Date: July-2023June 2024

“

UML

o TESTING

OBJECT MANAGEMENT GROUP PROFILE
<) v N ciondards o

. ‘ U Development UML

— Organization. TESTING

PROFILE

UML Testing Profile 2 (UTP 2)

Version 2.2

OMG Document Number: pte/2023-07-02formal/24-06-06

Normative reference:—http://www-omg-org/speciUTP2_
https://www.omg.org/spec/UTP

Plesetaependalle Hele

https://www.omg.org/spec/UTP2

Copyright © 2014-2023, Fraunhofer FOKUS

Copyright © 2014-2023, Grand Software Testing

Copyright © 2014-2023, Hamburg University of Applied Science
Copyright © 2014-2023, KnowGravity Inc.

Copyright © 2014-26232024, Object Management Group, Inc.
Copyright © 2014-2023, PTC Inc.

Copyright © 2014-2023, Simula Research Lab

Copyright © 2014-2023, SELEX

Copyright © 2014-2023, SOFTEAM

Copyright © 2014-2023, University of Cantabria

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change
without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-
free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute
copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed
to have infringed the copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:
(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;
(2) the use of the specifications is for informational purposes and will not be copied or posted on any network
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this specification. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which
a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or
scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only.
Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.
No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR
PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE
COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING
LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(i1) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph
(c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as
specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R.
12.212 of the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners
are as indicated above and may be contacted through the Object Management Group, +69-Highland-Avenue -
Needham; MA-024949C Medway Road, PMB 274, Milford, MA 01757, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT
GLOBAL IDENTIFIER®, [IOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®,
OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube
Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In
the event that testing suites are implemented or approved by Object Management Group, Inc., software developed
using this specification may claim compliance or conformance with the specification only if the software
satisfactorily completes the testing suites.

http://www.omg.org/legal/tm_list.htm

OMG’’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page httphttps://www.omg.org, under DeeumentsSpecifications, Report a Bug/Issue.

Table of Contents

ne
D P s s s s s s s s s s s s s e s e s r e s e s e e s s s s e s e s s s e s s s e e s s e e s s e e e §

Conformance

¢ and Definition

Q
RS ARaG D HHHORS e T T T T T e T T T e T e T e e e e e e

B Yoo =

References
TCICFERCEs

ormative efere oq
Pa AV 3 5 e e e A A 7 8 S R R E E T T R T TR E T TR E Ty

A AN
o =

()

U S N N
[USTRUSIN S JRN o BN o RN o I /)

Sting
ot s

1o o o
B A s e 2 = sy R L e EE R E R

d
€

tothe MARTE Profile
TETT

atian O
TOTatrO tOthCTvIZ XIx S B 8 & T T T T T T F T T T F T T T T)

G N N U
> I
. P

nowledcement:
ACKROWIEaZeMeRts-

e NeNNe e N

(Informative)lCon eptua
HHorHathve) coneepty
n

-
,._.

o
A T T T T T T T T T T T R T Ty

+

NI S NG NG NG NGIT AT R AV iy

-~

N

+ Arohitantinea
tATrentecture-

t+ Architoctiira ate erview
AT - O VeIV W e e e e e e

;.
G'}

© \© O

7 Concent nna rimtinnc
72 Tect Rehavior

P
78]
@
wn

eSS
>
P
h

o+
U
[}
78}
[}
ot

101
2 A 4 ¥ T T R TR R TR R TR TR TR T)

o
)
®
B

.
o
jary
@

w
2
@
‘»JL;)L»’L»J&M&ML»J WO N DO N N 0 0 o Mo 2 o o N o o

g @
By
[e0)
&

o2
eSS

[}
s
[}

TOEAT DO
(]
AN YO MO NO H= M= o= M=

339 ConcepntDecerints

N O NG NG NG N NG N N N SO S SRS
cdowd b b PP bbh

o \./vuvvyt uvov;nyuuuo
4.

ata
227 B T R R R R E T E T T R R T TR TR I Y

(]

(O

7 oncepntDec 1ORS
75 Tect Hyg
7= TStV 0

|
n
I
|
g
(o

L &

o

.

N
e
o
q
x.

eryziia
AAZ 3 £ A A AT T T T T T R Y R R TR T TR E R TR YF R R TR TR TR R R I)

o H=
(p)

-
@
wn
e
t—4

30

£

1t

L anonace Architecture
A guagetrentecture
P

s

T.

T

Py mmar
e o s s s s = e o T R R sy

0 go GO
T

el

=

b

B

N
iy

UML Testing Profile 2 (UTP 2), Version 2.2 i

Q212 Tect Obiective Overvieis 54
OO~ TESHIOFECH V- OV W e e e e e O
214 Starentune Snect 54
OO otereotypeopeect >4
2141 TetContext 4
R2140 ectObiective 6
21412 actR oanireameont 57
oA eSS eqeMeRt 7
Q2144 ectSot 5Q
S eSh e e e S
Q2145 verifies 50
=4+ VFeHHE S e e e e e e
Q29 Test Desion 50
= o S S L e O T O O e O o e oy
Q 60
& o

227 StereotvneSnecifications 65

O+ tErCOtYpeOpPeHICatonS—rr e e O
277 1 Baoundarv\alue Analuagic 65
O DOHRGA Yy Ve AR Y SIS s s e e e e e e \54
29 79 (CanceEffoctAnalucic 65
Oz SO E R CCTAIR Y SIS e s ©
27272 (heecklictBacedTecting 65
O KISt ASCa T SR e e e e e \54
277 A4 (ClaccificationTreeMethod 66
O oSS O Ce VIOt RO G ey ASA
27785 CombinatorialTaecting 66
O SOOI T St S e e e e s ASA]
277 A DNecicionTableTecting 66
OO PCSION T A eI St S e e e e e ASA

R 2 2 7 10-ExnloratorvTectin
1 ¥

832 710-ExploratoryTesting

N

N
ESGUS)

N

o) 1
Z7t
o) 1
Z7t
271
Z 7t
o) 1
Z7t
o) 1
Z7t

g0 g0 Jo go o
(USRS BRUS BRUVS IRUS)
N

N 3

ectonlnput
IEMRPUt
CoTgHhpY

1onTechnigue

[}
wn

7 TransittionCoverace 7
=AT-Taan HanSittoncoverage— 7
7 TransitionPairCoverace 7
=AT-Taan RSO A O VoA e 7

[ISIRUSIRINY
T N o o
¢ o o N

> 5 N oo

By

H g0 g0 9o
!
s

(]
w

g0
_]
P
wn
T+
-
EEEOHEP

-

90 90 9o 9o 9o 9o 9o Ho o=

d4o 9o
NN

U2 H
&+
@
o)
@®

o 78
0 © 7
21 Ro o 78
DRET-T <O £ 7
o le) ectCompo 716
Darr-Tr = eStcompo 70
22 ectComponentConficuration 716
-z eStecompoRentcontigirattot e e e 1 O
4 1+ 77
= t=o 71

o)
-
-~

1onRole
AV s AN Y L T T T T T T R T T T T T T Ty

Te:

m
5 87~ & S T T T T T F R T T T E T T T T Ty

o+
N

[SO SN SO NG NG NG AN
)

PN
~N O U

t1tom Confiocuration
Htemcontiguration—

N
O 0 P

4

N
O v o

@0

ii UML Testing Profile 2 (UTP 2), Version 2.2

g0
[

@0

e U Un

90 g0 9o
B o O

o
A T T T T T E T T R TR T T T T Ty

N

e R I I
g0 do do

3
Elements

QL5271 Stereotune-Snecifications 7

OO =~ ety PEOPCCHICAHORS e e O 7
QR8722 1 Altarnativa 7
e T T a1 5 o e T I I T e e T e e O
R85 7229 AtamicPranaduralElamant [24%
O tOHHCr FOCCaU T ACIC Rt e oY
R 5722 CaoamnoundProceduralElement [24%
OO COMPOHRGT ToCCa Attt e oY
RQRE8722 4 T aon Q0
O OO T T T T T T T e T T e T T T T e T e e T S e ST T e e T T e s e e T e e e e e e s e e e e O
Q8572248 Negative Q0
O~ P A7 54533 T O

N

90
A4

duralEle 01
CrtH

men
(238 =2 4~ 8 8 4 & T R E T T T E T T T T TR TR R TR I g §

[0]0)

o go

relnvoeation

PRUSRUNRUN
L ot o

[USIRUSIRUS BRUS)

¥ G0 GO0 go

o2

e
[}

o o o
A % Z 53 2~ T T R E R T T T T T E TR T T T Ty

S
W
o+
@

£
< Aetion
N

Cre

at,
oroat

N o o 4=

ExnectResnonseAction
EXPECHCSPORSENCHO e

e U Une Ui

N

Svoocect\Verdiet o

e S mTatal
DUS OtV eIt YOO —

90 90 30 30 9o o
o o Yo o o

O NG NG N N

go
(o)

EE

He M= A=

+
P

P

N =
a5
[}
o)
@

=

S I
(p)
QD

oL

oo = g

H—

*_.
N

) EJ‘ U P

H—
N

e r

o NI

—

Z

REERE GG &R

N

e
N
,.

-

L Mo ot to o o o

90 90 90 9o do 9o go do -

DD DD DD

fina

P Q
A B 8 8 A~ T T T T T T T T T T T T T T T T T Ty

H—
@0

s
#

go
(o)

[' G e G iy

9]
. . o+
o o = U2 (j P
&
[} P e
- [~
@®

o'l
=
@

@0 GO @

o
+
je 5]
e
')

o

N
>
o]
7]

o

£
O == E:
£ ove 1
o= OVE T
£ e 1
O== ~CE T
Q7 oot Evaluat
U7 Yo Ivaraav

H 40 90 90 o Ho

A +rhitr N Snocifinat

at1n 101S
Tt O O PoCIICationss

11 A rhitration-Eacilits
T s

X
y
o
q

REE = PO A HI Y e e e e e T T T T e T e e T T T S e T T e S e T T e e e e S e e e e e e e e e
Q7 A rhitration-Snecifications
\erwan AFOHFAHORDPECHICAHORSS e

TP, OO DD PP PODOPOPD

e e i)

He W= W= H=

QRT772 1 1 Avhitration Fanstlity (YVyoaruiays 114
O A OO T Ay O VeEVIe W e T4
Q77219 Qtarantuna Quanificagtiang 114
Oz OtRTCOtYPE O PCEHICAUON S e T4

UML Testing Profile 2 (UTP 2), Version 2.2 iii

101 122
t

Q
2 4V B T T T R R E R E R T T E TR TR TR TR TR T E T I T I §

RT7 792 SQtarantune S
O~ OtCTCOtY P

29 Stoareotupe S
=4 €Ot D

10 127
YPC t 7

na
2 AV B T T T T R R R E R T R T E TR T T TR TR T E T I T I §

oo 120

I ect I o o

\erwarrs St BN e e e e e e
7 1 Tect | ocoine Overviewn 120
OO+t TeSHOE M OV W e e e e 1
7 o) Tect I oo Entriec Overviews 130
O TeSHO g EMHACS OVerHe W e e T
7 2 Tect I oo Entriec Netaila 1
o> A s S e o s I T T e s T
724 Invocation Tect I oo Entruy Detatlae 1
O+ HVOCAHOR TSt Og ERUY DS T
7 s Stoarantunae Snanificatinng 1
O~ DtereotypeopecncatonS————r T

act Eloment
0 e5t et e e e

® O
ap

aR

o o Yo Yo Yo Yo
b U U U

N o o 4=

[}
T
T

RN B NEENEL NEL N

o
T

g0 g0 g0 go do g0 o Yo Yo Yo Yo
N
b do do do do Yo Yo Yo o |
AR o = d

FER L E T
[. . s =Y

ectCacel oo
5 ectl 0oStrieture 5
6 ectl ooEntry 5

R 728 Q Tnuncatioan]l goEntruyStruetiira 126
oo RVeCAHOR- O EE R YO UCHH e >0
Q725 0 FormalParameterReference 136
OO~ o aHaraeterketerente e e e >0
R 7 2 85 10 InvocationloocEntiy 137
SO RVeCAHO O g Y 15
R 728 11 AectinalParametar\/alnia 137
oo ActHaaraete T vae e e e e e e e 15

Q72 5 12 CheckPronertvl-oocEnti 120
O T €1ty

RET=ATA cHCCKT1TOp

B 2 = 1o A LT e T EE TR R T T T T EE N o

R 72 879 Tactl aoStructureBinding 141
OOz SO SO BC R C OO e e e e e e T4 T
[23% Tect Directiveg 141
O T O T I O IV O S s s e T T T e T e e e s T e T e T e TS T e e e e T e T e e s T e e e s e e T e e e T e T e e e e T e e e T e e e e e e e e T4 T
Re1 Tect NDireetive Facility 142
OO T St COH Ve T aCH Y s e s e s e e s s e e e e 5=
R StereotvneSnecifications 142
fspen DtCFCOtY PCOPCIHICATONS e T
RN 1 TestDireetive 142
RN TectDireetiveStructiure 142
OO0 £ TSt eV e e T O s e T
RN Te. 1 142
OO0 £ 1€ T T4
24 Te. 1 144
OO0 =4 1€ s T4
[e) Model L ibrar 145
VIOGC1-10tar T4
Q1 TP Tynes 145
T oI 1T ypeS T4
011 Prede 145
e T 1COCHTT T4

=

q
B
el

>
L

EEEE
RN RO OO

1

T

0) ISTOR |
T ID T

L
£ A L LT R R R E T

Annayv A (Tnfarmative): Examnloc 155
AR A OV) X PICS e s e e e e e T
A1 Croiccante Examnle 155
ba v o STOISSA S E XA RPIC e s e s e e s e e e e e e e e s T
A 11 he Teoct Ttom 155
ba TE e o o A 7 i S T T T T T T T T T T T T T T T T T T I T T T TR T T I T T TR TR T T T I TN T ISR ST TT IR I T YOI T

iv UML Testing Profile 2 (UTP 2), Version 2.2

=

55
A 1D 156
AL 156
A 121 Given Tect Ohiectives 156
AdZ—GrvenTest Objectivesrrrrrrrrr e 00
A129 CivenRe 156
A2 GrverRequirements e 100
A 113 157
A3 457

QP

5Q

S

A s ot Caceq 158
i SHEASES S e e e e 1
A1S51 act Sot "NManual cratccante tact! 158
Ao+t HeStoyet— ViR erotssaptsteSt———rr e e e P asae)

A D I ooinServer Examnple 160
P O EHR IV EXAMPIC o

249 Snecificatian Af Camnlay Tact Nata 167
Eg <r=r sr o D P CAHOT O SO MP X I St At e e 1O~
AD 42 Tect Reamiremente Realizatian 168
Eg xr=r oy~ St I e CIS I CAZato s OO
A 44 Degion of Tect Cace Pracedures 160
ES Tr=rn o PESI e O T St aSC T HOCCa I CS—r e O
A DS anning ta TTCN 2 170
oz VIAPPIRE O I r oS e s e s s e e e e e e e 79

A2 \71Annnnn{‘nvnnn-nnﬁ nle 174
Xs uvvaLLLvAv11v1115J_zxulLLIJLv...1 tand
A 21 GivenRe ntc the Testlte 174
fa~rss gtvegreqire eSOt TSt e e e e e e e e e e e e T

>
S

2
o~
A28 178
o~ 17O
A 26 178
x50 17O
A4 170
by 17
A4 1 (170
Pa wan e § A 7
A 49 Functionalitvto-Tect 170
fa v g THRCHORAHY 0 eSSt e e e e e s e e s e e e e e e T
A 42 Tect NestonJnputs 120
A €5t T oY

B 2y S e = sy o= o R AT

M= =

.._..._.
g0 o G GO
n B~ Y

n UTP 1 and TP 2
T r—aito Tt 0

Pl 204
¥ o4

e ayvtancinng
COCSTI0S—

204
E-Avan ¢

UML Testing Profile 2 (UTP 2), Version 2.2 \'

Annev D Index

c2258 Rance\/alue 207
\=gr-rr-m a2 s S e 2 e T T T o
c2? Enumeration-Sne. 207
\=rr-n EHHRCTHORDPECT S L T T T T T T T T T T T ey o

1 Scope
2 Conformance
3 Terms and Definitions
4 References
4.1 Normative References
4.2 Informative References
5 S Y ITIDOLS ettt e et e ettt e e eeeeatteeeeeeeeeentteeeeeeeeeennttneeeeeeeeennteeeeeeeetanrbeteseeesaaannrnreeeaas 12
6 Additional INFOIMIATIONueiiissee e e e eeee e e eeeeeeeteeeeeseeeseneeseeeiseeseensseeeensseeeenssessennseseenseeeaaineessennseeesnseeasns 13
6.1 How to read thiS dOCUIMENT L. .uuuiiiieieis ittt eee e et eeeeeeeeeeeeeeeeseeeeesseeeeenseeeeenseeseansneeseanneeeaas 13
6.2 Typographical CONVENTIONSuuiiiieeeiiiiseeseeee e e eeteeeeeteeeeeseeeseeseeseeseeeeeseeeeensseeseenseeeeensseseansseeeaanseeaaas 13
6.3 Typical Use Cases OF UTP 2uiiiiiiiiiiiiiie et e ettt e e eeeeeeeeseeeseesseeseenseeeeeseeseannneeeeenseeeaas 14
6.4 Relation to testing-relevant Standardsccc.oeieeiieiiiiieiiiieeeeeiieeseeee e eeieeeeeieeeeeereeeeeneeeeeieeeeeaireeaaas 17
6.5 Relation t0 MOdel-bDased tEStINEG ...uuueiiiiriieiieieeeeeee e eeee e eeieeseeeeeeeeeteeeseseeeeeesseseeeseeeeeseeseenseeeeaareeeaas 19
6.6 Relation t0 KeyWoOrd-ArIVEN tESTINE i iiuieeiiiiieeiiiiiteieeeeeteeisaseeseeeseeaanseseseesseesasssssesssessannsssesseessonsneees 20
6.7 Relation to the MARTE PrOfIIEuiiiiiiiiiiiiiiiiieeiiiiitiie e eeeiitieeeeeseeeiseseeeeesessansssseeessessannssseeseessonsnsees 20
6.8 A CKIIOW A ZOIMIEIIES . utiiii ittt eeeetteee e e e eeeeessteeeeeeesseessnsseeeeeseeasnssssseseseesnnssssesesessannsnnseessessennnnnnes 21
7 (Informative) Conceptual MOAE]cuuueiiiiiiiiiiiie et e e e ettt e e eeeeeiieeeeeeeseenstaeeeeeeeesensneeeeeeesaennneees 23
7.1 TSt PLANIIIIZ, ...ttt e s ettt e e et eeenstees et e e e easseeesemsseeseame e e e et s e e smsseessanseeessssesesannnsessnseeaas 23
7.1.1 TSt ATIAIY SIS vuriiiiiiiiitiitii e e et e ettt e e et et eetee et eeeeeeetteeeeeeeeeeattseeeeeeeseannssseeeeseeaannnneeeseessannnnnseseeessannnnens 23
7111 Test CONLEXE OVEIVIEW ...uureeiiiereeeieiseeeseiseeeeeseeeeensssesansesseeseeseassseseansssseaassesesassssesonseseesnseeesnnes 23
7.1.1.2 CONCEPt DESCIIPIIONS .. .eiuereeeieeeeeeeeiseeseeeeeeeeeeeesensseesenseeseesseeseasseeeenssseesasseseeansseseanseseesnssesesnnes 25
7.1.2 TSt DTNttt e et e e et e e ettt e e e ettt eeeeeeeseeseeeeeenseeeeensseseenneeeeeenseeeeanseeseenseeesanseeesanseeeaannns 26
7.1.2.1 Test Design FACIItY OVEIVIEWcccoueeiiiiueeeiiieeeeiiseeeeiiseseieseeeeassseseensseeseseseaensssssoneseesnsseeasnnes 26
7.1.2.2 CONCEPt DESCIIPIIONS .. .eeiueeeeeieeseeeeeiseesseieeeeeeeeeeenssessensesseeseeseasseseenssseeaasseseaansssesanseseesnsseeasnnes 27
7.2 TSt ATCNILECTUIE ..ottt e et e et e e et e e eeteeeseenseeeeeneeeeeenseeesensseseennseesenseseeenseeseannneeeennseeaaas 28
7.2.1 TSt ATCHITECUIE OVEIVIEW. . uuuuteiiieieiieiietieeeeeteiittteeesesseeneeeeeeeesteessnssessesseaasnsnseeeeesseannnsneseeeseannnnnees 28
7.2.2 CONCEPE D ST TP IONS. 1utttieitieititteeeeeeteeteeeeeeesteetteeeeeseseeentnseeeeeeeseasnsseseeeseaannsnseeseessannnsneseeeseannnnnnes 28
7.3 St B AVION ittt e ettt e e e e e ettt e eeeeeemseeeeeeeesseeanseseseeeeeeanssseeeeeeeeeanssssseessessannnnseeseessonnnnnnes 30
7.3.1 TSt S . uuuutiiie ettt ettt ettt e e et et eettee et e e e e eemtteeeeeseeeemteeeeeeeeeeennesseeeeeesannnneeesseessennnnsneseeessannnnnees 30
7.3.1.1 TSt CASE OVETVIEW ...uuueeeeiiiiiiieitiieieeeesteeeeteeeeeseeeeiteeeseeesseaanneeseeeseeaannsseseeesesaannssnseeesessonnnnnseeees 30
7.3.1.2 CONCEPt DESCIIPIIONS .. .eiiueeeeeieeeeeeeeiteeseeieeeeeeeeeeensseesensessaenseesaasseeeenssseesanseseaansseseanseseesnsseeasnnes 31
7.3.2 TeSt-SPECITIC PrOCEAUIES. .. e iiuiiiiiiteie i eee ettt e et eeeeeeeseeteeseeneeeeeenseeeeasseseennseessansesesaseeeaanns 31
T.3.2.1 TeSt PrOCEAUIES . ..uuiiiieteei ittt e e e e e e et eeeeeeeeeteeeseeseesaenseeeeansseeeesseeeaenseseaanseseanseesesnsseeasnnes 31
7.3.2.2 CONCEPt DESCIIPIIONS .. .iiuueeeeieeseeeeeiteeeeeieeeeeeseeesensseesensesssesseeseansseseenssseesassesesansseseanseseesnsseeasnnes 33
7.3.3 T eSt-SPECITIC ACHIONS ..uueeeeiietieeeeeee e et e s eee e e eeteeseeeeeeeeeseeeseesseseennsseeeenseseeansseseannssessanseeesaseeeaanns 35
7.3.3.1 Overview Of teSt-SPeCIfiC ACTIOMNS ... uuuiiiiiureeeiiteeeieiteeeeiiseeeeeseeseeiseeeeeeseeesesseeeeenseeseenseeeeansseeaennes 35
7.3.3.2 CONCEPE DESCIIPIIONS .. uutieiiieeeeiieitieeieeeeeeieteeseeeseeseeteseeeeseeeansseseeseesaannnneseseeeseensnseeseeessennnnnees 36
7.4 ST DIAA Leeiiiiiiiiiiiiiiiiiietiee i ettt ettt ee e et eeeeeeeeeeeeeeeeeeeeeeeee e eeeeeeeeeeeeeeeeeeee e e s eeeeeeeeeeeeeseeeseeeseeeeeeeeesesseeseeeeeseeeeeees 38
7.4.1 TSt DAtA COMCEPES uuttttiieieieititeeeeeeeeeeite et eeesteettteeeesesseeueseeeeeessennesseeseessannsnsesseessannnsnesseaseannnnnnes 38
7.4.2 CONCEPE DS CTID IONS. 1utttieittiititteeeeeeieeiteeeeeeeeteettteeeesesseenussseeeeeeseannssseseesesaannssseseeessaannsneseeeseannnnnees 39
7.5 TSt EVAIUATION L0iiiiiiiiiiiiiiieeeeiittete e e e eeeeiteeteeeeeeeeeteeeeeeeesteenseseeeeeseeaannsseeeeeeeeeanssssseeesesaannnnsseseeessonnnnnnes 41
7.5.1 ATDItration SPECTITCATIONS . .uiii it iiiitieieie e et ieiitteee et et eeetteeeeesteeiitteeeeeesseaaoseeeeeeesseasonseeseeeeeeanannsneeeeaaaaans 41
7.5.1.1 Arbitration & Verdict OVEIVIEWcouueeiieueeeiiseeeieiseesiiiseessiseeseeisseseensseesesesesessseseoneseesnsesasnnes 41
7.5.1.2 CONCEPt DESCIIPIIONS ...eiiuueeeeieeseeeeeiteeeeeieeeeeeseeeeensseesenseeseesseeseasseseanssseeaasseseaansssesanseseesnsseeasnnes 42
7.5.2 TSt L O NI, .ttt et e e et e et et e e eeteeeeeneeeeeenseeeeensseseeneseesenseeeeansseseanseeesanseeeeansneeaanns 43
T.5.2.1 TeSt LOZ OVEIVIEW ...uvviiiiiueeeeiiseeeeeieesseieeeseeseeeeessessenssesseesseeseasseseenssseesanseseaanssessanseseesnsseeasnnes 43
7.5.2.2 CONCEPt DESCIIPIIONS ...eiiuereieieeseeeeeiteeeseieseeeeseeeeensseesenseesaeseeseansseseenssseeaasseseaanssseeenseseesnsseeasnnes 45
8 PrOfIle SPECIIICATION Luuttiiiiii i e ettt e et ettt e e e e et eeitteeeeeesseetaeeeseeesseannneseeeeesseannnseeseeseeaannssnseeaaaanns 47
8.1 Language ATCHITECIUIE . uvviiiiiiiiiteeeiee et e ettt eeeeeeeeeeeeeeeeteeeeeeeeeeeseeeessseeeeeeeeeanssseseeeeestensssseeeeestennnenes 47
8.2 ProOfile SUIMIMATY Loiiiuiiii ittt st eeeee e e eeeeteeseeteteseeneeeeseenseeseeneeeeaaneseesanseesteneeeeeensseesaeseesaaneeeasas 48
8.3 TSt PlANIIIIE, .ottt ittt e st e e et e e et eeseeeeeeeeeneeee s e e eseeneeeeeeneseeseneeeeseneeeeeeneeeesannseesaanseeasas 50
Vi UML Testing Profile 2 (UTP 2), Version 2.2

8.3.1 TSt ATIAIY SIS wurtiiiiiiiitiitie e e et e ettt e et et eeteeeeeeeeeeatteeeeeseseeateeeeeeeeeseannssseeeeseeannnsnseeeeessennnnnneseeessannnnens 50

8.3.1.1 TeSt CONEXE OVEIVIEW ..uvveeiiiuseieiesseeieeseeeaeseeeaessessenssssansseseenssssaesesesensesesanssessiseeeenssseseenseees 51
8.3.1.2 Test-specific Contents Of TeSt COMIEXTeiiurriiiiireeriiireeeeiseeeeiieeeeeeeeeeeseeeeeesseeeeinseeeeniseeeeennees 51
8.3.1.3 TeSt ODJECTIVE OVEIVIEW ..eeiiiureiiiiereeiiiseeeiiseeseeieesseneeesaesseseensessaeeseeesensesseanssessinseeeensssessenseees 52
8.3.1.4 StereotyPe SPECIfICAIONSiiuueiiieiesieiiesieeieseeeeeieeseeeeeeeeeseseenseesseseeesenseeeeennseesaiseeeeaseeeeennees 53
8.3.1.4.1 T oSt OMECXE Loeeeiiiiiutttiteeeeee ittt et e eeeetteeeeeeeeeeetsseeeeeeeeeetsseeeeeeeeeensseseeeeeeseansssseeeseeeensssseeeeas 53
8.3.1.4.2 TeStODICCIIVE 1oeiieureieiieueeeeeeseeeeeteeeeeeteeseeeseeseesseesenseeeeeesseeseesseeseseeesansseeeennseeesennseeesnsseeeennes 55
8.3.1.4.3 TeStREQUITEIMIEIT .uuuueiiiieiiiiiitiieee et e eeeitteeeeeeteeiieeeeeeeseeeineseeeeeseeaaneseseeeseesannseseeeeeesannnnnneeeeas 56

8.3 148 TS S Ot . uuuiiiiii ettt e et et ettt e e e e e eeaeeeeeeeeeeeaateeeteesteaantteeeeeeeeaannaeeeeeeeeaennanneaeeas 57

8.3 14,5 VT IS ettt eiieieee ettt ettt e e e e ettt eeeeeeeeeatteeeeesteeanttereeeeeeaanntereeeeeeaennarreaeeas 58

8.3.2 TSt DD ST utuueiee ittt e ettt e et et eeteeeeeeeeeeemtteeeeeeeeeemteaeeeeeeesennnsseeeeeeeannnnnseeseessennnnnesseassannnnnees 58
8.3.2.1 Test DESIZN FaACIIITY .uuuiiiiiiiiiiiiiiiiii ettt e e e ettt et e e et eeiiieeeeeeseeaienteeseeeseaaannsenseeeseesannneeeeeess 59
8.3.2.2 Generic Test Design Capabilities. . ..uuiieueeiiireieieiieeiieeeeeieieseeiieeeseeeeeseseeeeessseeseinseeeeassreeeensees 60
8.3.2.3 Predefined high-level Test Design TeChNIQUES.ueiiieueeeiiiieeeiiiieeieeeeeeeeeeeeeeeeeeeeeeeeenneeeeeneess 60
8.3.2.4 Predefined data-related Test Design TeChNIQUESiceueeeiiieeeeiieeeeieeeeeeeeeeeeeeeeeeeieeeeeeneeeeeneees 61
8.3.2.5 Predefined state-transition-based Test Design TechniqUeES.....coouvevieereeeiiieeeeiiiieeieeeeeiieeeeennees. 61
8.3.2.6 Predefined experience-based Test Design TeChNIQUESovveeiieeeeeiieieeeeiiieeciiieeeeieeeeeneeeeenes 62
8.3.2.77 StereotyPe SPECIfICAIONS. ... ccureiiiieeeeiiiseeeieseeeeeeeeseeeeeseeseseeeseeesesesesenseeeeennesesaeseeeensseseennees 64
8.3.2.7.1 BoundaryValueANalYSIS. . .cooiuuuiieiiiiiiiiiiiieieeiiiiieiieeeesieiiiieeeeeeseeaiiesereeeseesaniseeeeeeeeesennsaneeeeeas 64
8.3.2.7.2 CauSeEfTeCtANALYSIS .oiiiiiiiiiiiiiiii e iieiiii e e eeeiitee e e e e eeeiieieeeeeseeeeineeereeeeeeseineeeeeeeeesannnneeeeeas 64
8.3.2.7.3 ChecklistBased T eS N ... cccouueiiiiiiiiiiiiiiieeeeeseeiieeeeeeeseeeiiieeeeeeseeeineeeeeeeseesanneeeeeeeeesennsenneeeeas 64
8.3.2.7.4 ClassificationTreeMethoduuuiiiiiiiiiiiiiiiiee et e e eeeeiiee e e e e eeeeiieereeeeeesennaneeeeeas 65
8.3.2.7.5 Combinatorial TeS NG eiiieuieiiieiiiiiiiiiiiee et e eeeitieeeeeseeeieeeeeeeseeeiineeeseeeseesanneeseeeeeesennnaneeeeeas 65
8.3.2.7.6 DeciSioNTableTeStiNg. ... i iiiiuieiiieiiiiiiiiiieeeeesieiieeeeeeeseeeiiiteeeeesteaaineseseeeseeaannnneseeeseeeennsaneeeeeas 65
8.3.2.7.7 EquivalenceClasSPartitiOnNiNg.ceueeeeeseeeeeieesienieeeeeseeseenseesenseeeasseeeeasssessenseeesnseeesanes 66
8.3.2.7.8 ErTOTGUESSINE ...cuueeieiisieeeietseeseeteeseeeteeseeesseseeeseeseeseeeeaesseseeessessessseeansseeeennssessanseeseansseeesnnes 66
8.3.2.7.9 ExperienceBasedTeChNIQUEcueeiiieueeeiiiieeeiiieeeeiiieeeeeieeeeeieeeeseiseeeeeinseeeeeseeesenseeeeansseeeeanes 66
8.3.2.7.10 ExXPlOratOry TeStIME . .. cuuueeiiisieeieseeeeeeeeeeeeseeeeeseeeeeteeeeeesseeseensseeseseeesansseeeennseesaenneeeeansseeeennes 66
8.3.2.7.11 GenericTestDeSigNDITECIIVE ... ouueieiiirreeeeeseeeeeiseeeeeieeeeeeseeseensseesesseeeeansseeeeasseessenseeeeanseeesanes 67
8.3.2.7.12 GenericTestDeSigNTECRNIGUE ...uveiiiiieeeeeiiieeeeeieeeeeeieeeeeeeeeeeieeeeseseeeeeisseeeeeseessenseeeeansseeeeanes 67
8.3.2.7.13 NSWItCHCOVEIAZE wuvveiiiiiiiiiiiiieieee e ieeiteee e e e e seeiiteeeeeesteasseeeeesesseaaneseseeeseeaannsseseeeseesannsnnneeeeas 67
8.3.2. 7. 14 PalrWiSE T @S IIE . uueeeiiiesiiiiieee e e et et eeiteeeeeeeteetaeeeeeeeeeeeetneseeeseseaaanneseseeeseesannnseseeesassannanneeeeas 68
8.3.2.7.15 StAtECOVEIAZE .eeouuueeiiieeiiiieiteeeeeeeeeeeeiteeeeeeeteeitaeeeeseesteaitneseseeessaannessseeeseesannnseseeeseasonnsnnneeees 68
8.3.2.7.16 StateTranSition TeChNIGQUE. ...uuuuriiii it e e eeeiie et e eseeeiieeeeeeeseeseneeeeeeeeeeaennanneeeeas 68
8.3.2.7.17 TeStDESI@NDITECHIVE .eviiiiiiiiitiiieeeeeeieiieeeeeeeeeeiieeeeeeesteeiseeeeeeeseaaaneseseeeseeaaanneeseeesaesennnnnneeeeas 69
8.3.2.7.18 TestDeSigNDIreCtiVeSIITCTUIE ...uvvieiieeeeeeeeseeeeeiseeeeeiteeeeeeseeseensseesenseeeeaasseseeanseessenseeeesnseeeeanes 70
8.3.2.7.19 TeStDESIGNINPUL ...veiiieiieeieseeeeeeeeeeeteeeeeeeseeeeeeeeenteeeeeesseeseesseeseseeeeansseeeeaseeesenneeeeansseeeennes 71
8.3.2.7.20 TestDeSi@NTECNNIGUEeiiiueeeeieeeeeieeeeeeeeeeeeeteeeeeteeeeeetseeseeseeeseseeesansseeeennseessenseeeeansseeeaanes 71
8.3.2.7.21 TestDesign TeChNIqUESIIUCIUIE ...vviiieeeeieeseeeeeteeeeeeieeeeeseeeeenseeeseesseeeeisseeeeaseeesenseeeesnsseeeeanes 72
8.3.2.7.22 TranSItiONCOVEIAZE ...cuuueeeiiuseeeieseeeeeeeeeeeesesseessseseenseeeeaesseeseensseesensssesansseeeaansseesonsseessnsseeesanes 72
8.3.2.7.23 TranSitionPairCOVEIAZE. .. cuueeiiereeeieeeeeeeeseeeeeiseeseeeteeeeeetseeseensseesenseeesaasseeeenseeseenseeseansseeesanes 72
8.3.2.7.24 TS ASE T @S IME .. uuuueeiiieeeiiieieieeeeeeeeeetteeeeeeeseeitaeeeeeeesseeasneseeeeeseeaaneseseeeseesannssnseseseesannnnneeeeaas 73

8.4 TSt AT CI O C UL L. ettt ie et e ettt e ettt eit et eeeeeeeenteeeeeeeeeteenseseeeeeseeaanneseeeeeeeeeannsneseeesesaannnnssesseessennnenes 73
8.4.1 TSt ATCHITECUIE OVEIVIEW. . uuuuteiiieieiieiietieeeeeteiittteeesesseeneeeeeeeesteessnssessesseaasnsnseeeeesseannnsneseeeseannnnnees 73
8.4.2 StEreOtYPE SPECITICAIONS ..uuuuiiiiiiiiiiiiiiiieteeeeeseeiitteeeeestiaiiteeeeeeeseaaseeeseeesseeanssseseseeeseannnnsneseeeseannnnnees 74
8.4.2.1 ROICCONTIGUIATION ...iiiutiiiiiiiitieiitiieieeeeeeiitteeeeeseeeeitteseeeeeeaenneseseeseesaennsssseeessetanssesesseesaannnnseeeas 74
8.4.2.2 T eStCOMPDOMEIT L. eiiitiiiiitiiete e et eeiitteeeeeeeeeaittteeeeeseeeaaneeeseeessaaannsseseeseeeaannssnseeessetannssnsesseessannnnneeeas 75
8423 TestComponentCoONTIgUIAtION. ... ieureeiieseeiieseeeieieeesieeeeeeeseseeeeeeeseesesesenseeeeeneeeeaiseeeenisseeeennees 75
8.42.4 TeStCONTIGUIALION ..uuuiiiieeeeeiiseeeeeteeeeeeseeeeetseeeeeseesseseeesesseseennseesaesesesaseeeeennseessinseeeensseseannees 76
8.42.5 TestConfigurationNROIC. . ..uiiiiseiiiiitiieiietee e et eeeeee e e eeeeeeeeseeeeeeeesseseeeseseeeeenneeesainseeeensseseeneess 76
8.4.2.0 T eStItOIM Leiiiiiiiiiiiee ettt eee ettt e et e ettt ettt e ettt e e e e e ettt e e ee e et areeeeeeeeetrrreeeeeeeaanrareeeaas 77
8.42.7 TeStItemMCONTIGUIATION . . .uueiiiiseieiieeeeeieteeeeeseeeeeeeeseeeeeeeesseseenseesaeseeeaenseeeeennsseeaiseeeeasseeseennees 77
8.5 TSt B AVIOL L .ttiiiiii ittt e e ettt e ettt ettt e e eeeeeeeeeeeeeesteeeneeeeseeeseeeannsseeeeeeeeeessnseeeeeeseennnssseseeessennnnnes 77
8.5.1 T est-SPECIIC PrOCEAUIES. .. iiiiutiiiiiie ittt e e e e e eeieeeeeeeeseeitieteeeeeeeaansneeeeeessennnsseeeeeseannnnnees 78
8.5.1.1 TSt CASE OVETVIEW ...uuureeiiiiiiiiitiieieeeesteeitteeesesteeeueeeseeesteaisneeseseseeaannsesseeesesaannsssseeesessannsnnseeses 78
8.5.1.2 StereotyPe SPECIICAtIONS . ettt i iiiitiitiiesieieittitieeeeeeietteeeeeeeeseetteeeeeeeeeenteneeeeseetansseseeeeeeaannneneeeeaas 79

UML Testing Profile 2 (UTP 2), Version 2.2 vii

viii

8.5.1.2.1 TeStPIOCEAUIE. ..ottt e e e e e eeite et e e eseeeitaeeeeeeeseeaanneseseeeseeaannsseseeeseeaennnnneaeaas 79

8.5.1.2.2 T OSTCASE uutteeieeeeeeitteee e ettt e ettt ee et e e e e eeeeitseeeeeeeeeeeasseeeeeeeeeansssseeeeeeaensssseeeseeeennsnnseeeeas 81
8.5.1.2.3 TestEXecUtioNSCREAUIEuviiiiiiiie it e e eeeeeeeteeeeeeteeeeeeneeeeeeneeeeansseeeenes 84

8.5.2 ProceduIal ElEMENTS .. ueiiiuseeiiieee e ettt e et e e eee e e e ettt e e eeeeeeseseeeeeesseeeeeseeeeesseeeainseeeeesesseansneesannseeeans 86
8.5.2.1 Procedural ElementS OVEIVIEW.......ueeiieueeeiereeeieiseessiiseseaeseseeeisessseesesesansseesenssessinseesensssessensees 87
8.5.2.2 Compound Procedural E1ements OVEIVIEWcouueiiieiueeeieseeeiiiseeeieieeeseieeeeeisseessinseeeenesseeeenneess 88
8.5.2.3 StereotyPe SPECIfICAtIONS. ... ccuueiiiiseieiiisieeieseeeeeeeseeeeeeeeeseseeeseeseeeseeesenseeeeenneeesaiseeeeaisseeeennees 88
8.5.2.3. 1 ALCIMATIVE . etii it iiiitieii et ee ettt e e et ettt et e e eeseeiteeeeeeeteeatteeeeesteaanttereeeeeeaannaereeeeeaaennanreaeaas 88
8.5.2.3.2 AtomicProcedural EISMENTt ...uuuuiiiiiiiiiiiiiii e eeeeeiee e e eeeeeeiiiereeeeeeeeiieeeeeeeeeeennaneeeeeas 89
8.5.2.3.3 CompoundProceduralElement.ccieiuriiiiiiiiiiiiiiiiieeeeeeiiiiiieeeseeeeiieereeeeeeeeiieereeeeeeeennneneeeeeas 89

8.5, 2.3 4 L 00Dttt et ettt eeeeeeeetateeeeeeseeaaateeeteesteaantteeeeeeeeaanraeeteeeeesannanreeeaas 90
8.5.2.3.5 INCALIVE 1uuuriiiiiiiiiiitieiee e et ee ettt ee e et eeetteeeeeeeseetaeeeeeeeseeannsseeeeeeeeaannessseeeseesannnneseeesaesannnnneseeas 90
8.5.2.3.6 OpaqueProcedural ElSMENTcocuuiiiieeeeeiiieeeeeteeeeeiieeeeeseeeeeseeeeeseeeeeisseeeenseeseenseeesansseeeannes 91
8.5.2.3.7 PaTAllC]ooiiiuiiiiiiee s eeee et e et e ettt e e ettt e e ettt e e eeneeeeeneeeeatreeeeanreeeeaneeeeanreeeenes 91
8.5.2.3.8 ProceduralElCMENT ... c.uueiiiieeeiiieiee e e et e e eeeeeeeteeeeeteeeeeeteeeseeseeeseseeesannseeeennseeeeenneeeeansseeeaanes 92
8.5.2.3.9 ProcedUuIelNVOCATION.ueiiiesiieieseeseeeeeeeeeseeeeeteeeeeiteeeeeetseeseeseeeseseeesansseeeennseessenseeeeansseeeenes 93
8.5.2.3. 10 S@UUEIICE .uvveeiieiiieiitieiee et eee ittt e ettt ettt ee e et eeeittseeeeeeeeeeessseeeeeeeeaensseseeeeeesaensseseeeeeeeensssseeeeas 94
8.5.2.4 Enumeration SPECIfICAIONSuiiieeueieiiiseeeiiseeeiiieesseieeeeeeseseeeseesseeseeesenseeeeenseessiseeeenisseeeennees 94
8.5.3 T ESt-SPECTIIC A CTIONS .ttt iiiittitteeeeeeeeetteeeeeeeteettteeeeseseeeteseeeeeeeseannsseeeeeseannnsseseeessannnsneseeeseannnnnees 95
8.5.3.1 Test-SPECITIC ACTIONS O VEIVIEW ..uuveiiiiiiiieiittieteeeieeiiieeseeesseeiiaeeseeeseeeienteeseeeeesaansseseeesessannaneeeeess 95
8.5.3.2 Tester Controlled ACTIONS ... i iiiiiueiiiiesitiiitieieeseeeeiiteeeteeseeteeiteereeseeetenteeseeeseetannssesesseeeaannsneeeeas 96
8.5.3.3 Test Item Controlled ACTIONS. ..ccouuuueiiiiiiiiiiiieieeseeeiiiteeieeeeeeeiiiereeeeeeieetesreeeeestainssesereeeeeannneeeeeeas 97
8.5.3.4 StercotyPe SPeCIICAtIONS . uiiiiiiiiitiitieeeieiiittietee et eieiteeeeeeeeeeeitteeeeeeeeaeateereeeseetansseseseeesaannnenneeeaas 98
8.5.3.4.1 CheCkProperty ACION . ittt iiiiiiiieee ettt e et e seeiitt et e e eseeeitteeeeeeseeaaneeeeeeeeeeaannneeseeesessannnnnneeeeas 98
8.5.3.4.2 CreateLOgENtIYACHION .. .iiiusiiiieee e eeeee e et eeeeiteeeeeeteeeeeetseeseeseeeseseeseansseeeeaseeesenseeeesnsseeeaanes 99
8.5.3.4.3 CreateStMUIUSACHON ...eeiiesiieiisieeeeeieeeeeeeeeeieeeeeeeeeeseieeeeseeseeseensseeeesesesansseseenseeeaiseeeans 100
8.5.3.4.4 EXPCCtRESPDONSEACTION. ... uuueiiieseieiieteeeieeeeeeeiseeeeeeeeeeseseeeeenseeseensseeeeseseeanseeseennneeeaineeeans 102
8.5.3.4.5 SuggeStVerdiCtACHON ..ueeiiiseieieieeeeeteeseeeeeeeetee e eeeeeeeseeeeeeeseeseeeseeeeeseseeanseeeeennneeeaineeeans 105
8.5.3.5 Enumeration SPECIfICAtIONSueiiiiureiiieiseeeiiiteeeiiieeeeeiiseeseeiseeeeeiseeeeenseeeanseeeeenseessanseeeeeeseeeeennns 106
8.6 TSt DALA ..ottt e e ettt e e e et ettt e e e eeeeettateee ettt eatarreeeeeeteaannrereeeeeeantrnees 106
8.6.1 Data SPECTITICATIONS .. eutuetiiiie et ittt e et et e eeiiieeeeeeeeeeetteseeeeeseaetneeeeesessennnsseeeeeesseannnsesseeeseeeannnneeeeaas 106
8.6.1.1 Data SpecifiCatioNS OVeIVIEW . . .uuuueeiiieeiieiitteiieeseeiiiitteseeeseeaaisteereeseeeeaessnseeeeessensssseeseessannnnnes 107
8.6.1.2 StereotyPe SPECIICAtIONS . uiiiiiiiiiiieiiiie et ie ittt ee et eeiiteteeeeeeeeeiteeeeeseeeeeetssreeeeesaennsnnreseeeseaannnnees 107
8.6.1.2.1 COMPLEIMIEIES. ... iettiiiiie ettt ee e e e e eeeett et eeeteteittseeeeeeseeaenteeeeeeseeaaaneeseeeeseesannsesseeeeesaanneseeesaas 107
8.6.1.2.2 DataPartitiON . .iiieiuueiiiiiiiiiiitiiiieeeeeiiittieteeeeeeeitteeeeeseaaiitseeteeseeaaanteeeeeeseeiaannereeeeeeaataneeeeeeaas 107
8.0.1.2.3 DaAtAP OO, ... cueeiiiitei ettt e ettt e e e e e eeteeeeeeteeeeteeseearreeeanreeeearreeeanreeeainreeeans 108
8.0.1.2.4 DataPrOVIAETiiiueiiiieeeesieee e eeie e et eeeeeeeeeiteeeeeeeeseseseseeeseeseenssseeeenseeeeasseseannneeeeineeeans 108
8.6.1.2.5 DataSPECifICAtIONiiiueeeiiesieeieieeeieseeeeeeeeeeeeeeeeeeeeeseseeeaenseeseesseeeeeseseeanseeeeannneeeaineeeans 108
8.0.1.2.6 EXEENAS ...ueiiieiiiiiitie et eeee e e eeteeeeeteeeeseteeeeeneeeeeeneeeeeeteeeeeneeeeeinneeeeanrreeeanreeeainreeeans 109
8.0.1.2.7 MOTPIINE ..ttt eeeee e ettt e e ettt eeseteeeeeeneeeesenseeeeanseeseeseseeeenseseeanseeeeennreeeannneeeans 109
8.0.1.2.8 REEINES ..uviiiiieiiiiietie ettt ettt e e e et e e e et e eeeeeeeseneeseaenseeseensseeeenseseeannseeeannneeeeinneeeans 110

