals with determining the identifying test basis for specific testing activities,
determination of test objectives, and eventually the selection and application of appropriate the test design
techniques to achieve those test objectives. UTP organizes concepts provided for carrying out test analysis and
design activities into two parts: concepts for describing test contexts, test objectives, test requirements, and concepts
to specify test design activities.

8.3.1 Test Analysis
The test analysis concepts are means to argue and justify why certain testing activities have to be carried out as well
as how these testing activities with all required or helpful artifacts are organized.

In order to group artifacts and information that are deemed necessary for certain testing activities, the test context
concept (represented by the stereotype «TestContext») is introduced. It offers the capability to bundle artifacts (e.g.,
any PackageableElement) in a shared scope (e.g., the Namespace), to hide information from other scopes and to
import elements from other scopes. This enables a high degree of organizational reusability of information.

In dynamic testing, test cases are eventually produced by the test design activities in order to execute them. For

52 UML Testing Profile 2 (UTP 2), Version 2.1

certain reasons, test cases are often assembled and executed together in a test set (or test suite, which is a synonym
of a test set). In UTP, a test set is represented by the stereotype «TestSet» which has the ability to assemble, import
and reuse test cases.

The definition of certain coverage criteria and/or objectives that the testing activities have to meet is essential for
test planning. In UTP, the planning activities are supported by means of the concepts test objective (implemented by
the stereotype «TestObjective»), test requirement (implemented by the stereotype «TestRequirement»), a
verification dependency among development artifacts and test objectives or test requirements (represented by the
stereotype «verifies»). In order to stay as close as possible to the SysML definition of requirements [SysML], both
test objective and test requirements are designed as extensions to the UML metaclass Class. Such a stereotyped
Class is capable of defining new properties solely, whereas most of the capabilities of the metaclass Class are
forbidden by constraint, such as owning Ports, Operations, Behaviors etc.. The stereotype «verifies» extends the
UML metaclass Dependency in order to be technically compatible with SysML [SysML], too.

These concepts enable testers to adhere to well-known and established industrial testing standards such as ISTQB
[ISTQB] or ISO 29119 [ISO29119] when creating model-based test specifications. Whereas test objectives are
intended to describe higher level goals the testing activities have to achieve in a certain context (e.g., coverage of all
high priority requirements at system level testing), test requirements are intended to pinpoint a single and testable
aspect of the test item. As such, test objectives describe often the test ending criteria for the testing activities in a
certain context (e.g., system level testing), and test requirements leverage the development of test design input
definitions or test cases. Eventually, test requirements are realized by test cases, which is similar to the coverage of
test requirements. Test requirements contribute to the fulfilment of test objectives.

Both test objectives and test requirements can be used independently of each other or in joint manner or not at all.
This is contextually up to the respective testing methodology. UTP does not prescribe the use of these concepts.

8.3.1.1 Test Context Overview
The stereotypes «TestContext» and «TestSet» are defined in UTP. Both represent a container for dedicated
elements, thus, they are extensions of the UML Package. As such they inherit the concept of nested Packages,
Package templates, owned and imported members as well as visibility. However, it is not prescribed that the
visibility concepts have to be respected by any conforming UTP tooling. The decision whether or not to utilize the
visibility and import mechanism of UML is up to the tool implementation. However, the derived associations of
«TestContext» and «TestSet», however, are based on UML visibility and import.

Figure 8.2 - Test Context Overview

8.3.1.2 Test-specific Contents of Test Context
The UML profile specification for the test context concepts is shown in the following diagram. Most of the

UML Testing Profile 2 (UTP 2), Version 2.1 53

relationships among the concepts of the Conceptual Model are already covered by the underlying UML metamodel.
In order to allow users of the UTP an easy access to related elements, a set of derived associations is defined that
retrieves the desired element for a currently processed stereotype. As an example for the design decision, please see
the derived associations between «TestContext» and «TestCase». In the Conceptual Model it is stated that a test
context refers to a set of test cases. Since «TestContext» extends the UML metaclass Package and «TestCase»
extends a subclass of a PackageableElement, there are several native (i.e., given by the UML metamodel)
possibilities on how to reflect the conceptual 'refers to' relationship. First, a Package may contain
PackageableElements; second, a Package may import PackageableElement, either by using ElementImport (i.e.,
only that specific element) or by PackageImport (i.e., all visible and accessible elements in the imported Package).
The derived associations of the UTP stereotypes follow the UML metamodel capabilities to collect all concrete
PackageableElements stereotyped with «TestCase» that are either contained in or imported by the underlying
«TestContext» Package. The advantage is that the test engineer does not have to implement or even know the details
of the UML metamodel to retrieve the desired elements.

Figure 8.3 - Test-specific Contents of Test Context

8.3.1.3 Test Objective Overview
The following diagram shows the abstract syntax for the test objectives concepts.

54 UML Testing Profile 2 (UTP 2), Version 2.1

Figure 8.4 - Test Objective Overview

8.3.1.4 Stereotype Specifications

8.3.1.4.1 TestContext
Description TestContext: A set of information that is prescriptive for testing activities which can

be organized and managed together for deriving or selecting test objectives, test
design techniques, test design inputs and eventually test cases.

A test context may import the packaged elements of another test context in order to
access and reuse visible elements of the imported test context. This is inherently
given by the native UML concepts PackageImport or ElementImport. Whether or
not the visibility of elements contained in a test context is respected is up to the tool
implementation.

Since a «TestContext» is an extended Package, it is possible to decompose test
contexts into more fine-grained test contexts. For example, a test context defined for
the test level 'System testing' might be decomposed in accordance to the test types
that are addressed at that test level (e.g., functional system testing, security system
testing etc.).

Extension Package
Attributes ID : String [0..1]

An optional identifier to unambiguously distinguish between any two test contexts.
If it is set, it has to be unique for all the test contexts in the scope of the model.

Associations /testCase : TestCase [*]

The test cases that are accessible by the given «TestContext». This feature is derived

UML Testing Profile 2 (UTP 2), Version 2.1 55

by the set of directly owned or via ElementImport or PackageImport for imported
test cases.

testLevel : ValueSpecification [*]

The test levels that the testing activities within the given «TestContext» have to
cope with.
testType : ValueSpecification [*]

The test types that the testing activities within the given «TestContext» have to cope
with.
/testSet : TestSet [*]

Refers to the test sets that are known by this test context. It is derived from both
contained and imported Packages with «TestSet» applied.
/testObjective : TestObjective [*]

Refers to the test objectives that are known by this test context. It is derived from
both contained and imported Classes with «TestObjective» applied.
/testRequirement : TestRequirement [*]

Refers to the test requirements that are known by this test context. It is derived from
both contained and imported Classes with «TestRequirement» applied.
/testConfiguration : StructuredClassifier [*]

Refers to the test configurations that are known by this test context. It is derived
from both contained and imported StructuredClassifier with «TestConfiguration»
applied.
/testDesignInput : NamedElement [*]

Refers to the test design inputs that are known by this test context. It is derived from
both contained and imported NamedElements with «TestDesignInput» applied and
the NamedElements that are referenced by all known «TestDesignDirective» as
their test design input (i.e., referenced by the tag definition testDesignInput). The
latter part of the derivation algorithm is necessary, because the use of the
«TestDesignInput» stereotype is not mandatory, and sometimes even not possible.

/testDesignDirective : TestDesignDirective [*]

Refers to the test design directives that are known by this test context. It is derived
from both contained and imported InstanceSpecifications with a concrete subclass
of «TestDesignDirective» applied.
/testDesignTechnique : TestDesignTechnique [*]

Refers to the test design techniques that are known by this test context. It is derived
from both contained and imported InstanceSpecifications with a concrete subclass
of «TestDesignTechnique» applied.
/arbitrationSpecification : ArbitrationSpecification [*]

Refers to the arbitration specifications that are known by this test context. It is
derived from both contained and imported BehavioredClassifiers with
«TestDesignTechnique» applied.
/testLog : TestLog [*]

Refers to the test logs that are known by this test context. It is derived from both
contained and imported InstanceSpecification with a concrete subclass of «TestLog»
applied

Constraints Restriction of extendable metaclasses

«TestContext» shall not be applied to instances of the metaclass Profile.
Change from UTP 1.2 Changed from UTP 1.2. In UTP 1.2 «TestContext» extended StructuredClassifier

and BehavioredClassifier as well as incorporated the concepts TestSet,
TestExecutionSchedule and TestConfiguration into a single concept.

56 UML Testing Profile 2 (UTP 2), Version 2.1

8.3.1.4.2 TestObjective
Description TestObjective: A desired effect that a test case or test set intends to achieve.

The stereotype «TestObjective» extends Class. test objectives enables tester to
define the test ending criteria for the testing activities in a certain test context. A test
objective can be expressed with detail or very abstractly, depending on the
underlying methodology.

As pure test analysis concept, it is very likely that test objectives have to be
traceable to and from test environment tools, which first and foremost would be test
management tools. Therefore, test objectives have the ability to specify a unique
identifier represented by the tag definition ID. However, the use of the explicit
identifier is optional and simply enables the most primitive kind of traceability
within a test environment.

The specification of a test objective, i.e., the reason why test cases are created and
eventually executed, is expressed by means of the tag definition specification.
Although it is typed by the PrimitiveType String, the test objective might be
specified by means of a formal or structured language.

If a BMM profile (see [BMM]) is also loaded into a model containing the UTP 2.0
profile, this stereotype may be considered as a BMM objective (i.e., merged with a
BMM objective).

Extension Class
Attributes ID : String [0..1]

A unique identifier that unambiguously identifies the test objective.
Associations : TestDesignDirective

/referencedBy : TestContext [*]
specification : ValueSpecification [0..1]

The specification of the test objective. It might be represented in both unstructured
and structured text or any other concrete sub-class of ValueSpecification.

Constraints Restriction of extendable metaclasses

«TestObjective» shall only be applied to instances of the metaclass Class.

Change from UTP 1.2 Changed from UTP 1.2. In UTP 1.2, «TestObjective» was called
«TestObjectiveSpecification».

UML Testing Profile 2 (UTP 2), Version 2.1 57

8.3.1.4.3 TestRequirement
Description TestRequirement: A desired property on a test case or test set, referring to some

aspect of the test item to be tested.

The stereotype «TestRequirement» extends Class (for integration with the SysML
stereotype «requirement»). A test requirement enables testers to decompose single
and distinct testable aspects of the test item prior to test design. As such, it is part of
the test analysis facility of UTP. test requirements are deemed helpful for both the
derivation of test cases, test procedures and in particular test design input
definitions. test requirements are said to be realized by test design input definitions,
test case or test procedures. The default UML metaclass Realize is intended to be
utilized to express this relationship.

As a pure test analysis concept, it is very likely that test requirements have to be
traceable to and from test environment tools, first and foremost test management
tools. Therefore, test requirements have the ability to specify a unique identifier
represented by the tag definition ID. However, the use of the explicit identifier is
optional and simply enables the most primitive kind of traceability within a test
environment.

The specification of a test requirement (i.e., the textual description of a single
testable aspect of a test requirement) is expressed by means of the tag definition
specification. Although it is typed by the PrimitiveType String, the test requirement
might be specified by means of a more formal or structured language (e.g., using the
Test Purpose Language (TPLan) standardized by ETSI).

Additional references to external resources (e.g., relevant standards, guidelines,
documents, websites etc.) can be added via the tag definition references.

If SysML [SysML] is also loaded into a model containing the UTP 2.0 profile, this
stereotype may be considered as (i.e., merged with) the SysML stereotype
«requirement».

Extension Class
Attributes ID : String [0..1]

A unique identifier that unambiguously identifies the test requirement.
references : String [*]

Includes any additional references that are deemed relevant for the definition of the
test requirement (such as relevant standards, papers, or any other meaningful
artifact)

Associations /realizedBy : TestCase [*]

References the test cases that realize the given test requirement. They are derived
from the set of UML Realization dependencies that point to the base Class of this
stereotype and stem from a BehavioredClassifier or Behavior stereotyped with
«TestCase».
/referencedBy : TestContext [*]
specification : ValueSpecification [0..1]

The specification of the test requirement. It might be represented in both
unstructured and structured text or any other concrete sub-class of
ValueSpecification.

Constraints Restriction of extendable metaclasses

«TestRequirement» shall only be applied to instances of the metaclass Class.
Change from UTP 1.2 «TestRequirement» has been newly introduced into UTP 2.

58 UML Testing Profile 2 (UTP 2), Version 2.1

8.3.1.4.4 TestSet
Description TestSet: A set of test cases that share some common purpose.

A test set assembles test cases either via ownership or import. These test cases are
called the members of the test set. Ownership assembly is based on the ability of
UML Packages to nest any PackageableElement. Import assembly is based on the
ability of UML Packages to import PackageableElements either directly or
indirectly by importing the Package that contains the PackageableElement to be
imported. A test case is transitively an extension of PackageableElement, thus, the
import mechanisms given by UML can be reused to group test cases in test sets by
either assembly kind.

Visibility of test cases within a test set is defined in accordance with the visibility of
NamedElement in Namespaces as defined by UML. Since the use of visibility is not
mandatory by UML, it is also not mandatory to utilize visibility in UTP. However, if
visibility is desired, it must comply with the UML semantics.

A test set can have an arbitrary number of test execution schedules (extends
Behavior) either by ownership or import, similar to test case assembly. A test
execution schedule must only schedule the execution of test cases that are members
of the respective test sets. If a test set does not contain an explicit test execution
schedule, it is semantically equivalent to an implicitly owned test execution
schedule that schedules the execution of all test cases assembled by the current test
set in an arbitrary order. If a test set is supposed to be executed, the decision which
test execution schedule will be taken into account for scheduling is not defined
UTP, since a test set may have more than just one test execution schedule defined. A
viable method is to use the UML deployment specification to implement the desired
test execution schedule for eventual execution by an executing entity.

If a test set assembles another test set, the assembling test set has access to all
visible test cases assembled by the assembled test set. In addition, the assembling
test set has access to all visible test execution schedules of the assembled test set.
This enables the composition and decomposition of test sets and their respective test
execution schedules.

The purpose of a test set is set of a ValueSpecifications that can be shared with other
test sets. If a test set has more than one purpose, the purposes are logically combined
by AND (i.e., if a test set has the two purposes 'Manual Testing' and 'Regression
Testing' it should be read as follows 'The test set's purpose is 'manual regression
testing').

Graphical syntax

Extension Package
Attributes ID : String [0..1]

An optional identifier to unambiguously distinguish between any two test sets. If it
is set, it has to be unique for all the test sets in the scope of the model.

Associations purpose : ValueSpecification [*]

Denotes the purposes why the test set has been assembled.
/testSetMember : TestCase [1..*]

Refers to the TestCases that are assembled, either via ownership or import, by the
given TestSet, and thus, are members of that TestSet. A TestCase can be a member
of more than one TestSet.

UML Testing Profile 2 (UTP 2), Version 2.1 59

 : TestSetLog [*]
testSetAS : TestSetArbitrationSpecification [0..1]
/referencedBy : TestContext [*]

Constraints Restriction of extendable metaclass

«TestSet» shall not only be applied to instances of the metaclass Profile.
Change from UTP 1.2 «TestSet» has been newly introduced by UTP 2. It was part of the TestContext in

UTP 1.2.

8.3.1.4.5 verifies
Description The stereotype «verifies» extends Dependency and is intended to express

relationships among elements that are supposed to be verified (e.g., a requirement,
an interface operation, a use case, a user story, a single transition or state, and so
forth) and elements that support the verification thereof (e.g., a test objective, a test
requirement, a test case, a test set).

A «verifies» Dependency as a means to establish traceability within UML-based
model elements. It weakens the constraints applied on SysML «Verify» in a sense
that UTP «verifies» allows targeting elements different than SysML «requirement».
This limitation is too restrictive for UTP, in particular in setups where, for example,
use cases are the elements to be verified.

Since the semantics of Dependencies with respect to n:m-ary in contrast to binary,
1:m-ary, or n:1-ary Dependencies are not precisely defined, UTP considers by
default no difference among all the different ways on how «verifies» Dependencies
can be expressed between more than two elements.

If a SysML profile (see [SysML]) is also loaded into a model containing the UTP
2.0 profile, this stereotype may be considered as the SysML «Verify» stereotype
(i.e. merged with the SysML «Verify» stereotype).

Extension Dependency
Change from UTP 1.2 «verifies» has been newly introduced into UTP 2. In UTP 1.2 the «verify»

stereotype from SysML was recommended.

8.3.2 Test Design
The UTP 2 test design facility describes a language framework for the specification of test design techniques and
their application to a test design input element. This includes behavioral descriptions (e.g., UML state machines), or
structural information (e.g., interface definitions). test design techniques are usually assembled by so called test
design directive which is responsible for establishing the associations between a set of test design techniques and the
test design input element those test design techniques must operate on. A test design directive may also link the test
design outputs elements that have been generated or derived by the set of applied test design techniques. This allows
for a more comprehensible test design phase and is the key to comprehensive traceability among test objectives/test
requirements, test design techniques, test design input and eventually test design output elements.

The UTP 2 test design facility only represents the very core of the language framework. Since the stereotypes of the
core framework are based on abstract stereotypes and mostly derived (and read-only unions) associations, it is
possible to concretize and extend the test design facility as required by using stereotype specialization and property
subsetting. A built-in concretization of the core framework was done by means of the generic test design capabilities
and the predefined test design techniques. It enables test engineers to immediately utilize the test design facility or
develop proprietary test design directives and test design techniques. Tailoring of the UTP test design facility can be
done at metalevel M1 (model level) and metalevel M2 (metamodel level). The different mechanism for tailoring are:

• Tailoring through structural features: Both «TestDesignTechnique» and «TestDesignDirective» extend the UML

metaclass InstanceSpecification with implicit attributes predefined by the respective stereotypes. In addition to

60 UML Testing Profile 2 (UTP 2), Version 2.1

these predefined attributes, user may add additional attributes to these two elements by using the genuine
InstanceSpecification-Classifier association. Since both stereotypes extend InstanceSpecification, it is possible to
classify these InstanceSpecifications with multiple Classifiers. For this purpose, UTP provides the stereotypes
«TestDesignDirectiveStructure» and «TestDesignTechniqueStructure». As a result, the user may add as many
additional attributes as desired or required to a «TestDesignDirective» and «TestDesignTechnique».

• Tailoring through use of «GenericTestDesignDirective» and «GenericTestDesignTechnique»: By means of the
predefined stereotypes «GenericTestDesignTechnique» and «GenericTestDesignDirective», users can build on
proprietary test design directives and test design techniques by simply providing dedicated names to the
underlying InstanceSpecification (i.e., the InstanceSpecification with «GenericTestDesignDirective» or
«GenericTestDesignTechnique» applied. In combination with the extension through structural features as just
described above, the use of «GenericTestDesignTechnique» and «GenericTestDesignDirective» provides a
flexible and powerful mechanism to tailor the UTP test design facility for user-specific purposes. For example,
an InstanceSpecification with «TestDesignTechnique» applied and name set to 'PathCoverage' is one way to
provide the test engineer with a new test design techniques that represents path coverage.

• Profile extension: The third and most powerful tailoring to user-specific needs comes along with profile
extension. Similar to the provision of specialized stereotypes of the abstract stereotypes «TestDesignTechnique»
and «TestDesignDirective» as predefined concepts of the language itself, users or vendors may introduce
proprietary stereotypes that specialize the abstract stereotypes provided by the test design facility of UTP.

8.3.2.1 Test Design Facility
The following picture shows the abstract syntax of the very core of the UTP test design facility.

UMLTP21-2

Figure 8.5 - Test Design Facility

8.3.2.2 Generic Test Design Capabilities
The generic test design capabilities of UTP 2 enable tester to immediately start off with specifying test design
directives and defining proprietary, user-defined or project-specific test design techniques, if the predefined test
design techniques does not suffice.

UML Testing Profile 2 (UTP 2), Version 2.1 61

UMLTP21-2

Figure 8.6 - Generic Test Design Capabilities

8.3.2.3 Predefined high-level Test Design Techniques
The following diagram shows the predefined high-level test design techniques. They belong to the so called
specification-based test design techniques as categorized by [ISO29119]-4.

Figure 8.7 - Predefined high-level Test Design Techniques

62 UML Testing Profile 2 (UTP 2), Version 2.1

8.3.2.4 Predefined data-related Test Design Techniques
The following diagram shows the predefined data-related test design techniques. They belong to the so called
specification-based test design techniques as categorized by [ISO29119]-4.

Figure 8.8 - Predefined data-related Test Design Techniques

8.3.2.5 Predefined state-transition-based Test Design Techniques
The following diagram shows the predefined state-transition based test design techniques. They belong to the so
called specification-based test design techniques as categorized by [ISO29119]-4.

UML Testing Profile 2 (UTP 2), Version 2.1 63

Figure 8.9 - Predefined state-transition-based Test Design Techniques

8.3.2.6 Predefined experience-based Test Design Techniques
The following diagram shows the predefined experienced-based test design techniques as categorized by
[ISO29119]-4.

64 UML Testing Profile 2 (UTP 2), Version 2.1

Figure 8.10 - Predefined experience-based Test Design Techniques

UML Testing Profile 2 (UTP 2), Version 2.1 65

8.3.2.7 Stereotype Specifications

8.3.2.7.1 BoundaryValueAnalysis
Description According to [ISTQB]: Black box testing is a test design technique in which test

cases are designed based on boundary values.

«BoundaryValueAnalysis» is an extension of «EquivalenceClassPartitioning» that
takes also values at the boundaries (left and right or upper and lower boundary) into
account. A boundary value is defined by ISTQB as "an input value or output value
which is on the edge of an equivalence partition or at the smallest incremental
distance on either side of an edge, for example the minimum and maximum value of
a range."

Since the boundary values already define representatives of an equivalence class,
the ordinary (i.e. non-boundary) representatives are usually of less interest.
Therefore, the inherited property nRepresentatives is redefined to obtain the default
value 0. This ensures that no additional ordinary representatives of the equivalence
class are selected. However, it is still possible to specify that in addition to the
boundary values, ordinary representatives of the corresponding equivalence class
will be selected by setting the value of nRepresentatives to a value greater than 0.

See [ISO29119]-4 clause 5.2.3 BoundaryValueAnalysis for further information.

Extension InstanceSpecification
Super Class EquivalenceClassPartitioning
Attributes nBoundaryRepresentatives : Integer [1] = 1

Specifies the number of boundary representatives that have to be covered by the
resulting test cases. Default is 1.
nRepresentatives {redefines nRepresentatives} :
UnlimitedNatural [1] = 0

Redefines the number of representatives to 0, in addition to the boundary values,
meaning that by default only the boundary values will be selected.

Change from UTP 1.2 «BoundaryValueAnalysis» has been newly introduced by UTP 2.

8.3.2.7.2 CauseEffectAnalysis
Description According to [ISTQB]: A black box test design technique in which test cases are

designed from cause-effect graphs.

See also [ISO29119]-4, clause 5.2.7 Cause-Effect Graphing for further information.

Extension InstanceSpecification
Super Class TestDesignTechnique
Change from UTP 1.2 «CauseEffectAnalysis» has been newly introduced by UTP 2.

8.3.2.7.3 ChecklistBasedTesting
Description According to [ISTQB]: An experience-based test design technique whereby the

experienced tester uses a high-level list of items to be noted, checked, or
remembered, or a set of rules or criteria against which a product has to be verified.

Extension InstanceSpecification
Super Class ExperienceBasedTechnique
Change from UTP 1.2 «ChecklistBasedTesting» has been newly introduced by UTP 2.

66 UML Testing Profile 2 (UTP 2), Version 2.1

8.3.2.7.4 ClassificationTreeMethod
Description According to [ISTQB]: A black box test design technique in which test cases,

described by means of a classification tree, are designed to execute combinations of
representatives of input and/or output domains. A classification tree is a tree
showing equivalence partitions hierarchically ordered, which are used to design test
cases in the classification tree method.

See also [ISO29119]-4, clause 5.2.2 Classification Tree Method for further
information.

Extension InstanceSpecification
Super Class TestDesignTechnique
Change from UTP 1.2 «ClassificationTreeMethod» has been newly introduced by UTP 2.

8.3.2.7.5 CombinatorialTesting
Description According to [ISTQB]: A means to identify a suitable subset of test combinations to

achieve a predetermined level of coverage when testing an object with multiple
input parameters and where those parameters themselves each have several values.

The Property nCombinations specifies the number of how many parameters must be
combined with each other. The higher the number of combinations, the higher the
number of derived test cases. By default, all combinations of input parameters will
be covered, which is indicated by the asterisk (*). However, the value of the
Property nCombination has to be less than the number of the input parameters.

See [ISO29119]-4 clause 5.2.5 Combinatorial Test Design Technqiues for further
information.

Extension InstanceSpecification
Super Class TestDesignTechnique
Sub Class PairwiseTesting
Attributes nCombination : UnlimitedNatural [1] = *

The number of combinations of input parameters
Change from UTP 1.2 «CombinatorialTesting» has been newly introduced by UTP 2.

8.3.2.7.6 DecisionTableTesting
Description According to [ISTQB]: A black box test design technique in which test cases are

designed to execute combinations of inputs and/or stimuli (causes) shown in a
decision table. A decision table is a table showing combinations of inputs and/or
stimuli (causes) with their associated outputs and/or actions (effects), which can be
used to design test cases.

See also [ISO29119]-4, clause 5.2.6 Decision Table Testing for further information.

Extension InstanceSpecification
Super Class TestDesignTechnique
Change from UTP 1.2 «DecisionTableTesting» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.1 67

8.3.2.7.7 EquivalenceClassPartitioning
Description According to [ISTQB]: A black box test design technique in which test cases are

designed to execute representatives from equivalence partitions. In principle test
cases are designed to cover each partition at least once.

Usually, the number of the representatives of each equivalence class that will be
used to derive the test cases is set to 1 in order to keep the number of test cases as
low as possible. In certain situations it might be, for whatever reason, desired to
select more than just one representative per equivalence class. The property
nRepresentatives enables the tester to set any number desired number of
representatives per equivalence class. By default, the value is set to 1 (reflecting the
usual application of that test design technique). If the value is set to unlimited (i.e.,
the asterisk (*)), all possible representatives of an equivalence class have to be
selected.

See [ISO29119]-4 clause 5.2.1 Equivalence Partitioning for further information.

Extension InstanceSpecification
Super Class TestDesignTechnique
Sub Class BoundaryValueAnalysis
Attributes nRepresentatives : UnlimitedNatural [1] = 1

Indicates the desired number of minimal representatives that should be derived for a
given equivalence class.

Change from UTP 1.2 «EquivalenceClassPartitioning» has been newly introduced by UTP 2.

8.3.2.7.8 ErrorGuessing
Description According to [ISTQB]: A test design technique where the experience of the tester is

used to anticipate what defects might be present in the component or test item as a
result of Errors made and to design tests specifically to expose them.

See [ISO29119]-4 clause 5.4 Error Guessing for further information.

Extension InstanceSpecification
Super Class ExperienceBasedTechnique
Change from UTP 1.2 «ErrorGuessing» has been newly introduced by UTP 2.

8.3.2.7.9 ExperienceBasedTechnique
Description According to [ISTQB]: A procedure to derive and/or select test cases based the

tester’s experience, knowledge and intuition.

Experienced-based test design techniques are usually informal techniques
potentially supported by checklists or Error taxonomies.

Extension InstanceSpecification
Super Class TestDesignTechnique
Sub Class ChecklistBasedTesting, ErrorGuessing, ExploratoryTesting
Change from UTP 1.2 «ExperienceBasedTechnique» has been newly introduced by UTP 2.

8.3.2.7.10 ExploratoryTesting
Description According to [ISTQB]: An informal test design technique where the tester actively

controls the design of the tests as those tests are performed and uses information
gained while testing to design new and better tests.

Extension InstanceSpecification
Super Class ExperienceBasedTechnique

68 UML Testing Profile 2 (UTP 2), Version 2.1

Change from UTP 1.2 «ExploratoryTesting» has been newly introduced by UTP 2.

8.3.2.7.11 GenericTestDesignDirective
Description A predefined test design directive that is able to assemble any test design technique

available or known in a certain context, including any user-defined
«GenericTestDesignTechnique». As such, the generic test design directive makes no
assumptions about the capabilities of a test designing entity a priori.

Additional required information can be introduced by utilizing the test design
directive structure concept.

Extension InstanceSpecification
Super Class TestDesignDirective
Associations {subsets capability} appliedTestDesignTechnique :

TestDesignTechnique [1..*]

Enables a generic test design directive to apply any known test design technique for
the test design activity.
{subsets subDirective} genericSubDirective :
TestDesignDirective [*]

Enables a generic test design directive to be potentially refined by any other known
test design directive.

Change from UTP 1.2 «GenericTestDesignDirective» has been newly introduced by UTP 2.

8.3.2.7.12 GenericTestDesignTechnique
Description The predefined generic test design technique is a semantic-free test design technique

that is intended to be used to specify proprietary test design techniques that are not
part of the predefined UTP 2 test design facility. The name of the underlying
InstanceSpecification determines the name of the test design technique, potentially
extended by structural information.

Extension InstanceSpecification
Super Class TestDesignTechnique
Change from UTP 1.2 «GenericTestDesignTechnique» has been newly introduced by UTP 2.

8.3.2.7.13 NSwitchCoverage
Description According to [ISTQB]: A form of state transition testing in which test cases are

designed to execute all valid sequences of N+1 transitions.

N-Switch coverage was initially developed by [Chow], where n defines the number
of switch states among a sequence of consecutive transitions. The default is 0,
meaning that a test case may only consist of a single transition. However, the
entirety of all transitions will be captured by the resulting test cases.

Extension InstanceSpecification
Super Class StateTransitionTechnique
Sub Class TransitionPairCoverage
Attributes switchStates : Integer [1] = 0

Specifies the number of switch states, and thus, implicitly the sequence of
transitions that will at least be covered by the resulting test cases.

Change from UTP 1.2 «NSwitchCoverage» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.1 69

8.3.2.7.14 PairwiseTesting
Description According to [ISTQB]: A black box test design technique in which test cases are

designed to execute all possible discrete combinations of each pair of input
parameters.

«PairwiseTesting» is a specialized «CombinatorialTesting» test design technique
whose property nCombination is refined and set to the read-only value 2, meaning,
that at least each pair of input parameters will be covered in the resulting test cases.

See [ISO29119]-4 clause 5.2.5.4 Pair-wise Testing for further information.

Extension InstanceSpecification
Super Class CombinatorialTesting
Attributes nCombination {redefines nCombination} : UnlimitedNatural

[1] = 2

The number of combinations for each input parameter is set to exactly 2 (i.e., each
combination of every pair of input parameters must at least be covered).

Change from UTP 1.2 «PairwiseTesting» has been newly introduced by UTP 2.

8.3.2.7.15 StateCoverage
Description According to [ISTQB]: A black box test design technique in which test cases are

designed that cover at least the execution of a set of referenced states.

If no State is referenced by the property toBeCovered, all States in the related state
machine will be covered.

Extension InstanceSpecification
Super Class StateTransitionTechnique
Associations toBeCovered : State [*]

Refers to a set of States that will at least be covered by the test designer.
Change from UTP 1.2 «StateCoverage» has been newly introduced by UTP 2.

8.3.2.7.16 StateTransitionTechnique
Description According to [ISTQB]: A black box test design technique in which test cases are

designed to execute valid and invalid state transitions.

Test design directives that assemble a concrete state-transition technique must refer
to at least one state machine as its test design input. If more than one state machine
is referenced as test design input, the concrete state-transition techniques are applied
to all state machines.

See also [ISO29119]-4, clause 5.2.8 State-Transition Testing for further
information.

Extension InstanceSpecification
Super Class TestDesignTechnique
Sub Class NSwitchCoverage, StateCoverage, TransitionCoverage
Change from UTP 1.2 «StateTransitionTechnique» has been newly introduced by UTP 2.

70 UML Testing Profile 2 (UTP 2), Version 2.1

8.3.2.7.17 TestDesignDirective
Description TestDesignDirective: A test design directive is an instruction for a test designing

entity to derive test artifacts such as test sets, test cases, test configurations, data or
test execution schedules by applying test design techniques on a test design input.
The set of assembled test design techniques are referred to as the capabilities a test
designing entity must possess in order to carry out the test design directive,
regardless whether it is carried out by a human tester or a test generator. A test
design directive is a means to support the achievement of a test objective.

The abstract stereotype «TestDesignDirective» extends InstanceSpecification and
brings all relevant information together that is required for automatically or
manually derive test artifacts from a test design input. The derivation process is
steered by the set of test design techniques, which the current test design directives
refers to.

Each test design directive has a basic set of structural elements, given by the tag
definitions of the «TestDesignDirective» stereotype. The fundamental and implicit
structure can be extended by means of UML. Since «TestDesignDirective» extends
InstanceSpecification, it is possible to add Classifiers to the underlying
InstanceSpecification which then define additional structural information deemed
necessary in a specific context. This is the easiest and UML native mechanism to
tailor test design directive to specific needs.

The test design techniques that will be applied on the test design input are captured
in the association end capabilities. This is a derived union, since it cannot be
foreseen which test design techniques are required. Concrete subtypes have to
subset the derived union capabilities (see for example
«GenericTestDesignDirective») in order to enable certain test design techniques for
a test design directive. Those test design techniques can be combined with each
other by a test design directive.

A test design directive refers to a set of NamedElements as the input for the eventual
test design activities performed by a test designing entity. This input yields the
association end TestDesignInput. It is not required that a referenced NamedElement
has the stereotype «TestDesignInput» applied. The assembled test design techniques
by the given test design directive are then applied on the test design input in order to
produce the test design output artifacts.

A test design directive may provide sub-directives by means of the association end
subDirective. Providing a sub test design directive enables testers to refine the test
design activities for certain elements contained in the test design input. As an
example, this specification assumes a parent test design directive refers to a
StateMachine as its test design input. The test design directive also assembles a set
of state-transition and data-related test design techniques that will be applied to the
StateMachine by a test designing entity. This specification further assume that the
StateMachine contains a submachine State (i.e., a reference of another StateMachine
that is considered to be copied to the location of the submachine State) which is
referred to as test design input by a sub test design directive. This enables the
composition of different kinds of test design directives in order to meet different test
objectives.

Extension InstanceSpecification

UMLTP21-2

Super Class

UMLTP21-2

TestDirective

Sub Class GenericTestDesignDirective

UML Testing Profile 2 (UTP 2), Version 2.1 71

Associations meet : TestObjective [*]

The test objectives that have to be fulfilled by putting the given test design directive
into effect.

UMLTP21-2

/{read-only, union, subsets technique} capability :
TestDesignTechnique [1..*]

Refers to the set test design techniques that are assembled by the given test design
directive. The set is referred to as the capabilities a test designing entity (e.g., a
generator in automated test design or human tester in manual test design) has to
offer in order to be able to perform the test design activities imposed by the test
design directive.
 : TestDesignDirective [*]

UMLTP21-2

/{read-only, union, subsets subTestDirective}
subDirective : TestDesignDirective [*]

Refers to one or more test design directives that further refine the instructions given
by the parent test design directive.
 : GenericTestDesignDirective [*]
testDesignOutput {redefines output} : Element [*]

The outcome of the test design activities produced by the given test design
directives.
testDesigningEntity : ValueSpecification [*]

Identifies the test designing entity (e.g. a generator in automated test design or a
human tester in manual test design) that has produced (parts of) the test design
output.

UMLTP21-2

/instanceOf {redefines instanceOf} :
TestDesignDirectiveStructure [*]

Refers to the test design directive structure of which the given test design directive
is an instance of. The test design directive structure is derived from all Classifiers
with «TestDesignDirectiveStructure» applied that are referred as classifiers by the
underlying InstanceSpecification.
testDesignInput {redefines input} : NamedElement [1..*]

Refers to the model elements that have to be incorporated by the test designer (e.g. a
generator in automated test design or a human tester in manual test design) as input
to the derivation process.
/referencedBy : TestContext [*]
dataProvider : DataProvider [*]

References the data providers that are supposed to deliver or produce the required
test data.

Change from UTP 1.2 «TestDesignDirective» has been newly introduced by UTP 2.

72 UML Testing Profile 2 (UTP 2), Version 2.1

8.3.2.7.18 TestDesignDirectiveStructure
Description A TestDesignDirectiveStructure describes user-defined or context-specific

additional information that may augment any given TestDesignDirective. A
Classifier with «TestDesignDirectiveStructure» applied might be of arbitrary
complexity. It enables the provision of information that are deemed relevant in a
certain context but not required in a different context.

Extension Classifier

UMLTP21-2

Super Class

UMLTP21-2

TestDirectiveStructure
Associations : TestDesignDirective
Change from UTP 1.2 «TestDesignDirectiveStructure» has been newly introduced by UTP 2.

8.3.2.7.19 TestDesignInput
Description TestDesignInput: Any piece of information that must or has been used to derive

testing artifacts such as test cases, test configuration, and data.

The stereotype «TestDesignInput» is an explicit, yet optional means to indicate that
the purpose of a given model element is to use it for test design activities (i.e.,
usually the derivation of test cases, test data, test configurations etc.). The
application of this stereotype is declared as optional, because in general any kind of
model element might be used as input for the test design activities.

Extension NamedElement
Change from UTP 1.2 «TestDesignInput» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.1 73

8.3.2.7.20 TestDesignTechnique
Description TestDesignTechnique: A specification of a method used to derive or select test

configurations, test cases and data. test design techniques are governed by a test
design directive and applied to a test design input. Such test design techniques can
be monolithically applied or in combination with other test design techniques. Each
test design technique has clear semantics with respect to the test design input and
the artifacts it derives from the test design input.

The abstract stereotype «TestDesignTechnique» extends InstanceSpecification and
integrates test design techniques with test design directives. A test design technique
is a concrete action, technique or procedure to derive test design output from a test
design input. A test design technique is basically independent of a dedicated test
design input element, but can be reused across multiple test design input elements.
Some test design techniques only make sense if a certain test design input element
was selected (e.g., state-transition test design techniques make only sense if the test
design input element is a StateMachine).

Each test design technique has a basic set of structural elements given by the tag
definitions of the «TestDesignTechnique» stereotype. The fundamental (and
implicit) structure can be extended by means of UML. Since
«TestDesignTechnique» extends InstanceSpecification, it is possible to add
Classifiers to the underlying InstanceSpecification which then define additional
structural information deemed necessary in a specific context. This is the easiest and
UML native mechanism to tailor test design techniques to specific needs.

A test design technique may provide sub-techniques by means of the association end
subTechnique. Providing a sub test design technique enables testers to refine the test
design techniques for certain elements contained in the test design input and also to
enrich existing (potentially pre-defined) test design techniques in a certain context.

Extension InstanceSpecification

UMLTP21-2

Super Class

UMLTP21-2

TestTechnique
Sub Class CauseEffectAnalysis, ClassificationTreeMethod, CombinatorialTesting,

DecisionTableTesting, EquivalenceClassPartitioning, ExperienceBasedTechnique,
GenericTestDesignTechnique, StateTransitionTechnique, UseCaseTesting

Associations : TestDesignDirective [*]
 : TestDesignTechnique [*]

UMLTP21-2

/{read-only, union, subsets subTestTechnique}
subTechnique : TestDesignTechnique [*]

Refers to one or more test design techniques that may further refine the parent test
design technique.
 : GenericTestDesignDirective [*]

UMLTP21-2

/instanceOf {redefines instanceOf} :
TestDesignTechniqueStructure [*]

Refers to additional structural information of the given test design technique. The
test design technique structures are derived from all Classifiers with
«TestDesignTechniqueStructure» applied that are referred to as classifiers by the
underlying InstanceSpecification.

74 UML Testing Profile 2 (UTP 2), Version 2.1

/referencedBy : TestContext [*]
Change from UTP 1.2 «TestDesignTechnique» has been newly introduced by UTP 2.

8.3.2.7.21 TestDesignTechniqueStructure
Description A test design technique structure describes user-defined or context-specific

additional information that may augment any given test design technique. A
Classifier with «TestDesignTechniqueStructure» applied might be of arbitrary
complexity. It enables the provision of information that is deemed relevant in a
certain context but not required in a different context.

Extension Classifier

UMLTP21-2

Super Class

UMLTP21-2

TestTechniqueStructure
Associations : TestDesignTechnique [1..*]
Change from UTP 1.2 «TestDesignTechniqueStructure» has been newly introduced by UTP 2.

8.3.2.7.22 TransitionCoverage
Description According to [ISTQB]: A black box test design technique in which test cases are

designed that cover at least the execution of a set of references states.

If no Transition is referenced by the property toBeCovered, all States in the related
state machine will be covered.

Extension InstanceSpecification
Super Class StateTransitionTechnique
Associations toBeCovered : Transition [*]

Refers to a set of Transitions that will at least be covered by the test designer.
Change from UTP 1.2 «TransitionCoverage» has been newly introduced by UTP 2.

8.3.2.7.23 TransitionPairCoverage
Description The «TransitionPairCoverage» test design technique is a specific (and often used)

«NSwitchCoverage» test design technique that redefines the Property switchStates
to the read-only value 1. That means that the resulting test cases should at least
cover all sequences of any two consecutive Transitions.

The semantics of transition pair coverage and N-Switch coverage with nSwitches set
to 1 is semantically equivalent.

Extension InstanceSpecification
Super Class NSwitchCoverage
Attributes switchStates {redefined switchStates} : Integer [1] = 1

Restricts the number of switch states to exactly one, meaning, that every pair of
subsequent Transitions will at least be covered.

Change from UTP 1.2 «TransitionPairCoverage» has been newly introduced by UTP 2.

8.3.2.7.24 UseCaseTesting
Description According to [ISTQB]: A black box test design technique in which test cases are

designed to execute scenarios of use cases.

See also [ISO29119]-4, clause 5.2.9 Scenario Testing for further information.

Extension InstanceSpecification

UML Testing Profile 2 (UTP 2), Version 2.1 75

Super Class TestDesignTechnique
Change from UTP 1.2 «UseCaseTesting» has been newly introduced by UTP 2.

8.4 Test Architecture
Test architecture concepts specify structural aspects of a test environment, including a test configuration, necessary
to eventually execute test cases against the test item(s). The test environment comprises everything that is necessary
to execute test cases (e.g., test components, hardware, simulators, test execution tools etc.). The test configuration
describes how those parts of the test environment and represented test components, are connected with the test item.

Building a reliable test configuration is required for any test case, because it determines the test item(s) and how the
test environment (in UTP represented by test components) interfaces to the test item(s).

Test architectures are mainly expressed by means of UML class and composite structure diagrams. In contrast to
UTP 1.2, both test components and test items can be represented either as a standalone type or as a role that a certain
type may assume in a specific test configuration. However, UTP does not prescribe which option to use for
describing test architecture and both have advantages and disadvantages.

The test architecture concepts consist of
• test configuration, implemented by the stereotype «TestConfiguration»;
• test configuration role, implemented by the abstract stereotype «TestConfigurationRole» as a superclass for any

known (even future) role a test configuration may assume;
• role configuration, implemented by the abstract stereotype «RoleConfiguration» as superclass for configurations

of concrete roles;
• test component, implemented by the stereotype «TestComponent» that specializes «TestConfigurationRole»;
• test component configuration, implemented by the stereotype «TestComponentConfiguration» that specializes

«RoleConfiguration»;
• test item, implemented by the stereotype «TestItem» that specializes «TestConfigurationRole»;
• test item configuration, implemented by the stereotype «TestItemConfiguration» that specializes

«RoleConfiguration»;

8.4.1 Test Architecture Overview
The diagram below shows the abstract syntax of the test architecture concepts.

Figure 8.11 - Test Architecture Overview

76 UML Testing Profile 2 (UTP 2), Version 2.1

8.4.2 Stereotype Specifications

8.4.2.1 RoleConfiguration
Description The abstract stereotype «RoleConfiguration» extends the metaclass Constraint and

is used to specify the configuration of test configuration role within a certain test
configuration.

There are at least two ways a role configuration can be associated with a test
configuration role, both stemming from the underlying UML Constraints
metamodel:
• Classifier-oriented: A Constraint with a concrete substereotype of

«RoleConfiguration» applied is contained by a Classifier as its context with a
concrete substereotype of «TestConfigurationRole» applied, or it refers to a set
of such Classifiers by means of the meta-association constrainedElement; and

• Property-oriented: A Constraint with a concrete substereotype of
«RoleConfiguration» applied refers to one or more Properties with
«TestConfigurationRole» applied by means of the meta-association
constrainedElement

The Classifier-oriented way has the advantage that all parts of test configurations
which are typed by a Classifier with a concrete substereotype of
«TestConfigurationRole» applied, must abide by the configurations defined for that
Classifier. On the downside, this might prevent reuse, because it is not possible to
get rid of configurations (similar to the handling of Constraints in UML) expressed
on Classifier level.

The Property-oriented way has the advantage that it enables the dedicated
configuration of single test component roles within a test configuration.

Extension Constraint
Sub Class TestComponentConfiguration, TestItemConfiguration
Associations /role {ready-only, union} : TestConfigurationRole [1..*]

Refers to the set of at least one test configuration roles.
Change from UTP 1.2 «RoleConfiguration» is newly introduced in UTP 2.

8.4.2.2 TestComponent
Description TestComponent: A role of an artifact within a test configuration that is required to

perform a test case.

The stereotype «TestComponent» specializes «TestConfigurationRole» and declares
that a certain element (i.e., either a Classifier or Property) is responsible for driving
the execution of a test case. The use of the stereotype «TestComponent» on
Classifier is optional but, if it is used, all Properties of that type must also have
«TestComponent» applied, if they are used in a test configuration.

Extension Classifier, Property
Super Class TestConfigurationRole
Sub Class DataProvider
Associations /configuration {subsets roleConfiguration} :

TestComponentConfiguration [*]

Refers to the configurations that are defined for this «TestComponent». This set of
configurations is derived from all Constraints with «TestComponentConfiguration»
applied that are either owned rules (in case of «TestComponent» is applied on a
Classifier) of the «TestComponent» or inversely referring to the «TestComponent»
(in case of «TestComponentConfíguration» is applied on Constraint without having

UML Testing Profile 2 (UTP 2), Version 2.1 77

a context, but using Constraint.constrainedElement to refer to the
«TestComponent»).

Change from UTP 1.2 Changed from UTP 1.2. In UTP 1.2., «TestComponent» only extended Class.

8.4.2.3 TestComponentConfiguration
Description TestComponentConfiguration: A set of configuration options offered by an artifact

in the role of a test component chosen to meet the requirements of a particular test
configuration.

The stereotype «TestComponentConfiguration» specializes the abstract stereotype
«RoleConfiguration». The eventual set of configurations for a NamedElement with
«TestComponent» applied is derived from the union of all test component
configurations declared for that NamedElement (i.e., either on Classifier or Property
level).

Extension Constraint
Super Class RoleConfiguration
Associations /testComponent {subsets role} : TestComponent [1..*]

Refers to the set of at least one test components that are configured by the given test
component configuration. The resulting set is derived from both the Classifier
stereotyped with «TestComponent» that is the context of the underlying Constraint
and all test components regardless of whether Classifier or Property that are
referenced by the underlying Constraint.constrainedElement.

Constraints Ownership of «TestComponentConfiguration»

Each «TestComponentConfiguration» shall refer to at least one «TestComponent»,
i.e., there is no «TestComponentConfiguration» that exists without referring to a
«TestComponent».

Change from UTP 1.2 «TestComponentConfiguration» has been newly introduced into UTP 2.

78 UML Testing Profile 2 (UTP 2), Version 2.1

8.4.2.4 TestConfiguration
Description TestConfiguration: A specification of the test item and test components as well as

their interconnection and configuration data.

The stereotype «TestConfiguration» extends StructuredClassifier which effectively
extends a variety of UML metaclasses such as Class, Collaboration, and
Component, etc. The test configuration then refers to the composite structure of the
underlying StructuredClassifier. Every test configuration must have at least one
member stereotyped «TestItem» which is connected to at least one member
stereotyped with «TestComponent».

The test configurations of any two distinct test procedures that are intended to be
executed together, as part of a potentially third test procedure, and must have a
compatible test configuration. Compatibility of test configurations is partially
defined by UML and the substitution principle of Liskov, but also by means of the
idea of EncapsulatedClassifiers. The attempt to invoke test procedures together will
most likely fail due to technical incompatibility.

Test cases or test procedures may come along with their own test configurations
expressed by means of their respective composite structures. In that case, the
application of the «TestConfiguration» stereotype will be done in addition to
«TestCase» or «TestProcedure». In case of shared test configurations it is
recommended, though not required, to facilitate the UML concept of a
«TestConfiguration» stereotyped Collaboration. Collaborations are meant to be
reused by other StructuredClassifiers, including Behaviors, by means of
CollaborationUse and role bindings. Inheritance and redefinition, as defined by
UML, are additional means to express shared and reusable test configurations, as
well.

Extension StructuredClassifier
Attributes ID : String [0..1]

A unique identifier that unambiguously identifies the given test configuration.
Associations /part : TestConfigurationRole [*]

Refers to the test configuration parts that are involved in this test configuration.
They are derived from all members of the underlying StructuredClassifier that has a
subclass of the abstract stereotype «TestConfigurationRole» applied.

Constraints Minimal test configuration

A StructuredClassifier with «TestConfiguration» applied must at least specify one
part having «TestItem» applied.

Change from UTP 1.2 «TestConfiguration» has been newly introduced into UTP 2. It was conceptually
represented by the composite structure of a «TestContext» in UTP 1.2.

8.4.2.5 TestConfigurationRole
Description The abstract stereotype «TestConfigurationRole» extends both Classifier and

Property.

The advantage of assigning the role to a certain part assumes in a test configuration
that the very same Type of this part (i.e., Class or Component) can be reused in
different test configuration with different roles. This entails that the application of a
concrete subclass of «TestConfigurationRole» on a Classifier is not required at all
and limits reusability of this Classifier. If a concrete substereotype of
«TestConfigurationRole» is applied on a Classifier, any part of a test configuration
must have the very same concrete substereotype applied.

Extension Classifier, Property

UML Testing Profile 2 (UTP 2), Version 2.1 79

Sub Class TestComponent, TestItem
Associations /roleConfiguration {read-only, union} :

RoleConfiguration [*]

Refers to the role configuration that is defined for this test configuration role.
 : TestConfiguration

Change from UTP 1.2 «TestConfigurationRole» is newly introduced in UTP 2.

8.4.2.6 TestItem
Description TestItem: A role of an artifact that is the object of testing within a test configuration.

The stereotype «TestItem» always indicates that a certain artifact (i.e., either applied
on Classifier or Property) specifies (parts of) the system under test. The use of the
stereotype «TestItem» on a Classifier is optional, but if it is used, all Properties of
that type within a test configuration must also have «TestItem» applied, if they are
used in a test configuration.

Extension Classifier, Property
Super Class TestConfigurationRole
Associations /configuration {subsets roleConfiguration} :

TestItemConfiguration [*]

Refers to the configurations that are defined for this test item. This set of
configurations is derived from all Constraints with «TestItemConfiguration» applied
that are either owned rules of the «TestItem» (in case of «TestItem» is applied on a
Classifier) or that refer to the given test item using the underlying Constraint's
constrainedElement attribute.

Change from UTP 1.2 «TestItem» has been newly introduced into UTP 2 and supersedes the «SUT»
stereotype in UTP 1.

8.4.2.7 TestItemConfiguration
Description TestItemConfiguration: A set of configuration options offered by an artifact in the

role of a test item chosen to meet the requirements of a particular test configuration.

The stereotype «TestItemConfiguration» specializes the abstract stereotype
«RoleConfiguration». The eventual set of configurations for a NamedElement with
«TestItem» applied is derived from the union of all test item configurations declared
for that NamedElement (i.e., either on Classifier or Property level).

Extension Constraint
Super Class RoleConfiguration
Associations /testItem {subsets role} : TestItem [1..*]

Refers to the set of at least one test items that are configured by the given
configuration. The resulting set is derived from both the Classifier stereotyped with
«TestItem» that is the context of the underlying Constraint and all «TestItem»
elements, regardless whether Classifier or Property, that are referenced by the
underlying Constraint.constrainedElement.

Constraints Ownership of «TestItemConfiguration»

Each «TestItemConfiguration» shall refer to at least one «TestItem», i.e., there is no
«TestItemConfiguration» that exists without referring to a «TestItem».

Change from UTP 1.2 «TestItemConfiguration» has been newly introduced into UTP 2.

80 UML Testing Profile 2 (UTP 2), Version 2.1

8.5 Test Behavior
Test behavior is a collective term for concepts that can be executed as part of a test set or test case. Since the
behavioral descriptions of UML are orthogonal to each other to a certain extent, UTP introduces a set of test
execution-relevant stereotypes independently of the underlying UML Behaviors or its constituting parts. Integration
with these Behaviors is done via partially multiple extensions.

The concepts for test behaviors are separated into the following blocks:
• Concepts for test-specific procedures (see section Test-specific Procedures)
• Concepts for procedural element (see section Procedural Elements)
• Concepts for test-specific actions (see section Test-specific Actions)

8.5.1 Test-specific Procedures
The fundamental executable concept in UTP is a procedure. Any UML Behavior without «TestCase»,
«TestExecutionSchedule» or «TestProcedure» applied is considered as a procedure. A procedure comprises
procedural elements regardless whether the building blocks are called InteractionFragments (if the procedure is
realized as Interaction) or Action (if the procedure is realized as Activity). For example, the procedural element loop
is represented by the stereotype «Loop» and denotes a repeated execution of procedural elements that are contained
in that loop. «Loop» extends the UML metaclasses CombinedFragment (integrating with Interactions) and the
StructuredActivityNode loop (integrating with Activities). Furthermore, it adds some test-specific information such
as the ability to provide arbitration specifications, when the loop is part of a test procedure.

Test-specific procedures are procedures that deliver a verdict (i.e., they can, or must in the case of a test case, be
arbitrated (see section Arbitration Specifications for further information about arbitration). This includes that its
constituting procedural elements are arbitrated as well and provide their respective verdict to a test case arbitration
specification, which potentially provides its test case verdict to a test set arbitration specification. UTP defines three
different test-specific procedures for:
• test procedure, represented by the stereotype «TestProcedure»;
• test case, represented by the stereotype «TestCase»; and
• test execution schedule, represented by the stereotype «TestExecutionSchedule»

A test procedure is a reusable behavior that comprises procedural elements and runs on a test configuration. A test
case invokes one or more test procedures and assigns either of these roles: setup, main or teardown to the invoked
test procedure. A test execution schedule represents the invocation order of a test set's test cases.
The allowed invocation scheme for test-specific procedures is as follows:
• test execution schedule must only invoke other test execution schedules, test cases or procedures. The invocation

of test procedures by a test execution schedule is not allowed;
• test case must only invoke test procedures or procedures, but must invoke at least one test procedure as its main

part. The invocation of test cases or test execution schedules is not allowed;
• test procedure must only invoke other test procedures or procedures. The invocation of test cases or test

execution schedules is not allowed.

The test configuration of the invoking test case or test procedure must be compatible with the test configuration of
the invoked test procedure. In the case of contained test configurations and inheritance thereof, compatibility is
given by the substitution principle of Liskov. In the case of shared test configurations based on Collaboration,
compatibility is defined by UML.

8.5.1.1 Test Case Overview
The following diagram shows the abstract syntax of the test-specific procedures.

UML Testing Profile 2 (UTP 2), Version 2.1 81

Figure 8.12 - Test Case Overview

8.5.1.2 Stereotype Specifications

8.5.1.2.1 TestProcedure
Description TestProcedure: A procedure that constrains the execution order of a number of test

actions.

A test procedure is a reusable Behavior that constitutes the building blocks for other
test procedures or test cases. A test procedure consists of procedural elements, in
particular test actions.

A test procedure must always run on a test configuration (i.e., its constituting
procedural elements are either executed by a test component or a test item). Since
«TestProcedure» extends Behavior (as such both StructuredClassifier as well as
BehavioredClassifier), a test procedure may provide its own dedicated test
configuration defined by its composite structures. In that case, compatibility with
the test configuration of any invoking test-specific procedure (i.e., test procedure or
test case) must be ensured.

A test procedure must only invoke other test procedures or procedures and must
only be invoked by other test procedures or test cases. If invoked by a test case, a
test procedure may assume either of these roles: main, setup or teardown. If a test
procedure invokes another test procedure by means of «ProcedureInvocation» the
attribute role of «ProcedureInvocation» must not be set. A test procedure is not
allowed to determine the role of other test procedures, because this role can only be
determined by test cases. Implicitly, any test procedure assigns their current role
assigned by the invoking test case to any other test procedure they invoke. This
transitive assignment will be recursively continued until no more test procedures are
available. This recursion ensures consistency for the invoking test case.

Extension Behavior
Constraints Test procedure operates on test configuration

A TestProcedure must always run on a (potentially implicit) TestConfiguration
comprising at least one instance of a TestComponent connected to a TestItem
Allowed invocation scheme

A TestProcedure must only invoke other TestProcedures or procedures.

82 UML Testing Profile 2 (UTP 2), Version 2.1

Use of «ProcedureInvocation»

A TestProcedure must not make use of the role attribute of «ProcedureInvocation»
when used as ProceduralElement of the given TestProcedure.
Test case invokes one main procedure

DRTP04: It is necessary that each test case invokes at least one test procedure as a
main procedure invocation.
Procedure sequentializes procedural element

DRTP02: It is necessary that each procedure prescribes the execution order of at
least one procedural element.
Test procedure sequencializes test action

DRTP03: It is necessary that each test procedure prescribes the execution order of at
least one test action.
One postcondition per test procedure

DRTC07: It is necessary that each test procedure guarantees at most one
postcondition.
One precondition per test procedure

DRTC04: It is necessary that each test procedure requires at most one preconditon.

Change from UTP 1.2 «TestProcedure» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.1 83

8.5.1.2.2 TestCase

84 UML Testing Profile 2 (UTP 2), Version 2.1

Description TestCase: A procedure that includes a set of preconditions, inputs and expected
results, developed to drive the examination of a test item with respect to some test
objectives.

«TestCase» extends both BehavioredClassifier and Behavior. According to the
conceptual model, a test case must provide different functionality like defining pre-
/postconditions, being executable etc., and the UML allows different ways for
implementing the test case concept. In general, a test case can be either defined as a
standalone Behavior stereotyped with «TestCase» or as a compound construct
consisting of a «TestCase» BehavioredClassifier, and a «TestCase» Behavior set as
the classifierBehavior of the «TestCase» BehavioredClassifier. In the second
alternative, both the BehavioredClassifier and its classifierBehavior are semantically
treated as a single concept.

A test case describes the interplay of the test item with its controlled environment,
the so called test environment, consisting of test components. A test case has to
operate on a test configuration. The composite structure of a StructuredClassifier
with «TestConfiguration» applied determines the different roles the composite
structures assume for that test case. Test cases may define their own test
configurations as part of their dedicated composite structure (e.g. in case the
stereotype «TestCase» is applied on an instance of StructuredClassifier>, or it may
operate on a shared «TestConfiguration» StructuredClassifier such as a
Collaboration. If a «TestCase» Behavior invokes a «TestProcedure» Behavior, the
invoked test procedure has to operate on the same or a compatible test
configuration.

The pre- and postconditions of a test case are always declared by the Behavior with
«TestCase» applied by means of the underlying UML capability that each Behavior
may contain a number of Constraints as pre- and postconditions. A test case must be
parameterizable. This feature is also determined by the Behavior with «TestCase»
applied. Again, the underlying capability of a UML Behavior is reused by UTP.

A test case may only invoke test procedures as main, setup or teardown part or
ordinary procedures. A test case must invoke at least one test procedure as its main
part. This can be either done explicitly using the stereotype «ProcedureInvocation»
or by using the underlying native UML elements for Behavior invocation (e.g.,
CallBehaviorAction, InteractionUse, BehaviorExecutionSpecification etc.) If a
native UML Behavior invocation element is used and refers to a Behavior with
«TestProcedure» applied, it is semantically equivalent with explicitly applying the
stereotype «ProcedureInvocation» on the UML Behavior invocation element and
setting the tagged value of role to main. Any procedural element that is directly
contained in Behavior with «TestCase» applied is considered semantically
equivalent to an explicit Behavior with «TestProcedure» applied that contains the
procedural element and the use of «ProcedureInvocation» within the «TestCase»
instead of the procedural elements. This ensures flexibility and guarantees simplicity
when defining test cases.

The semantics of the default arbitration specification of a test case is defined by
«TestCaseArbitrationSpecification». The default arbitration specification is always
active, unless an explicit «TestCaseArbitrationSpecification» is bound to the
«TestCase».

UML Testing Profile 2 (UTP 2), Version 2.1 85

Graphical syntax

Extension Behavior, BehavioredClassifier
Attributes ID : String [0..1]

A unique identifier to unambiguously distinguish between any two test cases. This is
mainly intended to interface easier with management tools such as test management
tools.
description : String [0..1]

Usually, a narrative description of the given test case.
Associations /utilizedBy : TestContext [*]

/realizes : TestRequirement [*]

The test requirements that are realized by the given test case.
They are derived from the set of UML Realization dependencies that point from the
base BehavioredClassifier to UML Classes stereotyped by «TestRequirement».
 : TestSet [0..1]
 : TestCaseLog [*]
testCaseAS : TestCaseArbitrationSpecification [0..1]

Refers to the explicit static test case arbitration specification that overrides the
implicit default test case arbitration specification.

Constraints Each test case returns a verdict statement

Any Behavior stereotyped as «TestCase» returns a ValueSpecification typed by
verdict after arbitration had happened.

Use of BehavioredClassifier

If «TestCase» is applied to a BehavioredClassifier that is not an instance of the
metaclass Behavior, the 'classifierBehavior' of that BehavioredClassifier shall be
Behavior with «TestCase» applied.
Allowed invocation scheme

A TestCase must only invoke TestProcedure or procedures, but not other TestCases
or TestExecutionSchedule.
One precondition per test case

DRTC03: It is necessary that each test case requires at most one preconditon.
One postcondition per test case

DRTC06: It is necessary that each test case guarantees at most one postcondition.

Owned UseCases not allowed

A BehavioredClassifier or Behavior with «TestCase» applied must not own
UseCases with «TestCase» applied.
Nested Classifier not allowed

A Behavior with «TestCase» applied must not nest any other Behavior that has
«TestCase» applied.

Change from UTP 1.2 Changed from UTP 1.2. «TestCase» extended Behavior and Operation in UTP 1.2.

?

86 UML Testing Profile 2 (UTP 2), Version 2.1

8.5.1.2.3 TestExecutionSchedule

UML Testing Profile 2 (UTP 2), Version 2.1 87

Description TestExecutionSchedule: A procedure that constrains the execution order of a
number of test cases.

A test execution schedule is a Behavior with «TestExecutionSchedule» applied that
schedules the execution order of a number of TestCases.

A test execution schedule can be either defined standalone or related to one or more
test sets. If a test execution schedule is related to a test set, the test execution
schedule is only allowed to schedule the execution of test cases that belong to its
related test set. This holds true, even if many test sets share the same test execution
schedule. However, it is possible, due to the semantics of Behavior, to specialize,
invoke or redefine test execution schedules. This enables the composition and
decomposition of test execution schedules, which, in turn, fosters reusability. A
standalone test execution schedule has the same semantics like defining a test set
that owns the test execution schedule and assembles all the test cases scheduled for
execution by the standalone test execution schedule. Standalone test execution
schedules may specialize or invoke non-standalone test execution schedules.
However, the semantics of the standalone test execution schedule remains the same.

A test execution schedule may produce a test set verdict, calculated by an implicit or
explicit arbitration specification for that test execution schedule. The semantics of
the default arbitration specification of a test execution schedule is defined by
«TestSetArbitrationSpecification». The default arbitration specification is always
active, unless an explicit «TestSetArbitrationSpecification» is bound to the
«TestExecutionSchedule».

A test execution schedule may invoke other test execution schedules, test cases or
auxiliary procedures (e.g., to retrieve required test data), however, a test execution
schedule is not allowed to invoke a test procedure directly (see
«ProcedureInvocation» for further information on the allowed invocation schemes).
Invocation of Behaviors relies on the underlying UML concepts for invoking
Behaviors. These are for Activities and StateMachines CallBehaviorAction,
StartObjectBehaviorAction and StartClassifierBehaviorAction, and for Interactions
InteractionUse. If such an invocation element is stereotyped with
«ProcedureInvocation», and part of a «TestExecutionSchedule» Behavior, e.g., such
as an Activity, the following Behaviors can be invoked:

• Behaviors with «TestExecutionSchedule» applied: Useful for decomposing and

reusing test execution schedules. If the user assigns a ProcedurePhaseKind to the
invoked «TestExecutionSchedule», it will not have an effect.

• Behaviors with «TestCase» applied: Useful for decomposing and reusing test
cases. If the user assigns a ProcedurePhaseKind to the invoked «TestCase», it
will not have an effect.

• Behaviors without «TestExecutionSchedule», «TestCase» or «TestProcedure»
applied: Such a Behavior invoked by a «ProcedureInvocation» is considered as
auxiliary Behavior required to prepare the execution of succeeding
«TestExecutionSchedules», and thus, «TestCase». The user may mark the
invoked Behavior as setup or teardown activity by means of the role attribute.

In the last case, a role might be assigned to an invoked Behavior. This role is either
of setup or teardown. If the role main is assigned, it will not have an effect.
Behaviors executed as setup or teardown Behaviors will not be arbitrated by a
corresponding arbitration specification. The meaning of the ProcedurePhaseKind in
the context of an test execution schedule are as follows:
• Setup: A means to declare that the executed Behavior is responsible to prepare

the execution of succeeding arbitrated test cases contained in that test execution

88 UML Testing Profile 2 (UTP 2), Version 2.1

schedule. UTP does not prescribe which verdict will be assigned in case
something goes wrong while executing the setup phase of an arbitrated test
execution schedule.

• Teardown: A means to declare that the executed Behavior is responsible to
clean-up after the arbitrated test cases of this test execution schedule have been
executed. UTP does not prescribe which verdict will be assigned in case
something goes wrong while executing the teardown phase.

Extension Behavior
Attributes ID : String [0..1]

A unique identifier to unambiguously distinguish between any two test execution
schedules. This is mainly intended to interface easier with management tools such as
test management tools.

Associations testSetAS : TestSetArbitrationSpecification [0..1]

Refers to the explicit static test set arbitration specification that overrides the
implicit default test set arbitration specification. An explicit test set arbitration
specification has only an effect, if the attribute isArbitrated is set to true.

Constraints Allowed invocation scheme

If a Behavior with «TestExecutionSchedule» contains an Element with
«ProcedureInvocation» applied, the invoked Behavior shall have either none or one
of the stereotypes «TestExecutionSchedule» or «TestCase» applied. The direct
invocation of «TestProcedure» Behaviors is not allowed from within a
«TestExecutionSchedule» Behavior.
One precondition per test execution schedule

DRTC02: It is necessary that each test execution schedule requires at most one
preconditon.
One postcondition per test execution schedule

DRTC05: It is necessary that each test execution schedule guarantees at most one
postcondition.

Change from UTP 1.2 «TestExecutionSchedule» has been newly introduced by UTP 2. It was conceptually
represented as the classifier behavior of a «TestContext» in UTP 1.2.

8.5.2 Procedural Elements
Procedural elements constitute the building blocks of procedures and test procedures. They can be realized by any
building block of UML Behaviors (e.g., InteractionFragments in case of Interactions, Actions in case of Activities
and Transitions/Vertices in case of StateMachines). The stereotypes for procedural elements reflect the minimal
language concepts that are deemed necessary for testers to specify test-specific procedures. Each procedural element
in a test-specific procedure has an effective arbitration specification assigned that delivers a procedural element
verdict to the surrounding arbitration specification at runtime.

Since the UML Behavior building blocks outnumber the UTP procedural elements, test-specific procedures may
consist of more than just the few predefined procedural elements. CombinedFragments of Interactions, for example,
offer more than just the four predefined compound procedural elements of UTP. Such a plain UML Behavior
building block provides implicitly the predefined verdict instances none to the surrounding arbitration specification.
This default semantics can be overridden by means of «OpaqueProceduralElement».

In general, UTP provides the following procedural elements out of the box:
• procedural element represented by the abstract stereotype «ProceduralElement»
• atomic procedural element represented by the abstract stereotype «AtomicProceduralElements»
• compound procedural element represented by the abstract stereotype «CompoundProceduralElement»
• opaque procedural element represented by the stereotype «OpaqueProceduralElement»

Specialized compound procedural elements comprises:

UML Testing Profile 2 (UTP 2), Version 2.1 89

• loop represented by the stereotype «Loop»
• sequence represented by the stereotype «Sequence»
• parallel represented by the stereotype «Parallel»
• alternative represented by the stereotype «Alternative»
• negative represented by the stereotype «Negative»
• procedure invocation represented by the stereotype «ProcedureInvocation»

Specialized atomic procedural elements are described by the test-specific actions (see section Test-specific Actions).

The procedural elements have been introduced by UTP to offer a harmonized view on technically different UML
behavioral building blocks.

8.5.2.1 Procedural Elements Overview
The following diagram shows the abstract syntax of the core procedural elements.

Figure 8.13 - Procedural Elements Overview

8.5.2.2 Compound Procedural Elements Overview
The following diagram shows the abstract syntax of the compound procedural elements.

90 UML Testing Profile 2 (UTP 2), Version 2.1

Figure 8.14 - Compound Procedural Elements Overview

8.5.2.3 Stereotype Specifications

8.5.2.3.1 Alternative
Description Alternative: A compound procedural element that executes only a subset of its

contained procedural elements based on the evaluation of a boolean expression.

If «Alternative» is applied to CombinedFragement, the underlying
CombinedFragment must have the InteractionOperatorKind alt or opt set.

In an Activity, «Alternative» must only be applied to CondititonalNode.

Extension CombinedFragment, StructuredActivityNode
Super Class CompoundProceduralElement
Associations arbitrationSpecification {redefines

arbitrationSpecification} :
AlternativeArbitrationSpecification [0..1]

Refers to an alternative arbitration specification that overrides the default and
implicit arbitration specification, if set. It redefines the Property
arbitrationSpecification of CompoundProceduralElement.

Constraints Application in Interactions

If «Alternative» is applied to CombinedFragment, the underlying
CombinedFragment must have the InteractionOperatorKind alt or opt set.
Application in Activities

In an Activity, «Alternative» must only be applied to CondititonalNode.
Change from UTP 1.2 «Alternative» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.1 91

8.5.2.3.2 AtomicProceduralElement
Description AtomicProceduralElement: A procedural element that cannot be further

decomposed.

«AtomicProceduralElement» is an abstract stereotype that does not extend UML
metaclass at all. This means that its substereotypes have to define suitable UML
metaclass for extension.

Atomic procedural elements resembles the semantics of UML Behavior building
blocks that are not able to be further decomposed. Message and
CallOperationAction are examples for concrete UML Behavior building block that
adhere to the definition of atomic procedural element. In contrast,
CombinedFragment or LoopNode are examples for compound procedural elements
for they contain potentially further procedural elements.

Super Class ProceduralElement
Sub Class CheckPropertyAction, CreateLogEntryAction, CreateStimulusAction,

ExpectResponseAction, ProcedureInvocation, SuggestVerdictAction
Associations arbitrationSpecification {redefines

arbitrationSpecification} :
AtomicProceduralElementArbitrationSpecification [0..1]

Refers to an atomic arbitration specification that overrides the default and implicit
arbitration specification if set. It redefines the Property arbitrationSpecification of
procedural element.
 : AtomicProceduralElementLogEntry [*]

Change from UTP 1.2 «AtomicProceduralElement» has been newly introduced by UTP 2.

8.5.2.3.3 CompoundProceduralElement
Description CompoundProceduralElement: A procedural element that can be further

decomposed.

«CompoundProceduralElement» is an abstract stereotype that extends
CombinedFragment and StructuredActivityNode to interface with the UML
Behaviors Interaction and Activity.

A compound procedural element resembles the semantics of UML Behavior
building blocks that consist of other procedural element. As such, it may obtain the
verdicts of its contained executed procedural elements in order to calculate its own
procedural element verdict. The difference between an atomic procedural element
verdict and compound procedural element verdict is that the latter is potentially
composed out of multiple atomic procedural element verdicts.

Extension CombinedFragment, StructuredActivityNode
Super Class ProceduralElement
Sub Class Alternative, Loop, Negative, Parallel, Sequence
Associations arbitrationSpecification {redefines

arbitrationSpecification} :
CompoundProceduralElementArbitrationSpecification [0..1]

Change from UTP 1.2 «CompoundProceduralElement» has been newly introduced by UTP 2.

92 UML Testing Profile 2 (UTP 2), Version 2.1

8.5.2.3.4 Loop
Description Loop: A compound procedural element that repeats the execution of its contained

procedural elements.

If «Loop» is applied to CombinedFragement, the underlying CombinedFragment
must have the InteractionOperatorKind loop set.

In an Activity, «Loop» must only be applied to LoopNode.

The nature of the loop (i.e., counter-controlled loop, conditional-controlled loop or
collection-controlled loop) is determine by the configuration of the underlying UML
element for expressing loops.

Extension CombinedFragment, StructuredActivityNode
Super Class CompoundProceduralElement
Associations arbitrationSpecification {redefines

arbitrationSpecification} : LoopArbitrationSpecification
[0..1]

Refers to a loop arbitration specification that overrides the default and implicit
arbitration specification if set. It redefines the Property arbitrationSpecification of
CompoundProceduralElement.

Constraints Application in Interactions

If «Loop» is applied to CombinedFragment, the underlying CombinedFragment
must have the InteractionOperatorKind loop set.
Application in Activities

In an Activity, «Loop» must only be applied to LoopNode.
Change from UTP 1.2 «Loop» has been newly introduced by UTP 2.

8.5.2.3.5 Negative
Description Negative: A compound procedural element that prohibits the execution of its

contained procedural elements in the specified structure.

If «Negative» is applied to CombinedFragement, the underlying CombinedFragment
must have the InteractionOperatorKind neg set.

In an Activity, «Negative» must only be applied to StructuredActivityNode.

Extension CombinedFragment, StructuredActivityNode
Super Class CompoundProceduralElement
Associations arbitrationSpecification {redefines

arbitrationSpecification} :
NegativeArbitrationSpecification [0..1]

Constraints Application in Interactions

If «Negative» is applied to CombinedFragment, the underlying CombinedFragment
must have the InteractionOperatorKind neg set.

Application in Activities

In an Activity, «Negative» must only be applied to StructuredActivityNode.
Change from UTP 1.2 «Negative» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.1 93

8.5.2.3.6 OpaqueProceduralElement
Description «OpaqueProceduralElement» adds the possibility to assign arbitration specifications

to UML Behavior building blocks that are not covered by UTP procedural elements.
Thus, it is a plain technical stereotype introduced for flexibility of UTP. Similar to
the semantics of opaque elements in UML (i.e., OpaqueBehavior,
OpaqueExpression, OpaqueAction), there is no additional semantics for
«OpaqueProceduralElement» given apart from the ability to assign arbitration
specifications to UML elements for which no dedicated procedural element
stereotype has been defined.

Extension NamedElement
Super Class ProceduralElement
Associations : OpaqueProceduralElementLogEntry [*]
Constraints Only applicable to UML Behavior building blocks

«OpaqueProceduralElement» must only be applied on instances of the UML
metaclass Action, InteractionFragment, Vertex and Transition.

Change from UTP 1.2 «OpaqueProceduralElement» has been newly introduced by UTP 2.

8.5.2.3.7 Parallel
Description Parallel: A compound procedural element that executes its contained procedural

elements in parallel to each other.

If «Parallel» is applied to CombinedFragement, the underlying CombinedFragment
must have the InteractionOperatorKind par set.

If used in Activities, the metaclass ConditionalNode is reused to describe parallel
execution of procedural elements (i.e., ExecutableNodes). The branches that must
be executed in parallel are defined by the Clauses that are contained in a
ConditionalNode with «Parallel» applied. If such a ConditionalNode is activated
and ready for execution, the evaluation of the Clauses by executing the test parts are
executed as described by UML. In contrast to a plain ConditionalNode, where at
most one Clause's body part will be executed, even if more than one Clause's test
part eventually enabled the Clause, all enabled Clause's body parts are executed in
parallel, if the ConditionalNode has «Parallel» applied.

Extension CombinedFragment, StructuredActivityNode
Super Class CompoundProceduralElement
Associations arbitrationSpecification {redefines

arbitrationSpecification} :
ParallelArbitrationSpecification [0..1]

Refers to a parallel arbitration specification that overrides the default and implicit
arbitration specification if set. It redefines the Property arbitrationSpecification of
CompoundProceduralElement.