8.6.2 DAt VAIUCS ..ot e ettt e e e e et oottt eeeeeseeeateeeeeesseaaatteeeeeeeeaannteeeeeeeeeannnanreeaaas 110
8.6.2.1 Data Value EXteNSIONS .uuuuiiiiiiiiiiiitiiiieesiieiitieieeeetesiiteeeeeeeeeseeteeseeseeesaesasnseeeseesannsenseseeessannnnnnes 110
8.6.2.2 StereotyPe SPECIICAtIONS . uiiiiiiiiiitiiiie e st ie ittt e eeeeeeiitteeeeeeeeseeteeseeseeeeeetenseeeeeeaennnnnseseeesaaannnees 111
8.6.2.2.1 ANYVAIUC 1uviiiiiiiiiiiiiii oottt ettt e e e e e ettt eeeeeeeentateeeeseesabrreteeeeeaannareeeeaas 111
8.0.2.2.2 OVEITIACS ittt ittt e ettt e e e et eeett et e eeeeaeesteeeeeeeseeanteeeeeeseeanntseeeeeseesanteneeeeeesaannneneeesaas 112
8.6.2.2.3 RegUIAITEXPIESSION tuutiiiiiiiiiutiiiiieeei ittt eeeeeteetteeeeeeseeeintseeeeeseeaaentsseeeeseesaanseseeeeeaaannnseeeesas 113

8.7 TSt EVAIUATION L.oeiiiieeiii ittt s e e et e e e et e e et e e e etsee e e et eesesseeeeenseeesensseeeenneseeeenseeessnnseeseinseesaanseees 113
8.7.1 Arbitration SPECIfICAtIONS iiusiiiiesieeiiteeeieieeseeieeeeieteeeeeiseeseeeeeeseesseseeaseessenseeesanssesaennseeeseseeeans 113
8.7.1.1 Arbitration FACIIITYcoeeiiiiiieeiiiieseieieseieeteeseeitieeeeeeeeseeeeeesesseseensseesensseeeeeseessanseeeesaneeeeannns 113
8.7.2 Arbitration SPECIfICAtIONS iusieiiesieeieeeeeeeeeseeieeeeeeseeeeeissesseeseeseesseseeaseesseseeeaanssesaennseesasseeeans 113
8.7.2.1 Test Procedure Arbitration SpecifiCatiONSceveeiieiuieeiiiieeiiiieeiiieeeeiiieeeeeeieeeeeieeeeeeeeeeennns 114
8.7.2.1.1 Arbitration FacCility OVEIVIEWciiiiiueiiieiiiiiiiiiiiieeeeiiiiieeteeseeeiisiiseeeeseesiesseeeeeeeeesannneeeeees 116
8.7.2.1.2 StereotyPe SPECIIICATIONS ..uuuuririiiiiiiiiteieieeeeeeeitieeeeeeeeeieitteeeeeeeeeieteseeeeseesaeseeeeeeeeeaannneeeeeeeas 116
8.7.2.2 Procedural Element Arbitration SpecifiCations......ccoouueiiiiiiiiiiiiiiiieeiiiiiiiiiieeeeeieiiiereeeeeeieanianees 122
8.7.2.2.1 Arbitration of AtomicProcedural Elements.....cccuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeiieiiiiieeeeesieiieeeeaen 122

UML Testing Profile 2 (UTP 2), Version 2.2

8.7.2.2.2 Arbitration of CompoundProcedural Elementscoooviuuriiiiiiiiiiiiiieeieeiiiiiiiiieeeeeiiiiieeeenn. 123

8.7.2.2.3 StereotyPe SPECIFICAtIONS . .uuviiiesiiiiieeeeeiiteeeeeieeeeeeteseseeeeeeeiseeeeenseeeeeseeeeansseeeennseeeaineeeans 124

8.7.2.3 Test-specific Action Arbitration SPeCifiCatioNS........cocuveiiiiueieiiieeeiiieeeeieieeeeeieeeeeieeeeeeeeeeennns 128
8.7.2.3.1 Arbitration of Test-SpeCifiC ACIONSeiiiueiiiiiieeiiiteeeieiieeeeeeeseeniereeeeiseeeeeireeeeeeseeeeineeeans 128

8.7.2.3.2 StereotyPe SPECIFICAtIONS . .uuviiiisiiiiiiseeeiieeeeeieeeeeieeeeseeeeeeeseeeeeeseeeeeseseeaseeeeennseeeaineeeans 129

8.7.3 TSt L O NI, .ttt e et e e et e e e eeee s et e eeeneeeeeenseeeesseeeeenseeeeennseesanseeeaanseeeaennneesanneeeann 131
8.7.3.1 TeSt LOZEING OVEIVIEW ..uveiiiiieieiiiteesiieiseeeieseeeeeisseseesesesaeseeeaesssessenssseesnseesaenseessanseeeesaseeeennes 131
8.7.3.2 Test LOZ ENtrieS OVEIVIEW .iiiiiiiiiuuiiiiiesiiiiittiieeesteiiiitteseeeseeeaesueeseeseeesansnnseeeeessannnnseseeessannnnees 132
8.7.3.3 Test LOg ENtries DetailS. . .uuiiiiiiiiiuuiiiiiieiieiiiiiiieesteiiiiieeieeseesiiitieseeseeeseesuseseeesessanssnsesseessannnnnees 133
8.7.3.4 Invocation Test Log ENtry DetailScoiieiiiuiiiiiiiiiiiiiiiiieiiiiiiiiiieeeeeiiiiiieeeeeeeieiiisseseeesseannnees 134
8.7.3.5 StereotyPe SPECIICAtIONS . .uiiiiiiiiiittiiiieeeiieiitteeeeeeeeeiitteeeeeeeeseeieeeeeeeeesaetsereeeeesaeansereeseaseaannnees 134
8.7.3.5.1 TeStLOGEICIMENT . .uuuiiiiiiiiiiiiiiiie et e e e e e e ettt e e e e e eeiiteeeeeseeeienteeeeeeseeaaanseeeeeeeeeaanneeeeeeaas 134

8. 7. 3.5, TS L0 ettt eeee et e e et e et eeeeteeeeeneeeeeeneeeesenseeeeenteeseenneeeeeinneeeeanreeeeenneeeeinreeeaas 135

8.7.3.5.3 TSt S @t O 1 uuuiiiiitiie ettt e e et e e ettt e eeeneee e e et e eeetee e e et eeeeenneeeeanrreeeanreeeeinreeeans 136

8.7.3.5.4 TeStCaSCILOZ . . i iieuutieieieeeeeetee ettt et ettt ettt e e e e eeeeetteeeeeeeeaentsseeeeeeeeettssreeeeeeeannnrsreeeeas 136

8.7.3.5.5 TSt OGS IUCTUIC ..uuueiiieii ittt e ettt e e ettt ettt e e e e eeeeetteeeeeeeeaeinteseeeeeeeeeinssseeeeeeeaensssreeeeas 137

8.7.3.5.6 TSt OGENMIIY ..ottt ettt e e e et ettt eeeeeeeeetereeeeeeeeeenssseeeeeeeeensssreeeeas 137

8.7.3.5.7 AtomicProcedural ElementLOgENIIYcoiuiiiiiiiii i eeeeeeeeeeeeeereeeeeenreeeeenneeen 138

8.7.3.5.8 InvocationLOgEN Iy SIIUCTUIE . .eiii ittt et eeeiiie e e e e eeeeiiiteeeeseeseiteeeeeeeesaenneeeeeeaas 138

8.7.3.5.9 FormalParameterRefereNCe ... uiii ittt ee et eeeeiiee e e s eeeeetieeeeeeeeeenneeeeeeas 138
8.7.3.5.10 InvocatioNLOZENTIY wuviiiiiiiiiiiiii ettt e e e e eeeiieeeeeeeeeeinieeeeeeseeseenteeeeeeeeeaanneeeeeeaas 139

8.7.3.5.11 ActualParameterVallie .. .ccoouueiiiiiiiiiiiiiiiee e e eeeeeitee e e e e eeeiiieeeeeseeseenteeeeeeeeeaanneeeeeeaas 139
8.7.3.5.12 Procedurelnvocation LOgENtIYSIIUCIUIEeeieiiiiiiiieieiieiiiiieee e e eeeeeiiieeeeeeeeeniieeeeeaes 140

8.7.3.5.13 ProcedurelnvocatioNLOZENIIY ..iiiiiiiiiiiiiiieeiieiiiiieee et ee et eeeeiieeeeeeeseeiieeeeeeeeeenneeeeeeeas 140
8.7.3.5.14 MessageEventLogEN Iy SIUCIUIEuuuuveiieiiieeiiiieieee e eeeeieeeeeeeeeeieeeeeeeeeeeiaseeeeae 140

8.7.3.5.15 Message EventLOgENIIY ..ooouuuiiiii ettt e e e e e e e eeareeeees 140
8.7.3.5.16 Create SUmMUIUSLOZENIIYuuiiiiiiie et eeeee e et eeeeeeeseeneeeeeeseeeeeseeeeenneeeeeinneeeaas 141
8.7.3.5.17 ActualReSPONSELOGENIIY .. .uiiiiitiiiiieie et eeee e et e e et e eeeteeseeeeeeeeeseeeeeseeeeenneeeeeinneeeans 141

8.7.3.5.18 CheckPropertyLOZENIIY . .. uuiiiiiiii e eee et e eeeeeeeeeeeeeeeeeeeenseeeeeseeeeennneeeeinneeeans 141
8.7.3.5.19 SuggestVerdictLOZENIIYuiii i eeee ettt e e eteeeeeeeeeeeeteeeeeseeeeennneeeeinneeeaas 142
8.7.3.5.20 Create LogENtIY LOGENIIY cuuuiiiiiii it ee ettt e e et eeeiaiieeeeeseeseenteeeeeesesaanneeeeeeaas 142

8.7.3.5.21 OpaqueProcedural ElementLogENIIY . ..uuiiiiiiiiiiiiiieeeeiiiiiiiieeeeeeeeiieeeeeeeeeeiiieeeeeeeeeenieeeeeeaas 142

8.7.3.5.22 TestLogStructure BInding .. .uuuueiiiiiiiiiiiiiiee e eeeeeieeeee et eeeeiiieeeeseeseiteeeeeeeeaaenneeeeeeeas 143

8.8 TSt DITECEIVES rtiiiiiiieeseeieisssteeeeeeeeeeeeeeeieeeeeeeseeeessseeeeeseeeeseseeeseseeeentesseseeeseeannseseseeestennnssesseessennnnnses 143
8.8.1 TSt DIr€CtIVE FACIIITY 1uvviiiiiiiiiiiiiiii e e ieeieiie e ee e et eieeeeeseeteeitieeeeeeeseeannsseeeeeeseaansnseeeeessaannnsseseeesaaans 144
8.8.2 StereotyPE SPECITICATIONS ...uuveiiiiseesiiieeeeieseeeeeetseseeeseeseeseeseanssessenseseseseeeeansseseeeseessenseeesanssesaennns 144
8.8.2.1 T eStDIICC IVE . . uutieiiitseeeeetee et et e e ettt s eeeeeseeeeeeeeeteeeeeseeeseenseeeaenseeeeennseeeannseesennneeeeanneeeesnneeeeanns 144
8.8.2.2 TeStDIrCCtIVESIIUCTUIE ...uuveeiiiieeeeeteeeeeeteeeeeeteeeeeiteeeeeeeeeseeseeeeesseeseensseeeennseeeeenseeseansseeesanseeeannes 145
8.8.2.3 T eStTECNIQUE. .ueiiiieeeie ettt ee et e et e et et eeeeteeeeeeteeeseeneeeeaenseeeeenseeeannseeeeenneeeeanneeeeenneeeeannns 145
8.8.2.4 TeStTeChNIQUESTIUCIUIE . .uviiiiieeeiiieeis e eeeeeeeteeeeeiteeeeeeeesseeeeeeeseeeeennseesennseeseanseeesansseeesaneeeeannes 146

9 MOAEL LIDTATIES .uveeeeieeeeesieeeeeeee e e eeeeeeeeeeeeeneeeseenseeesesseesansseeeeansseseansseeeanseseeansseesanneeeesnnseesannnsessannes 147
9.1 UTP TYPES LIDIAIY 1iiiiiiiieiiiiiii ittt e st ee ettt et e e eeeeitteeeeeseeeeetseseeesessensseseeseessennnnseesseesaeennnseseeeseanns 147
9.1.1 PredefiNed Ty PES wueiiiii ittt ettt e e s e ee et eeeeesteeeatreeteeeeeaanteerteeeeeeannnaareeeaas 147
9.1.2 Predefined VErdiCt INSTANCES ...iiiiiuueiiiieeiiiiiieeee e et e e eeeieseeeeesteeiitteeeeeesseeaisseeeeeeeseaannneseeeeseeeannnnnneeeeas 147
9.2 UTP AUXIAIY LIDIAIY ittt ettt e et e eeeteeeeeeeeeeeaeeeeeseeseasseeeeeeeesennnnseeeseesseennneeseeeseanns 148
9.2.1 UTP AUXIHATY LIDIAIY uttttiiiiiiiiiiiiii ettt e e e e e eeiieteeeeeseeeiieeeeesesseaasseeseeeseeaannnesseeeseeeannnnnneeeess 148
9.2.1.1 The UTP auxiliary IIDIary . o oo eeeiiie e eeeeiiieeeeeeeeiiieeeeeseseieiieseeeseesaennsneeeesesaannsnneeeeess 148
9.2.1.2 ISTQB LIDIAIY ...uuuiiiiitieiiieseeseieeeeeeeeeeeeeiseesseseeeseessesseeseeseeseeesaessessenssseesenseeesansseseansseessaseeeaas 149
9.2.1.2.1 Overview of the ISTQB IIDIaIYcccuueiiiiiiiiiieieeiiieeeeieiieeeeeeeeeeieeeeeeisereeeiseeeeeeeeeeeineeeans 149

9.2.1.3 Test Design FaCility LiDIArY . .cc.ueeiieiuiiiiiieeeiiiiieieieeseeeieeeeeeieeeeeesseseeeseeeeeseeesensseseenseeesenneeeaas 153
9.2.1.3.1 The UTP test design facility IIDIArYccieeueeiiiiieiiiieeeeieieeeeeieeeeeieeeeeieeeeeeeeeeeineeeeeinneeeaas 153

9.2.1.3.2 Predefined Test Design TECRNIQUESeeiieueeiiiiiieieieeeeieiieeeeieeeeeeeeeeeeseeeeenseeeeeieeeeeiineeeans 153

9.2.1.3.3 Predefined Test Design Technique StruCtUIeS....uuuiiiiiiiiiieiiiiieiiiiiiiiieeeeeiiiiiiieeeeeeiiiiieeeeeaes 155

Annex A (Informative): EXAMIPIES ..uuuuuiiiiiiiiiiiiiiiiieeiiieiitiee e e et eeiitteeeeesteaiatteeteeseeaaentesseeeseeaansssseeeeesaonnnnnseeeeessennnnsees 157
A.l CroiSSANtS EXAMIPIE ... uuiiiiiiiii it e ettt ettt ettt e e e eeeeitteeeeeeeeeaenttereeeeeseeannneseeeeessannnnnseseeessannnnnees 157
A.l.l e TSt T OIMIe it ittt ettt e e et et ettt e e s eeeeenteeeeeeeeseennnneseeeeeeseansnsesseessaannnsseseeasaaans 157

UML Testing Profile 2 (UTP 2), Version 2.2 ix

A.1.1.1 Given Requirements on the Test Iteml.....uiiiiiiiiiiiiiiiiiiiiiiiiiieeseeeiiiiieeeeeeeeiiiieeeeeeeeseiieeeeeeaeaaans 157

A.l2 TeSt REQUITEIMIEIIES ...ttt ieeseeeeetseeeeeeeeeeeeeeeeteeeseessseeseseeesasseesaesseeseesseesanseeeeanseesaensseesannseeeans 158
A 121 GIVEN TESt ODJECHIVES .uuiiiiiurteeiieeeeieeeeseeeeeseeeeeeseeseeeeeseessenssesseesseseeasseesenseeeeeanseesassseesansees 158
A.1.2.2 GIVEN REQUITEIMIENLSuuiiiiisieiiiieeeiitieseeiteeeeeeeeeseeseeseeseessensseesaesseeseasseesenseeeeensseesesseessannees 158
A.l3 TSt DTNttt e e et e e eeeeeeeeeeeseteeeeeenseeeeenseeeeensseeeeanseeseennseeeannseeeeanseeesennneesanneeeann 159
A.1.3.1 Test Design Strategies sShown on "Test Strategy"ccceiiuiiiiiieeeiiieeeeiiieeeeieeeeeieeeeeeeeeeeeneees 159
A.1.3.2 Test Directives ShOwn on "TeSt Strate@y"oooiieiiiiieeiiiieeeiieeeeeeieeeeiieeeeeieeeeeireeeeeiereesenneess 159
A.l4 TSt COMETGUIATION . 1uuttttiiie et eeitee e e e et ettt e e et eeeittteeeeeseeeeantteeeeeeeseennnnsseeeeesseannnseeeseessaannsseseeaaeaans 159
A.l5 TSt S .ttt ettt ettt e e et ee ettt et e eeeeeasteeeeeeseeeentteeeeeeeaeennsseeeeeeesennnnseeeeeessaannnseeseeasaannns 160
A.1.5.1 Test Set "Manual CroiSSANtS t€SE" ... coiuuiiiiiiiiiiiiiiiieetiiiieieteesteeiiiteeeeeeseeaiiieeeeeeseesiisieeeeeeaeaans 160
A2 LOgINSEIVEr EXAMIPDIE. . uuuiiiii ittt ettt e e e e et eeiieeeeeseeeaentaereeesessenntneseseeessannnnnseeesessannnnnees 162
A2.1 Requirements SPeCiflCationN ... i iiieuieiiii it iiiiiee e e et e e eeeit et e e esteeiiteeeeeesseeiaeeeeteeseeaaonneseeeeseeeanneneeeeaas 163
A22 TSt PlANIINEveiiiitees e e et e et eeeeeeeeeteeeseesseeeeenseeesesseeeaenseeeeennseesanseeeeanseeesenseesannseeeann 163
A23 TSt ATIALYSIS .. .uveieieeeeeteeee e eeeeeeeetseeeeeeeeeeeteeeeeeseeseeenseeeeesseeeasseeeannsseseenseesanseeesanseeeeennneesannneeesnn 164
A.2.3.1 Derivation and Modeling of Test REQUITCMENTSveeieeueeiiiiieeiiiieieeiieeeeeeeeeeeieeeeeeieeeeeeneees 164
A.2.32 Modeling the Type System and Logical INterfaces.......cooueiiiiueeeiiieeeiiiieeiieieeeeiiieeeeeeeeeeeneee 166
A233 Modeling TeSt DAA ...ccuueeiieeeeeiieiee s eiieseeieeeeeeeeeseeeeeeeeteeseeesseeeeesseeseesseeeenseeeeeanseesannseessannees 167
A24 TSt DTN ettt ettt e e et e e et e e e eteeeeeteeeeenseeeeeneseeeansseeeeenseeeeennseesanseeeeanseeeaennneesannneeeans 168
A.2.4.1 Test Architecture and Test CoOnfIgUIAtION. ... cccouuuueiieiiiiiiiiiiiesieiiiiiieeeeeeeeiiieeeeeeeeeseiiteereeeeeaaans 168
A.2.4.2 Specification of COmMPIeX TeSt DAt ...uuueeiiiiiiiiiuiiiiiieiiiiiiiiiieeeeeiiiiieeeeeseeaiiiieeeeeseesiiseeeeeaaeeans 169
A2.43 Test Requirements REAIZAtION ..oiiiiiiiiuuiiiiiiiiiiiiiiiiieeieeiiiiieeeeeseeiiiieeeeeseeaaisseseeeseesienseeeeeaaaeans 170
A2.44 Design of Test Case ProCedUIEs.cooouuiiiiiiiiiiiiiiiiieeiiiiiiiiiieseeeiiiiieeeeeseeaiiieeseeeseesiinteeeeeeaeanns 171
A25 MapPING 10 T T CN -3 .ttt ittt e e et et ettt eeeeeeeeaiteeeeeeesseaanseeeeeeesseaanntesseeeseeasnnsnneeeaas 172
A.2.5.1 Mapping the Test TYPE SYSIEIM Liiiiiiiiiiiiiiiiiiiiiiiieeieesieiiiiieeeeseeeiiiieeeeeseeaiieeeeeeeseesiinteeeeeeaeaans 173
A.2.52 Mapping Interface DeSCIIPtIONS .. .eeiiiuriisiesrreieeeeeseeseeeeiieeseeiseeeaeseeeeessseeeeneeeseaseeeeenseeeaensees 173
A.2.53 Mapping the Test ATChIECTUIE . ..uiiiiiriiiiiitieeiiieeeeeeieeeeieeseeieeeeeseeeeeeeeeeeeeeeseaseeeeeseeeseneeas 173
A.2.54 Mapping the Test Data SPecifiCatiONcooueiiieieeeiiiieeeieiieseeieeeeeeeeeeireeeeeeeeeeeieeeeeeereeeeineess 174
A.2.5.5 Mapping Test Cases and Test CoONfigUrationeeeueeeieeueeiiiieeeieieeeeeiieeeeeeeeeeieeeeeeieeeeeeneees 174
A3 VideoconferenCing EXAMPIEiiieueeiiiiieiiiei s eeiieeeeeeeeeiteeeseiseeeeeeseeseeisseeeeesseseesseessnnseeeeeseesaasees 176
A3l Given Requirements on the Test THeIMviiieueeiiiiiiiiiieeeieieeeeeeeeeeeeeeeeieeeeeeseeeseseeeeeneeesaieeeeaas 176
A32 Modeling the Structure Of the SYSTEIM L.iiiiiiiuiiiiii i eeeiiieee e e e eeeeiiiie et eeeeeeiieeeeeeseeeieiaeeeeeeas 176
A33 Modeling the Behavior 0f the SYStEIM L.iiiiiiuuiiiiiii i e e eeeeiiiieeeeeeeseiiieeeeeeeeesiieeeeeeess 177
A34 The TRUST TeSt GENEIATOT ..uuuuuiiiiieeiiiietieeiieeeeeiieeeeeeseseeiiieseeeeeseeasasseseeesseasnsseesteessaannsseseeeseanans 179
A3.5 MaPPING 10 COUE ittt ettt e e et ettt eeeeeseeeiteeeeesesseaaseeeeeeeeseaannnesseeeseesannnnneeeess 180
A3.6 R O EIICES ..ttt e ettt e et et eet ettt eeeseeeiteteeeeeeseannatteeeeeeeeaanneeeeeeeeeeannnnneeeeaas 180
A4 Subsea Production System EXamPLecoeueiiieiueeiiiiieeiiieeeiieieeeeiseeeeeteeeeeieesseiseeeesseeeseneeeasieseeaannes 181
A4l Description Of CaSE StUAYiiiuuiiiiiiiii e eeiee et e e eeeeeeeiteeeeeeeeeseeseseeeiseeseenseeesanseeseeaseesaiseeeans 181
A4.2 FUNCHONALIEY 10 TSt uuuiiiiutiiiiittis e eetee e et eeeeee s e et eeeetseeeeeseeseeseeeseesseseeanseeseenseeeeaseesaennneesainneeeans 181
AA43 TSt DESIZN INPULS ...t ieeeee it eeee e e eeeeeeeeeeeeeeteeeeeeseeeeesseesesseeeeenseeseesseesannseeeeanseessensseesannneeeans 182
A4.4 Generation of Test Sets and AbStract TeSt CaASES ..vviieuriiiieireeiiiieieiiieeeeiiieeeeeiieeeeeieeeseneeesaeieeeeaas 183
AA45 RCTCTEIICES ..ttt eee e et et eeeetee s e etteseeenseeeeenseesseseeesenseeeeanseessenseeesansseseennneesannneeeann 185
A5 ATM E XML ettt ettt ettt e e e et ettt eeeeeeeostteeeeeseeeaanteeseseeessaannnsseseeessannnnnsesseessannnnees 186
A1 GEIETAL .ttt ettt e e e e e e ettt eeseeeeettaeeeeeeeeeanateeeeeeeteaannnteeteeeseaantrereeaaeaanns 186
AS5.2 Unit Test EXAmIDIE . ittt e et e e eettteeeeeeeeiteeeeesesseanseeeeeeeeseaannnesseeeseesannsneeeaaas 187
AS53 Integration TestiNg EXAMIPIE ..uuuuuiiiiiiiiiiiiiiieieeeiiiee e s eeeeeieeeeeeeeeeeiieeeeeeeseeaisseesteesseainneseseeeaaaans 191
AS54 SyStem Test EXAMPLE ..ottt it ie e e ettt e e et e eieiieeeeeeseeeiieeseessesaentneseeeeesseannnsseeseesaaannnees 196
AS55 R O EIICES ..ttt e ettt e et e e eeteteeeeeeeeeteteeeeeseeannatteeeeeeeeaannteeeeeeeeeannnnnreeaaas 201
Annex B (Informative): MADPINES ...oouueiiieeeeeiieeeeeeeteseeiseeeeeeseeseissesseesssseeneeesaesesseensssssensssesaaseseaanssessenssessssseeesns 203
B.1 Mapping between UTP 1 and UTP 2uviiiiieiiiiiiieeiiiee e eeeeee e e e eeeeeeseeseesaieseeeeeseeseenseees 203
Annex C (Informative): Value Specification EXTENSIONSccueeiiireeiiiiiesiiiiseeeeiieeeeenereeeniseeseeiseeesessessensseesesseeesns 207
C.1 Profile SUMIMATY ...iiueiii et s et eeee e e et e e eeeeeeeteeeeenteeeeeesseeeeeseeeeeinseeeeansseesannseessanseeeeanseesaansees
C2 Non-normative data value extensions
C.1.1 Overview of non-normative ValueSpecification EXteNSIONS.......ccceeiiiureeiiiiiiiiiiiiiiieeiiiiiiiirieeeeaaans 207
C2.2 StereOtyPE SPECITICALIONS ..uuveriiiiiiiiiiiteieieeesieiiteeeeeeeteeeitteeeeeeseaiisseeeeseeeeeanssesesseeseannsssseseesesaannnenes 208
C.2.2.1 ChOICEOV AIUES ...ttt ettt e et ettt e e et eseteeeeeeseeeaenseseeeeeesseannnsseseeeseennneeeseeeaaanns 208
C222 COllECt 0N E X PIESSION ...uttttiiieetiiiitteeteeeteeeittteeeeeeeeeeetteeeeesessannsaeeseseesaansnsseeseeasannnnsseseeassannnnnees 209

X UML Testing Profile 2 (UTP 2), Version 2.2

C.2.2.3 ComplementedVallecooouueiiiiiiiiiiiiiiiie et ee e e e e eeeiteeeeseseeeiteeeeeeeesseanasseeeeeseeasineeeeeeeaaanns 209

C.2.2.4 MatchingColleCtioNEXPIreSSION ...uuieueietiieeiieeitieeeiie ettt eeiie e 209

C.2.2.5 RANZEVAIUC....utiitiieiiiie ettt e 210

C.23 Enumeration SpecifiCationsS.......c.eeeueeieueeeeiieiieeiie et 210
ANNCX D2 INACK ittt e et e ettt e et e et eeteeenreesareeeanes 213

UML Testing Profile 2 (UTP 2), Version 2.2 Xi

Preface

OoMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer
industry standards consortium that produces and maintains computer industry specifications for interoperable,
portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle
approach to enterprise integration that covers multiple operating systems, programming languages, middleware and
networking infrastructures, and software development environments. OMG’s specifications include: UML® (Unified
Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse
Metamodel™); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG
Specifications are available from the OMG website at:

http.//www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and
PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management
Group, Inc. at:

OMG Headquarters

9C Medway Road, PMB 274
Milford, MA, 01757

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

xii UML Testing Profile 2 (UTP 2), Version 2.2

http://www.iso.org/

1 Scope

In 2001, a working group at the OMG started developing a UML Profile dedicated to Model-based testing, called
UML Testing Profile (UTP). It is a standardized language based on OMG’s Unified Modeling Language (UML) for
designing, visualizing, specifying, analyzing, constructing, and documenting the artifacts commonly used in and
required for various testing approaches, in particular model-based testing (MBT) approaches. UTP has the potential
to assume the same important role for model-based testing approaches as UML assumes for model-driven system
engineering.

UTP is a part of the UML ecosystem (see figure below), and as such, it can be combined with other profiles of that
ecosystem in order to associate test-related artifacts with other relevant system artifacts, e.g. requirements, risks, use
cases, business processes, system specifications etc. This enables requirements engineers, system engineers and test
engineers to bridge the communication gap among different engineering disciplines.

Figure 1.1 - The UML Ecosystem

As the interest of industry in model-based testing approaches and languages increased, UTP attracted more and more
users. UTP was the first standardized language for model-based approaches to help in the validation and verification
of software-intensive systems. Model-based test specifications expressed with the UML Testing Profile are
independent of any methodology, domain, environment, or type of system.

Eight years later, the UTP working group (WQ) has agreed on consolidating the experiences and achievements of
UTP in order to justify the move from UTP 1.2 to a successor specification. These efforts resulted in a Request For
Information (RFI) for UML Testing Profile 2 (UTP 2), which was aimed at eliciting and gathering the shortcomings
of the current UTP and the most urgent requirements for a successor specification from the OMG and model-based
testing community.

Some of the main issues in the RFI responses are that UTP 2 should:
e Dbe able to design test models of different test levels-
e address testing of non-functional requirements-
e be able to reuse test logs for further test evaluation and test generation-
e meet industry-relevant standards-
e integrate with SysML for requirements traceability-
e and so forth-

The UML Testing Profile 2 (UTP 2) was designed to meet the requirements derived from the RFI responses.

UML Testing Profile 2 (UTP 2), Version 2.2 1

People may use the UML Testing Profile in addition to UML to:

Specify the design and the configuration of a test system: Designing a test system includes the identification
of the test item (also known as system under test or abbreviated as SUT), its boundaries, the derivation of
test components, and the identification of communication channels between interconnected test items test
components over which data can be exchanged.

Build the model-based test plans on top of already existing system models: The possibility to reuse already
existing (system) artifacts, e.g. requirements, interface definitions, type definitions etc.

Model test cases: The specification of test cases is an essential task of each test process in order to assess
the quality of the test item and to verify whether the test item complies with its specification.

Model test environments: A test environment contains hardware, instrumentation, simulators, software
tools, and other support elements needed to conduct a test (according to IEEE 610).

Model deployment specifications of test-specific artifacts: By relying on the UML’s deployment
specification capabilities, the actual deployment of a test system can be done in a model-based way.

Model data: Modeling of data includes the data values being used as stimuli into the test item as well as for
responses expected from the test item such as the test oracle.

Provide necessary information pertinent to test scheduling optimization: Test scheduling optimization can
be based on priorities, risk-related information, costs etc.

Document test case execution results: To associate test cases with the actual outcome of their execution
within the very same model in order to perform further analysis, calculate specific metrics, etc.

Document traceability to requirements and other UML model artifacts: Requirements traceability within
test specification is important to document and evaluate test coverage and to calculate other metrics such as
progress reports. Native traceability is given by the underlying UML capabilities. UTP does not offer
different concepts for traceability other than that provided by UML;.

The intended audience for the UML Testing Profile are users who are able to read model-based test specifications
expressed within the UML Testing Profile models including:

Test engineers
Requirements Engineers
System/Software Engineers
Domain experts
Customer/Stakeholder
Certification authorities

Testing tools (test case generators, data generators, schedulers, reporting engines, test script generators, +-
*etc.).

The intended audience of this UML Testing Profile specification itself includes, among others:

People who want to implement UML Testing Profile-compliant tools.

People who need to/want to/like to teach the UML Testing Profile.

People who want to improve the UML Testing Profile specification.

People who want to tailor the UML Testing Profile to satisfy needs of their specific project/domain/process.

UML Testing Profile 2 (UTP 2), Version 2.2

2 Conformance

As a native profile specification of the UML, the UTP 2 has to abide by the conformance types declared for
compliant UML profiles. The corresponding conformance types of UML can be found in section 2 "Conformance"
of the current UML specification [UML]. This guarantees that the underlying environment of any UTP 2
implementation is a UML modeling environment that is conformant with the UML. The UTP 2 adopted version of
UML's conformance types are defined as follows:

e Abstract syntax conformance: All concrete stereotypes and tags are implemented in the profile
implementation,

e Concrete syntax conformance: Support for the visual representation (i.e. icons) of the UTP concepts is
provided by the profile implementation.

e Model interchange conformance: (delegated to underlying UMLY).
e Diagram interchange conformance: (delegated to underlying UML3Y).

e Semantic conformance: All UTP constraints are enforced, either directly in the model with OCL (assuming
underlying OCL support) or indirectly by any other suitable means of the underlying modeling
environment,.

In addition to the fundamental conformance types of the UML and its profiling mechanism, UTP 2 specifies two
compliance levels for its respective concepts:

o mandateryMandatory: concepts that are deemed mandatory have to be implemented in order to claim UTP
2 compliance:.

o optienalOptional: concepts that are deemed optional might be implemented. If they are implemented, they
have to be implemented exactly how they have been specified by the UTP 2 specification - i.e., optional
concepts are still normative, but when they are implemented, they have to abide by the conformance types
imposed by the underlying UML and its profiling mechanism.

The decisions, which concepts are considered as mandatory and optional, have been based on the typical use cases
of UTP 2 (see section 6.3 Typical Use Cases of UTP 2). The main objective of UTP 2 is to design test cases,
potentially in an automated manner, and to describe the test architecture in order to execute test cases, potentially in
an automated manner. Except from that, UTP 2 provides further helpful concepts for the design and implementation
of a test environment that supports various activities of the test process, such as test analysis, manual and automated
test design, test execution and evaluation. The concepts required for these activities are grouped by corresponding
sections within this specification. The following relates the test process activities with the respective sections of the
UTP 2 specification and indicates whether a feature (a set of concepts grouped in a setiensection) is normative,
mandatory, or optional:

UML Testing Profile 2 (UTP 2), Version 2.2 3

Test Process Phase Normative Mandatory
. Test Analysis Activities
- Section 8.3.1 Test Analysis X -

. Test Design Activities
- Section 8.3.2 Test Design
- Section 8.4 Test Architecture
- Section 8.5.1 Test-specific Procedures
- Section 8.5.1 Procedural Elements
- Section 8.5.1 Test-specific Actions
- Section 8.6.1 Data Specifications

MR R

Rl

. Test Execution and Evaluation Activities
- Section 8.6.2 Data Values X
- Annex C Non-normative data value extensions - -
- Section 8.7.1 Arbitration Specifications X -
- Section 8.7.2 Test Logging X -

In addition to these concepts, UTP 2 specifies three model libraries for UTP 2. The conformance considerations for
the libraries are as follows:

UTP 2 Model Libraries Normative =~ Mandatory
. Section 9.1 UTP Types Library X X
. Section 9.2 UTP Auxiliary Library X -

Any implementation that wants to claim conformance with UTP 2 specification has to abide by the adopted UTP 2
conformance types for each normative concept. If the concept is deemed mandatory in addition, any implementation
that wants to claim conformance with the UTP 2 specification, has to provide those mandatory concepts to the user.

4 UML Testing Profile 2 (UTP 2), Version 2.2

3

The following terms and definitions are a samarysummary of the Conceptual Model described in clause 7. For

Terms and Definitions

further examples and details refer to the respective sub-section in Clause 77.

Name

abstract test case
abstract test
configuration

actual data pool
actual parameter

alternative

arbitration
specification
artifact

atomic procedural
element

boolean expression

check property
action

complement
compound
procedural element
concrete test case
concrete test
configuration

constraint

create log entry
action

create stimulus
action

data

data item

data partition
data pool

data provider

data specification

data type

Description

A test case that declares at least one formal parameter.

A test configuration that specifies the test item, test components
and their interconnections as well as configuration data that should
be abstract test data.

A specification of an actual implementation of a data pool.

A concrete value that is passed over to the procedure and replaces
the formal parameter with its concrete value.

A compound procedural element that executes only a subset of its
contained procedural elements based on the evaluation of a
boolean expression.

A set of rules that calculates the eventual verdict of an executed
test case, test set or procedural element.

An object produced or modified during the execution of a process.
A procedural element that cannot be further decomposed.

An expression that may be evaluated to either of these values:
"TRUE" or "FALSE".

A test action that instructs the tester to check the conformance of a
property of the test item and to set the procedural element verdict
according to the result of this check.

A morphism that inverts data)i.e., that replaces the data items of a
given set of data items by their opposites).

A procedural element that can be further decomposed.

A test case that declares no formal parameter.

A test configuration that specifies the test item, test components
and their interconnections as well as configuration data that should
be concrete data.

An assertion that indicates a restriction that must be satisfied by
any valid realization of the model containing the constraint.

A test action that instructs the tester to record the execution of a
test action, potentially including the outcome of that test action in
the test case log.

A test action that instructs the tester to submit a stimulus
(potentially including data) to the test item.

A usually named set of data items.

Either a value or an instance.

A role that some data plays with respect to some other data
(usually being a subset of this other data) with respect to some data
specification.

Some data that is an explicit or implicit composition of other data
items.

A test component that is able to deliver (i.e., either select and/or
generate) data according to a data specification.

A named boolean expression composed of a data type and a set of
constraints applicable to some data in order to determine whether
or not its data items conform to this data specification.

A type whose instances are identified only by their value.

UML Testing Profile 2 (UTP 2), Version 2.2

Source
UTP 2
UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

UTP 2
UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

UTP 2
UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

Name
duration
Error

executing entity

expect response
action

extension

Fail

formal parameter

Inconclusive

loop

main procedure
invocation
morphism

negative

None

parallel

Pass

PE end duration

PE start duration

postcondition
preconditon
procedural element
procedural element

verdict

procedure

Description

The duration from the start of a test action until its completion.

An indication that an unexpected exception has occurred while
executing a specific test set, test case, or test action.

An executing entity is a human being or a machine that is
responsible for executing a test case or a test set.

A test action that instructs the tester to check the occurrence of one
or more particular responses from the test item within a given time
window and to set the procedural element verdict according to the
result of this check.

A morphism that increases the amount of data (i.e., that adds more
data items to a given set of data items).

A verdict that indicates that the test item did not comply with the
expectations defined by a test set, test case, or test action during
execution.

A placeholder within a procedure that allows for execution of the
procedure with different formal parameters that are provided by
the procedure invocation.

A verdict that indicates that the compliance of a test item against
the expectations defined by a test set, test case, or test action could
not be determined during execution.

A compound procedural element that repeats the execution of its
contained procedural elements.

A procedure invocation that is considered as the main part of a test
case by the test case arbitration specification.

A structure-preserving map from one mathematical structure to
another.

A compound procedural element that prohibits the execution of its
contained procedural elements in the specified structure.

A verdict that indicates that the compliance of a test item against
the expectations defined by a test set, test case, or test action has
not yet been determined (i.e., it is the initial value of a verdict
when a test set, test case, or test action was started).

A compound procedural element that executes its contained
procedural elements in parallel to each other.

A verdict that indicates that the test item did comply with the
expectations defined by a test set, test case, or test action during
execution.

The duration between the end of the execution of a procedural
element and the end of the execution of the subsequent procedural
element.

The duration between the end of the execution of a procedural
element and the beginning of the execution of the subsequent
procedural element.

A boolean expression that is guaranteed to be True after a test case
execution has been completed.

A boolean expression that must be met before a test case may be
executed.

An instruction to do, to observe, and/or to decide.

A verdict that indicates the result (i.e., the conformance of the
actual properties of the test item with its expected properties) of
executing a test action on a test item.

A specification that constrains the execution order of a number of
procedural elements.

UML Testing Profile 2 (UTP 2), Version 2.2

Source
UTP 2
UTP 2
UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

UTP 2
WikiM

UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

UTP 2
UTP 2
UTP 2
UTP 2

UTP 2

Name
procedure
invocation

property
refinement

response

sequence

setup procedure
invocation

stimulus
suggest verdict
action

teardown procedure
invocation

test action

test case

test case log

test case verdict

test component

test component
configuration

test configuration

test context

test design directive

Description

An atomic procedural element of a procedure that invokes another
procedure and waits for its completion.

A basic or essential attribute shared by all members of a class of
test items.

A morphism that decreases the amount of data (i.e., that removes
data items from a given set of data items).

A set of data that is sent by the test item to its environment (often
as a reaction to a stimulus) and that is typically used to assess the
behavior of the test item.

A compound procedural element that executes its contained
procedural elements sequentially.

A procedure invocation that is considered as part of the setup by
the arbitration specification and that is invoked before any main_
procedure invocation.

A set of data that is sent to the test item by its environment (often
to cause a response as a reaction) and that is typically used to
control the behavior of the test item.

A test action that instructs the tester to suggest a particular
procedural element verdict to the arbitration specification of the
test case for being taken into account in the final test case verdict.
A procedure invocation that is considered as part of the teardown
by the responsible arbitration specification and that is invoked
after any main procedure invocation.

An atomic procedural element that is an instruction to the tester
that needs to be executed as part of a test procedure of a test case
within some time frame.

A procedure that includes a set of preconditions, inputs and
expected results, developed to drive the examination of a test item
with respect to some test objectives.

A test log that captures relevant information on the execution of a
test case.

A verdict that indicates the result (i.e., the conformance of the
actual properties of the test item with its expected properties) of
executing a test case against a test item.

A role of an artifact within a test configuration that is required to
perform a test case.

A set of configuration options offered by an artifact in the role of a
test component chosen to meet the requirements of a particular test
configuration.

A specification of the test item and test components as well as
their interconnection and configuration data.

A set of information that is prescriptive for testing activities which
can be organized and managed together for deriving or selecting
test objectives, test design techniques, test design inputs and
eventually test cases.

A test design directive is an instruction for a test designing entity
to derive test artifacts such as test sets, test cases, test
configurations, data or test execution schedules by applying test
design techniques on a test design input. The set of assembled test
design techniques are referred to as the capabilities a test designing
entity must possess in order to carry out the test design directive,
regardless whether it is carried out by a human tester or a test
generator. A test design directive is a means to support the
achievement of a test objective.

UML Testing Profile 2 (UTP 2), Version 2.2

Source
UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

Name
test design input

test design
technique

test execution
schedule
test item

test item
configuration

test level

test log

test log structure

test objective
test procedure

test requirement

test set
test set log

test set purpose

test set verdict

test type

time point
verdict

Description

Any piece of information that must or has been used to derive
testing artifacts such as test cases, test configuration, and data.

A specification of a method used to derive or select test
configurations, test cases and data. test design techniques are
governed by a test design directive and applied to a test design
input. Such test design techniques can be monolithically applied or
in combination with other test design techniques. Each test design
technique has clear semantics with respect to the test design input
and the artifacts it derives from the test design input.

A procedure that constrains the execution order of a number of test
cascs.

A role of an artifact that is the object of testing within a test
configuration.

A set of configuration options offered by an artifact in the role of a
test item chosen to meet the requirements of a particular test
configuration.

A specification of the boundary of a test item that must be
addressed by a specific test context.

A test log is the instance of a test log structure that captures
relevant information from the execution of a test case or test set.
The least required information to be logged is defined by the test
log structure of the test log.

A test log structure specifies the information that is deemed
relevant during execution of a test case or a test set. There is an
implicit default test log structure that prescribes at least the start
time point, the duration, the finally calculated verdict and the
executing entity of a test case or test set execution which should be
logged.

A desired effect that a test case or test set intends to achieve.

A procedure that constrains the execution order of a number of test
actions.

A desired property on a test case or test set, referring to some
aspect of the test item to be tested.

A set of test cases that share some common purpose.

A test log that captures relevant information from the execution of
a test set.

A statement that explains the rationale for grouping test cases
together.

A verdict that indicates the result (i.e., the conformance of the
actual properties of the test item with its expected properties) of
executing a test set against a test item.

A quality attribute of a test item that must be addressed by a
specific test context.

The time point at which a test action is initiated.

A statement that indicates the result (i.e., the conformance of the
actual properties of the test item with its expected properties) of
executing a test set, a test case, or a test action against a test item.