Constraints Application in Interactions

If «Parallel» is applied to CombinedFragment, the underlying CombinedFragment
must have the InteractionOperatorKind par set.

Application in Activities

In an Activity, «Parallel» must only be applied to SequenceNode
Change from UTP 1.2 «Parallel» has been newly introduced by UTP 2.

94 UML Testing Profile 2 (UTP 2), Version 2.1

8.5.2.3.8 ProceduralElement
Description ProceduralElement: An instruction to do, to observe, and/or to decide.

«ProceduralElement» is an abstract stereotype that does not extend any UML
metaclass. This means that its substereotypes have to define suitable UML
metaclasses for extension.

A procedural element is the lowest common denominator for the building blocks of
the different UML Behaviors. If used as constituting part (possibly transitively) of a
test case execution, every procedural element delivers a verdict depending on both
the execution of the respective procedural element and the effective arbitration
specification of that procedural element. Every procedural element has an effective
arbitration specification assigned at evaluation time. This effective arbitration
specification is either the default arbitration specification of the respective
procedural element or an explicitly bound arbitration specification. If no explicit
arbitration specification is bound to the procedural element, the default arbitration
specification becomes the effective arbitration specification.

A procedural element adds the ability to specify the expected starting and end point
of the execution of procedural element related to a previously executed procedural
element, represented by the tag definitions startAfterPrevious and endAfterPrevious.
These timing-related characteristics are represented by means of explicit tag
definitions in addition to the existing simple time concepts of UML and time-related
information potentially available by further UML profiles such as MARTE. UTP 2
does not prescribe which of these timing-related concepts should be used. As a
recommendation, users should not mix different mechanisms to express timing-
related information.

Sub Class AtomicProceduralElement, CompoundProceduralElement,
OpaqueProceduralElement

Associations arbitrationSpecification :
ProceduralElementArbitrationSpecification [0..1]

Refers to a procedural element arbitration specification that overrides the default
and implicit arbitration specification for procedural elements.
startAfterPrevious : Duration [0..1]
endAfterPrevious : Duration [0..1]
testLogEntry : TestLogEntry [*]

Constraints Valid duration

DRTP01: It is necessary that the PE start duration of a procedural element is smaller
than the PE end duration of the same procedural element.

Change from UTP 1.2 «ProceduralElement» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.1 95

8.5.2.3.9 ProcedureInvocation
Description ProcedureInvocation: An atomic procedural element of a procedure that invokes

another procedure and waits for its completion.

«ProcedureInvocation» is a means to invoke procedures from within other
procedures. Since the constituents of UML Behaviors are not based on an integrated
metaclass, the concrete metaclasses for «ProcedureInvocation» depend on the
Behavior kind in which the «ProcedureInvocation» is used. If it represents a
building block of an Activity or StateMachine, «ProcedureInvocation» must only be
applied on the metaclass CallBehaviorAction, StartObjectBehaviorAction or
StartClassifierBehaviorAction. If it represents a building block of an Interaction,
«ProcedureInvocation» must only be applied on the metaclass InteractionUse.

The allowed invocation scheme for a «ProcedureInvocation» is as follows:

• If it constitutes a procedural element of a test execution schedule, only test

execution schedules, test cases or procedures must be invoked.
• If it constitutes a procedural element of a test case, only test procedures and

procedures must be invoked.
• If it constitutes a procedural element of a test procedure, only test procedure or

procedures must be invoked.

If procedure invocation is part of a test case it must assign a role to the invoked test
procedure. This role is either main, setup or teardown. The semantics of these roles
in UTP are:
• main: A test procedure that implements the reason why the invoking test case

has been designed, i.e., it contribute to the coverage of a test objective or test
requirement. The main part of a test case is relevant for calculating coverage and
controlling the progress.

• setup: A means to declare that the executed test procedure is responsible to
prepare the main part of a test case.

• teardown: A means to declare that the executed test procedure is responsible to
clean-up after the main part of a test case has been executed.

If procedure invocation is part of a test execution schedule it may assign a role to an
invoked Behavior. This role is either of setup or teardown. The semantics of these
roles in UTP are:
• setup: A means to declare that the executed Behavior is responsible to prepare

the execution of arbitrated test cases contained in that test case.
• teardown: A means to declare that the executed Behavior is responsible to clean-

up after the arbitrated test cases of this test execution schedule have been
executed.

Extension CallBehaviorAction, InteractionUse
Super Class AtomicProceduralElement
Attributes role : ProcedurePhaseKind [0..1]

The role, the invoked procedure assumes within the invoking test-specific
procedure.

Associations arbitrationSpecification {redefines
arbitrationSpecification} :
ProcedureInvocationArbitrationSpecification [0..1]

Refers to a procedure invocation arbitration specification that overrides the default
and implicit arbitration specification if set. It redefines the Property
arbitrationSpecification of «CompoundProceduralElement».

96 UML Testing Profile 2 (UTP 2), Version 2.1

/invokedProcedure : Behavior

The procedure that was invoked by that «ProcedureInvocation». If
«ProcedureInvocation» is applied to CallBehaviorAction, it is derived from the
property 'behavior' of the underlying CallBehaviorAction. If «ProcedureInvocation»
is applied to InteractionUse, it is derived from the property 'refersTo' of the
underlying InteractionUse.
 : ProcedureInvocationLogEntry [*]

Constraints Role only in context of test cases relevant

If «ProcedureInvocation» is part of a «TestProcedure» Behavior, the tag definition
role must be empty. If it is empty, it will be ignored.

Change from UTP 1.2 «ProcedureInvocation» has been newly introduced by UTP 2.

8.5.2.3.10 Sequence
Description Sequence: A compound procedural element that executes its contained procedural

elements sequentially.

If «Sequence» is applied to CombinedFragement, the underlying
CombinedFragment must have the InteractionOperatorKind strict or seq applied.

In an Activity, «Sequence» must only be applied to SequenceNode.

Extension CombinedFragment, StructuredActivityNode
Super Class CompoundProceduralElement
Associations arbitrationSpecification {redefines

arbitrationSpecification} :
SequenceArbitrationSpecification [0..1]

Refers to a SequenceArbitrationSpecification that overrides the default and implicit
ArbitrationSpecification if set. It redefines the Property arbitrationSpecification of
CompoundProceduralElement.

Constraints Application in Interactions

If applied on a CombinedFragment, the underlying CombinedFragment must have
set InteractionOperatorKind::seq or InteractionOperatorKind::strict as the
interactionOperator.
Application in Activities

If applied on a StructuredActivityNode, the StructuredActivityNode must be a
SequenceNode.

Change from UTP 1.2 «Sequence» has been newly introduced by UTP 2.

8.5.2.4 Enumeration Specifications
Name Description Enumeration literals
ProcedurePhaseKin
d

An enumeration of the three
possible values a procedure or
test procedure can assume.

setup

The invoked procedure or test procedure is considered
as a preamble of the test case or a test execution
schedule, intended to prepare the execution of test
cases.

teardown

The invoked procedure or test procedure is considered
as a postamble of the test case or a test execution
schedule, intended to clean-up or finalize the execution
of test cases.

UML Testing Profile 2 (UTP 2), Version 2.1 97

Name Description Enumeration literals
main

The invoked test procedure is considered as the
essential part of a test case's execution with respect to
coverage.

8.5.3 Test-specific Actions
UTP introduces dedicated test-specific actions that denote actions a tester, regardless whether this is an automated or
human tester, can carry out in order to communicate with the test item. In context of dynamic testing,
communicating with a test item either means to stimulate the test item with a create stimulus action (implemented
as stereotype «CreateStimulusAction») or observing and evaluating its actual responses with the expected ones
(represented by the stereotypes «ExpectResponseAction», «CheckPropertyAction»).

Test-specific actions are specialized procedural elements. As such, they contribute a dedicated procedural element
verdict to the eventual calculation of a test case or test set verdict. The test-specific actions can be categorized by the
entity that contributes information to the calculation of the respective procedural element verdict.

The procedural element verdicts of the following test-specific actions are calculated by taking into consideration the
information provided by the test component or tester. These test-specific actions are henceforth called test
component controlled actions, because an erroneous execution of these test actions indicates a misbehavior of the
test component (submitting the wrong stimulus, performing a test-specific action too late/too early) or technical
issues in the test environment (e.g., breakdown of connectivity etc.):
• Create stimulus action represented by the stereotype «CreateStimulusAction»
• Suggest verdict action represented by the stereotype «SuggestVerdictAction»
• Create log entry action represented by the stereotype «CreateLogEntryAction»

It is highly recommended that the verdicts calculated by these test component controlled actions should only result
in the predefined verdict instances pass or error.

The verdict of following test-specific actions is calculated by taken into consideration information received by the
test items. These test-specific actions are henceforth called test item controlled actions, because the arbitration of
these test-specific actions depend on the responses of the test items during execution and as such indicate deviations
between the expected response and actual response:
• Expect response action represented by the stereotype «ExpectResponseAction»
• Check property action represented by the stereotype «CheckPropertyAction»

It is highly recommended that the verdicts calculated by test component controlled actions should only result in the
predefined verdict instances pass or error.

8.5.3.1 Test-specific actions Overview
The following diagram shows the abstract syntax of the test action.

98 UML Testing Profile 2 (UTP 2), Version 2.1

Figure 8.15 - Test-specific actions Overview

8.5.3.2 Tester Controlled Actions
The following diagram shows the details of the test component controlled test actions.

Figure 8.16 - Tester Controlled Actions

UML Testing Profile 2 (UTP 2), Version 2.1 99

8.5.3.3 Test Item Controlled Actions
The following diagram shows the details of the test item controlled test actions.

Figure 8.17 - Test Item Controlled Actions

100 UML Testing Profile 2 (UTP 2), Version 2.1

8.5.3.4 Stereotype Specifications

8.5.3.4.1 CheckPropertyAction
Description CheckPropertyAction: A test action that instructs the tester to check the

conformance of a property of the test item and to set the procedural element verdict
according to the result of this check.

The stereotype «CheckPropertyAction» extends Constraint (for integration with
Interaction's StateInvariant and StateMachines), and ObjectFlow (for integration
with Activities) and enables the test component to check certain properties of the
test item that cannot be checked via the publicly available or known APIs of the test
item. Thus, it is not defined how the test component accesses the test item's
property.

If used in Interactions, check property action is used as Constraint of a
StateInvariant that covers a test component. Such a Constraint must be contained by
StateInvariants. The specification of the StateInvariant's «CheckPropertyAction»
Constraint is intended to determine the Property of the test item that must be
checked and the value the Property has to match with. As specification of the
«CheckPropertyAction» Constraint, any kind of suitable ValueSpecification can be
utilized. For example, the «CheckPropertyAction» Constraint may specify location
expressions with OCL or Alf for declaring access and expected values of the test
item's Property.

If used in StateMachines, check property action is expressed as stateInvariant
attribute of a State. Since the stateInvariant attribute is of type Constraint, the usage,
application and semantics is similar to the check property action used in Interactions
(i.e., use of StateInvariant in Interactions).

If used in Activities, check property action is expressed as «CheckPropertyAction»
ObjectFlow that emanates from a ReadStructuralFeatureAction and is used to access
a StructuralFeature of the test item. The expected value of the checked Property is
defined by the guard condition of the CheckPropertyAction» ObjectFlow.

In addition, it is possible to point directly to the Property that will be checked by the
check property action by means of the tag definition checkedProperty. This
information is helpful, if, for example, natural language is used to describe
«CheckPropertyAction» Constraint.

The default arbitration specification for the check property action is described by
«CheckPropertyArbitrationSpecification».

Graphical syntax

Extension Constraint, ObjectFlow
Super Class AtomicProceduralElement
Associations arbitrationSpecification {redefines

arbitrationSpecification} :
CheckPropertyArbitrationSpecification [0..1]

Refers to a check property action arbitration specification that overrides the default
and implicit arbitration specification, if set. It redefines the Property
arbitrationSpecification of test action.

UML Testing Profile 2 (UTP 2), Version 2.1 101

checkedProperty : Property [*]

Refers to set of Properties of a test item that is supposed to be checked by the check
property action.
 : CheckPropertyLogEntry [*]

Constraints Owner of Constraint

If applied on a Constraint, the owner of this Constraint must only be a State
(referring to the Constraint as StateInvariant) or StateInvariant.
Owner of Property

If 'checkedProperty' is not empty, the referenced Property must belong to a TestItem
participating in the current test-specific procedure.
At least one property

DRTA03: It is necessary that a check property action checks at least one property of
the test item against the data.

Change from UTP 1.2 «CheckPropertyAction» has been newly introduced by UTP 2.

8.5.3.4.2 CreateLogEntryAction
Description CreateLogEntryAction: A test action that instructs the tester to record the execution

of a test action, potentially including the outcome of that test action in the test case
log.

The stereotype «CreateLogEntryAction» extends InvocationAction which allows for
using a variety of metaclasses for application. The create log entry action is a test
action that instructs the tester or the test execution system to log certain information
about the execution of a test case. This information is henceforth called content to
be logged. The content to be logged has to be provided as the argument InputPin of
the underlying InvocationAction. It is not specified how the variety of potentially
logable contents is eventually be represented in the log. Test execution systems are
responsible for eventually writing the content to be logged into the actual test log.

If used in an Interaction, the InvocationAction that is stereotyped with
«CreateLogEntryAction» should be referenced from an
ActionExecutionSpecification that indirectly covers a Lifeline that represents a test
component role in the underlying test configuration. Indirectly means that the
corresponding start and end OccurenceSpecification of the
ActionExecutionSpecification cover the test component lifeline.

If used in Activities or StateMachines, e.g., CallOperationAction could be used to
invoke a (not standardized, yet proprietary) logging interface operation. Another
possibility is to use SendObjectAction without specifying the target Pin which has
the semantics to submit the information to be logged to the logging facility of the
test execution system without needing a dedicated interface. However, during test
execution the create log entry action must be made executable and eventually
carried out. This may include manually writing some information into a paper-based
document.

The default arbitration specification for the create log entry action is described by
«CreateLogEntryArbitrationSpecification».

Graphical syntax

Extension InvocationAction
Super Class AtomicProceduralElement

102 UML Testing Profile 2 (UTP 2), Version 2.1

Associations arbitrationSpecification {redefines
arbitrationSpecification} :
CreateLogEntryArbitrationSpecification [0..1]

Refers to a create log entry action arbitration specification that overrides the default
and implicit arbitration specification if set. It redefines the Property
arbitrationSpecification of test action.
 : CreateLogEntryLogEntry [*]

Change from UTP 1.2 «CreateLogEntryAction» has been newly introduced by UTP 2.

8.5.3.4.3 CreateStimulusAction
Description CreateStimulusAction: A test action that instructs the tester to submit a stimulus

(potentially including data) to the test item.

«CreateStimulusAction» extends Message (for integration with Interaction) and
InvocationAction (for integration with Activities and StateMachines).

The create stimulus action is performed by an instance of a test component and
represents a set of possible invocations of the test item, potentially conveyed by a
payload. Invocation means that either a BehavioralFeature of the test item is
invoked (e.g. using a Message or a SendSignalAction respectively
CallOperationAction) or by simply sending a stimulus to the test items (e.g.,
SendObjectAction or BroadcastSignalAction).

The set of stimuli to be sent is derived from the arguments of the underlying UML
element and the elements specified by the tag definition permittedElement. This set
is then reduced by the elements yield by forbiddenElement. If the set of stimuli is
empty (i.e., neither the underlying UML element yields arguments nor the
permittedElement tag definition yields an element), it is semantically equivalent to a
situation where any possible and known by the invoking test component stimuli at
this point in time can be send to the test item. This set of any possible and known
stimuli is potentially reduced by the elements yield by forbiddenElement. In case the
set of permitted elements and the set of forbidden elements are overlapping, the
elements in the intersection belong to the set of forbidden elements. If both sets are
empty, every known stimuli can be send to the test item.

The default arbitration specification for the create stimulus action is described by
«CreateStimulusArbitrationSpecification».

Extension InvocationAction, Message
Super Class AtomicProceduralElement
Associations arbitrationSpecification {redefines

arbitrationSpecification} :
CreateStimulusArbitrationSpecification [0..1]

Refers to a create stimulus action arbitration specification that overrides the default
and implicit arbitration specification if set. It redefines the Property
arbitrationSpecification of test action.
forbiddenElement : NamedElement [*]

A set of elements that are explicitly removed from the set of stimuli to be sent.
permittedElement : NamedElement [*]

Additional set of stimuli that contribute to the set of permitted stimuli.
 : CreateStimulusLogEntry [*]

Constraints Type of forbidden elements

The tag definition 'forbiddenElement' shall only contain instances of the following

UML Testing Profile 2 (UTP 2), Version 2.1 103

metaclasses: Message, Event, Signal, BehavioralFeature, Trigger,
InstanceSpecification.

Type of permitted elements

The tag definition 'permittedElement' shall only contain instances of the following
metaclasses: Message, Event, Signal, BehavioralFeature, Trigger,
InstanceSpecification.
At least one stimulus

DRTA01: It is necessary that a create stimulus action permits to send at least one
stimulus.

Change from UTP 1.2 «CreateStimulusAction» has been newly introduced by UTP 2.

104 UML Testing Profile 2 (UTP 2), Version 2.1

8.5.3.4.4 ExpectResponseAction

UML Testing Profile 2 (UTP 2), Version 2.1 105

Description ExpectResponseAction: A test action that instructs the tester to check the occurrence
of one or more particular responses from the test item within a given time window
and to set the procedural element verdict according to the result of this check.

The stereotype «ExpectResponseAction» extends Message (for integration with
Interactions) and Trigger (for integration with StateMachines and Activities) and
denotes the expectation of the test component to receive an actual response,
potentially conveyed by some payload, from the test item at a certain point in time
during test execution.

Actually received information from the test item can be classified into one of the
following three sets:
• expected elements: The actually received element is expected by the test

component.
• ignored elements: The actually received element may be received from the test

item, but if it is received, it will be ignored by the test component.
• forbidden elements: The actually received element is forbidden to be received

from the test item.

The classification of received elements as member of one of the three sets helps
calculating the verdict by the arbitration specification of the executed expect
response action. The classification itself does not prescribe which verdict will be be
produced for the currently executed expect response action. It is the responsibility of
the associated arbitration specification to derive a verdict from the received
elements and their classification. For further details of the semantics of the default
«ExpectResponseArbitrationSpecification», refer to the corresponding sub-section.

Basiscally, only two sets are required to be explicity stated, the third set is then
derived from the complement set of the union of the other two sets. The decision,
which set shall be derived by the complement set of the union of the other two sets
is determined by the tag definition 'expectationKind'. In case of overlapping sets the
following precedences are given: forbidden elements > ignored elements > expected
elements. The reason for this precedence is to reduce the possibily of 'false negative'
results.

In case of a Message extension, the expected response is defined by the Message’s
signature and its arguments, if any. If more than one response type is expected at the
same point in time, the tag definition 'expectedElement' can be used to denote
further expected responses in addition to the expected response denoted by the
Message's argument. The eventual number of expected responses is the union of the
Message with «ExpectResponseAction» applied, inclusing its arguments, joined
with the elements of the tag definition 'expectedElement'. If the signature of the
Message is left empty, the expect response action accepts and consumes any kind of
actual responses from the test item. In that case, the tag definition 'expectationKind'
shall be set to 'implicitExcept' only. The effective set of expected elements is
eventually determined by the complement set of the union of forbidden elements
and ignored elements.

In case of Trigger extension, the expected responses are the union of the
MessageEvents obtained from the underlying Trigger and the expected responses
yield by the expectedElement tag definition, if any. A Trigger with
«ExpectResponseAction» that defines an AnyReceiveEvent excepts and consumes
any kind of actual responses from the test item. In that case, the tag definition
'expectationKind' shall be set to 'implicitExcept' only. The effective set of expected
elements is eventually determined by the complement set of the union of forbidden
elements and ignored elements.

106 UML Testing Profile 2 (UTP 2), Version 2.1

The default arbitration specification for the expect response action is described by
«ExpectResponseArbitrationSpecification».

Extension Message, Trigger
Super Class AtomicProceduralElement
Attributes expectationKind : ImplicitExpectationKind [1] =

implicitForbid

The expectation kind determines which of the three explicit sets in the context of an
ExpectResponseAction is implicitly merged (union) with the complement set of the
union of the other two sets. The following possibilities are:

• forbidden elements are implicitly unified (implicitForbid): Any received element

that does not belong to the set of expected or ignored elements will be unified
with the explicit set of forbidden elements during test execution. This prevents
(or reduces the likelihood of) 'false negatives'.

• ignored elements are implicitly unified (implicitIgnore): Any received element
that does not belong to the set of expected or forbidden elements will be unified
with the explicit set of ignored elements during test execution. Care must be
taken when going for this mechanism, since it is prone to 'false negative' results
in case a forbidden element was forgotten to be explicitly defined in the
corresponding set.

• expected elements are implicitly unified (implicitExpect): Any received element
that does not belong to the set of ignored or forbidden elements will be unified
with the explicit set of expected elements during test execution. Care must be
taken when going for this mechanism, since it is prone to 'false negative' results
in case a forbidden element was forgotten to be explicitly defined in the
corresponding set.

Associations expectedElement : NamedElement [*]

A set of elements that are expected from the test item during test execution.
Depending on the expectationKind for this «ExpectResponseAction» this set might
be implicitly joined with the complement set of union of the sets 'forbiddenElement'
and 'ignoredElement'.

arbitrationSpecification {redefines
arbitrationSpecification} :
ExpectResponseArbitrationSpecification [0..1]

Refers to an expect response action arbitration specification that overrides the
default and implicit arbitration specification if set. It redefines the Property
arbitrationSpecification of test action.
forbiddenElement : NamedElement [*]

A set of elements that are forbidden to be received from the test item during test
execution. Depending on the expectationKind for this «ExpectResponseAction» this
set might be implicitly joined with the complement set of union of the sets
'expectedElement' and 'ignoredElement'.
ignoredElement : NamedElement [*]

A set of elements that are ignored when being received from the test item during test
execution. Depending on the expectationKind for this «ExpectResponseAction» this
set might be implicitly joined with the complement set of union of the sets
'expectedElement' and 'forbiddenElement'.
 : ActualResponseLogEntry [*]

UML Testing Profile 2 (UTP 2), Version 2.1 107

Constraints Type of elements for the explicit sets

The tag definitions 'forbiddenElement', 'expectedElement' and 'ignoredElement'
shall only contain instances of the following metaclasses: Message, Event, Signal,
BehavioralFeature, Trigger, InstanceSpecification.
At least one response

DRTA02: It is necessary that a expect response action expects to receive at least one
response.
Enforced expectation kind 'implicitExcept'

In the cases, when «ExpectResponseAction» is applied to a Message in the context
of an Interaction, and the Message's signature is left empty, or when
«ExpectResponseAction» is applied to a Trigger that yields an AnyReceiveEvent,
the 'expectationKind' of the «ExpectResponseAction» shall be set to
'implicitExpect'.

Change from UTP 1.2 «ExpectResponseAction» has been newly introduced by UTP 2.

8.5.3.4.5 SuggestVerdictAction
Description SuggestVerdictAction: A test action that instructs the tester to suggest a particular

procedural element verdict to the arbitration specification of the test case for being
taken into account in the final test case verdict.

Stereotype «SuggestVerdictAction» extends InvocationAction which allows for
using a variety of metaclasses for application. However, there must be at least one
argument InputPin defined for the InvocationAction of the predfefined type verdict
or subclasses thereof.

For example, a CallOperationAction could be used to invoke a (not standardized,
yet proprietary) arbiter-specific interface operation. Another possibility is to use
SendObjectAction without specifying the target Pin, which has the semantics of
providing the Verdict instance to the arbitrating facility of a test execution system
without needing a dedicated Interface. However, during test execution the suggest
verdict action must be made executable. This may include manually writing the
verdict instance into a paper-based document.

If used in an Interaction, the InvocationAction that is stereotyped with
«SuggestVerdictAction» must be referenced from an ActionExecutionSpecification
that indirectly covers a Lifeline that represents a test component role in the
underlying test configuration. Indirectly means that the corresponding start and end
OccurenceSpecification of the ActionExecutionSpecification cover the test
component lifeline.

The default arbitration specification for the suggest verdict action is described by
«SuggestVerdictArbitrationSpecification».

Graphical syntax

Extension InvocationAction
Super Class AtomicProceduralElement
Associations arbitrationSpecification {redefines

arbitrationSpecification} :
SuggestVerdictArbitrationSpecification [0..1]

Refers to a suggest verdict action arbitration specification that overrides the default

108 UML Testing Profile 2 (UTP 2), Version 2.1

and implicit arbitration specification if set. It redefines the Property
arbitrationSpecification of test action.

 : SuggestVerdictLogEntry [*]
Constraints Type of Argument

The type of the argument InputPin must be the predefined verdict type or a subtype
thereof.

Change from UTP 1.2 «SuggestVerdictAction» has been newly introduced by UTP 2.

8.5.3.5 Enumeration Specifications
Name Description Enumeration literals
ImplicitExpectation
Kind

Determines, which of the three
received element sets in the
context of an
ExpectResponseAction is
implicitly joined with the
complement set of the union of
the other two sets. The three
sets of elements that are
meaningful in the context of an
«ExpectResponseAction» are
the expected elements, ignored
element and forbidden
elements. Two of these sets
have to be stated explicitly in
the context of an
ExpectResponseAction, the
third one is implicitly derived
from the complement set of the
union of the two explicit sets.

implicitForbid

Determines that the explicit set of forbidden elements
is implicitly joined with the complement set of the
union of the explicitly expected and ignored element
sets.

implicitIgnore

Determines that the explicit set of ignored elements is
implicitly joined with by the complement set of the
union of the explicitly expected and element sets.

implicitExpect

Determines that the explicit set of expected elements is
implicitly joined with the complement set of the union
of the explicitly forbidden and ignored element sets.

8.6 Test Data
Testing is mainly about the exchange of data and the ability to compare actual responses and their payload received
from the test item at test execution with the expected one stated in the test case. Therefore, testers usually have to
take at least two data-related concepts into account. First, the specification of data, i.e., the known types and the
constraints applied on these types for deriving data values that abide by these constraints. Second, a flexible
mechanism to specify data values and their allowed matching mechanisms for test case execution.

Data specification-related concepts are provided and further described by the concepts of the Data Specifications
chapter.

Data value-related concepts are provided and further described by the concepts of the Data Values chapter.

UML Testing Profile 2 (UTP 2), Version 2.1 109

8.6.1 Data Specifications
This section specifies the stereotypes to implement the data specification concepts introduced in section Test Data of
the Conceptual Model.

8.6.1.1 Data Specifications Overview
The diagram below shows abstract syntax of the data specifications package.

Figure 8.18 - Data Specifications Overview

8.6.1.2 Stereotype Specifications

8.6.1.2.1 Complements
Description Complements: A morphism that inverts data)i.e., that replaces the data items of a

given set of data items by their opposites).

The stereotype «Complements» specializes the abstract stereotype «Morphing» and
logically negates the specification of the morphed data specifications within the
morphing data specification. That means that complement morphism result in a
complementing data specification that is the difference set of the complemented or
morphed data specification.

Extension Dependency
Super Class Morphing
Change from UTP 1.2 «Complements» has been newly introduced by UTP 2.

110 UML Testing Profile 2 (UTP 2), Version 2.1

8.6.1.2.2 DataPartition
Description DataPartition: A role that some data plays with respect to some other data (usually

being a subset of this other data) with respect to some data specification.

The stereotype «DataPartition» extends a UML Classifier and represents a set of
data that complies with one or more data specifications.

Extension Classifier
Associations dataSpecification : DataSpecification [*]
Change from UTP 1.2 «DataPartition» has been newly introduced by UTP 2.

8.6.1.2.3 DataPool
Description DataPool: Some data that is an explicit or implicit composition of other data items.

The stereotype «DataPool» extends a UML Classifier and represents a set of
physical data without complying to any particular data specification.

Graphical syntax

Extension Classifier
Change from UTP 1.2 Changed from UTP 1.2. In UTP 1.2 «DataPool» extended both Classifier and

Property.

8.6.1.2.4 DataProvider
Description DataProvider: A test component that is able to deliver (i.e., either select and/or

generate) data according to a data specification.

The stereotype «DataProvider» is a specialization of stereotype «TestComponent».
Such a test component is used to provide a data partition, represented as a Constraint
extended by the stereotype «DataPartition», by generating some new data or by
selecting some existing data from another data partition or a data pool according to
some data specifications (represented as a Constraint extended by the stereotype
«DataSpecification»).

Extension Classifier, Property
Super Class TestComponent
Associations : TestDesignDirective

dataSpecifications : DataSpecification [1..*]
Change from UTP 1.2 «DataProvider» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.1 111

8.6.1.2.5 DataSpecification
Description DataSpecification: A named boolean expression composed of a data type and a set

of constraints applicable to some data in order to determine whether or not its data
items conform to this data specification.

The stereotype «DataSpecification» extends Constraint and is used to describe the
constraints within the context of one or more types, instances of those types have to
comply with. DataSpecifications are used to build and define DataPartitions.

Since «DataSpecification» is an extension of Constraint the specification of the
Constraint is defined by a ValueSpecification. This specification might be as simple
as a LiteralString (e.g., natural language describing the constraint) or as complex as
a formal language statement (e.g., Alf or OCL). UTP does not prescribe the notation
used for describing the specification of a «DataSpecification» Constraint.

In case a Constraint with «DataSpecification» is directly contained in Classifier, it is
considered semantically equivalent to «DataSpecification» Constraint defined
outside of this Classifier and with a «Refines» Dependency established between the
«DataSpecification» Constraint and the Classifier.

Extension Constraint
Associations : DataProvider [*]

 : DataPartition [*]
Constraints DataType in DataSpecification

DRTD01: It is necessary that each data specification specifies at least one data type.

Change from UTP 1.2 «DataSpecification» has been newly introduced by UTP 2.

8.6.1.2.6 Extends
Description Extends: A morphism that increases the amount of data (i.e., that adds more data

items to a given set of data items).

The stereotype «Extends» specialized the abstract stereotype «Morphing» and
logically OR-combines the specification of the morphed data specifications within
the morphing data specification. That means that extension morphism result in a
data specification that is more general than the extended or morphed data
specifications.

Extension Dependency
Super Class Morphing
Change from UTP 1.2 «Extends» has been newly introduced by UTP 2.

112 UML Testing Profile 2 (UTP 2), Version 2.1

8.6.1.2.7 Morphing
Description Morphing: A structure-preserving map from one mathematical structure to another.

The abstract stereotype «Morphing» extends Dependency and is used to derive data
specifications from other data specifications. This enables a high degree of
reusability of existing data specifications. «Morphing» is intended to be subclassed
and simply acts as a common superclass for shared semantics and constraints.

A Dependency stereotyped with a subclass of «Morphing» always emanates from a
Constraint with «DataSpecification» applied. It must point to a UML Classifier, to a
UML Package containing some UML Classifiers, or to a Constraint with
«DataSpecification» applied. If it targets a «DataSpecification» Constraint, it
morphs the definitions of that data specification (called the morphed data
specification) into a new data specification (called morphing data specification). If it
targets a Classifier (or a set of Classifiers contained in a Package), all constraints
applied on those Classifiers or their attributes are considered as an implicit morphed
data specification attached to the Classifier which is eventually morphed into a
morphing data specification.

The exact effect of morphing a data specification into another data specification is
defined by the concrete subclasses of the stereotype «Morphing».

Extension Dependency
Sub Class Complements, Extends, Refines
Constraints Clients of a «Morphing» Dependency

DRTD03: As clients of a Dependency stereotyped with a concrete substereotype of
«Morphing» only the following elements are allowed: Constraint with
«DataSpecification» applied.
Suppliers of a «Morphing» Dependency

DRTD04: As suppliers of a Dependency stereotyped with a concrete substereotype
of «Morphing» only the following elements are allowed: Constraint with
«DataSpecification» applied, UML Classifier, and UML Package.

Change from UTP 1.2 «Morphing» has been newly introduced by UTP 2.

8.6.1.2.8 Refines
Description Refines: A morphism that decreases the amount of data (i.e., that removes data

items from a given set of data items).

The stereotype «Refines» specialized the abstract stereotype «Morphing» and
logically AND-combines the specification of the morphed data specifications within
the morphing data specification. That means that refinement morphism result in a
data specification that is more specific than the refined or morphed data
specifications.

Extension Dependency
Super Class Morphing
Change from UTP 1.2 «Refines» has been newly introduced by UTP 2.

8.6.2 Data Values
The payload of an expect response action is also called expected response argument value as opposed to the actual
response argument value. During arbitration specification, usually a comparator evaluates whether the actual
response matches with the expected ones in terms of event type and its payload. It is then the task of the arbitration
specification to decide on the verdict that has to be assigned. In UTP data values are expressed by means of
ValueSpecifications to specify both the payload for a stimulus and the payload of expected responses. In case of an

UML Testing Profile 2 (UTP 2), Version 2.1 113

expected response, the ValueSpecification does also implicitly define a matching mechanism used by a comparator
during arbitration in order to evaluate whether the expected payload matches the actual payload.

The implicitly applied matching mechanism is determined by the ValueSpecification used to describe an expected
payload argument in the context of an expected response. The prescribed matching mechanisms semantics,
inherently bound to ValueSpecifications, are defined by UTP as follows:
• ValueSpecification (abstract metaclass): In general, any native UML ValueSpecification infers an equality

matching mechanism, i.e., the actual payload, also known as response argument value, must be exactly the same
as the expected payload. Any deviation will result in a mismatch.

• LiteralInteger: Checks for equality of the expected and actual response Integer-typed argument value.
• LiteralString: Checks for equality of the expected and actual response String-typed argument value.
• LiteralReal: Checks for equality of the expected and actual response Real-typed argument value.
• LiteralBoolean: Checks for equality of the expected and actual response Boolean-typed argument value.
• LiteralUnlimitedNatural: Checks for equality of the expected and actual response Integer-typed argument value

including infinity.
• LiteralNull: Checks for absence of an actual response argument value of any type.
• InstanceValue: Checks for equality of the expected and actual response complex data type instance argument

value.

All these equality matching mechanisms are natively given by UML, whereas UTP adds just a few more
ValueSpecifications that provide matching mechanisms currently not given by UML. These kinds of
ValueSpecifications are sometimes called Wildcards (TTCN-3) or Facets (XML Schema):
• AnyValue: Represents a set of all possible values for a given type and checks if actual response argument value

is contained in this set. In case of optionality, the set of known values includes the absence of a value. This is
implemented as stereotype «AnyValue».

• RegularExpression: Represents a set of values for a given type described by a regular expression and checks if
the actual response argument value belongs to that set. This is implemented as stereotype «RegularExpression».

Both stimuli and expected responses yield data values for distinct signature elements. A signature element is defined
as instance of either a Parameter or Property (i.e., this specification introduces a virtual metaclass SignatureElement
that is the joint superclass of Property and Parameter and has at least the following attributes: type : UML::Type,
lower : Integer, upper : UnlimitedNatural). Given by UML [UML25], a "... Type specifies a set of allowed values
known as the instances of the Type." This specification denotes this set in the context of a SignatureElement
expressed as type(se), with type(se) as SignatureElement.type, and use T as abbreviation for type(se).

We specify

with se instance of SignatureElement and lower(se) as SignatureElement.lower and denote it by SE type.
A ValueSpecification V as an argument for a SignatureElement is specified as

These basic definitions are further used for the specific ValueSpecification matching mechanism extensions
introduced by UTP.

8.6.2.1 Data Value Extensions
The diagram below shows the abstract syntax of the ValueSpecification extensions introduced by UTP.

114 UML Testing Profile 2 (UTP 2), Version 2.1

Figure 8.19 - Data Value Extensions

8.6.2.2 Stereotype Specifications

8.6.2.2.1 AnyValue
Description The stereotype «AnyValue» extends ValueSpecification and represents an implicit

set of known values for a given type. The expected response argument value
matches with each actual response argument value, as long as type-compliance is
given. In case of optionality, the set of known values includes the absence of a
value.

Extension Expression
Change from UTP 1.2 Changed and renamed from UTP 1.2. In UTP 1.2, «AnyValue» was called

«LiteralAny» and extended LiteralSpecification.

UML Testing Profile 2 (UTP 2), Version 2.1 115

8.6.2.2.2 overrides
Description Overrides is a relationship between at least two InstanceSpecifications, i.e., the

modifying InstanceSpecification and the modified InstanceSpecification. Modifying
InstanceSpecifications constitute the client elements of the underlying dependency,
and consequently, modified InstanceSpecifications constitute the supplier elements
of the underlying dependency.

A modifying InstanceSpecification reuses all slot values of the modified
InstanceSpecification in a way as if the slot values would have been copied into the
modifying InstanceSpecification as its owned slots. Furthermore, the modifying
InstanceSpecification is allowed to specify slots, which have not been declared by
the modified InstanceSpecification at all. This enables user to gradually complete
InstanceSpecifications and to reuse already or maybe partially defined
InstanceSpecifications in order to create large sets of data by avoiding redundancy.

Additionally, a modifying InstanceSpecification is able to overwrite slots with new
values. A slot is considered to be overwritten if a modifying InstanceSpecification
defines an owned slot that refers to the very same defining feature as the owned slot
of the modified InstanceSpecification, or to a feature that redefines, directly or
transitively, the slot's defining feature. An overwriting slot‘s value list entirely
replaces the value list of the slot that is overwritten.

Modification requires type compatibility between the modifying and modified
InstanceSpecifications. Type compatibility is given if a modifying
InstanceSpecification’s classifier list is compatible with the modified
InstanceSpecification’s classifier list. Two classifier lists are compatible if the
modifying InstanceSpecification’s classifier list is a proper subset of the modified
InstanceSpecification’s classifier list. A proper subset is considered to be given if
each classifier of the modifying InstanceSpecification’s classifier list is type
compatible with at least one classifier of the modified InstanceSpecification
classifier list. Type compatibility between classifiers is defined in the UML
specifications.

Cyclic modifications are not allowed. A cyclic modification describes a situation in
which a modifying InstanceSpecification establishes a modification to a modified
InstanceSpecification and the latter one already modifies, directly or transitively, the
modifying InstanceSpecification.

Extension Dependency
Constraints Restriction of client and supplier

As client and supplier of the underlying Dependency, only InstanceSpecification are
allowed.
Cyclic modifications

Cyclic override are not allowed. A cyclic override means that an overridden
InstanceSpecification transitively overrides its overriding InstanceSpecification.

Change from UTP 1.2 «overrides» was renamed by UTP 2. In UTP 1.2, it was named «modifies».

116 UML Testing Profile 2 (UTP 2), Version 2.1

8.6.2.2.3 RegularExpression
Description The stereotype «RegularExpression» extends Expression and represents an implicit

set of values for a given type described by a regular expression. The expected
response argument value matches with each actual response argument value if the
actual one belongs to the set of values defined by the regular expression.

A RegularExpression can be used for test data generation or to compare whether an
actual response matches with expected response.

The attribute symbol of the underlying Expression must contain the String that is
evaluated as the regular expression. It might be omitted, in that case the operands of
the underlying Expression must be used as abstract syntax tree for the regular
expression.

Extension Expression
Change from UTP 1.2 «RegularExpression» has been newly introduced by UTP 2.

8.7 Test Evaluation
The concepts for test evaluation are necessary to decide about the outcome of the dynamic test process activities.
They implement in the specification of (proprietary) arbitration specifications on test set, test case and procedural
element level, as well as in the ability to incorporate the test logs produced during the execution of a test-specific
procedure and its procedural element in a platform-independent, but user-specific way.

8.7.1 Arbitration Specifications
In dynamic testing, the term Arbitration describes the application of a certain rule set on the outcome of a test
execution activity, usually captured as test log for comprehensibility, in order to derive the final verdict of an
execution test set or test case. Thus the arbitration of an executed test set or test case is the most important activity of
the test evaluation activities with respect to requirements, test requirement or test objective coverage. Arbitration can
both happen immediately during test execution (dynamic arbitration) and after test execution based on the captured
test logs (post-execution arbitration). Due to whatever reason (organizational, technical etc.), one might be preferred
over the other.

The UTP arbitration facility offers stereotypes for specifying proprietary arbitration specifications that vary from the
default arbitration specifications in terms of their verdict calculation algorithm. Users can define user-specific
arbitration specifications for test sets, test execution schedules, test cases and procedural elements by simply
applying the stereotypes offered by the UTP arbitration facility to applicable metaclasses. The degree of formalism
of a user-defined arbitration specification is left open. An arbitration specification might be represented by
something as simple as an identifier (referring to an implementation), by natural language describing the arbitration
rules, by any kind of UML Behavior or by something formal as executable specifications or mathematical
definitions.

Arbitration specifications are usually implemented (or interpreted) by an arbiter component that belongs to the
utilized the test execution tool. UTP does not prescribe any implementation details of an arbiter component as part
of an test execution tool, nor how or when information from test sets, test cases and procedural elements are passed
to an arbiter component.

It is left open, if the arbitration activities are carried out automatically or by a human.

UTP introduces three different kinds of verdicts that can be produced:
• procedural element verdicts: Verdicts produced by a procedural element arbitration specification;
• test case verdicts: Verdicts produced by a test case arbitration specification;
• test set verdicts: Verdicts produced by a test set arbitration specification.

UML Testing Profile 2 (UTP 2), Version 2.1 117

The fundamental verdict calculation and provisioning schema is as follows:
• test set arbitration specifications: they derive the test set verdict from the test case verdicts that have been

executed as part of the test set (i.e., the test case verdicts are passed to the arbitration specification of the
surrounding test set);

• test case arbitration specifications: they derive the test case verdicts from the procedural element verdicts (first
and foremost the test action verdicts) that have been executed as part of the test case (i.e., the procedural element
verdicts are assembled and passed on to the test case arbitration specification);

• procedural element arbitration specifications: they derive procedural element verdicts from the information
conveyed by the procedural element, or in case of a compound procedural element, the procedural element
verdicts received from the arbitration specifications of the contained procedural elements.

8.7.1.1 Test Procedure Arbitration Specifications
The most important element that produces a verdict in UTP is the test case case. UTP offers a dedicated arbitration
specification stereotype (i.e., «TestCaseArbitrationSpecification») to define proprietary test case arbitration
specifications binding. Arbitration specifications for test sets can be set either as part of the test set itself (i.e., set via
the attribute testSetAS of the stereotype «TestSet») or as part of a corresponding test execution schedule (i.e., set via
the attribute testSetAS of the stereotype «TestExecutionSchedule»).

8.7.1.1.1 Arbitration Specifications Overview
The following figure shows the foundations of the arbitration specification facility of UTP. In general, test cases,
test execution schedules (as the executable part of test sets) and procedural elements are (possibly implicitly)
processed according to a (possibly implcit) arbitration specification for verdict calculation. That means that these
elements return verdicts after the arbitration process has finished its operation. The outcome of an executed
arbitration specification is stored in an «ArbitrationResult». The most important, yet not the sole information
conveyed by an «ArbitrationResult» is the verdict. Due to the design of the stereotype «ArbitrationResult» it is
easily possible to incoporate further, yet proprietary information into the «ArbitrationResult» using UML's ordinary
InstanceSpecification mechanism.

Figure 8.20 - Arbitration Specifications Overview

118 UML Testing Profile 2 (UTP 2), Version 2.1

8.7.1.1.2 Stereotype Specifications
8.7.1.1.2.1 ArbitrationResult

Description «ArbitrationResult» stores information about the execution and the outcome of an
arbitration specification, usually performed by an arbiter implementation.
Arbitration results can be calcualted for test sets, test cases and procedural elements.
The nature of the «ArbitrationResult» is determined by the
«ArbitrationSpecification» of which the «ArbitrationResult» represents an instance
of.

The most important information an arbitration specification conveys is the
calculated verdict. Other helpful, but not standardized information may include the
timestamp of the arbiter execution, the arbiter implementation (or even a human
being) that produced the result, the outcome of the comparison process of actual and
expected value including deviation details in case of mismatches, etc. Additional
information can be incorporated by using the ordinary underlying UML
InstanceSpecification mechanism.

An «ArbitrationResult» points to the corresponding «TestLog» (i.e., either a
«TestCaseLog» or «TestSetLog») that provides the actual information captured
during test execution. The expected information are specified by the corresponding
«TestSet», «TestCase» and in particular the «ProceduralEement». All information
that were involved in calculating the verdict are accessable for analysis or
understanding.

«ArbitrationResult»s may link with other «ArbitrationResult»s. An arbitration result
of a test set is usually calculated by the arbitration result of the executed test cases,
which, in turn, are calculated by the arbitration result of the executed procedural
elements. The tag definitions 'subresults' and 'parent' of «ArbitrationResult» enable
keeping depending «ArbitrationResults» closely connected to one another.

Extension InstanceSpecification
Associations verdict : ValueSpecification

The verdict that was produced for a given test case, test set or procedural element
according to the respective bound arbitration specification and the actual
information captured in the corresponding test log.
/instanceOf : ArbitrationSpecification [0..1]

The arbitration specification whose rules were used to produce the verdict. The
arbitration specification is derived from the underlying InstanceSpecification's set of
Classifiers with «ArbitrationSpecification» applied or specializations thereof. There
can be more than one Classifier set for an «ArbitrationResult»
InstanceSpecification, but only one of these Classifiers are allowed to be
stereotyped with «ArbitrationSpecification» or a specialization thereof.

UMLTP21-3

resultFor : TestLogElement [0..1]

The corresponding test log element for which the given «ArbitrationResult»
captures the calculated verdict and any other relevant information.
subresult : ArbitrationResult [*]

A set of linked «ArbitrationResult»s that influenced the calculation of the current
verdict.

In case of a compound procedural element, it is possible (not mandatory, though) to
link all the «ArbitrationResult»s produced for the procedural elements contained by
the compound procedural element.

UML Testing Profile 2 (UTP 2), Version 2.1 119

parent : ArbitrationResult [0..1]

The superior «ArbitrationResult» the current «ArbitrationResult» has an impact on.

Constraints Type of verdict ValueSpecification

The type of the ValueSpecification referenced by the tag definition verdict must be
of type verdict (or a subtype thereof) as defined in the UTP Types Library.

Change from UTP 1.2 «ArbitrationResult» has been newly introduced by UTP 2.

8.7.1.1.2.2 ArbitrationSpecification
Description ArbitrationSpecification: A set of rules that calculates the eventual verdict of an

executed test case, test set or procedural element.

The stereotype «ArbitrationSpecification» extends BehavioredClasifier and is used
to specify the decision process for verdicts. It is an abstract stereotype that is
specialized by stereotypes that deal with the verdicts of test sets, test cases, and
procedural elements (i.e. test set verdicts, test case verdicts, and procedural element
verdicts).

The concept of an arbitration specification allows for specifying user-defined
algorithms for the calculation of the verdict based on the executed test cases or the
captured test case logs.

The semantics of the default arbitration specification defines a default precedence of
the predefined instances, which is: None < Pass < Inconclusive < Fail < Error.

That means that verdicts with lower precedence can be overwritten with verdicts of
higher precedence, but not vice versa.

Other default arbitration specifications defined by UTP adhere by that precedence
rule defined by «ArbitrationSpecification» and complement it with their specific
semantics. User-defined arbitration specifications may override that default
semantics as well as the precedence of verdicts.

The result of an arbitration specification is stored in an «ArbitrationResult» that
contains the eventual verdict and links the «ArbitrationSpecification» to the element
it was applied to..

Graphical syntax

Extension BehavioredClassifier
Sub Class ProceduralElementArbitrationSpecification, TestCaseArbitrationSpecification,

TestSetArbitrationSpecification
Attributes ID : String [1]

A unique identifier that unambiguously identifies the given arbitration specification.

Associations /referencedBy : TestContext [*]
/instances : ArbitrationResult [*]

Constraints Verdict of ArbitrationSpecification

DRAS01: It is necessary that an arbitration specification determines exactly one
verdict.

Change from UTP 1.2 «ArbitrationSpecification» has been newly introduced into UTP 2.

120 UML Testing Profile 2 (UTP 2), Version 2.1

8.7.1.1.2.3 TestCaseArbitrationSpecification
Description TestCaseArbitrationSpecification: A set of rules that calculates the eventual verdict

of an executed test case, test set or procedural element.

A «TestCaseArbitrationSpecification» specifies the rules for the eventual
calculation of a test case verdict based on the procedural element verdicts that have
been executed in the context of the corresponding test case.

The semantics of the default «TestCaseArbitrationSpecification» complements the
semantics of «ArbitrationSpecification» by defining the rule that determines the
assignment of test case verdicts. The rule of the default test case arbitration
specification is as follows:

• None: The verdict 'None' is assigned when the test case was not yet executed or

no other procedural element verdict was produced yet.
• Pass: The verdict 'Pass' is assigned, if all procedural elements that participate in

the arbitration process of that specific test case evaluate to 'Pass'.
• Inconclusive: The verdict 'Inconclusive' is assigned, if at least one procedural

element that participates in the arbitration process of that test case, evaluates to
'Inconclusive', while the remaining procedural elements evaluate to 'Pass' or
'None'.

• Fail: The verdict 'Fail' is assigned, if at least one procedural element that
participates in the arbitration process of that test case evaluates to 'Fail', while
the remaining procedural elements evaluate to 'Inconclusive', 'Pass' or 'None'.

• Error: The verdict 'Error' is assigned, if at least one procedural element that
participates in the arbitration process of that test case evaluates to 'Error', or the
arbitration process itself failed with a technical error.

Extension BehavioredClassifier
Super Class ArbitrationSpecification
Associations : TestCase [*]
Change from UTP 1.2 Newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.1 121

8.7.1.1.2.4 TestSetArbitrationSpecification
Description TestSetArbitrationSpecification: A set of rules that calculates the eventual verdict of

an executed test case, test set or procedural element.

A «TestSetArbitrationSpecification» specifies the rules of how a test set verdict will
be calculated based on the verdicts of the test cases that have been executed in the
context of the corresponding test set. A test set arbitration specification is used by
both «TestSet» and «TestExecutionSchedule».

The semantics of the default «TestSetArbitrationSpecification» complements the
semantics of «ArbitrationSpecification» by defining the rule that determines the
assignment of test set verdicts. The rule of the default test set arbitration
specification is as follows:

• None: The verdict 'None' is assigned when the test set was not yet executed, i.e.,

any test case assembled or contained in the test set had produced a test case
verdict yet.

• Pass: The verdict 'Pass' is assigned, if all executed test cases that participate in
the arbitration process of that specific test set also evaluated to 'Pass'.

• Inconclusive: The verdict 'Inconclusive' is assigned, if at least one executed test
case that participates in the arbitration process of that test set evaluates to
'Inconclusive', while the remaining test cases evaluate to 'Pass' or 'None'.

• Fail: The verdict 'Fail' is assigned, if at least one executed test case that
participates in the arbitration process of that test set evaluates to 'Fail', while the
remaining test cases evaluate to 'Inconclusive', 'Pass' or 'None'.

• Error: The verdict 'Error' is assigned, if at least one executed test case that
participates in the arbitration process of that test set evaluates to 'Error', or the
arbitration process itself failed with a technical error.

Extension BehavioredClassifier
Super Class ArbitrationSpecification
Associations : TestSet [*]

 : TestExecutionSchedule [*]
Change from UTP 1.2 Newly introduced by UTP 2.

8.7.1.2 Procedural Element Arbitration Specifications
The procedural element arbitration specification sections summarize the different type of arbitration specifications
that can be used to define proprietary procedural element arbitration specifications.

8.7.1.2.1 Arbitration of AtomicProceduralElements
The diagram below shows the abstract syntax of arbitration specification elements for atomic procedural elements.

122 UML Testing Profile 2 (UTP 2), Version 2.1

Figure 8.21 - Arbitration of AtomicProceduralElements

8.7.1.2.2 Arbitration of CompoundProceduralElements
The diagram below shows the abstract syntax of arbitration specification elements for compound procedural
elements.

UML Testing Profile 2 (UTP 2), Version 2.1 123

Figure 8.22 - Arbitration of CompoundProceduralElements

8.7.1.2.3 Stereotype Specifications
8.7.1.2.3.1 AlternativeArbitrationSpecification

Description An «AlternativeArbitrationSpecification» calculates a verdict for a set of procedural
elements that are executed in mutually exclusive branches.

«AlternativeArbitrationSpecification» adheres by the semantics of the default
«CompoundProceduralElementArbitrationSpecification».

Extension BehavioredClassifier
Super Class CompoundProceduralElementArbitrationSpecification
Associations : Alternative [*]
Change from UTP 1.2 Newly introduced by UTP 2.

124 UML Testing Profile 2 (UTP 2), Version 2.1

8.7.1.2.3.2 AtomicProceduralElementArbitrationSpecification
Description An «AtomicProceduralElementArbitrationSpecification» calculates a verdict for a

single atomic procedural element.

«AtomicProceduralElementArbitrationSpecification» adheres by the semantics of
the default «ProceduralElementArbitrationSpecification».

Extension BehavioredClassifier
Super Class ProceduralElementArbitrationSpecification
Sub Class CheckPropertyArbitrationSpecification, CreateLogEntryArbitrationSpecification,

CreateStimulusArbitrationSpecification, ExpectResponseArbitrationSpecification,
ProcedureInvocationArbitrationSpecification,
SuggestVerdictArbitrationSpecification

Associations : AtomicProceduralElement [*]
Change from UTP 1.2 Newly introduced by UTP 2.

8.7.1.2.3.3 CompoundProceduralElementArbitrationSpecification
Description A «CompoundProceduralElementArbitrationSpecification» calculates a verdict for a

set of procedural elements that are executed together. The verdict is derived from all
or parts of the verdicts calculated of their respective arbitration specifications.

The semantics of the default
«CompoundProceduralElementArbitrationSpecification» refines the semantics of
«ProceduralElementArbitrationSpecification» with respect to the following verdicts:
• Fail: The verdict 'Fail' is assigned, if any of the procedural elements, that were

executed in the scope of the «CompoundProceduralElement», evaluates to 'Fail'.
Extension BehavioredClassifier
Super Class ProceduralElementArbitrationSpecification
Sub Class AlternativeArbitrationSpecification, LoopArbitrationSpecification,

NegativeArbitrationSpecification, ParallelArbitrationSpecification,
SequenceArbitrationSpecification

Associations : CompoundProceduralElement [*]
Change from UTP 1.2 Newly introduced by UTP 2.

8.7.1.2.3.4 LoopArbitrationSpecification
Description A «LoopArbitrationSpecification» calculates a verdict for a set of procedural

elements that are sequentially executed in a loop.

«LoopArbitrationSpecification» adheres by the semantics of the default
«CompoundProceduralElementSpecification». In addition, the maximal and
minimal loop counters are part of the arbitration process for loops. With respect to
verdict calculation, the following semantics is predefined for the default
«LoopArbitrationSpecification»:

• Minimal number of loops violated: Verdict 'Error' is assigned.
• Maximal number of loops violated: Verdict 'Error' is assigned.

Extension BehavioredClassifier
Super Class CompoundProceduralElementArbitrationSpecification
Associations : Loop [*]
Change from UTP 1.2 Newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.1 125

8.7.1.2.3.5 NegativeArbitrationSpecification
Description A «NegativeArbitrationSpecification» calculates a verdict for set of procedural

elements that are forbidden to be executed in this sequence.

«NegativeArbitrationSpecification» adheres by the semantics of the default
«CompoundProceduralElementArbitrationSpecification», but refines it with an
inversion of the verdicts 'Pass' and 'Fail'. In cases where a 'Fail' would be produced,
a verdict 'Pass' shall be assigned. In cases where a 'Pass' would be produced, a
verdict 'Fail' shall be assigned.

Extension BehavioredClassifier
Super Class CompoundProceduralElementArbitrationSpecification
Associations : Negative [*]
Change from UTP 1.2 Newly introduced by UTP 2.

8.7.1.2.3.6 ParallelArbitrationSpecification
Description A «ParallelArbitrationSpecification» calculates a verdict for a set of procedural

elements that were executed in parallel.

«ParallelArbitrationSpecification» adheres by the semantics of the default
«CompoundProceduralElementArbitrationSpecification».

Extension BehavioredClassifier
Super Class CompoundProceduralElementArbitrationSpecification
Associations : Parallel [*]
Change from UTP 1.2 Newly introduced by UTP 2.

126 UML Testing Profile 2 (UTP 2), Version 2.1

8.7.1.2.3.7 ProceduralElementArbitrationSpecification
Description A «ProceduralElementArbitrationSpecification» calculates a verdict for a single or a

set of procedural elements.

A procedural element arbitration specification incorporates sequence information
about when and how long the execution of a corresponding procedural element
happened, because procedural elements define an execution window in which their
execution shall happen. This execution window is either defined by means of
ordering (i.e., after the execution of a previous procedural element, or after the start
of a test case execution) or by means of time. When using a time-based execution
window, it is possible to specify the earliest and latest point in time when the
execution of the procedural element as well as the maximum duration the execution
of the procedural element may have. UTP does not prescribe how to specify time-
based execution windows. Using UML Simple Time might be one solution, the time
concepts of MARTE another one. If no time execution windows are defined, the
ordering execution window is implicitly set, i.e., the execution of a procedural
element shall happen after the execution of its previous procedural element has
finished.

Specific procedural element arbitration specifications (e.g., expect response action
arbitration specification) incorporate the Boolean statement whether expected data
values, that belong to the corresponding procedural element, match with the actual
data values that were used during execution of the corresponding procedural
element. Those data values of interest comprise actual parameters in case of a
procedure invocation, actual payload of a creat stimulus action or expect response
action or the actual value obtained from a checked property in case of a check
property action. In UTP, the matching semantics of data values are defined by the
semantics of ValueSpecifications and the UTP-specific (normative and non-
normative) data value extensions.

The semantics of the default «ProceduralElementArbitrationSpecification»
complements the semantics of «ArbitrationSpecification» by defining the general
rule that determines the assignment of verdicts. All other sub-classes of
«ProceduralElementArbitrationSpecification» either adhere by, complement or
refine that semantics. The semantics of the default procedural element arbitration
specification is as follows:

• None: The verdict 'None' is assigned when the procedural element was not yet

executed.
• Pass: The verdict 'Pass' is assigned, when the expected execution of the

procedural element matches with the actual execution of the procedural element,
including sequence information and potentially data value comparison.

• Inconclusive: The verdict 'Inconclusive' is never assigned by default arbitration
specifications.

• Fail: The verdict 'Fail' can only be assigned by the following arbitration
specifications: compound procedural element arbitration specification, expect
response arbitration specification, suggest verdict arbitration specification and
check property arbitration specification. The default semantics these specific
arbitration specifications will be described by these respective stereotypes.

• Error: The verdict 'Error' is assigned, if the execution of a procedural element
was not correctly performed (by a human or a test execution tool).

Extension BehavioredClassifier
Super Class ArbitrationSpecification
Sub Class AtomicProceduralElementArbitrationSpecification,

CompoundProceduralElementArbitrationSpecification
Associations : ProceduralElement [*]

UML Testing Profile 2 (UTP 2), Version 2.1 127

Change from UTP 1.2 Newly introduced by UTP 2.

8.7.1.2.3.8 ProcedureInvocationArbitrationSpecification
Description A «ProcedureInvocationArbitrationSpecification» calculates a verdict for an

executed procedure invocation.

«ProcedureInvocationArbitrationSpecification» complements the semantics of the
default «ProceduralElementArbitrationSpecification»:

Procedure invocations may pass actual parameter values to the invoked procedure.
If there is a mismatch between the expected actual parameter values, prescribed by a
«ProcedureInvocation», and the actual execution of the «ProcedureInvocation», the
verdict 'Error' shall be assigned.

Extension BehavioredClassifier
Super Class AtomicProceduralElementArbitrationSpecification
Associations : ProcedureInvocation [*]
Change from UTP 1.2 Newly introduced by UTP 2.

8.7.1.2.3.9 SequenceArbitrationSpecification
Description A «SequenceArbitrationSpecification» calculates a verdict for a sequence of

executed procedural elements.

«SequenceArbitrationSpecification» adheres by the semantics of the default
«CompoundProceduralElementArbitrationSpecification».

Extension BehavioredClassifier
Super Class CompoundProceduralElementArbitrationSpecification
Associations : Sequence [*]
Change from UTP 1.2 Newly introduced by UTP 2.

8.7.1.3 Test-specific Action Arbitration Specifications
The test action arbitration specification sections summarize the different types of arbitration specifications that can
be used to define proprietary arbitration specifications for prescribing test action.

8.7.1.3.1 Arbitration of Test-specific Actions
The diagram below shows the abstract syntax of the arbitration specifications for dedicated test actions.

128 UML Testing Profile 2 (UTP 2), Version 2.1

Figure 8.23 - Arbitration of Test-specific Actions

8.7.1.3.2 Stereotype Specifications
8.7.1.3.2.1 CreateStimulusArbitrationSpecification

Description An «AtomicProceduralElementArbitrationSpecification» that specifies the verdict
calculation rule for a create stimulus action.

«CreateStimulusArbitrationSpecification» complements the semantics of the default
«AtomicProceduralElementArbitrationSpecification»:

The semantics of the default «CreateStimulusArbitrationSpecification» shall include
an evaluation of permitted and forbidden elements. If an element was sent to the test
item that was declared as forbiddenElement, the verdict 'error' shall be assigned. If
an element was sent to the test item that was declared as permittedElement
(including potential arguments of the «CreateStimulusAction») and the expected
data values of that element does not match with the actual data values of the actually
sent element, the verdict 'error' shall be assigned.

Extension BehavioredClassifier
Super Class AtomicProceduralElementArbitrationSpecification
Associations : CreateStimulusAction [*]
Change from UTP 1.2 Newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.1 129

8.7.1.3.2.2 ExpectResponseArbitrationSpecification
Description An «AtomicProceduralElementArbitrationSpecification» that specifies the verdict

calculation rule for an expect response action.

«ExpectResponseArbitrationSpecification» complements the semantics of the
default «AtomicProceduralElementArbitrationSpecificationn» with respect to
sequence information and data value matching:

If the expected execution time window of an «ExpectResponseAction» does not
match with the actual execution time point, the verdict 'fail' shall be assigned. If the
actual ordering of the execution of an «ExpectResponseAction» does not match with
the expected ordering, the verdict 'error' shall be assigned.

If the actual data values, that convey the «ExpectResponseAction» as its payload,
obtained from the test item do not match with the expected payload data values, the
verdict 'fail' shall be assigned.

The semantics of the default «ExpectResponseArbitrationSpecification» includes an
evaluation of the ignored, forbidden and expected elements declaration. If a received
element is declared as forbiddenElement, the verdict 'fail' shall be assigned. If a
received element is declared as ignoredElement, it shall be discarded and not
contribute to the «ExpectResponseArbitrationSpecification» for further evaluation.
If a received element is declared as expected element, the verdict 'pass' shall be
assigned.

Extension BehavioredClassifier
Super Class AtomicProceduralElementArbitrationSpecification
Associations : ExpectResponseAction [*]
Change from UTP 1.2 Newly introduced by UTP 2.

8.7.1.3.2.3 CheckPropertyArbitrationSpecification
Description An «AtomicProceduralElementArbitrationSpecification» that specifies the verdict

calculation rule for a check property action.

«CheckPropertyArbitrationSpecification» adheres by the semantics of the default
«AtomicProceduralElementArbitrationSpecification».

Extension BehavioredClassifier
Super Class AtomicProceduralElementArbitrationSpecification
Associations : CheckPropertyAction [*]
Change from UTP 1.2 Newly introduced by UTP 2.

8.7.1.3.2.4 SuggestVerdictArbitrationSpecification
Description An «AtomicProceduralElementArbitrationSpecification» that specifies the verdict

calculation rule for a suggest verdict action.

«SuggestVerdictArbitrationSpecification» complements the semantics of the default
«AtomicProceduralElementArbitrationSpecification» with respect to the provision
of the suggested verdict to the «TestCaseArbitrationSpecification»:
In case, the «SuggestVerdictArbitrationSpecification» evaluates to a 'pass', the
suggested verdict is passed to the «TestCaseArbitrationSpecification». It will be
discarded, if the «SuggestVerdictArbitrationSpecification» evaluates to 'error'.

Extension BehavioredClassifier
Super Class AtomicProceduralElementArbitrationSpecification
Associations : SuggestVerdictAction [*]
Change from UTP 1.2 Newly introduced by UTP 2.

130 UML Testing Profile 2 (UTP 2), Version 2.1

8.7.1.3.2.5 CreateLogEntryArbitrationSpecification
Description An «AtomicProceduralElementArbitrationSpecification» specification that specifies

the verdict calculation rule for a create log entry action.

«CreateLogEntryArbitrationSpecification» adheres by the semantics of the default
«AtomicProceduralElementArbitrationSpecification».

Extension BehavioredClassifier
Super Class AtomicProceduralElementArbitrationSpecification
Associations : CreateLogEntryAction [*]
Change from UTP 1.2 Newly introduced by UTP 2.

8.7.2 Test Logging
UMLTP21-3

The UTP test logging facility allows incorporating details about the execution of test-specific procedures, such as
test execution schedules and test cases, but also of procedural elements. The UTP test logging facility differs
between two kinds of test log information:
• Test log header; and
• Test log details.
The test log header represents the at least required information to comprehend or trace the status of the test
execution such as also coverage of test objectives or test requirements. The test log details further refine the test log
with the details of relevant events (i.e., execution of procedural elements) that happened at runtime. The information
the test log details yield are in particular important for analyses of the test execution such comparison, verdict
calculation, failure inspection or root cause analysis.
The UTP test logging facility builds upon UML's InstanceSpecification and classification mechanism (henceforth
called classifier-instance relationship). Every test log element is represented by an InstanceSpecification with an
inherent set of structural information. These inherently provided structural information are the executing entity, the
execution start and the duration. The classifier-instance-based representation of test logs grants high flexibility to the
user. It enables the definition of additional, user-defined structural information of arbitrary complexity to every test
log element.
Logging of behavioral constituents (i.e., Actions or OccurrenceSpecifications) is not intended by UML but relevant
for testing, though. UTP integrates the behavioral constituents of the underlying UML and the classifier-instance-
based test log model by means of dedicated test log entries and their structural information. Every test log entry
captures the details of a corresponding procedural element that was executed in the course of the execution of a test-
specific procedure.
UTP defines dedicated test log entry structures for logging of procedure invocations, create stimulus actions and
expect response actions. These test log entry structures specify the at least required structural information of those
procedural elements such as formal parameters and invocation targets. The corresponding test log entries build upon
this structural information and yield the corresponding actual parameter values captured in the course of the
execution of such a procedural element.

8.7.2.1 Test Logging Overview

UMLTP21-2

The following diagram shows the abstract syntax of the basic concepts of the test logging facility.

UML Testing Profile 2 (UTP 2), Version 2.1 131

UMLTP21-3

Figure 8.24 - Test Logging Overview

UMLTP21-3

8.7.2.2 Test Log Entries Overview
The following diagram shows the abstract syntax of the basics of test log entries.

132 UML Testing Profile 2 (UTP 2), Version 2.1

UMLTP21-3

Figure 8.25 - Test Log Entries Overview

UMLTP21-3

8.7.2.3 Test Log Entries Details
The following diagram shows the abstract syntax of the details of test log entries.

UML Testing Profile 2 (UTP 2), Version 2.1 133

UMLTP21-3

Figure 8.26 - Test Log Entries Details

UMLTP21-3

8.7.2.4 Invocation Test Log Entry Details
The following diagram shows the abstract syntax of test log entries that capture details of invocations.

Figure 8.27 - Invocation Test Log Entry Details

134 UML Testing Profile 2 (UTP 2), Version 2.1

UMLTP21-3

8.7.2.5 Stereotype Specifications

8.7.2.5.1 TestLogElement
Description A test log element represents a single building block in the realm of test logging.

For each test log element there is an corresponding executable element that has been
carried out. These corresponding executable elements can either be whole test sets
or test cases or one or more procedural elements.
A test log element provides a corresponding executable element with information
about the starting point in time of the execution, the duration of the execution of the
logged element and an entity (i.e., a machine or a human) that executed the element.
These default structural information are common for each concrete test log element.
Further structural information may be added by sub-stereotypes or by dedicated
structural extension using the stereotype «TestLogStructure».
Every test log element can be related with an arbitration result (i.e., a verdict) that
was calculated based on the test log element, the corresponding executable element
and the arbitration specification that ties both elements together for verdict
calculation. Section ArbitrationSpecification provides further details about the
verdict calculation process.
The stereotype «TestLogElement» extends InstanceSpecification. User-defined
structural information can be added by using the underling UML classification
mechanism. The set of additional test log element structural information are
determined by all Classifier of the underlying InstanceSpecification that have
«TestLogStructure» applied.

Extension InstanceSpecification
Sub Class TestLog, TestLogEntry
Associations /instanceOf : TestLogStructure [*]

The set of additional structural information associated with that test log element. It
is derived from the all Classifier with «TestLogStructure» applied that classify the
underlying InstanceSpecification.
executingEntity : ValueSpecification [*]

Information about the executing entity or entities (i.e., either humans or machines)
that were in charge of carrying out the element that corresponds to the test log
element.
verdict : ArbitrationResult [*]
executionDuration : Duration [0..1]

Denotes how long the execution of the corresponding executable element lasted.
executionStart : TimeExpression

Denotes the point in time when the execution of the corresponding executable
element began.

Constraints Restriction of extendable metaclasses

«TestLogElement» shall not be applied to EnumerationLiteral.
Change from UTP 1.2 «TestLogElement» was newly introduced by UTP 2.1.

UML Testing Profile 2 (UTP 2), Version 2.1 135

UMLTP21-3

8.7.2.5.2 TestLog
Description TestLog: A test log is the instance of a test log structure that captures relevant

information from the execution of a test case or test set. The least required
information to be logged is defined by the test log structure of the test log.

A test log captures information on the execution of a test case or test set that
actually happened according to the specification required by its test log structure.
Each test log is, at least, an instance of the implicitly defined default test log
structure. This is reflected by its tag definitions that comprise the required log
information. If further information is not required for capturing by an executing
entity, a test log may not refer to an explicit test log structure (i.e., the Classifier of
the underlying InstanceSpecification remains empty).

In addition to the information given by the implicit default test log structure, users
may set an explicitly defined a test log structure of arbitrary complex internal
structures. In that case, the underlying InstanceSpecification may capture the
additional information by relying on the native UML InstanceSpecification
mechanism, namely Slots.

UMLTP21-3

Structural information on test log level are sufficient to comprehend the status of
testing or coverage of test objectives and test requirements. This minimal log
information are referred to as the test log header. Header information only contain
high-level information about the status of a test run, not about the details of the run.
Details of the test run are captured by means of test log entries. As opposed to the
test log header, detailed logging on procedural element level is referred to as test log
details. Test log details capture detailed information about the executed sequence of
procedural element represented by test log entries. Test log details provide a deeper
insight into the test execution process and leverage the analysis of test runs (e.g.,
what is the reason for a failing test case). Recording test log details is an optional,
but powerful feature of a test log.

Extension InstanceSpecification

UMLTP21-3

Super Class

UMLTP21-3

TestLogElement
Sub Class TestCaseLog, TestSetLog

UMLTP21-3

Associations

/referencedBy : TestContext [*]
testLogEntry {ordered, unique} : TestLogEntry [*]

The sequence of test log entries that captures the details of the test execution. This
sequence is referred to as test log details.

Change from UTP 1.2 Changed from UTP 1.2. In UTP 1.2 «TestLog» was used to capture the execution of
a test case or a test set (called test content in UTP 1.2). In UTP 2, two dedicated
concepts have been newly introduced therefore (i.e., «TestCaseLog» and
«TestSetLog»).

136 UML Testing Profile 2 (UTP 2), Version 2.1

UMLTP21-3

8.7.2.5.3 TestSetLog
Description A test set log captures the least required information on the execution of a test set by

an executing entity. The least required information is defined by the corresponding
(potentially implicit) test log structure of the test set log.

A test set log consists mainly of the logs of the executed test cases that are members
of the test set. Since not all test cases of a test set must necessarily be executed by an
executing entity, a test set log may only refer to the test case logs of a subset of the
test set’s test cases.

Extension InstanceSpecification
Super Class TestLog
Associations executedTestSetMember : TestCaseLog [1..*]

Refers to the test cases that are the members of the test set log's corresponding test
set and whose execution were captured as a result of the execution of the test set.
executedTestSet : TestSet

Refers to the test set whose execution was captured by means of the given test case
log.

Constraints Executed test cases and definition of test set members must be consistent

A «TestSetLog» must only refer to «TestCaseLog»s of «TestCase»s that are
members of the executed «TestSet».

Change from UTP 1.2 Newly introduced by UTP 2.

UMLTP21-3

8.7.2.5.4 TestCaseLog
Description TestCaseLog: A test log that captures relevant information on the execution of a test

case.

A test case log captures the least relevant information on the execution of a test case
by an executing entity. The at least required information is defined by the
corresponding and potentially implicit test log structure of the test case log.

Extension InstanceSpecification
Super Class TestLog
Associations : TestSetLog [*]

executedTestCase : TestCase

Refers to the TestCase whose execution was captured by means of the given
TestCaseLog.

Change from UTP 1.2 Newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.1 137

UMLTP21-3

8.7.2.5.5 TestLogStructure
Description A test log structure enables the specification of user-defined structures that must be

logged by an executing entity, such as human tester or a test execution tool, during
the execution of test suites, test cases or test execution schedules. This information
is also called the least required log information, because executing entities are not
restricted to capturing only information mentioned in the test log structure. A test
log structure may describe both the required information for the header part as well
as the body part of a test log.

There is an implicit default (undefined) test log structure available in UTP that every
user-defined test log structure complies with. The default test log structure
represents the least required log information for the header part. This information
comprises
• one or more of an executing entity;
• a point in time where the execution of the test case, test suite or test execution

schedule began;
• the duration the execution of the test case, test suite or test schedule lasted; and
• the final verdict that was calculated by the corresponding arbitration

specification.

Those pieces of information of the default (implicit) test log structure are
represented as tag definitions of the stereotype test log solely because they are
eventually instantiated when a test log is created.

Extension Classifier
Sub Class InvocationLogEntryStructure
Associations : TestLogElement [*]
Constraints Restriction of extendable metaclasses

«TestLogStructure» shall only be applied to instances of ther metaclass Datatype or
Class.
Specialization of TestLogStructure Classifier

Classifiers with «TestLogStructure» applied must only extend Classifier with
«TestLogStructure» applied.
Internal structure of TestLogStructure Classifier

Classifiers with «TestLogStructure» applied must only own Properties.
CollaborationUse not allowed

A «TestLogStructure» Classifier must not participate in Collaborations.
Change from UTP 1.2 Newly introduced by UTP 2.

UMLTP21-3

8.7.2.5.6 TestLogEntry
Description A test log entry represents an actual instance of an executed procedural element.

While the referenced procedural elements denotes what is expected – either from the
test item or from the test component (including human tester) – a test log entry
denotes the actual instance of that procedural element, captured during runtime.
Test log entry inherits all default structural information from test log element.

Extension InstanceSpecification
Super Class TestLogElement
Sub Class AtomicProceduralElementLogEntry

 : TestLog

138 UML Testing Profile 2 (UTP 2), Version 2.1

Associations proceduralElement : ProceduralElement

Refers to the expected procedural element that was actually carried out by an
executing entity at runtime.

Change from UTP 1.2 Changed from UTP 1.2. In UTP 1.2, «TestLogEntry» extended
OccurenceSpecification.

UMLTP21-3

8.7.2.5.7 AtomicProceduralElementLogEntry
Description Atomic procedural element log entry captures details of the execution of an atomic

procedural element.
Extension InstanceSpecification
Super Class TestLogEntry
Sub Class CheckPropertyLogEntry, CreateLogEntryLogEntry, InvocationLogEntry,

OpaqueProceduralElementLogEntry, SuggestVerdictLogEntry
Associations proceduralElement {redefines proceduralElement} :

AtomicProceduralElement

Refers to the atomic procedural element that was carried out by an executing entity
at runtime.

Change from UTP 1.2 «AtomicProceduralElementLogEntry» was newly introduced by UTP 2.1

UMLTP21-3

8.7.2.5.8 InvocationLogEntryStructure
Description Invocation log entry structure refines test log structure for expressing log entries of

any kind of invocations that happened at runtime. It specifies the at least required
structural information for logging the invocation of a procedure or the exchange of a
message, i.e., for one the formal parameters the invocation target offers and the
actual target of the invocation.