UML Testing Profile 2 (UTP 2), Version 2.2

Source
UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

UTP 2

UTP 2
UTP 2

UTP 2

UTP 2
UTP 2

UTP 2

UTP 2

UTP 2

UTP 2
UTP 2

4 References

4.1 Normative References

[MOF]

http://www.omg.org/spec/MOF/

Object Management Group: “Meta Object Facility™ (MOF™) - Version 2.5.1”,
November 2016, formal/2016-11-01

[OCL] http://www.omg.org/spec/OCL/
Object Management Group: “Object Constraint Language™ (OCL™) - Version 2.4”,
February 2014, formal/2014-02-03

[UML] http://www.omg.org/spec/UML
Object Management Group: “OMG Unified Modeling Language™ (OMG UML) -
Version 2.5”, March 2015, formal/2015-03-01

[XMI] http://www.omg.org/spec/XMI/
Object Management Group: “XML Metadata Interchange (XMI) Specification -
Version 2.5.1”, June 2015, formal/2015-06-07

4.2 Informative References

[BMM] http://www.omg.org/spec/BMM
Object Management Group: “Business Motivation Model - Version 1.3”, May 2015,
formal/2015-05-19

[DD] http://www.omg.org/spec/DD/
Object Management Group: “Diagram Definition™ (DD) - Version 1.1”, June 2015,
formal/2015-06-01

[ES20187301] http://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.07.01_60/es 20187301v
040701p.pdf
ETSI ES 201 873-1: “Methods for Testing and Specifications (MTS) - The Testing and
Test Control Notation version 3 - Part 1: TTCN-3 Core Language”; V4.7.1 (2015-06)

[ES202951] http://www.etsi.org/deliver/etsi_es/202900_202999/202951/01.01.01_60/es_202951v0101
0lp.pdf
ETSI ES 202 951: “Requirements for Modeling Notations. ETSI Standard, Methods
for Testing and Specification (MTS)”; Model-Based Testing (MBT). V1.1.1 (2011-07)

[ES20311901] http://www.etsi.org/deliver/etsi_es/203100_203199/20311901/01.02.01_60/es 20311901v
010201p.pdf
ETSI ES 203 119-1: “Methods for Testing and Specifications (MTS) - The Test
Description Language (TDL) - Part 1: Abstract Syntax and Associated Semantics”;
V1.2.1 (2015-06)

[ES20311902] http://www.etsi.org/deliver/etsi es/203100_203199/20311902/01.01.01_60/es_20311902v
010101p.pdf
ETSI ES 203 119-1: “Methods for Testing and Specifications (MTS) - The Test
Description Language (TDL) - Part 2: Graphical Syntax”; V1.1.1 (2015-06)

[ES20311903] http://www.etsi.org/deliver/etsi es/203100_203199/20311902/01.01.01_60/es_20311902v

UML Testing Profile 2 (UTP 2), Version 2.2

010101p.pdf

ETSI ES 203 119-1: “Methods for Testing and Specifications (MTS) - The Test
Description Language (TDL) - Part 3: Exchange Format”; V1.1.1 (2015-06)

http://www.omg.org/spec/MOF/
http://www.omg.org/spec/OCL/
http://www.omg.org/spec/UML
http://www.omg.org/spec/XMI/
http://www.omg.org/spec/BMM
http://www.omg.org/spec/DD/
http://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.07.01_60/es_20187301v040701p.pdf
http://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.07.01_60/es_20187301v040701p.pdf
http://www.etsi.org/deliver/etsi_es/202900_202999/202951/01.01.01_60/es_202951v010101p.pdf
http://www.etsi.org/deliver/etsi_es/202900_202999/202951/01.01.01_60/es_202951v010101p.pdf
http://www.etsi.org/deliver/etsi_es/203100_203199/20311901/01.02.01_60/es_20311901v010201p.pdf
http://www.etsi.org/deliver/etsi_es/203100_203199/20311901/01.02.01_60/es_20311901v010201p.pdf
http://www.etsi.org/deliver/etsi_es/203100_203199/20311902/01.01.01_60/es_20311902v010101p.pdf
http://www.etsi.org/deliver/etsi_es/203100_203199/20311902/01.01.01_60/es_20311902v010101p.pdf
http://www.etsi.org/deliver/etsi_es/203100_203199/20311902/01.01.01_60/es_20311902v010101p.pdf
http://www.etsi.org/deliver/etsi_es/203100_203199/20311902/01.01.01_60/es_20311902v010101p.pdf

[ES20311904]

[FUML]

[HWT2012]

[IEC61508]

[1SO1087-1]

[1S025010]

[1SO29119]

[1S09126]

[ISTQB]

[MDA]

[MDAa]

[MDAb]

[MDAd]

[OSLC]

[SBVR]

[SEP2014a]

[SysML]

http://www.etsi.org/deliver/etsi es/203100_203199/20311904/01.01.01_60/es_20311904v
010101p.pdf
ETSI ES 203 119-1: “Methods for Testing and Specifications (MTS) - The Test

Description Language (TDL) - Part 4: Structured Test Objective Specification
(Extension)”; V1.1.1 (2015-06)

http://www.omg.org/spec/FUML/

Object Management Group: “Semantics of a Foundational Subset for Executable UML
Models (fUML) - Version 1.2.1”, January 2016, formal/2016-01-05

R. Hametner, D. Winkler, and A. Zoitl, “Agile testing concepts based on keyword-driven
testing for industrial automation systems” in IECON 2012-38" Annual Conference on

https://webstore.iec.ch/publication/5515

IEC: “Functional safety of electrical/electronic/programmable electronic safety-
related

systems—Part 1: General Requirements”, Edition 2.0, IEC 61508-1, 2010-04

ISO: “Terminology work - Vocabulary - Part 1: Theory and application”, ISO 1087-
1:2000(E/F), 15-OCT-2000

ISO/IEC: “System and software engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - Systems and software quality models”,
ISO/IEC 25010:2011, ISO, 2011-03-01

http://www.softwaretestingstandard.org/

ISO/IEC/IEEE: “Software Testing - The International Software Testing Standard”
ISO/IEC: “Software engineering—Product quality—Part 1: Quality model”, ISO/IEC
9126-1:2001, ISO, 2001

http://www.istgb.org

ISTQB: “International Software Testing Qualifications Board”
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf

Object Management Group: “MDA Guide - Version 1.0.1”, June 2003, omg/2003-06-01
http://www.omg.org/mda/papers.htm

Object Management Group: “OMG Architecture Board, “Model Driven Architecture -
A Technical Perspective””
http://www.omg.org/mda/papers.htm

Object Management Group: “Developing in OMG’s Model Driven Architecture
(MDA)”
http://www.omg.org/mda

Object Management Group: “MDA “The Architecture of Choice for a Changing
World””

http://open-services.net/bin/view/Main/QmSpecificationV2

Open Services for Lifecycle Collaboration (OSLC): “Open Services for Lifecycle
Collaboration Quality Management Specification Version 2.0”
http://www.omg.org/spec/SBVR

Object Management Group: “Semantics of Business Vocabularies and Business Rules
(SBVR) - Version 1.3”, May 2015, formal/2015-05-07
http://plato.stanford.edu/archives/win2015/entries/category-theory/

Marquis, Jean-Pierre, “Category Theory”, The Stanford Encyclopedia of Philosophy
(Winter 2015 Edition), Edward N. Zalta (ed.)
http://www.omg.org/spec/SysML

UML Testing Profile 2 (UTP 2), Version 2.2

http://www.etsi.org/deliver/etsi_es/203100_203199/20311904/01.01.01_60/es_20311904v010101p.pdf
http://www.etsi.org/deliver/etsi_es/203100_203199/20311904/01.01.01_60/es_20311904v010101p.pdf
http://www.omg.org/spec/FUML/
https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwebstore.iec.ch%2Fpublication%2F5515&data=05%7C02%7Cmichelle%40omg.org%7C6eab190338544ce4254a08dc854b0251%7C43ba4fbcdc0a4269b50364f0363799d8%7C0%7C0%7C638531804447359278%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=eKMAzYMqfFWFs2BiOTOBStll1f5MOlCcow9TBnr4ULQ%3D&reserved=0
http://www.softwaretestingstandard.org/
http://www.istqb.org/
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://www.omg.org/mda/papers.htm
http://www.omg.org/mda/papers.htm
http://www.omg.org/mda
http://open-services.net/bin/view/Main/QmSpecificationV2
http://www.omg.org/spec/SBVR
http://plato.stanford.edu/archives/win2015/entries/category-theory/
http://www.omg.org/spec/SysML

[TCM2008]

[TestIF]

[UL2007]

[UPL2012]

[UTP]

[WikiCT]

[WikiM]

Object Management Group: “OMG Systems Modeling Language (OMG SysML™) -
Version 1.4”, September 2015, formal/2015-06-03

J. Tang, X. Cao, and A. Ma, “Towards adaptive framework of keyword driven
automation testing” in Automation and Logistics, 2008. ICAL 2008. IEEE International
Conference on, 2008, pp. 1631-1636

http://www.omg.org/spec/TestIF/

Object Management Group: “Test Information Interchange Format (TestIF)
Specification - Version 1.0”, May 2015, formal/2015-05-05

Utting, M., Legeard, B.: “Practical Model-Based Testing: A Tools Approach”, Morgan-
Kaufmann, 2007

http://dx.doi.org/10.1002/stvr.456

Utting, M., Pretschner, A., and Legeard, B.: “A taxonomy of model-based testing
approaches”, in Softw. Test. Verif. Reliab. 22, 5, August 2012, p. 297-312
http://www.omg.org/spec/UTP

Object Management Group: “UML Testing Profile - Version 1.2”, April 2013,
formal/2013-04-03
https://en.wikipedia.org/wiki/Category_theory

Wikipedia: “Category Theory”
https://en.wikipedia.org/wiki/Morphism

Wikipedia: “Morphism”

UML Testing Profile 2 (UTP 2), Version 2.2 1

http://www.omg.org/spec/TestIF/
http://dx.doi.org/10.1002/stvr.456
http://www.omg.org/spec/UTP
https://en.wikipedia.org/wiki/Category_theory
https://en.wikipedia.org/wiki/Morphism

5 Symbols

No special symbols have been used in this specification.

12 UML Testing Profile 2 (UTP 2), Version 2.2

6 Additional Information

6.1 How to read this document

This specification is intended to be read by the audience listed below in order to learn, apply, implement and support
UTP 2. To understand how UTP 2 relates to other testing standards, all readers are encouraged to read Clause 66
(Additional Information). In order to learn more about the conformance of UML and UTP 2 as well as the
compliance levels between the UTP 2 specification and the UTP 2 tool implementation, please read Clause 22
(Conformance). Some references to other standards are listed in Chapter3Clause 3 (References). For convenience,
Clause 44 (Terms and Definitions) contains a brief summary of the concepts described in more detail in Clause 77
((Informative) Conceptual Model [STUB]).

The definition of the UML Testing Profile itself can be found in the Chapters 7-9. Clause 7 ((Informative)
Conceptual Model [STUB]) starts with the definition of a pure conceptual model of UTP 2 independent of any
implementation measures. The conceptual model is informative (i.e. non-normative) but provides the big picture of
the intended scope of UTP 2. The mapping of the conceptual model to the UML profile specification is described in
Clause 8 (Profile Specification [STUB]). The stereotype mappings abide by the semantics of the conceptual
elements in general. Only additional aspects of the semantics regarding the integration of a stereotype with related
UML metaclasses will be added in Clause 8-8.

Clause 99 (Model Libraries) describes the predefined UTP 2 model libraries. The UTP Auxiliary Library provides
predefined elements for reuse across multiple modeling projects. The UTP Types Library provides additional types
that have been proven helpful for the definition of tests.

The Annex sections provide further informative material for UTP 2, in particular an examples section that shows
different methodologies on how to apply UTP 2 technically and conceptually. The Annex sections are living

sections that means they may change among future versions.

Modeling tool vendors should read the whole document, including the annex chapters. Modelers and engineers are
encouraged to read Annex A to understand how the language is applied to examples.

This document may be read in both sequential and non-sequential manner.

UML Testing Profile 2 (UTP 2), Version 2.2 13

6.2 Typographical conventions

A set of typographical conventions have been applied to the editorial part of this specification that should help the
reader in understanding and relating things to their proper context. These conventions are subsequently explained:

e Concepts of the conceptual model are written in lower letters and colored blue, indicating a link to the
section of the conceptual element. Example: test context

e UML metaclasses start with an upper--case letter and are written in camel-case and are set bold and blue.
Example: Constraint, BehavioredClassifier

e Stereotypes are start with an upper--case letter and are written in camel-case, surrounded by guillemets.
Example: «TestContexty

e Properties of metaclasses or tag definitions of stereotypes are stated in italic: Examples:
constrainedElement (from UML metaclass Constraint), arbitrationSpecification (from stereotype
«ProceduralElementy)

e Values of Properties or tagged values of tag definitions are stated italic: Examples: false, true

e OCL constraints as formalization of natural language Constraint descriptions are set in Courier. Example:
context TestComponent:
not self.base Property.class.getAppliedStereotype ('UTP: :Testltem') ->
oclIsUndefined()

14 UML Testing Profile 2 (UTP 2), Version 2.2

6.3 Typical Use Cases of UTP 2

This section briefly summarizes typical use cases of UML Testing Profile V2 (UTP 2) by means of a simple UML
use case model. It is intended to give the interested reader an initial idea of who and what for UTP 2 may be used in
the context of developing and testing complex systems.

The following use case diagram summarizes typical UTP 2 users and their use cases of UTP 2.

implement tool
support for UTP 2

evaluate test
implement results
automatic test
case execution

Tool Vendor

implement test implement execute test
onboard test
componenfs cases cases
System Test Designer
Designer
Test Design

generate test
case instances

design unit
tests

update test
specifications

design system
tests

test leve

«includen, v

design test V‘

cases "
V test level

aspect to be tested

select test test level

data

design test
specifications

design
integration tests

test level

provide test
data

aspect to be tested

design
acceptance tests

aspect to be tested

design test design test cases

data R for a data-intensive
«includen
system

design test cases
for a system that
includes humans

design test cases for
a system with
time-critical behavior

Quality Assurance

check
traceability

Requiremen- Certifier
ts Engineer

«includen

i
'
'
I
'
'

QA Manager
review test determine
specifications test coverage
System Product Project
Operator Manager Manager

Figure 6.1 - UTP 2 Use Cases

The following table characterizes the users (represented as UML actors) introduced in the diagram above and lists
for each user the use cases related to UTP 2 she or he may directly or indirectly carry-out.

UML Testing Profile 2 (UTP 2), Version 2.2 15

Table 6.1 - Typical UTP 2 Users

User Type
Certifier

Human Test Executor

Machine Test Executor

Product Manager

Project Manager

QA Manager

Requirements Engineer

System Designer

System Operator

Test Designer

16

Description

A role of a person responsible for
certifying a safety-critical or mission-
critical system or product.

A role of a person responsible for
executing test cases and/or evaluating their
outcomes.

A machine or device that executes test
cases and/or evaluates their outcomes.

A role of a person having the overall
responsibility for a system or product.

A role of a person having the overall
responsibility for the development,
procurement, implementation, or adaption
of a system or product or a part of it.

A role of a person responsible to guarantee
the appropriate quality of a system or
product.

A role of a person responsible for
gathering, expression and managing the
requirements on a system or product.

A role of a person that designs, builds,
extends, maintains, or updates a system or
product.

A role of a person that utilizes a system or
product.

A role of a person that designs, builds,
extends, maintains, or updates test
specifications of a system.

Use Cases

check traceability

review test specifications

evaluate test results
execute test cases

evaluate test results
execute test cases
determine test coverage

check traceability
review test specifications

determine test coverage
check traceability

determine test coverage

check traceability
review test specifications

design test cases

design acceptance tests
design integration tests
design system tests

design test cases for a data-
intensive system

design test data
design test cases for a system that

includes humans

design test cases for a system with
time-critical behavior
design unit tests

generate test case instances
review test specifications

check traceability

implement automatic test case
execution

implement onboard test cases
implement test components
select test data

review test specifications

check traceability

design test cases

design acceptance tests

design integration tests

design system tests

design test cases for a data-
intensive system

design test data

design test cases for a system that
includes humans

design test cases for a system with
time-critical behavior

UML Testing Profile 2 (UTP 2), Version 2.2

Tool Vendor

A role of a person that develops a tool
implementing at least some aspects of the °
UTP 2 specification.

design unit tests
generate test case instances

design test specifications
implement automatic test case
execution

implement onboard test cases
implement test components
provide test data

select test data

update test specifications
implement tool support for UTP 2
implement automatic test case
execution

e implement onboard test cases
e implement test components

e select test data

The following table briefly describes the use cases introduced in the diagram above.

Table 6.2 - Typical UTP 2 Use Cases

Use Case
check traceability

design acceptance tests

design integration tests

design system tests

design test cases

design test cases for a data-
intensive system

design test cases for a system that

includes humans

design test cases for a system with
time-critical behavior

design test data

design test specifications

design unit tests

determine test coverage

Description

Verification of the traceability between requirements and test cases in order to
determine the coverage of a system by a set of test cases.

The design of test cases that are used to perform an acceptance test of a system
or product, i.e. that the sponsor/customer may decide on the acceptance of that
system or product.

The design of test cases that are used to perform an integration test of a system
or product, i.e. the verification of the interoperability among its internal
components as well as with its environment conforms to its specification.

The design of test cases that are used to perform a system test of a system or
product, i.e. the verification that the system or product (typically viewed as a
black box) fulfills its requirements.

The design, elaboration and adaptation of test sets comprising test cases in
order to verify the requirements and/or to validate the goals of a system or
product.

The design of test cases for a system whose functionality includes complex
processing of data that is of a highly complex structure and/or of large data
volumes.

The design of test cases for a sociotechnical system that includes technical
systems as well as humans collaboratively performing complex processes.
The design of test cases for a system that must comply to soft or hard real-time
constraints on its behavior.

The design and production of data that is of a highly complex structure and/or
of large data volumes.

The elaboration and compilation of all information necessary for carrying-out
verification and validation procedures of a system or product. This includes
specifying test objectives, test strategies, test procedures, test data, test
configurations, evaluation criteria and more.

The design of test cases that are used to perform functional tests of an
individual component of a system or product.

The examination of test sets and test cases with the focus on the coverage
provided by of those test sets and test cases with respect to the requirements
and/or implementation aspects of a system or product in order to determine the

UML Testing Profile 2 (UTP 2), Version 2.2 17

evaluate test results

execute test cases

generate test case instances
implement automatic test case
execution

implement onboard test cases

implement test components

implement tool support for UTP 2

provide test data
review test specifications
select test data

update test specifications

suitability of the test sets and test cases for a given purpose.

The examination of the results of an executed test set or executed test case in
order to determine the verdict of the test set or test case.

The manual or automatic execution of test procedures according to a given test
specification composed of sets and/or test cases.

The manual or automatic production of specific test case instances from a
given test specification composed of generic sets and/or test cases.

The implementation, provisioning and configuration of test infrastructure
required to perform and evaluate test sets or test cases automatically.

The implementation of test components and test procedures as part of a system
or product in order to make it able to perform self-tests while it is in operation.
The implementation, provisioning, and configuration of auxiliary test
components in order to automate or at least to simplify the execution of test
sets or test cases.

The implementation, provisioning, or configuration of a tool in order to
supports the utilization of UTP 2. This could e.g. be a UML Profile
implementing UTP 2 for a particular UML modeling tool or a test execution
tool that supports the concepts of UTP 2.

The provisioning of dedicated data that is used to perform test sets or test
cases.

The quality assurance of a particular test specification in order to fulfill given
quality goals.

The selection and potentially transformation of available operational data in
order to use this data during the execution of test sets or test cases.

The adaption of test objectives, test strategies, test procedures, test data, test
configurations, evaluation criteria etc. according to changing requirements and
goals of an already existing system or product.

6.4 Relation to testing-relevant standards

The landscape of software/system testing standards is diversified. Many domain-specific standards (e.g.,
IEC61508]) set requirements on how a test process should be conducted. In addition, there are a number of domain-

and methodology-independent testing-relevant standards (e.g., [[SO29119]), to which UTP 2 can define integration

points. In the following section, the specification describes some of these standards and discusses how they can be

integrated with UTP 2.

ISO/IEC/IEEE 29119 Software Testing Standard
The ISO/IEC/IEEE 29119 Software Testing Standard is a family of standards for software testing, which consists of

five parts:

e Concepts and definitions

e Test processes

e Test documentation

e Test techniques

e Keyword-driven testing

1SO29119] is a conceptual standard, in the sense that it does not define technical solutions, specific languages or
methodologies, in contrast to UTP 2. Instead, [[SO29119] standardizes a number of concepts and definitions, some
of which have been adopted by UTP 2. [ISO29119]-2 specifies the structure of test processes and distinguishes
different levels for test processes: organizational, test management and dynamic test processes. The first two
processes deal with management-related aspects of test processes, and the dynamic test process is mainly about
deriving test cases, implementing and executing test cases and evaluating executed test cases.

18

UML Testing Profile 2 (UTP 2), Version 2.2

UTP 2 is designed to support the dynamic test process. That means, it provides concepts that enable the
derivation/generation, specification, visualization and documentation of test artifacts such as test cases, data, test
configurations, test sets and test contexts.

Furthermore, UTP 2 provides necessary concepts to generate [ISO29119]-3-compliant test reports and
documentations out of a UTP 2 model.

A set of standardized test design techniques, such as equivalence partitioning or state-based testing, has been
adopted in [ISO29119]-4 made technically explicit as part of the UTP 2 language. Test engineers can utilize UTP 2
to specify test design techniques to be applied on a certain test design input (e.g., a description of the intended
behavior of the test item, which is represented as a state machine or interaction). In addition to these standardized
test design techniques, test engineers may define additional test design techniques if required.

The relation to [ISO29119]-5, which deals with standardizing the concepts of the keyword-driven testing paradigm,
is of an implicit nature. UTP 2 can be effectively employed to setup and drive keyword-driving testing approaches.
For further information on the relation of UTP 2 to keyword-driven testing see section Relation to keyword-driven

testing.

ISTQB and its glossary

The ISQTB [ISTQB] and its glossary defines a set of globally standardized terminologies and definitions of testing-
related concepts. The ISTQB nomenclature was deemed equally important for the definition of UTP 2 concepts as
the [ISO29119] definitions. Hence, UTP 2 adopted a set of definitions, terminologies and even test design
techniques from the ISTQB glossary and syllabi.

To keep the analogy with [ISO29119], UTP 2 is designed to support activities of test analysis and test design of the
ISTQB fundamental test process. Test implementation and test execution are supported rather indirectly by means of
arbitration specifications, precise semantics of test actions and the definition of test execution schedules.

Test evaluation activities are supported by means of the test logging capability of UTP 2, which enables a system-
independent representation of a test execution. For example, UTP 2 test logs can be exploited for metrics
calculations or supporting other analysis.

ETSI Testing and Test Control Notation 3 (TTCN-3)

ETSI TTCN-3 [ES20187301] standardizes a test programming language and architecture of a test execution system.
It enables a platform-independent implementation of executable test cases. As such, it provides test engineers a set
of language features that has been proven efficient in the development of large and complex test suites for software-
intensive systems of various domains, including telecommunication, transportation, and automotive airborne
software. In addition, TTCN-3 provides concepts that address reusability and simplicity in the specification of large
test suites, such as using wildcard values to ease the definition of expected responses from the test item.

UTP 2, as a successor of UTP 1, is influenced by the capabilities of TTCN-3. UTP 2 adopts some TTCN-3 concepts
such as test components, test configurations and test actions. Moreover, some of the TTCN-3 wildcards definitions
(e.g., regular expression, any value) have been adopted by UTP.

Although UTP 2 defines test cases (due to being dependent on UML) at a much higher level of abstraction than
TTCN-3, it is possible (and has been done in numerous approaches) to generate TTCN-3 modules from UTP 2 test
models.

ETSI Test Description Language (TDL)

The Test Description Language (TDL) standardized by ETSI ([ES20311901], [ES20311902],[ES20311903],
ES20311904]) is a MOF-based graphical modeling language for describing test scenarios (not test cases) by a

similar notation to Message sequence Charts (MSC) or UML sequence Diagrams (SD). TDL represents the next

generation of testing languages in the ETSI testing technology stack and exploits the advantages of MBT. TDL is

used primarily - but not exclusively - for functional testing.

UML Testing Profile 2 (UTP 2), Version 2.2 19

According to ETSI, TDL can bring a number of benefits, including:
e higher quality tests through better design
e casier to review by non-testing experts
e Dbetter, faster test development
e seamless integration of methodology and tools

TDL and UTP 2 share a set of common concepts such as test component, test configuration and procedural
elements. This is partially due to the same origin of TDL and UTP 2: TTCN-3. In that regard the two languages are
compatible. However, UTP 2 has a bigger scope than TDL, which so far mainly focuses on functional testing and
the manual definition of test scenarios. UTP 2 offers several features beyond the capability of TDL, such as
specifying test design techniques and application thereof onto a test design input. UTP 2 offers explicit concepts for
test generation. Another feature of UTP 2 is the flexible handling of arbitration specifications. Finally, UTP 2 offers
concepts to organize testing activities based on test management concepts such as test contexts, which resemble the
semantics of [ISO29119] test process or test sub-process, test types, test objectives and test sets.

20 UML Testing Profile 2 (UTP 2), Version 2.2

6.5 Relation to model-based testing

Model-Based Testing (MBT) is a testing technique that uses models of a software-intensive system under test to
perform certain testing activities such as test analysis, test design and test implementation in both an automated (e.g.,
generation of test cases and data) and manual manner. Such a system under test is called a test item in the context of
the UTP.

The UTP definition of MBT is adopted and slightly adjusted from the [ES202951] definition. "Model-based testing
(MBT) is an umbrella of techniques that uses semi-formal models as engineering artifacts in order to specify and/or
generate testing-relevant artifacts, such as test cases, test scripts, and reports." Other valid definitions of MBT are:

e "Testing based on or involving models" ([ISTQB], Glossary)
e "Anumbrella of techniques that generates tests from models" [ES202951

MBT has been thoroughly investigated in the academic literature and has also been of great interest in a variety of
industry domains [UPL2012], [UL2007]. The idea of MBT is to utilize models (so called test models in the context
of UTP 2) that represent the expected behavior of the test item or test cases of the test item at a higher level of
abstraction. Such abstraction enables test engineers to focus exclusively on the logical aspects of the test item,
instead of being bothered by technical details of the eventual implementation. Low level details of test cases, for
example, syntactical details of a scripting language or completeness of data, can be taken care of by domain specific
generators eventually producing executable test cases, which can finally be executed against the test item.

UTP 2 is an industrial standard that dedicatedly supports MBT by relying on UML. UTP covers a variety of
concepts that are deemed mandatory such test case, data, and Arbitration & verdict. It also dedicatedly and
exclusively defines concepts to govern the derivation of test-relevant information (such as test cases, data etc.) by
means of test directives and test design techniques. Additionally, it also provides a few test management-related
concepts that are required for defining complete test specification documents (compatible with [ISO29119]) such as
test contexts (called test process/test sub-process in [ISO29119])), test level, test type and test logs.

UTP 2 is agnostic of any MBT methodology, and thus, supports a variety of MBT approaches. Some of the key
aspects include: 1) Modeling test cases for a test item using stereotypes from the profile; 2) Modeling the expected
behavior of the test item for test derivation using stereotypes from the profile; 3) Modeling test case specifications in
domain specific languages implementing UTP.

Based on the philosophy of (test) modeling, UTP allows creating test models at various levels of abstraction ranging
from test models that have no concrete data, test models that have some data, and test models that have all concrete
data available.

6.6 Relation to keyword-driven testing

Keyword-driven testing (KDT) is an industrial de-facto standard that is suitable for both manual and automated test
execution. KDT methodologies define logical functions that can be performed on the test item in an implementation-
independent format (i.e., keyword) at a higher level of abstraction. Keywords are used to design so called keyword
test cases (see [[SO29119]-5). In order to execute the keyword test cases against the test item, it is required that
implementations of the keywords can be executed by a keyword-based test execution system. Keyword
implementations are usually organized in a test library.

The keyword-based test execution system is responsible to establish a connection between the keyword
implementations and the actual implementation of the test item, run keyword test cases, and execute the keyword
implementations against the actual implementation of the test item.

In the literature, there exist a number of keyword-driven testing frameworks. For example, Tang et al. [TCM2008
proposed a keyword-driven testing framework to transform keyword-based test cases into different kinds of test
scripts. Hametner et al. [HWT2012] proposed a keyword-driven testing approach to specify keyword test cases in a
high abstraction level, as tabular format using predefined keywords, and automatically generated executable test
cases from the keyword test case. There are a number of commercial and open--source tools available for KDT.

UTP 2 is defined to facilitate MBT, but it does not explicitly cope with the design and implementation of test

UML Testing Profile 2 (UTP 2), Version 2.2 21

execution systems. However, UTP 2 defines concepts such as, abstract test cases and data specification explicitly to
enable automated generation of concrete test cases and data from abstract ones. This idea conforms to the idea of
KDT in terms of raising the level of abstractions by defining keyword test cases.

Keywords can be represented by numerous concepts of the underlying UML within UTP 2. For example, Operations
of Interfaces may be interpreted as the logical functions that can be performed on the test item. Additionally, UTP 2
can be used to define or generate test cases that are based on these UML-based keyword representations. UML
behaviors such as Activities or Interactions are suitable means to represent keywords in test cases in UTP 2, which
are eventually exported into the keyword format required by the utilized keyword-based test execution system. As
such, UTP 2 is suitable to be used as a standardized and visual language for keywords and keyword test cases.

UTP 2 could even go one step further. Due to the fact that UTP 2 is based on UML, it is even possible to provide an
executable specification of the test library (i.e., the implementation of a keyword) by means of other standards such
as fUML.

As a summary, UTP 2 can be efficiently leveraged as the language for the (automated or manual) design,
visualization, documentation and communication of keywords, keyword test cases and even implementations
thereof.

6.7 Relation to the MARTE Profile

Modeling and Analysis of Real-Time and Embedded Systems (MARTE) is a UML profile that is specifically
designed for modelling and supporting analyses (e.g., performance and schedulability) for real-time and embedded
systems. MARTE is developed to replace its predecessor UML profile, i.e., the UML profile for the Schedulability,
Performance, and Time specification (SPTP).

At a very high level, the MARTE profile is organized into four main packages: MARTE foundations, MARTE
design model, MARTE analysis model, and MARTE annexes including: MARTE model libraries, Value
Specification Language, and Repetitive Structure Modeling. Out of these four packages MARTE analysis model is
outside the scope of UTP since it doesn’t aim to support analyses such as performance and schedulability but rather
focuses on the test case generation. Nonetheless, UTP may be used for supporting model-based performance and
schedulability testing and such modelling can be supported with MARTE foundation package on which MARTE
analysis model relies on.

The most relevant packages for UTP from MARTE include Non-Functional Properties Modeling (NFP), Time
Modelling (Time), and MARTE Library. The NFP package provides a generic framework for modelling NFPs using
UML modeling elements. The package defines stereotypes such as «Nfp» to define new NFPs for a particular
application and «Unit» for defining new measurement units by extending the existing ones provided in the MARTE
model library such as TimeUnitKind and PowerUnitKind. Notice that NFPs defined in MARTE can be used
together with UTP to support test case generation.

The Time package is specifically designed for modelling time and its related concepts specifically for real-time and
embedded systems. Since Time and behavior are tightly coupled, MARTE’s Time modelling can be used in
conjunction with the UTP for supporting model-based testing of real-time embedded software/system with a focus
on time behavior. The extensive model library of MARTE provides extended basic data types such as Real and
DateTime and a rich collection of operations on them. In addition, it also provides a wide variety of measurement
units such as TimeUnitKind and LengthUnitKind, general data types such as IntegerVector and IntegerInterval,
predefined data types such as NFP_Percentage and NFP_DataSize and TimeLibrary supporting modelling such as
logical and ideal clocks. These types can be used for modelling test items and test components that require extended
data types rather than the basic data types supported by the UML. In addition, the modelling support for a variety of
clocks, i.e., logical and ideal clocks, can be used for modelling complex time behavior of test items and test

components.

22 UML Testing Profile 2 (UTP 2), Version 2.2

6.8 Acknowledgements

The following OMG member organizations submitted this specification (in alphabetic order):
e Fraunhofer FOKUS, Germany.
e SOFTEAM, France.

The following OMG and non-OMG member organizations supported this specification (in alphabetic order):
e PTC Inc., United Kingdom and USA.
e Hamburg University of Applied Science, Germany.
e KnowGravity Inc., Switzerland.
e Simula Research Lab, Norway.

Special Acknowledgments
The following persons were members of the core teams that contributed to the content of this document (in
alphabetic order):

e Alessandra Bagnato, alessandra.bagnato@softeam.fr

e Etienne Brosse, etienne.brosse@softeam.fr

e Zhen Ru Dai, dai@informatik.haw-hamburg.de

e Rolf Gubser, rolf.gubser@knowgravity.com

e Andreas Hoffmann, andreas.hoffmann@fokus.fraunhofer.de

e Andreas Korff, akorff@ptc.com

e Markus Schacher, markus.schacher@knowgravity.com

e Marc-Florian Wendland, marc-florian.wendland@fokus.fraunhofer.de

This page intentionally left blank.

UML Testing Profile 2 (UTP 2), Version 2.2

7 (Informative) Conceptual Model

This section is informative, i.e. non-normative and not relevant for actual profile implementations. However, it is
included here to help the reader to get a better understanding of the concepts behind UTP 2. This section illustrates
some of the semantics for the concepts defined in this document by means of a pragmatic application of the OMG
specification "Semantics of Business Rules and Vocabularies" [SBVR]. This pragmatic application of SBVR
includes the following:

e A number of concept diagrams visualize the concepts as well as their interrelationships (in SBVR called
"verb concepts") organized around different subject areas. Furthermore, any SBVR definitional rule related
to the concepts shown is also visualized on the diagram.

e For each concept diagram, the rule statements of each definitional rule shown are listed. The styling of
those rule statements is simplified compared to [SBVR] in the sense that no colors/formatting is used. The
only styling that is shown is that concepts defined within the document are shown underlined and represent
an intra-document hyperlink.

e For each concept diagram, the semantics of each concept shown on the diagram is defined, usually by
means of an intensional definition as suggested by [ISO1087-1]. Here underlined words also represent
hyperlinks to the mentioned concepts. When defined, additional properties of concepts such as synonyms,
examples, generalizations, specialization, etc. are also listed. Furthermore, for each concept the source of its
definition is specified.

71 Test Planning

711 Test Analysis

7111 Test Context Overview
The following concept diagram represents important semantic aspects of test context and associated other concepts
such as test set, test case, data and test design input.

A test context is defined as a hub for information that specifies test type, test level, prescribes test design technique,
and refers to data, data pool, test design input, arbitration specification, test set and test case. A test context also
refers to other important test model elements, such as the set of test cases, data and the test design input. A test
context also provides information for test management, where planning and strategies for the test are defined.

24 UML Testing Profile 2 (UTP 2), Version 2.2

R

R

DRTAO1 DRTA02
test set purpose test level test type test design data
technique
has A specifies A refers to data pool
R A specifies | rescribes A refers to”
DRTAO3
test set <drefers to test context refers tol>r test design input
is member of \—‘ ferst
A —drefers to ~drefers to rFETers 10 . test configuration
test case refers to «
V refers to

test objective

R

R

test requirement

DRTAOI DRTA02
test set purpose test level test type test design data
technique
has A specifies A refers to data pool
R A specifies | prescribes A refers to”
DRTAO03
‘ test set <drefers to test context refers tol>r test design input
is member of A ~drefers to refers top, - -

_arefers fo test configuration

test case vefers to Q
V refers to

test objective

test requirement

Figure 7.1 - Test Context Overview

Definitional Rules shown on "Test Context Overview"
Table 7.1 - Structural rules shown on Test Context Overview

Name
DRTAO1

DRTAO02

DRTAO3

UML Testing Profile 2 (UTP 2), Version 2.2

Rule statement
It is necessary that each test context specifies at most

one test level.

It is necessary that each test context specifies at most

one test type.

It is necessary that each test set refers to at most one
arbitration specification.

25

The following concept diagram represents important semantic aspects of test objectives and test requirements and
how they relate to requirements on a system to be tested.

A test requirement is designed to meet test objectives and test context specifies test objectives. A test case is
designed to meet one or more test objectives and thus the test case must satisfy the associated test requirements of
test objectives. In other words, a test objective specifies the goal of a test case and is defined for a certain test
context. A test objective is realized by test requirement and implemented by test cases.

The diagram below also shows how test requirements are related to concepts in [SysML]. A test requirement refers to
system specification item and associated with requirements of the system. A requirement is further specialized into
functional requirement and non-functional requirement.

SysML efc.
functional
requirement
requirement system specification
item
non functional
requirement
refers to A
test objective ~lis designed to meet test requirement
specifies A Vis designed to meet
test context refers tol> test case verifies >

Figure 7.2 - Test Requirement and Test Objective Overview

71.1.2 Concept Descriptions
test context
Definition A set of information that is prescriptive for testing
activities which can be organized and managed together
for deriving or selecting test objectives, test design
techniques, test design inputs and eventually test cases.

Examples acceptance test, smoke test, system test, ...

Source UTP 2

test level

Definition A specification of the boundary of a test item that must
be addressed by a specific test context.

Examples integration test, system test, component test, ...

Source UTP 2

26 UML Testing Profile 2 (UTP 2), Version 2.2

test objective

Definition A desired effect that a test case or test set intends to

achieve.

Examples ° Provision of information about the qualities of |
the product to a certification authority or other
stakeholders

. Provision of information that the product has |
met stakeholder expectations
. Provision of information that requirements of a |

product are fulfilled (i.e. regulatory, design,
contractual, etc.)
Source UTP 2

test requirement

Definition A desired property on a test case or test set, referring to
some aspect of the test item to be tested.
Synonyms test condition
Examples . Test case must ensure 80% path coverage of
use case XY.
. Test case must check that an [Pv6 multicast

message is carried out over a GeoBroadcast
message into the correct geographical area,
with a GVL manually configured.

71.21

Source UTP 2

Isa requirement

test set

Definition A set of test cases that share some common purpose.

Source

test set purpose

Test Design Facility Overview

UTP 2

Definition A statement that explains the rationale for grouping test
cases together.

Source UTP 2

test type

Definition A quality attribute of a test item that must be addressed
by a specific test context.

Examples functionality test, usability test, conformance test,
interoperability test, performance test, ...

Source UTP 2

7.1.2 Test Design

The following diagram summarizes the concepts of UTP 2 test design facility. The test design facility enables the
specification of test design techniques that must be applied on a test design input in order to derive test artifacts such
as test sets, test cases, test configurations, required data or test execution schedules. Whether the test derivation
process according to the specified test design techniques is carried out manually or automatically does not matter
whatsoever. Such test design techniques are assembled and governed by a test design directive. Thus, the test design
directive is a specification of the capabilities a test designing entity (e.g. a human tester or test generator) must offer
in order to perform the derivation activities according to the assembled test design techniques. The UTP 2 test
design facility is agnostic of any implementation- or tool-specific details and simply offers the ability to describe,

UML Testing Profile 2 (UTP 2), Version 2.2 27

select and extend the set of potentially available and applicable test design techniques.

test design directive assembles a set of test design
technigue and applies them to test design input

test design
technique

assembles a set of

test design input

and applies them to

test objective

supports achievement A

test design directive

produces v produces v produces v produces v
test set test case data test execution
schedule

Figure 7.3 - Test Design Facility Overview

71.2.2 Concept Descriptions
test design directive

Definition

Source
test design input
Definition

Examples

Source
Isa

test design technique

Definition

28

A test design directive is an instruction for a test
designing entity to derive test artifacts such as test sets,
test cases, test configurations, data or test execution
schedules by applying test design techniques on a test
design input. The set of assembled test design
techniques are referred to as the capabilities a test
designing entity must possess in order to carry out the
test design directive, regardless whether it is carried out
by a human tester or a test generator. A test design
directive is a means to support the achievement of a test
objective.

UTP 2

Any piece of information that must or has been used to
derive testing artifacts such as test cases, test
configuration, and data.

a state machine specifying some expected behavior of
the test item used to derive some test cases, a
requirements catalog used to derive some test cases, ...
UTP 2

model

A specification of a method used to derive or select test configurations, test cases
and data. test design techniques are governed by a test design directive and applied

UML Testing Profile 2 (UTP 2), Version 2.2

to a test design input. Such test design techniques can be monolithically applied or
in combination with other test design techniques. Each test design technique has
clear semantics with respect to the test design input and the artifacts it derives from
the test design input.

Examples equivalence testing, structural coverage;

Source UTP 2

7.2 Test Architecture

7.21 Test Architecture Overview

The following concept diagram represents important semantic aspects in the context of test configuration and
associated other concepts such as test component, test items and test cases. A test case relies on at least one test
configuration to execute. A test configuration specifies how the test item and test components are interconnected and
what configuration data are needed. Configuration data are specified as part of the test item configuration and test
component configuration for the test item and each test component.

We explicitly classify test configuration into two categories: abstract test configuration and concrete test
configuration such that enabling the generation of concrete test configurations from an abstract test configuration
would be possible.

test set artifact

[',
i«is role ofy s role ofy

test item test component

i ber| of
s member o A specifies the configuration of A specifies the configuration of A

test item
. . test component

configuraton -1 - .

configuration

test case DRTROT test configuration DRTRO2

<djs declared for

abstract test ~dderived from concrete test
configuration configuration

Figure 7.4 - Test Architecture Overview

Definitional Rules shown on "Test Architecture Overview"

Table 7.2 - Structural rules shown on Test Architecture Overview

Name Rule statement

DRTRO1 It is necessary that each test item configuration specifies
the configuration of at least one test item.

DRTRO02 It is necessary that each test component configuration

specifies the configuration of at least one test

UML Testing Profile 2 (UTP 2), Version 2.2 29

Name

7.2.2 Concept Descriptions

30

abstract test configuration
Definition

Source
Isa

artifact
Definition

Synonyms
Examples

Source

concrete test configuration
Definition
Source

Isa

test component
Definition

Examples

Source
Sub categories
Is role of

test component configuration
Definition

Source

test configuration

Rule statement
component.

A test configuration that specifies the test item, test
components and their interconnections as well as
configuration data that should be abstract test data.
UTP 2

test configuration

An object produced or modified during the execution of
a process.

work product

. Software XY.

. Software Requirements Specification.
. Coffee machine.

. Coffee bean.

UTP 2

A test configuration that specifies the test item, test
components and their interconnections as well as
configuration data that should be concrete data.
UTP 2

test configuration

A role of an artifact within a test configuration that is

required to perform a test case.

° A test driver

. A test stub

. Coffee machine that grinds the coffee beans to
be tested.

UTP 2

data provider
artifact

A set of configuration options offered by an artifact in
the role of a test component chosen to meet the
requirements of a particular test configuration.

UTP 2

Definition A specification of the test item and test components as well as their interconnection
and configuration data.

Source UTP 2

Sub- e abstract test configuration

categoriesSubcategories e concrete test configuration

UML Testing Profile 2 (UTP 2), Version 2.2

test item
Definition

Synonyms
Examples

Abbreviation
Source
Is role of

test item configuration
Definition

Source

7.3 Test Behavior

7.3.1 Test Cases

7.31.1 Test Case Overview

A role of an artifact that is the object of testing within a

test configuration.
System Under Test, SUT

. Software XY to be tested.

. Software Requirements Specification to be
reviewed.

. Coffee machine to be tested.

° Coffee beans to be tested.

SUT

UTP 2

artifact

A set of configuration options offered by an artifact in
the role of a test item chosen to meet the requirements
of a particular test configuration.

UTP 2

The following concept diagram represents important semantic aspects in the context of what a test case is and what
its components are. A test case invokes a test procedure describing the execution order of individual test actions (not
shown here, see Test Procedures and Test-specific Actions for details). A test case is specialized into abstract test

case and concrete test case depending on the availability of data. If all the data required for a test case is available, it
is classified as a concrete test case and abstract test case otherwise.

As shown in Test Context Overview, test cases may be grouped into test sets. A test execution schedule prescribes

execution order of this set of test cases. All, test cases, test procedure, and test execution schedule may require a

preconditon and may guarantee a postcondition, each of which play the role of boolean expression.

UML Testing Profile 2 (UTP 2), Version 2.2

31

is member of >

test set

specifies[>

data ‘

uses

prescribes as

abstract test case

setup v prescrib

<dinvokes

es as teardown v

concrete test case

A

procedure

// T~
/// \\\\\
_— —
test case R test procedure R test execution
DRTCO] - DRTCO8 schedule
—— g . ///
requires v —— ////&/\\ guarantees v
_—Arequires ngoronfees& ~
// ////// —
/////;requires guoron’reesm\\ \
‘ preconditon | __| boolean expression . | postcondition
«is role ofy B - «is role ofy
DRTC02DRTCO3DRTC04 DRTCO5DRTC06DRTC0O7

Figure 7.5 - Test Case Overview

Definitional Rules shown on "Test Case Overview"
Table 7.3 - Structural rules shown on Test Case Overview

Name
DRTCO1

DRTCO02

DRTCO03

DRTC04

DRTCO05

DRTC06

DRTCO07

DRTCO08
7.3.1.2

abstract test case

Definition

Source

Isa

boolean expression

Definition
Synonyms

32

Rule statement

It is necessary that each test case invokes at least one
test procedure.

It is necessary that each test execution schedule requires
at most one preconditon.

It is necessary that each test case requires at most one
preconditon.

It is necessary that each test procedure requires at most
one preconditon.

It is necessary that each test execution schedule
guarantees at most one postcondition.

It is necessary that each test case guarantees at most one
postcondition.

It is necessary that each test procedure guarantees at
most one postcondition.

It is impossible that a test execution schedule invokes a
test procedure.

Concept Descriptions

A test case that declares at least one formal parameter.
UTP2
test case

An expression that may be evaluated to either of these values: "TRUE" or "FALSE".
predicate

UML Testing Profile 2 (UTP 2), Version 2.2

Source

concrete test case

UTRP2UTP2

Definition A test case that declares no formal parameter.

Source UTFP2UTP2

Isa test case

postcondition

Definition A boolean expression that is guaranteed to be True after a test case execution has
been completed.

Source UTFP2UTP2

Is role of boolean expression

preconditon

Definition A boolean expression that must be met before a test case may be executed.

Source UTP2UTP2

Is role of boolean expression

test case

Definition A procedure that includes a set of preconditions, inputs and expected results,
developed to drive the examination of a test item with respect to some test
objectives.

Source UFP2UTP2

Isa procedure

Sk e abstract test case

eategoriesSubcategories

test execution schedule
Definition

e concrete test case

A procedure that constrains the execution order of a number of test cases.

Source UTP 2UTP2

Isa procedure
7.3.2 Test-specific Procedures
7.3.21 Test Procedures

The following concept diagram represents important semantic aspects of procedures as they are used in UTP. UTP
distinguishes three different types of procedures: test execution schedules, test cases and test procedures, which are
all special forms of procedures. In general, procedures may invoke other procedures. Furthermore, all procedures
may declare one or more formal parameters which are replaced by actual parameters upon procedure invocation.

A procedure prescribes the execution order of a set of procedural elements, which are either atomic procedural
elements (such as procedure invocations or individual test actions) or compound procedural elements.

A compound procedural element is a container that groups a set of procedural elements into sequences, loops, and
other control structures.

Any procedural element may be constrained by time which is expressed by its possible fact statements of time points
and durations. A procedural element may be constrained on when it is to be performed as well as how long it is to be
performed by the tester.

UML Testing Profile 2 (UTP 2), Version 2.2 33

sequence loop ‘
parallel alternative ‘

setup procedure
invocation

procedural elemen

negative ‘

compound

after comple};n of the previous

procedural element starts PE start
duration after completion of the
previous procedural element

/"\\\ PE start duration
P _starts

\4is role ofy
\/

| procedural elemenl‘

R

DRTPO1

procedure invocation provides actual parameter for formal parameter specifying arbitration

main procedure || N
invocation \\ / after completion of the previous
\ | | atomic procedural s role of»
\ 1 t -
‘ ieard'own pr?cedure \\ el eTen PE end durafion
invocation \\ /\ \
N 7\ - / \ \)
<§\ /'J \\ =
~\/ AN __~procedural element ends PE end
l arhitration | pracadure] S Jducdionaffercompletion of
‘ specification ‘ invocation o ‘previous procedural element
. procedural elemen
o / formal parameter leads to> verdict
| \\ i
3 A ~dinvokes
3 provides declares R
3 actual parameter procedure DRTPO2
! N prescribes the execution order of >
| /\ | >
! test execution test case test procedure
| schedule
i DRTPO4 DRTPO3

34

UML Testing Profile 2 (UTP 2), Version 2.2

sequence loop procedural element starts PE start
duration after completion of the

previous procedural element

parallel

alternative ‘

negative —/ starts PE start duration

~_

after comple%on of the previous s role ofy
setup procedure \/
‘ invocation compound procedural elemenl‘ R
] \\ procedural elemen DRTPOI ’\
main procedure \ A /N
‘ invocation \ 0 after completion of the previous
\ '\ [atomic procedural «is role ofy
‘ ieard'own pr?cedure \\ elerpeni PE end durafion
invocation \ \
I A \
\\ /
~\ AN _~procedural element ends PE end
arbitration procedure o A\ ~|durafion after completion of the
specification invocation _previous procedural element
specifying ///
y procedural elemen
”7{// formal parameter leads to = verdict
Iy for
decl A ~dinvokes
provides eclares R
actual parameter procedure — DRTPO2

prescribes the execution order of

[
|
- \

test execution test case test procedure
schedule
DRTPO4 DRTPO3

procedure invocation provides actual parameter for formal parameter specifying arbitration

Figure 7.6 - Test Procedures

Definitional Rules shown on "Test Procedures"
Table 7.4 - Structural rules shown on Test Procedures

Name Rule statement

DRTPO1 It is necessary that the PE start duration of a procedural
element is smaller than the PE end duration of the same
procedural element.