Extension Classifier
Super Class TestLogStructure
Sub Class MessageEventLogEntryStructure, ProcedureInvocationLogEntryStructure
Associations /formalParameterReference {ordered, unique} :

FormalParameterReference [*]

The ordered set of formal parameters offered by the invocation target. The
derivation algorithm in the context of an «InvocationLogEntryStructure» is defined
as follows:
• Iterate over the ownedParameter of the invocation target
• For ownedParameter p, look for any ownedProperty with

«FormalParameterReference» of the underlying Classifier that refers as
formalParameter to Paramater p.

• Add the found «FormalParameterReference» to the ordered set of
formalParameterReference.

Change from UTP 1.2 «InvocationLogEntryStructure» was newly introduced by UTP 2.1

UML Testing Profile 2 (UTP 2), Version 2.1 139

UMLTP21-3

8.7.2.5.9 FormalParameterReference
Description In the classifier-instance-based representation of test logs in UTP 2, formal

parameter of invocation targets are defined as Properties and actual parameter are
defined as values of a Slots that refers to the corresponding Property.
«FormalParameterReference» conveniently binds a Parameter of a Behavior or
BehavioralFeature to the corresponding Property the underlying Classifier of any
concrete «InvocationLogEntryStructure».
In combination with «ActualParameterValue» both the formal and actual parameter
are tightly integrated with each other. This integration simplifies the processing of
parameters for they can be directly accessed via the abstracting stereotypes without
considering the type of invocation target.

Extension Property
Attributes directionKind : ParameterDirectionKind [1]

The direction kind of the formal parameter. It is derived from the direction kind of
the owned parameter of the invocation target.

Associations : ActualParameterValue [*]
formalParameter : Parameter [*]

The owned parameter of the invocation target.
 : InvocationLogEntryStructure

Change from UTP 1.2 «FormalParameterReferenece» was newly introduced by UTP 2.1.

UMLTP21-3

8.7.2.5.10 InvocationLogEntry
Description Invocation log entry captures details about the execution of procedure invocations or

message exchange that actually happened at runtime. In UTP 2, expected message
exchange is represented by the test actions create stimulus action and expect
response action. Both procedure invocation and message exchange can be
parameterized. The actual values that convey a procedure invocation or message
exchange are referred to as actual parameter.

Extension InstanceSpecification
Super Class AtomicProceduralElementLogEntry
Sub Class MessageEventLogEntry, ProcedureInvocationLogEntry
Associations /actualParameter {ordered, unique} :

ActualParameterValue [*]

Refers to the ordered set of actual parameter values for the captured invocation. The
order of actual parameter values is derived from the ordered set of formal parameter
values specified by the corresponding invocation log entry structure of the given
invocation log entry.

Change from UTP 1.2 «InvocationLogEntry» was newly introduced by UTP 2.1

140 UML Testing Profile 2 (UTP 2), Version 2.1

UMLTP21-3

8.7.2.5.11 ActualParameterValue
Description In the classifier-instance-based representation of test logs in UTP 2, actual

parameter of invocation targets are defined as Slot values and formal parameters are
defined as Properties of Classifiers to which these Slots refer.
«ActualParameterValue» abstracts from the different kinds of UML representations
of actual parameter values to simplify processing of that information. In Activities,
actual parameter value are denoted as InputPins contained by an InvocationAction
or OutputPins of an AcceptEventAction, in Interactions as ValueSpecifications of a
Message.
In combination with «FormalParameterReference» both the formal and actual
parameter are tightly integrated with each other. This integration simplifies the
processing of parameters for they can be directly accessed via the abstracting
stereotypes without considering the invocation target.

Extension Slot
Associations /valueFor : FormalParameterReference

Relates this actual parameter value to its formal parameter of the corresponding
invocation log entry structure. It is derived from the association end
'definingFeature' of the underlying Slot.
 : InvocationLogEntry
/value : ValueSpecification [*]

The actually submitted or received payload while invoking a procedure or
exchanging a message. It is derived from the association end value of the underlying
Slot.

Change from UTP 1.2 «ActualParameterValue» was newly introduced by UTP 2.1.

UMLTP21-3

8.7.2.5.12 ProcedureInvocationLogEntryStructure
Description Procedure invocation log entry structure provides the at least required structural

information for logging the execution of procedure invocations.
Extension Classifier
Super Class InvocationLogEntryStructure
Associations : ProcedureInvocationLogEntry [*]

invocationTarget : Behavior

Refers to the procedure whose invocations can be logged with details of the given
procedure invocation log entry structure.

Change from UTP 1.2 «ProcedureInvocationLogEntryStructure» was newly introduced by UTP 2.1

UMLTP21-3

8.7.2.5.13 ProcedureInvocationLogEntry
Description A procedure invocation log entry yields the details about the execution of a

procedure invocation.
Extension InstanceSpecification
Super Class InvocationLogEntry
Associations proceduralElement {redefines proceduralElement} :

ProcedureInvocation

Refers to the procedure invocation that was carried out by an executing entity at

UML Testing Profile 2 (UTP 2), Version 2.1 141

runtime.

/invocationStructure {redefines instanceOf} :
ProcedureInvocationLogEntryStructure

Refers to the invoked procedure, i.e., Behavior. It is derived from the invocation
target of the corresponding invocation structure.
/invocationTarget : Behavior

Refers to the structural information for the given invocation log entry. It is derived
from the sequences of Classifier of the underlying InstanceSpecification with
«ProcedureInvocationLogEntryStructure» applied.

Change from UTP 1.2 «ProcedureInvocationLogEntry» was newly introduced by UTP 2.1.

UMLTP21-3

8.7.2.5.14 MessageEventLogEntryStructure
Description Message event log entry structure provides the at least required structural

information for logging the exchange of message, i.e., either the submission of a
stimulus or the reception of an actual response.

Extension Classifier
Super Class InvocationLogEntryStructure
Associations : MessageEventLogEntry [*]

invocationTarget : BehavioralFeature

Refers to the BehavioralFeature whose invocation details can be logged with the
given message event log entry structure.

Change from UTP 1.2 «MessageEventLogEntryStructure» was newly introduced by UTP 2.1.

UMLTP21-3

8.7.2.5.15 MessageEventLogEntry
Description A message event log entry captures details about any message exchange that

happened between the test item and a test component. Message exchange can
happen when a stimulus is submitted or an actual response was received by a test
component. Sending a stimulus and receiving a response represent important events
in the course of test execution with respect to verdict calculation.

Extension InstanceSpecification
Super Class InvocationLogEntry
Sub Class ActualResponseLogEntry, CreateStimulusLogEntry
Associations /invocationTarget : BehavioralFeature

Refers to the invoked or received Operation or Reception. It is derived from the
invocation target of the corresponding invocation structure.
/invocationStructure {redefines instanceOf} :
MessageEventLogEntryStructure

Refers to the structural information for the given invocation log entry. It is derived
from the sequences of Classifier of the underlying InstanceSpecification with
«MesageEventLogEntryStructure» applied.

Change from UTP 1.2 «MessageEventLogEntry» was newly introduced by UTP 2.1.

142 UML Testing Profile 2 (UTP 2), Version 2.1

UMLTP21-3

8.7.2.5.16 CreateStimulusLogEntry
Description A create stimulus log entry yields details about the submission of a stimulus at

runtime. It represents an instance of a corresponding create stimulus action
contained in a test case.

Extension InstanceSpecification
Super Class MessageEventLogEntry
Associations proceduralElement {redefines proceduralElement} :

CreateStimulusAction

Refers to the create stimulus action that was carried out by an executing entity at
runtime.

Change from UTP 1.2 «CreateStimulusLogEntry» was newly introduced by UTP 2.1.

UMLTP21-3

8.7.2.5.17 ActualResponseLogEntry
Description An actual response log entry yields details about the reception of test item's

response at runtime. It represents an instance of a corresponding expect response
action contained in a test case.

Extension InstanceSpecification
Super Class MessageEventLogEntry
Associations proceduralElement {redefines proceduralElement} :

ExpectResponseAction

Refers to the expect response action that was carried out by an executing entity at
runtime.

Change from UTP 1.2 «ActualResponseLogEntry» was newly introduced by UTP 2.1.

UMLTP21-3

8.7.2.5.18 CheckPropertyLogEntry
Description A check property log entry yields the details about the execution of a check property

action.
Extension InstanceSpecification
Super Class AtomicProceduralElementLogEntry
Associations proceduralElement {redefines proceduralElement} :

CheckPropertyAction

Refers to the check property action that was carried out by an executing entity at
runtime.
/observedProperty : Property

Refers to the Property whose value was checked. Usually, this is the Property of the
corresponding check property action.
actualValue : ValueSpecification [*]

The actual value or values of the observed Property.
Change from UTP 1.2 «CheckPropertyLogEntry» was newly introduced by UTP 2.1.

UML Testing Profile 2 (UTP 2), Version 2.1 143

UMLTP21-3

8.7.2.5.19 SuggestVerdictLogEntry
Description A suggest verdict log entry yields the details about the execution of a suggest

verdict action.
Extension InstanceSpecification
Super Class AtomicProceduralElementLogEntry
Associations proceduralElement {redefines proceduralElement} :

SuggestVerdictAction

Refers to the suggest verdict action that was carried out by an executing entity at
runtime.
suggestedVerdict : ValueSpecification

The actual verdict that was suggested by the executing entity.
Change from UTP 1.2 «SuggestVerdictLogEntry» was newly introduced by UTP 2.1.

UMLTP21-3

8.7.2.5.20 CreateLogEntryLogEntry
Description A create log entry log entry yields the details about the execution of a create log

entry action.
Extension InstanceSpecification
Super Class AtomicProceduralElementLogEntry
Associations proceduralElement {redefines proceduralElement} :

CreateLogEntryAction

Refers to the create log entry action that was carried out by an executing entity at
runtime.
loggedValue : ValueSpecification [*]

Refers to the values that were actually logged.
Change from UTP 1.2 «CreateLogEntryLogEntry» was newly introduced by UTP 2.1.

UMLTP21-3

8.7.2.5.21 OpaqueProceduralElementLogEntry
Description An opaque procedural element log entry yields the details about the execution of an

opaque procedural element.
Extension InstanceSpecification
Super Class AtomicProceduralElementLogEntry
Associations proceduralElement {redefines proceduralElement} :

OpaqueProceduralElement

Refers to the opaque procedural element that was carried out by an executing entity
at runtime.

Change from UTP 1.2 «OpaqueProceduralElementLogEntry» was newly introduced by UTP 2.1.

144 UML Testing Profile 2 (UTP 2), Version 2.1

UMLTP21-3

8.7.2.5.22 TestLogStructureBinding
Description A test log structure binding is responsible to explicitly bind test log structures to test

cases or test sets.

It is possible to reuse the very same test log structure at different locations. Since
there are different possibilities how to model this, UTP suggests three methods to
achieve multiple binding of test log structures:
• Single Dependency/many suppliers method: This method binds many test cases

or test sets as suppliers of the «TestLogStructureBinding» Dependency to a
single «TestLogStructure» Classifier client.

• Multiple Dependencies/single suppliers method: This method binds a single test
case or test set as supplier of the «TestLogStructureBinding» Dependency to a
single «TestCase» BehavioredClassifier client.

• Combined method: This method combines the first two methods.

The sum of all bound test log structures for a test case or test set is calculated by
merging all suppliers of all visible «TestLogStructureBinding» Dependencies in a
certain logical or technical scope. Visibility of test log structure binding is not
defined by this specification. Moreover, this specification neither prescribes how
test log structure bindings are finally put into effect by an executing entity nor how
to select them for later use by an executing entity. Since Dependency is a
PackageableElement, a possible method could be to use the UML deployment
capabilities in order to implement the desired «TestLogStructureBinding»
Dependency to putting it into effect in the test execution system.

Extension Dependency
Constraints Specification of Dependency client

A Dependency with «TestLogStructureBinding» must have exactly one client
containing a Classifier with «TestLogStructure» applied.
Specification of Dependency supplier

A Dependency with «TestLogStructureBinding» must have at least one but an
unlimited number of suppliers containing a BehavioredClassifier with «TestCase»
applied.

Change from UTP 1.2 Newly introduced by UTP 2.

UMLTP21-2

8.8 Test Directives
The UTP 2 test directive facility builds the foundation for the specification of test-related activities. A test directive
assembles a set of test techniques that shall be executed either manually or automatically. A test technique instructs
a human or machine what to do, i.e., how to carry out the represented activity in detail. A test directive provides the
assembled test techniques with all necessary information to carry out the corresponding test-related activity.
Therefore, a test directive refers to a set of input elements that are accessible by the related test techniques. Usually,
a test directive generates some output by processing the output.

Both test directive and test technique are intended to be sub-classed to specify concrete test-related activities. For
example, the test design facility introduced in section 8.3.2 Test Design builds upon the test directive facility by
specializing both test directive and test technique.

Additional structural information required to both the test directive and test technique shall be provided via the
corresponding stereotypes <<TestDirectiveStructure>> and <<TestTechniqueStructure>>.

UML Testing Profile 2 (UTP 2), Version 2.1 145

8.8.1 Test Directive Facility
The diagram below shows the abstract syntax of the test directive facility.

Figure 8.28 - Test Directive Facility

8.8.2 Stereotype Specifications

8.8.2.1 TestDirective
Description A test directive specifies a certain test-related activity that may consist of specific

tasks and instructs a human or machine to carry out these tasks. Tasks are specified
by test techniques. A test directive assembles and governs test techniques and
provides them with all relevant information to be carried out.

A test directive operates on a certain input set of NamedElements represented by the
association end input. The input elements are visible to the test directive and
transitively visible to and accessible by the assembled test techniques. The test
techniques operate on the input elements to produce the output elements while
processing the test directive. Output elements are represented by the association end
output.

A test directive may provide sub-directives by means of the association end
subDirective. Providing a nested test directive enables testers to refine the test-
related activitiy for certain input elements.

Extension InstanceSpecification
Sub Class TestDesignDirective
Associations /instanceOf : TestDirectiveStructure [*]

Refers to the test directive structures of which the given test directive is an instance
of. The set of test directive structures is derived from all Classifiers with
«TestDirectiveStructure» applied that are referred to as classifiers by the underlying
InstanceSpecification.
/technique {read-only, union} : TestTechnique [*]

The set of test techniques that are assembled and governed by the test directive.

146 UML Testing Profile 2 (UTP 2), Version 2.1

/subTestDirective {read-only, union} : TestDirective [*]

Refers to potentially nested test directives that shall be carried out along with the
nesting test directive.
 : TestDirective [*]
input {ordered} : Element [*]

Refers to the sequence of NamedElements on which the test directive operates on.

output {ordered} : NamedElement [*]

Refers to the sequence of NamedElements which are generated while carrying out
the test directive.

Change from UTP 1.2 «TestDirective» has been newly introduced by UTP 2.1.

8.8.2.2 TestDirectiveStructure
Description The stereotype «TestDirectiveStructure» enables the definition of user-defined or

context-specific additional information that augments a test directive. A Classifier
with «TestDirectiveStructure» applied might be of arbitrary complexity. It enables
the provision of information that is relevant in a certain context.

Extension Classifier
Sub Class TestDesignDirectiveStructure
Associations : TestDirective [*]
Change from UTP 1.2 «TestDirectiveStructure» has been newly introduced by UTP 2.1.

8.8.2.3 TestTechnique
Description A test technique is the specification of a test-related task used to carry out test-

related tasks manually or automatically. Test techniques are assembled and
governed by test directives. Information visible to the assembling test directive are
transitively visible and accessible the the assembled test technique.

A test technique may define sub-techniques. Providing a sub test technique enables
testers to refine the given test techniques with respect to certain elements contained
in the test directive input and also to enrich existing (potentially pre-defined) test
techniques with user-defined respectively context-specific information.

Extension InstanceSpecification
Sub Class TestDesignTechnique
Associations /instanceOf : TestTechniqueStructure [*]

Refers to the test technique structures of which the given test directive is an instance
of. The set of test technique structures is derived from all Classifiers with
«TestTechniqueStructure» applied that are referred to as classifiers by the
underlying InstanceSpecification.
 : TestDirective [*]
/subTestTechnique {union, read-only} : TestTechnique [*]

The set of nested test techniques that augment the given test technique.
 : TestTechnique [*]

Change from UTP 1.2 «TestTechnique» has been newly introduced by UTP 2.1.

UML Testing Profile 2 (UTP 2), Version 2.1 147

8.8.2.4 TestTechniqueStructure
Description The stereotype «TestTechniqueStructure» enables the definition of user-defined or

context-specific additional information that augments a test technique. A Classifier
with «TestTechniqueStructure» applied might be of arbitrary complexity. It enables
the provision of information that is relevant in a certain context.

Extension Classifier
Sub Class TestDesignTechniqueStructure
Associations : TestTechnique [*]
Change from UTP 1.2 «TestTechniqueStructure» has been newly introduced by UTP 2.1.

148 UML Testing Profile 2 (UTP 2), Version 2.1

9 Model Libraries
This section describes a set of type libraries relevant to UTP.

9.1 UTP Types Library

9.1.1 Predefined types
The following diagram shows the predefined types provided by UTP 2.

Figure 9.1 - Predefined types

Name Description
AnyType The pre-defined type AnyType is the least common ancestor of any type

known in the context of a certain test type system. As a result,
StructuralFeatures typed with AnyType can be assigned any value, regardless
whether primitive or complex.

verdict The pre-defined type verdict represents the basis for the verdict-related
mechanisms and user-specfic extensions thereof. Tester may subclass the
verdict type in order to define specialized verdict types.

9.1.2 Predefined verdict instances
The verdict instances predefined by UTP 2 are none, pass, inconclusive, fail and error. Test modellers can make use
of those predefined verdicts out of the box to avoid redundancy.

There is a predefined (default) precedence rule for these verdicts, with ascending precedence from left to right: none
< pass < inconclusive < fail < error. That means that setting a verdict is a one-way street. It is not permitted to re-
assign a verdict with lower precedence to a test set, test case or procedural element, whereas the other way round,
verdicts with higher precedence may override verdicts with lower precedence at any point in time during vedict
calculation process. The default verdict precedence reflects the default arbitration specification semantics. This
semantics can be modified or even completely overriden by user-defined arbitration specifications. If any additional
user-defined verdict types are introduced (e.g., complex verdict types and user-defined instances thereof), it is left
open how precedence of those user-defined verdicts and the default verdicts integrate with each other.

Even though the predefined verdict instances are expressed using InstanceSpecifications, it is not forbidden to use
other representation formats such as LiteralString, Expression or even OpaqueExpression to express user-defined
verdict instances in a UTP-based test model.

Figure 9.2 - Predefined verdict instances

Name Description
error The predefined verdict 'error' indicates a result of a test set, test case or

procedural element, where a non-test item related problem occured. This
might be a technical problem in the test environment (e.g., breakdown of a
network connection that is required for executing the test case), a malfunction
of a component in the test environment or an incorrectly executed test
procedure, test case or test set. 'Error' differs from a 'fail' in a sense that the
test item did not caused the deviation between the expected and the actual

UML Testing Profile 2 (UTP 2), Version 2.1 149

Name Description
responses.

fail The predefined verdict 'fail' indicates a result of a test set, test case or
procedural element, where the test item does not react as expected.

inconclusive The predefined verdict 'inconclusive' indicates that a situation where it is not
possible to determine whether the test item behaved as expected or not. It is,
however, not predefined when the verdict 'inconclusive' shall bet assigned.
This depends on the rules of the applied arbitration specification. The default
arbitration specifications do not utilize this verdict instance.

The concept was obtained from [ISO/IEC 9646-1] where it says: "Test verdict
given when the observed test outcome is such that neither a pass nor a fail
verdict can be given"

none The predefined verdict 'none' indicates that a situation where either a test set,
test case or procedural element has not yet been executed, or verdict
calculation has not yet taken place (e.g., in post-execution comparison).

pass The predefined verdict 'pass' indicates a result of a test set, test case or
procedural element, where both the tester but in particular the test item
behaved, respectively responded as expected.

9.2 UTP Auxiliary Library

9.2.1 UTP Auxiliary Library
The UTP auxiliary library collects well-established and commonly accepted information whose use is optional. The
purpose of the auxiliary library is to provide users with a set of useful and predefined types and values to foster
reusability across modeling tools and approaches. For example, the ISO 25010 quality model is supposed to be used
by multiple organizational units within the test process. Instead of building proprietary and potentially technically
conflicting representations of the very same quality model, users may reuse the ISO 25010 [ISO25010] quality
model that comes along with UTP itself. Of course, such types and values are often tailored to specific needs (e.g.,
Robustness testing is a frequently used testing type which is actually given in ISO 9216 or ISO 25010), but still
needs to be specified. However, the existence of the UTP auxiliary model does not prevent such an approach.

9.2.1.1 The UTP auxiliary library
Overview of the UTP auxiliary library.

150 UML Testing Profile 2 (UTP 2), Version 2.1

Figure 9.3 - The UTP auxiliary library

9.2.1.2 ISTQB Library
The ISTQB library offers concepts that can be used to organize some aspects of the test process, if required. In
particular, the ISTQB library offers a commonly used set of test levels and test set purposes.

9.2.1.2.1 Overview of the ISTQB library
The following diagram shows the predefined test process library provided by UTP to be used for the specification of
test contexts and test sets.

UML Testing Profile 2 (UTP 2), Version 2.1 151

Figure 9.4 - Overview of the ISTQB library

Name Description Enumeration literals
ISTQB Agile Test
Set Purpose

 Build verification test

"A set of automated tests which validates the integrity
of each new build and verifies its key/core
functionality, stability and testability. It is an industry
practice when a high frequency of build releases occurs
(e.g., Agile projects) and it is run on every new build
before the build is released for further testing."
[ISTQB]
Feature acceptance testing

Acceptance testing of a feature, often broken down
into Feature verification testing and Feature validation
testing.
Feature verification testing

Usually carried out automatically may be done by
developers or testers, and involves testing against the
user story’s acceptance criteria.
Feature validation testing

Usually carried out manually and can involve
developers, testers, and business stakeholders working
collaboratively to determine whether the feature is fit
for use, to improve visibility of the progress made, and
to receive real feedback from the business

152 UML Testing Profile 2 (UTP 2), Version 2.1

Name Description Enumeration literals
stakeholders.

ISTQB Test Level A common set of test levels. A
test level is considered as a set
of testing activities related to
the outermost boundaries of the
test items.

component test level

A test designed to provide information about the
quality of the component.
integration test level

A test designed to provide information about the direct
interface between two integrated components for
example in the form of a parameter list.
system test level

A test designed to assess the quality of the complete
system after integration.
acceptance test level

A test designed to demonstrate to the customer the
acceptability of the final system in terms of their
specified requirements.

ISTQB Test Set
Purpose

A set of reasons why test sets
might have been assembled.

Smoke Test

"A subset of all defined/planned test cases that cover
the main functionality of a component or system, to
ascertaining that the most crucial functions of a
program work, but not bothering with finer details."
[ISTQB]
Intake Test

"A special instance of a smoke test to decide if the
component or system is ready for detailed and further
testing. An intake test is typically carried out at the
start of the test execution phase." [ISTQB]
Manual Test

A test set whose test cases will be executed manually.
Automated Test

A test set whose test cases will be executed
automatically.
Negative Test

"Tests aimed at showing that a component or system
does not work." [ISTQB]
Regression Testing

"Testing of a previously tested program following
modification to ensure that defects have not been
introduced or uncovered in unchanged areas of the
software, as a result of the changes made." [ISTQB]
Alpha Testing

"Simulated or actual operational testing by potential
customers/users or an independent test team at the
software developers’ site, but outside the development
organization. Alpha testing is employed for off-the-
shelf software as a form of internal acceptance testing."
[ISTQB]

UML Testing Profile 2 (UTP 2), Version 2.1 153

Name Description Enumeration literals
Beta Testing

"Operational testing by potential and/or existing
customers/users at an external site not otherwise
involved with the developers, to determine whether or
not a component of system satisfies the user needs and
fits within the business processes. Note: Beta testing is
often employed as a form of external acceptance
testing in order to acquire feedback from the market."
[ISTQB]
API Testing

"Testing the code which enables communication
between different processes, programs and/or systems.
API testing often involves negative testing, e.g., to
validate the robustness of error handling." [ISTQB]
Failover Test

"Testing by simulating failure modes or actually
causing failures in a controlled environment.
Following a failure, the failover mechanism is tested to
ensure that data is not lost or corrupted and that any
agreed service levels are maintained (e.g., function
availability or response times)." [ISTQB]
Stress Testing

"A type of performance testing conducted to evaluate a
system or component at or beyond the limits of its
anticipated or specified workloads, or with reduced
availability of resources such as access to memory or
servers. [After IEEE 610]" [ISTQB]
Load Testing

"A type of performance testing conducted to evaluate
the behavior of a component or system with increasing
load, e.g. number of parallel users and/or numbers of
transactions to determine what load can be handled by
the component or system." [ISTQB]
Recoverability Test

"The process of testing to determine the recoverability
of a software product." [ISTQB]
Interface testing

"An integration test type that is concerned with testing
the interfaces between components or systems."
[ISTQB]
Acceptance testing

"Formal testing with respect to user needs,
requirements, and business processes conducted to
determine whether or not a system satisfies the
acceptance criteria and to enable the user, customers or
other authorized entity to determine whether or not to
accept the system." [ISTQB]

9.2.1.3 Test Design Facility Library
The test design facility library provides a set of test design techniques as well as some default test design technique

154 UML Testing Profile 2 (UTP 2), Version 2.1

structures that can be used out of the box for the specification of the test design activities. Since these test design
techniques are by definition not dependent upon the test design input element, they are called context-free test
design techniques.

9.2.1.3.1 The UTP test design facility library
The following diagram shows the predefined test design techniques provided by UTP 2 to be used for the
specification of test directives.

Figure 9.5 - The UTP test design facility library

9.2.1.3.2 Predefined Test Design Techniques
UTP offers a set of context-free test design techniques, meaning that these test design techniques do not require any
further information from the test design input of the assembling test design directive. They can be immediately used
by the generic test design directive or any other predefined or specialized test design technique or test design
directive.

9.2.1.3.2.1 Predefined context-free test design techniques
The following diagram depicts the predefined and ready-to-use test design technique provided by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.1 155

Figure 9.6 - Predefined context-free test design techniques

Name Description
AllCombinations A predefined instance of the CombinatorialTesting TestDesignTechnique

ready for being assembled by TestDesignDirectives. The semantics is that all
possible combinations of input parameters must be covered by the resulting
test cases.

AllRepresentatives A predefined instance of the EquivalenceClassPartitioning
TestDesignTechnique ready for being assembled by TestDesignDirectives. All
representatives of the equivalence classes must be selected.

AllStates The predefined instance of the StateCoverage TestDesignTechnique ready for
being assembled by TestDesignDirectives. The default semantics is that all
States of the corresponding State Machine(s) must be covered by the resulting
test cases.

AllTransitions The predefined instance of the TransitionCoverage TestDesignTechnique
ready for being assembled by TestDesignDirectives. The default semantics is
that all Transitions of the corresponding State Machine(s) must be covered by

156 UML Testing Profile 2 (UTP 2), Version 2.1

Name Description
the resulting test cases.

DefaultCBT The predefined instance of the ChecklistBasedTesting TestDesignTechnique
ready for being assembled by TestDesignDirectives.

DefaultCET The predefined instance of the CauseEffectAnalysis TestDesignTechnique
ready for being assembled by TestDesignDirectives.

DefaultCTM The predefined instance of the ClassificationTreeMethod
TestDesignTechnique ready for being assembled by TestDesignDirectives.

DefaultDTT The predefined instance of the DecisionTableTesting TestDesignTechnique
ready for being assembled by TestDesignDirectives.

DefaultEG The predefined instance of the ErrorGuessing TestDesignTechnique ready for
being assembled by TestDesignDirectives.

DefaultET The predefined instance of the ExploratoryTesting TestDesignTechnique
ready for being assembled by TestDesignDirectives.

DefaultPT The predefined instance of the PairwiseTesting TestDesignTechnique ready
for being assembled by TestDesignDirectives.

DefaultTPT The predefined instance of the TransitionPairTesting TestDesignTechnique
ready for being assembled by TestDesignDirectives. The default semantics is
that at least all pairs of subsequent Transitions must be covered by the
resulting test cases.

OneBoundaryValue The predefined instance of the BoundaryValueAnalysis TestDesignTechnique
ready for being assembled by TestDesignDirectives. The default semantics is
that a single value at the boundaries of the equivalence class must be selected.

OneRepresentative A predefined instance of the EquivalenceClassPartitioning
TestDesignTechnique ready for being assembled by TestDesignDirectives.
Exactly one representative of each equivalence class must be selected.

9.2.1.3.3 Predefined Test Design Technique Structures
The predefined test design technique structures offer some structural information to enrich test design techniques, if
required.

9.2.1.3.3.1 Overview of the predefined test design technique structures
The following diagram depicts the predefined and ready-to-use test design technique structures provided by UTP.
They can be used to build proprietary generic test design techniques or to augment the predefined test design
techniques.

Figure 9.7 - Overview of the predefined test design technique structures

Name Description
GraphTraversalStructure A test design technique structure that enables testers to specify the traversal

algorithm a test designing entity must apply.

UML Testing Profile 2 (UTP 2), Version 2.1 157

Name Description
SimpleChecklistBasedStructure A checklist-based test design technique that enables test engineers to refer to

some checklists that should be used for test design.
SimpleErrorGuessingStructure An error guessing test design technique that enables test engineers to refer to

some error taxonomies that should be used for test design.

Name Description Enumeration literals
GraphTraversalAlg
orithmKind

A set of graph traversal
strategies.

random

A test designing entity must take a random walk
through the graph in order to achieve a certain
coverage criterion of the test design input element.
shortest

A test designing entity must take the shortest path
possible in order to achieve a certain coverage criterion
of the test design input element.
longest

A test designing entity must take the longest path
possible to achieve a certain coverage criterion of the
test design input element.

158 UML Testing Profile 2 (UTP 2), Version 2.1

Annex A (Informative): Examples
This section illustrates some concepts of the UML Testing Profile by means of different examples. These examples
were provided by different companies reflecting different approaches to MBT, different interpretations of MBT with
UTP and finally different methodologies for applying UTP. It underlines the flexibility and open-endedness of UTP.

A.1 Croissants Example

A.1.1 The Test Item
This example illustrates some of the major concepts of UTP 2 on the "not so serious" test item (French)
"Croissants". This is a particularly interesting example since the test item is not a software system (at least not in the
classical sense ;-), but a rather common physical system (i.e., croissants).

Figure A.1 - The Croissants Example

A.1.1.1 Given Requirements on the Test Item
Id Type Description Req. on
RQ-0001 functional Each croissant shall have a chocolate core Croissant
RQ-0002 functional Each croissant shall have a consistency of

greater than 3
Croissant

RQ-0003 functional Each croissant shall be considered as "good
tasting" by more than 80% of ordinary
people

Croissant

UML Testing Profile 2 (UTP 2), Version 2.1 159

A.1.2 Test Requirements
The following diagram shows the hierarchy of test objectives as well as the constraints on this test series expressed
as test requirements.

Figure A.2 - Test Objectives

A.1.2.1 Given Test Objectives
Name Description Priority
TO00: Quality
verified

The high quality of the croissants we enjoy during our working
meetings is ensured.

n/a

TO01: Taste
verified

The quality of the flavor of the croissants we enjoy during our
working meetings is ensured.

high

TO02: Structure
verified

The physical composition of the croissants we enjoy during our
working meetings is ensured.

medium

TO03: Color
verified

The tasteful look of the croissants we enjoy during our working
meetings is ensured.

high

A.1.2.2 Given Requirements
TR01: Humans
Description Taste shall be verified by at least 5 humans
Requirement type project constraint
Requirement kind Quality

160 UML Testing Profile 2 (UTP 2), Version 2.1

TR02: Waste
Description Don't waste more than 10 croissants
Requirement type project constraint
Requirement kind Resource Consumption

A.1.3 Test Design
The following diagram shows the applied test design strategy as well as the test directives derived from that test
design strategy.

Figure A.3 - Test Strategy

A.1.3.1 Test Design Strategies shown on "Test Strategy"
TDS01
Description At least 5 members of the UTP 2 WG will take a bite of a croissant.

A.1.3.2 Test Directives shown on "Test Strategy"
Chocolate test
Description Keep every piece of chocolate at least 10 seconds on your tongue.
Applies to Chocolate Portion
Requires capability Gustaoceptionary Proficiency

CR-X1072-B
Description Apply Croissant-Standard CR-X1072-B to test them.
Applies to Croissant
Requires capability Knowledge of CR-X1072-B

A.1.4 Test Configuration
The figure below shows the Test Configuration of the Croissants abstracted as a UML class diagram.

UML Testing Profile 2 (UTP 2), Version 2.1 161

Figure A.4 - Objects

Based on this description, the following figure shows the concrete test configuration instantiated as a composite
structure diagram.

Figure A.5 - Test Configuration

A.1.5 Test Cases
The test cases (particularly the test procedures) in this test set are not specified fully and formally but rather in a
structured informal way. This is to show that test cases in UTPs don't always have to be fully formalized.

A.1.5.1 Test Set "Manual croissants test"
The following diagram shows the Test Set "Manual croissants test" containing the relevant test cases and how they
relate to the stated test objectives. Further, the test requirements constraining this test set also are shown.

162 UML Testing Profile 2 (UTP 2), Version 2.1

Figure A.6 - Test Map

Test Cases shown on "Test Map"

TC01: test taste
Test objectives TO01: Taste verified
Priority high
Precondition • There must be a Croissant available
Test procedure Apply the following steps:

• Break the Croissant in its middle
• Check whether there is chocolate in it
• Bite into the Croissant
• Evaluate its taste
• Eat the remains or throw them into the waste basket

Postcondition • The Croissant is eaten

Verifies TO01: Taste verified
Estimated effort 10 seconds
Is abstract FALSE

TC02: test structure
Test objectives TO02: Structure verified
Priority low
Precondition • There must be a Croissant available

• The Croissant must not be broken
Test procedure Apply the following steps:

• Press the Croissant with two fingers
• Check the elasticity of the Croissant

UML Testing Profile 2 (UTP 2), Version 2.1 163

• Bend the Croissant until it breaks
• Check the breaking angle
• Eat the remains or throw them into the waste basket

Postcondition • The Croissant is broken
Verifies TO02: Structure verified
Estimated effort 20 seconds
Is abstract FALSE

TC03: test color
Test objectives TO03: Color verified
Priority medium
Precondition • There must be a Croissant available
Test procedure Apply the following steps:

• Look at the Croissant
• Evaluate its color

Postcondition • There is still a Croissant available
Verifies TO03: Color verified
Estimated effort 5 seconds
Is abstract FALSE

164 UML Testing Profile 2 (UTP 2), Version 2.1

A.2 LoginServer Example
The LoginServer example represents a simplified version of a real case study taken from the EU FP7 research
project REMICS. It was optimized for the initial submission section to demonstrate the core concepts of UTP 2 that
are stable enough and unlikely to be substantially changed in the revised submissions. The LoginServer offers
functionality to log into a system (in the mentioned REMICS project, the login functionality was integrated into a
Cloud-based system for managing travel excursions). In this example section, the following capabilities of UTP 2
are demonstrated:

• Defining the structure of a test plan using test contexts as well as test level and test types
• Specification of test requirements as a result of the test analysis activities
• Modeling of the logical interfaces of the test item (also known as test item - test item) optimized for deriving

logical test cases
• Modeling of the test type system and data specifications required for deriving appropriate data
• Specification of structural aspects of the test environment, in particular the required test components, test

configuration and connection between the test environment and the test item
• Modeling of logical test cases using sequence diagrams (i.e., Interactions)
• Informal and rough description of a mapping from UTP 2 test cases expressed as sequence diagrams (i.e.

Interactions) to semantically equivalent TTCN-3 test scripts

This example demonstrates the Test Model-only approach to model-based testing. There are no further (e.g., design
or requirements) models available for reuse. In addition, the methodology follows the so called test
requirement/requirements analysis , since the test design activities are guided by test requirements which, in turn, are
derived from the test basis. Both the applied MBT approach and the test approach (which is called test practice in
ISO 29119) of the LoginServer example are just a single interpretation how UTP 2 could be used and embedded into
a methodology. The described test process and its distinct phases (e.g., test planning, test analysis, etc.) are inspired
by the ISTQB fundamental test process.

A.2.1 Requirements Specification
The following table shows a simplified excerpt of the requirements for the LoginServer example. These few
requirements suffice to demonstrate most of the core concepts of UTP 2.

Id Name Description
F1 User login The user shall be able to log into the system using a valid

ID/password combination.
F2 Failed user login The system shall reject the login request and answer with an

appropriate error message, if the user tries to log into the system
with a known ID but invalid password.

F3 Unknown user login The system shall reject the login request and answer with an
appropriate error message, if an unknown user (i.e., a non-
registered ID) requests a login.

F4 User banishing The system shall banish an ID and answer with an appropriate
message, if a user tries to log into system three times in a row
with an invalid ID/password combination.

F5 Mail address modification A user who is logged into the system shall be able to update his
mail address. A valid mail address complies to the following
regular expression: [a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-
Z]{2,4}

F6 User logout A user who is logged in shall be able to log out from the system.
F7 Login response time The system shall respond to login request within 5 seconds.

Table 0.1 - LoginServer Requirements

UML Testing Profile 2 (UTP 2), Version 2.1 165

A.2.2 Test Planning
In the test planning phase, the test manager usually starts specifying the test plan. This means that the resources for
testing are estimated, requested and allocated. Furthermore, the test process is broken down into so called test sub-
processes, each strives to fulfil the test objectives of this test sub-process. These test sub-processes are called test
context in UTP 2.

Based on the knowledge about the system to be tested (also known as test item or test item), the test manager
decides on the number of test sub-processes, their objectives and the strategies used to fulfil those test objectives.
The diagram below shows the corresponding structure of the test specification for the LoginServer test item.

Figure 0.1 - The LoginServer Test Context

Due to the simplicity of the LoginServer, the entire test plan only consists of a single test context. In more
sophisticated test processes, the test plan is usually sub-structured into multiple test (sub-)plans, so called master and
level test plans. The test context copes with this need, since it allows for sub-structure test contexts. The diagram
above also demonstrate the use of two model libraries provided by the UTP Auxiliary library in order to specify the
test level and test type that are addressed by the given test context. In this example, the test context LoginServer Test
Specification targets functional system testing. Each test case accessible to the test context is considered to be
designed for the mentioned test level and test type. This enables tester to apply the very same test case to different
test types and test levels (if needed). For example, it is a good practice to reuse functional test cases with different
data sets or a different, yet compatible test configuration for security or performance testing.

The LoginServer Test Specification contains two ordinary packages for storing the test objectives and test
requirements. Whereas the specification of test objectives is not shown in this example, the derivation of test
requirements as one of the most important outcomes of the test analysis phase will be shown in the next section.

A.2.3 Test Analysis
The activities in the test analysis phase are, first and foremost, dedicated to analyze the test basis in order to
comprehend both the test item and what is expected from the test item. Test basis is an abstract concept that

166 UML Testing Profile 2 (UTP 2), Version 2.1

comprises any information that helps deriving test cases for a certain test item with respect to the test objectives of
the given test sub-process (i.e., test context). The requirements specification usually represents an important part of
the test basis for functional system testing.

A.2.3.1 Derivation and Modeling of Test Requirements
In UTP, test requirements specify which features of a requirement should be verified by corresponding test cases.
test requirements are an important means to establish traceability between test cases and the test basis, in particular
the requirements. The degree of detail of test requirements varies between test processes and depends on different
aspects like the applied test methodology, details of the test basis, sufficient time available to actually specify,
review and validate those test requirements etc.
For the given example, only a subset of all possible test requirements is derived from the functional system
requirements. For later submission, this specification will provide a more elaborated and complete example.

Id Description Covers Comments
TR-F1-1 Ensure that a user successfully logs

into the system, if the login request is
performed using a valid ID and
corresponding password.

User login No information about response of the
definition of valid ID yet. Req.
change request submitted (RCR-ID:
0015)

TR-F1-2 Ensure that the system responses with
an error message “Invalid ID” if an
invalid ID was provided with the
login request.

User login Invalid ID behavior discussed with
system architect. An according req.
change request was submitted (RCR-
ID: 0016)

TR-F5-1 Ensure that the system responses with
a message “Mail address updated” if
the modification request was
successful. This requires a valid mail
address.
Valid mail addresses shall comply
with the following regular
expression:
[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-
]+\.[a-zA-Z]{2,4}

Mail address
modification

No information about response of the
system available yet. Req. change
request submitted (CR-ID: 0064).
The current expected result is very
likely to change in future.

TR-F5-2 Ensure that the system issues an error
message “Invalid Format” if the mail
address the user submitted for
modification does not comply with
the regular expression given in F5.

Mail address
modification

No information about response of the
system available yet. Req. change
request submitted (CR-ID: 0065).
The current expected result is very
likely to change in future.

TR-F5-3 Ensure that the system rejects the
modification request if the user is not
logged into the system with the error
message “Login required”.

Mail address
modification

No information about response of the
system available yet. Req. change
request submitted (CR-ID: 0065).
The current expected result is very
likely to change in future.

TR-F6-1 Ensure that a user, who is currently
logged into the system and requests a
logout from the system, is actually
logged out. The system shall
responds with a message “User
logged out”

User logout

TR-F6-2 Ensure that the system responds with
an error message “Logout requires to
be logged in” if a user who is not
logged into the system sends a logout
request.

User logout

TR-F7-1 Ensure that the system responds to
login requests within 5 seconds.

Login
response time

UML Testing Profile 2 (UTP 2), Version 2.1 167

Table 0.2 - Test Requirements

The diagram below depicts the content of the corresponding test requirement package. To keep the diagram clean,
only unique identifier of the test requirements are shown. In this methodology, test requirements do not have a
name, so the name is automatically (by virtue of a UTP 2 tool) kept in synch with the unique identifier.
Unfortunately and deliberately for this example, the targeted requirements are not available as model artifacts, but
stored somewhere else (e.g., a dedicated requirements management tool like DOORS or even Excel). Traceability
from test requirements to requirements (i.e., from the test specification to the test basis) by means of UTP 2 can at
most be established informally.

Figure A.2 - Test Requirements

A.2.3.2 Modeling the Type System and Logical Interfaces
Since the test model is designed in a standalone manner, it is in the responsibilities of the test analysts to identify
and specify the means for interacting with the test item. test requirements usually provide further information for the
design of the logical interfaces of the test item and the test type system used for information exchange. For example,
the phrase “a user … logs into the system if the login request is performed using a valid ID and corresponding
Password.” indicates that has to be an operation that allows providing an ID and a Password for a login request. Of
course, the same holds true, of course, for the specification of constraints on data in order to build data
specifications. The test requirements TR-F1-1 and TR-F5-1 are examples in which constraints on data are specified.
These data constraints could be exploited for data-based test design strategies like equivalence class partitioning or
boundary value analysis. Whatever test design technique will be applied, UTP 2 offers the required capabilities to
capture such data constraints and explicitly specify data specifications as means of equivalence classes or even
classification trees.

The diagram below shows the logical interface operations and test type systems derived from the test requirements
TR-F1-1, TR-F2-1, TR-F6-1 and TR-F6-2.

168 UML Testing Profile 2 (UTP 2), Version 2.1

Figure A.3 - Logical Interface of LoginServer (1)

The diagram below depicts the logical interface operations and test type systems derived from the test requirements
TR-F5-1, TR-F52, and TR-F5-3.

Figure A.4 - Logical Interface of LoginServer (2)

A.2.3.3 Modeling Test Data
The data specification MailAddress specialized the primitive type String (provided by the UML PrimitiveTypes
package imported by the surrounding test context) and restricts the values for this type according to requirement F5
and test requirements TR-F5-1. The actual specification of the Constraint ‘format’ is represented by a LiteralString
(this cannot be inferred by the means of the diagram). The diagram below shows the corresponding object diagram
of the relevant parts of the diagram above.

UML Testing Profile 2 (UTP 2), Version 2.1 169

Figure A.5 - Object Diagram specifying data

Both names and representation of derived artifacts are just examples how UTP 2 could be applied to support test
analysis and depend on the respective methodology.

A.2.4 Test Design
The main target of the test design activity is to derive test cases by following either systematic test design techniques
or in an ad-hoc manner. However performed, the test design activity is responsible for
• Deriving according test data based on the test type system
• Deriving the test architecture and test configuration including the communication channels between the test

components and the test item
• Designing test cases based on the findings of the test analysis activities
• Link test cases to test objectives and/or test requirements

A.2.4.1 Test Architecture and Test Configuration
The test architecture comprises of the test item and the corresponding test components required driving the
execution of test cases against the test item. The diagram below depicts the specification of two components within
the LoginServer Test Specification. The decision made to go for two distinct interfaces for the LoginServer instead
of a single interface results in a bigger modeling efforts, since an interface component (see BasicPortConfiguration)
is required in order to offer multi-offering Ports. This diagram does not make use of any UTP 2 stereotypes but
relies completely on the class modeling capabilities of UML. The Port ~basicPort of type Client is a conjugated Port
typed by BasicPortConfiguration.

Figure A.6 - LoginServer Component Specification

170 UML Testing Profile 2 (UTP 2), Version 2.1

The role each of those components will play in the given test context is not prescribed. Binding of roles for types is
accomplished by the test configuration. The test configuration also describes the communication channels over
which information exchange among the test component(s) and the test item will be established later. UTP 2 allows
for at least two ways to specify the test configuration:

• Shared test configuration: The shared test configuration mechanism enables the test analyst to bind test cases to a

previously defined test configuration. By doing so, the test configuration might be reused by different test cases.
One means to shared test configuration is by utilizing Collaborations. This is not shown in this example.

• Isolated test configuration: In contrast to shared test configuration, the isolated test configuration builds the test
configuration every time from scratch. This option is only possible, if «TestCase» is applied on (a subclass of)
Behavior directly. Since Behavior is a StructuredClassifier it is possible to directly make use of the stereotypes
«TestItem» and «TestComponent» within the composite structure of the respective Behavior. However, this
prevents the advantages of reuse.

The diagram below denotes the very simple test configuration contained in the test case TC1_F1. The test case could
be seen as a test case declaration which can be created and fostered very early in the test process. The test
configuration comprises two parts, one being stereotyped as «TestComponent» and the other stereotyped as
«TestItem», whose compatible Ports are connected by Connector c1. The Connector is an important means for
specifying over which communication channel the information exchange between test component(s) and test items
are supposed to take place during the execution of the test case.

Figure A.7 - LoginServer Test Configuration

UTP 2 does not prescribe nor emphasize which variant to be used. Often, this depends on the applied test modeling
methodology, the applied tooling, and the acceptance of the test analysts. For example, if generative approaches to
test design are applied, then it might not be important to reuse test configurations throughout several test cases for
the test configurations would be automatically derived from the boundary descriptions of the «TestItem».

A.2.4.2 Specification of Complex Test Data
The test type system specifies which data types are supposed to be exchanged within test cases among the test
components and the test item. For the actual specification of test cases, values or instances for the test type systems
need to be defined. This is in particular necessary for complex data types (e.g., DataType, Class, Signal etc.). The
diagram below shows the InstanceSpecifications for the data types LoginReq and User required for the realization of
test cases.

UML Testing Profile 2 (UTP 2), Version 2.1 171

Figure 0.8 - Test Data Specification

The interesting aspect in the data specification is the difference in dealing with the mail address attribute in the User-
type InstanceSpecification. In the first case (user1), the Slot value is set to the regular expression, which was taken
over from the type definition of MailAddress. It will later on be used to define expected results of the login
operation. The semantics of such a concept is that as long as the actual response for a user’s mail address complies
with the stated regular expression, the actual response matches the expect response action and will not cause the test
case to Fail.

The InstanceSpecification user1reduced omits all slots that are not required for a user object. This will later on be
used for the modification of a user’s mail address. In the last case (user1mod) a concrete and very precise mail
address was stated for the very same user. This InstanceSpecification is used as part of the profile modification
response (i.e., data type ProfileModRes) after an update of the mail address was requested. This is necessary, since it
is important to see that the modification of was actually successful. All other data values are defined directly within
the test cases as ordinary ValueSpecifications.

A.2.4.3 Test Requirements Realization
The actual design of test cases is the most important part of the test design phase. According to the applied
methodology for the given example, test requirements are supposed to be realized by test cases, and thus, test case
transitively verify or falsify the requirements that are covered by test requirements. The assignment of test
requirements to test cases is part of the test design phase and results in our case in the following (partially shown)
assignments (see diagram below).

172 UML Testing Profile 2 (UTP 2), Version 2.1

Figure A.9 - Realization of Test Requirements

The respective test configuration for each test case is not shown in the diagram for the sake of comprehensibility,
but is present nevertheless for each test case and identical to the test configuration shown above.

A.2.4.4 Design of Test Case Procedures
Based on both the specification of the test requirements what to test and the precise specification of the test
configuration in order to realize how to test what has to be tested, the test case procedures can be derived. As already
shown, in this example sequence diagrams (i.e., Interactions) are going to be used as a test procedure. The semantics
of these test case interactions is that any deviation from the described interactions and message arguments will cause
the test case to Fail. However, if the actual response matches the expected ones during test execution, the test case
will Pass.

The two diagrams below show the test procedures of two test cases for the test requirements TR-F1-1, TR-F1-2 and
TR-F7-1. This specification deliberately neglected the parameterization of test cases due to an unresolved issue filed
against UML Interactions.

UML Testing Profile 2 (UTP 2), Version 2.1 173

Figure A.10 - Two Test Procedures

The DurationConstraints ensure that any response to the login request that is recognized later than 5 time units (in
this case seconds) after the actual request will violate the DurationConstraint, and thus, cause the test case to Fail.
The message arguments used in these test cases are represented by InstanceValues that have the same name as the
InstanceSpecifications they refer to. Successful and InvalidPassword are EnumerationLiterals of the Enumeration
LoginRes. The messages are sent via the Connector connector1 of the corresponding test configuration. This enables
a precise definition of the Ports that should be used for sending stimuli and receiving expect response actions.

The diagram below depicts a test case for the successful modification of a logged in user’s mail address. It reuses
(actually reimplements for no explicit reuse - by means of InteractionUse of the test procedure of test case TC1_F1)
the behavioral description for a successful user login request. The is usually called the preamble of the test case
(although the current version of UTP 2 has no means to explicitly denote parts of the behavioral description as
preamble or postamble; this is intended for revised submission).

174 UML Testing Profile 2 (UTP 2), Version 2.1

FigureA.11 - Successful Test Case

The only technical deviation from the previously shown test cases is that the mailModAddress request message uses
a LiteralString with value “maximus@tld.com” as message argument. Otherwise, no further peculiarities need to be
discussed.

Note: The use of arguments of a message represented in curly brackets below the message arrow is not UML-
compliant, but was chosen for the sake of clarity.

A.2.5 Mapping to TTCN-3
The Testing and Test Control Notation version 3 (TTCN-3) standardized by the European Telecommunications
Standardization Institute (ETSI) prescribes a dedicated test language and test system framework that abide by the
keyword-driven testing principle. Since its final adoption is has been heavily used within the telecommunications
and automotive domain, but is in general, like UTP, independent of any domain. As TTCN-3 similarly to OMG
standards is not restricted to certain methodology, the following described mapping represents just one possible way
to translate UTP 2 test cases to TTCN-3. For example, it is restricted to Interactions for test case procedures,
whereas in principle each of the UML behavior kinds could be used for specifying test procedures.

A.2.5.1 Mapping the Test Type System
TTCN-3 comes along with a fine-grained and powerful type system that resembles the one provided by UML, which
was taken over by UTP. The following snippet shows the corresponding TTCN-3 code for the LoginServer test type
system starting with primitive types, over enumerations to complex types.

type charstring MailAddress
 (pattern "\[a-zA-Z0-9._%+-\]+@\[a-zA-Z0-9.- \]+\.\
 [a-zA-Z\]\{2,4\}");
type enumerated LoginRes
 {InvalidID, InvalidPassword, UnknownUser, UserBanned, Successfull};
type enumerated LogoutRes
 {Successfull, LogoutRequiresLogin};
type enumerated ModMessage
 {Successfull, InvalidFormat, LoginRequired};

UML Testing Profile 2 (UTP 2), Version 2.1 175

type record LoginReq
{
 charstring id,
 charstring password
}
type record User
{
 charstring id,
 charstring name optional,
 charstring mail optional
}
type record ProfileModRes
{
 User user,
 ModMessage status
}

A.2.5.2 Mapping Interface Descriptions
In TTCN-3, interface operations are represented by so called signature types. A signature is a type that can be
instantiated and resembles the invocation of an operation. The concept of an Interface as grouping namespace for
Operations has no correspondent concept in TTCN-3. In case of ambiguous signature names (i.e., two Operation
with the same name contained in different Interfaces) the qualified name of the Operation could be used as name of
the signature since TTCN-3 does not offer type overloading. The mapping presented in this example utilizes the
TTCN-3 group concept to logically cluster the signature types according to their containing UTP Interfaces;
however, one has to be aware of the fact that a TTCN-3 group has no further semantics than to group elements. A
TTCN-3 group is neither comparable to a UML Package nor any other Namespace for it does not have scoping
semantics. The suggested mapping of the LoginServer interface descriptions is shown in the following snippet:

group ServerLoginInterface
{
 signature login (LoginReq request, out LoginRes msg) return User;
 signature logout (User user) return LogoutRes;
}
group UserProfileInterface
{
 signature modMailAddress (User user, MailAddress newMail) return ProfileModRes;
}

A.2.5.3 Mapping the Test Architecture
TTCN-3 relies on a component- and port-based architecture. That fits quite well with the offered concepts by UML,
and thus, UTP. The following snippet demonstrates the mapping of the LoginServer test architecture to TTCN-3:

type port BasicPortConfiguration procedure
{
 inout login, logout, modMailInterface;
}
type component LoginSever
{
 port BasicPortConfiguration basicPort;
}
type component Client
{
 port BasicPortConfiguration basicPortConjugated;
}

A.2.5.4 Mapping the Test Data Specification
Data values utilized in message exchanges are called templates in TTCN-3. A template resembles an
InstanceSpecification or dedicated ValueSpecification in UTP (actually UML). Templates can be either defined
explicitly outside of a test case (called global templates), and thus, being reused by multiple test cases, or directly
within in a message (called inline). At first this specification is going to show the mapping of global templates:

176 UML Testing Profile 2 (UTP 2), Version 2.1

template LoginReq user1valid() :=
{
 id := "mustermann2014",
 password := "TustNo1"
};

template LoginReq user1invalid() :=
{
 id := "mustermann2014",
 password := "WhyNot"
};
template User user1() :=
{
 id := "mustermann2014",
 name := "Max Mustermann",
 mail := (pattern "\[a-zA-Z0-9._%+-\]+@\[a-zA-Z0-9.- \]+\.\
 [a-zA-Z\]\{2,4\}")
};
template User user1reduced() :=
{
 id := "mustermann2014",
 name := omit,
 mail := omit
};
template User user1mod() :=
{
 id := "mustermann2014",
 name := "Max Mustermann",
 mail := "maximus@tld.com"
};
template ProfileModRes mailModSuccessfull() :=
{
 user := user1mod,
 status := Successful
};

A.2.5.5 Mapping Test Cases and Test Configuration
In TTCN-3 a test configuration is inherently bound to a test case, whereas in UTP a test configuration could be
potentially shared across multiple test cases (even though this feature is not shown in the given example). The
following snippet shows the mapping of the test case TC1_F1:

//determines the roles for Client and LoginSever
//runs on declares Client as TestComponent
//system declares LoginServer as TestItem
testcase TC1_F1() runs on Client system LoginServer
 {
 //establishes the Connector connector1
 map(self:basicPortConjugated, system:basicPort);

 //invokes the login operation by sending an instance of the
 //signature type login and starts an implicit timer with the
 //duration of 5 seconds
 basicPortConjugated.call(login:{user1valid,-}, 5000.0)
 {
 //continually checks whether the expected response is received
 //by the test system
 []basicPortConjugated.getreply(login:{-,Successfull}
 value user1)
 {
 //indicates that the test case has passed
 setverdict(pass);
 }
 //continually checks whether any other response is received
 []basicPortConjugated.getreply
 {
 //indicates that the test case has failed due to mismatch
 //between actual and expected response
 setverdict(fail)p;
 }

UML Testing Profile 2 (UTP 2), Version 2.1 177

 //continually checks whether the implicit timer expired
 []basicPortConjugated.catch(timeout)
 {
 //indicates that the test case has failed due to timout
 setverdict(fail);
 }
 }
 }

178 UML Testing Profile 2 (UTP 2), Version 2.1

UML Testing Profile 2 (UTP 2), Version 2.1 179

A.3 Videoconferencing Example
This example is inspired from the case study about a Videoconferencing System (VS) that is reported in [1] with the
aim of demonstrating the application of UTPV.2. This example illustrates some of the major concepts of UTP 2 on
the software of the VS such as test item, test item configuration, and test component configuration on the three key
features of the VS. One focuses on the establishing the videoconference, the second one related to sending
presentations in addition to the videoconference, and third one focuses on modeling behavior of VS in the presence
of packet loss.

The rest of this section is organized as follows. Section Given Requirements on the Test Item lists the key
requirements that are focused for modelling in this section, Section Modeling the Structure of the System
demonstrates how this specification models structure of the VS using the UML class diagrams with UTP, Section
Modeling the Behavior of the System demonstrates how this specification modeled the three key requirements as
UML State Machines and UTP, Section The TRUST Test Generator shows our test generator that generates
executable test cases from UML Class Diagrams and UML State Machines, and Section Mapping to Code shows an
example of mapping from the models to code.

A.3.1 Given Requirements on the Test Item
In this section, this specification will demonstrate modelling the four key functionalities of a VS that must be tested.
These functionalities are listed in the table below:

Id Type Description
R-0001 functional A VS should be able to connect to maximum n number of VSs at the same

time.
R-0002 functional A VS should be able to start presentation even it is not in the

videoconference. In this case, the presentation will be only shown to the VS
itself.

R-0003 functional A VS should be able to start presentation when it is in a videoconference. In
this case, the presentation will be transmitted to all the connected VSs
(referred as end points).

R-0004 non-functional A VS should be able to handle packet loss. If the VS cannot handle packet
loss of greater than x% for t minutes, it disconnects the current active call.

Table 0.1 - Videoconferencing Requirements

A.3.2 Modeling the Structure of the System
In this section, this specification models the structure of VS that is modeled as a UML class diagram. A VS can
establish calls with 1 to * number of endpoints, i.e., other VSs. The VS is stereotyped as «TestItem» and
«TestDesignInput» to label the system being tested, whereas other endpoints (i.e., Endpoint) is stereotyped as
«TestComponent». The VS has five attributes, NumberOfParticipants, MaximumParticipants, Presentation, H323,
and packetLoss representing the current number of endpoints in a videoconference, maximum number of calls
supported by the VS, if the VS is in presentation or not, if H323 mode is on or not, and percentage of packet loss it
is facing. The packetLoss attribute is of type NFP_Percentage from the MARTE profile. The VS class has five
operations to support dialing to an endpoint (connectCall()), disconnecting a participant from a videoconference
(disconnectCall()), starting presentation (presentationOn()), stopping presentation (presentationOff()), and
disconnecting all the participants in a call (disconnectAll()). In addition, this specification defines a constraint in
OCL on VS to model configuration for testing:

context VS inv:
self.H323

This constraint demonstrates that the VS must be configured to support a videoconference with h323 conferencing
protocol. The constraint is stereotyped as «TestItemConfiguration» to signify that the constraint is a configuration
for VS and is handled accordingly by test generator. In addition, «TestItem» has an attribute configuration {subsets

180 UML Testing Profile 2 (UTP 2), Version 2.1

roleConfiguration} , which is linked to this OCL constraint with «TestItemConfiguration» (not shown in the figure).
A similar constraint for Endpoint is also specified in the figure below and is stereotyped as
«TestComponentConfiguration».

Figure A.1 - UML Class Diagram

A.3.3 Modeling the Behavior of the System
The figure below shows the behavior of the VS modeled as a UML state machine stereotyped as «TestDesignInput»
to instruct test generator that the state machine should be used for generation of test cases. In our context it is
important to stereotype a state machine that must be used for generation of test cases since not all the state machines
are used for generation of test cases. The state machine has three regions: 1) The first region models first
requirement for testing, i.e., establishing videoconference, 2) The second region models the second two
requirements related to presenting while in a videoconference and presenting without a conference, and 3) The third
region models the fourth requirement.

UML Testing Profile 2 (UTP 2), Version 2.1 181

Figure A.2 - UML State Machine Diagram

In the first region, this specification models the behavior of a VS related to establishing a videoconference. The first
region has two states, i.e., Idle and In Call demonstrating that the VS is Idle state and the VS is in a videoconference
respectively. Each state has a state invariant defined as an OCL constraint based on the attributes defined in the VS
class diagram. For example, the Idle state has the following state invariant specified as an OCL constraint:

context VS inv:
self.NumberOfPartcipants = 0

The state invariant is stereotyped as «CheckPropertyAction» to instruct the test generator to use the constraint to
generate code that compares the actual state of VS at the runtime (e.g., value of NumberOfParticipants in this
example) with the one specified as CheckPropertyAction. If the state matches then it means everything is fine,
however, if the state doesn’t match it means there is a fault. The attributes of «CheckPropertyAction» are shown
below in the figure. For example, the checkedProperty attribute is linked to the NumberOfParticipants in the VS
class (only shown as Entries:1). The value of expected is set to true meaning that the expected evaluation value of
this constraint is true.

Figure 0.3 - Attribute values of «CheckPropertyAction»

Transitions in the state machine are modeled with Call Events corresponding to the operations defined in the VS
class. For example, from the Idle state, the transition with connectCall() trigger will lead to InCall if the call is
established successfully. In addition, some of the transitions have guard conditions with the stereotype
«DataSpecification». Recall that DataSpecification is "A named boolean expression composed of a data type and a
set of constraints applicable to some data in order to determine whether or not its data items are conformant to this
data specification" as defined in the conceptual model. A DataSpecification (e.g., guard condition in this example)
signifies that the transition from the Idle state to the In Call state with a guard condition number>=100 and number
<=4000, (i.e., an OCL constraint) can only be triggered by calling the connectCall(number:Integer) Call Event with

182 UML Testing Profile 2 (UTP 2), Version 2.1

a number between the range of values specified by the guard condition. In our context, this guard condition, i.e., an
OCL constraint is used by the test generator to generate valid values within the range to trigger a transition, for
example, the connectCall() operation in this case.

The second region of the state machine models the behavior of VS related to starting the presentation in parallel to
the videoconference. The region has two states (i.e., Not Presenting and In Presentation) showing the states that the
VS is not presenting and presenting respectively. As with the first region, each state has a state invariant modeled as
an OCL constraint. Similarly, the third region models the behavior of VS in presence of packet loss.

A.3.4 The TRUST Test Generator
The figure below shows a very high level architecture of test case generator. The full details of the test generator can
be found in [3]. At a high level, the test generator called as TRUST takes UML State Machines and UML Class
Diagrams with stereotypes from UTP as input and generates executable test cases based on various coverage criteria
such as All State coverage and All Transition coverage (e.g., ts:TestStrategy with «StateTransitionTechnique») [3].
According to [ISTQB] StateTransitionTechnique is "A black box test design technique in which Test Cases are
designed to execute valid and invalid state transitions". In addition, TRUST has a built in algorithm that flattens the
state machines with hierarchy and concurrency before generating test cases. The details of the algorithm can also be
found in [3]. TRUST also invokes a test data generation tool called EsOCL that takes input an OCL constraint
(specified in class diagrams and state machines) and provides a set of data that satisfy the constraint based on a test
data generation strategy (e.g., td:TestDataGenerationStrategy with the«BoundaryValueAnalysis» stereotype).
According to [ISTQB], BoundaryValueAnalysis is "A black box test design technique in which Test Cases are
designed based on boundary values". The details of EsOCL can be found in [4].

Figure A.4 - Test Generator

The figure below shows a high level architecture of our Test Driver. The test driver takes input a test case and
executes it on the VS that communicates with the n number of endpoints. The test driver also sends commands to
configure endpoints based on test configurations specified in the test case. In our current example, the test driver
executes only test cases on one VS; however, in reality it can execute test cases on multiple VSs in a
videoconference. During the execution, test driver invokes an OCL Evaluator called DresdenOCL (www.dresden-
ocl.org/) to evaluate OCL constraints that were stereotyped as «CheckPropertyAction» against the actual state of the
VS that eventually determines the success or failure of the execution of test cases.

UML Testing Profile 2 (UTP 2), Version 2.1 183

Figure A.5 - Test Driver

A.3.5 Mapping to Code
Below, this specification shows a sample code corresponding to test item configuration and test component
configuration. Line 1 and Line 2 reserves VS (A) and Endpoint (B) for the execution of test cases, whereas Line 3
enables H323 mode on test item based on the constraints with stereotype in «TestItemConfiguration».

Line 1: self.A=test.api.initialize(‘a’)
Line 2: self.B=test.api.initialize(‘b’)
Line 3: self.A.H323 = true

Below, this specification shows the code corresponding to the start and stop presentation behavior and also the code
that checks state of the VS. Line 1 executes presentation start command on the VS and Line 2 checks whether the
VS is in correct state by checking the value for the Presentation attribute of the VS, which should be equal to true.

Line 1: Execute.Command(“Command.Presentation.Start()”, self.A)
Line 2: self.assertFalse(self.A.Presentation == true)

A.3.6 References
[1] Ali, Shaukat, Lionel Claude Briand, and Hadi Hemmati. "Modeling Robustness Behavior Using Aspect-Oriented
Modeling to Support Robustness Testing of Industrial Systems." Software and Systems Modeling 11 (2012): 633-
670.
[2] Ali, Shaukat, Lionel Claude Briand, Andrea Arcuri, and Suneth Walawege. An Industrial Application of
Robustness Testing Using Aspect-Oriented Modeling, UML/MARTE, and Search Algorithms In ACM/IEEE 14th
International Conference on Model Driven Engineering Languages and Systems (Models 2011), Edited by Jon
Whittle, Tony Clark and Thomas Kühne. .: ACM/IEEE, 2011.
[3] Ali, Shaukat, Hadi Hemmati, Nina Elisabeth Holt, Erik Arisholm, and Lionel Briand. Model Transformations As
a Strategy to Automate Model-Based Testing - a Tool and Industrial Case Studies. Simula Research Laboratory,
2010.
[4] Ali, Shaukat, Muhammad Zohaib Iqbal, Andrea Arcuri, and Lionel Claude Briand. "Generating Test Data From
OCL Constraints With Search Techniques." IEEE Transactions on Software Engineering 39 (2013).

184 UML Testing Profile 2 (UTP 2), Version 2.1

UML Testing Profile 2 (UTP 2), Version 2.1 185

A.4 Subsea Production System Example
A.4.1 Description of Case Study
A subsea production system is a cyber-physical system that produces oil and gas from subsea. Typically such subsea
production systems are highly configurable in the sense that their hardware topologies and software parameters can
be configured based on requirements customer such as the size of a subsea field and its natural environment (e.g.,
depth of sea). A subsea production system is composed of two sets of systems: topside and subsea systems.
Umbilical connections (e.g., cables or hoses which supply air, power, electrical power, fiber optics to subsea
equipment) are established to connect topside and subsea. Commands (e.g., opening valves) are sent by operators
via topside systems to subsea systems, which control different kinds of subsea actuators (e.g., choke and valve) and
monitor various sensors (e.g., pressure and temperature).

Please note that the case study is designed to demonstrate that the UTP 2 stereotypes can be used for developing
domain specific language based MBT methodologies such as RTCM [3].

A.4.2 Functionality to Test
To demonstrate the application of UTP 2 to this case study, this specification specifies one of the key functionalities
of Subsea Electronic Module (SEM), which has configurable software deployed to control subsea instruments. This
functionality OpenValve is specified using the Restricted Use Case Modeling methodology (RUCM) [1][2] and the
RUCM Editor, as shown in the figure below. Notice that the use case model (i.e., UCModel) is indicated as a
TestRequirement using <<TestRequirement>>, which is a UTP 2 stereotype.

Figure A.1 - Use Case OpenValve (Specified in RUCM)

A.4.3 Test Design Inputs
To test the OpenValve functionality presented in the figure above, this specification defines four test design inputs,

186 UML Testing Profile 2 (UTP 2), Version 2.1

as shown in the figure below. Notice that this specification aims to test the functionality of OpenValve of SEM using
a simulator that is particularly designed for testing SEM.

Figure A.2 - The Four TestDesignInput and one procedure

The test objective of the test context SubseaElectronicModule (SEM) is defined as the description of the test
context: “<<TestObjective>> The goal of these tests is for system testing of the functionalities of <<TestItem>>
SEM.”

In the figure below, this specification presents the test design input of TestOpenValve, which is specified/modeled
using the Restricted Test Case Specification methodology (RTCM) [3]. Notice that the test case specification is
annotated with UTP 2 stereotypes using stereotype notations. For example, steps 3, 4 and 10 of the basic flow (i.e.,
<<Sequence>>Pass) are annotated as <<ExpectResponseAction>>. Step 1 is annotated with
<<CreateStimulusAction>> and steps 2, 6, 8 and 9 are annotated with <<ProcedureInvocation>> as these four steps
invoke other test case specifications with keywords INCLUDE TC SPEC. Steps with keyword VERIFIES THAT
are annotated with either <<ExpectResponseAction>> or <<CheckPropertyAction>>. TestSetup is annotated with
<<TestConfiguration>> and can be reused across test case specifications.

UML Testing Profile 2 (UTP 2), Version 2.1 187

Figure A.3 - test design input TestOpenValve

A.4.4 Generation of Test Sets and Abstract Test Cases
By taking the test design inputs as the input, the test generator of RTCM [3] automatically generates abstract test
cases, as shown in the figure below. Based on different coverage criteria, from the test design input of
TestOpenValve, the generator can generate three test sets, which contain various numbers of abstract test cases.

188 UML Testing Profile 2 (UTP 2), Version 2.1

Figure A.4 - Generated test sets

The automated generation is possible due to the fact that use case specifications in RUCM and test case
specifications in RTCM can all be formalized as instances of the UCMeta [2] and TCMeta [3][4] metamodels
respectively. Paths can then be automatically generated from formalized specifications/paths by following various
coverage strategies (e.g., All Sentence Coverage and All FlowOfEvents Coverage).

One example of the abstract test cases generated from the test design input of TestOpenValve is provided in the
figure below for reference. The step marked with the red color means the step failed. The step marked with the
Green color means the step passes.

UML Testing Profile 2 (UTP 2), Version 2.1 189

Figure A.5 - An Example of a generated abstract test case

A.4.5 References
[1] Tao Yue, Lionel Briand, and Yvan Labiche, “Facilitating the Transition from Use Case Models to Analysis
Models: Approach and Experiments”, in Transactions on Software Engineering and Methodology (TOSEM),
Volume 22, Issue 1, 2013.
[2] Tao Yue, Lionel Briand, and Yvan Labiche. "Toucan: an Automated Framework to Derive UML Analysis
Models From Use Case Models.", in ACM Transactions on Software Engineering and Methodology (TOSEM) 24,
no. 3 (2015).
[3] Tao Yue, Shaukat Ali, and Man Zhang. Applying A Restricted Natural Language Based Test Case Generation
Approach in An Industrial Context, in International Symposium on Software Testing and Analysis (ISSTA)., 2015.
[4] Man Zhang, Tao Yue, Shaukat Ali, Huihui Zhang and Ji Wu. “A Systematic Approach to Automatically Derive
Test Cases From Use Cases Specified in Restricted Natural Lan-guages”, 8th System Analysis and Modelling
Conference (SAM), 2014

190 UML Testing Profile 2 (UTP 2), Version 2.1

UML Testing Profile 2 (UTP 2), Version 2.1 191

A.5 ATM Example
A.5.1 General
This annex contains the Banking example introduced in the earlier version of UTP [UTP1.2]. The following model
has been updated for the current UTP standard. It shows how to utilize UTP, version 2, to specify test models for
unit level tests, component level tests and system tests.

The given example is motivated by an interbank exchange scenario in which a customer with an EU Bank account
wishes to deposit money into that account from an Automated Teller Machine (ATM) in the United States. The
figure below provides an overview of the architecture of the system. The ATM used by this customer interconnects
to the EU Bank, through the SWIFT Network1, which plays the role of a gateway between the logical networks of
the US Bank and the EU Bank.

Figure A.1 - Overview on the InterBank Exchange Network (IBEN)

The figure below shows the UML system model2 of the InterBank Exchange Network. In the model, five UML
packages called ATM, Bank, SWIFTNetwork, HWControl and Money are provided. The dashed arrows between the
packages show their import dependencies.

The following sub-sections demonstrate the use of UTP 2 for:
• unit test modeling on Money classes (Subsection 2),
• integration test modeling of the components ATM, HWControl and Bank (Subsection 3), and
• system test modeling of IBEN system (Subsection 4).

1 SWIFT = Society for Worldwide Interbank Financial Telecommunication
2 The diagrams of this example are modelled in Papyrus.

192 UML Testing Profile 2 (UTP 2), Version 2.1

Figure A.2 - Packages of the InterBank Exchange Network (IBEN) System Model

A.5.2 Unit Test Example
This sub-section illustrates the use of UTP version 2 in order to define unit test level test cases. It reuses and extends
the Money and MoneyBag classes provided as examples of the well-known JUnit test framework ([JUnit_web],
[JUnit_Example]).

Before starting modeling tests, the test item is first explained. The figure below shows the package Money (blue
color) which will be tested.

Figure A.3 - Package Money with Test Items for Unit Test of IBEN

The figure below shows the classes defined in the package Money3. It shows an interface class called IMoney, which
is realized by the class Money, and class MoneyBag.

3 Even though the naming of the package Money and of the class Money may lead to misunderstanding, the definition of the

example provided by www.junit.org. is still used

UML Testing Profile 2 (UTP 2), Version 2.1 193

Figure A.4 - Classes in Package Money in IBEN Modell

The ATM uses these classes in order to count the bills entered by a user when making a deposit in cash. Two test
requirements are defined:

• Verify that the Money class is appropriately counting the bills added by the user, when bills from the same

currency are entered;
• Verify that the Money and MoneyBag classes are appropriately recognizing the bills added by the user when

bills from different currencies are entered.

The figure below shows the test configuration between the test component named unitTestComponent and the test
items called myMoney1 and myMoney2 of class Money and myMoneyBag of class MoneyBag. The test configuration
is modeled as UML Collaboration in order to be able to apply as CollaborationUse to the test cases.

Figure A.5 - Unit Test Configuration

The figure below shows the application of the unit test configuration to the test case addSameMoney_TC. By using
the UML CollaborationUse the binding between the test configuration and the test case is guaranteed.

194 UML Testing Profile 2 (UTP 2), Version 2.1

Figure A.6 - Use of Test Configuration for Test Case AddSameMoney_TC

The figure below shows the test context of the unit test UnitTest_Banking_Example. Class Money is the item to be
tested. It is defined in package Money which is imported from the system model. The package must be imported in
order to get access during test execution. The test requirements approveAddSameMoney and
approveAddDifferentMoney should approve that the addition of two money objects returns an object of class Money
with the correct amount and currency. In the former requirement, money of the same currency will be added. In the
latter, money of different currencies are to be added. The test cases called addSameMoney and addDifferentMoney
verify the test test requirements.

Figure A.7 - Test Context for the Unit Test

The figure below specifies the behavior of the test case called addSameMoney verifying the test requirement
approveAddSameMoney. In this test scenario, two objects of class Money are created, namely myMoney1 with 20
USD and myMoney2 with 50 USD. Afterward, myMoney2 is added to myMoney1. The result is sent back to the test
component for approval.

UML Testing Profile 2 (UTP 2), Version 2.1 195

Figure A.8 - Test case addSameMoney_TC

The correctness of the response is checked in either the default arbitration specification4, or as in this case, by the
user-defined arbitration specification called arbitrationSpecification_addMoney. Finally, the figure shows that in
case the result of add() is 70 USD, the arbitration specification sets the test verdict to Pass, otherwise to Fail.

Figure A.9 - User-Defined Arbitration Specification

The second test requirement approveAddDifferentMoney is verified by test case addDifferentMoney (see figure
below). For this test case, a third test item of class MoneyBag is needed in order to be able to distinguish money of
different currencies. This test case uses the default arbitration specifications that should be provided by the tool
vendor.

4 The default arbitration is provided by the tool vendor.

196 UML Testing Profile 2 (UTP 2), Version 2.1

Figure A.10 - Test Case AddDifferentMoney

A.5.3 Integration Testing Example
This section illustrates how UTP 2 can be used for specifying tests at integration test level. The main focus of
integration testing is the communication of the test item and its test components.