DRTP02 It is necessary that each procedure prescribes the
execution order of at least one procedural element.

DRTPO3 It is necessary that each test procedure prescribes the
execution order of at least one test action.

DRTP04 It is necessary that each test case invokes at least one
test procedure as a main procedure invocation.

7.3.2.2 Concept Descriptions
actual parameter

Definition A concrete value that is passed over to the procedure
and replaces the formal parameter with its concrete
value.

Source UTP 2

UML Testing Profile 2 (UTP 2), Version 2.2 35

alternative
Definition

Source
Isa

atomic procedural element
Definition

Source

Isa

e
eategoriesSubcategories

A compound procedural element that executes only a
subset of its contained procedural elements based on the
evaluation of a boolean expression.

UTP 2

compound procedural element

A procedural element that cannot be further decomposed.
UTP 2

procedural element

e procedure invocation

e test action

compound procedural element

Definition

Source

Isa

Sub-
eategoriesSubcategories

UTP 2
duration
Definition

Source
Isa

formal parameter
Definition

Source

loop
Definition

Source
Isa

main procedure invocation
Definition

Source
Isa

A procedural element that can be further decomposed.
UTP 2

procedural element

e alternative

loop

negative

parallel
sequence

The duration from the start of a test action until its
completion.
UTP 2 WG

duration

A placeholder within a procedure that allows for
execution of the procedure with different formal
parameters that are provided by the procedure
invocation.

UTP 2

A compound procedural element that repeats the
execution of its contained procedural elements.
UTP 2

compound procedural element

A procedure invocation that is considered as the main
part of a test case by the test case arbitration
specification.

UTP 2

procedure invocation

UML Testing Profile 2 (UTP 2), Version 2.2

negative
Definition

Source
Isa

parallel
Definition

Source
Isa

PE end duration
Definition

Source
Is role of

PE start duration
Definition

Source
Is role of

procedural element
Definition

Source

Sub-
eategoriesSubcategories

procedure
Definition

Source
Sub-
eategoriesSubcategories

procedure invocation
Definition

Source

Isa

Sub-
eategeriesSubcategories

sequence
Definition

A compound procedural element that prohibits the
execution of its contained procedural elements in the
specified structure.

UTP 2

compound procedural element

A compound procedural element that executes its
contained procedural elements in parallel to each other.
UTP 2

compound procedural element

The duration between the end of the execution of a
procedural element and the end of the execution of the
subsequent procedural element.

UTP 2

duration

The duration between the end of the execution of a
procedural element and the beginning of the execution
of the subsequent procedural element.

UTP 2

duration

An instruction to do, to observe, and/or to decide.
UTP 2

e atomic procedural element

e compound procedural element

A specification that constrains the execution order of a number of procedural
elements.

UTP 2

e test case

e test execution schedule

e test procedure

An atomic procedural element of a procedure that invokes another procedure and
waits for its completion.

UTP 2

atomic procedural element

e main procedure invocation

e setup procedure invocation

e teardown procedure invocation

A compound procedural element that executes its
contained procedural elements sequentially.

UML Testing Profile 2 (UTP 2), Version 2.2 37

Source
Isa

setup procedure invocation
Definition

Source

Isa

teardown procedure invocation
Definition

Source

Isa

test procedure
Definition

Source
Isa

time point
Definition
Source
Isa

7.3.3 Test-specific Actions

7.3.31 Overview of test-specific actions

UTP 2
compound procedural element

A procedure invocation that is considered as part of the
setup by the arbitration specification and that is invoked
before any main procedure invocation.

UTP 2

procedure invocation

A procedure invocation that is considered as part of the
teardown by the responsible arbitration specification
and that is invoked after any main procedure invocation.

UTP 2
procedure invocation

A procedure that constrains the execution order of a
number of test actions.
UTP 2

procedure

The time point at which a test action is initiated.
UTP 2
time point

The following concept diagram represents important semantic aspects of test actions as parts of test procedures. A
test action is a specialization of an atomic procedural element and is to be interpreted as an instruction to the tester

responsible for executing a test case. Any test action leads to a procedural element verdict (i.e., influences the final

test case verdict).

Most test actions check certain aspects of the test item. The most important aspects of the test item are its observable

behavior (i.e., its responses) and its measurable properties.

38

UML Testing Profile 2 (UTP 2), Version 2.2

atomic procedural
element

test action

A

create stimulus action permits
to send stimulus to test item

R

action

|
create stimulus to

T

permits to send

create stimulus
action forbidds

DRTAO1 \ forbidds to send stimulus fo send stimulus
! fo testitem
to r- [T
! response expect response
‘ - action expects
expects to receive to receive
R | | expectresponse ~ response from
action from
DRTA02 \ does not expect to receive
i expect response action
e B T does not expect toreceive
from response from test item
- < of
test item
R || check property checks property
DRTA03 action
‘ against data

create log entry |
action |

suggest verdict
action

check property action checks
property against data

Figure 7.7 - Overview of test-specific actions

Definitional Rules shown on "Overview of test-specific actions"
Table 7.5 - Structural rules shown on Overview of test-specific actions

Name

DRTAO1

DRTAO02

DRTAO03

7.3.3.2

Source
Isa

Concept Descriptions
check property action
Definition

UML Testing Profile 2 (UTP 2), Version 2.2

Rule statement
It is necessary that a create

stimulus action permits to

send at least one stimulus.

It is necessary that a expect response action expects to

receive at least one response.
It is necessary that a check property action checks at

least one property of the test item against the data.

A test action that instructs the tester to check the
conformance of a property of the test item and to set the

procedural element verdict
check.
UTP 2

test action

according to the result of this

39

create log entry action
Definition

Source
Isa

create stimulus action
Definition

Source
Isa

expect response action
Definition

Source
Isa

property
Definition

Source

response
Definition

Source

stimulus
Definition

Source

suggest verdict action
Definition

Source
Isa

test action
Definition

Synonyms

40

A test action that instructs the tester to record the
execution of a test action, potentially including the
outcome of that test action in the test case log.
UTP 2

test action

A test action that instructs the tester to submit a stimulus
(potentially including data) to the test item.
UTP 2

test action

A test action that instructs the tester to check the
occurrence of one or more particular responses from the
test item within a given time window and to set the
procedural element verdict according to the result of this
check.

UTP 2

test action

A basic or essential attribute shared by all members of a
class of test items.
UTP 2

A set of data that is sent by the test item to its
environment (often as a reaction to a stimulus) and that
is typically used to assess the behavior of the test item.
UTP 2

A set of data that is sent to the test item by its
environment (often to cause a response as a reaction)
and that is typically used to control the behavior of the
test item.

UTP 2

A test action that instructs the tester to suggest a
particular procedural element verdict to the arbitration
specification of the test case for being taken into
account in the final test case verdict.

UTP 2

test action

An atomic procedural element that is an instruction to the tester that needs to be

executed as part of a test procedure of a test case within some time frame.

UML Testing Profile 2 (UTP 2), Version 2.2

Source UTP 2

Isa atomic procedural element

Sub- e check property action

eategoriesSubcategories e create log entry action
e create stimulus action
e expect response action
e suggest verdict action

7.4 Test Data

7.41 Test Data Concepts

The following concept diagram represents important semantic aspects of test data. Test data or more generally just
data may be modeled at two different levels:

o Extensional level: model elements that actually represent some data composed as a set of individual data
items.

o Intensional level: model elements that specify some criteria that some data must comply with, i.e. the
specification of the meaning of data.

At the extensional level data always represents a specific set of data items and is covered by concepts such as data
pool, actual data pool, and data partition. The concepts data pool and actual data pool represent containers of data, the
former is a logical container, the latter a physical container such as a concrete database. A data partition represents a
subset of another set of data items in which all data item are conformant to a particular data specification.

In contrast, at the intensional level, data is represented by a boolean expression that may be used to qualify data items
as member of data, i.e-.. it represents the intended meaning of data and is covered by concepts such as data
specification, data type, and constraint. A data specification is composed of a basic data type plus a set of constraints
on that data type. The entire concept of a data specification may be considered as a category in the sense of "Category
Theory" in mathematics (see for example [WikiCT] or [SEP2014a]). Thus, two data specifications might be
interpreted as categories that are related to each other by means of different dependencies called "morphisms". These
may be considered as structure-preserving maps supporting the following three informal semantics:

e A morphism of type "extension" increases the amount of data, i.e. they add more data items to a given set of
data items.

e A morphism of type "refinement" decreases the amount of data, i.e. they remove data items from a given set
of data items.

e A morphism of type "complement" inverts data, i.e. it replaces the data items of a given set of data items by
their opposites.

A data provider is a test component that is able to deliver (i.e. either select and/or generate) data according to a data
specification.

In the context of a test case, different places of a test case typically refer to different levels of test data:

o testTest cases typically refer to data used as preconditions as well as data to be supplied with stimuli to be
sent to the test item.

o testTest cases typically refer to data specifications in postconditions or data returned by responses in order
to determine or influence the verdict of the test case.

UML Testing Profile 2 (UTP 2), Version 2.2 41

<dprovides data according to

R

DRTDOS

has as extension =

provides

[data provider . test component tctual data pool

v reads\\\i is the manifestation of V

\
data partition \\ data item
\
\

\
data pool

data specification applied to data results in data partition |

Extensional Level

‘ data specification

N //
\/

data type R
specifies>
" DRTDO1
constraint ‘ R
specifies[>

I

«is role of))\\\\
S | data
// applied to

\ confains /

]

<ddis extension of

~dis refinement of

~alis complement of.

R DRTDO extension |
L
o foreh LAILCE morphism > refinement
>

\
~demanates from R

. DRTDO3
Intensional Level

Figure 7.8 - Test Data Concepts

Definitional Rules shown on "Test Data Concepts"
Table 7.6 - Structural rules shown on Test Data Concepts

Name
DRTDO1

DRTDO02

DRTDO03

DRTDO04

DRTDO5

Rule statement

It is necessary that each data specification specifies at
least one data type.

It is necessary that each data specification specifies at
least one constraint.

It is necessary that a morphism emanates from exactly
one data specification.

It is necessary that a morphism targets exactly one data
specification.

It is necessary that each data provider provides data
according to at least one data specification.

7.4.2

42

Examples

Source
Isa

complement
Definition

Source
Isa

Concept Descriptions
actual data pool
Definition

A specification of an actual implementation of a data

pool.

. the specification of the database of type
"Customers" on disk DK 13 on machine XYZ.

UTP 2

data pool

A morphism that inverts data)i.e., that replaces the data
items of a given set of data items by their opposites).
UTP 2

morphism

UML Testing Profile 2 (UTP 2), Version 2.2

constraint
Definition

Source

data
Definition
Synonyms
Examples

Source
Sub-

eategeriesSubcategories
Is instance of

data item
Definition
Source

data partition
Definition

Source
Is role of

data pool

Definition

Examples

Source

Isa

Sub-
categeriesSubcategories

data provider
Definition

Source

Isa

data specification

Definition

Synonyms
Examples

An assertion that indicates a restriction that must be
satisfied by any valid realization of the model
containing the constraint.

UML

A usually named set of data items.
concrete data

o 42.

o "John".

. "Some people": {"John", "Greg", "Barb", "Aline"}

. "Example customer": Sherlock Holmes, living at Baker Street in London
. The contents of a database "CUST-PRD" containing customers.

UTP 2

data pool

data structure

Either a value or an instance.
UTP 2

A role that some data plays with respect to some other
data (usually being a subset of this other data) with
respect to some data specification.

UTP 2

data

Some data that is an explicit or implicit composition of other data items.
. the specification of a database type named "Customers"

UTP 2

data

actual data pool

A test component that is able to deliver (i.e., either
select and/or generate) data according to a data
specification.

UTP 2

test component

A named boolean expression composed of a data type and a set of constraints
applicable to some data in order to determine whether or not its data items conform
to this data specification.

abstract data

o 40...50.

) "Jo(h)™n".

UML Testing Profile 2 (UTP 2), Version 2.2 43

7.

Source
Sub-

° "odd numbers", i.e. numbers where self mod 2 =1

o "right-angled triangles", i.e. triangles where a2 + b"2 = ¢"2

o "young, German-speaking customers" i.e., customers, where language=
'German' and age < 18

o any/all/295 customers having the forename "John" and living in London.

UTP 2
data type

eategeriesSubcategories

data type
Definition

Source
Isa

extension
Definition

Source
Isa

morphism

Definition
Source
Sub-

A type whose instances are identified only by their
value.

UML
data specification

A morphism that increases the amount of data (i.e., that
adds more data items to a given set of data items).
UTP 2

morphism

A structure-preserving map from one mathematical structure to another.

WikiM
e complement

eategeriesSubcategories e extension

e refinement

refinement

Definition

Source
Isa

5

7.5.1

7.5.1.1
The following concept diagram represents important semantic aspects of verdicts and how they are derived.

Test Evaluation

Arbitration Specifications

Arbitration & Verdict Overview

A morphism that decreases the amount of data (i.e., that
removes data items from a given set of data items).
UTP 2

morphism

An arbitration specification is defined as a set of rules that should be followed to determine the instance of a verdict
of an executed test case. An arbitration specification should be specified for a procedure which describes the
behavior of test case (test procedure) or a test execution schedule (associated to the execution of a set of test cases).
An arbitration specification calculates a verdict which can be Fail, Pass, Inconclusive and None.

44

UML Testing Profile 2 (UTP 2), Version 2.2

“ R
R — DRTAO03

DRAS02 —arsfersto
S procedural elemenﬂ
arbitration specification R urbi.ir'ulio'n <drefers to
determines verdict from verdict DRASO! specification —drefers to ‘ procedure ‘
test set verdict . ~_ |
[\\\defermlnes from test case test execution test procedure
- = verdict schedule
test case verdict - R
procedural elemen ™~ DRTCO09
verdict " R R <
«is instance ofy e | . | L
" disinstance ofy ds instance ofy d@s instance ofy "~ «is instance ofy

‘ Fail ‘ ‘ Pass

‘ Inconclusive None Error

Figure 7.9 - Arbitration & Verdict Overview

Definitional Rules shown on "Arbitration & Verdict Overview"
Table 7.7 - Structural rules shown on Arbitration & Verdict Overview

Name Rule statement

DRASO1 It is necessary that an arbitration specification determines exactly one verdict.

DRASO02 It is necessary that aan arbitration specification determines exactly one of a test set verdict, a
test case verdict or a procedural element verdict.

DRTAO03 It is necessary that each test set refers to at most one arbitration specification.

DRTC09 It is necessary that each test case refers to at most one arbitration specification.

7.5.1.2 Concept Descriptions

arbitration specification
Definition

Source
Error
Definition
Source

Is instance of
Fail
Definition
Source

Is instance of

Inconclusive
Definition

Source

A set of rules that calculates the eventual verdict of an
executed test case, test set or procedural element.
UTP 2

An indication that an unexpected exception has
occurred while executing a specific test set, test case, or
test action.

UTP 2

verdict

A verdict that indicates that the test item did not comply
with the expectations defined by a test set, test case, or
test action during execution.

UTP 2

verdict

A verdict that indicates that the compliance of a test
item against the expectations defined by a test set, test
case, or test action could not be determined during
execution.

UTP 2

UML Testing Profile 2 (UTP 2), Version 2.2 45

Is instance of

None
Definition

Source
Is instance of

Pass
Definition

Source
Is instance of

procedural element verdict

Definition
Source
Isa

test case verdict
Definition

Source
Isa

test set verdict
Definition

Source
Isa

verdict
Definition

Source
Sl
eategoriesSubcategories

Instances

verdict

A verdict that indicates that the compliance of a test
item against the expectations defined by a test set, test
case, or test action has not yet been determined (i.e., it is
the initial value of a verdict when a test set, test case, or
test action was started).

UTP 2

verdict

A verdict that indicates that the test item did comply
with the expectations defined by a test set, test case, or
test action during execution.

UTP 2

verdict

A verdict that indicates the result (i.e., the conformance
of the actual properties of the test item with its expected
properties) of executing a test action on a test item.
UTP 2

verdict

A verdict that indicates the result (i.e., the conformance
of the actual properties of the test item with its expected
properties) of executing a test case against a test item.
UTP 2

verdict

A verdict that indicates the result (i.e., the conformance
of the actual properties of the test item with its expected
properties) of executing a test set against a test item.
UTP 2

verdict

A statement that indicates the result (i.e., the conformance of the actual properties of
the test item with its expected properties) of executing a test set, a test case, or a test
action against a test item.

UTP 2

e procedural element verdict

e test case verdict

e test set verdict

Pass

Inconclusive

None

Error

Fail

UML Testing Profile 2 (UTP 2), Version 2.2

7.5.2 Test Logging

7.5.21 Test Log Overview

As defined by [ISTQB] a test log is “a chronological record of relevant details about the execution of tests” and as
such is an important means for test evaluation and reporting activities. Thus, the purpose of the UTP 2 test logging
facility is twofold:

1.) It helps establish a trace link between a test case or an entire test set and one or potentially more executions
thereof. Essential information of a test log are, for example, the date and the duration when the corresponding test
case was executed; the executing entity (i.e., a human tester or automated test execution system) or entities (in some
domains it is not uncommon that test cases are executed over several days by potentially more than one executing
entity), and finally, the test case verdict. These so called test log header information are the minimal required
information in order to achieve full traceability between test objectives, test requirements, test cases/test sets and
finally the execution thereof. Full traceability among those artifacts enables the computation of test metrics such as
the status of test execution (how many test cases have eventually been executed at a certain point in time), coverage
of requirements (not part of UTP), test requirements or test objectives, etc.

2.) It supports a deeper analysis of what was going on during the execution of a test case or test set. Since the
execution of test case or test set is a transient set of test actions performed by an executing entity against the test
item, the capturing of detailed information about the performed test actions in a test log is the only way for a
stakeholder, usually a test analyst or test manager, to be able to comprehend what has really happened during
execution without being part of the executing entities. Such a chronological record of detailed information of an
executed test case or test set is in UTP 2 called test log body information. They optionally supplement the test log
header information of UTP.

Since the understanding of what information is really relevant during the execution of a test case or test set heavily
depends on domain- and/or project-specific requirements, UTP 2 enables the definition of user-defined test log
structures that specify what information or data deemed relevant in the respective (test) context and additionally the
minimal required header information mentioned above.

Representing test logs on model level contributes to a harmonized and homogeneous view on relevant test log
information in the dynamic test process. Usually, a test execution toolscape comprises more than just one tool. Tools
for functional testing might be complemented by specialized tools such as those for performance testing (stress, load
etc.), security testing or UI testing. The test logs of such heterogeneous toolscapes are basically heterogeneous, too.
Thus, a comprehensive, detailed analysis (e.g., for the calculation of metrics over tools etc.) requires access to the
proprietary structures of each tool’s test log format. The UTP 2 test logging facility mitigates the heterogeneity of
test logs by offering an extensible framework to describe arbitrary complex and structured test log formats. The
following use cases depict the scenarios the UTP 2 test logging facility was intended to cope with:

UML Testing Profile 2 (UTP 2), Version 2.2 47

Specify test log
structure

I'cextends»

Extend default test
log structure

«includes»

d

information

. -,
«includes»
7

Capture test log header

Apply UTP 2

test logging facilities

Capture test log

information

~ ~
<«extends»

«includes»

Visualize captured
test logs

~
~

Capture test log body
information

Capture logs of
test cases

Capture logs of
test suites

Capture logs of
test actions

Figure 7.10 - Use Cases of UTP 2 test log XE "test log" ging Facility

The use case “Specify test log structure” enables testers to specify which information is deemed relevant during the
execution of in the given test process in addition to the predefined minimal required information. If no additional
information is desired, the tester can rely on the implicit default test log structure. This ensures that testers can

employ the UTP 2 test logging facilities immediately out of the box.

The use case “Capture test log information” is about capturing the information deemed as relevant that actually
appeared during the execution of a test case, test set or even a test action in accordance with the test log structure.
Incorporating the test log header information is mandatory, while representing the body part, in contrast, is optional.

The use case “Visualize captured test logs” deals with exposing the captured test log information in an appropriate
representation. Since there is no common definition of the most appropriate format of test logs, UTP 2 does not
prescribe how that information must be visualized. Thus, it is up to tool vendors to decide about the most
appropriate and helpful visual representation(s) of captured test log information.

48

UML Testing Profile 2 (UTP 2), Version 2.2

test log verdict
captures=
time point
execution started at>

execution lasted for

-

o

a4

o

Q

(%]

=+

(=4

0

9

c

S

o
I
I\
|
|
|
|
=,
a0
5
3
-+
o
5
3
o
9 !
=
|
|
;

executing entity

i

execution performed by

<alcaptures execution of test case log < comprises captures execution of >

R captures v R captures v

DRTLO2 DRTLO1

test case test case verdict test set verdict

Figure 7.11 - Test Log Overview

test set

:

Definitional Rules shown on "Test Log Overview"
Table 7.8 - Structural rules shown on Test Log Overview

Name Rule statement

DRTLO1 It is necessary that each test case log captures exactly
one test case verdict.

DRTLO02 It is necessary that each test case log captures execution

of exactly one test case.

7.5.2.2 Concept Descriptions
executing entity

Definition An executing entity is a human being or a machine that
is responsible for executing a test case or a test set.
Source UTP 2

test case log

Definition A test log that captures relevant information on the
execution of a test case.

Source UTP 2

Isa test log

test log

Definition A test log is the instance of a test log structure that captures relevant information

from the execution of a test case or test set. The least required information to be
logged is defined by the test log structure of the test log.

Source UTP 2

Sub- e test case log
eategoriesSubcategories e test set log
Is instance of test log structure

test log structure

Definition A test log structure specifies the information that is
deemed relevant during execution of a test case or a test
set. There is an implicit default test log structure that
prescribes at least the start time point, the duration, the
finally calculated verdict and the executing entity of a

UML Testing Profile 2 (UTP 2), Version 2.2 49

Source
Instances

test set log
Definition

Source
Isa

50

test case or test set execution which should be logged.

UTP 2
test log

A test log that captures relevant information from the
execution of a test set.

UTP 2
test log

UML Testing Profile 2 (UTP 2), Version 2.2

8 Profile Specification
This section specifies the stereotypes that are defined by the UML Testing Profile.

8.1 Language Architecture

The UML Testing Profile consists of the profile definition and three normative model libraries, which can be
imported and applied if required. The profile itself is independent of these libraries; and is a self-contained package.
The normative model library UTP Auxiliary Library uses concepts from UTP and defines concepts that can be used,
extended or specialized by the users.

The UTP Types Library offers helpful types and values, in particular the default verdict type and the default verdict
instances. Since some of the definitions and constraints in the profile are based on predefined types, the profile
imports the UTP Types Library.

The UTP Auxiliary Library offers the following concepts:

e [ISTQB terms for test levels and test set purposes
e Predefined test design techniques and test design technique structures-

Overview of the technical, high-level UML Testing Profile language architecture is given next.

UML Scope
«profilen
UML Standard Profile
— «importy |
/\ /:\\ A\
UTP Scope «apply» | «apply»!
+ «importy 3 l
«profilen ! «model libraryn ! 3
uTpP | UTP Auxiliary Library ! !
_ «apply»
3 «model libraryn |
i UTP Types Library
fffffffff @mporty

Figure 8.1 - Language Architecture

UML Testing Profile 2 (UTP 2), Version 2.2 51

8.2 Profile Summary

The following table gives a brief summary on the stereotypes introduced by the UML Testing Profile 2 (listed in the
second column of the table). The first column specifies the mapping to the conceptual model shown in the previous
section and the third column specifies the UML 2.5 metaclasses that are extended by the stereotypes.

ActualParameterValue Slot a
Y
t
u
a
L
p
a
r
a
m
c
t
c
r

ActualResponseLogEntry InstanceSpecification

Alternative CombinedFragment,

StructuredActivityNode

AlternativeArbitrationSpecification BehavioredClassifier

e (N R = N B R L R e = A e = B

52 UML Testing Profile 2 (UTP 2), Version 2.2

AnyValue Expression

B 10 |21 |6 == =0 0 B v | I o o B |0 | I

ArbitrationResult InstanceSpecification
ArbitrationSpecification BehavioredClassifier

[|=2 (@ o o I~ B (@ B Lkl Lo PR Lkl (SN (I (o J (7N | B [R o ol <~ B L N =l (@ il L B <)

ArbitrationSpecificationBinding InstanceSpecification
ArbitrationTarget
AtomicProceduralElement

e o 16 o 7 D |6 g o I I

UML Testing Profile 2 (UTP 2), Version 2.2

[3)]
w

AtomicProceduralElementArbitrationSpecification

AtomicProceduralElementLogEntry
BoundaryValueAnalysis

CauseEffectAnalysis

54

BehavioredClassifier

InstanceSpecification
InstanceSpecification

InstanceSpecification

=T (I s ol |~ B [B Lo PRl ekl (O (B (& N 72 | = T [R o g = R L B =Sl [il L B [-C R Ll = (2] |B o —jo |[— o = |

|~ 2 o o |l =B st o s g v oot e o et

UML Testing Profile 2 (UTP 2), Version 2.2

ChecklistBasedTesting InstanceSpecification

CheckPropertyAction Constraint, ObjectFlow

CheckPropertyArbitrationSpecification BehavioredClassifier

2= e B0 |0 K IR oo o m o FIe o 5o o | ja =B |50 o =3 g =i o o in o i o 2o =B stIe o B g = iv o e

UML Testing Profile 2 (UTP 2), Version 2.2 55

CheckPropertyLogEntry
ClassificationTreeMethod

Combinatorial Testing

56

InstanceSpecification
InstanceSpecification

InstanceSpecification

B0 |2 6 =m0 oo v |3 |0 |2 I

o= ja =3 |50 o =3 gg = iw oo™ » o = o |2 ja =B 50 o IS g v o oo v o =

UML Testing Profile 2 (UTP 2), Version 2.2

Complements

CompoundProceduralElement

CompoundProceduralElementArbitrationSpecification

UML Testing Profile 2 (UTP 2), Version 2.2

Dependency

CombinedFragment,
StructuredActivityNode

BehavioredClassifier

= [o o - B [@ Bl Lo PR LN [T [N (o I 172N | o= I [I o S [e B |t [l L B PSRl | = R] |B o =0 = 1|2 o o o7 B e o |B |© o =+ |5 lo |B o —'o |B 1o 16

CreateLogEntryAction

CreateLogEntryArbitrationSpecification

CreateLogEntryLogEntry
CreateStimulusAction

58

InvocationAction

BehavioredClassifier

InstanceSpecification
InvocationAction, Message

510 |21 16 = imh 1= 6 0 1S 1 |3 [0 |2 10 17 |20 1D 3 10 210 1D (< 17 1= 3 10 fg [0 — [0 1= I [0 - 0

0 I8 [|2 =2 |g 2@ o = I o 1= o

UML Testing Profile 2 (UTP 2), Version 2.2

CreateStimulusArbitrationSpecification

CreateStimulusLogEntry
DataPartition

DataPool

DataProvider

DataSpecification

UML Testing Profile 2 (UTP 2), Version 2.2

BehavioredClassifier

InstanceSpecification
Classifier

Classifier

Classifier, Property

Constraint

=N (o = | B (SR L R (IR [(o SR Ry |~ B (o R [S | B i B |={ [I N N = N o =5

Ll i I (o Nl [(s WLl B (o B I B (o BN SR S o Nl [o B (o1 (o B [Bl [o Nl (o B (O3 (o SN [I a g [R [a

3]
©o

DecisionTableTesting

EquivalenceClassPartitioning

ErrorGuessing

60

InstanceSpecification

InstanceSpecification

InstanceSpecification

[[oT L R [B S (I [R (e B (= T 1= (T (R = | 1= Tl I°2 N [S [WO Lo 1= [I [[T B = =l [[l = B I e L (2 = T L O (| [= B (ol = I [Bl L P Rl (S (e B 1o B Lol)

UML Testing Profile 2 (UTP 2), Version 2.2

ExpectResponseAction Message, Trigger

ExpectResponseArbitrationSpecification BehavioredClassifier

ExperienceBasedTechnique InstanceSpecification

o = |3 O |hI® |6 =i=h =0 o o v B |0 | IR | e B o 2o (8 |0 v |3 |0/ o R |0 oo (o o |je o =3 |50 o =+ |3 g = ln |0

UML Testing Profile 2 (UTP 2), Version 2.2 61

62

ExploratoryTesting

Extends

FormalParameterReference

InstanceSpecification

Dependency

Property

|B o= S |B R o IR B0 =®n[Slo!*|xIio o|cja =550l 'S =w|o|an|™ 1w oo 2o =5 |50 o= |3 0 = 1w oo~ »

UML Testing Profile 2 (UTP 2), Version 2.2

GenericTestDesignDirective InstanceSpecification

GenericTestDesignTechnique InstanceSpecification

o |2 ja =B 5o o =3 g =i o o w0 o < 26 o B =S ge v o ol e o I IR o I o

InvocationLogEntry InstanceSpecification

InvocationLogEntryStructure Classifier

Loop CombinedFragment,
StructuredActivityNode

LoopArbitrationSpecification BehavioredClassifier

SO =ie = 5o = v o o o =

UML Testing Profile 2 (UTP 2), Version 2.2

[=2]
w

MessageEventLogEntry
MessageEventLogEntryStructure
Morphing

Negative

NegativeArbitrationSpecification

NSwitchCoverage

64

B 10 |2 6o =i-h =0 o o »

InstanceSpecification
Classifier
Dependency

CombinedFragment,
StructuredActivityNode

BehavioredClassifier

InstanceSpecification

(e O S I Sl = e e T LUl SR I Sl =S L A S AL el = o I (= B e N S e N =

UML Testing Profile 2 (UTP 2), Version 2.2

OpaqueProceduralElement

OpaqueProceduralElementLogEntry
overrides

PairwiseTesting

UML Testing Profile 2 (UTP 2), Version 2.2

NamedElement

InstanceSpecification
Dependency

InstanceSpecification

Ul =3[|B o —jo =i = |2 jale o jo "o o g ja =D 5o o D gg = n

o =3 5o o s gg e oo |7 e o g v = ST 1R o |5

(=2
o

66

Parallel

Parallel ArbitrationSpecification

ProceduralElement

ProceduralElementArbitrationSpecification

CombinedFragment,
StructuredActivityNode

BehavioredClassifier

BehavioredClassifier

B 1o = ie 7 jmrio 7 e s e |5 1o e e 7 s jale 6 o 11D B o |2 16 e G 0 1T 1w S0 e 17 Rt IR e e = e 1o o S

UML Testing Profile 2 (UTP 2), Version 2.2

Procedurelnvocation CallBehaviorAction, InteractionUse

ProcedurelnvocationArbitrationSpecification BehavioredClassifier

=2 (o= I (SR L R (3N [(= BN i = B (o =S S B e | [L R L N =R (el = | i (eI (e RN RS |= Bl (eI L B (=~ [T [N [BN (o RN L i (o B = I [= o [I (e B s Ml (OB [(o I L

ProcedurelnvocationLogEntry InstanceSpecification
ProcedureInvocationLogEntryStructure Classifier
Refines Dependency

I 1 Imt

UML Testing Profile 2 (UTP 2), Version 2.2 67

RegularExpression

RoleConfiguration

Sequence

SequenceArbitrationSpecification

68

Expression

Constraint

CombinedFragment,
StructuredActivityNode

BehavioredClassifier

B 10 | 1 o= o o jo Bl |2 o o l» |3 |0 [7 |2 gg = I-h 3 O 16 | v o = |3 [0 [I® 6 =Imh =0 |0 o » |8 = o | = |3 |0 |B o = =

UML Testing Profile 2 (UTP 2), Version 2.2

StateCoverage InstanceSpecification

StateTransitionTechnique InstanceSpecification

SuggestVerdictAction InvocationAction

2 0 e go = I» o |2 ja =B |50 o = |3 g ™ lw o o » o = o |2 o =3 510 o =3 g = iwn o o= v o = |3 |0 2o |6 =I-h =0 o o 1«

UML Testing Profile 2 (UTP 2), Version 2.2 69

70

SuggestVerdictArbitrationSpecification

SuggestVerdictLogEntry
TestCase

BehavioredClassifier

=3 (N = |- B (STl LR (I [(s IR O = B (o = - N = e s B N = (<l = [T | N L (eIl (o WL B (O R E S

InstanceSpecification
Behavior, BehavioredClassifier .

UML Testing Profile 2 (UTP 2), Version 2.2

TestCaseArbitrationSpecification BehavioredClassifier

TestCaseLog InstanceSpecification

TestComponent Classifier, Property

o=@ o'+ g |0 |0 »n o |6 | n o<+ |3 |0 | 6 =i =jo oo » D |0 | IR |2jc 17 e

UML Testing Profile 2 (UTP 2), Version 2.2 7

72

TestComponentConfiguration

TestConfiguration

TestConfigurationRole

Constraint

StructuredClassifier

Classifier, Property

B 1o 16 | @ o = 5 O |2 1@ 7 = gg = h |3 O 16 |7 1w o I 3 O [Zhie 7 |2 go =3 o 16 [T B e B 0D |5 I0 16 |7 w0 = i 3 o B o B |5 1o

UML Testing Profile 2 (UTP 2), Version 2.2

TestContext Package
TestDesignDirective InstanceSpecification
TestDesignDirectiveStructure Classifier

([2 S oo [T (T e Bl (= P | 2 A= Bl 2B [DO (= P L i L2 [i [B ES o o [B [R el [MY =) S B L (=P L i (B Ll Pl [B |= B [B (e A N [B S N O = B (S C)

UML Testing Profile 2 (UTP 2), Version 2.2 73

TestDesignInput

TestDesignTechnique

TestDesignTechniqueStructure

TestDirective
TestDirectiveStructure

74

NamedElement

InstanceSpecification

Classifier

InstanceSpecification
Classifier

(I =R T Bl o= T | [@ T [B Ll o= B 1 (Bl 7 B (¢ [W L [N [L [[[WLl o= i | =l [(B il = 1 o Bl (72 I [RO [WO L | 2B [B L L = (o S = Bl =1 oLl (2 I [I [WO Ll [B [B L

UML Testing Profile 2 (UTP 2), Version 2.2

TestExecutionSchedule

Testltem

TestltemConfiguration

TestLog

TestLogElement
TestLogEntry

UML Testing Profile 2 (UTP 2), Version 2.2

Behavior

Classifier, Property

Constraint

InstanceSpecification

InstanceSpecification
InstanceSpecification

(1o [Ll Ll (7 [I En [T (o T o o £ Lo B E i 1 [B Lol Lo = B (o B [|B o |z | » o = |B 0 |5~ 1w o = jo —|2 jaalo 50 1w |3 |0 |2iS 10 10 X o |~ » o =

75

TestLogStructure

TestLogStructureBinding

TestObjective

TestProcedure

76

Classifier

Dependency

Class

Behavior

(= (=T BN (eI [N Lo B o T Ll 17 B [I L [T S o S [N [Bl (ol o B L 12 B B o ¢ Lo T B o [B v Lo O E s 72 TN 1 [B ol Ll 72 B T @ o T B Lo N T o T e B o B L 12T 1 OB [Ml Ll [B [E

UML Testing Profile 2 (UTP 2), Version 2.2

TestRequirement

TestSet

TestSetArbitrationSpecification

TestSetLog

TestTechnique

UML Testing Profile 2 (UTP 2), Version 2.2

Class

Package

BehavioredClassifier

InstanceSpecification

InstanceSpecification

I e R R ol e L e e L = e B e I e R N e R N R e i = I R o B L R (L [e

77

78

TestTechniqueStructure
TransitionCoverage

TransitionPairCoverage

UseCaseTesting

Classifier
InstanceSpecification

InstanceSpecification

InstanceSpecification

(o R |= 1= o (ST (R = B S B (e (= P L 2B [[R [~ To Bl = = (eI (B s (= B S B S (RN [= T L 2R (Rl [T (=R (o Bl |= B | a [B e I |= BT =Bl L2 [(o T L O [

UML Testing Profile 2 (UTP 2), Version 2.2

o =

verifies Dependency

8.3 Test Planning

Test analysis and test design deals with determining the identifying test basis for specific testing activities,
determination of test objectives, and eventually the selection and application of appropriate the test design
techniques to achieve those test objectives. UTP organizes concepts provided for carrying out test analysis and
design activities into two parts: concepts for describing test contexts, test objectives, test requirements, and concepts
to specify test design activities.

8.3.1 Test Analysis

The test analysis concepts are means to argue and justify why certain testing activities have to be carried out as well
as how these testing activities with all required or helpful artifacts are organized.

In order to group artifacts and information that are deemed necessary for certain testing activities, the test context
concept (represented by the stereotype «TestContext») is introduced. It offers the capability to bundle artifacts (e.g.,
any PackageableElement) in a shared scope (e.g., the Namespace), to hide information from other scopes and to
import elements from other scopes. This enables a high degree of organizational reusability of information.

In dynamic testing, test cases are eventually produced by the test design activities in order to execute them. For
certain reasons, test cases are often assembled and executed together in a test set (or test suite, which is a synonym
of a test set). In UTP, a test set is represented by the stereotype «TestSet» which has the ability to assemble, import
and reuse test cases.

The definition of certain coverage criteria and/or objectives that the testing activities have to meet is essential for
test planning. In UTP, the planning activities are supported by means of the concepts test objective (implemented by
the stereotype «TestObjectivey), test requirement (implemented by the stereotype «TestRequirementy), a
verification dependency among development artifacts and test objectives or test requirements (represented by the
stereotype «verifies»). In order to stay as close as possible to the SysML definition of requirements [SysML], both
test objective and test requirements are designed as extensions to the UML metaclass Class. Such a stereotyped
Class is capable of defining new properties solely, whereas most of the capabilities of the metaclass Class are
forbidden by constraint, such as owning Ports, Operations, Behaviors etc.. The stereotype «verifies» extends the
UML metaclass Dependency in order to be technically compatible with SysML [SysML], too.

These concepts enable testers to adhere to well-known and established industrial testing standards such as ISTQB

ISTOB] or ISO 29119 [1SO29119] when creating model-based test specifications. Whereas test objectives are
intended to describe higher level goals the testing activities have to achieve in a certain context (e.g., coverage of all
high priority requirements at system level testing), test requirements are intended to pinpoint a single and testable
aspect of the test item. As such, test objectives describe often the test ending criteria for the testing activities in a
certain context (e.g., system level testing), and test requirements leverage the development of test design input
definitions or test cases. Eventually, test requirements are realized by test cases, which is similar to the coverage of
test requirements. Test requirements contribute to the fulfilment of test objectives.

Both test objectives and test requirements can be used independently of each other or in joint manner or not at all.
This is contextually up to the respective testing methodology. UTP does not prescribe the use of these concepts.

8.3.1.1 Test Context Overview

The stereotypes «TestContext» and «TestSet» are defined in UTP. Both represent a container for dedicated
elements, thus, they are extensions of the UML Package. As such they inherit the concept of nested Packages,
Package templates, owned and imported members as well as visibility. However, it is not prescribed that the
visibility concepts have to be respected by any conforming UTP tooling. The decision whether or not to utilize the

UML Testing Profile 2 (UTP 2), Version 2.2 79

visibility and import mechanism of UML is up to the tool implementation. However, the derived associations of
«TestContext» and «TestSet», however, are based on UML visibility and import.

X
nestedPackage «metaclassy

0.1 Package

nestingPackage

«extendsy wextendsy
- «stereotypen «stereotypen purpose
v I((m:foc]fgss»f testType {concepfs = test context} {concepts = test set} |o.1 * Vqlﬁr:Segzzilfci]éZ)ﬁon
alvespecitication TestContext Testset Abstract
{Abstract} ¥ * purposeOf {Abstract}
testLovel ID : String [0..1] \ |ID : stiing [0..1]
*| /utilizedBy 0..1
* 'l “*
|y /testCase \ /testSetMember
«stereotypeyn
{concepts = test case,abstract test case,concrete test case}
TestCase
ID : String [0..1]
description : String [0..1]

Figure 8.2 - Test Context Overview

8.3.1.2 Test-specific Contents of Test Context

The UML profile specification for the test context concepts is shown in the following diagram. Most of the
relationships among the concepts of the Conceptual Model are already covered by the underlying UML metamodel.
In order to allow users of the UTP an easy access to related elements, a set of derived associations is defined that
retrieves the desired element for a currently processed stereotype. As an example for the design decision, please see
the derived associations between «TestContext» and «TestCase». In the Conceptual Model it is stated that a test
context refers to a set of test cases.

Since «TestContext» extends the UML metaclass Package and «TestCase» extends a subclass of a
PackageableElement, there are several native (i.e., given by the UML metamodel) possibilities on how to reflect the
conceptual 'refers to' relationship. First, a Package may contain PackageableElements; second, a Package may
import PackageableElement, either by using ElementImport (i.e., only that specific element) or by Packagelmport
(i.e., all visible and accessible elements in the imported Package). The derived associations of the UTP stereotypes
follow the UML metamodel capabilities to collect all concrete PackageableElements stereotyped with «TestCase»
that are either contained in or imported by the underlying «TestContext» Package. The advantage is that the test
engineer does not have to implement or even know the details of the UML metamodel to retrieve the desired
elements.

80 UML Testing Profile 2 (UTP 2), Version 2.2

«metaclassy
Package
wextendsy «extendsn
«stereotypen «stereotypen «stereotypen
{concepts = test set} | " Jtestset " {concepts = test context} * Jtestlog * | {concepts = test log}
TeéiSei /referencedBy TestContext JreferencedBy = {ATzz:l;ggf}
0..1
. /fesTConfigurcﬁc;n «metaclassy
1. [testSetMember StructuredClassifier
/referencedBy {Abstract}
«stereotypen
{concepts=te ..|_" /utilizedBy *
TestCase /{esfcqse «stereotypen
* /referencedBy * {concepts = arbitration s ...
/referencedBy * - - - - /orbifroﬁonSpeciﬁccﬁoH Arblira?AogSSﬁgggicuhon
JreferencedBy /referencedBy /referencedBy Jreferencedby
*| /testobjective /festRequiremenf‘ * /testDesignTechnique “3/?estesignDirecﬁve *N‘ /testDesigninput
<<sferec‘>fype» «stereotypen ' «sferelofype» «stereotypen «metaclassy
{concepts = test ... {concepts = testre ...| | {concepts = test desi ... | |{concepts =Test D ... NamedElement
TestObjective TestRequirement TestDesignTechnique TestDesignDirective {Abstract}
{Abstract} {Abstract}
Figure 8.3 - Test-specific Contents of Test Context
8.3.1.3 Test Objective Overview
The following diagram shows the abstract syntax for the test objectives concepts.
«metaclass» «metaclassy
Class Dependency
((ex‘i’ends)) ((eX'I'ends)) ((eX‘fendS))
«stereotypen ustereotypen wstereotypen
{concepfts = test objective}| |{concepfts = test requirement} verifies
TestObjective TestRequirement
ID : String [0..1] ID : String [0..1]
* references : String [*]
*
0..1 o 0..1 R,
specification specification

«metaclassy
ValueSpecification
{Abstract}

UML Testing Profile 2 (UTP 2), Version

Figure 8.4 - Test Objective Overview

2.2 81

8.3.1.4

8.3.1.4.1 TestContext

82

Description

Extension
Attributes

Associations

Stereotype Specifications

TestContext: A set of information that is prescriptive for testing activities which can
be organized and managed together for deriving or selecting test objectives, test
design techniques, test design inputs and eventually test cases.

A test context may import the packaged elements of another test context in order to
access and reuse visible elements of the imported test context. This is inherently
given by the native UML concepts Packagelmport or ElementImport. Whether or
not the visibility of elements contained in a test context is respected is up to the tool
implementation.

Since a «TestContexty is an extended Package, it is possible to decompose test
contexts into more fine-grained test contexts. For example, a test context defined for
the test level 'System testing' might be decomposed in accordance to the test types
that are addressed at that test level (e.g., functional system testing, security system
testing etc.).

Package

ID : String [0..1]

An optional identifier to unambiguously distinguish between any two test contexts.
If it is set, it has to be unique for all the test contexts in the scope of the model.
/testCase : TestCase [*]

The test cases that are accessible by the given «TestContext». This feature is derived
by the set of directly owned or via ElementImport or Packagelmport for imported
test cases.

testLevel : ValueSpecification [*]

The test levels that the testing activities within the given «TestContext» have to
cope with.
testType : ValueSpecification [*]

The test types that the testing activities within the given «TestContext» have to cope
with.
/testSet : TestSet [*]

Refers to the test sets that are known by this test context. It is derived from both
contained and imported Packages with «TestSet» applied.
/testObjective : TestObjective [*]

Refers to the test objectives that are known by this test context. It is derived from
both contained and imported Classes with «TestObjective» applied.
/testRequirement : TestRequirement [*]

Refers to the test requirements that are known by this test context. It is derived from
both contained and imported Classes with «TestRequirement» applied.
/testConfiguration : StructuredClassifier [*]

Refers to the test configurations that are known by this test context. It is derived
from both contained and imported StructuredClassifier with « TestConfiguration»
applied.

/testDesignInput : NamedElement [*]

Refers to the test design inputs that are known by this test context. It is derived from
both contained and imported NamedElements with «TestDesignInput» applied and
the NamedElements that are referenced by all known -«TestDesignDirective» as
their test design input (i.e., referenced by the tag definition testDesigninput). The
latter part of the derivation algorithm is necessary, because the use of the
«TestDesignlnput» stereotype is not mandatory, and sometimes even not possible.

UML Testing Profile 2 (UTP 2), Version 2.2

Constraints

Change from UTP 1.2

8.3.1.4.2 TestObjective
Description

Extension
Attributes

/testDesignDirective : TestDesignDirective [*]

Refers to the test design directives that are known by this test context. It is derived
from both contained and imported InstanceSpecifications with a concrete subclass
of «TestDesignDirective» applied.

/testDesignTechnique : TestDesignTechnique [*]

Refers to the test design techniques that are known by this test context. It is derived
from both contained and imported InstanceSpecifications with a concrete subclass
of «TestDesignTechniquey» applied.

/arbitrationSpecification : ArbitrationSpecification [*]

Refers to the arbitration specifications that are known by this test context. It is
derived from both contained and imported BehavioredClassifiers with
«TestDesignTechnique» applied.

/testLog : TestLog [*]

Refers to the test logs that are known by this test context. It is derived from both
contained and imported InstanceSpecification with a concrete subclass of «TestLogy»
applied.

Restriction of extendable metaclasses

«TestContext» shall not be applied to instances of the metaclass Profile.

Changed from UTP 1.2. In UTP 1.2 «TestContext» extended StructuredClassifier
and BehavioredClassifier as well as incorporated the concepts TestSet,
TestExecutionSchedule and TestConfiguration into a single concept.

TestObjective: A desired effect that a test case or test set intends to achieve.

The stereotype «TestObjective» extends Class. test objectives enables tester to
define the test ending criteria for the testing activities in a certain test context. A test
objective can be expressed with detail or very abstractly, depending on the
underlying methodology.

As pure test analysis concept, it is very likely that test objectives have to be
traceable to and from test environment tools, which first and foremost would be test
management tools. Therefore, test objectives have the ability to specify a unique
identifier represented by the tag definition ID. However, the use of the explicit
identifier is optional and simply enables the most primitive kind of traceability
within a test environment.

The specification of a test objective, i.e., the reason why test cases are created and
eventually executed, is expressed by means of the tag definition specification.
Although it is typed by the PrimitiveType String, the test objective might be
specified by means of a formal or structured language.