The test requirements are to verify the logic of the ATM machine when a user initiates a money deposit transaction
to an account in another part of the world. Thus, the test requirements include:

• The hardware terminal (HWControl) provides user’s card and user’s pin-code. The ATM shall authorize this card

and its pin-code.
• After a successful authorization of user’s data, money shall be deposited into the bank. The ATM shall assure a

correct transaction communication with the Bank.

Since the logic of ATM itself is being tested, the rest of the IBEN (i.e. HWControl, Bank, and SWIFTNetwork) shall
be emulated. The figure below shows the test items of blue color.

UML Testing Profile 2 (UTP 2), Version 2.1 197

Figure A.11 - Test Items for Integration Test of IBEN

The logic of the ATM is specified in the figure below. It imports both the HWControl and the Bank packages where
only the interfaces to the hardware and the bank are needed. Component ATM controls the logic of ATM and is the
test item for our integration test. It provides the IATM interface for the control logic and communicates with the
hardware and the bank via interface. Since the hardware and the bank are emulated in the test, only the interface
classes of the HWControl and Bank packages are needed (see the following three figures).

Figure A.12 - Classes and Interface in Package ATM

198 UML Testing Profile 2 (UTP 2), Version 2.1

Figure A.13 - Interface Class in Package Bank

Figure A.14 - Interface Class in Package HWControl

The figure below shows the test configuration of the test. It specifies the relationship between the test item, the
emulated test components for the hardware and bank (hw and be), and a card data management component (card).

Figure A.15 - Integration Test Configuration

The figure below shows the binding of the test configuration to test case invalidPIN_TCI.

UML Testing Profile 2 (UTP 2), Version 2.1 199

Figure A.16 - Binding of Test Configuration to Test Case invalidPIN_TC

The ATM integration test package (see figure below) shows the model elements necessary to specify integration
tests. It imports the ATM package of the system model in order to get access to the elements to be tested. The
package contains two test components: BankEmulator and HWEmulator and three testcases: validWiring,
invalidPIN, and authorizeCard. The test components BankEmulator and HWEmulator realize the interfaces of the
HWControl and Bank packages and serve as emulators in order to communicate with the ATM.

Figure A.17 - Test Context for Integration Test

The following section only concentrates on the modeling of the test case invalidPIN, which approves the
requirement of a correct authorization mentioned on earlier. The objective of this test is:

• Verify that if a valid card is inserted, and an invalid pin-code is entered, the user is prompted to re-enter the pin-

code.

Behaviors of a test case can be specified using any UML behavior Diagrams (e.g. Interaction Diagram, State
Machine, Sequence Diagram etc.). In this case, UML Sequence Diagram has been chosen (see figure below).

The signals between the test components are all stereotyped by UTP 2 actions (e.g. <<CreateStimulus-Action>>).
By doing so, the default arbitration specifications are activated and it is assured that unexpected behavior is caught
within the arbitration specifications. In parallel, the setting of test case verdicts is also done in the arbitration
specifications. The response time of isPinCorrect should last no more than 3 seconds, otherwise the arbitration

200 UML Testing Profile 2 (UTP 2), Version 2.1

specification <<ExpectResponseAction>> will be carried out.

Figure A.18 - Test Case invalidPIN_TC

In many cases, there’s a need to specify the detailed behavior of individual test components (e.g., for test generation
purposes). Therefore, state machines provide good means. The figure below shows an excerpt of test behavior for
the HWEmulator test component which corresponds to test case invalidPIN_TC. The validation action
<<ExpectResponseAction>> evaluates the test result and sets the test case verdict.

UML Testing Profile 2 (UTP 2), Version 2.1 201

Figure A.19 - Statemachine for the Hardware Emulator

A.5.4 System Test Example
This chapter shows the UTP2 model for system level tests. The test model shows an interbank exchange scenario
where a customer with an EU bank account deposits money into his/her account from an ATM in the United States.

Figure A.20 - Packages with Test Items for System Test of IBEN

In order to perform the system testing of IBEN, all the five packages in the system model are needed. The packages

202 UML Testing Profile 2 (UTP 2), Version 2.1

ATM, Money, and HWControl are known from the previous examples. The figure below illustrates the contents of
the Bank package. The IBank interface provides methods to find, credit, and debit accounts. It checks credentials and
wires money from one account to another. The IAccount interface also provides operations to credit and debit
accounts, in addition to checking the balance of an account.

Figure A.21 - Classes and Components in Bank Package

The figure below shows the content of the SWIFTNetwork package. The ISWIFT interface provides an operation to
transfer a given amount from a source account to a target account. Since system testing is a black-box test strategy,
only the communication between the interfaces is of interest.

Figure A.22 - Classes and Components in the SWIFTNetwork Package

For the system testing, the following test requirements are defined:
1. EU and US initiated transactions must behave correctly.
2. Money can be transferred rom an US account to an EU account, and vice-versa.
3. An invalid transfer should be identified and canceled.
4. The system should handle up to 1000000 transactions in parallel without system failure.

The figure below shows the system test context. The test items are the SWIFTNetwork, the US and EU Banks, and
the ATM systems. Three test cases called runUSTrxn, runEUTrxn and loadTest are specified in this test context. The
test cases runUSTrxn or runEUTrxn approve that a transaction that is initiated from the US ATM will be transferred

UML Testing Profile 2 (UTP 2), Version 2.1 203

to the EU Bank, or vice versa. The test case loadTest verifies a non-functional test requirement. It shall approve that
IBEN behaves correctly even by high transaction requests. Two additional test components called
TransactionController and LoadManager provide the capability to execute and verify that the money is transferred
correctly.

Figure A.23 - System Test Context

The test configuration is illustrated in the figure below. The TransactionController drives both ATMs on the
European and US sides and is used to represent the accounts for both the US and EU banks. The LoadManager
provides and controls the workload of the load test. It has access to the test data in the SystemTestDataPool.

Figure A.24 - System Test Configuration

204 UML Testing Profile 2 (UTP 2), Version 2.1

The figure below shows data used for the system test. TrxnData defines the transaction data.

Figure A.25 - Test Data and its Variations

The data pool SystemTestDataPool contains instances of TrxnData called EU1, EU2, US1 and US2 (see figure
below. Two data partitions are defined in order to distinguish the EU transactions from the US transactions. These
data partitions are chosen from the data pool and have two data samples each. Data instance EU1 is shown in the
diagram explicitly by all its attribute values5. Another data instance called Fred defines a modification of EU1,
where 500 override the balance of 10000.

5 This diagram only shows the data values of EU1. Those of EU2, US1 and US2 are equivalently defined.

UML Testing Profile 2 (UTP 2), Version 2.1 205

Figure A.26 - Data Instances and its Modification

The figure below illustrates the behavior of test case loadTest which shall verify the test requirement 4 listed above.
This test case shall approve that minimum 100 and maximum 1000000 transactions can be successfully handled in
parallel. The LoadArbitrationSpecification will assure that whenever a transaction fails, the whole test will fail.

206 UML Testing Profile 2 (UTP 2), Version 2.1

Figure A.27 - Test Case loadTest

A.5.5 References
[UTP1.2] Object Management Group: "UML Testing Profile, version 1.2", OMG Document Number: formal/2013-
04-03
[JUnit_Example] http://junit.sourceforge.net/doc/cookbook/cookbook.htm
[JUnit_web] www.junit.org

UML Testing Profile 2 (UTP 2), Version 2.1 207

Annex B (Informative): Mappings
B.1 Mapping between UTP 1 and UTP 2
The following table summarizes the changes on stereotypes of UTP 2 compared with UTP 1.2:

Name Change from UTP 1.2

UMLTP21-3

ActualParameterValue

UMLTP21-3

«ActualParameterValue» was newly introduced by UTP 2.1.

UMLTP21-3

ActualResponseLogEntry

UMLTP21-3

«ActualResponseLogEntry» was newly introduced by UTP 2.1.
Alternative «Alternative» has been newly introduced by UTP 2.
AlternativeArbitrationSpecifica
tion

Newly introduced by UTP 2.

AnyValue Changed and renamed from UTP 1.2. In UTP 1.2, «AnyValue» was called
«LiteralAny» and extended LiteralSpecification.

ArbitrationResult «ArbitrationResult» has been newly introduced by UTP 2.
ArbitrationSpecification «ArbitrationSpecification» has been newly introduced into UTP 2.
AtomicProceduralElement «AtomicProceduralElement» has been newly introduced by UTP 2.
AtomicProceduralElementArbit
rationSpecification

Newly introduced by UTP 2.

UMLTP21-3

AtomicProceduralElementLogE
ntry

UMLTP21-3

«InvocationLogEntryStructure» was newly introduced by UTP 2.1
«AtormicProceduralElementLogEntry» was newly introduced by UTP 2.1

BoundaryValueAnalysis «BoundaryValueAnalysis» has been newly introduced by UTP 2.
CauseEffectAnalysis «CauseEffectAnalysis» has been newly introduced by UTP 2.
ChecklistBasedTesting «ChecklistBasedTesting» has been newly introduced by UTP 2.
CheckPropertyAction «CheckPropertyAction» has been newly introduced by UTP 2.
CheckPropertyArbitrationSpeci
fication

Newly introduced by UTP 2.

UMLTP21-3

CheckPropertyLogEntry

UMLTP21-3

«CheckPropertyLogEntry» was newly introduced by UTP 2.1.

ChoiceOfValues «ChoiceOfValues» has been newly introduced by UTP 2.
ClassificationTreeMethod «ClassificationTreeMethod» has been newly introduced by UTP 2.
CollectionExpression
CombinatorialTesting «CombinatorialTesting» has been newly introduced by UTP 2.
ComplementedValue «ComplementedValue» has been newly introduced by UTP 2.
Complements «Complements» has been newly introduced by UTP 2.
CompoundProceduralElement «CompoundProceduralElement» has been newly introduced by UTP 2.
CompoundProceduralElementA
rbitrationSpecification

Newly introduced by UTP 2.

CreateLogEntryAction «CreateLogEntryAction» has been newly introduced by UTP 2.
CreateLogEntryArbitrationSpec
ification

Newly introduced by UTP 2.

UMLTP21-3 UMLTP21-3

208 UML Testing Profile 2 (UTP 2), Version 2.1

Name Change from UTP 1.2
CreateLogEntryLogEntry «CreateLogEntryLogEntry» was newly introduced by UTP 2.1.
CreateStimulusAction «CreateStimulusAction» has been newly introduced by UTP 2.
CreateStimulusArbitrationSpeci
fication

Newly introduced by UTP 2.

UMLTP21-3

CreateStimulusLogEntry

UMLTP21-3

«CreateStimulusLogEntry» was newly introduced by UTP 2.1.
DataPartition «DataPartition» has been newly introduced by UTP 2.
DataPool Changed from UTP 1.2. In UTP 1.2 «DataPool» extended both Classifier and

Property.
DataProvider «DataProvider» has been newly introduced by UTP 2.
DataSpecification «DataSpecification» has been newly introduced by UTP 2.
DecisionTableTesting «DecisionTableTesting» has been newly introduced by UTP 2.
EquivalenceClassPartitioning «EquivalenceClassPartitioning» has been newly introduced by UTP 2.
ErrorGuessing «ErrorGuessing» has been newly introduced by UTP 2.
ExpectResponseAction «ExpectResponseAction» has been newly introduced by UTP 2.
ExpectResponseArbitrationSpe
cification

Newly introduced by UTP 2.

ExperienceBasedTechnique «ExperienceBasedTechnique» has been newly introduced by UTP 2.
ExploratoryTesting «ExploratoryTesting» has been newly introduced by UTP 2.
Extends «Extends» has been newly introduced by UTP 2.
FormalParameterReference «FormalParameterReferenece» was newly introduced by UTP 2.1.
GenericTestDesignDirective «GenericTestDesignDirective» has been newly introduced by UTP 2.
GenericTestDesignTechnique «GenericTestDesignTechnique» has been newly introduced by UTP 2.

UMLTP21-3

InvocationLogEntry

UMLTP21-3

«InvocationLogEntry» was newly introduced by UTP 2.1

UMLTP21-3

InvocationLogEntryStructure

UMLTP21-3

«InvocationLogEntryStructure» was newly introduced by UTP 2.1
Loop «Loop» has been newly introduced by UTP 2.
LoopArbitrationSpecification Newly introduced by UTP 2.
MatchingCollectionExpression «CollectionExpression» has been newly introduced by UTP 2.

UMLTP21-3

MessageEventLogEntry

UMLTP21-3

«MessageEventLogEntry» was newly introduced by UTP 2.1.

UMLTP21-3

MessageEventLogEntryStructur
e

UMLTP21-3

«MessageEventLogEntryStructure» was newly introduced by UTP 2.1.

Morphing «Morphing» has been newly introduced by UTP 2.
Negative «Negative» has been newly introduced by UTP 2.

NegativeArbitrationSpecificatio
n

Newly introduced by UTP 2.

NSwitchCoverage «NSwitchCoverage» has been newly introduced by UTP 2.
OpaqueProceduralElement «OpaqueProceduralElement» has been newly introduced by UTP 2.
OpaqueProceduralElementLog
Entry

«OpaqueProceduralElementLogEntry» was newly introduced by UTP 2.1.

overrides «overrides» was renamed by UTP 2. In UTP 1.2, it was named «modifies».

UML Testing Profile 2 (UTP 2), Version 2.1 209

Name Change from UTP 1.2
PairwiseTesting «PairwiseTesting» has been newly introduced by UTP 2.
Parallel «Parallel» has been newly introduced by UTP 2.
ParallelArbitrationSpecification Newly introduced by UTP 2.
ProceduralElement «ProceduralElement» has been newly introduced by UTP 2.
ProceduralElementArbitrationS
pecification

Newly introduced by UTP 2.

ProcedureInvocation «ProcedureInvocation» has been newly introduced by UTP 2.
ProcedureInvocationArbitration
Specification

Newly introduced by UTP 2.

UMLTP21-3

ProcedureInvocationLogEntry

UMLTP21-3

«ProcedureInvocationLogEntry» was newly introduced by UTP 2.1.

UMLTP21-3

ProcedureInvocationLogEntryS
tructure

UMLTP21-3

«ProcedureInvocationLogEntryStructure» was newly introduced by UTP 2.1

RangeValue «RangeValue» has been newly introduced by UTP 2.
Refines «Refines» has been newly introduced by UTP 2.
RegularExpression «RegularExpression» has been newly introduced by UTP 2.
RoleConfiguration «RoleConfiguration» is newly introduced in UTP 2.
Sequence «Sequence» has been newly introduced by UTP 2.
SequenceArbitrationSpecificati
on

Newly introduced by UTP 2.

StateCoverage «StateCoverage» has been newly introduced by UTP 2.
StateTransitionTechnique «StateTransitionTechnique» has been newly introduced by UTP 2.
SuggestVerdictAction «SuggestVerdictAction» has been newly introduced by UTP 2.
SuggestVerdictArbitrationSpeci
fication

Newly introduced by UTP 2.

UMLTP21-3

SuggestVerdictLogEntry

UMLTP21-3

«SuggestVerdictLogEntry» was newly introduced by UTP 2.1.
TestCase Changed from UTP 1.2. «TestCase» extended Behavior and Operation in UTP

1.2.
TestCaseArbitrationSpecificatio
n

Newly introduced by UTP 2.

TestCaseLog Newly introduced by UTP 2.
TestComponent Changed from UTP 1.2. In UTP 1.2., «TestComponent» only extended Class.
TestComponentConfiguration «TestComponentConfiguration» has been newly introduced into UTP 2.
TestConfiguration «TestConfiguration» has been newly introduced into UTP 2. It was

conceptually represented by the composite structure of a «TestContext» in
UTP 1.2.

TestConfigurationRole «TestConfigurationRole» is newly introduced in UTP 2.
TestContext Changed from UTP 1.2. In UTP 1.2 «TestContext» extended

StructuredClassifier and BehavioredClassifier as well as incorporated the
concepts TestSet, TestExecutionSchedule and TestConfiguration into a single
concept.

TestDesignDirective «TestDesignDirective» has been newly introduced by UTP 2.
TestDesignDirectiveStructure «TestDesignDirectiveStructure» has been newly introduced by UTP 2.
TestDesignInput «TestDesignInput» has been newly introduced by UTP 2.
TestDesignTechnique «TestDesignTechnique» has been newly introduced by UTP 2.
TestDesignTechniqueStructure «TestDesignTechniqueStructure» has been newly introduced by UTP 2.

210 UML Testing Profile 2 (UTP 2), Version 2.1

Name Change from UTP 1.2

UMLTP21-2

TestDirective

UMLTP21-2

«TestDirective» has been newly introduced by UTP 2.1.

UMLTP21-2

TestDirectiveStructure

UMLTP21-2

«TestDirectiveStructure» has been newly introduced by UTP 2.1.
TestExecutionSchedule «TestExecutionSchedule» has been newly introduced by UTP 2. It was

conceptually represented as the classifier behavior of a «TestContext» in UTP
1.2.

TestItem «TestItem» has been newly introduced into UTP 2 and supersedes the «SUT»
stereotype in UTP 1.

TestItemConfiguration «TestItemConfiguration» has been newly introduced into UTP 2.
TestLog Changed from UTP 1.2. In UTP 1.2 «TestLog» was used to capture the

execution of a test case or a test set (called test content in UTP 1.2). In UTP 2,
two dedicated concepts have been newly introduced therefore (i.e.,
«TestCaseLog» and «TestSetLog»).

UMLTP21-3

TestLogElement

UMLTP21-3

«TestLogElement» was newly introduced by UTP 2.1.

UMLTP21-3

TestLogEntry

UMLTP21-3

Changed from UTP 1.2. In UTP 1.2, «TestLogEntry» extended
OccurenceSpecification.

TestLogStructure Newly introduced by UTP 2.
TestLogStructureBinding Newly introduced by UTP 2.
TestObjective Changed from UTP 1.2. In UTP 1.2, «TestObjective» was called

«TestObjectiveSpecification».
TestProcedure «TestProcedure» has been newly introduced by UTP 2.
TestRequirement «TestRequirement» has been newly introduced into UTP 2.
TestSet «TestSet» has been newly introduced by UTP 2. It was part of the TestContext

in UTP 1.2.
TestSetArbitrationSpecification Newly introduced by UTP 2.
TestSetLog Newly introduced by UTP 2.

UMLTP21-2

TestTechnique

UMLTP21-2

«TestTechnique» has been newly introduced by UTP 2.1.

UMLTP21-2

TestTechniqueStructure

UMLTP21-2

«TestTechniqueStructure» has been newly introduced by UTP 2.1.
TransitionCoverage «TransitionCoverage» has been newly introduced by UTP 2.
TransitionPairCoverage «TransitionPairCoverage» has been newly introduced by UTP 2.
UseCaseTesting «UseCaseTesting» has been newly introduced by UTP 2.
verifies «verifies» has been newly introduced into UTP 2. In UTP 1.2 the «verify»

stereotype from SysML was recommended.

The three primitive data types including Timepoint, Duration, and Timezone are also removed from UTP 2.

The following stereotypes are also removed from UTP 2: «GetTimeZoneAction», «SetTimeZoneAction»,
«DataSelector», «CodingRule», «LiteralAnyOrNull», and «TestLogEntry».

UML Testing Profile 2 (UTP 2), Version 2.1 211

212 UML Testing Profile 2 (UTP 2), Version 2.1

Annex C (Informative): Value Specification Extensions
C.1 Profile Summary
The following table gives a brief summary on the stereotypes introduced by the UML Testing Profile 2 (listed in the
second column of the table). The first column specifies the mapping to the conceptual model shown in the previous
section and the third column specifies the UML 2.5 metaclasses that are extended by the stereotypes.

Stereotype UML 2.5 Metaclasses Concepts
ChoiceOfValues Expression data
CollectionExpression Expression data
ComplementedValue ValueSpecification data
MatchingCollectionExpression Expression • data

• data specification
RangeValue Expression data specification

C.2 Non-normative data value extensions
In addition to the normative ValueSpecification extensions of UTP, for sake of simplicity, UTP provides also some
more extensions as part of this non-normative annex. These kinds of ValueSpecifications are:
• Complemented: Represents a set of expected response argument values for a known type described by a the

complemented set of values described the underlying ValueSpecifciation and checks if actual response argument
value belongs to that set.

• RangeValue: Represents a set of ordered expected response argument values for a known type described by its
upper and lower boundaries. The Actual response argument value matches with each expected one if the actual
one belongs to the set defined by its boundaries.

• ChoiceOfValues: Represents a set of expected response argument values for a known type described by an
enumeration of values. The actual response argument value matches with expected one if the actual one belongs
to the set defined by the enumeration.

• MatchingCollectionExpression: Represents a set of expected response argument collection values for a known
type described by the members of the expected collection and the matching kind operator. The actual response
argument collection value match with the expected ones if the actual one belongs to the set of collections values
defined by members and the collection matching kind.

• CollectionExpression: Represents a collection value used for defining argument collection values for stimuli or
expected response values. If used as expected response argument collection value the actual response argument
collection value matches with the expected one if their respective members match with each other. In case
ordering is important, the members should also occur in the exact same order.

Implementations of the profile are free to decide how to incorporate and offer the non-normative extensions to the
users.

C.2.1 Overview of non-normative ValueSpecification Extensions
The diagram below shows some additional, non-normative extensions to the UML ValueSpecifications metamodel.
These UTP ValueSpecification extensions are deemed helpful for testers in order to be express data values used to
specify the payload for stimuli and expected responses. It is treated as non-normative extension nonetheless, because
all the given extensions could also be expressed by means of the OCL, which is considered as integral part of UML.
However, OCL imposes additional knowledge on the test engineers which may result in a reduced acceptance by the
industrial testing community. Therefore, this non-normative extension to the UTP provides dedicated concepts as
special ValueSpecifications which can be immediately used by the testers without knowing anything about OCL at
all. All these extended ValueSpecifications have been taken over from [TTCN-3] where they have been proven
beneficial for the design of executable test cases in the industry since many years.

UML Testing Profile 2 (UTP 2), Version 2.1 213

Figure C.1 - Overview of non-normative ValueSpecification Extensions

C.2.2 Stereotype Specifications

C.2.2.1 ChoiceOfValues
Description ChoiceOfValues represents an enumeration of possible values defined for the

payload of an expected response, out of which at least one entry must match with
the payload of the actual response.

If a choice of possible values is used in a check response data action, then the
enumerated values denote several possible check response data actions out of which
one possible value must match with the actually received response data.

The list of possible values is expressed as the list of ValueSpecifications composed
by the underlying Expression’s operand attribute. As defined above, any available
ValueSpecification can be enumerated as choice of possible values.

As a recommendation, ChoiceOfValues must either be only in check response data
actions in test cases or for test generation. It is highly recommended to not use
ChoiceofValues as payload for create stimulus action for it may negatively affect
the repeatability of test case executions.

Extension Expression
Change from UTP 1.2 «ChoiceOfValues» has been newly introduced by UTP 2.

214 UML Testing Profile 2 (UTP 2), Version 2.1

C.2.2.2 CollectionExpression
Description A CollectionExpression enables the modelling of collections based on the

ValueSpecification metaclass Expression. Using collections values is essential when
specifying stimuli and expected responses of a test case. By means of the stereotype
«CollectionExpression» it is possible to describe inline values for a given
ConnectableElement (i.e., Property or Parameter) and use those collections values as
payload for a stimulus or an expected response as required. The kind (i.e., order and
uniqueness) of the CollectionExpression is prescribed by the related
MultiplicityElement (i.e., Property or Parameter) of this CollectionExpression.

«CollectionExpression» might be used as payload for both stimulus and expected
responses. If it represents the payload of an expected response, the payload of the
actual responses must match with the expected CollectionExpression with respect to
both, items listed in the collection and their respective index in the actual payload
collection, if the corresponding ConnectableElement (i.e., Property or Parameter) is
ordered. Any deviation is supposed to result in a mismatch.

Extension Expression
Sub Class MatchingCollectionExpression

C.2.2.3 ComplementedValue
Description A ComplementedValue specifies a set of values that are not contained in the set

specified by the genuine ValueSpecification.
Extension ValueSpecification
Change from UTP 1.2 «ComplementedValue» has been newly introduced by UTP 2.

C.2.2.4 MatchingCollectionExpression
Description A MatchingCollectionExpression is a CollectionExpression that enables the tester to

define matching criteria when used as the payload of an expected response. Thus, it
is not allowed to use a MatchingCollectionExpression as payload for a stimulus, but
only as payload for expected responses.

The CollectionMatchingKind attribute of the CollectionExpression determines the
matching mechanism that must be applied on the actual payload when received in
order to calculate a match or mismatch of actual and expected responses. These
matching kinds are the following:
• subset (default)
• superset
• permutation

If the corresponding MultiplicityElement (i.e., Property or Parameter) has is ordered
(i.e., isOrdered = true), the collection items in the payload of the actual response
have to occur in the exact same order as the elements in the expected response.
Whether nested CollectionExpressions are considered to be flattened for the
comparison of expected and actual responses is not defined in UTP 2.

Extension Expression
Super Class CollectionExpression
Attributes matchingKind : CollectionMatchingKind [0..1] = subset'
Constraints Must be used as payload for an expected responses

A MatchingCollectionExpression must only specify the payload of an expected
response.
Use of permutation matching kind

The matchingKind permutation must only be applied if the corresponding

UML Testing Profile 2 (UTP 2), Version 2.1 215

ConnectableElement (i.e., Property or Parameter) of the expected response has set
isOrdered to false.

Change from UTP 1.2 «CollectionExpression» has been newly introduced by UTP 2.

C.2.2.5 RangeValue
Description A RangeValue represents a range between two naturally ordered boundaries, the

upper and the lower bound. A RangeValue can be used as wildcard value (i.e.
qualified) instead of a concrete value (i.e. quantified). Conceptually, a range
represents an enumeration of the values between the min and max values; however,
it does not represent a set or collection of values. In that sense, RangeValue is
semantically equivalent to a ChoiceOfValue: ValueSpecification would explicitly
enumerate all value between the min and max boundary. The eventual min value
must always be less or equal than the eventual max value. In case that the min and
max evaluate to the very same value, the range spans only a single value.

If minInclusive is set to true, the lower boundary (represented by the min value) is
included in the range, otherwise it is excluded. Default is true (i.e., the min value is
included). If maxInclusive is set to true, the upper boundary (represented by the max
value) is included in the range, otherwise it is excluded. Default is true, i.e., the max
value is included. For example, if the min value evaluates to 10 and minInclusive is
set to false, the actual lowerBoundary is 11.

If a RangeValue is used in combination with an Integer- or Real-typed element, the
lower and upper bounds describes the lowest and highest number of that numeric
instance. If a RangeValue used in combination with a String-typed element (or
subclasses thereof), the lower and upper bounds determine the minimal and
maximal length of that String's instance. Users are allowed to define other
proprietary natural orderings (e.g., complex types and re-use RangeValue to denote
upper and lower boundaries for these types). The semantics how the ordering is
defined; however, is out of scope of the RangeValue concept.

If applied to an expected response, a RangeValue matches with the actual received
value from the test item, and if the actual value is within the boundaries of the
expected RangeValue.

Extension Expression
Attributes maxInclusive : Boolean [1] = `true`

minInclusive : Boolean [1] = `true`
Associations min : ValueSpecification

max : ValueSpecification
Constraints Operands shall be empty

The attribute operand of the underlying Expression must be empty.
Change from UTP 1.2 «RangeValue» has been newly introduced by UTP 2.

C.2.3 Enumeration Specifications
Name Description Enumeration literals
CollectionMatching
Kind

The CollectionMatchingKind
lists different possibilities how
a collections that specifies an
expected response shall be
compared with an actual
response's collection.

subset

The subsets matching kind indicates that all the
elements in the expected response must be contained in
the actual response, but there can be more elements in
the actual response. The expected response is a real
subset of the actual response.

216 UML Testing Profile 2 (UTP 2), Version 2.1

Name Description Enumeration literals
superset

The supersets matching kind indicates that the
elements in expected response represent those values
that might be contained in the actual response, but
there can be possible less elements contained in the
payload of the actual response. The expected response
is a real superset of the actual response.
permutation

The permutation matching kind indicates that all the
elements of the expected response must be contained in
the actual response, but in any arbitrary order.
Permutation can only be applied if the corresponding
MultiplicityElement (i.e., Property or Parameter) is
unordered (i.e., isOrdered = false).

UML Testing Profile 2 (UTP 2), Version 2.1 217

Annex D Index

(
(Informative) Conceptual Model [STUB], 13
/
/instanceOf, 112
/instances, 113
/realizedBy, 56
/realizes, 81
/testCase, 53
/utilizedBy, 81
[
[BMM], 9, 55
[DD], 9
[ES20187301], 9, 19
[ES202951], 9, 21
[ES20311901], 9, 19
[ES20311902], 9, 19
[ES20311903], 9, 19
[ES20311904], 9, 19
[FUML], 10
[HWT2012], 10, 21
[IEC61508], 10, 18
[ISO1087-1], 10, 24
[ISO25010], 10, 141
[ISO29119], 10, 18, 19, 20, 21, 51, 60, 61, 62, 63, 64,

65, 67, 72
[ISO9126], 10
[ISTQB], 10, 19, 21, 43, 51, 63, 64, 65, 66, 67, 71,

72, 144, 145, 173
[MDA], 10
[MDAa], 10
[MDAb], 10
[MDAd], 10
[MOF], 9
[OCL], 9
[OSLC], 10
[SBVR], 10, 24
[SEP2014a], 10, 38
[SysML], 10, 25, 51, 56, 58
[TCM2008], 11, 21
[TestIF], 11
[UL2007], 11, 21
[UML], 3, 5, 6, 9, 39, 40
[UPL2012], 11, 21
[UTP], 11
[WikiCT], 11, 38
[WikiM], 6, 11, 41
[XMI], 9
{
{read-only, union, subsets subTestDirective}

subDirective, 69
{read-only, union, subsets subTestTechnique}

subTechnique, 70

{read-only, union, subsets technique} capability, 69
{subsets capability} appliedTestDesignTechnique, 66
{subsets subDirective} genericSubDirective, 66
A
a, 31, 33, 39, 89
abstract test case, 5, 21, 31, 32, 49
abstract test configuration, 5, 29, 30
acceptance test level, 144
Acceptance testing, 145
Action, 83, 88
actual data pool, 5, 38, 39, 40
actual parameter, 5, 32, 33, 48, 120, 132
actualParameter {ordered, unique}, 132
ActualParameterValue, 48, 132, 196
ActualResponseLogEntry, 48, 134, 196
actualValue, 135
Additional Information, 13
against, 37, 96
AllCombinations, 147
Allowed invocation scheme, 78, 81, 83
AllRepresentatives, 147
AllStates, 147
AllTransitions, 147
Alpha Testing, 144
alternative, 5, 33, 34, 48, 80
Alternative, 48, 84, 85, 86, 196
AlternativeArbitrationSpecification, 48, 117, 118,

196
AnyType, 140
AnyValue, 48, 107, 108, 196
API Testing, 145
Application in Activities, 85, 87, 88, 91
Application in Interactions, 85, 87, 88, 91
Arbitration & Verdict Overview, 41
Arbitration of AtomicProceduralElements, 115, 116
Arbitration of CompoundProceduralElements, 116,

117
Arbitration of Test-specific Actions, 121, 122
arbitration specification, 5, 6, 7, 19, 20, 24, 25, 34,

35, 37, 41, 42, 48, 49, 50, 77, 82, 83, 88, 89, 95,
96, 97, 99, 101, 106, 110, 111, 113, 115, 116, 118,
120, 121, 130, 141, 184, 188, 189

Arbitration Specifications, 41, 110
Arbitration Specifications Overview, 111
ArbitrationResult, 48, 111, 112, 113, 196
arbitrationSpecification, 54, 89
ArbitrationSpecification, 48, 113, 114, 115, 120, 196
arbitrationSpecification {redefines

arbitrationSpecification}, 85, 86, 87, 88, 90, 91,
95, 97, 100, 101

artifact, 1, 2, 5, 7, 8, 18, 21, 27, 28, 30, 43, 50, 51, 68,
70, 74, 76, 158, 161

at least one, 29, 31, 33, 37, 39, 79, 96, 98, 101, 105

218 UML Testing Profile 2 (UTP 2), Version 2.1

At least one property, 96
At least one response, 101
At least one stimulus, 98
at most one, 25, 31, 42, 79, 81, 83
ATM Example, 180
atomic procedural element, 5, 7, 32, 34, 35, 36, 38,

48, 83, 84, 86, 115, 118
AtomicProceduralElement, 48, 83, 86, 89, 90, 95, 96,

97, 100, 101, 196
AtomicProceduralElementArbitrationSpecification,

48, 118, 120, 121, 122, 123, 124, 196
AtomicProceduralElementLogEntry, 48, 130, 131,

132, 134, 135, 196
Automated Test, 144
B
Behavior, 49, 50, 51, 57, 77, 78, 80, 81, 82, 83, 90,

91
BehavioredClassifier, 48, 49, 50, 80, 81, 113, 114,

115, 117, 118, 119, 120, 121, 122, 123, 124, 136
Beta Testing, 145
boolean expression, 5, 6, 31, 32, 33, 40, 85, 105
BoundaryValueAnalysis, 48, 63, 65, 148, 173, 196
Build verification test, 143
C
CallBehaviorAction, 49, 90
captures, 45
captures execution of, 45
CauseEffectAnalysis, 48, 63, 70, 196
Certifier, 16
check property action, 5, 37, 38, 48, 95, 96, 120, 123
check traceability, 16, 17
checkedProperty, 96, 172
ChecklistBasedTesting, 48, 63, 65, 196
CheckPropertyAction, 48, 86, 92, 95, 172, 173, 176,

196
CheckPropertyArbitrationSpecification, 48, 95, 118,

123, 196
CheckPropertyLogEntry, 48, 131, 134, 196
checks, 37, 96
Chocolate Portion, 152
Chocolate test, 152
ChoiceOfValues, 196, 200, 201
Class, 50, 51, 55, 56
ClassificationTreeMethod, 48, 64, 70, 196
Classifier, 48, 49, 50, 69, 71, 74, 75, 76, 104, 106,

128, 130, 131, 133, 136, 138, 139
Clients of a «Morphing» Dependency, 106
CollaborationUse not allowed, 130
CollectionExpression, 196, 200, 202
CollectionMatchingKind, 203
CombinatorialTesting, 48, 64, 67, 70, 196
CombinedFragment, 48, 49, 85, 86, 87, 88, 91
complement, 5, 38, 39, 41, 44, 48, 103, 113
ComplementedValue, 196, 200, 202
Complements, 48, 103, 106, 196
component test level, 144

compound procedural element, 5, 6, 7, 32, 33, 34, 35,
48, 83, 84, 85, 86, 87, 88, 91, 111, 116

Compound Procedural Elements Overview, 84, 85
CompoundProceduralElement, 48, 83, 85, 86, 87, 88,

89, 91, 196
CompoundProceduralElementArbitrationSpecificatio

n, 48, 117, 118, 119, 120, 121, 196
Conceptual Model, 5, 52, 103
concrete test case, 5, 21, 31, 32, 49
concrete test configuration, 5, 29, 30, 153
configuration {subsets roleConfiguration}, 74, 76,

171
Conformance, 13
constraint, 3, 5, 38, 39, 40, 51, 58, 102, 105
Constraint, 48, 49, 50, 73, 74, 76, 95, 96, 105, 106
create log entry action, 5, 37, 38, 48, 96, 124
create stimulus action, 5, 37, 38, 48, 92, 97, 98, 122,

201
CreateLogEntryAction, 48, 86, 92, 96, 196
CreateLogEntryArbitrationSpecification, 48, 96, 118,

124, 196
CreateLogEntryLogEntry, 48, 131, 135, 196
CreateStimulusAction, 48, 86, 92, 97, 122, 176, 196
CreateStimulusArbitrationSpecification, 48, 97, 118,

122, 196
CreateStimulusLogEntry, 48, 134, 196
Croissant, 150, 152, 154, 155
Croissants, 153
Croissants Example, 150
CR-X1072-B, 152
Cyclic modifications, 109
D
data, 2, 4, 5, 6, 7, 8, 18, 21, 24, 27, 28, 30, 31, 37, 38,

39, 40, 41, 60, 68, 70, 82, 96, 97, 102, 103, 104,
105, 106, 107, 109, 110, 120, 155, 157, 163, 200,
201

data item, 5, 6, 7, 38, 39, 40, 41, 103, 104, 105, 106
data partition, 5, 38, 40, 104, 193
data pool, 5, 24, 38, 39, 40, 48, 104, 193
data provider, 5, 30, 38, 39, 40, 48
data specification, 5, 21, 38, 39, 40, 41, 48, 49, 103,

104, 105, 106, 155, 159, 160, 200
Data Specifications, 102, 103
Data Specifications Overview, 103
data structure, 40
data type, 5, 6, 38, 39, 40, 105, 107
Data Value Extensions, 107, 108
Data Values, 102, 106
DataPartition, 48, 104, 105, 196
DataPool, 48, 104, 196
dataProvider, 69
DataProvider, 48, 74, 104, 196
dataSpecification, 104
DataSpecification, 48, 104, 105, 106, 172, 196
dataSpecifications, 104
DataType in DataSpecification, 105

UML Testing Profile 2 (UTP 2), Version 2.1 219

DecisionTableTesting, 48, 64, 70, 197
DefaultCBT, 148
DefaultCET, 148
DefaultCTM, 148
DefaultDTT, 148
DefaultEG, 148
DefaultET, 148
DefaultPT, 148
DefaultTPT, 148
Dependency, 48, 49, 50, 58, 103, 105, 106, 109, 136
Derivation and Modeling of Test Requirements, 157
description, 56, 58, 81
Description of Case Study, 175
design acceptance tests, 16, 17
design integration tests, 16, 17
Design of Test Case Procedures, 164
design system tests, 16, 17
design test cases, 16, 17
design test cases for a data-intensive system, 16, 17
design test cases for a system that includes humans,

16, 17
design test cases for a system with time-critical

behavior, 16, 17
design test data, 16, 17
design test specifications, 16, 17
design unit tests, 16, 17
determine test coverage, 16, 17
determines, 41, 42, 113
directionKind, 131
DRAS01, 41, 113
DRAS02, 42
DRTA01, 25, 37, 98
DRTA02, 25, 37, 101
DRTA03, 25, 37, 42, 96
DRTC01, 31
DRTC02, 31, 83
DRTC03, 31, 81
DRTC04, 31, 79
DRTC05, 31, 83
DRTC06, 31, 81
DRTC07, 31, 79
DRTC08, 31
DRTC09, 42
DRTD01, 39, 105
DRTD02, 39
DRTD03, 39, 106
DRTD04, 39, 106
DRTD05, 39
DRTL01, 45
DRTL02, 45
DRTP01, 33, 89
DRTP02, 33, 79
DRTP03, 33, 79
DRTP04, 33, 79
DRTR01, 29
DRTR02, 29

duration, 6, 8, 32, 34, 35, 43, 45, 130
E
each, 25, 29, 31, 33, 39, 42, 45, 79, 81, 83, 105
Each test case returns a verdict statement, 81
emanates from, 39
endAfterPrevious, 89
Enforced expectation kind 'implicitExcept', 101
EquivalenceClassPartitioning, 48, 63, 65, 70, 147,

197
error, 92, 122, 123, 140
Error, 6, 42, 43, 65, 113
ErrorGuessing, 48, 65, 197
evaluate test results, 16, 17
exactly one, 39, 41, 42, 45, 113
execute test cases, 16, 18
Executed test cases and definition of test set members

must be consistent, 129
executedTestCase, 129
executedTestSet, 129
executedTestSetMember, 129
executing entity, 6, 43, 45, 57, 128, 129, 130, 136
executingEntity, 128
executionDuration, 128
executionStart, 128
expect response action, 6, 37, 38, 48, 99, 101, 106,

120, 123, 163, 165
expectationKind, 100, 101
expectedElement, 100, 101
ExpectResponseAction, 48, 86, 92, 99, 100, 101, 102,

123, 176, 197
ExpectResponseArbitrationSpecification, 48, 99, 118,

123, 197
expects to receive, 37, 101
ExperienceBasedTechnique, 49, 63, 65, 70, 197
ExploratoryTesting, 49, 65, 197
Expression, 48, 49, 108, 110, 200, 201, 202, 203
Extends, 49, 105, 106, 197
extension, 6, 38, 41, 49, 51, 57, 59, 63, 77, 86, 89,

105, 107, 200
F
fail, 123, 140, 141
Fail, 6, 41, 42, 43, 113, 163, 164, 165, 184
Failed user login, 156
Failover Test, 145
Feature acceptance testing, 143
Feature validation testing, 143
Feature verification testing, 143
forbiddenElement, 97, 100, 101, 122, 123
formal parameter, 5, 6, 31, 32, 33, 34, 49, 132
formalParameter, 132
FormalParameterReference, 49, 131, 197
formalParameterReference {ordered, unique}, 131
Functionality to Test, 175
G
General, 180
generate test case instances, 16, 18

220 UML Testing Profile 2 (UTP 2), Version 2.1

Generation of Test Sets and Abstract Test Cases, 177
Generic Test Design Capabilities, 59, 60
GenericTestDesignDirective, 49, 59, 66, 68, 197
GenericTestDesignTechnique, 49, 59, 66, 70, 197
Given Requirements on the Test Item, 170
GraphTraversalAlgorithmKind, 149
GraphTraversalStructure, 148
guarantees, 31, 79, 81, 83
Gustaoceptionary Proficiency, 152
H
Human Test Executor, 16
I
ID, 53, 55, 56, 57, 75, 81, 83, 113
ignoredElement, 100, 101, 123
implement automatic test case execution, 16, 17, 18
implement onboard test cases, 16, 17, 18
implement test components, 16, 17, 18
implement tool support for UTP 2, 17, 18
implicitExpect, 101, 102
ImplicitExpectationKind, 102
implicitForbid, 102
implicitIgnore, 102
inconclusive, 140, 141
Inconclusive, 6, 41, 42, 43, 113
Informative References, 9
input {ordered}, 138
instance, 5, 6, 8, 40, 45, 128
instanceOf, 128, 137, 138
instanceOf {redefines instanceOf}, 69, 71
InstanceSpecification, 48, 49, 50, 63, 64, 65, 66, 67,

68, 70, 71, 72, 109, 112, 127, 128, 129, 130, 131,
132, 133, 134, 135, 137, 138

Intake Test, 144
integration test level, 144
Integration Testing Example, 185
Interaction, 77
InteractionFragment, 77, 83, 88
InteractionUse, 49, 90
Interface testing, 145
Internal structure of TestLogStructure Classifier, 130
Invocation Test Log Entry Details, 127
InvocationAction, 48, 49, 96, 97, 101
InvocationLogEntry, 49, 131, 132, 133, 134, 197
InvocationLogEntryStructure, 49, 130, 131, 133, 197
invocationStructure {redefines instanceOf}, 133, 134
invocationTarget, 133, 134
invokedProcedure, 91
invokes, 31, 33, 79
is smaller than, 33, 89
ISTQB Agile Test Set Purpose, 143
ISTQB Library, 142
ISTQB Test Level, 144
ISTQB Test Set Purpose, 144
It is impossible that, 31
It is necessary that, 25, 29, 31, 33, 37, 39, 41, 42, 45,

79, 81, 83, 89, 96, 98, 101, 105, 113

K
Knowledge of CR-X1072-B, 152
L
Language Architecture, 47
leads to, 36
Load Testing, 145
loggedValue, 135
Login response time, 156, 158
LoginServer Example, 155
longest, 149
loop, 6, 32, 34, 49, 77, 87, 118
Loop, 49, 77, 84, 86, 87, 197
LoopArbitrationSpecification, 49, 118, 197
M
Machine Test Executor, 16
Mail address modification, 156, 158
main, 92
main procedure invocation, 6, 7, 33, 34, 35, 79
Manual Test, 144
Mapping Interface Descriptions, 167
Mapping Test Cases and Test Configuration, 168
Mapping the Test Architecture, 167
Mapping the Test Data Specification, 167
Mapping the Test Type System, 166
Mapping to Code, 170, 174
Mapping to TTCN-3, 166
MatchingCollectionExpression, 197, 200, 202
matchingKind, 202
max, 203
maxInclusive, 203
meet, 68
Message, 48, 97, 100
MessageEventLogEntry, 49, 132, 134, 197
MessageEventLogEntryStructure, 49, 131, 133, 197
min, 203
Minimal test configuration, 75
minInclusive, 203
model, 28
Model Libraries, 13
Modeling Test Data, 160
Modeling the Behavior of the System, 170, 171
Modeling the Structure of the System, 170
Modeling the Type System and Logical Interfaces,

159
Morphing, 49, 103, 105, 106, 197
morphism, 5, 6, 7, 38, 39, 41, 49, 103, 105, 106
Must be used as payload for an expected responses,

202
N
NamedElement, 49, 50, 70, 88
nBoundaryRepresentatives, 63
nCombination, 64
nCombination {redefines nCombination}, 67
negative, 6, 34, 49
Negative, 49, 84, 86, 87, 197
Negative Test, 144

UML Testing Profile 2 (UTP 2), Version 2.1 221

NegativeArbitrationSpecification, 49, 118, 119, 197
Nested Classifier not allowed, 81
none, 140, 141
None, 6, 41, 42, 43, 113
Non-normative data value extensions, 200
Normative References, 9
nRepresentatives, 65
nRepresentatives {redefines nRepresentatives}, 63
NSwitchCoverage, 49, 66, 67, 71, 197
O
Object Management Group, Inc. (OMG), vii
ObjectFlow, 48, 95
Objects, 153
observedProperty, 135
of, 33, 42, 89
OMG specifications, vii
One postcondition per test case, 81
One postcondition per test execution schedule, 83
One postcondition per test procedure, 79
One precondition per test case, 81
One precondition per test execution schedule, 83
One precondition per test procedure, 79
OneBoundaryValue, 148
OneRepresentative, 148
Only applicable to UML Behavior building blocks,

88
OpaqueProceduralElement, 49, 83, 88, 89, 197
OpaqueProceduralElementLogEntry, 49, 131, 135,

197
Operands shall be empty, 203
Operation, 51
or, 42
output {ordered}, 138
overrides, 49, 109, 197
Overview of non-normative ValueSpecification

Extensions, 200, 201
Overview of test-specific actions, 36
Overview of the ISTQB library, 142, 143
Overview of the predefined test design technique

structures, 148
Owned UseCases not allowed, 81
Owner of Constraint, 96
Owner of Property, 96
Ownership of «TestComponentConfiguration», 74
Ownership of «TestItemConfiguration», 76
P
Package, 50, 53, 57, 106
PairwiseTesting, 49, 64, 67, 197
parallel, 6, 34, 49, 119
Parallel, 49, 84, 86, 88, 197
ParallelArbitrationSpecification, 49, 118, 119, 197
parent, 112
part, 75
pass, 92, 123, 140, 141
Pass, 6, 41, 42, 43, 113, 159, 164, 184
PE end duration, 6, 33, 35, 89

PE start duration, 6, 33, 35, 89
permits to send, 37, 98
permittedElement, 97, 98, 122
permutation, 204
postcondition, 6, 31, 32, 79, 80, 81, 83
preconditon, 6, 31, 32, 79, 81, 83
Predefined context-free test design techniques, 146,

147
Predefined data-related Test Design Techniques, 60,

61
Predefined experience-based Test Design

Techniques, 62
Predefined high-level Test Design Techniques, 60
Predefined state-transition-based Test Design

Techniques, 61
Predefined Test Design Technique Structures, 148
Predefined Test Design Techniques, 146
Predefined types, 140
Predefined verdict instances, 140
prescribes the execution order of, 32, 33, 79
procedural element, 5, 6, 7, 19, 32, 33, 34, 35, 49, 77,

78, 79, 80, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92,
110, 111, 113, 115, 117, 118, 119, 120, 121, 128,
141

Procedural Element Arbitration Specifications, 115
procedural element verdict, 5, 6, 7, 36, 37, 42, 43, 83,

86, 92, 95, 99, 101, 110, 111, 113, 114
Procedural Elements, 77, 83
Procedural Elements Overview, 84
proceduralElement, 130
ProceduralElement, 14, 49, 83, 86, 88, 89, 197
proceduralElement {redefines proceduralElement},

131, 133, 134, 135
ProceduralElementArbitrationSpecification, 49, 113,

118, 120, 197
procedure, 5, 6, 7, 8, 32, 33, 34, 35, 36, 41, 65, 70,

77, 78, 79, 80, 81, 82, 83, 90, 91, 110, 132, 164,
166

procedure invocation, 6, 7, 32, 34, 35, 49, 84, 90,
120, 121

Procedure sequentializes procedural element, 79
ProcedureInvocation, 49, 78, 80, 82, 84, 86, 90, 91,

176, 197
ProcedureInvocationArbitrationSpecification, 49,

118, 121, 197
ProcedureInvocationLogEntry, 49, 132, 133, 197
ProcedureInvocationLogEntryStructure, 49, 131, 133,

197
ProcedurePhaseKind, 91
Product Manager, 16
Profile Specification [STUB], 13
Project Manager, 16
property, 5, 7, 37, 58, 63, 65, 67, 71, 95, 96, 120
Property, 48, 49, 50, 74, 75, 76, 96, 104, 131, 202
provide test data, 16, 18
provides data according to, 39

222 UML Testing Profile 2 (UTP 2), Version 2.1

purpose, 57
Q
QA Manager, 16
R
random, 149
RangeValue, 197, 200, 203
Recoverability Test, 145
referencedBy, 55, 56, 58, 69, 71, 113, 128
references, 56
References, 13, 174, 179, 195
refers to, 25, 42
refinement, 7, 38, 41, 49, 106
Refines, 49, 105, 106, 197
Regression Testing, 144
RegularExpression, 49, 107, 110, 197
Relation to keyword-driven testing, 19
requirement, 27
Requirements Engineer, 16
Requirements Specification, 155
requires, 31, 79, 81, 83
response, 2, 6, 7, 19, 36, 37, 92, 99, 101, 102, 106,

107, 108, 110, 200, 201, 202, 203
Restriction of client and supplier, 109
Restriction of extendable metaclass, 58
Restriction of extendable metaclasses, 54, 55, 56,

128, 130
resultFor, 112
review test specifications, 16, 18
role, 90, 91
role {ready-only, union}, 73
Role only in context of test cases relevant, 91
RoleConfiguration, 49, 72, 73, 74, 76, 197
roleConfiguration {read-only, union}, 76
RQ-0001, 150
RQ-0002, 150
RQ-0003, 150
S
select test data, 16, 17, 18
Semantics of Business Rules and Vocabularies, 24
sequence, 7, 19, 32, 34, 35, 49, 66, 71, 84, 119, 121,

128
Sequence, 49, 86, 91, 176, 197
SequenceArbitrationSpecification, 49, 118, 121, 197
setup, 91
setup procedure invocation, 7, 35
shortest, 149
SimpleChecklistBasedStructure, 149
SimpleErrorGuessingStructure, 149
Slot, 48, 132
Smoke Test, 144
Specialization of TestLogStructure Classifier, 130
specification, 55, 56
Specification of Complex Test Data, 162
Specification of Dependency client, 136
Specification of Dependency supplier, 136
specifies, 25, 39, 105

specifies the configuration of, 29
startAfterPrevious, 89
State, 96
StateCoverage, 49, 67, 197
StateInvariant, 96
StateTransitionTechnique, 49, 66, 67, 70, 71, 173,

197
stimulus, 5, 7, 37, 92, 97, 98, 106, 202
Stress Testing, 145
StructuredActivityNode, 48, 49, 85, 86, 87, 88, 91
StructuredClassifier, 50, 75
subresult, 112
Subsea Production System Example, 175
subset, 203
subTestDirective {read-only, union}, 138
subTestTechnique {union, read-only}, 138
suggest verdict action, 7, 37, 38, 49, 101, 123
suggestedVerdict, 135
SuggestVerdictAction, 49, 86, 92, 101, 198
SuggestVerdictArbitrationSpecification, 49, 101,

118, 123, 198
SuggestVerdictLogEntry, 49, 131, 135, 198
superset, 204
Suppliers of a «Morphing» Dependency, 106
switchStates, 66
switchStates {redefined switchStates}, 71
System Designer, 16
System Operator, 16
System Test Example, 190
system test level, 144
T
targets, 39
TC01

test taste, 154
TC02

test structure, 154
TC03

test color, 155
TDS01, 152
teardown, 91
teardown procedure invocation, 7, 35
technique {read-only, union}, 137
Terms and Definitions, 13
test action, 5, 6, 7, 8, 19, 31, 32, 33, 34, 36, 37, 38,

42, 43, 44, 78, 79, 92, 93, 94, 95, 96, 97, 99, 101,
111, 121

Test Analysis, 4, 24, 50, 157
Test Architecture, 29, 72
Test Architecture and Test Configuration, 161
Test Architecture Overview, 29, 72, 73
Test Behavior, 31, 77
test case, 2, 3, 5, 6, 7, 8, 16, 17, 18, 19, 21, 22, 24,

25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
38, 41, 42, 43, 44, 45, 49, 51, 52, 53, 55, 56, 57,
58, 63, 64, 65, 66, 67, 68, 70, 71, 72, 74, 77, 78,
79, 80, 81, 82, 89, 90, 92, 96, 101, 102, 110, 111,

UML Testing Profile 2 (UTP 2), Version 2.1 223

113, 114, 115, 120, 128, 129, 130, 136, 141, 153,
155, 157, 161, 162, 163, 164, 165, 166, 167, 168,
170, 174, 177, 178, 181, 182, 183, 184, 187, 188,
189, 191, 192, 194, 201, 202

Test case invokes one main procedure, 79
test case log, 5, 7, 37, 45, 50, 96, 113, 129
Test Case Overview, 31, 77, 78
test case verdict, 7, 36, 37, 42, 43, 45, 101, 110, 111,

113, 114, 188, 189
Test Cases, 31, 153, 173
test component, 1, 2, 5, 7, 19, 22, 29, 30, 38, 40, 50,

72, 73, 74, 78, 80, 92, 93, 95, 96, 97, 99, 101, 104,
155, 161, 162, 182, 183, 185, 187, 188, 189, 192

test component configuration, 7, 29, 30, 50, 72, 74,
170, 174

test configuration, 5, 7, 8, 18, 19, 27, 28, 29, 30, 49,
50, 68, 70, 72, 73, 74, 75, 76, 77, 78, 80, 96, 101,
155, 157, 162, 164, 165, 168, 182, 187, 192

Test Configuration, 153
test context, 7, 8, 14, 18, 20, 21, 24, 25, 26, 27, 50,

52, 53, 55, 142, 155, 156, 157, 160, 162, 183, 191
Test Context Overview, 24, 25, 31, 51
Test Data, 38, 102
Test Data Concepts, 38, 39
Test Design, 4, 27, 58, 152, 161
test design directive, 7, 8, 27, 28, 49, 50, 58, 59, 66,

68, 70, 146
Test Design Directive, 50
Test Design Facility, 59
Test Design Facility Library, 145
Test Design Facility Overview, 27, 28
test design input, 7, 8, 19, 20, 24, 26, 27, 28, 50, 51,

53, 56, 58, 67, 68, 70, 146, 177, 178
Test Design Inputs, 176
test design technique, 7, 8, 19, 20, 21, 24, 26, 27, 28,

48, 49, 50, 53, 58, 59, 60, 61, 62, 63, 64, 65, 66,
67, 68, 70, 71, 72, 145, 146, 148, 149, 159, 173

Test Designer, 16
Test Directive Facility, 137
Test Directives, 136
Test Evaluation, 41, 110
test execution schedule, 7, 8, 19, 27, 28, 31, 32, 35,

41, 50, 57, 68, 77, 82, 83, 90, 111, 130
test item, 1, 2, 5, 6, 7, 8, 19, 21, 22, 26, 27, 29, 30,

32, 36, 37, 38, 42, 43, 50, 51, 56, 65, 72, 76, 78,
80, 92, 94, 95, 96, 97, 99, 100, 102, 141, 150, 155,
156, 159, 161, 162, 170, 174, 181, 182, 184, 185,
186, 187, 191, 203

test item configuration, 8, 29, 30, 50, 72, 76, 170, 174
Test Item Controlled Actions, 94
test level, 1, 8, 21, 24, 25, 26, 53, 142, 155, 157, 181,

185
test log, 1, 7, 8, 19, 21, 43, 44, 45, 46, 50, 96, 110,

128, 129, 130
Test Log Entries Details, 126
Test Log Entries Overview, 125, 126

Test Log Overview, 43, 45
test log structure, 8, 43, 44, 45, 50, 128, 129, 130,

136
Test Logging, 43, 124
Test Logging Overview, 124, 125
Test Map, 154
test objective, 7, 8, 18, 20, 25, 26, 28, 32, 43, 50, 51,

52, 53, 55, 58, 68, 80, 90, 110, 128, 156, 157
Test Objective Overview, 52, 53
Test Objectives, 151
Test Planning, 24, 50, 156
test procedure, 8, 18, 31, 32, 33, 35, 36, 41, 50, 56,

75, 77, 78, 79, 80, 82, 83, 90, 91, 153, 164, 165,
166

Test Procedure Arbitration Specifications, 111
Test procedure operates on test configuration, 78
Test procedure sequencializes test action, 79
Test Procedures, 31, 32, 33
test requirement, 8, 25, 26, 43, 50, 51, 56, 58, 90,

110, 128, 155, 157, 158, 159, 160, 163, 164, 182,
183, 184, 185, 191, 192, 194

Test Requirement and Test Objective Overview, 25,
26

Test Requirements, 151
Test Requirements Realization, 163
test set, 6, 7, 8, 17, 18, 20, 24, 25, 26, 27, 28, 31, 42,

43, 44, 45, 46, 50, 51, 55, 56, 57, 58, 68, 77, 82,
110, 111, 113, 115, 128, 129, 136, 141, 142, 144,
153

Test Set "Manual croissants test", 153
test set log, 8, 45, 46, 50, 129
test set purpose, 8, 27, 142
test set verdict, 8, 42, 43, 82, 92, 110, 111, 113
Test Strategy, 152
test type, 8, 20, 21, 24, 25, 27, 53, 155, 157, 159,

160, 162
TestCase, 49, 52, 56, 75, 77, 80, 81, 82, 129, 136,

162, 198
TestCaseArbitrationSpecification, 50, 113, 114, 123,

198
testCaseAS, 81
TestCaseLog, 50, 128, 129, 198
TestComponent, 14, 50, 72, 74, 75, 76, 104, 162,

170, 198
testComponent {subsets role}, 74
TestComponentConfiguration, 50, 72, 73, 74, 171,

198
testConfiguration, 54
TestConfiguration, 50, 72, 75, 80, 176, 198
TestConfigurationRole, 50, 72, 73, 74, 75, 76, 198
TestContext, 14, 50, 51, 52, 53, 54, 198
testDesignDirective, 54
TestDesignDirective, 50, 58, 59, 66, 68, 69, 137, 147,

148, 198
TestDesignDirectiveStructure, 50, 59, 69, 138, 198
testDesigningEntity, 69

224 UML Testing Profile 2 (UTP 2), Version 2.1

testDesignInput, 54
TestDesignInput, 50, 68, 70, 170, 171, 198
testDesignInput {redefines input}, 69
testDesignOutput {redefines output}, 69
testDesignTechnique, 54
TestDesignTechnique, 50, 58, 59, 63, 64, 65, 66, 67,

70, 72, 138, 147, 148, 198
TestDesignTechniqueStructure, 50, 59, 71, 139, 198
TestDirective, 50, 68, 137, 198
TestDirectiveStructure, 50, 69, 138, 198
Tester Controlled Actions, 93
TestExecutionSchedule, 50, 77, 81, 82, 83, 111, 115,

198
TestItem, 14, 50, 72, 75, 76, 96, 162, 170, 171, 176,

198
testItem {subsets role}, 76
TestItemConfiguration, 50, 72, 73, 76, 170, 171, 174,

198
testLevel, 54
testLog, 54
TestLog, 50, 127, 128, 129, 198
TestLogElement, 50, 127, 128, 130, 198
testLogEntry, 89
TestLogEntry, 50, 127, 130, 131, 198
testLogEntry {ordered, unique}, 129
TestLogStructure, 50, 130, 131, 136, 198
TestLogStructureBinding, 50, 136, 198
testObjective, 54
TestObjective, 50, 51, 55, 176, 198
TestProcedure, 50, 75, 77, 78, 80, 81, 82, 91, 198
testRequirement, 54
TestRequirement, 50, 51, 56, 81, 175, 198
testSet, 54
TestSet, 50, 51, 57, 58, 111, 115, 129, 198
TestSetArbitrationSpecification, 50, 113, 115, 198
testSetAS, 58, 83
TestSetLog, 50, 128, 129, 198
testSetMember, 57
Test-specific Action Arbitration Specifications, 121
Test-specific Actions, 31, 36, 77, 84, 92
Test-specific actions Overview, 92, 93
Test-specific Contents of Test Context, 52
Test-specific Procedures, 32, 77
TestTechnique, 50, 70, 138, 198
TestTechniqueStructure, 50, 71, 139, 198
testType, 54
the, 33, 37, 89, 96
the same, 33, 89
The Test Item, 150
The TRUST Test Generator, 170, 173
The UTP auxiliary library, 141, 142
The UTP test design facility library, 146
time point, 8, 32, 36, 45
TO00

Quality verified, 151
TO01

Taste verified, 151, 154
TO02

Structure verified, 151, 154, 155
TO03

Color verified, 151, 155
toBeCovered, 67, 71
Tool Vendor, 17
TR01

Humans, 151
TR02

Waste, 152
Transition, 83, 88
TransitionCoverage, 50, 67, 71, 198
TransitionPairCoverage, 50, 66, 71, 199
Trigger, 48, 100
Type of Argument, 102
Type of elements for the explicit sets, 101
Type of forbidden elements, 97
Type of permitted elements, 98
Type of verdict ValueSpecification, 113
Typical Use Cases of UTP 2, 3
U
UML Testing Profile, 15
Unit Test Example, 181
Unknown user login, 156
update test specifications, 16, 18
Use of «ProcedureInvocation», 79
Use of BehavioredClassifier, 81
Use of permutation matching kind, 202
UseCaseTesting, 50, 70, 72, 199
User banishing, 156
User login, 156, 158
User logout, 156, 158
UTP 2 Use Cases, 15
UTP 2 WG, 5, 6, 7, 8, 26, 27, 28, 29, 30, 31, 32, 33,

34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 152
UTP Auxiliary Library, 13, 47, 141
UTP Types Library, 47, 113
V
Valid duration, 89
value, 5, 6, 40, 132
valueFor, 132
ValueSpecification, 113, 200, 202
verdict, 5, 6, 7, 8, 21, 38, 41, 42, 43, 77, 81, 82, 86,

89, 92, 99, 101, 102, 106, 110, 111, 112, 113, 114,
115, 117, 118, 119, 120, 121, 122, 123, 124, 128,
130, 140, 141, 184

Verdict of ArbitrationSpecification, 113
verifies, 50, 51, 58, 199
Videoconferencing Example, 170

	1 Scope
	2 Conformance
	3 Terms and Definitions
	4 References
	4.1 Normative References
	4.2 Informative References

	5 Symbols
	6 Additional Information
	6.1 How to read this document
	6.2 Typographical conventions
	6.3 Typical Use Cases of UTP 2
	6.4 Relation to testing-relevant standards
	6.5 Relation to model-based testing
	6.6 Relation to keyword-driven testing
	6.7 Relation to the MARTE Profile
	6.8 Acknowledgements

	7 (Informative) Conceptual Model
	7.1 Test Planning
	7.1.1 Test Analysis
	7.1.1.1 Test Context Overview
	7.1.1.2 Test Requirement and Test Objective Overview
	7.1.1.3 Concept Descriptions

	7.1.2 Test Design
	7.1.2.1 Test Design Facility Overview
	7.1.2.2 Concept Descriptions

	7.2 Test Architecture
	7.2.1 Test Architecture Overview
	7.2.2 Concept Descriptions

	7.3 Test Behavior
	7.3.1 Test Cases
	7.3.1.1 Test Case Overview
	7.3.1.2 Concept Descriptions

	7.3.2 Test-specific Procedures
	7.3.2.1 Test Procedures
	7.3.2.2 Concept Descriptions

	7.3.3 Test-specific Actions
	7.3.3.1 Overview of test-specific actions
	7.3.3.2 Concept Descriptions

	7.4 Test Data
	7.4.1 Test Data Concepts
	7.4.2 Concept Descriptions

	7.5 Test Evaluation
	7.5.1 Arbitration Specifications
	7.5.1.1 Arbitration & Verdict Overview
	7.5.1.2 Concept Descriptions

	7.5.2 Test Logging
	7.5.2.1 Test Log Overview
	7.5.2.2 Concept Descriptions

	8 Profile Specification
	8.1 Language Architecture
	8.2 Profile Summary
	8.3 Test Planning
	8.3.1 Test Analysis
	8.3.1.1 Test Context Overview
	8.3.1.2 Test-specific Contents of Test Context
	8.3.1.3 Test Objective Overview
	8.3.1.4 Stereotype Specifications
	8.3.1.4.1 TestContext
	8.3.1.4.2 TestObjective
	8.3.1.4.3 TestRequirement
	8.3.1.4.4 TestSet
	8.3.1.4.5 verifies

	8.3.2 Test Design
	8.3.2.1 Test Design Facility
	8.3.2.2 Generic Test Design Capabilities
	8.3.2.3 Predefined high-level Test Design Techniques
	8.3.2.4 Predefined data-related Test Design Techniques
	8.3.2.5 Predefined state-transition-based Test Design Techniques
	8.3.2.6 Predefined experience-based Test Design Techniques
	8.3.2.7 Stereotype Specifications
	8.3.2.7.1 BoundaryValueAnalysis
	8.3.2.7.2 CauseEffectAnalysis
	8.3.2.7.3 ChecklistBasedTesting
	8.3.2.7.4 ClassificationTreeMethod
	8.3.2.7.5 CombinatorialTesting
	8.3.2.7.6 DecisionTableTesting
	8.3.2.7.7 EquivalenceClassPartitioning
	8.3.2.7.8 ErrorGuessing
	8.3.2.7.9 ExperienceBasedTechnique
	8.3.2.7.10 ExploratoryTesting
	8.3.2.7.11 GenericTestDesignDirective
	8.3.2.7.12 GenericTestDesignTechnique
	8.3.2.7.13 NSwitchCoverage
	8.3.2.7.14 PairwiseTesting
	8.3.2.7.15 StateCoverage
	8.3.2.7.16 StateTransitionTechnique
	8.3.2.7.17 TestDesignDirective
	8.3.2.7.18 TestDesignDirectiveStructure
	8.3.2.7.19 TestDesignInput
	8.3.2.7.20 TestDesignTechnique
	8.3.2.7.21 TestDesignTechniqueStructure
	8.3.2.7.22 TransitionCoverage
	8.3.2.7.23 TransitionPairCoverage
	8.3.2.7.24 UseCaseTesting

	8.4 Test Architecture
	8.4.1 Test Architecture Overview
	8.4.2 Stereotype Specifications
	8.4.2.1 RoleConfiguration
	8.4.2.2 TestComponent
	8.4.2.3 TestComponentConfiguration
	8.4.2.4 TestConfiguration
	8.4.2.5 TestConfigurationRole
	8.4.2.6 TestItem
	8.4.2.7 TestItemConfiguration

	8.5 Test Behavior
	8.5.1 Test-specific Procedures
	8.5.1.1 Test Case Overview
	8.5.1.2 Stereotype Specifications
	8.5.1.2.1 TestProcedure
	8.5.1.2.2 TestCase
	8.5.1.2.3 TestExecutionSchedule

	8.5.2 Procedural Elements
	8.5.2.1 Procedural Elements Overview
	8.5.2.2 Compound Procedural Elements Overview
	8.5.2.3 Stereotype Specifications
	8.5.2.3.1 Alternative
	8.5.2.3.2 AtomicProceduralElement
	8.5.2.3.3 CompoundProceduralElement
	8.5.2.3.4 Loop
	8.5.2.3.5 Negative
	8.5.2.3.6 OpaqueProceduralElement
	8.5.2.3.7 Parallel
	8.5.2.3.8 ProceduralElement
	8.5.2.3.9 ProcedureInvocation
	8.5.2.3.10 Sequence

	8.5.2.4 Enumeration Specifications

	8.5.3 Test-specific Actions
	8.5.3.1 Test-specific actions Overview
	8.5.3.2 Tester Controlled Actions
	8.5.3.3 Test Item Controlled Actions
	8.5.3.4 Stereotype Specifications
	8.5.3.4.1 CheckPropertyAction
	8.5.3.4.2 CreateLogEntryAction
	8.5.3.4.3 CreateStimulusAction
	8.5.3.4.4 ExpectResponseAction
	8.5.3.4.5 SuggestVerdictAction

	8.5.3.5 Enumeration Specifications

	8.6 Test Data
	8.6.1 Data Specifications
	8.6.1.1 Data Specifications Overview
	8.6.1.2 Stereotype Specifications
	8.6.1.2.1 Complements
	8.6.1.2.2 DataPartition
	8.6.1.2.3 DataPool
	8.6.1.2.4 DataProvider
	8.6.1.2.5 DataSpecification
	8.6.1.2.6 Extends
	8.6.1.2.7 Morphing
	8.6.1.2.8 Refines

	8.6.2 Data Values
	8.6.2.1 Data Value Extensions
	8.6.2.2 Stereotype Specifications
	8.6.2.2.1 AnyValue
	8.6.2.2.2 overrides
	8.6.2.2.3 RegularExpression

	8.7 Test Evaluation
	8.7.1 Arbitration Specifications
	8.7.1.1 Test Procedure Arbitration Specifications
	8.7.1.1.1 Arbitration Specifications Overview
	8.7.1.1.2 Stereotype Specifications
	8.7.1.1.2.1 ArbitrationResult
	8.7.1.1.2.2 ArbitrationSpecification
	8.7.1.1.2.3 TestCaseArbitrationSpecification
	8.7.1.1.2.4 TestSetArbitrationSpecification

	8.7.1.2 Procedural Element Arbitration Specifications
	8.7.1.2.1 Arbitration of AtomicProceduralElements
	8.7.1.2.2 Arbitration of CompoundProceduralElements
	8.7.1.2.3 Stereotype Specifications
	8.7.1.2.3.1 AlternativeArbitrationSpecification
	8.7.1.2.3.2 AtomicProceduralElementArbitrationSpecification
	8.7.1.2.3.3 CompoundProceduralElementArbitrationSpecification
	8.7.1.2.3.4 LoopArbitrationSpecification
	8.7.1.2.3.5 NegativeArbitrationSpecification
	8.7.1.2.3.6 ParallelArbitrationSpecification
	8.7.1.2.3.7 ProceduralElementArbitrationSpecification
	8.7.1.2.3.8 ProcedureInvocationArbitrationSpecification
	8.7.1.2.3.9 SequenceArbitrationSpecification

	8.7.1.3 Test-specific Action Arbitration Specifications
	8.7.1.3.1 Arbitration of Test-specific Actions
	8.7.1.3.2 Stereotype Specifications
	8.7.1.3.2.1 CreateStimulusArbitrationSpecification
	8.7.1.3.2.2 ExpectResponseArbitrationSpecification
	8.7.1.3.2.3 CheckPropertyArbitrationSpecification
	8.7.1.3.2.4 SuggestVerdictArbitrationSpecification
	8.7.1.3.2.5 CreateLogEntryArbitrationSpecification

	8.7.2 Test Logging
	8.7.2.1 Test Logging Overview
	8.7.2.2 Test Log Entries Overview
	8.7.2.3 Test Log Entries Details
	8.7.2.4 Invocation Test Log Entry Details
	8.7.2.5 Stereotype Specifications
	8.7.2.5.1 TestLogElement
	8.7.2.5.2 TestLog
	8.7.2.5.3 TestSetLog
	8.7.2.5.4 TestCaseLog
	8.7.2.5.5 TestLogStructure
	8.7.2.5.6 TestLogEntry
	8.7.2.5.7 AtomicProceduralElementLogEntry
	8.7.2.5.8 InvocationLogEntryStructure
	8.7.2.5.9 FormalParameterReference
	8.7.2.5.10 InvocationLogEntry
	8.7.2.5.11 ActualParameterValue
	8.7.2.5.12 ProcedureInvocationLogEntryStructure
	8.7.2.5.13 ProcedureInvocationLogEntry
	8.7.2.5.14 MessageEventLogEntryStructure
	8.7.2.5.15 MessageEventLogEntry
	8.7.2.5.16 CreateStimulusLogEntry
	8.7.2.5.17 ActualResponseLogEntry
	8.7.2.5.18 CheckPropertyLogEntry
	8.7.2.5.19 SuggestVerdictLogEntry
	8.7.2.5.20 CreateLogEntryLogEntry
	8.7.2.5.21 OpaqueProceduralElementLogEntry
	8.7.2.5.22 TestLogStructureBinding

	8.8 Test Directives
	8.8.1 Test Directive Facility
	8.8.2 Stereotype Specifications
	8.8.2.1 TestDirective
	8.8.2.2 TestDirectiveStructure
	8.8.2.3 TestTechnique
	8.8.2.4 TestTechniqueStructure

	9 Model Libraries
	9.1 UTP Types Library
	9.1.1 Predefined types
	9.1.2 Predefined verdict instances

	9.2 UTP Auxiliary Library
	9.2.1 UTP Auxiliary Library
	9.2.1.1 The UTP auxiliary library
	9.2.1.2 ISTQB Library
	9.2.1.2.1 Overview of the ISTQB library

	9.2.1.3 Test Design Facility Library
	9.2.1.3.1 The UTP test design facility library
	9.2.1.3.2 Predefined Test Design Techniques
	9.2.1.3.2.1 Predefined context-free test design techniques

	9.2.1.3.3 Predefined Test Design Technique Structures
	9.2.1.3.3.1 Overview of the predefined test design technique structures

	Annex A (Informative): Examples
	A.1 Croissants Example
	A.1.1 The Test Item
	A.1.1.1 Given Requirements on the Test Item

	A.1.2 Test Requirements
	A.1.2.1 Given Test Objectives
	A.1.2.2 Given Requirements

	A.1.3 Test Design
	A.1.3.1 Test Design Strategies shown on "Test Strategy"
	A.1.3.2 Test Directives shown on "Test Strategy"

	A.1.4 Test Configuration
	A.1.5 Test Cases
	A.1.5.1 Test Set "Manual croissants test"

	A.2 LoginServer Example
	A.2.1 Requirements Specification
	A.2.2 Test Planning
	A.2.3 Test Analysis
	A.2.3.1 Derivation and Modeling of Test Requirements
	A.2.3.2 Modeling the Type System and Logical Interfaces
	A.2.3.3 Modeling Test Data

	A.2.4 Test Design
	A.2.4.1 Test Architecture and Test Configuration
	A.2.4.2 Specification of Complex Test Data
	A.2.4.3 Test Requirements Realization
	A.2.4.4 Design of Test Case Procedures

	A.2.5 Mapping to TTCN-3
	A.2.5.1 Mapping the Test Type System
	A.2.5.2 Mapping Interface Descriptions
	A.2.5.3 Mapping the Test Architecture
	A.2.5.4 Mapping the Test Data Specification
	A.2.5.5 Mapping Test Cases and Test Configuration

	A.3 Videoconferencing Example
	A.3.1 Given Requirements on the Test Item
	A.3.2 Modeling the Structure of the System
	A.3.3 Modeling the Behavior of the System
	A.3.4 The TRUST Test Generator
	A.3.5 Mapping to Code
	A.3.6 References

	A.4 Subsea Production System Example
	A.4.1 Description of Case Study
	A.4.2 Functionality to Test
	A.4.3 Test Design Inputs
	A.4.4 Generation of Test Sets and Abstract Test Cases
	A.4.5 References

	A.5 ATM Example
	A.5.1 General
	A.5.2 Unit Test Example
	A.5.3 Integration Testing Example
	A.5.4 System Test Example
	A.5.5 References

	Annex B (Informative): Mappings
	B.1 Mapping between UTP 1 and UTP 2

	Annex C (Informative): Value Specification Extensions
	C.1 Profile Summary
	C.2 Non-normative data value extensions
	C.2.1 Overview of non-normative ValueSpecification Extensions
	C.2.2 Stereotype Specifications
	C.2.2.1 ChoiceOfValues
	C.2.2.2 CollectionExpression
	C.2.2.3 ComplementedValue
	C.2.2.4 MatchingCollectionExpression
	C.2.2.5 RangeValue

	C.2.3 Enumeration Specifications

	Annex D Index
	Untitled