If a BMM profile (see [BMM]) is also loaded into a model containing the UTP 2.0
profile, this stereotype may be considered as a BMM objective (i.e., merged with a
BMM objective).

Class

ID : String [0..1]

UML Testing Profile 2 (UTP 2), Version 2.2 83

8.3.1.4.3

84

Associations

Constraints

Change from UTP 1.2

Description

Extension
Attributes

A unique identifier that unambiguously identifies the test objective.
TestDesignDirective

/referencedBy : TestContext [*]

specification : ValueSpecification [0..1]

The specification of the test objective. It might be represented in both unstructured
and structured text or any other concrete sub-class of ValueSpecification.
Restriction of extendable metaclasses

«TestObjective» shall only be applied to instances of the metaclass Class.

Changed from UTP 1.2. In UTP 1.2, «TestObjective» was called
«TestObjectiveSpecificationy.

TestRequirement

TestRequirement: A desired property on a test case or test set, referring to some
aspect of the test item to be tested.

The stereotype «TestRequirement» extends Class (for integration with the SysML
stereotype «requirement»). A test requirement enables testers to decompose single
and distinct testable aspects of the test item prior to test design. As such, it is part of
the test analysis facility of UTP. test requirements are deemed helpful for both the
derivation of test cases, test procedures and in particular test design input
definitions. test requirements are said to be realized by test design input definitions,
test case or test procedures. The default UML metaclass Realize is intended to be
utilized to express this relationship.

As a pure test analysis concept, it is very likely that test requirements have to be
traceable to and from test environment tools, first and foremost test management
tools. Therefore, test requirements have the ability to specify a unique identifier
represented by the tag definition ID. However, the use of the explicit identifier is
optional and simply enables the most primitive kind of traceability within a test
environment.

The specification of a test requirement (i.e., the textual description of a single
testable aspect of a test requirement) is expressed by means of the tag definition
specification. Although it is typed by the PrimitiveType String, the test requirement
might be specified by means of a more formal or structured language (e.g., using the
Test Purpose Language (TPLan) standardized by ETSI).

Additional references to external resources (e.g., relevant standards, guidelines,
documents, websites etc.) can be added via the tag definition references.

If SysML [SysML] is also loaded into a model containing the UTP 2.0 profile, this
stereotype may be considered as (i.c., merged with) the SysML stereotype
«requirementy.

Class

ID : String [0..1]

A unique identifier that unambiguously identifies the test requirement.
references : String [*]

Includes any additional references that are deemed relevant for the definition of the
test requirement (such as relevant standards, papers, or any other meaningful
artifact)

UML Testing Profile 2 (UTP 2), Version 2.2

Associations

Constraints

Change from UTP 1.2

/realizedBy : TestCase [*]

References the test cases that realize the given test requirement. They are derived
from the set of UML Realization dependencies that point to the base Class of this
stereotype and stem from a BehavioredClassifier or Behavior stereotyped with
«TestCasey.

/referencedBy : TestContext [*]

specification : ValueSpecification [0..1]

The specification of the test requirement. It might be represented in both
unstructured and structured text or any other concrete sub-class of
ValueSpecification.

Restriction of extendable metaclasses

«TestRequirement» shall only be applied to instances of the metaclass Class.
«TestRequirement» has been newly introduced into UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.2

85

8.3.1.44 TestSet
Description

Graphical syntax

Extension
Super Class
Attributes

Associations

86

TestSet: A set of test cases that share some common purpose.

A test set assembles test cases either via ownership or import. These test cases are
called the members of the test set. Ownership assembly is based on the ability of
UML Packages to nest any PackageableElement. Import assembly is based on the
ability of UML Packages to import PackageableElements either directly or
indirectly by importing the Package that contains the PackageableElement to be
imported. A test case is transitively an extension of PackageableElement, thus, the
import mechanisms given by UML can be reused to group test cases in test sets by
either assembly kind.

Visibility of test cases within a test set is defined in accordance with the visibility of
NamedElement in Namespaces as defined by UML. Since the use of visibility is not

mandatory by UML, it is also not mandatory to utilize visibility in UTP. However, if
visibility is desired, it must comply with the UML semantics.

A test set can have an arbitrary number of test execution schedules (extends
Behavior) either by ownership or import, similar to test case assembly. A test
execution schedule must only schedule the execution of test cases that are members
of the respective test sets. If a test set does not contain an explicit test execution
schedule, it is semantically equivalent to an implicitly owned test execution
schedule that schedules the execution of all test cases assembled by the current test
set in an arbitrary order. If a test set is supposed to be executed, the decision which
test execution schedule will be taken into account for scheduling is not defined
UTP, since a test set may have more than just one test execution schedule defined. A
viable method is to use the UML deployment specification to implement the desired
test execution schedule for eventual execution by an executing entity.

If a test set assembles another test set, the assembling test set has access to all
visible test cases assembled by the assembled test set. In addition, the assembling
test set has access to all visible test execution schedules of the assembled test set.
This enables the composition and decomposition of test sets and their respective test
execution schedules.

The purpose of a test set is set of a ValueSpecifications that can be shared with other
test sets. If a test set has more than one purpose, the purposes are logically combined
by AND (i.e., if a test set has the two purposes 'Manual Testing' and 'Regression
Testing' it should be read as follows '"The test set's purpose is 'manual regression
testing').

Package

ArbitrationTarget
ID : String [0..1]

An optional identifier to unambiguously distinguish between any two test sets. If it
is set, it has to be unique for all the test sets in the scope of the model.
purpose : ValueSpecification [*]

Denotes the purposes why the test set has been assembled.
/testSetMember : TestCase [1l..*]

Refers to the TestCases that are assembled, either via ownership or import, by the

UML Testing Profile 2 (UTP 2), Version 2.2

given TestSet, and thus, are members of that TestSet. A TestCase can be a member
of more than one TestSet.

TestSetLog [*]
testSetAS : TestSetArbitrationSpecification [0..1]
/referencedBy : TestContext [*]
Constraints Restriction of extendable metaclass
«TestSet» shall not only be applied to instances of the metaclass Profile.

Change from UTP 1.2 «TestSet» has been newly introduced by UTP 2. It was part of the TestContext in
UTP 1.2.

8.3.1.4.5 verifies
Description The stereotype «verifies» extends Dependency and is

intended to express relationships among elements that
are supposed to be verified (e.g., a requirement, an
interface operation, a use case, a user story, a single
transition or state, and so forth) and elements that
support the verification thereof (e.g., a test objective, a
test requirement, a test case, a test set).

A «verifies» Dependency as a means to establish
traceability within UML-based model elements. It
weakens the constraints applied on SysML «Verify» in
a sense that UTP «verifies» allows targeting elements
different than SysML «requirement». This limitation is
too restrictive for UTP, in particular in setups where, for
example, use cases are the elements to be verified.

Since the semantics of Dependencies with respect to
n:m-ary in contrast to binary, 1:m-ary, or n:1-ary
Dependencies are not precisely defined, UTP considers
by default no difference among all the different ways on
how «verifies» Dependencies can be expressed between
more than two elements.

If a SysML profile (see [SysML]) is also loaded into a
model containing the UTP 2.0 profile, this stereotype

may be considered as the SysML «Verify» stereotype
(i.e. merged with the SysML «Verify» stereotype).

Extension Dependency

Change from UTP 1.2 «verifies» has been newly introduced into UTP 2. In
UTP 1.2 the «verify» stereotype from SysML was
recommended.

8.3.2 Test Design

The UTP 2 test design facility describes a language framework for the specification of test design techniques and
their application to a test design input element. This includes behavioral descriptions (e.g., UML state machines), or
structural information (e.g., interface definitions). test design techniques are usually assembled by so called test
design directive which is responsible for establishing the associations between a set of test design techniques and the
test design input element those test design techniques must operate on. A test design directive may also link the test
design outputs elements that have been generated or derived by the set of applied test design techniques. This allows
for a more comprehensible test design phase and is the key to comprehensive traceability among test objectives/test
requirements, test design techniques, test design input and eventually test design output elements.

UML Testing Profile 2 (UTP 2), Version 2.2 87

The UTP 2 test design facility only represents the very core of the language framework. Since the stereotypes of the
core framework are based on abstract stereotypes and mostly derived (and read-only unions) associations, it is
possible to concretize and extend the test design facility as required by using stereotype specialization and property
subsetting. A built-in concretization of the core framework was done by means of the generic test design capabilities
and the predefined test design techniques. It enables test engineers to immediately utilize the test design facility or
develop proprietary test design directives and test design techniques. Tailoring of the UTP test design facility can be

done at metalevel M1 (model level) and metalevel M2 (metamodel level). The-different-mechanismfor-tatloringare:

The different mechanisms for tailoring are:

8.3.2.1

Tailoring through structural features: Both «TestDesignTechnique» and «TestDesignDirective» extend the
UML metaclass InstanceSpecification with implicit attributes predefined by the respective stereotypes. In
addition to these predefined attributes, user may add additional attributes to these two elements by using the
genuine InstanceSpecification-Classifier association. Since both stereotypes extend InstanceSpecification, it
is possible to classify these InstanceSpecifications with multiple Classifiers. For this purpose, UTP provides
the stereotypes «TestDesignDirectiveStructure» and «TestDesignTechniqueStructure». As a result, the user
may add as many additional attributes as desired or required to a «TestDesignDirective» and
«TestDesignTechniquey.

Tailoring through use of «GenericTestDesignDirective» and «GenericTestDesignTechnique»: By means of
the predefined stereotypes «GenericTestDesignTechnique» and «GenericTestDesignDirectivey, users can
build on proprietary test design directives and test design techniques by simply providing dedicated names
to the underlying InstanceSpecification (i.e., the InstanceSpecification with «GenericTestDesignDirectivey
or «GenericTestDesignTechnique» applied. In combination with the extension through structural features as
just described above, the use of «GenericTestDesignTechnique» and «GenericTestDesignDirectivey
provides a flexible and powerful mechanism to tailor the UTP test design facility for user-specific purposes.
For example, an InstanceSpecification with «TestDesignTechnique» applied and name set to 'PathCoverage'
is one way to provide the test engineer with a new test design techniques that represents path coverage.

Profile extension: The third and most powerful tailoring to user-specific needs comes along with profile
extension. Similar to the provision of specialized stereotypes of the abstract stereotypes
«TestDesignTechnique» and «TestDesignDirective» as predefined concepts of the language itself, users or
vendors may introduce proprietary stereotypes that specialize the abstract stereotypes provided by the test
design facility of UTP.

Test Design Facility

The following picture shows the abstract syntax of the very core of the UTP test design facility.

88

UML Testing Profile 2 (UTP 2), Version 2.2

«stereotypen

otypen
TestDirectiveStructure i

h

TestT. AT,

TestDirective

il 1

wtereotypen lereotypen
{concepts = test design directive} _ P! .
TestDesignDirectiveStructure {eoncepts = test design technique}
TestDesignTechniqueStructure

«stereotypen ‘ wstereotypen ‘ ‘ wstere

/{read-only, union, subsets subTestDirective} subDirective |

N +| [instanceOf {redefines instanceOf} x“/insfcnceof {redefines instanceOf}

1

wstereotypen 1.* “5'9'901\’?5” .
* |{concepts = Test Design Directive}| * 1.* |{concepts = test design technique}
TestDesignDirective . . . TestDesignTechnique
{Abstract) /{read-only, union, subsets technique} capability {Abstract}
! Ho.ra *| [{read-only, union, subsets subTestTechnique} subTechnique
ustereotypen
. {concepts = test objective}
TestObjective
meet||D : string [0..1]
«metaclassy
" Element
dataProvider R) {Abstract}
«stereotypen testDesignOutput {redefines output}!
{concepls = data provider) . [notaclasm
ValueSpecification
testDesigningEntity {Abstract}
«metaclassn wstereotypen
1.r iE| t {concepts = test design input}
’) . {Abstract} TestDesigninput
testDesigninput {redefines input} «extendsy|

Figure 8.5 - Test Design Facility

8.3.2.2 Generic Test Design Capabilities
The generic test design capabilities of UTP 2 enable tester to immediately start off with specifying test design
directives and defining proprietary, user-defined or project-specific test design techniques, if the predefined test

design techniques does not suffice.

| /{read-only, union, subsets subTestDirective} subDirective

«stereotypen
* {concepts = Test Design Directive}
TestDesignDirective
{Abstract} * /{read-only, union, subsets subTestTechnique} subTechnique

*

/{read-only, union, subsets technique} capability 1..*

{subsets subDirecﬁvé genericSubDirective
«stereotypen

{concepts = test design technique}
TestDesignTechnique
{Abstract}

*

{subsets capability} appliedTestDesignTechnique 1.*

* «stereotypen
{concepts = test design directive}
GenericTestDesignDirective

wstereotypen
{concepts = test design technique}
GenericTestDesignTechnique

Figure 8.6 - Generic Test Design Capabilities

8.3.2.3 Predefined high-level Test Design Techniques
The following diagram shows the predefined high-level test design techniques. They belong to the so called
specification-based test design techniques as categorized by [1ISO29119]-4.

UML Testing Profile 2 (UTP 2), Version 2.2 89

ustereotypen
{concepts = test design technique}
TestDesignTechnique
{Abstract}

ustereotypen
{concepfts = test design technique}| |
DecisionTableTesting

ustereotypen
{concepfts = test design technique}| |
CauseEffectAnalysis

ustereotypen
{concepfts = test design technique}| |
ClassificationTreeMethod

ustereotypen
{concepfts = test design technique}| |
UseCaseTesting

Figure 8.7 - Predefined high-level Test Design Techniques

8.3.24 Predefined data-related Test Design Techniques
The following diagram shows the predefined data-related test design techniques. They belong to the so called
specification-based test design techniques as categorized by [ISO29119]-4.

«stereotypen
{concepts = test design technique}
TestDesignTechnique
{Abstract}

«stereotypen «stereotypen

{concepts = test design technique} {concepts = test design technique}
EquivalenceClassPartitioning CombinatorialTesting
nRepresentatives : UnlimitedNatural = 1 nCombination : UnlimitedNatural = *
[\ / \

«stereotypen «stereotypen

{concepts = test design technique} {concepts = test design technique}
BoundaryValueAnalysis PairwiseTesting
nBoundaryRepresentatives : Integer = 1 nCombination {redefines nCombination} : UnlimitedNatural = 2...

nRepresentatives {redefines nRepresentatives} : UnlimitedNatural = 0

Figure 8.8 - Predefined data-related Test Design Techniques

90 UML Testing Profile 2 (UTP 2), Version 2.2

8.3.2.5 Predefined state-transition-based Test Design Techniques

The following diagram shows the predefined state-transition based test design techniques. They belong to the so

called specification-based test design techniques as categorized by [1SO29119]-4.

«stereotypen
{concepts = test design technique}
TestDesignTechnique

{Abstract}
/\
«stereotypen
{concepts = test design technique}
StateTransitionTechnique
{Abstract}
/
«stereotypen «stereotypen «stereotypen
{concepts = test design technique}| |{concepts = test design technique}| |{concepts = test design technique}
StateCoverage TransitionCoverage NSwitchCoverage
1 1 switchStates : Integer =0
* *
\; toBeCovered toBeCovered
«metaclassy «metaclassy
State Transition

«stereotypen
{concepts = test design technique}
TransitionPairCoverage

8.3.2.6

switchStates {redefined switchStates} : Integer = 1

Figure 8.9 - Predefined state-transition-based Test Design Techniques

Predefined experience-based Test Design Techniques

The following diagram shows the predefined experienced-based test design techniques as categorized by

1SO29119]-4.

UML Testing Profile 2 (UTP 2), Version 2.2

91

«stereotypen
{concepts = test design technique}

TestDesignTechnique
{Abstract}

«stereotypen
{concepfts = test design technique}
ExperienceBasedTechnique

{Abstract}
wstereotypen
{concepts = test design technique}
ExploratoryTesting
«stereotypen

{concepfts = test design technique}
ErrorGuessing

wstereotypen
{concepts = test design technique}
ChecklistBasedTesting

92

Figure 8.10 - Predefined experience-based Test Design Techniques

UML Testing Profile 2 (UTP 2), Version 2.2

8.3.2.7 Stereotype Specifications

8.3.2.71 BoundaryValueAnalysis

Description

Extension
Super Class
Attributes

Change from UTP 1.2

According to [ISTOQB]: Black box testing is a test design technique in which test
cases are designed based on boundary values.

«BoundaryValueAnalysis» is an extension of «EquivalenceClassPartitioning» that
takes also values at the boundaries (left and right or upper and lower boundary) into
account. A boundary value is defined by ISTQB as "an input value or output value
which is on the edge of an equivalence partition or at the smallest incremental
distance on either side of an edge, for example the minimum and maximum value of
arange."

Since the boundary values already define representatives of an equivalence class,
the ordinary (i.e. non-boundary) representatives are usually of less interest.
Therefore, the inherited property nRepresentatives is redefined to obtain the default
value 0. This ensures that no additional ordinary representatives of the equivalence
class are selected. However, it is still possible to specify that in addition to the
boundary values, ordinary representatives of the corresponding equivalence class
will be selected by setting the value of nRepresentatives to a value greater than 0.

See [ISO29119]-4 clause 5.2.3 BoundaryValueAnalysis for further information.
InstanceSpecification

EquivalenceClassPartitioning

nBoundaryRepresentatives : Integer [1] =1

Specifies the number of boundary representatives that have to be covered by the
resulting test cases. Default is 1.

nRepresentatives {redefines nRepresentatives}
UnlimitedNatural [1] = O

Redefines the number of representatives to 0, in addition to the boundary values,
meaning that by default only the boundary values will be selected.
«BoundaryValueAnalysis» has been newly introduced by UTP 2.

8.3.2.7.2 CauseEffectAnalysis

Description

Extension
Super Class
Change from UTP 1.2

According to [ISTOB]: A black box test design
technique in which test cases are designed from cause-
effect graphs.

See also [ISO29119]-4, clause 5.2.7 Cause-Effect
Graphing for further information.
InstanceSpecification

TestDesignTechnique

«CauseEffectAnalysis» has been newly introduced by
UTP 2.

8.3.2.7.3 ChecklistBasedTesting

Description

Extension

According to [ISTQB]: An experience-based test design
technique whereby the experienced tester uses a high-
level list of items to be noted, checked, or remembered,
or a set of rules or criteria against which a product has
to be verified.

InstanceSpecification

UML Testing Profile 2 (UTP 2), Version 2.2 93

Super Class
Change from UTP 1.2

8.3.2.7.4 ClassificationTreeMethod
Description

Extension
Super Class
Change from UTP 1.2

8.3.2.7.5 CombinatorialTesting
Description

Extension
Super Class
Sub Class
Attributes

Change from UTP 1.2

94

ExperienceBasedTechnique

«ChecklistBasedTesting» has been newly introduced by
UTP 2.

According to [ISTOB]: A black box test design
technique in which test cases, described by means of a
classification tree, are designed to execute combinations
of representatives of input and/or output domains. A
classification tree is a tree showing equivalence
partitions hierarchically ordered, which are used to
design test cases in the classification tree method.

See also [ISO29119]-4, clause 5.2.2 Classification Tree
Method for further information.

InstanceSpecification
TestDesignTechnique

«ClassificationTreeMethod» has been newly introduced
by UTP 2.

According to [ISTOB]: A means to identify a suitable
subset of test combinations to achieve a predetermined
level of coverage when testing an object with multiple
input parameters and where those parameters
themselves each have several values.

The Property nCombinations specifies the number of
how many parameters must be combined with each
other. The higher the number of combinations, the
higher the number of derived test cases. By default, all
combinations of input parameters will be covered,
which is indicated by the asterisk (*). However, the
value of the Property nCombination has to be less than
the number of the input parameters.

See [ISO29119]-4 clause 5.2.5 Combinatorial Test
Design Techngqiues for further information.
InstanceSpecification

TestDesignTechnique

PairwiseTesting

nCombination : UnlimitedNatural [1] =
*

The number of combinations of input parameters

«Combinatorial Testing» has been newly introduced by
UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.2

8.3.2.7.6 DecisionTableTesting

Description

Extension
Super Class
Change from UTP 1.2

According to [ISTOB]: A black box test design
technique in which test cases are designed to execute
combinations of inputs and/or stimuli (causes) shown in
a decision table. A decision table is a table showing
combinations of inputs and/or stimuli (causes) with their
associated outputs and/or actions (effects), which can be
used to design test cases.

See also [ISO29119]-4, clause 5.2.6 Decision Table
Testing for further information.
InstanceSpecification

TestDesignTechnique

«DecisionTableTesting» has been newly introduced by
UTP 2.

8.3.2.7.7 EquivalenceClassPartitioning

Description

Extension
Super Class
Sub Class
Attributes

Change from UTP 1.2

8.3.2.7.8 ErrorGuessing
Description

Extension
Super Class
Change from UTP 1.2

According to [ISTOB]: A black box test design technique in which test cases are
designed to execute representatives from equivalence partitions. In principle test
cases are designed to cover each partition at least once.

Usually, the number of the representatives of each equivalence class that will be
used to derive the test cases is set to 1 in order to keep the number of test cases as
low as possible. In certain situations, it might be, for whatever reason, desired to
select more than just one representative per equivalence class. The property
nRepresentatives enables the tester to set any number desired number of
representatives per equivalence class. By default, the value is set to 1 (reflecting the
usual application of that test design technique). If the value is set to unlimited (i.e.,
the asterisk (*)), all possible representatives of an equivalence class have to be
selected.

See [1SO29119]-4 clause 5.2.1 Equivalence Partitioning for further information.
InstanceSpecification

TestDesignTechnique

BoundaryValueAnalysis

nRepresentatives : UnlimitedNatural [1] = 1

Indicates the desired number of minimal representatives that should be derived for a
given equivalence class.

«EquivalenceClassPartitioning» has been newly introduced by UTP 2.

According to [ISTOB]: A test design technique where
the experience of the tester is used to anticipate what
defects might be present in the component or test item
as a result of Errors made and to design tests
specifically to expose them.

See [1SO29119]-4 clause 5.4 Error Guessing for further
information.

InstanceSpecification
ExperienceBasedTechnique
«ErrorGuessing» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.2 95

8.3.2.7.9 _ExperienceBasedTechnique

Description

Extension
Super Class
Sub Class

Change from UTP 1.2

According to [ISTOB]: A procedure to derive and/or
select test cases based the tester’s experience,
knowledge and intuition.

Experienced-based test design techniques are usually
informal techniques potentially supported by checklists
or Error taxonomies.

InstanceSpecification

TestDesignTechnique

ChecklistBasedTesting, ErrorGuessing,
ExploratoryTesting

«ExperienceBasedTechnique» has been newly
introduced by UTP 2.

8.3.2.7.10 ExploratoryTesting

Description

Extension
Super Class
Change from UTP 1.2

According to [ISTQB]: An informal test design
technique where the tester actively controls the design
of the tests as those tests are performed and uses
information gained while testing to design new and
better tests.

InstanceSpecification

ExperienceBasedTechnique

«ExploratoryTesting» has been newly introduced by
UTP 2.

8.3.2.7.11 GenericTestDesignDirective

Description

Extension
Super Class
Associations

Change from UTP 1.2

96

A predefined test design directive that is able to assemble any test design technique
available or known in a certain context, including any user-defined
«GenericTestDesignTechniquey». As such, the generic test design directive makes no
assumptions about the capabilities of a test designing entity a priori.

Additional required information can be introduced by utilizing the test design
directive structure concept.

InstanceSpecification

TestDesignDirective

{subsets capability} appliedTestDesignTechnique
TestDesignTechnique [1..%*]

Enables a generic test design directive to apply any known test design technique for
the test design activity.

{subsets subDirective} genericSubDirective
TestDesignDirective [*]

Enables a generic test design directive to be potentially refined by any other known
test design directive.
«GenericTestDesignDirective» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.2

8.3.2.7.12 GenericTestDesignTechnique

Description

Extension
Super Class
Change from UTP 1.2

The predefined generic test design technique is a
semantic-free test design technique that is intended to be
used to specify proprietary test design techniques that
are not part of the predefined UTP 2 test design facility.
The name of the underlying InstanceSpecification
determines the name of the test design technique,
potentially extended by structural information.
InstanceSpecification

TestDesignTechnique

«GenericTestDesignTechnique» has been newly
introduced by UTP 2.

8.3.2.7.13 NSwitchCoverage

Description

Extension
Super Class
Sub Class
Attributes

Change from UTP 1.2

According to [ISTOB]: A form of state transition testing
in which test cases are designed to execute all valid
sequences of N+1 transitions.

N-Switch coverage was initially developed by [Chow],
where n defines the number of switch states among a
sequence of consecutive transitions. The default is 0,
meaning that a test case may only consist of a single
transition. However, the entirety of all transitions will
be captured by the resulting test cases.
InstanceSpecification

StateTransitionTechnique

TransitionPairCoverage

switchStates : Integer [1] = 0

Specifies the number of switch states, and thus,
implicitly the sequence of transitions that will at least be
covered by the resulting test cases.

«NSwitchCoverage» has been newly introduced by UTP
2.

8.3.2.7.14 PairwiseTesting

Description

Extension
Super Class
Attributes

Change from UTP 1.2

According to [ISTOB]: A black box test design technique in which test cases are
designed to execute all possible discrete combinations of each pair of input
parameters.

«PairwiseTesting» is a specialized «Combinatorial Testingy test design technique
whose property nCombination is refined and set to the read-only value 2, meaning,
that at least each pair of input parameters will be covered in the resulting test cases.

See [1SO29119]-4 clause 5.2.5.4 Pair-wise Testing for further information.
InstanceSpecification

CombinatorialTesting
nCombination {redefines nCombination} : UnlimitedNatural
[1] = 2

The number of combinations for each input parameter is set to exactly 2 (i.e., each
combination of every pair of input parameters must at least be covered).
«PairwiseTesting» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.2 97

8.3.2.7.15 StateCoverage
Description

Extension
Super Class
Associations

Change from UTP 1.2

8.3.2.7.16 StateTransitionTechnique
Description

Extension

Super Class

Sub Class

Change from UTP 1.2

98

According to [ISTOB]: A black box test design
technique in which test cases are designed that cover at
least the execution of a set of referenced states.

If no State is referenced by the property toBeCovered,
all States in the related state machine will be covered.
InstanceSpecification

StateTransitionTechnique

toBeCovered : State [*]

Refers to a set of States that will at least be covered by
the test designer.
«StateCoverage» has been newly introduced by UTP 2.

According to [ISTOB]: A black box test design
technique in which test cases are designed to execute
valid and invalid state transitions.

Test design directives that assemble a concrete state-
transition technique must refer to at least one state
machine as its test design input. If more than one state
machine is referenced as test design input, the concrete
state-transition techniques are applied to all state
machines.

See also [1SO29119]-4, clause 5.2.8 State-Transition
Testing for further information.

InstanceSpecification

TestDesignTechnique

NSwitchCoverage, StateCoverage, TransitionCoverage

«StateTransitionTechnique» has been newly introduced
by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.2

8.3.2.7.17 TestDesignDirective

Description

Extension
Super Class
Sub Class
Associations

TestDesignDirective: A test design directive is an instruction for a test designing
entity to derive test artifacts such as test sets, test cases, test configurations, data or
test execution schedules by applying test design techniques on a test design input.
The set of assembled test design techniques are referred to as the capabilities a test
designing entity must possess in order to carry out the test design directive,
regardless whether it is carried out by a human tester or a test generator. A test
design directive is a means to support the achievement of a test objective.

The abstract stereotype «TestDesignDirective» extends InstanceSpecification and
brings all relevant information together that is required for automatically or
manually derive test artifacts from a test design input. The derivation process is
steered by the set of test design techniques, which the current test design directives
refers to.

Each test design directive has a basic set of structural elements, given by the tag
definitions of the «TestDesignDirective» stereotype. The fundamental and implicit
structure can be extended by means of UML. Since «TestDesignDirective» extends
InstanceSpecification, it is possible to add Classifiers to the underlying
InstanceSpecification which then define additional structural information deemed
necessary in a specific context. This is the easiest and UML native mechanism to
tailor test design directive to specific needs.

The test design techniques that will be applied on the test design input are captured
in the association end capabilities. This is a derived union, since it cannot be
foreseen which test design techniques are required. Concrete subtypes have to
subset the derived union capabilities (see for example
«GenericTestDesignDirective») in order to enable certain test design techniques for
a test design directive. Those test design techniques can be combined with each
other by a test design directive.

A test design directive refers to a set of NamedElements as the input for the eventual
test design activities performed by a test designing entity. This input yields the
association end TestDesignInput. It is not required that a referenced NamedElement
has the stereotype «TestDesignlnput» applied. The assembled test design techniques
by the given test design directive are then applied on the test design input in order to
produce the test design output artifacts.

A test design directive may provide sub-directives by means of the association end
subDirective. Providing a sub test design directive enables testers to refine the test
design activities for certain elements contained in the test design input. As an
example, this specification assumes a parent test design directive refers to a
StateMachine as its test design input. The test design directive also assembles a set
of state-transition and data-related test design techniques that will be applied to the
StateMachine by a test designing entity. This specification further assume that the
StateMachine contains a submachine State (i.e., a reference of another StateMachine
that is considered to be copied to the location of the submachine State) which is
referred to as test design input by a sub test design directive. This enables the
composition of different kinds of test design directives in order to meet different test
objectives.

InstanceSpecification

TestDirective

GenericTestDesignDirective

meet : TestObjective [*]

The test objectives that have to be fulfilled by putting the given test design directive
into effect.

UML Testing Profile 2 (UTP 2), Version 2.2 99

Change from UTP 1.2

/{read-only, union, subsets technique} capability
TestDesignTechnique [1..%*]

Refers to the set test design techniques that are assembled by the given test design
directive. The set is referred to as the capabilities a test designing entity (e.g., a
generator in automated test design or human tester in manual test design) has to
offer in order to be able to perform the test design activities imposed by the test
design directive.

TestDesignDirective [*]
/{read-only, union, subsets subTestDirective}
subDirective : TestDesignDirective [*]

Refers to one or more test design directives that further refine the instructions given
by the parent test design directive.

GenericTestDesignDirective [*]
testDesignOutput {redefines output} : Element [*]

The outcome of the test design activities produced by the given test design
directives.
testDesigningEntity : ValueSpecification [*]

Identifies the test designing entity (e.g. a generator in automated test design or a
human tester in manual test design) that has produced (parts of) the test design
output.

/instanceOf {redefines instanceOf}
TestDesignDirectiveStructure [*]

Refers to the- test design directive structure of which the given test design directive
is an instance of. The test design directive structure is derived from all Classifiers
with «TestDesignDirectiveStructure» applied that are referred as classifiers by the
underlying InstanceSpecification.

testDesignInput {redefines input} : NamedElement [1..*]

Refers to the model elements that have to be incorporated by the test designer (e.g. a
generator in automated test design or a human tester in manual test design) as input
to the derivation process.

/referencedBy : TestContext [*]

dataProvider : DataProvider [*]

References the data providers that are supposed to deliver or produce the required
test data.
«TestDesignDirective» has been newly introduced by UTP 2.

8.3.2.7.18 TestDesignDirectiveStructure

Description

Extension

Super Class
Associations

Change from UTP 1.2

100

A TestDesignDirectiveStructure describes user-defined or context-specific
additional information that may augment any given TestDesignDirective. A
Classifier with «TestDesignDirectiveStructure» applied might be of arbitrary
complexity. It enables the provision of information that are deemed relevant in a
certain context but not required in a different context.
Classifier
TestDirectiveStructure

TestDesignDirective

«TestDesignDirectiveStructure» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.2

8.3.2.7.19 TestDesignlnput

Description

Extension
Change from UTP 1.2

TestDesignlnput: Any piece of information that must or has been used to derive
testing artifacts such as test cases, test configuration, and data.

The stereotype «TestDesignlnputy is an explicit, yet optional means to indicate that
the purpose of a given model element is to use it for test design activities (i.e.,
usually the derivation of test cases, test data, test configurations etc.). The
application of this stereotype is declared as optional, because in general any kind of
model element might be used as input for the test design activities.

NamedElement

«TestDesignlnput» has been newly introduced by UTP 2.

8.3.2.7.20 TestDesignTechnique

Description

Extension
Super Class
Sub Class

Associations

TestDesignTechnique: A specification of a method used to derive or select test
configurations, test cases and data. test design techniques are governed by a test
design directive and applied to a test design input. Such test design techniques can
be monolithically applied or in combination with other test design techniques. Each
test design technique has clear semantics with respect to the test design input and
the artifacts it derives from the test design input.

The abstract stereotype «TestDesignTechnique» extends InstanceSpecification and
integrates test design techniques with test design directives. A test design technique
is a concrete action, technique or procedure to derive test design output from a test
design input. A test design technique is basically independent of a dedicated test
design input element, but can be reused across multiple test design input elements.
Some test design techniques only make sense if a certain test design input element
was selected (e.g., state-transition test design techniques make only sense if the test
design input element is a StateMachine).

Each test design technique has a basic set of structural elements given by the tag
definitions of the «TestDesignTechniquey stereotype. The fundamental (and
implicit) structure can be extended by means of UML. Since
«TestDesignTechnique» extends InstanceSpecification, it is possible to add
Classifiers to the underlying InstanceSpecification which then define additional
structural information deemed necessary in a specific context. This is the easiest and
UML native mechanism to tailor test design techniques to specific needs.

A test design technique may provide sub-techniques by means of the association end
subTechnique. Providing a sub test design technique enables testers to refine the test
design techniques for certain elements contained in the test design input and also to
enrich existing (potentially pre-defined) test design techniques in a certain context.
InstanceSpecification
TestTechnique
CauseEffectAnalysis, ClassificationTreeMethod, Combinatorial Testing,
DecisionTableTesting, EquivalenceClassPartitioning, ExperienceBasedTechnique,
GenericTestDesignTechnique, StateTransitionTechnique, UseCaseTesting
TestDesignDirective [*]
TestDesignTechnique [*]
/{read-only, union, subsets subTestTechnique}
subTechnique : TestDesignTechnique [*]

Refers to one or more test design techniques that may further refine the parent test
design technique.
GenericTestDesignDirective [*]

UML Testing Profile 2 (UTP 2), Version 2.2 101

Change from UTP 1.2

/instanceOf {redefines instanceOf}
TestDesignTechniqueStructure [*]

Refers to additional structural information of the given test design technique. The
test design technique structures are derived from all Classifiers with
«TestDesignTechniqueStructure» applied that are referred to as classifiers by the
underlying InstanceSpecification.

/referencedBy : TestContext [*]

«TestDesignTechnique» has been newly introduced by UTP 2.

8.3.2.7.21 TestDesignTechniqueStructure

Description

Extension

Super Class
Associations

Change from UTP 1.2

A test design technique structure describes user-defined or context-specific
additional information that may augment any given test design technique. A
Classifier with «TestDesignTechniqueStructure» applied might be of arbitrary
complexity. It enables the provision of information that is deemed relevant in a
certain context but not required in a different context.
Classifier
TestTechniqueStructure

TestDesignTechnique [1..%*]

«TestDesignTechniqueStructure» has been newly introduced by UTP 2.

8.3.2.7.22 TransitionCoverage

Description

Extension
Super Class
Associations

Change from UTP 1.2

According to [ISTQB]: A black box test design
technique in which test cases are designed that cover at
least the execution of a set of references states.

If no Transition is referenced by the property
toBeCovered, all States in the related state machine will
be covered.

InstanceSpecification

StateTransitionTechnique

toBeCovered : Transition [*]

Refers to a set of Transitions that will at least be
covered by the test designer.

«TransitionCoverage» has been newly introduced by
UTP 2.

8.3.2.7.23 TransitionPairCoverage

Description

Extension
Super Class
Attributes

Change from UTP 1.2

102

The «TransitionPairCoverage» test design technique is a specific (and often used)
«NSwitchCoverage» test design technique that redefines the Property switchStates
to the read-only value 1. That means that the resulting test cases should at least
cover all sequences of any two consecutive Transitions.

The semantics of transition pair coverage and N-Switch coverage with nSwitches set
to 1 is semantically equivalent.

InstanceSpecification

NSwitchCoverage

switchStates {redefined switchStates} : Integer [1] =1

Restricts the number of switch states to exactly one, meaning; that every pair of
subsequent Transitions will at least be covered.
«TransitionPairCoverage» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.2

8.3.2.7.24 UseCaseTesting

Description According to [ISTOB]: A black box test design
technique in which test cases are designed to execute
scenarios of use cases.

See also [ISO29119]-4, clause 5.2.9 Scenario Testing
for further information.

Extension InstanceSpecification

Super Class TestDesignTechnique

Change from UTP 1.2 «UseCaseTesting» has been newly introduced by UTP
2.

8.4 Test Architecture

Test architecture concepts specify structural aspects of a test environment, including a test configuration, necessary
to eventually execute test cases against the test item(s). The test environment comprises everything that is necessary
to execute test cases (e.g., test components, hardware, simulators, test execution tools etc.). The test configuration

describes how those parts of the test environment and represented test components, are connected with the test item.

Building a reliable test configuration is required for any test case, because it determines the test item(s) and how the
test environment (in UTP represented by test components) interfaces to the test item(s).

Test architectures are mainly expressed by means of UML class and composite structure diagrams. In contrast to
UTP 1.2, both test components and test items can be represented either as a standalone type or as a role that a certain
type may assume in a specific test configuration. However, UTP does not prescribe which option to use for
describing test architecture and both have advantages and disadvantages.

The test architecture concepts consist of:
e test configuration, implemented by the stereotype «TestConfiguration»:»

e test configuration role, implemented by the abstract stereotype «TestConfigurationRole» as a superclass for
any known (even future) role a test configuration may assume;

e role configuration, implemented by the abstract stereotype «RoleConfigurationy as superclass for
configurations of concrete roles:

e test component, implemented by the stereotype «TestComponent» that specializes
«TestConfigurationRole»;»

e test component configuration, implemented by the stereotype «TestComponentConfiguration» that
specializes «RoleConfiguration»:»

e testitem, implemented by the stereotype «Testltemy that specializes «TestConfigurationRole»:»

e test item configuration, implemented by the stereotype «TestltemConfiguration» that specializes
«RoleConfiguration»s»

8.4.1 Test Architecture Overview
The diagram below shows the abstract syntax of the test architecture concepts.

UML Testing Profile 2 (UTP 2), Version 2.2 103

«metaclassy «metaclassy
StructuredClassifier Classifier «metaclassy «metaclassn
{Abstract} {Abstract} Property Constraint
«extendsy
«extendsy «extendsy wextendsy
ustereotypen «stereotypen «stereotypen

{concepts = test configuration}

TestConfiguration 1 * |{concepts = test configuration}| 1_*

Jrole {ready-only, union} * |{concepts = test configuration}

TestConfigurationRole N N X RoleConfiguration
‘ ID : Sting [0.1] ‘ /part {Abstract} /roleConfiguration {read-only, union} {Abstract}
: String [0..
| \ [
«stereotypen «stereotypen «stereotypen «stereotypen
{concepts = test component} {concepts = test item} {concepts = test item configuration}| |{concepts = test component configuration}
TestComponent Testitem TestitemConfiguration TestComponentConfiguration
1.% 1.% *|/configuration {subsets roleConfiguration}
/testComponent {subsets role} /testitem {subsets role}

/configuration {subsets roleConfiguration}

Figure 8.11 - Test Architecture Overview

8.4.2 Stereotype Specifications

8.4.2.1 RoleConfiguration
Description The abstract stereotype «RoleConfiguration» extends the metaclass Constraint and
is used to specify the configuration of test configuration role within a certain test

configuration.

There are at least two ways a role configuration can be associated with a test
configuration role, both stemming from the underlying UML Constraints
metamodel:

. Classifier-oriented: A Constraint with a concrete substereotype of
«RoleConfiguration» applied is contained by a Classifier as its context with
a concrete substereotype of «TestConfigurationRole» applied, or it refers to
a set of such Classifiers by means of the meta-association
constrainedElement;-and.

. Property-oriented: A Constraint with a concrete substereotype of
«RoleConfiguration» applied refers to one or more Properties with
«TestConfigurationRole» applied by means of the meta-association

| constrainedElement.

The Classifier-oriented way has the advantage that all parts of test configurations
which are typed by a Classifier with a concrete substereotype of
«TestConfigurationRole» applied, must abide by the configurations defined for that
Classifier. On the downside, this might prevent reuse, because it is not possible to
get rid of configurations (similar to the handling of Constraints in UML) expressed
on Classifier level.

The Property-oriented way has the advantage that it enables the dedicated
configuration of single test component roles within a test configuration.

Extension Constraint
Sub Class TestComponentConfiguration, TestltemConfiguration
Associations /role {ready-only, union} : TestConfigurationRole [1..%*]

Refers to the set of at least one test configuration roles.
Change from UTP 1.2 «RoleConfiguration» is newly introduced in UTP 2.

104 UML Testing Profile 2 (UTP 2), Version 2.2

8.4.2.2 TestComponent

Description

Extension
Super Class
Sub Class
Associations

Change from UTP 1.2

TestComponent: A role of an artifact within a test configuration that is required to
perform a test case.

The stereotype «TestComponent» specializes «TestConfigurationRole» and declares
that a certain element (i.e., either a Classifier or Property) is responsible for driving
the execution of a test case. The use of the stereotype «TestComponent» on
Classifier is optional but, if it is used, all Properties of that type must also have
«TestComponent» applied, if they are used in a test configuration.

Classifier, Property

TestConfigurationRole

DataProvider

/configuration {subsets roleConfiguration}
TestComponentConfiguration [*]

Refers to the configurations that are defined for this «TestComponent». This set of
configurations is derived from all Constraints with «TestComponentConfiguration»
applied that are either owned rules (in case of «TestComponenty is applied on a
Classifier) of the «TestComponent» or inversely referring to the «TestComponenty
(in case of «TestComponentConfiguration» is applied on Constraint without having
a context; but using Constraint.constrainedElement to refer to the
«TestComponent»).

Changed from UTP 1.2. In UTP 1.2., «TestComponent» only extended Class.

8.4.2.3 TestComponentConfiguration

Description

Extension
Super Class
Associations

Constraints

Change from UTP 1.2

TestComponentConfiguration: A set of configuration options offered by an artifact
in the role of a test component chosen to meet the requirements of a particular test

configuration.

The stereotype «TestComponentConfiguration» specializes the abstract stereotype
«RoleConfiguration». The eventual set of configurations for a NamedElement with
«TestComponent» applied is derived from the union of all test component
configurations declared for that NamedElement (i.e., either on Classifier or
Property level).

Constraint

RoleConfiguration

/testComponent {subsets role} : TestComponent [1..%*]

Refers to the set of at least one test components that are configured by the given test
component configuration. The resulting set is derived from both the Classifier
stereotyped with «TestComponent» that is the context of the underlying Constraint
and all test components regardless of whether Classifier or Property that are
referenced by the underlying Constraint.constrainedElement.

Ownership of «TestComponentConfigurationy

Each «TestComponentConfiguration» shall refer to at least one «TestComponent»,
i.e., there is no «TestComponentConfiguration» that exists without referring to a
«TestComponenty.

«TestComponentConfiguration» has been newly introduced into UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.2 105

8.4.2.4 TestConfiguration

Description

Extension
Attributes

Associations

Constraints

Change from UTP 1.2

TestConfiguration: A specification of the test item and test components as well as
their interconnection and configuration data.

The stereotype «TestConfiguration» extends StructuredClassifier which
effectively extends a variety of UML metaclasses such as Class, Collaboration, and
Component, etc. The test configuration then refers to the composite structure of the
underlying StructuredClassifier. Every test configuration must have at least one
member stereotyped «Testltem» which is connected to at least one member
stereotyped with «TestComponenty.

The test configurations of any two distinct test procedures that are intended to be
executed together, as part of a potentially third test procedure, and must have a
compatible test configuration. Compatibility of test configurations is partially
defined by UML and the substitution principle of Liskov, but also by means of the
idea of EncapsulatedClassifiers. The attempt to invoke test procedures together will
most likely fail due to technical incompatibility.

Test cases or test procedures may come along with their own test configurations
expressed by means of their respective composite structures. In that case, the
application of the «TestConfigurationy stereotype will be done in addition to
«TestCase» or «TestProcedurey. In case of shared test configurations it is
recommended, though not required, to facilitate the UML concept of a
«TestConfiguration» stereotyped Collaboration. Collaborations are meant to be
reused by other StructuredClassifiers, including Behaviors, by means of
CollaborationUse and role bindings. Inheritance and redefinition, as defined by
UML, are additional means to express shared and reusable test configurations, as
well.

StructuredClassifier

ID : String [0..1]

A unique identifier that unambiguously identifies the given test configuration.
/part : TestConfigurationRole [*]

Refers to the test configuration parts that are involved in this test configuration.
They are derived from all members of the underlying StructuredClassifier that has a
subclass of the abstract stereotype «TestConfigurationRole» applied.

Minimal test configuration

A StructuredClassifier with «TestConfiguration» applied must at least specify one
part having «Testltem» applied.

«TestConfiguration» has been newly introduced into UTP 2. It was conceptually
represented by the composite structure of a «TestContexty in UTP 1.2.

8.4.2.5 TestConfigurationRole

Description

Extension

106

The abstract stereotype «TestConfigurationRole» extends both Classifier and
Property.

The advantage of assigning the role to a certain part assumes in a test configuration
that the very same Type of this part (i.e., Class or Component) can be reused in
different test configuration with different roles. This entails that the application of a
concrete subclass of «TestConfigurationRole» on a Classifier is not required at all
and limits reusability of this Classifier. If a concrete substereotype of
«TestConfigurationRole» is applied on a Classifier, any part of a test configuration
must have the very same concrete substereotype applied.

Classifier, Property

UML Testing Profile 2 (UTP 2), Version 2.2

Sub Class
Associations

Change from UTP 1.2

8.4.2.6 Testltem
Description

Extension
Super Class
Associations

Change from UTP 1.2

TestComponent, Testltem
/roleConfiguration {read-only, union}
RoleConfiguration [*]

Refers to the role configuration that is defined for this test configuration role.
TestConfiguration

«TestConfigurationRole» is newly introduced in UTP 2.

Testltem: A role of an artifact that is the object of testing within a test configuration.

The stereotype «Testltem» always indicates that a certain artifact (i.e., either applied
on Classifier or Property) specifies (parts of) the system under test. The use of the
stereotype «Testltem» on a Classifier is optional, but if it is used, all Properties of
that type within a test configuration must also have «Testltem» applied, if they are
used in a test configuration.

Classifier, Property

TestConfigurationRole

/configuration {subsets roleConfiguration}
TestItemConfiguration [*]

Refers to the configurations that are defined for this test item. This set of
configurations is derived from all Constraints with «TestltemConfiguration» applied
that are either owned rules of the «Testltem» (in case of «Testltem» is applied on a
Classifier) or that refer to the given test item using the underlying Constraint's
constrainedElement attribute.

«Testltem» has been newly introduced into UTP 2 and supersedes the «SUT»
stereotype in UTP 1.

8.4.2.7 TestltemConfiguration

Description

Extension
Super Class
Associations

Constraints

Change from UTP 1.2

TestltemConfiguration: A set of configuration options offered by an artifact in the
role of a test item chosen to meet the requirements of a particular test configuration.

The stereotype «TestltemConfiguration» specializes the abstract stereotype
«RoleConfiguration». The eventual set of configurations for a NamedElement with
«Testltem» applied is derived from the union of all test item configurations declared
for that NamedElement (i.e., either on Classifier or Property level).

Constraint

RoleConfiguration

/testItem {subsets role} : TestItem [1l..%*]

Refers to the set of at least one test items that are configured by the given
configuration. The resulting set is derived from both the Classifier stereotyped with
«TestItem» that is the context of the underlying Constraint and all «TestItem»
elements, regardless whether Classifier or Property, that are referenced by the
underlying Constraint.constrainedElement.

Ownership of «TestltemConfiguration»

Each «TestltemConfiguration» shall refer to at least one «Testltemy, i.e., there is no
«TestltemConfiguration» that exists without referring to a «Testltem».
«TestltemConfiguration» has been newly introduced into UTP 2.

8.5 Test Behavior

Test behavior is a collective term for concepts that can be executed as part of a test set or test case.

UML Testing Profile 2 (UTP 2), Version 2.2 107

Since the behavioral descriptions of UML are orthogonal to each other to a certain extent, UTP introduces a set of
test execution-relevant stereotypes independently of the underlying UML Behaviors or its constituting parts.
Integration with these Behaviors is done via partially multiple extensions.

The concepts for test behaviors are separated into the following blocks:
e Concepts for test-specific procedures (see section Test-specific Procedures)

e Concepts for procedural element (see section Procedural Elements)

o Concepts for test-specific actions (see section Test-specific Actions)

8.5.1 Test-specific Procedures

The fundamental executable concept in UTP is a procedure. Any UML Behavior without «TestCasey,
«TestExecutionSchedule» or «TestProcedure» applied is considered as a procedure. A procedure comprises
procedural elements regardless whether the building blocks are called InteractionFragments (if the procedure is
realized as Interaction) or Action (if the procedure is realized as Activity). For example, the procedural element
loop is represented by the stereotype «Loop» and denotes a repeated execution of procedural elements that are
contained in that loop. «Loop» extends the UML metaclasses CombinedFragment (integrating with Interactions)
and the StructuredActivityNode loop (integrating with Activities). Furthermore, it adds some test-specific
information such as the ability to provide arbitration specifications, when the loop is part of a test procedure.

Test-specific procedures are procedures that deliver a verdict (i.e., they can, or must in the case of a test case, be
arbitrated (see section Arbitration Specifications for further information about arbitration). This includes that its
constituting procedural elements are arbitrated as well and provide their respective verdict to a test case arbitration
specification, which potentially provides its test case verdict to a test set arbitration specification. UTP defines three
different test-specific procedures for:

e test procedure, represented by the stereotype «TestProcedurem:»
e test case, represented by the stereotype «TestCasen+anedy
e test execution schedule, represented by the stereotype «TestExecutionSchedule»

A test procedure is a reusable behavior that comprises procedural elements and runs on a test configuration. A test
case invokes one or more test procedures and assigns either of these roles: setup, main or teardown to the invoked
test procedure. A test execution schedule represents the invocation order of a test set's test cases.

The allowed invocation scheme for test-specific procedures is as follows:

o testTest execution schedule must only invoke other test execution schedules, test cases or procedures. The
invocation of test procedures by a test execution schedule is not allowed:.

e testTest case must only invoke test procedures or procedures, but must invoke at least one test procedure as
its main part. The invocation of test cases or test execution schedules is not allowed:.

o testTest procedure must only invoke other test procedures or procedures. The invocation of test cases or test
execution schedules is not allowed.

The test configuration of the invoking test case or test procedure must be compatible with the test configuration of
the invoked test procedure. In the case of contained test configurations and inheritance thereof, compatibility is
given by the substitution principle of Liskov. In the case of shared test configurations based on Collaboration,
compatibility is defined by UML.

8.5.1.1 Test Case Overview
The following diagram shows the abstract syntax of the test-specific procedures.

108 UML Testing Profile 2 (UTP 2), Version 2.2

«metaclassy «metaclassy
BehavioredClassifier Behavior
{Abstract} {Abstract}

A

«extendsy wextendsy «extendsy «wextendsy
«stereotypey «stereotypeyn «stereotypen
{concepts = test case,abstract test case,concrete test case}| [{concepts = test execution schedule}| {concepts = test procedure}
TestCase TestExecutionSchedule TestProcedure
ID : String [0..1] ‘ID : String [0..1]
description : String [0..1]

*\/realizedBy

" /realizes
«stereotypeyn
{concepts = test requirement}
TestRequirement

Figure 8.12 - Test Case Overview

8.5.1.2 Stereotype Specifications

8.5.1.21 TestProcedure
Description

Extension
Constraints

TestProcedure: A procedure that constrains the execution order of a number of test
actions.

A test procedure is a reusable Behavior that constitutes the building blocks for other
test procedures or test cases. A test procedure consists of procedural elements, in
particular test actions.

A test procedure must always run on a test configuration (i.e., its constituting
procedural elements are either executed by a test component or a test item). Since
«TestProcedure» extends Behavior (as such both StructuredClassifier as well as
BehavioredClassifier), a test procedure may provide its own dedicated test
configuration defined by its composite structures. In that case, compatibility with
the test configuration of any invoking test-specific procedure (i.e., test procedure or
test case) must be ensured.

A test procedure must only invoke other test procedures or procedures and must
only be invoked by other test procedures or test cases. If invoked by a test case, a
test procedure may assume either of these roles: main, setup or teardown. If a test
procedure invokes another test procedure by means of «Procedurelnvocation» the
attribute role of «Procedurelnvocation» must not be set. A test procedure is not
allowed to determine the role of other test procedures, because this role can only be
determined by test cases. Implicitly, any test procedure assigns their current role
assigned by the invoking test case to any other test procedure they invoke. This
transitive assignment will be recursively continued until no more test procedures are
available. This recursion ensures consistency for the invoking test case.

Behavior

Test procedure operates on test configuration

A TestProcedure must always run on a (potentially implicit) TestConfiguration
comprising at least one instance of a TestComponent connected to a Testltem
Allowed invocation scheme

A TestProcedure must only invoke other TestProcedures or procedures.

UML Testing Profile 2 (UTP 2), Version 2.2 109

Change from UTP 1.2

110

Use of «Procedurelnvocation»

A TestProcedure must not make use of the role attribute of «Procedurelnvocation»
when used as ProceduralElement of the given TestProcedure.
Test case invokes one main procedure

DRTPO4: It is necessary that each test case invokes at least one test procedure as a
main procedure invocation.
Procedure sequentializes procedural element

DRTPO2: It is necessary that each procedure prescribes the execution order of at
least one procedural element.
Test procedure sequencializes test action

DRTPO3: It is necessary that each test procedure prescribes the execution order of at
least one test action.

One postcondition per test procedure

DRTCO7: It is necessary that each test procedure guarantees at most one

postcondition.
One precondition per test procedure

DRTCO04: It is necessary that each test procedure requires at most one preconditon.
«TestProcedure» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.2

8.5.1.2.2 TestCase

Description

TestCase: A procedure that includes a set of
preconditions, inputs and expected results, developed
to drive the examination of a test item with respect to

some test objectives.

«TestCase» extends both BehavioredClassifier and
Behavior. According to the conceptual model, a test
case must provide different functionality like defining
pre-/postconditions, being executable etc., and the
UML allows different ways for implementing the test
case concept. In general, a test case can be either
defined as a standalone Behavior stereotyped with
«TestCase» or as a compound construct consisting of a
«TestCase» BehavioredClassifier, and a «TestCasey
Behavior set as the classifierBehavior of the
«TestCase» BehavioredClassifier. In the second
alternative, both the BehavioredClassifier and its
classifierBehavior are semantically treated as a single
concept.

A test case describes the interplay of the test item with
its controlled environment, the so called test
environment, consisting of test components. A test case
has to operate on a test configuration. The composite
structure of a StructuredClassifier with
«TestConfiguration» applied determines the different
roles the composite structures assume for that test case.
Test cases may define their own test configurations as
part of their dedicated composite structure (e.g. in case
the stereotype «TestCasey is applied on an instance of
StructuredClassifier>, or it may operate on a shared
«TestConfiguration» StructuredClassifier such as a
Collaboration. If a «TestCase» Behavior invokes a
«TestProcedure» Behavior, the invoked test procedure
has to operate on the same or a compatible test

configuration.

The pre- and postconditions of a test case are always
declared by the Behavior with «TestCase» applied by
means of the underlying UML capability that each
Behavior may contain a number of Constraints as pre-
and postconditions. A test case must be
parameterizable. This feature is also determined by the
Behavior with «TestCase» applied. Again, the
underlying capability of a UML Behavior is reused by
UTP.

A test case may only invoke test procedures as main,
setup or teardown part or ordinary procedures. A test
case must invoke at least one test procedure as its main
part. This can be either done explicitly using the
stereotype «Procedurelnvocation» or by using the
underlying native UML elements for Behavior
invocation (e.g., CallBehaviorAction, InteractionUse,
BehaviorExecutionSpecification etc.) If a native UML

UML Testing Profile 2 (UTP 2), Version 2.2

11

Behavior invocation element is used and refers to a
Behavior with «TestProcedure» applied, it is
semantically equivalent with explicitly applying the
stereotype «Procedurelnvocation» on the UML
Behavior invocation element and setting the tagged
value of role to main. Any procedural element that is
directly contained in Behavior with «TestCase»
applied is considered semantically equivalent to an
explicit Behavior with «TestProcedure» applied that
contains the procedural element and the use of
«Procedurelnvocation» within the «TestCasey instead
of the procedural elements. This ensures flexibility and
guarantees simplicity when defining test cases.

The semantics of the default arbitration specification of
a test case is defined by
«TestCaseArbitrationSpecification». The default
arbitration specification is always active, unless an
explicit «TestCaseArbitrationSpecification» is bound
to the «TestCase».

Graphical syntax

%

Extension

Behavior, BehavioredClassifier

Super Class

ArbitrationTarget

Attributes

ID : String [0..1]

A unique identifier to unambiguously distinguish
between any two test cases. This is mainly intended to
interface easier with management tools such as test
management tools.

description : String [0..1]

Usually, a narrative description of the given test case.

Associations

/utilizedBy : TestContext f*}[*]

/realizes : TestRequirement [*]

The test requirements that are realized by the given test
case.

They are derived from the set of UML Realization
dependencies that point from the base
BehavioredClassifier to UML Classes stereotyped by
«TestRequirementy.

—: TestSet [0..1]

TestCaselog [*]

testCaseAS

112

UML Testing Profile 2 (UTP 2), Version 2.2

TestCaseArbitrationSpecification
[0..1]

Refers to the explicit static test case arbitration
specification that overrides the implicit default test
case arbitration specification.

Each test case returns a verdict statement

Constraints)
Any Behavior stereotyped as «TestCase» returns a

ValueSpecification typed by verdict after arbitration
had happened.

Use of BehavioredClassifier

If «TestCase» is applied to a BehavioredClassifier that
is not an instance of the metaclass Behavior, the
'classifierBehavior' of that BehavioredClassifier shall
be Behavior with «TestCase» applied.

Allowed invocation scheme

A TestCase must only invoke TestProcedure or
procedures, but not other TestCases or
TestExecutionSchedule.

One precondition per test case

DRTCO3: It is necessary that each test case requires at
most one preconditon.
One postcondition per test case

DRTCO6: It is necessary that each test case guarantees
at most one postcondition.
Owned UseCases not allowed

A BehavioredClassifier or Behavior with «TestCase»
applied must not own UseCases with «TestCase»
applied.

Nested Classifier not allowed

A Behavior with «TestCase» applied must not nest any
other Behavior that has «TestCase» applied.

Change from UTP 1.2 Changed from UTP 1.2. «TestCase» extended
Behavior and Operation in UTP 1.2.

UML Testing Profile 2 (UTP 2), Version 2.2 113

8.5.1.2.3

TestExecutionSchedule

Description

TestExecutionSchedule: A procedure that constrains
the execution order of a number of test cases.

A test execution schedule is a Behavior with
«TestExecutionScheduley» applied that schedules the
execution order of a number of TestCases.

A test execution schedule can be either defined
standalone or related to one or more test sets. If a test
execution schedule is related to a test set, the test
execution schedule is only allowed to schedule the
execution of test cases that belong to its related test set.
This holds true, even if many test sets share the same
test execution schedule. However, it is possible, due to
the semantics of Behavior, to specialize, invoke or
redefine test execution schedules. This enables the
composition and decomposition of test execution
schedules, which, in turn, fosters reusability. A
standalone test execution schedule has the same
semantics like defining a test set that owns the test.
execution schedule and assembles all the test cases
scheduled for execution by the standalone test
execution schedule. Standalone test execution
schedules may specialize or invoke non-standalone test
execution schedules. However, the semantics of the
standalone test execution schedule remains the same.

A test execution schedule may produce a test set
verdict, calculated by an implicit or explicit arbitration
specification for that test execution schedule. The
semantics of the default arbitration specification of a
test execution schedule is defined by
«TestSetArbitrationSpecification». The default
arbitration specification is always active, unless an
explicit «TestSetArbitrationSpecification» is bound to
the «TestExecutionScheduley.

A test execution schedule may invoke other test
execution schedules, test cases or auxiliary procedures
(e.g., to retrieve required test data), however, a test
execution schedule is not allowed to invoke a test
procedure directly (see «Procedurelnvocationy for
further information on the allowed invocation
schemes). Invocation of Behaviors relies on the
underlying UML concepts for invoking Behaviors.
These are for Activities and StateMachines
CallBehaviorAction, StartObjectBehaviorAction and
StartClassifierBehaviorAction, and for Interactions
InteractionUse. If such an invocation element is
stereotyped with «Procedurelnvocationy, and part of a
«TestExecutionSchedule» Behavior, e.g., such as an
Activity, the following Behaviors can be invoked:

. Behaviors with «TestExecutionSchedule»
applied: Useful for decomposing and reusing

114

UML Testing Profile 2 (UTP 2), Version 2.2

test execution schedules. If the user assigns a
ProcedurePhaseKind to the invoked
«TestExecutionScheduley, it will not have an
effect.

Behaviors with «TestCasey» applied: Useful
for decomposing and reusing test cases. If the
user assigns a ProcedurePhaseKind to the
invoked «TestCase», it will not have an effect.
Behaviors without «TestExecutionScheduley,
«TestCase» or «TestProcedure» applied: Such

a Behavior invoked by a
«Procedurelnvocationy is considered as
auxiliary Behavior required to prepare the
execution of succeeding
«TestExecutionSchedulesy, and thus,
«TestCase». The user may mark the invoked
Behavior as setup or teardown activity by
means of the role attribute.

In the last case, a role might be assigned to an invoked
Behavior. This role is either of setup or teardown. If
the role main is assigned, it will not have an effect.
Behaviors executed as setup or teardown Behaviors
will not be arbitrated by a corresponding arbitration
specification. The meaning of the ProcedurePhaseKind
in the context of an test execution schedule are as
follows:

. Setup: A means to declare that the executed
Behavior is responsible to prepare the
execution of succeeding arbitrated test cases
contained in that test execution schedule. UTP
does not prescribe which verdict will be
assigned in case something goes wrong while
executing the setup phase of an arbitrated test
execution schedule.

. Teardown: A means to declare that the
executed Behavior is responsible to clean-up after the
arbitrated test cases of this test execution schedule have
been executed. UTP does not prescribe which verdict
will be assigned in case something goes wrong while
executing the teardown phase.

Extension Behavior

Super Class ArbitrationTarget
ID : String [0..1]

Attributes
A unique identifier to unambiguously distinguish
between any two test execution schedules. This is
mainly intended to interface easier with management
tools such as test management tools.
testSetAS

Associations

TestSetArbitrationSpecification
[0..1]

UML Testing Profile 2 (UTP 2), Version 2.2

115

Refers to the explicit static test set arbitration
specification that overrides the implicit default test set
arbitration specification. An explicit test set arbitration
specification has only an effect, if the attribute
isArbitrated is set to true.

Allowed invocation scheme

Constraints

If a Behavior with «TestExecutionSchedule» contains
an Element with «Procedurelnvocation» applied, the
invoked Behavior shall have either none or one of the
stereotypes «TestExecutionSchedule» or «TestCase»
applied. The direct invocation of «TestProcedure»
Behaviors is not allowed from within a
«TestExecutionSchedule» Behavior.

One precondition per test execution schedule

DRTCO2: It is necessary that each test execution
schedule requires at most one preconditon.
One postcondition per test execution schedule

DRTCOS: It is necessary that each test execution
schedule guarantees at most one postcondition.

Change from UTP 1.2 «TestExecutionSchedule» has been newly introduced
by UTP 2. It was conceptually represented as the
classifier behavior of a «TestContext» in UTP 1.2.

8.5.2 Procedural Elements

Procedural elements constitute the building blocks of procedures and test procedures. They can be realized by any
building block of UML Behaviors (e.g., InteractionFragments in case of Interactions, Actions in case of Activities
and Transitions/Vertices in case of StateMachines). The stereotypes for procedural elements reflect the minimal
language concepts that are deemed necessary for testers to specify test-specific procedures. Each procedural element
in a test-specific procedure has an effective arbitration specification assigned that delivers a procedural element
verdict to the surrounding arbitration specification at runtime.

Since the UML Behavior building blocks outnumber the UTP procedural elements, test-specific procedures may
consist of more than just the few predefined procedural elements. CombinedFragments of Interactions, for example,
offer more than just the four predefined compound procedural elements of UTP. Such a plain UML Behavior
building block provides implicitly the predefined verdict instances none to the surrounding arbitration specification.
This default semantics can be overridden by means of «OpaqueProceduralElementy.

In general, UTP provides the following procedural elements out of the box:

e procedural element represented by the abstract stereotype «ProceduralElement»

e atomic procedural element represented by the abstract stereotype «AtomicProceduralElements»

o compound procedural element represented by the abstract stereotype «CompoundProceduralElement»

e opaque procedural element represented by the stereotype «OpaqueProceduralElementy

Specialized compound procedural elements comprises:

e loop represented by the stereotype «Loop»
e sequence represented by the stereotype «Sequence»
e parallel represented by the stereotype «Parallel»

116 UML Testing Profile 2 (UTP 2), Version 2.2

e alternative represented by the stereotype «Alternative»
e negative represented by the stereotype «Negative»
e procedure invocation represented by the stereotype «Procedurelnvocation»

Specialized atomic procedural elements are described by the test-specific actions (see section Test-specific Actions).

The procedural elements have been introduced by UTP to offer a harmonized view on technically different UML

behavioral building blocks.

8.5.2.1 Procedural Elements Overview
The following diagram shows the abstract syntax of the core procedural elements.

«stereotypen
{concepts = procedural element}
ProceduralElement
{Abstract}

«stereotypen «stereotypen
{concepts = atomic procedural element}

AtomicProceduralElement CompoundProceduralElement

{Abstract} {Abstract}
‘ «stereotypen
«stereotypen {concepts = procedural element}

{concepts = procedure invocation} OpaqueProceduralElement

Procedurelnvocation

{concepts = compound procedural element}

\/ endAfterPrevious

«extendsy . 0. 0..1
role : ProcedurePhaseKind [0..1] . startAfterPrevious
«extendsy * «extendsy 7 «metaclassy
\ ? «metaclassy Duration
NamedElement
«metaclassy «metaclassy {Abstract}

CallBehaviorAction InteractionUse

«enumeration»

1 ‘ ProcedurePhaseKind
V/invokedProcedure

«mefocllqss» setup
Behavior teard

{Abstract} sardown
main

Figure 8.13 - Procedural Elements Overview

UML Testing Profile 2 (UTP 2), Version 2.2

117

8.5.2.2 Compound Procedural Elements Overview
The following diagram shows the abstract syntax of the compound procedural elements.

«stereotypen
{concepts = procedural element} «metaclassy
ProceduralElement «metaclassy StructuredActivityNode
{Abstract} CombinedFragment {Abstract}
(extendsy «extendsy
«stereotypen
{concepts = compound procedural element}
CompoundProceduralElement
{Abstract}
«stereotypen «stereotypen «stereotypen «stereotypen
{concepts = loop} {concepts = sequence} {concepts = parallel} {concepts = alternative}

Loop Sequence Parallel Alternative

«stereotypen
{concepts = negative}
Negative

Figure 8.14 - Compound Procedural Elements Overview

8.5.2.3 Stereotype Specifications

8.5.2.3.1 Alternative
Description Alternative: A compound procedural element that
executes only a subset of its contained procedural
clements based on the evaluation of a boolean
expression.

If «Alternative» is applied to CombinedFragement, the
underlying CombinedFragment must have the
InteractionOperatorKind alt or opt set.

In an Activity, «Alternative» must only be applied to

CondititonalNode.
Extension CombinedFragment, StructuredActivityNode
Super Class CompoundProceduralElement
Associations arbitrationSpecification {redefines

arbitrationSpecification}
AlternativeArbitrationSpecification
[0..1]

Refers to an alternative arbitration specification that
overrides the default and implicit arbitration
specification, if set. It redefines the Property
arbitrationSpecification of

118 UML Testing Profile 2 (UTP 2), Version 2.2

Constraints

Change from UTP 1.2

CompoundProceduralElement.
Application in Interactions

If «Alternativey is applied to CombinedFragment, the
underlying CombinedFragment must have the
InteractionOperatorKind alt or opt set.

Application in Activities

In an Activity, «Alternative» must only be applied to
CondititonalNode.

«Alternative» has been newly introduced by UTP 2.

8.5.2.3.2 AtomicProceduralElement

Description

Super Class
Sub Class

Associations

Change from UTP 1.2

AtomicProceduralElement: A procedural element that cannot be further
decomposed.

«AtomicProceduralElement» is an abstract stereotype that does not extend UML
metaclass at all. This means that its substereotypes have to define suitable UML
metaclass for extension.

Atomic procedural elements resembles the semantics of UML Behavior building
blocks that are not able to be further decomposed. Message and
CallOperationAction are examples for concrete UML Behavior building block that
adhere to the definition of atomic procedural element. In contrast,
CombinedFragment or LoopNode are examples for compound procedural elements
for they contain potentially further procedural elements.

ProceduralElement

CheckPropertyAction, CreateLogEntryAction, CreateStimulusAction,
ExpectResponseAction, Procedurelnvocation, SuggestVerdictAction
arbitrationSpecification {redefines
arbitrationSpecification}
AtomicProceduralElementArbitrationSpecification [0..1]

Refers to an atomic arbitration specification that overrides the default and implicit
arbitration specification if set. It redefines the Property arbitrationSpecification of
procedural element.

AtomicProceduralElementLogEntry [*]

«AtomicProceduralElement» has been newly introduced by UTP 2.

8.5.2.3.3 CompoundProceduralElement

Description

Extension
Super Class

CompoundProceduralElement: A procedural element that can be further
decomposed.

«CompoundProceduralFlementy is an abstract stereotype that extends
CombinedFragment and StructuredActivityNode to interface with the UML
Behaviors Interaction and Activity.

A compound procedural element resembles the semantics of UML Behavior
building blocks that consist of other procedural element. As such, it may obtain the
verdicts of its contained executed procedural elements in order to calculate its own
procedural element verdict. The difference between an atomic procedural element
verdict and compound procedural element verdict is that the latter is potentially
composed out of multiple atomic procedural element verdicts.
CombinedFragment, StructuredActivityNode

ProceduralElement

UML Testing Profile 2 (UTP 2), Version 2.2 119

Sub Class
Associations

Change from UTP 1.2

8.5.2.34 Loop
Description

Extension
Super Class
Associations

Constraints

Change from UTP 1.2

8.5.2.3.5 Negative
Description

Extension
Super Class

120

Alternative, Loop, Negative, Parallel, Sequence
arbitrationSpecification {redefines
arbitrationSpecification}
CompoundProceduralElementArbitrationSpecification [0..1]

«CompoundProceduralElement» has been newly introduced by UTP 2.

Loop: A compound procedural element that repeats the
execution of its contained procedural elements.

If «Loop» is applied to CombinedFragement, the
underlying CombinedFragment must have the
InteractionOperatorKind loop set.

In an Activity, «Loop» must only be applied to
LoopNode.

The nature of the loop (i.e., counter-controlled loop,
conditional-controlled loop or collection-controlled
loop) is determine by the configuration of the
underlying UML element for expressing loops.
CombinedFragment, StructuredActivityNode
CompoundProceduralElement
arbitrationSpecification {redefines
arbitrationSpecification}
LoopArbitrationSpecification [0..1]

Refers to a loop arbitration specification that overrides
the default and implicit arbitration specification if set. It
redefines the Property arbitrationSpecification of
CompoundProceduralElement.

Application in Interactions

If «Loop» is applied to CombinedFragment, the
underlying CombinedFragment must have the
InteractionOperatorKind Joop set.

Application in Activities

In an Activity, «Loop» must only be applied to
LoopNode.

«Loop» has been newly introduced by UTP 2.

Negative: A compound procedural element that
prohibits the execution of its contained procedural
elements in the specified structure.

If «Negativey is applied to CombinedFragement, the
underlying CombinedFragment must have the
InteractionOperatorKind neg set.

In an Activity, «Negative» must only be applied to
StructuredActivityNode.

CombinedFragment, StructuredActivityNode
CompoundProceduralElement

UML Testing Profile 2 (UTP 2), Version 2.2

Associations

Constraints

Change from UTP 1.2

arbitrationSpecification {redefines
arbitrationSpecification}
NegativeArbitrationSpecification
[0..1]

Application in Interactions

If «Negative» is applied to CombinedFragment, the
underlying CombinedFragment must have the
InteractionOperatorKind neg set.

Application in Activities

In an Activity, «Negative» must only be applied to
StructuredActivityNode.
«Negative» has been newly introduced by UTP 2.

8.5.2.3.6 OpaqueProceduralElement

Description

Extension
Super Class
Associations
Constraints

Change from UTP 1.2

«OpaqueProceduralElement» adds the possibility to assign arbitration specifications
to UML Behavior building blocks that are not covered by UTP procedural elements.
Thus, it is a plain technical stereotype introduced for flexibility of UTP. Similar to
the semantics of opaque elements in UML (i.e., OpaqueBehavior,
OpaqueExpression, OpaqueAction), there is no additional semantics for
«OpaqueProceduralElement» given apart from the ability to assign arbitration
specifications to UML elements for which no dedicated procedural element
stereotype has been defined.
NamedElement
ProceduralElement

OpaqueProceduralElementLogEntry [*]

Only applicable to UML Behavior building blocks

«OpaqueProceduralElement» must only be applied on instances of the UML
metaclass Action, InteractionFragment, Vertex and Transition.
«OpaqueProceduralElement» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.2 121

8.5.2.3.7 Parallel
Description Parallel: A compound procedural element that executes
its contained procedural elements in parallel to each
other.

If «Parallel» is applied to CombinedFragement, the
underlying CombinedFragment must have the
InteractionOperatorKind par set.

If used in Activities, the metaclass ConditionalNode is
reused to describe parallel execution of procedural
elements (i.e., ExecutableNodes). The branches that
must be executed in parallel are defined by the Clauses
that are contained in a ConditionalNode with «Parallel»
applied. If such a ConditionalNode is activated and
ready for execution, the evaluation of the Clauses by
executing the test parts are executed as described by
UML. In contrast to a plain ConditionalNode, where at
most one Clause's body part will be executed, even if
more than one Clause's test part eventually enabled the
Clause, all enabled Clause's body parts are executed in
parallel, if the ConditionalNode has «Parallel» applied.

Extension CombinedFragment, StructuredActivityNode
Super Class CompoundProceduralElement
Associations arbitrationSpecification {redefines

arbitrationSpecification}
ParallelArbitrationSpecification
[0..1]

Refers to a parallel arbitration specification that
overrides the default and implicit arbitration
specification if set. It redefines the Property
arbitrationSpecification of
CompoundProceduralElement.

Constraints Application in Interactions

If «Parallely is applied to CombinedFragment, the
underlying CombinedFragment must have the
InteractionOperatorKind par set.

Application in Activities

In an Activity, «Parallel» must only be applied to
SequenceNode
Change from UTP 1.2 «Parallel» has been newly introduced by UTP 2.

122 UML Testing Profile 2 (UTP 2), Version 2.2

8.5.2.3.8 ProceduralElement

Description

Sub Class

Super Class
Associations

Constraints

Change from UTP 1.2

ProceduralElement: An instruction to do, to observe, and/or to decide.

«ProceduralElementy is an abstract stereotype that does not extend any UML
metaclass. This means that its substereotypes have to define suitable UML
metaclasses for extension.

A procedural element is the lowest common denominator for the building blocks of
the different UML Behaviors. If used as constituting part (possibly transitively) of a
test case execution, every procedural element delivers a verdict depending on both
the execution of the respective procedural element and the effective arbitration
specification of that procedural element. Every procedural element has an effective
arbitration specification assigned at evaluation time. This effective arbitration
specification is either the default arbitration specification of the respective
procedural element or an explicitly bound arbitration specification. If no explicit
arbitration specification is bound to the procedural element, the default arbitration
specification becomes the effective arbitration specification.

A procedural element adds the ability to specify the expected starting and end point
of the execution of procedural element related to a previously executed procedural
element, represented by the tag definitions startAfterPrevious and endAfterPrevious.
These timing-related characteristics are represented by means of explicit tag
definitions in addition to the existing simple time concepts of UML and time-related
information potentially available by further UML profiles such as MARTE. UTP 2
does not prescribe which of these timing-related concepts should be used. As a
recommendation, users should not mix different mechanisms to express timing-
related information.

AtomicProceduralElement, CompoundProceduralElement,
OpaqueProceduralElement

ArbitrationTarget

arbitrationSpecification
ProceduralElementArbitrationSpecification [0..1]

Refers to a procedural element arbitration specification that overrides the default
and implicit arbitration specification for procedural elements.
startAfterPrevious : Duration [0..1]

endAfterPrevious : Duration [0..1]

testLogEntry : TestLogEntry [*]

Valid duration

DRTPO1: It is necessary that the PE start duration of a procedural element is smaller

than the PE end duration of the same procedural element.
«ProceduralElementy has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.2 123

8.5.2.3.9 Procedurelnvocation

Description

Extension
Super Class
Attributes

Associations

124

Procedurelnvocation: An atomic procedural element of a procedure that invokes
another procedure and waits for its completion.

«Procedurelnvocation» is a means to invoke procedures from within other
procedures. Since the constituents of UML Behaviors are not based on an integrated
metaclass, the concrete metaclasses for «Procedurelnvocationy» depend on the
Behavior kind in which the «Procedurelnvocationy is used. If it represents a
building block of an Activity or StateMachine, «Procedurelnvocation» must only be
applied on the metaclass CallBehaviorAction, StartObjectBehaviorAction or
StartClassifierBehaviorAction. If it represents a building block of an Interaction,
«Procedurelnvocation» must only be applied on the metaclass InteractionUse.

The allowed invocation scheme for a «Procedurelnvocation» is as follows:

e Ifit constitutes a procedural element of a test execution schedule, only test
execution schedules, test cases or procedures must be invoked.

o Ifit constitutes a procedural element of a test case, only test procedures and
procedures must be invoked.

e Ifiit constitutes a procedural element of a test procedure, only test
procedure or procedures must be invoked.

If procedure invocation is part of a test case it must assign a role to the invoked test
procedure. This role is either main, setup or teardown. The semantics of these roles
in UTP are:

e main: A test procedure that implements the reason why the invoking test
case has been designed, i.e., it contribute to the coverage of a test objective
or test requirement. The main part of a test case is relevant for calculating
coverage and controlling the progress.

e setup: A means to declare that the executed test procedure is responsible to
prepare the main part of a test case.

e teardown: A means to declare that the executed test procedure is
responsible to clean-up after the main part of a test case has been executed.

If procedure invocation is part of a test execution schedule it may assign a role to an
invoked Behavior. This role is either of setup or teardown. The semantics of these
roles in UTP are:

e setup: A means to declare that the executed Behavior is responsible to
prepare the execution of arbitrated test cases contained in that test case.

e teardown: A means to declare that the executed Behavior is responsible to
clean-up after the arbitrated test cases of this test execution schedule have
been executed.

CallBehaviorAction, InteractionUse
AtomicProceduralElement
role : ProcedurePhaseKind [0..1]

The role, the invoked procedure assumes within the invoking test-specific
procedure

arbitrationSpecification {redefines
arbitrationSpecification}
ProcedureInvocationArbitrationSpecification [0..1]

Refers to a procedure invocation arbitration specification that overrides the default
and implicit arbitration specification if set. It redefines the Property
arbitrationSpecification of «CompoundProceduralElement».

UML Testing Profile 2 (UTP 2), Version 2.2

/invokedProcedure

Behavior

The procedure that was invoked by that «Procedurelnvocationy. If
«Procedurelnvocation» is applied to CallBehaviorAction, it is derived from the
property 'behavior' of the underlying CallBehaviorAction. If «Procedurelnvocation»
is applied to InteractionUse, it is derived from the property 'refersTo' of the

underlying InteractionUse.
ProcedurelInvocationLogEntry

Role only in context of test cases relevant

Constraints

[*]

If «Procedurelnvocationy is part of a «TestProcedure» Behavior, the tag definition
role must be empty. If it is empty, it will be ignored.

Change from UTP 1.2

8.5.2.3.10 Sequence
Description

Extension
Super Class
Associations

Constraints

Change from UTP 1.2

UML Testing Profile 2 (UTP 2), Version 2.2

«Procedurelnvocation» has been newly introduced by UTP 2.

Sequence: A compound procedural element that
executes its contained procedural elements sequentially.

If «Sequence» is applied to CombinedFragement, the
underlying CombinedFragment must have the
InteractionOperatorKind strict or seq applied.

In an Activity, «Sequence» must only be applied to
SequenceNode.

CombinedFragment, StructuredActivityNode
CompoundProceduralElement
arbitrationSpecification {redefines
arbitrationSpecification}
SequenceArbitrationSpecification
[0..1]

Refers to a SequenceArbitrationSpecification that
overrides the default and implicit
ArbitrationSpecification if set. It redefines the Property
arbitrationSpecification of
CompoundProceduralElement.

Application in Interactions

If applied on a CombinedFragment, the underlying
CombinedFragment must have set
InteractionOperatorKind::seq or
InteractionOperatorKind::strict as the
interactionOperator.

Application in Activities

If applied on a StructuredActivityNode, the
StructuredActivityNode must be a SequenceNode.
«Sequence» has been newly introduced by UTP 2.

125

8.5.2.4 Enumeration Specifications

Name Descript
ion

ProcedurePhaseKind An
enumera
tion of
the three
possible
values a

procedur
€ or test

procedur
€ can
assume.

Enumer
ation
literals
setup

The
invoked
procedur
€ or test
procedur
eis
consider
edasa
preambl
e of the
test case
or a test
executio
n
schedule

intended
to
prepare
the
executio
n of test
cases.
teardow
n

The
invoked
procedur
€ or test
procedur
eis
consider
edasa
postambl
e of the
test case
or a test
executio
n
schedule

intended
to clean-
up or
finalize
the
executio
n of test
cases.
main

126 UML Testing Profile 2 (UTP 2), Version 2.2

Name Descript Enumer
ion ation

literals
The
invoked
test
procedur
eis
consider
ed as the
essential
partof a
test
case's
executio
n with
respect
to
coverage

8.5.3 Test-specific Actions

UTP introduces dedicated test-specific actions that denote actions a tester, regardless whether this is an automated or
human tester, can carry out in order to communicate with the test item. In context of dynamic testing,
communicating with a test item either means to stimulate the test item with a create stimulus action (implemented
as stereotype «CreateStimulusAction») or observing and evaluating its actual responses with the expected ones
(represented by the stereotypes «ExpectResponseAction», «CheckPropertyActiony).

Test-specific actions are specialized procedural elements. As such, they contribute a dedicated procedural element
verdict to the eventual calculation of a test case or test set verdict. The test-specific actions can be categorized by the
entity that contributes information to the calculation of the respective procedural element verdict.

The procedural element verdicts of the following test-specific actions are calculated by taking into consideration the
information provided by the test component or tester. These test-specific actions are henceforth called test
component controlled actions, because an erroneous execution of these test actions indicates a misbehavior of the
test component (submitting the wrong stimulus, performing a test-specific action too late/too early) or technical
issues in the test environment (e.g., breakdown of connectivity etc.):

e Create stimulus action represented by the stereotype «CreateStimulusAction»

o Suggest verdict action represented by the stereotype «SuggestVerdictActiony

e Create log entry action represented by the stereotype «CreateLogEntryAction»

It is highly recommended that the verdicts calculated by these test component controlled actions should only result
in the predefined verdict instances pass or error.

The verdict of following test-specific actions is calculated by taken into consideration information received by the
test items. These test-specific actions are henceforth called test item controlled actions, because the arbitration of
these test-specific actions depend on the responses of the test items during execution and as such indicate deviations
between the expected response and actual response:

e Expect response action represented by the stereotype «ExpectResponseActiony»

e Check property action represented by the stereotype «CheckPropertyActiony

It is highly recommended that the verdicts calculated by test component--controlled actions should only result in the
predefined verdict instances pass or error.

UML Testing Profile 2 (UTP 2), Version 2.2 127

8.5.3.1 Test-specific actions Overview
The following diagram shows the abstract syntax of the test action.

128 UML Testing Profile 2 (UTP 2), Version 2.2

«stereotypen
{concepts = procedural element}
ProceduralElement
{Abstract}

«stereotypen
{concepts = atomic procedural element}
AtomicProceduralElement

{Abstract}
[[
«stereotypen «stereotypen
{concepts = create stimulus action} {concepts = suggest verdict action}
CreateStimulusAction SuggestVerdictAction
«stereotypen «stereotypen
{concepts = expect response action} {concepts = check property action}
ExpectResponseAction CheckPropertyAction
expectationKind : ImplicitExpectationKind = implicitForbid

«stereotypen
{concepts = create log entry action}
CreatelLogEntryAction

Figure 8.15 - Test-specific actions Overview

8.5.3.2 Tester Controlled Actions
The following diagram shows the details of the test component controlled test actions.

«metaclassy
«metaclassy InvocationAction
Message {Abstract}
wextendsn | extendsy «extendsy «extendsy
wstereotypen «stereotypen «stereotypen
{concepts = create stimul ... {concepts = suggest verdict action}| |{concepts = create log entry action}
CreateStimulusAction SuggestVerdictAction CreatelogEntryAction

1 1

* *
permittedElement, , forbiddenElement

«metaclassy
NamedElement
{Abstract}

Figure 8.16 - Tester Controlled Actions

UML Testing Profile 2 (UTP 2), Version 2.2 129

8.5.3.3 Test Item Controlled Actions

The following diagram shows the details of the test item controlled test actions.

«metaclassy «metaclassy «metaclassy «metaclassy
Trigger Message Constraint ObjectFlow
{Abstract}
«extendsy «extendsy «extends» «extendsy
«stereotypen «stereotypen
{concepts = expect response action} {concepts = check property action}
ExpectResponseAction CheckPropertyAction
*
1 1 1
* . * * *
U expectedElement forbiddenElement |, |, ignoredelement | checkedProperty
«metaclassy «metaclassy
NamedElement Property
{Abstract}

«enumerationy
ImplicitExpectationKind

implicitForbid
implicitignore
implicitExpect

Figure 8.17 - Test Item Controlled Actions

130

UML Testing Profile 2 (UTP 2), Version 2.2

8.5.3.4 Stereotype Specifications

8.5.3.4.1 CheckPropertyAction

Description

Graphical syntax

Extension
Super Class
Associations

CheckPropertyAction: A test action that instructs the tester to check the
conformance of a property of the test item and to set the procedural element verdict
according to the result of this check.

The stereotype «CheckPropertyAction» extends Constraint (for integration with
Interaction's StateInvariant and StateMachines), and ObjectFlow (for integration
with Activities) and enables the test component to check certain properties of the
test item that cannot be checked via the publicly available or known APIs of the test
item. Thus, it is not defined how the test component accesses the test item's

property.

If used in Interactions, check property action is used as Constraint of a
StateInvariant that covers a test component. Such a Constraint must be contained by
StateInvariants. The specification of the StateInvariant's «CheckPropertyAction»
Constraint is intended to determine the Property of the test item that must be
checked and the value the Property has to match with. As specification of the
«CheckPropertyAction» Constraint, any kind of suitable ValueSpecification can be
utilized. For example, the «CheckPropertyAction» Constraint may specify location
expressions with OCL or Alf for declaring access and expected values of the test
item's Property.

If used in StateMachines, check property action is expressed as statelnvariant
attribute of a State. Since the statelnvariant attribute is of type Constraint, the usage,
application and semantics is similar to the check property action used in Interactions
(i.e., use of StateInvariant in Interactions).

If used in Activities, check property action is expressed as «CheckPropertyAction»
ObjectFlow that emanates from a ReadStructuralFeatureAction and is used to access
a StructuralFeature of the test item. The expected value of the checked Property is
defined by the guard condition of the CheckPropertyAction» ObjectFlow.

In addition, it is possible to point directly to the Property that will be checked by the
check property action by means of the tag definition checkedProperty. This
information is helpful, if, for example, natural language is used to describe
«CheckPropertyAction» Constraint.

The default arbitration specification for the check property action is described by
«CheckPropertyArbitrationSpecificationy.

Constraint, ObjectFlow

AtomicProceduralElement

arbitrationSpecification {redefines
arbitrationSpecification}
CheckPropertyArbitrationSpecification [0..1]

Refers to a check property action arbitration specification that overrides the default
and implicit arbitration specification, if set. It redefines the Property
arbitrationSpecification of test action.

UML Testing Profile 2 (UTP 2), Version 2.2 131

Constraints

Change from UTP 1.2

checkedProperty : Property [*]

Refers to set of Properties of a test item that is supposed to be checked by the check
property action.

CheckPropertyLogEntry [*]
Owner of Constraint

If applied on a Constraint, the owner of this Constraint must only be a State
(referring to the Constraint as StateInvariant) or StateInvariant.
Owner of Property

If 'checkedProperty' is not empty, the referenced Property must belong to a
Testltem participating in the current test-specific procedure.
At least one property

DRTAQO3: It is necessary that a check property action checks at least one property of
the test item against the data.
«CheckProperty Action» has been newly introduced by UTP 2.

8.5.3.4.2 CreateLogEntryAction

Description

Graphical syntax

Extension
Super Class

132

CreateL ogEntryAction: A test action that instructs the tester to record the execution
of a test action, potentially including the outcome of that test action in the test case

log.

The stereotype «CreateLogEntryAction» extends InvocationAction which allows for
using a variety of metaclasses for application. The create log entry action is a test
action that instructs the tester or the test execution system to log certain information
about the execution of a test case. This information is henceforth called content to
be logged. The content to be logged has to be provided as the argument InputPin of
the underlying InvocationAction. It is not specified how the variety of potentially
logable contents is eventually be represented in the log. Test execution systems are
responsible for eventually writing the content to be logged into the actual test log.

If used in an Interaction, the InvocationAction that is stereotyped with
«CreateLogEntryAction» should be referenced from an
ActionExecutionSpecification that indirectly covers a Lifeline that represents a test
component role in the underlying test configuration. Indirectly means that the
corresponding start and end OccurenceSpecification of the
ActionExecutionSpecification cover the test component lifeline.

If used in Activities or StateMachines, e.g., CallOperationAction could be used to
invoke a (not standardized, yet proprietary) logging interface operation. Another
possibility is to use SendObjectAction without specifying the target Pin which has
the semantics to submit the information to be logged to the logging facility of the
test execution system without needing a dedicated interface. However, during test
execution the create log entry action must be made executable and eventually
carried out. This may include manually writing some information into a paper-based
document.

The default arbitration specification for the create log entry action is described by
«CreateLogEntryArbitrationSpecificationy.

InvocationAction
AtomicProceduralElement

UML Testing Profile 2 (UTP 2), Version 2.2

Associations

Change from UTP 1.2

arbitrationSpecification {redefines
arbitrationSpecification}
CreatelLogEntryArbitrationSpecification [0..1]

Refers to a create log entry action arbitration specification that overrides the default
and implicit arbitration specification if set. It redefines the Property
arbitrationSpecification of test action.

CreateLogEntryLogEntry [*]

«CreateLogEntryAction» has been newly introduced by UTP 2.

8.5.3.4.3 CreateStimulusAction

Description

Extension
Super Class
Associations

Constraints

CreateStimulusAction: A test action that instructs the tester to submit a stimulus
(potentially including data) to the test item.

«CreateStimulusAction» extends Message (for integration with Interaction) and
InvocationAction (for integration with Activities and StateMachines).

The create stimulus action is performed by an instance of a test component and
represents a set of possible invocations of the test item, potentially conveyed by a
payload. Invocation means that either a BehavioralFeature of the test item is
invoked (e.g. using a Message or a SendSignal Action respectively
CallOperationAction) or by simply sending a stimulus to the test items (e.g.,
SendObjectAction or BroadcastSignalAction).

The set of stimuli to be sent is derived from the arguments of the underlying UML
element and the elements specified by the tag definition permittedElement. This set
is then reduced by the elements yield by forbiddenElement. If the set of stimuli is
empty (i.e., neither the underlying UML element yields arguments nor the
permittedElement tag definition yields an element), it is semantically equivalent to a
situation where any possible and known by the invoking test component stimuli at
this point in time can be send to the test item. This set of any possible and known
stimuli is potentially reduced by the elements yield by forbiddenElement. In case the
set of permitted elements and the set of forbidden elements are overlapping, the
elements in the intersection belong to the set of forbidden elements. If both sets are
empty, every known stimuli can be send to the test item.

The default arbitration specification for the create stimulus action is described by
«CreateStimulusArbitrationSpecificationy.

InvocationAction, Message

AtomicProceduralElement

arbitrationSpecification {redefines
arbitrationSpecification}
CreateStimulusArbitrationSpecification [0..1]

Refers to a create stimulus action arbitration specification that overrides the default
and implicit arbitration specification if set. It redefines the Property
arbitrationSpecification of test action.

forbiddenElement : NamedElement [*]

A set of elements that are explicitly removed from the set of stimuli to be sent.
permittedElement : NamedElement [*]

Additional set of stimuli that contribute to the set of permitted stimuli.
CreateStimulusLogEntry [*]

Type of forbidden elements

The tag definition 'forbiddenElement’ shall only contain instances of the following

UML Testing Profile 2 (UTP 2), Version 2.2 133

metaclasses: Message, Event, Signal, BehavioralFeature, Trigger,
InstanceSpecification.

Type of permitted elements

The tag definition 'permittedElement’ shall only contain instances of the following
metaclasses: Message, Event, Signal, BehavioralFeature, Trigger,
InstanceSpecification.

At least one stimulus

DRTAOI1: It is necessary that a create stimulus action permits to send at least one
stimulus.
Change from UTP 1.2 «CreateStimulusAction» has been newly introduced by UTP 2.

134 UML Testing Profile 2 (UTP 2), Version 2.2

8.5.3.44 ExpectResponseAction

Description

ExpectResponseAction: A test action that instructs the
tester to check the occurrence of one or more particular
responses from the test item within a given time window
and to set the procedural element verdict according to
the result of this check.

The stereotype «ExpectResponseAction» extends
Message (for integration with Interactions) and Trigger
(for integration with StateMachines and Activities) and
denotes the expectation of the test component to receive
an actual response, potentially conveyed by some
payload, from the test item at a certain point in time
during test execution.

Actually received information from the test item can be
classified into one of the following three sets:

e expected elements: The actually received
element is expected by the test component.

e ignored elements: The actually received
element may be received from the test item, but
if it is received, it will be ignored by the test
component.

o forbidden elements: The actually received
element is forbidden to be received from the
test item.

The classification of received elements as member of
one of the three sets helps calculating the verdict by the
arbitration specification of the executed expect response
action. The classification itself does not prescribe which
verdict will be be-produced for the currently executed
expect response action. It is the responsibility of the
associated arbitration specification to derive a verdict
from the received elements and their classification. For
further details of the semantics of the default
«ExpectResponseArbitrationSpecificationy, refer to the
corresponding sub-section.

Basiscally, only two sets are required to be
exphieityexplicitly stated, the third set is then derived
from the complement set of the union of the other two
sets. The decision, which set shall be derived by the
complement set of the union of the other two sets is
determined by the tag definition 'expectationKind'. In
case of overlapping sets the following
preeedeneesprecedencies are given: forbidden elements
> ignored elements > expected elements. The reason for
this precedence is to reduce the pessibilypossibility of
'false negative' results.

In case of a Message extension, the expected response is
defined by the Message’s signature and its arguments, if
any. If more than one response type is expected at the

UML Testing Profile 2 (UTP 2), Version 2.2

135

same point in time, the tag definition 'expectedElement’
can be used to denote further expected responses in
addition to the expected response denoted by the
Message's argument. The eventual number of expected
responses is the union of the Message with
«ExpectResponseActiony applied, inelusingincluding its
arguments, joined with the elements of the tag definition
'expectedElement'. If the signature of the Message is left
empty, the expect response action accepts and consumes
any kind of actual responses from the test item. In that
case, the tag definition 'expectationKind' shall be set to
'implicitExcept' only. The effective set of expected
elements is eventually determined by the complement
set of the union of forbidden elements and ignored
elements.

In case of Trigger extension, the expected responses are
the union of the MessageEvents obtained from the
underlying Trigger and the expected responses yield by
the expectedElement tag definition, if any. A Trigger
with «ExpectResponseAction» that defines an
AnyReceiveEvent excepts and consumes any kind of
actual responses from the test item. In that case, the tag
definition 'expectationKind' shall be set to
'implicitExcept' only. The effective set of expected
elements is eventually determined by the complement
set of the union of forbidden elements and ignored
elements.

The default arbitration specification for the expect
response action is described by
«ExpectResponseArbitrationSpecificationy.

Extension

Message, Trigger

Super Class

AtomicProceduralElement

Attributes

expectationKind
ImplicitExpectationKind [1] =
implicitForbid

The expectation kind determines which of the three
explicit sets in the context of an ExpectResponseAction
is implicitly merged (union) with the complement set of
the union of the other two sets. The following
possibilities are:

o forbiddenForbidden elements are implicitly
unified (implicitForbid): Any received element
that does not belong to the set of expected or
ignored elements will be unified with the
explicit set of forbidden elements during test
execution. This prevents (or reduces the
likelihood of) 'false negatives'.

o igneredlgnored elements are implicitly unified
(implicitlgnore): Any received element that
does not belong to the set of expected or
forbidden elements will be unified with the
explicit set of ignored elements during test

136

UML Testing Profile 2 (UTP 2), Version 2.2

execution. Care must be taken when going for
this mechanism, since it is prone to 'false
negative' results in case a forbidden element
was forgotten to be explicitly defined in the
corresponding set.

o expeetedExpected elements are implicitly
unified (implicitExpect): Any received element

that does not belong to the set of ignored or
forbidden elements will be unified with the
explicit set of expected elements during test
execution. Care must be taken when going for
this mechanism, since it is prone to 'false
negative' results in case a forbidden element
was forgotten to be explicitly defined in the
corresponding set.

Associations

expectedElement : NamedElement [*]

A set of elements that are expected from the test item
during test execution. Depending on the
expectationKind for this «ExpectResponseAction» this
set might be implicitly joined with the complement set
of union of the sets 'forbiddenElement' and
'ignoredElement'.

arbitrationSpecification {redefines
arbitrationSpecification}
ExpectResponseArbitrationSpecification
[0..1]

Refers to an expect response action arbitration
specification that overrides the default and implicit
arbitration specification if set. It redefines the Property
arbitrationSpecification of test action.

forbiddenElement : NamedElement [*]

A set of elements that are forbidden to be received from
the test item during test execution. Depending on the
expectationKind for this «ExpectResponseActiony this
set might be implicitly joined with the complement set
of union of the sets 'expectedElement' and
'ignoredElement'.

ignoredElement : NamedElement [*]

A set of elements that are ignored when being received
from the test item during test execution. Depending on
the expectationKind for this «kExpectResponseActiony»
this set might be implicitly joined with the complement
set of union of the sets 'expectedElement' and
'forbiddenElement'.

ActualResponselLogEntry [*]

Constraints

Type of elements for the explicit sets

The tag definitions 'forbiddenElement’,
'expectedElement' and 'ignoredElement' shall only
contain instances of the following metaclasses: Message,
Event, Signal, BehavioralFeature, Trigger,
InstanceSpecification.

At least one response

UML Testing Profile 2 (UTP 2), Version 2.2

137

DRTAOQ2: It is necessary that a expect response action
expects to receive at least one response.
Enforced expectation kind 'implicitExcept'

In the cases, when «ExpectResponseActiony is applied
to a Message in the context of an Interaction, and the
Message's signature is left empty, or when
«ExpectResponseActiony is applied to a Trigger that
yields an AnyReceiveEvent, the 'expectationKind' of the
«ExpectResponseActiony shall be set to 'implicitExpect'.

Change from UTP 1.2

«ExpectResponseActiony» has been newly introduced by
UTP 2.

8.5.3.4.5 SuggestVerdictAction

Description

Graphical syntax

Extension
Super Class
Associations

138

SuggestVerdictAction: A test action that instructs the tester to suggest a particular
procedural element verdict to the arbitration specification of the test case for being
taken into account in the final test case verdict.

Stereotype «SuggestVerdictAction» extends InvocationAction which allows for
using a variety of metaclasses for application. However, there must be at least one
argument InputPin defined for the InvocationAction of the predfefined type verdict
or subclasses thereof.

For example, a CallOperationAction could be used to invoke a (not standardized,
yet proprietary) arbiter-specific interface operation. Another possibility is to use
SendObjectAction without specifying the target Pin, which has the semantics of
providing the Verdict instance to the arbitrating facility of a test execution system
without needing a dedicated Interface. However, during test execution the suggest
verdict action must be made executable. This may include manually writing the
verdict instance into a paper-based document.

If used in an Interaction, the InvocationAction that is stereotyped with
«SuggestVerdictAction» must be referenced from an ActionExecutionSpecification
that indirectly covers a Lifeline that represents a test component role in the
underlying test configuration. Indirectly means that the corresponding start and end
OccurenceSpecification of the ActionExecutionSpecification cover the test
component lifeline.

The default arbitration specification for the suggest verdict action is described by
«SuggestVerdictArbitrationSpecificationy.

X

InvocationAction

AtomicProceduralElement

arbitrationSpecification {redefines
arbitrationSpecification}
SuggestVerdictArbitrationSpecification [0..1]

Refers to a suggest verdict action arbitration specification that overrides the default
and implicit arbitration specification if set. It redefines the Property
arbitrationSpecification of test action.

UML Testing Profile 2 (UTP 2), Version 2.2

SuggestVerdictLogEntry [*]

Constraints Type of Argument
The type of the argument InputPin must be the predefined verdict type or a subtype
thereof.

Change from UTP 1.2 «SuggestVerdictAction» has been newly introduced by UTP 2.

8.5.3.5 Enumeration Specifications

Name Description Enumeration literals

ImplicitExpectation = Determines; which of the three | implicitForbid

Kind received element sets in the

Determines that the explicit set of forbidden elements
is implicitly joined with the complement set of the
union of the explicitly expected and ignored element
sets.

context of an
ExpectResponseAction is
implicitly joined with the
complement set of the union of
the other two sets. The three
sets of elements that are
meaningful in the context of an
«ExpectResponseActiony are
the expected elements, ignored
element and forbidden
elements. Two of these sets
have to be stated explicitly in
the context of an
ExpectResponseAction, the Determines that the explicit set of ignored elements is
third one is implicitly derived implicitly joined with by the complement set of the
from the complement set of the = union of the explicitly expected and element sets.
union of the two explicit sets.

implicitlgnore

implicitExpect

Determines that the explicit set of expected elements is
implicitly joined with the complement set of the union
of the explicitly forbidden and ignored element sets.

8.6 Test Data

Testing is mainly about the exchange of data and the ability to compare actual responses and their payload received
from the test item at test execution with the expected one stated in the test case. Therefore, testers usually have to
take at least two data-related concepts into account. First, the specification of data, i.e., the known types and the
constraints applied on these types for deriving data values that abide by these constraints. Second, a flexible
mechanism to specify data values and their allowed matching mechanisms for test case execution.

Data specification-related concepts are provided and further described by the concepts of the Data Specifications
chapter.

Data value-related concepts are provided and further described by the concepts of the Data Values chapter.

8.6.1 Data Specifications
This section specifies the stereotypes to implement the data specification concepts introduced in section Test Data of
the Conceptual Model.

UML Testing Profile 2 (UTP 2), Version 2.2 139

8.6.1.1 Data Specifications Overview
The diagram below shows abstract syntax of the data specifications package.

«metaclassy «metaclassy «metaclassy
Constraint Classifier Dependency
{Abstract}
«stereotypen
{concepts = test component}
TestComponent «extendsy «extendsy cextendsn «extends»
«stereotypen «stereotypen «stereotypen «stereotypen
{concepts = data specification} | {concepts = data pool} | | {concepts = data pool} | | {concepts = morphism}
DataSpecification DataPool DataPartition Morphing
{Abstract}
N s *
1..*| dataSpecifications *| dataSpecification i i
*
«stereotypen «stereotypen
{concepts = data provider} {concepts = refinement}
DataProvider Refines
«stereotypen
{concepts = extension}
Extends
«stereotypen
{concepts = complement}
Complements

Figure 8.18 - Data Specifications Overview

8.6.1.2 Stereotype Specifications

8.6.1.21 Complements
Description

Extension
Super Class
Change from UTP 1.2

8.6.1.2.2 DataPartition

Description

Extension
Associations
Change from UTP 1.2

140

Complements: A morphism that inverts data) i.e., that replaces the data items of a
given set of data items by their opposites).

The stereotype «Complements» specializes the abstract stereotype «Morphing» and
logically negates the specification of the morphed data specifications within the
morphing data specification. That means that complement morphism result in a
complementing data specification that is the difference set of the complemented or
morphed data specification.

Dependency

Morphing

«Complements» has been newly introduced by UTP 2.

DataPartition: A role that some data plays with respect to some other data (usually
being a subset of this other data) with respect to some data specification.

The stereotype «DataPartition» extends a UML Classifier and represents a set of
data that complies with one or more data specifications.

Classifier

dataSpecification : DataSpecification [*]

«DataPartition» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.2

8.6.1.2.3 DataPool
Description

Graphical syntax

Extension
Change from UTP 1.2

8.6.1.2.4 DataProvider
Description

Extension
Super Class
Associations

Change from UTP 1.2

DataPool: Some data that is an explicit or implicit composition of other data items.

The stereotype «DataPool» extends a UML Classifier and represents a set of
physical data without complying to any particular data specification.

Classifier

Changed from UTP 1.2. In UTP 1.2 «DataPool» extended both Classifier and
Property.

DataProvider: A test component that is able to deliver (i.e., either select and/or
generate) data according to a data specification.

The stereotype «DataProvider» is a specialization of stereotype «TestComponent.
Such a test component is used to provide a data partition, represented as a Constraint
extended by the stereotype «DataPartition», by generating some new data or by
selecting some existing data from another data partition or a data pool according to
some data specifications (represented as a Constraint extended by the stereotype
«DataSpecificationy).
Classifier, Property
TestComponent

TestDesignDirective
dataSpecifications : DataSpecification [1l..*]

«DataProvider» has been newly introduced by UTP 2.

8.6.1.2.5 DataSpecification

Description

Extension
Associations

Constraints

DataSpecification: A named boolean expression composed of a data type and a set
of constraints applicable to some data in order to determine whether or not its data
items conform to this data specification.

The stereotype «DataSpecification» extends Constraint and is used to describe the
constraints within the context of one or more types, instances of those types have to
comply with. DataSpecifications are used to build and define DataPartitions.

Since «DataSpecification» is an extension of Constraint the specification of the
Constraint is defined by a ValueSpecification. This specification might be as simple
as a LiteralString (e.g., natural language describing the constraint) or as complex as
a formal language statement (e.g., Alf or OCL). UTP does not prescribe the notation
used for describing the specification of a «DataSpecification» Constraint.

In case a Constraint with «DataSpecificationy is directly contained in Classifier, it is
considered semantically equivalent to «DataSpecification» Constraint defined
outside of this Classifier and with a «Refines» Dependency established between the
«DataSpecification» Constraint and the Classifier.
Constraint

DataProvider [*]

DataPartition [*]

DataType in DataSpecification

UML Testing Profile 2 (UTP 2), Version 2.2 141

Change from UTP 1.2

8.6.1.2.6 Extends
Description

Extension
Super Class
Change from UTP 1.2

8.6.1.2.7 Morphing
Description

Extension
Sub Class
Constraints

Change from UTP 1.2

142

DRTDOI: It is necessary that each data specification specifies at least one data type.
«DataSpecification» has been newly introduced by UTP 2.

Extends: A morphism that increases the amount of data
(i.e., that adds more data items to a given set of data
items).

The stereotype «Extends» specialized the abstract
stereotype «Morphing» and logically OR-combines the
specification of the morphed data specifications within
the morphing data specification. That means that
extension morphism result in a data specification that is
more general than the extended or morphed data
specifications.

Dependency

Morphing

«Extends» has been newly introduced by UTP 2.

Morphing: A structure-preserving map from one mathematical structure to another.

The abstract stereotype «Morphing» extends Dependency and is used to derive data
specifications from other data specifications. This enables a high degree of
reusability of existing data specifications. «Morphingy is intended to be subclassed
and simply acts as a common superclass for shared semantics and constraints.

A Dependency stereotyped with a subclass of «Morphing» always emanates from a
Constraint with «DataSpecification» applied. It must point to a UML Classifier, to
a UML Package containing some UML Classifiers, or to a Constraint with
«DataSpecification» applied. If it targets a «DataSpecification» Constraint, it
morphs the definitions of that data specification (called the morphed data
specification) into a new data specification (called morphing data specification). If it
targets a Classifier (or a set of Classifiers contained in a Package), all constraints
applied on those Classifiers or their attributes are considered as an implicit morphed
data specification attached to the Classifier which is eventually morphed into a

morphing data specification.

The exact effect of morphing a data specification into another data specification is
defined by the concrete subclasses of the stereotype «Morphingy.

Dependency

Complements, Extends, Refines

Clients of a «Morphing» Dependency

DRTDO3: As clients of a Dependency stereotyped with a concrete substereotype of
«Morphing» only the following elements are allowed: Constraint with

«DataSpecification» applied.
Suppliers of a «Morphing» Dependency

DRTDO04: As suppliers of a Dependency stereotyped with a concrete substereotype
of «Morphingy only the following elements are allowed: Constraint with
«DataSpecification» applied, UML Classifier, and UML Package.

«Morphing» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.2

8.6.1.2.8 Refines
Description Refines: A morphism that decreases the amount of data

(i.e., that removes data items from a given set of data
items).

The stereotype «Refines» specialized the abstract
stereotype «Morphing» and logically AND-combines
the specification of the morphed data specifications
within the morphing data specification. That means that
refinement morphism result in a data specification that
is more specific than the refined or morphed data

specifications.

Extension Dependency
Super Class Morphing
Change from UTP 1.2 «Refines» has been newly introduced by UTP 2.

8.6.2 Data Values

The payload of an expect response action is also called expected response argument value as opposed to the actual
response argument value. During arbitration specification, usually a comparator evaluates whether the actual
response matches with the expected ones in terms of event type and its payload. It is then the task of the arbitration
specification to decide on the verdict that has to be assigned. In UTP data values are expressed by means of
ValueSpecifications to specify both the payload for a stimulus and the payload of expected responses. In case of an
expected response, the ValueSpecification does also implicitly define a matching mechanism used by a comparator
during arbitration in order to evaluate whether the expected payload matches the actual payload.

The implicitly applied matching mechanism is determined by the ValueSpecification used to describe an expected
payload argument in the context of an expected response. The prescribed matching mechanisms semantics,
inherently bound to ValueSpecifications, are defined by UTP as follows:

e ValueSpecification (abstract metaclass): In general, any native UML ValueSpecification infers an equality
matching mechanism, i.e., the actual payload, also known as response argument value, must be exactly the
same as the expected payload. Any deviation will result in a mismatch.

e Literallnteger: Checks for equality of the expected and actual response Integer-typed argument value.

e LiteralString: Checks for equality of the expected and actual response String-typed argument value.

e LiteralReal: Checks for equality of the expected and actual response Real-typed argument value.

e LiteralBoolean: Checks for equality of the expected and actual response Boolean-typed argument value.

e LiteralUnlimitedNatural: Checks for equality of the expected and actual response Integer-typed argument
value including infinity.

e LiteralNull: Checks for absence of an actual response argument value of any type.

e InstanceValue: Checks for equality of the expected and actual response complex data type instance
argument value.

All these equality matching mechanisms are natively given by UML, whereas UTP adds just a few more
ValueSpecifications that provide matching mechanisms currently not given by UML. These kinds of
ValueSpecifications are sometimes called Wildcards (TTCN-3) or Facets (XML Schema):

e AnyValue: Represents a set of all possible values for a given type and checks if actual response argument
value is contained in this set. In case of optionality, the set of known values includes the absence of a value.
This is implemented as stereotype «AnyValuey.

e RegularExpression: Represents a set of values for a given type described by a regular expression and checks
if the actual response argument value belongs to that set. This is implemented as stereotype
«RegularExpressiony.

UML Testing Profile 2 (UTP 2), Version 2.2 143

8.6.2.1 Data Value Extensions
The diagram below shows the abstract syntax of the ValueSpecification extensions introduced by UTP.

«metaclassy «metaclassy
Expression Dependency
«extendsy «extends» «extends»
«stereotypen «stereotypen «stereotypen
{concepts = data specification} {concepts = data specification} {concepts = morphism}
AnyValue RegularExpression overrides

Figure 8.19 - Data Value Extensions

8.6.2.2 Stereotype Specifications

8.6.2.2.1 AnyValue
Description The stereotype «AnyValue» extends ValueSpecification and represents an implicit
set of known values for a given type. The expected response argument value
matches with each actual response argument value, as long as type-compliance is
given. In case of optionality, the set of known values includes the absence of a

value.
Extension Expression
Change from UTP 1.2 Changed and renamed from UTP 1.2. In UTP 1.2, «AnyValue» was called

«LiteralAny» and extended LiteralSpecification.

144 UML Testing Profile 2 (UTP 2), Version 2.2

8.6.2.2.2 overrides
Description

Extension
Constraints

Change from UTP 1.2

Overrides is a relationship between at least two InstanceSpecifications, i.e., the
modifying InstanceSpecification and the modified InstanceSpecification.
Modifying InstanceSpecifications constitute the client elements of the underlying
dependency, and consequently, modified InstanceSpecifications constitute the
supplier elements of the underlying dependency.

A modifying InstanceSpecification reuses all slot values of the modified
InstanceSpecification in a way as if the slot values would have been copied into the
modifying InstanceSpecification as its owned slots. Furthermore, the modifying
InstanceSpecification is allowed to specify slots, which have not been declared by
the modified InstanceSpecification at all. This enables user to gradually complete
InstanceSpecifications and to reuse already or maybe partially defined
InstanceSpecifications in order to create large sets of data by avoiding redundancy.

Additionally, a modifying InstanceSpecification is able to overwrite slots with new
values. A slot is considered to be overwritten if a modifying InstanceSpecification
defines an owned slot that refers to the very same defining feature as the owned slot
of the modified InstanceSpecification, or to a feature that redefines, directly or
transitively, the slot's defining feature. An overwriting slet‘sslot’s value list entirely
replaces the value list of the slot that is overwritten.

Modification requires type compatibility between the modifying and modified
InstanceSpecifications. Type compatibility is given if a modifying
InstanceSpecification’s classifier list is compatible with the modified
InstanceSpecification’s classifier list. Two classifier lists are compatible if the
modifying InstanceSpecification’s classifier list is a proper subset of the modified
InstanceSpecification’s classifier list. A proper subset is considered to be given if
each classifier of the modifying InstanceSpecification’s classifier list is type
compatible with at least one classifier of the modified InstanceSpecification
classifier list. Type compatibility between classifiers is defined in the UML
specifications.

Cyclic modifications are not allowed. A cyclic modification describes a situation in
which a modifying InstanceSpecification establishes a modification to a modified
InstanceSpecification and the latter one already modifies, directly or transitively,
the modifying InstanceSpecification.

Dependency

Restriction of client and supplier

As client and supplier of the underlying Dependency, only InstanceSpecification
are allowed.
Cyclic modifications

Cyclic override are not allowed. A cyclic override means that an overridden
InstanceSpecification transitively overrides its overriding InstanceSpecification.

«overrides» was renamed by UTP 2. In UTP 1.2, it was named «modifiesy.

UML Testing Profile 2 (UTP 2), Version 2.2 145

8.6.2.2.3 RegularExpression
Description The stereotype «RegularExpression» extends Expression and represents an implicit
set of values for a given type described by a regular expression. The expected
response argument value matches with each actual response argument value if the
actual one belongs to the set of values defined by the regular expression.

A RegularExpression can be used for test data generation or to compare whether an
actual response matches with expected response.

The attribute symbol of the underlying Expression must contain the String that is
evaluated as the regular expression. It might be omitted;; in that case the operands
of the underlying Expression must be used as abstract syntax tree for the regular

expression.
Extension Expression
Change from UTP 1.2 «RegularExpression» has been newly introduced by UTP 2.
8.7 Test Evaluation

The concepts for test evaluation are necessary to decide about the outcome of the dynamic test process activities.
They implement in the specification of (proprietary) arbitration specifications on test set, test case and procedural
element level, as well as in the ability to incorporate the test logs produced during the execution of a test-specific
procedure and its procedural element in a platform-independent, but user-specific way.

8.71 Arbitration Specifications

8.71.1 Arbitration Facility

8.7.2 Arbitration Specifications

In dynamic testing, the term Arbitration describes the application of a certain rule set on the outcome of a test
execution activity, usually captured as test log for comprehensibility, in order to derive the final verdict of an
execution test set or test case. Thus the arbitration of an executed test set or test case is the most important activity of
the test evaluation activities with respect to requirements, test requirement or test objective coverage. Arbitration can
both happen immediately during test execution (dynamic arbitration) and after test execution based on the captured
test logs (post-execution arbitration). Due to whatever reason (organizational, technical etc.), one might be preferred
over the other.

The UTP arbitration facility offers stereotypes for specifying proprietary arbitration specifications that vary from the
default arbitration specifications in terms of their verdict calculation algorithm. Users can define user-specific
arbitration specifications for test sets, test execution schedules, test cases and procedural elements by simply
applying the stereotypes offered by the UTP arbitration facility to applicable metaclasses. The degree of formalism
of a user-defined arbitration specification is left open. An arbitration specification might be represented by
something as simple as an identifier (referring to an implementation), by natural language describing the arbitration
rules, by any kind of UML Behavior or by something formal as executable specifications or mathematical
definitions.

Arbitration specifications are usually implemented (or interpreted) by an arbiter component that belongs to the
utilized the test execution tool. UTP does not prescribe any implementation details of an arbiter component as part
of an test execution tool, nor how or when information from test sets, test cases and procedural elements are passed
to an arbiter component.

It is left open; if the arbitration activities are carried out automatically or by a human.

146 UML Testing Profile 2 (UTP 2), Version 2.2

UTP introduces three different kinds of verdicts that can be produced:

e procedural element verdicts: Verdicts produced by a procedural element arbitration specifications:.

e test case verdicts: Verdicts produced by a test case arbitration specifications.

o test set verdicts: Verdicts produced by a test set arbitration specification.

The fundamental verdict calculation and provisioning schema is as follows:

e test set arbitration specifications: they derive the test set verdict from the test case verdicts that have been
executed as part of the test set (i.e., the test case verdicts are passed to the arbitration specification of the
surrounding test set}:).

e test case arbitration specifications: they derive the test case verdicts from the procedural element verdicts
(first and foremost the test action verdicts) that have been executed as part of the test case (i.e., the
procedural element verdicts are assembled and passed on to the test case arbitration specification):).

e procedural element arbitration specifications: they derive procedural element verdicts from the information
conveyed by the procedural element, or in case of a compound procedural element, the procedural element
verdicts received from the arbitration specifications of the contained procedural elements.

8.7.21 Test Procedure Arbitration Specifications

In dynamic testing, the term arbitration describes the process of calculating a verdict (also known as test result) for
an executed test case based on so called pass/fail criteria. Arbitration is the most important activity of a dynamic test
process with respect to calculating the coverage of requirements, test requirements or test objectives. Arbitration
includes the process of comparing the expected and actual behavior of a test item to detect any deviation from the
expectation. Often, the comparison process is used as a synonym for arbitration, but this is not correct. Comparison
is one part of arbitration that simply decides whether an expectation was met, or not. The outcome is usually a
Boolean value true or false. This Boolean value is than passed to the pass/fail criteria that is responsible to derive a
verdict (the test result) for a test case. When the calculation is done automatically, the component that implements
the pass/fail criteria is usually referred to as the arbiter. In UTP 2, the pass/fail criteria are formalized as arbitration
specifications.

In UTP 2, several artifacts may deliver a verdict. Such an artifact is called an arbitration target. UTP 2 distinguished
the following arbitration targets: procedural element, test case, test execution schedule and test set. These arbitration
targets define a hierarchy of arbitration scopes. Verdicts produced by arbitration targets on lower scopes are passed
to higher scopes, more precisely, passed to the arbitration specification of higher scope arbitration targets. The
arbitration scopes of UTP 2are subsequently described in ascending hierarchy (i.e., starting with the lowest
arbitration scope):

e Procedural element scope: Every procedural element is (potentially implicitly) associated with a procedural
element arbitration specification that produces a corresponding procedural element verdict. Procedural
elements verdicts might be atomic, i.e., they cannot be further decomposed, in case the verdicts have been
produced by an atomic procedural element arbitration specification. It might also consist of other
procedural element verdicts in case the verdict has been produced by a compound procedural element
verdict.

e Test case scope: Every test case is (potentially implicitly) associated with a test case arbitration
specification that produces the corresponding test case verdict for that test case. A test case verdict is
usually calculated by evaluating the procedural element verdicts it received from its procedural element
arbitration scope.

o Test execution schedule/test set scope: Every test set is (potentially implicitly) associated with a test set
arbitration specification that produces the corresponding test set verdict for that test set. A test set verdict is
usually calculated by evaluating the test case verdicts it received from its test case arbitration scope.

For each specific arbitration target (e.g., a test case, an expect response action) a corresponding arbitration
specification exist (e.g. test case arbitration specification, expect response action arbitration specification). This
strong typing of arbitration specifications results in a high number of stereotypes, but prevents confusion, manual
errors and ambiguities when binding arbitration specifications to arbitration targets. UTP 2 defines default
arbitration specifications for every specific arbitration target. If the default arbitration specification is sufficient in a
given context, the user does not have to care about defining specific arbitration specifications at all. However, in
some situations it might be required to define proprietary arbitration specifications, verdicts or verdict precedence
rules. Users can define user-specific arbitration specifications for any arbitration target. The degree of formalism of

UML Testing Profile 2 (UTP 2), Version 2.2 147

a user-defined arbitration specification is left open. An arbitration specification might be represented by something
as simple as an identifier (referring to an implementation), by natural language describing the arbitration rules, by
any kind of UML Behavior or by something formal as executable specifications or mathematical definitions. The
semantics of the default arbitration specification is explained in the stereotype specification of
«ArbitrationSpecification» and its subclasses.

Arbitration can both happen immediately during test execution (dynamic arbitration) and after test execution based
on the captured test logs (post-execution arbitration). Due to whatever reason (organizational, technical etc.), one
might be preferred to the other.

Arbitration specifications are usually implemented (or interpreted) by an arbiter that belongs to the utilized test
execution tool. UTP 2 does not prescribe any implementation details of an arbiter, nor how or when information
from test sets, test cases and procedural elements are passed to an arbiter component.

It is left open; if the arbitration process is carried out automatically or by a human being.

Arbitration Specification Binding

In case it is needed, userusers can override the default arbitration specifications of arbitration targets with
proprietary ones. The UTP 2 arbitration facility offers a binding mechanism to empower user to integrate their own
arbitration specification into the arbitration facility. The binding mechanism was designed to provide a high degree
of flexibility, i.e., the user can override arbitration specifications of single arbitration targets without the need to care
about all the other arbitration targets.

A binding connects an arbitration target with a corresponding, matching arbitration specification. The matching
mechanism for arbitration targets and arbitration specifications are explained in the stereotype specifications of
«ArbitrationSpecificationBinding» and the concrete sub-classes of «ArbitrationSpecificationy.

Due to the hierarchical nature of arbitration targets (e.g. an arbitration target « TestCase» may consist of arbitration
targets «ExpectResponseActiony) the binding of an arbitration specification to an arbitration target may also be
defined on different hierarchical scopes. UTP 2 defines the following evaluation scopes where bindings can be
defined for a given arbitration target:

e Global scope: The topmost scope; each binding on global scope applies to all matching arbitration targets
on lower scopes if not overridden in a cascading manner.

o Test Set scope: The first scope with a concrete arbitration targets; bindings on that scope apply to all
matching arbitration targets on lower scopes if not overridden in a cascading manner.

e Test Case scope: The scope of a single test case; bindings on that scope apply only to the procedural
elements of the given test case, if not overridden in a cascading manner.

e Procedural Element scope: The lowest scope; a procedural element binding overrides any binding that was
defined for that procedural element on any higher scope.

Bindings that are declared on lower scopes override bindings on higher scopes in a cascading manner. When an
arbitration process is carried out eventually, the arbiter will first calculate the set of effective arbitration
specifications for a given arbitration target and then execute the rules of that arbitration specification target to
produce a verdict. The cascading nature of the arbitration specification bindings allows for specifying multiple
bindings for a given arbitration target on different binding scopes, but only one (i.e. the most downwards one) will
be the effective arbitration specification for that arbitration target.

Let us assume we have a test set ‘TS 1’ defined that consists of two test cases ‘TC 1’ and ‘TC 2’. A test set
arbitration specification binding exists that defines a target-free binding on test set scope that binds explicit expect
response arbitration specification 'ERAS 1'to the test set “TS 1°. Let's further assume that there is a sub-scope test
case arbitration specification binding (i.e., ' TCASB_1' with arbitration target “TC 1) defined for the test set
arbitration specification binding. TCASB 1 further defines that for all expect response actions of that evaluation
scope, the expect response arbitration specification 'ERAS 2' shall be bound. If the arbitration process for the test
set ‘TS 1’ is started, 'ERAS 2" will be bound to all expect response actions (i.e. all expect response actions of test
case “TC _1’) in the scope of " TCASB 1', whereas 'ERAS 1' will be used for all remaining expect response actions
(i.e. of test case ‘“TC 2°).

Arbitration Directives

Arbitration bindings simply declare that arbitration targets and arbitration specifications refer to each other. These
relationships need to be put into effect at a certain point of time. It is therefore required to explicitly define which
binding should be taken into effect. The UTP 2 arbitration facility leverages the UTP 2 test directive facility for that
purpose. An arbitration directive collects a set of arbitration specification bindings and ties them to an input for

148 UML Testing Profile 2 (UTP 2), Version 2.2

which these bindings shall be put into effect. The input is usually a test log on which the arbitration process shall
operate (i.e., post-execution arbitration) or a test set, a test execution schedule or a set of test cases for which the
bindings shall be put into effect (i.e., dynamic arbitration). The arbitration directive be the configuration of an arbiter
for verdict calculation.

Deprecation of the former binding mechanism

Before UTP 2.2 each arbitration target (i.e., test set, test execution schedule, test case and procedural element as well
as its subclasses) had a direct association to their matching arbitration specifications. This association is for the sake
of backward- compatibility technically still present but marked as deprecated and should not be used anymore. The
newly introduced cascading arbitration specification facility is more flexible and less intrusive than the former one.

8.7.2.1.1 Arbitration Facility Overview

The following figure shows the foundations of the arbitration facility of UTP. It illustrates how arbitration
specifications and arbitration targets relate to each other using the arbitration specification binding mechanism. An
arbitration specification produce arbitration results. The most important, yet not the sole information conveyed by an
arbitration result is the verdict. Due to the design of the stereotype «ArbitrationResulty it is easily possible to
incorporate further, yet proprietary information into the «ArbitrationResult» using UML's native
InstanceSpecification mechanism.

stereotypen urnetaclassn tmetaclassn urmetaciass)
TestDirective InstanceSpecification BehavioredClassifier InstanceSpecification
y {Abstract}
\ .
wextendsn iextendsn
wextends: 0.1 parer
i asterectypen
_ N o usterectypen ustereotypen ArbitrationResult
* arbitrationDirective| . |ArbilralionSpecificationBinding {concepts = arbiiration specification}
L - ArbilrationSpecification 0.1 finstances subresult
ibinging {Abstract) [nstanceOf
T arbitrationResult
ID : String
0.1 b verdict]‘
| 0..1 [arbifrationSpecification ¥
areniBinding umetaclassn
ValueSpecification
{Abstract}
N
subBinding binding
“lbinding
*‘. arpifratienTarget
ustersotypen
ArbitrationTarget
{Abstract)
A / A, A
£ LA T LA
ustereotypen ustereotypen ustereotypen ustereotypen
{concepts = test sef} {concepts = test execution schedule}| |{concepts = test case,abstract test case concrete test case} {concepts = procedural element}
TestSet TestExecutionschedule TestCase ProceduralElement
{Abstracf}

|ID: String [0..1] | [10:sting [0.1] |

Figure 8.20 - Arbitration Specifications Overview

8.7.21.2 Stereotype Specifications

8.7.2.1.2.1 ArbitrationDirective
Description An arbitration directive instructs a human tester or a machine to calculate verdicts
(represented by the stereotype «ArbitrationResult».

Super Class TestDirective
Associations binding : ArbitrationSpecificationBinding [*] {unique}

The set of arbitration specification bindings that are defined in the scope of the
arbitration directive.
Change from UTP 1.2 «ArbitrationDirective» was newly introduced by UTP 2.2.

UML Testing Profile 2 (UTP 2), Version 2.2 149

8.7.2.1.2.2 ArbitrationResult

Description

Extension
Associations

Constraints

150

An «ArbitrationResult» stores information about the execution and the verdict
produced by an arbitration specification that was put into effect by an arbiter .
Arbitration results can be calculated for any arbitration target. The characteristics of
an «ArbitrationResult» is determined by the «ArbitrationSpecification» of which the
«ArbitrationResulty» represents an instance of.

The most important information an arbitration specification produces is the eventual
verdict. Other helpful, but not standardized information may include the timestamp
of the execution, characteristics of the arbiter (e.g. the human being or
implementation) that produced the result, the outcome of the comparison process of
actual and expected value including deviation details in case of mismatches, etc.
Additional information can be incorporated by using the ordinary underlying UML
InstanceSpecification mechanism.

An «ArbitrationResulty may peintspoint to the corresponding «TestLogFElement
that provides the actual information captured during test execution. The expected
information is specified by the corresponding arbitration target linked by the
arbitration specification the arbitration result is an instance of. All information that
were involved in calculating the verdict are therefore accessible for analysis or
understanding.

«ArbitrationResult»s may link with other «ArbitrationResult»s. An arbitration result
of a test set is usually calculated by the arbitration result of the executed test cases,
which, in turn, are calculated by the arbitration result of the executed procedural
elements. The tag definitions 'subresults' and 'parent’ of «ArbitrationResult» enable
keeping depending «ArbitrationResult» closely connected to one another.

InstanceSpecification
verdict : ValueSpecification

The verdict that was produced for a given test case, test set or procedural element
according to the respective bound arbitration specification and the actual
information captured in the corresponding test log.

/instanceOf : ArbitrationSpecification [0..1]

The arbitration specification whose rules were used to produce the test set. The
arbitration specification is derived from the underlying InstanceSpecification's set
of Classifiers with «ArbitrationSpecification» applied or specializations thereof.
There can be more than one Classifier set for an «ArbitrationResult»
InstanceSpecification, but only one of these Classifiers are allowed to be
stereotyped with «ArbitrationSpecification» or a specialization thereof.
resultFor : TestLogElement [0..1]

The corresponding test log element for which the given «ArbitrationResulty
captures the calculated test set and any other relevant information.
subresult : ArbitrationResult [*]

A set of linked «ArbitrationResult»s that influenced the calculation of the current
verdict.

In case of a compound procedural element, it is possible (not mandatory, though) to
link all the «ArbitrationResult»s produced for the procedural elements contained by
the compound procedural element.

parent : ArbitrationResult [0..1]

The superior «ArbitrationResult» the current «ArbitrationResult» has an impact on.

Type of verdict ValueSpecification
The type of the ValueSpecification referenced by the tag definition verdict must be

UML Testing Profile 2 (UTP 2), Version 2.2

Change from UTP 1.2

of type verdict (or a subtype thereof) as defined in the UTP Types Library.
«ArbitrationResult» has been newly introduced by UTP 2.

8.7.2.1.2.3 ArbitrationSpecification

Description

Graphical syntax

Extension
Sub Class

Attributes

Associations

Constraints

Change from UTP 1.2

ArbitrationSpecification: A set of rules that calculates the eventual verdict of an
executed test case, test set or procedural element.

The stereotype «ArbitrationSpecification» extends BehavioredClassifier and is
used to specify the decision process for verdicts. It is an abstract stereotype that is
specialized by stereotypes that deal with the verdicts of test sets, test cases, and
procedural elements (i.e-., test set verdicts, test case verdicts, and procedural
element verdicts).

The concept of an arbitration specification allows for specifying user-defined
algorithms for the calculation of the verdict based on the executed test cases or the

captured test case logs.

The semantics of the default arbitration specification defines a default precedence of
the predefined instances, which is: None < Pass < Inconclusive < Fail < Error.

That means that verdicts with lower precedence can be overwritten with verdicts of
higher precedence, but not vice versa.

Other default arbitration specifications defined by UTP adhere by that precedence
rule defined by «ArbitrationSpecification» and complement it with their specific
semantics. User-defined arbitration specifications may override that default
semantics as well as the precedence of verdicts.

The result of an arbitration specification is stored in an «ArbitrationResult» that
contains the eventual verdict and links the «ArbitrationSpecification» to the element
it was applied to-.

BehavioredClassifier

ProceduralElementArbitrationSpecification, TestCaseArbitrationSpecification,
TestSetArbitrationSpecification

ID : String [1]

A unique identifier that unambiguously identifies the given arbitration specification.

/referencedBy : TestContext [*]

/instances : ArbitrationResult [*]

Verdict of ArbitrationSpecification

DRASOL1: It is necessary that an arbitration specification determines exactly one
verdict.

«ArbitrationSpecification» has been newly introduced into UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.2 151

8.7.2.1.2.4 ArbitrationSpecificationBinding

Description

«ArbitrationSpecificationBinding» binds arbitration
specifications to suitable arbitration targets.

A bound arbitration specification is responsible to calculate
the arbitration results (i.c., the verdict) for a given arbitration
target. The given arbitration target defines the scope where the
binding and potential sub-bindings become valid.

Every arbitration specification binding on the very same
evaluation scope shall refer to unique arbitration targets. If
not, it is ambiguous which binding shall become valid during
the evaluation process. Let us assume there are two test set
bindings defined in the same binding scope and both refer to
the test set 'TS 1'as arbitration target but different test set
arbitration specifications, it is unclear which arbitration
specification should be utilized for the arbitration process.

If there are multiple matching arbitration targets defined by
the binding, the corresponding arbitration specification is
bound to all mentioned arbitration targets.

The arbitration target might be omitted in a binding. These
kinds of bindings are called target-free bindings. They apply
not only to the explicitly mentioned arbitration targets, but to
all matching arbitration targets in the current evaluation scope
(and, if not overridden also in lower evaluation scopes). In that
case, the bound arbitration specification is applied to all
matching arbitration targets within the given and lower
evaluation scopes. Let us assume there is a test case arbitration
specification binding that binds the test case arbitration
specification "TCAS 1'to an empty arbitration target. This
empty arbitration target is evaluated at processing time to all
possible test cases that exist in the current evaluation scope.
Let us further assume that there is another test case arbitration
specification binding that binds the test case arbitration
specification "TCAS 2'to an explicit arbitration target, i.e.,
test case 'TC 5'. If both bindings are defined in the same
evaluation scope, for all test cases but 'TC 5' the test case
arbitration specification "TCAS 1'becomes valid. For 'TC 5'
the test case arbitration specification "TCAS 2'becomes valid.

There should only be one target-free binding of the same type
defined on the same evaluation scope. Otherwise, it is
ambiguous which binding shall become valid during
evaluation process. Let us assume there are two target-free test
case bindings in the scope of the same test set binding. Since
both bindings would apply concurrently to all test cases, it is
not clear which binding should eventually be evaluated during
the evaluation process.

The bound arbitration specification might also be omitted. In
that case, the (implicitly defined) default arbitration
specification for the given arbitration target will be bound.
This construct is helpful in situatiensituations where a binding
on a higher evaluation scope is defined, but the default
arbitration specification shall be applied nonetheless for an

152

UML Testing Profile 2 (UTP 2), Version 2.2

arbitration target.

Arbitration specification bindings have a cascading nature,
i.e., sub-scope arbitration specification bindings override
bindings on a higher evaluation scope.

Target-free bindings are not allowed to define sub-bindings.
The reason for this restriction is comprehensibility.

Arbitration specification bindings must only bind matching
arbitration targets and arbitration specifications. The type of
the binding is determined by the characteristics of the
arbitration target and the arbitration specification. For
example, if an arbitration specification binding binds a test
case arbitration specification to a test case (i.e., the arbitration
target) the binding is called fest case arbitration specification

binding.
Extension InstanceSpecification
o subBinding
Associations ArbitrationSpecificationBinding

[*]{unique}

The set of arbitration specification bindings on a lower
evaluation scope that this binding specification binding refers
to as sub-bindings.

parentBinding
ArbitrationSpecificationBinding[*] {unique}

The set of arbitration specification bindings on a higher
evaluation scope that refer to this arbitration specification
binding as sub-binding.

arbitrationTarget : ArbitrationTarget [*]
{unique}

The set of arbitration targets to which referenced arbitration
specification will be bound to. If left empty, it means that the
bound arbitration specification will be bound implicitly to all
matching arbitration targets within the scope of the binding.
arbitrationSpecifcation
ArbitrationSpecification [0..1]

The arbitration specification that is eventually bound to the
arbitration target. If it is left empty, the default arbitration
specification for the corresponding arbitration target is set
implicitly.

Verdict of ArbitrationSpecification

Constraints

DRASOI1: It is necessary that an arbitration specification
determines exactly one verdict.
Target-free bindings shall not define sub-scope bindings

If the arbitration target is omitted, no sub-bindings shall be
defined.
Uniqueness of arbitration targets on same evaluation scope

Any two arbitration specification bindings on the very same
evluation scope shall refer to different arbitration targets.

UML Testing Profile 2 (UTP 2), Version 2.2 153

Uniqueness of target-free bindings on same arbitration scope

Any two target-free arbitration specification bindings on the
very same evaluation scope shall be of different type.

Change from UTP 1.2

«ArbitrationSpecificationBinding» was newly introduced by
UTP 2.2.

8.7.2.1.2.5 ArbitrationTarget

Description An arbitration target is any element that may produce a verdict, i.e. an arbitration
result. It is an abstract metaclass that simply marks certain elements as arbitration
| targets, i.e-., test set, test case, test execution schedule and procedural element as
well as any of its subclasses.
| Sub Class ProceduralElement, TestCase, TestExecutionSchedule, TestSet
Change from UTP 1.2 «ArbitrationTarget» was newly introduced by UTP 2.2.
| 8.7.2.1.2.6 TestCaseArbitrationSpecification
Description TestCaseArbitrationSpecification: A set of rules that calculates the eventual verdict

Extension

Super Class
Associations

Change from UTP 1.2

154

of an executed test case, test set or procedural element.

A «TestCaseArbitrationSpecification» specifies the rules for the eventual
calculation of a test case verdict based on the procedural element verdicts that have
been executed in the context of the corresponding test case.

The semantics of the default «TestCaseArbitrationSpecification» complements the
semantics of «ArbitrationSpecification» by defining the rule that determines the
assignment of test case verdicts. The rule of the default test case arbitration
specification is as follows:

o None: The verdict 'None' is assigned when the test case was not yet
executed, or no other procedural element verdict was produced yet.

o Pass: The verdict 'Pass' is assigned, if all procedural elements that
participate in the arbitration process of that specific test case evaluate to
'Pass'.

3 Inconclusive: The verdict 'Inconclusive' is assigned, if at least one

procedural element that participates in the arbitration process of that test
case, evaluates to 'Inconclusive', while the remaining procedural elements
evaluate to 'Pass' or 'None'.

. Fail: The verdict 'Fail' is assigned, if at least one procedural element that
participates in the arbitration process of that test case evaluates to 'Fail',
while the remaining procedural elements evaluate to Tnconclusive', 'Pass'
or 'None'.

. Error: The verdict 'Error' is assigned, if at least one procedural element that
participates in the arbitration process of that test case evaluates to 'Error’, or
the arbitration process itself failed with a technical error.

BehavioredClassifier

ArbitrationSpecification

TestCase [*]

Newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.2

8.7.2.1.2.7 estSetArbitrationSpecification

UMLTP22-10:

Extension
Super Class
Associations

Change from UTP 1.2

8.7.2.2

TestSetArbitrationSpecification: A set of rules that calculates the eventual verdict of

an executed test case, test set or procedural element.

A «TestSetArbitrationSpecification» specifies the rules of how a test set verdict will
be calculated based on the verdicts of the test cases that have been executed in the
context of the corresponding test set. A test set arbitration specification is used by
both «TestSet» and «TestExecutionScheduley.

The semantics of the default «TestSetArbitrationSpecification» complements the
semantics of «ArbitrationSpecification» by defining the rule that determines the
assignment of test set verdicts. The rule of the default test set arbitration
specification is as follows:

None: The verdict 'None' is assigned when the test set was not yet executed, i.e.,
any test case assembled or contained in the test set had produced a test case
verdict yet.

Pass: The verdict 'Pass' is assigned, if all executed test cases that participate in
the arbitration process of that specific test set also evaluated to 'Pass'.
Inconclusive: The verdict 'Inconclusive' is assigned, if at least one executed test
case that participates in the arbitration process of that test set evaluates to
'Inconclusive', while the remaining test cases evaluate to 'Pass' or 'None'.

Fail: The verdict 'Fail' is assigned, if at least one executed test case that
participates in the arbitration process of that test set evaluates to 'Fail', while the
remaining test cases evaluate to Tnconclusive', 'Pass' or 'None'.

Error: The verdict 'Error' is assigned, if at least one executed test case that
participates in the arbitration process of that test set evaluates to 'Error’, or the
arbitration process itself failed with a technical error.

BehavioredClassifier
ArbitrationSpecification

TestSet [*]
TestExecutionSchedule [*]

Newly introduced by UTP 2.

Procedural Element Arbitration Specifications

The procedural element arbitration specification sections summarize the different type of arbitration specifications

that can be used to define proprietary procedural element arbitration specifications.

8.7.2.21

Arbitration of AtomicProceduralElements

The diagram below shows the abstract syntax of arbitration specification elements for atomic procedural elements.

UML Testing Profile 2 (UTP 2), Version 2.2 155

«stereotypen
0.1 _| {concepts = arbitration specification}
arbitrationSpecification |ProceduralElementArbitrationSpecification

{Abstract}

«stereotypen

{concepts = arbitration specification} 0..1
AtomicProceduralElementArbitrationSpecification|

{Abstract}

«stereotypen
{concepts = arbitration specification}
ProcedurelnvocationArbitrationSpecification

0‘.1‘
arbitrationSpecification {redefines arbitrationSpecification}
*

«stereotypen
{concepts = procedure invocation}
Procedurelnvocation

role : ProcedurePhaseKind [0..1] arbitrationSpecification {redefines arbitrationSpecification}
«stereotypen «stereotypen
{concepts = arbitration specification}| |{concepts = atomic procedural element}| «
ArbitrationSpecification AtomicProceduralElement
{Abstract} {Abstract}
ID : String KL
«stereotypen

*

{concepts = procedural element}
‘ ProceduralElement

{Abstract}

Figure 8.21 - Arbitration of AtomicProceduralElements

8.7.2.2.2 Arbitration of CompoundProceduralElements
The diagram below shows the abstract syntax of arbitration specification elements for compound procedural
elements.

156 UML Testing Profile 2 (UTP 2), Version 2.2

{concepts =

«stereotypen
arbitration specification}

{Abstract}

ProceduralElementArbitrationSpecification

arbitrationSpecification

«stereotypen

{concepts = arbitration specification}
CompoundProceduralElementArbitrationSpecification

{Abstract}

| |{concepts =

«stereotypen
arbitration specification}

SequenceArbitrationSpecification

| {concepts =

«stereotypen
arbitration specification}

ParallelArbitrationSpecification

0..1
— arbitrationSpecification {redefines arbitrationSpecification}

* {concepts = sequence}

«stereotypen

Sequence

0.1

| {concepts=

«stereotypen
arbifration specification}

AlternativeArbitrationSpecification

~ arbitrationSpecification {redefines arbitrationSpecification}

«stereotypen
{concepts = parallel}
Parallel

0..1

| {concepts=

«stereotypen
arbifration specification}

LoopArbitrationSpecification

arbitrationSpecification {redefines arbitrationSpecification}

«stereotypen

* {concepts = alternative}

Alternative

0.1

{concepts =

«stereotypen
arbitration specification}

NegativeArbitrationSpecification

~ arbitrationSpecification {redefines arbitrationSpecification}

«stereotypen
{concepts = loop}
Loop

*

0.1

i arbitrationSpecification {redefines arbitrationSpecification}

«stereotypen
{concepts = negative}
Negative

«stereotypen

{concepts = compound procedural element}
CompoundProceduralElement

{Abstract}

\
\
\ /
\ /

*

{concepts = procedural element}
ProceduralElement

«stereotypen

{Abstract}

8.7.2.23

Figure 8.22 - Arbitration of CompoundProceduralElements

Stereotype Specifications

8.7.2.2.3.1 AlternativeArbitrationSpecification
An «AlternativeArbitrationSpecification» calculates a verdict for a set of procedural
elements that are executed in mutually exclusive branches.

Description

Extension

Super Class
Associations
Change from UTP

UML Testing Profile 2

«AlternativeArbitrationSpecification» adheres by the semantics of the default
«CompoundProceduralElementArbitrationSpecification».
BehavioredClassifier
CompoundProceduralElementArbitrationSpecification

Alternative
Newly introduced by UTP 2.

1.2

(UTP 2), Version 2.2

[*]

157

8.7.2.2.3.2 AtomicProceduralElementArbitrationSpecification

Description An «AtomicProceduralElementArbitrationSpecification» calculates a verdict for a
single atomic procedural element.

«AtomicProceduralElementArbitrationSpecification» adheres by the semantics of
the default «ProceduralElementArbitrationSpecification».

Extension BehavioredClassifier
Super Class ProceduralElementArbitrationSpecification
Sub Class CheckPropertyArbitrationSpecification, CreateLogEntryArbitrationSpecification,

CreateStimulusArbitrationSpecification, ExpectResponseArbitrationSpecification,
ProcedurelnvocationArbitrationSpecification,
SuggestVerdictArbitrationSpecification

Associations : AtomicProceduralElement [*]

Change from UTP 1.2 Newly introduced by UTP 2.

8.7.2.2.3.3 CompoundProceduralElementArbitrationSpecification
Description A «CompoundProceduralElementArbitrationSpecification» calculates a verdict for a
set of procedural elements that are executed together. The verdict is derived from all
or parts of the verdicts calculated of their respective arbitration specifications.

The semantics of the default

«CompoundProceduralElementArbitrationSpecification» refines the semantics of

«ProceduralElementArbitrationSpecification» with respect to the following verdicts:

. Fail: The verdict 'Fail' is assigned, if any of the procedural elements, that
were executed in the scope of the «CompoundProceduralElementy,
evaluates to 'Fail'.

Extension BehavioredClassifier
Super Class ProceduralElementArbitrationSpecification
Sub Class AlternativeArbitrationSpecification, LoopArbitrationSpecification,

NegativeArbitrationSpecification, Parallel ArbitrationSpecification,
SequenceArbitrationSpecification
Associations : CompoundProceduralElement [*]

Change from UTP 1.2 Newly introduced by UTP 2.

8.7.2.2.3.4 LoopArbitrationSpecification
Description A «LoopArbitrationSpecification» calculates a verdict for a set of procedural
elements that are sequentially executed in a loop.

«LoopArbitrationSpecification» adheres by the semantics of the default
«CompoundProceduralElementSpecification». In addition, the maximal and
minimal loop counters are part of the arbitration process for loops. With respect to
verdict calculation, the following semantics is predefined for the default
«LoopAurbitrationSpecification»:

. Minimal number of loops violated: Verdict 'Error' is assigned.
. Maximal number of loops violated: Verdict 'Error' is assigned.
Extension BehavioredClassifier
Super Class CompoundProceduralElementArbitrationSpecification
Associations : Loop [*]
Change from UTP 1.2 Newly introduced by UTP 2.

158 UML Testing Profile 2 (UTP 2), Version 2.2

8.7.2.2.3.5 NegativeArbitrationSpecification

Description A «NegativeArbitrationSpecification» calculates a verdict for set of procedural
elements that are forbidden to be executed in this sequence.

«NegativeArbitrationSpecification» adheres by the semantics of the default
«CompoundProceduralElementArbitrationSpecification», but refines it with an
inversion of the verdicts 'Pass' and 'Fail'. In cases where a 'Fail' would be produced,
a verdict 'Pass' shall be assigned. In cases where a 'Pass' would be produced, a
verdict 'Fail' shall be assigned.

Extension BehavioredClassifier

Super Class CompoundProceduralElementArbitrationSpecification
Associations : Negative [*]

Change from UTP 1.2 Newly introduced by UTP 2.

8.7.2.2.3.6 ParallelArbitrationSpecification
Description A «ParallelArbitrationSpecification» calculates a verdict for a set of procedural
clements that were executed in parallel.

«ParallelArbitrationSpecification» adheres by the semantics of the default
«CompoundProceduralElementArbitrationSpecification».

Extension BehavioredClassifier

Super Class CompoundProceduralElementArbitrationSpecification
Associations : Parallel [*]

Change from UTP 1.2 Newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.2 159

8.7.2.2.3.7 ProceduralElementArbitrationSpecification

Description

Extension
Super Class

160

A «ProceduralElementArbitrationSpecification» calculates a verdict for a single or a
set of procedural elements.

A procedural element arbitration specification incorporates sequence information
about when and how long the execution of a corresponding procedural element
happened, because procedural elements define an execution window in which their
execution shall happen. This execution window is either defined by means of
ordering (i.e., after the execution of a previous procedural element, or after the start
of a test case execution) or by means of time. When using a time-based execution
window, it is possible to specify the earliest and latest point in time when the
execution of the procedural element as well as the maximum duration the execution
of the procedural element may have. UTP does not prescribe how to specify time-
based execution windows. Using UML Simple Time might be one solution, the time
concepts of MARTE another one. If no time execution windows are defined, the
ordering execution window is implicitly set, i.e., the execution of a procedural
element shall happen after the execution of its previous procedural element has
finished.

Specific procedural element arbitration specifications (e.g., expect response action
arbitration specification) incorporate the Boolean statement whether expected data
values, that belong to the corresponding procedural element, match with the actual
data values that were used during execution of the corresponding procedural
element. Those data values of interest comprise actual parameters in case of a
procedure invocation, actual payload of a creat stimulus action or expect response
action or the actual value obtained from a checked property in case of a check
property action. In UTP, the matching semantics of data values are defined by the
semantics of ValueSpecifications and the UTP-specific (normative and non-
normative) data value extensions.

The semantics of the default «ProceduralElementArbitrationSpecification»
complements the semantics of «ArbitrationSpecification» by defining the general
rule that determines the assignment of verdicts. All other sub-classes of
«ProceduralElementArbitrationSpecificationy either adhere by, complement or
refine that semantics. The semantics of the default procedural element arbitration
specification is as follows:

e None: The verdict 'None' is assigned when the procedural element was not
yet executed.

e Pass: The verdict 'Pass' is assigned, when the expected execution of the
procedural element matches with the actual execution of the procedural
element, including sequence information and potentially data value
comparison.

e Inconclusive: The verdict 'Inconclusive' is never assigned by default
arbitration specifications.

e Fail: The verdict 'Fail' can only be assigned by the following arbitration
specifications: compound procedural element arbitration specification,
expect response arbitration specification, suggest verdict arbitration
specification, and check property arbitration specification. The default
semantics_of these specific arbitration specifications will be described by
these respective stereotypes.

e Error: The verdict 'Error' is assigned, if the execution of a procedural
element was not correctly performed (by a human or a test execution tool).
BehavioredClassifier
ArbitrationSpecification

UML Testing Profile 2 (UTP 2), Version 2.2

Sub Class

Associations
Change from UTP 1.2

AtomicProceduralElementArbitrationSpecification,
CompoundProceduralElementArbitrationSpecification
ProceduralElement [*]

Newly introduced by UTP 2.

8.7.2.2.3.8 ProcedurelnvocationArbitrationSpecification

Description

Extension

Super Class
Associations

Change from UTP 1.2

A «ProcedurelnvocationArbitrationSpecification» calculates a verdict for an
executed procedure invocation.

«ProcedurelnvocationArbitrationSpecification» complements the semantics of the
default «ProceduralElementArbitrationSpecification»:

Procedure invocations may pass actual parameter values to the invoked procedure.
If there is a mismatch between the expected actual parameter values, prescribed by a
«Procedurelnvocationy, and the actual execution of the «Procedurelnvocationy, the
verdict 'Error' shall be assigned.
BehavioredClassifier
AtomicProceduralElementArbitrationSpecification

ProcedurelInvocation [*]

Newly introduced by UTP 2.

8.7.2.2.3.9 SequenceArbitrationSpecification

Description

Extension

Super Class
Associations

Change from UTP 1.2

A «SequenceArbitrationSpecification» calculates a verdict for a sequence of
executed procedural elements.

«SequenceArbitrationSpecification» adheres by the semantics of the default
«CompoundProceduralElementArbitrationSpecification».
BehavioredClassifier
CompoundProceduralElementArbitrationSpecification

Sequence [*]
Newly introduced by UTP 2.

8.7.2.3 Test-specific Action Arbitration Specifications
The test action arbitration specification sections summarize the different types of arbitration specifications that can

be used to define proprietary arbitration specifications for prescribing test action.

8.7.2.3.1 Arbitration of Test-specific Actions
The diagram below shows the abstract syntax of the arbitration specifications for dedicated test actions.

UML Testing Profile 2 (UTP 2), Version 2.2 161

«stereotypen
{concepts = arbitration specification}
CreateStimulusArbitrationSpecification

¥

0.1

«stereotypen
{concepts = arbitration specification}
AtomicProceduralElementArbitrationSpecification
{Abstract}

/"“.
,/ \‘.
T
wstereotypen
{concepts = arbitration specification}
ExpectResponseArbitrationSpecification

«stereotypen
{concepts = arbitration specification}
CheckPropertyArbitrationSpecification
h

0.1 0.1

arbitrationSpecification {redefines arbitrationSpecification} arbitrationSpecification {redefines arbitrationSpecification} arbitrationspecification {redefines arbitrationSpecification}
*

*

«stereotypen
{concepts = create stimulus action}
CreateStimulusAction

*

«stereotypen «stereotypen
{concepts = expect response action} {concepts = check property action}
ExpectResponseAction CheckPropertyAction

expectationKind : ImplicitExpectationKind = implicitForbid

«stereotypen {concepts = arbitration specification}

AtomicP

luralElementArt
{Abstract}

pecification

«stereotypen
{concepts = arbitration specification}
SuggestVerdictArbitrationSpecification
0..1

«stereotypen
{concepts = arbitration specification}
CreatelogEntryArbitrationSpecificatiol

0..1

arbitrationSpecification {redefines arbitrationSpecification} arbitrationSpecification {redefines arbitrationSpecification}

*

«stereotypen
{concepts = suggest verdict action}
SuggestVerdictAction

8.7.2.3.2

*

«stereotypen
{concepts = create log entry acti ...
CreatelLogEniryAction

Figure 8.23 - Arbitration of Test-specific Actions

Stereotype Specifications

8.7.2.3.2.1 CreateStimulusArbitrationSpecification

Description

Extension

Super Class
Associations

Change from UTP 1.2

162

An «AtomicProceduralElementArbitrationSpecificationy that specifies the verdict
calculation rule for a create stimulus action.

«CreateStimulusArbitrationSpecification» complements the semantics of the default
«AtomicProceduralElementArbitrationSpecification»:

The semantics of the default «CreateStimulusArbitrationSpecification» shall include
an evaluation of permitted and forbidden elements. If an element was sent to the test
item that was declared as forbiddenElement, the verdict 'error' shall be assigned. If
an element was sent to the test item that was declared as permittedElement
(including potential arguments of the «CreateStimulusAction») and the expected
data values of that element does not match with the actual data values of the actually
sent element, the verdict 'error' shall be assigned.
BehavioredClassifier
AtomicProceduralElementArbitrationSpecification

CreateStimulusAction [*]

Newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.2

8.7.2.3.2.2 ExpectResponseArbitrationSpecification

Description

Extension

Super Class
Associations

Change from UTP 1.2

An «AtomicProceduralElementArbitrationSpecificationy that specifies the verdict
calculation rule for an expect response action.

«ExpectResponseArbitrationSpecification» complements the semantics of the
default «AtomicProceduralElementArbitrationSpecificationn» with respect to
sequence information and data value matching:

If the expected execution time window of an «ExpectResponseAction» does not
match with the actual execution time point, the verdict 'fail' shall be assigned. If the
actual ordering of the execution of an «ExpectResponseAction» does not match with
the expected ordering, the verdict 'error' shall be assigned.

If the actual data values, that convey the «ExpectResponseAction» as its payload,
obtained from the test item do not match with the expected payload data values, the
verdict 'fail' shall be assigned.

The semantics of the default «ExpectResponseArbitrationSpecification» includes an
evaluation of the ignored, forbidden and expected elements declaration. If a received
element is declared as forbiddenElement, the verdict 'fail' shall be assigned. If a
received element is declared as ignoredElement, it shall be discarded and not
contribute to the «ExpectResponseArbitrationSpecification» for further evaluation.
If a received element is declared as expected element, the verdict 'pass' shall be
assigned.
BehavioredClassifier
AtomicProceduralElementArbitrationSpecification

ExpectResponseAction [*]

Newly introduced by UTP 2.

8.7.2.3.2.3 CheckPropertyArbitrationSpecification

Description

Extension

Super Class
Associations

Change from UTP 1.2

An «AtomicProceduralElementArbitrationSpecification» that specifies the verdict
calculation rule for a check property action.

«CheckPropertyArbitrationSpecification» adheres by the semantics of the default
«AtomicProceduralElementArbitrationSpecificationy.
BehavioredClassifier
AtomicProceduralElementArbitrationSpecification
CheckPropertyAction [*]

Newly introduced by UTP 2.

8.7.2.3.2.4 SuggestVerdictArbitrationSpecification

Description

Extension

Super Class
Associations

Change from UTP 1.2

An «AtomicProceduralElementArbitrationSpecification» that specifies the verdict
calculation rule for a suggest verdict action.

«SuggestVerdictArbitrationSpecification» complements the semantics of the default
«AtomicProceduralElementArbitrationSpecification» with respect to the provision
of the suggested verdict to the «TestCaseArbitrationSpecification»:
In case, the «SuggestVerdictArbitrationSpecification» evaluates to a 'pass', the
suggested verdict is passed to the «TestCaseArbitrationSpecificationy. It will be
discarded, if the «SuggestVerdictArbitrationSpecification» evaluates to 'error'.
BehavioredClassifier
AtomicProceduralElementArbitrationSpecification

SuggestVerdictAction [*]

Newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.2 163

8.7.2.3.2.5 CreateLogEntryArbitrationSpecification
Description An «AtomicProceduralElementArbitrationSpecificationy specification that specifies
the verdict calculation rule for a create log entry action.

«CreateLogEntryArbitrationSpecification» adheres by the semantics of the default
«AtomicProceduralElementArbitrationSpecification».

Extension BehavioredClassifier

Super Class AtomicProceduralElementArbitrationSpecification
Associations : CreateLogEntryAction [*]

Change from UTP 1.2 Newly introduced by UTP 2.

8.7.3 Test Logging
The UTP test logging facility allows incorporating details about the execution of test-specific procedures, such as
test execution schedules and test cases, but also of procedural elements. The UTP test logging facility differs
between two kinds of test log information:

o Test log header:and

e Test log details-
The test log header represents the at least required information to comprehend or trace the status of the test
execution such as also coverage of test objectives or test requirements. The test log details further refine the test log
with the details of relevant events (i.e., execution of procedural elements) that happened at runtime. The information
the test log details yield are in particular important for analyses of the test execution such comparison, verdict
calculation, failure inspection or root cause analysis.
The UTP test logging facility builds upon UML's InstanceSpecification and classification mechanism (henceforth
called classifier-instance relationship). Every test log element is represented by an InstanceSpecification with an -
inherent set of structural information. These inherently provided structural information are the executing entity, the
execution start and the duration. The classifier-instance-based representation of test logs grants high flexibility to the
user. It enables the definition of additional, user-defined structural information of arbitrary complexity to every test
log element.
Logging of behavioral constituents (i.e., Actions or OccurrenceSpecifications) is not intended by UML but relevant
for testing, though. UTP integrates the behavioral constituents of the underlying UML and the classifier-instance-
based test log model by means of dedicated test log entries and their structural information. Every test log entry
captures the details of a corresponding procedural element that was executed in the course of the execution of a test-
specific procedure.
UTP defines dedicated test log entry structures for logging of procedure invocations, create stimulus actions and
expect response actions. These test log entry structures specify the at least required structural information of those
procedural elements such as formal parameters and invocation targets. The corresponding test log entries build upon
this structural information and yield the corresponding actual parameter values captured in the course of the
execution of such a procedural element.

8.7.3.1 Test Logging Overview
The following diagram shows the abstract syntax of the basic concepts of the test logging facility.

164 UML Testing Profile 2 (UTP 2), Version 2.2

«metaclassn * 1| «metaclassn
Classifier < Inst Specification
{Abstract} classifier #
«extends» —_—
extends» «metaclassy
wstereotypen wstereotypen * . Vqluxg;ﬁ;’s;”'on
{concepts = test log structure} TestLogElement fingEntit
TestlogStructure {Abstract} executingentity
0..1 * «stereotypen
| /instanceOf = X ArbitrationResult
resultFor verdict
: * ! - «metaclassy
executionStart TimeExpression
* 0.1 «metaclassy
N P Duration
executionDuration
($;j;?:;ézzz * 1 «stereotypen
{Abstract) = {concepts = test log}
testLogEntry {ordered, unique} TestLog
. {Abstract}
testLogEntry

! proceduralElement

wstereotypen {concepts = procedural element}

ProceduralElement
{Abstract}

«stereotypen . «stereotypen «metaclassy
{concepts = test case log}| 1. {concepts = test set log} Dependency
TestCaselog executedTestSetMember TestSetlog
* *
1 1 «extends»
executedTestCase executedTestSet
«stereotypen «stereotypen «stereotypen
{concepts = test case,abstract test case,concr ... 1 0.1 {concepts = test set} {concepts = test log structure}
TestCase = TestSet TestLogsStructureBinding
/testSetMember
ID : String [0..1] ID : String [0..1]

Figure 8.24 - Test Logging Overview

8.7.3.2

Test Log Entries Overview

The following diagram shows the abstract syntax of the basics of test log entries.

UML Testing Profile 2 (UTP 2), Version 2.2

165

«stereotypen

TestLogEntry
{Abstract}
~ «stereotypen * 1 |ustereotypen {concepts = atomic procedural element}
1 > AtomicProceduralElementLogEntry > AtomicProceduralElement
- _ {Abstract} proceduralElement {redefines proceduralElement} {Abstract}

«stereotypen
InvocationLogEntry
{Abstract}

«stereotypen {concepts = procedure invocation}
Procedurelnvocation

«stereotypen =1
‘, ProcedurelnvocationLogEntry proceduralElement {redefines proceduralElement}

role : ProcedurePhaseKind [0..1] ‘

«stereotypen
MessageEventLogEntry
{Abstract}

1 |«stereotypen {concepts = create stimulus action}

stereotypen CreateStimulusAction

|| CreateStimulusLogEntry

proceduralElement {redefines proceduralElement}

«stereotypen «stereotypen {concepts = expect response action}
ActualResponselogEntry * 1 _ ExpectResponseAction

proceduralElement {redefines proceduralElement} | expectationKind : ImplicitExpectationKind = implicitForbid

«stereotypen -
* 1 |«stereotypen {concepts = check property action}
CheckPropertyLogknfry = CheckPropertyAction
proceduralElement {redefines proceduralElement}
«stereotypen * 1 |«stereotypen {concepts = suggest verdict action}
SuggestVerdictLogEntry = SuggestVerdictAction
e — | proceduralElement {redefines proceduralElement}

W *] «stereotypen {concepts = crecfe.log entry action}
= CreatelogEntryAction
CreatelogEntryLogEntry §
proceduralElement {redefines proceduralElement}
«stereotypen * 1 |«stereotypen {concepts = procedural element}
OpaquePr duralElementLogEntry = OpaqueProceduralElement
proceduralElement {redefines proceduralElement}

Figure 8.25 - Test Log Entries Overview

8.7.3.3 Test Log Entries Details
The following diagram shows the abstract syntax of the details of test log entries.

«metaclassy 1 1 «stereotypen 1
Property = CheckPropertyLogEntry
/observedProperty

|, actualValue

(stereotypen . . «metaclassy

CreatelogEntryLogEntry = VQIU?AS‘E;;:(;ZC; fion
loggedValue

]‘\ suggestedVerdict

«stereotypen *

SuggestVerdictLogEntry

Figure 8.26 - Test Log Entries Details

166 UML Testing Profile 2 (UTP 2), Version 2.2

8.7.34 Invocation Test Log Entry Details

The following diagram shows the abstract syntax of test log entries that capture details of invocations.

«metaclassy
Slot

/actualParameter {ordered, unique} «extendsy
*

'J«stereofype» {concepts = actual parameter}
ActualParameterValue

«stereotypen 1
InvocationLogEntry i
{Abstract} I /value
«metaclassy
ValveSpecification
{Abstract}

/invocationStructure {redefines instanceOf} 4

«metaclassy ustereotypen {concepts = test log structure}
Property TestLogStructure

«extendsy /formalParameterReference {ordered, unique}
*
«stereotypey {concepts = formal parameter}
FormalParameterReference

fvalusFor /directionKind : ParameterDirectionKind «stereotypen
W InvocationLogEntryStructure!
formalPargmeter
«metaclassy

Parameter

_ «stereotypen
ProcedurelnvocationLogEntryStructure

«stereotypen

MessageEventLogEntryStructure

«stereotypen
Pr | % tionLogEntry|
«metaclassn
* 1 Behavi 1 1
/invocationTarget {Abstract} invocationTarget
«sfersofy?e» * /invocationStructure {redefines instanceOf} 1
M ventLogEntry
B {Abstract}
*] [«metaclassn 1 1
= BehavioralFeature =
v /invocationTarget l invocationTarget
«stereotypen «stereotypen
Createsti Entry ActualR LogEntry

Figure 8.27 - Invocation Test Log Entry Details

UML Testing Profile 2 (UTP 2), Version 2.2

167

8.7.3.5 Stereotype Specifications

8.7.3.5.1 TestLogElement
Description

Extension
Sub Class
Associations

Constraints

168

A test log element represents a single building block in
the realm of test logging. For each test log element there
is an corresponding executable element that has been
carried out. These corresponding executable elements
can either be whole test sets or test cases or one or more
procedural elements.

A test log element provides a corresponding executable
element with information about the starting point in
time of the execution, the duration of the execution of
the logged element and an entity (i.e., a machine or a
human) that executed the element. These default
structural information are common for each concrete
test log element. Further structural information may be
added by sub-stereotypes or by dedicated structural
extension using the stereotype «TestLogStructurey.
Every test log element can be related with an arbitration
result (i.e., a verdict) that was calculated based on the
test log element, the corresponding executable element
and the arbitration specification that ties both elements
together for verdict calculation. Section
ArbitrationSpecification provides further details about
the verdict calculation process.

The stereotype «TestLogElement» extends
InstanceSpecification. User-defined structural
information can be added by using the underling UML
classification mechanism. The set of additional test log
element structural information are determined by all
Classifier of the underlying InstanceSpecification that
have «TestLogStructure» applied.
InstanceSpecification

TestLog, TestLogEntry

/instanceOf : TestLogStructure [*]

The set of additional structural information associated
with that test log element. It is derived from the all
Classifier with «TestLogStructure» applied that classify
the underlying InstanceSpecification.
executingEntity : ValueSpecification
[*]

Information about the executing entity or entities (i.e.,
either humans or machines) that were in charge of
carrying out the element that corresponds to the test log
element.

verdict : ArbitrationResult [*]
executionDuration : Duration [0..1]

Denotes how long the execution of the corresponding
executable element lasted.
executionStart : TimeExpression

Denotes the point in time when the execution of the
corresponding executable element began.
Restriction of extendable metaclasses

«TestLogElementy shall not be applied to

UML Testing Profile 2 (UTP 2), Version 2.2

Change from UTP 1.2

8.7.3.5.2 TestLog
Description

Extension
Super Class
Sub Class
Associations

UML Testing Profile 2 (UTP 2), Version 2.2

EnumerationLiteral.
«TestLogElementy» was newly introduced by UTP 2.1.

TestLog: A test log is the instance of a test log structure
that captures relevant information from the execution of
a test case or test set. The least required information to
be logged is defined by the test log structure of the test

log.

A test log captures information on the execution of a
test case or test set that actually happened according to
the specification required by its test log structure. Each
test log is, at least, an instance of the implicitly defined
default test log structure. This is reflected by its tag
definitions that comprise the required log information. If
further information is not required for capturing by an
executing entity, a test log may not refer to an explicit
test log structure (i.e., the Classifier of the underlying
InstanceSpecification remains empty).

In addition to the information given by the implicit
default test log structure, users may set an explicitly
defined a test log structure of arbitrary complex internal
structures. In that case, the underlying
InstanceSpecification may capture the additional
information by relying on the native UML
InstanceSpecification mechanism, namely Slots.

Structural information on test log level are sufficient to
comprehend the status of testing or coverage of test
objectives and test requirements. This minimal log
information are referred to as the test log header.
Header information only contain high-level information
about the status of a test run, not about the details of the
run. Details of the test run are captured by means of test
log entries. As opposed to the test log header, detailed
logging on procedural element level is referred to as fest
log details. Test log details capture detailed information
about the executed sequence of procedural element
represented by test log entries. Test log details provide a
deeper insight into the test execution process and
leverage the analysis of test runs (e.g., what is the
reason for a failing test case). Recording test log details
is an optional, but powerful feature of a test log.
InstanceSpecification

TestLogElement

TestCaselog, TestSetLog

/referencedBy : TestContext [*]
testLogEntry {ordered, unique}
TestLogEntry [*]

The sequence of test log entries that captures the details
of the test execution. This sequence is referred to as test
log details.

169

Change from UTP 1.2

8.7.3.5.3 TestSetLog
Description

Extension
Super Class
Associations

Constraints

Change from UTP 1.2

8.7.3.5.4 TestCaselLog
Description

Extension
Super Class
Associations

Change from UTP 1.2

170

Changed from UTP 1.2. In UTP 1.2 «TestLog» was
used to capture the execution of a test case or a test set
(called test content in UTP 1.2). In UTP 2, two
dedicated concepts have been newly introduced
therefore (i.c., «TestCaseLog» and «TestSetLogy).

A test set log captures the least required information on the execution of a test set by
an executing entity. The least required information is defined by the corresponding
(potentially implicit) test log structure of the test set log.

A test set log consists mainly of the logs of the executed test cases that are members
of the test set. Since not all test cases of a test set must necessarily be executed by an
executing entity, a test set log may only refer to the test case logs of a subset of the
test set’s test cases.

InstanceSpecification

TestlLog
executedTestSetMember : TestCaseLog [1..*]

Refers to the test cases that are the members of the test set log's corresponding test
set and whose execution were captured as a result of the execution of the test set.
executedTestSet : TestSet

Refers to the test set whose execution was captured by means of the given test case
log.

Executed test cases and definition of test set members must be consistent

A «TestSetLog» must only refer to «TestCaseLLog»s of «TestCase»s that are

members of the executed «TestSet».
Newly introduced by UTP 2.

TestCaseLog: A test log that captures relevant
information on the execution of a test case.

A test case log captures the least relevant information
on the execution of a test case by an executing entity.
The at least required information is defined by the
corresponding and potentially implicit test log structure
of the test case log.
InstanceSpecification
TestLog

TestSetLog [*]
executedTestCase : TestCase

Refers to the TestCase whose execution was captured
by means of the given TestCaseLog.
Newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.2

8.7.3.5.5 TestLogStructure

Description

Extension
Sub Class
Associations
Constraints

Change from UTP 1.2

8.7.3.5.6 TestLogEntry
Description

Extension
Super Class

A test log structure enables the specification of user-defined structures that must be
logged by an executing entity, such as human tester or a test execution tool, during
the execution of test suites, test cases or test execution schedules. This information
is also called the least required log information, because executing entities are not
restricted to capturing only information mentioned in the test log structure. A test
log structure may describe both the required information for the header part as well
as the body part of a test log.

There is an implicit default (undefined) test log structure available in UTP that every
user-defined test log structure complies with. The default test log structure
represents the least required log information for the header part. This information
comprises:

e oneOne or more of an executing entity:.

e aA point in time where the execution of the test case, test suite or test
execution schedule begans.

e theThe duration the execution of the test case, test suite or test schedule
lasted;-and.

o theThe final verdict that was calculated by the corresponding arbitration
specification.

Those pieces of information of the default (implicit) test log structure are
represented as tag definitions of the stereotype test log solely because they are
eventually instantiated when a test log is created.
Classifier
InvocationLogEntryStructure

TestLogElement [*]

Restriction of extendable metaclasses

«TestLogStructure» shall only be applied to instances of thertheir metaclass
Datatype or Class.
Specialization of TestLogStructure Classifier

Classifiers with «TestLogStructure» applied must only extend Classifier with

«TestLogStructure» applied.
Internal structure of TestLogStructure Classifier

Classifiers with «TestLogStructure» applied must only own Properties.
CollaborationUse not allowed

A «TestLogStructure» Classifier must not participate in Collaborations.
Newly introduced by UTP 2.

A test log entry represents an actual instance of an
executed procedural element. While the referenced
procedural elements denotes what is expected — either
from the test item or from the test component (including
human tester) — a test log entry denotes the actual
instance of that procedural element, captured during
runtime.

Test log entry inherits all default structural information
from test log element.

InstanceSpecification

TestLogElement

UML Testing Profile 2 (UTP 2), Version 2.2 171

Sub Class
Associations

Change from UTP 1.2

AtomicProceduralElementlLogEntry
TestLog
proceduralElement : ProceduralElement

Refers to the expected procedural element that was
actually carried out by an executing entity at runtime.
Changed from UTP 1.2. In UTP 1.2, «TestLogEntry»
extended OccurenceSpecification.

8.7.3.5.7 AtomicProceduralElementLogEntry

Description

Extension
Super Class
Sub Class

Associations

Change from UTP 1.2

Atomic procedural element log entry captures details of
the execution of an atomic procedural element.
InstanceSpecification

TestLogEntry

CheckPropertyLogEntry, CreateLogEntryLogEntry,
InvocationLogEntry,
OpaqueProceduralElementLogEntry,
SuggestVerdictLogEntry

proceduralElement {redefines
proceduralElement}
AtomicProceduralklement

Refers to the atomic procedural element that was carried
out by an executing entity at runtime.
«AtomicProceduralElementLogEntry» was newly
introduced by UTP 2.1

8.7.3.5.8 InvocationLogEntryStructure

Description

Extension
Super Class
Sub Class
Associations

Change from UTP 1.2

172

Invocation log entry structure refines test log structure for expressing log entries of
any kind of invocations that happened at runtime. It specifies the at least required
structural information for logging the invocation of a procedure or the exchange of a
message, i.e., for one the formal parameters the invocation target offers and the
actual target of the invocation.

Classifier

TestLogStructure

MessageEventLogEntryStructure, ProcedurelnvocationLogEntryStructure
/formalParameterReference {ordered, unique}
FormalParameterReference [*]

The ordered set of formal parameters offered by the invocation target. The
derivation algorithm in the context of an «InvocationLogEntryStructure» is defined
as follows:

e Iterate over the ownedParameter of the invocation target.

e For ownedParameter p, look for any ownedProperty with
«FormalParameterReference» of the underlying Classifier that refers as
formalParameter to Paramater p.

e Add the found «FormalParameterReference» to the ordered set of
formalParameterReference.

«InvocationLogEntryStructure» was newly introduced by UTP 2.1

UML Testing Profile 2 (UTP 2), Version 2.2

8.7.3.5.9 FormalParameterReference
Description

Extension
Attributes

Associations

Change from UTP 1.2

8.7.3.5.10 InvocationLogEntry
Description

Extension
Super Class
Sub Class
Associations

Change from UTP 1.2

UML Testing Profile 2 (UTP 2), Version 2.2

In the classifier-instance-based representation of test
logs in UTP 2, formal parameter of invocation targets
are defined as Properties and actual parameter are
defined as values of a Slots that refers to the
corresponding Property. «FormalParameterReference»
conveniently binds a Parameter of a Behavior or
BehavioralFeature to the corresponding Property the
underlying Classifier of any concrete
«InvocationLogEntryStructurey.

In combination with «ActualParameterValue» both the
formal and actual parameter are tightly integrated with
each other. This integration simplifies the processing of
parameters for they can be directly accessed via the
abstracting stereotypes without considering the type of
invocation target.

Property

directionKind

ParameterDirectionKind [1]

The direction kind of the formal parameter. It is derived
from the direction kind of the owned parameter of the
invocation target.

ActualParameterValue [*]
formalParameter : Parameter [*]

The owned parameter of the invocation target.
InvocationLogEntryStructure

«FormalParameterReferenece» was newly introduced
by UTP 2.1.

Invocation log entry captures details about the execution
of procedure invocations or message exchange that
actually happened at runtime. In UTP 2, expected
message exchange is represented by the test actions
create stimulus action and expect response action. Both
procedure invocation and message exchange can be
parameterized. The actual values that convey a
procedure invocation or message exchange are referred
to as actual parameter.

InstanceSpecification
AtomicProceduralElementLogEntry

MessageEventL ogEntry, ProcedurelnvocationLogEntry
/actualParameter {ordered, unique}
ActualParameterValue [*]

Refers to the ordered set of actual parameter values for
the captured invocation. The order of actual parameter
values is derived from the ordered set of formal
parameter values specified by the corresponding
invocation log entry structure of the given invocation
log entry.

«InvocationLogEntry» was newly introduced by UTP
2.1

173

8.7.3.5.11 ActualParameterValue
Description

Extension
Associations

Change from UTP 1.2

In the classifier-instance-based representation of test
logs in UTP 2, actual parameter of invocation targets are
defined as Slot values and formal parameters are
defined as Properties of Classifiers to which these Slots
refer. «ActualParameterValue» abstracts from the
different kinds of UML representations of actual
parameter values to simplify processing of that
information. In Activities, actual parameter value are
denoted as InputPins contained by an InvocationAction
or OutputPins of an AcceptEventAction, in Interactions
as ValueSpecifications of a Message.

In combination with «FormalParameterReference» both
the formal and actual parameter are tightly integrated
with each other. This integration simplifies the
processing of parameters for they can be directly
accessed via the abstracting stereotypes without
considering the invocation target.

Slot

/valueFor : FormalParameterReference

Relates this actual parameter value to its formal

parameter of the corresponding invocation log entry

structure. It is derived from the association end

'definingFeature' of the underlying Slot.
InvocationLogEntry

/value : ValueSpecification [*]

The actually submitted or received payload while
invoking a procedure or exchanging a message. It is
derived from the association end value of the underlying
Slot.

«ActualParameterValue» was newly introduced by UTP
2.1.

8.7.3.5.12 ProcedureilnvocationLogEntryStructure

Description

Extension
Super Class
Associations

Change from UTP 1.2

8.7.3.5.13 ProcedurelnvocationLogEntry
Description

Extension

174

Procedure invocation log entry structure provides the at

least required structural information for logging the

execution of procedure invocations.

Classifier

InvocationLogEntryStructure
ProcedurelInvocationLogEntry [*]

invocationTarget : Behavior

Refers to the procedure whose invocations can be
logged with details of the given procedure invocation
log entry structure.

«ProcedurelnvocationLogEntryStructure» was newly
introduced by UTP 2.1

A procedure invocation log entry yields the details
about the execution of a procedure invocation.
InstanceSpecification

UML Testing Profile 2 (UTP 2), Version 2.2

Super Class
Associations

Change from UTP 1.2

InvocationLogEntry
proceduralElement {redefines
proceduralElement}
ProcedurelInvocation

Refers to the procedure invocation that was carried out
by an executing entity at runtime.
/invocationStructure {redefines
instanceOf}
ProcedureInvocationLogEntryStructure

Refers to the invoked procedure, i.e., Behavior. It is
derived from the invocation target of the corresponding
invocation structure.

/invocationTarget : Behavior

Refers to the structural information for the given
invocation log entry. It is derived from the sequences of
Classifier of the underlying InstanceSpecification with
«ProcedurelnvocationLogEntryStructure» applied.
«ProcedurelnvocationLogEntry» was newly introduced
by UTP 2.1.

8.7.3.5.14 MessageEventLogEntryStructure

Description

Extension
Super Class
Associations

Change from UTP 1.2

Message event log entry structure provides the at least

required structural information for logging the exchange

of message, i.e., either the submission of a stimulus or

the reception of an actual response.

Classifier

InvocationLogEntryStructure
MessageEventLogEntry [*]

invocationTarget : BehavioralFeature

Refers to the BehavioralFeature whose invocation
details can be logged with the given message event log
entry structure.

«MessageEventLogEntryStructure» was newly
introduced by UTP 2.1.

8.7.3.5.15 MessageEventLogEntry

Description

Extension
Super Class
Sub Class
Associations

A message event log entry captures details about any message exchange that
happened between the test item and a test component. Message exchange can
happen when a stimulus is submitted, or an actual response was received by a test
component. Sending a stimulus and receiving a response represent important events
in the course of test execution with respect to verdict calculation.
InstanceSpecification

InvocationLogEntry

ActualResponseLogEntry, CreateStimulusLogEntry

/invocationTarget : BehavioralFeature

Refers to the invoked or received Operation or Reception. It is derived from the
invocation target of the corresponding invocation structure.
/invocationStructure {redefines instanceOf}
MessageEventLogEntryStructure

Refers to the structural information for the given invocation log entry. It is derived

UML Testing Profile 2 (UTP 2), Version 2.2 175

from the sequences of Classifier of the underlying InstanceSpecification with
«MesageEventLogEntryStructure» applied.
Change from UTP 1.2 «MessageEventLogEntry» was newly introduced by UTP 2.1.

8.7.3.5.16 CreateStimulusLogEntry
Description

Extension
Super Class
Associations

Change from UTP 1.2

8.7.3.5.17 ActualResponseLogEntry
Description

Extension
Super Class
Associations

Change from UTP 1.2

8.7.3.5.18 CheckPropertyLogEntry
Description

Extension

Super Class
Associations

176

A create stimulus log entry yields details about the
submission of a stimulus at runtime. It represents an
instance of a corresponding create stimulus action
contained in a test case.

InstanceSpecification

MessageEventLogEntry

proceduralElement {redefines
proceduralElement}
CreateStimulusAction

Refers to the create stimulus action that was carried out
by an executing entity at runtime.
«CreateStimulusLogEntry» was newly introduced by
UTP 2.1.

An actual response log entry yields details about the
reception of test item's response at runtime. It represents
an instance of a corresponding expect response action
contained in a test case.

InstanceSpecification

MessageEventLogEntry

proceduralElement {redefines
proceduralElement}
ExpectResponseAction

Refers to the expect response action that was carried out
by an executing entity at runtime.
«ActualResponseLogEntry» was newly introduced by
UTP 2.1.

A check property log entry yields the details about the
execution of a check property action.
InstanceSpecification
AtomicProceduralElementLogEntry
proceduralElement {redefines
proceduralElement}
CheckPropertyAction

Refers to the check property action that was carried out
by an executing entity at runtime.
/observedProperty : Property

Refers to the Property whose value was checked.
Usually, this is the Property of the corresponding check
property action.

actualValue : ValueSpecification [*]

The actual value or values of the observed Property.

UML Testing Profile 2 (UTP 2), Version 2.2

Change from UTP 1.2

8.7.3.5.19 SuggestVerdictLogEntry
Description

Extension

Super Class
Associations

Change from UTP 1.2

8.7.3.5.20 CreateLogEntryLogEntry
Description

Extension
Super Class
Associations

Change from UTP 1.2

8.7.3.5.21 OpaqueProceduralElementLogEntry
Description

Extension
Super Class
Associations

Change from UTP 1.2

UML Testing Profile 2 (UTP 2), Version 2.2

«CheckPropertyLogEntry» was newly introduced by
UTP 2.1.

A suggest verdict log entry yields the details about the
execution of a suggest verdict action.
InstanceSpecification
AtomicProceduralElementlLogEntry
proceduralElement {redefines
proceduralElement}
SuggestVerdictAction

Refers to the suggest verdict action that was carried out
by an executing entity at runtime.
suggestedVerdict ValueSpecification

The actual verdict that was suggested by the executing
entity.

«SuggestVerdictLogEntry» was newly introduced by
UTP 2.1.

A create log entry log entry yields the details about the
execution of a create log entry action.
InstanceSpecification
AtomicProceduralElementlLogEntry
proceduralElement {redefines
proceduralElement}
CreateLogEntryAction

Refers to the create log entry action that was carried out
by an executing entity at runtime.
loggedvalue ValueSpecification [*]

Refers to the values that were actually logged.
«CreateLogEntryLogEntry» was newly introduced by
UTP 2.1.

An opaque procedural element log entry yields the
details about the execution of an opaque procedural
element.

InstanceSpecification
AtomicProceduralElementlLogEntry
proceduralElement {redefines
proceduralElement}
OpaqueProceduralElement

Refers to the opaque procedural element that was
carried out by an executing entity at runtime.

«OpaqueProceduralElementLogEntry» was newly
introduced by UTP 2.1.

177

8.7.3.5.22 TestLogStructureBinding
Description A test log structure binding is responsible to explicitly bind test log structures to test
cases or test sets.

It is possible to reuse the very same test log structure at different locations. Since
there are different possibilities how to model this, UTP suggests three methods to
achieve multiple binding of test log structures:
¢ Single Dependency/many suppliers method: This method binds many test
cases or test sets as suppliers of the «TestLogStructureBindingy
Dependency to a single «TestLogStructurey» Classifier client.

e Multiple Dependencies/single suppliers method: This method binds a single
test case or test set as supplier of the «TestLogStructureBindingy
Dependency to a single «TestCase» BehavioredClassifier client.

e Combined method: This method combines the first two methods.

The sum of all bound test log structures for a test case or test set is calculated by
merging all suppliers of all visible «TestLogStructureBinding» Dependencies in a
certain logical or technical scope. Visibility of test log structure binding is not
defined by this specification. Moreover, this specification neither prescribes how
test log structure bindings are finally put into effect by an executing entity nor how
to select them for later use by an executing entity. Since Dependency is a
PackageableElement, a possible method could be to use the UML deployment
capabilities in order to implement the desired «TestLogStructureBinding»
Dependency to putting it into effect in the test execution system.

Extension Dependency

Constraints Specification of Dependency client

A Dependency with «TestLogStructureBinding» must have exactly one client
containing a Classifier with «TestLogStructure» applied.
Specification of Dependency supplier

A Dependency with «TestLogStructureBinding» must have at least one but an
unlimited number of suppliers containing a BehavioredClassifier with «TestCase»

applied.
Change from UTP 1.2 Newly introduced by UTP 2.
8.8 Test Directives

The UTP 2 test directive facility builds the foundation for the specification of test-related activities. A test directive
assembles a set of test techniques that shall be executed either manually or automatically. A test technique instructs
a human or machine what to do, i.e., how to carry out the represented activity in detail. A test directive provides the
assembled test techniques with all necessary information to carry out the corresponding test-related activity.
Therefore, a test directive refers to a set of input elements that are accessible by the related test techniques. Usually,
a test directive generates some output by processing the output.

Both test directive and test technique are intended to be sub-classed to specify concrete test-related activities. For
example, the test design facility introduced in section 8:3-28.3.2 Test Design builds upon the test directive facility by

specializing both test directive and test technique.

Additional structural information required to both the test directive and test technique shall be provided via the
corresponding stereotypes <<TestDirectiveStructure>> and <<TestTechniqueStructure>>.

178 UML Testing Profile 2 (UTP 2), Version 2.2

8.8.1 Test Directive Facility

The diagram below shows the abstract syntax of the test directive facility.

> «metaclassy
} InstanceSpecification <

«extendsy «metaclassy «extends»
Classifier
{Abstract}
«extendsy «extends»
«stereotypen wstereotypen

TestDirectiveStructure TestTechniqueStructure

/instanceOf *|/instanceot
/subTestDirective {read-only, union}
* , /subTestTechnique {union, read-only}

«stereotypen * V
) TestDirective * . «stereotypen .

TestTechnique

* * /technique {read-only, union}

* «metaclassy

= NamedElement
. output {ordered} {Abstract}
| input {ordered}
«metaclassny
Element
{Abstract}

Figure 8.28 - Test Directive Facility

8.8.2 Stereotype Specifications

8.8.2.1 TestDirective
Description A test directive specifies a certain test-related activity
that may consist of specific tasks and instructs a human
or machine to carry out these tasks. Tasks are specified
by test techniques. A test directive assembles and
governs test techniques and provides them with all
relevant information to be carried out.

A test directive operates on a certain input set of
NamedElements represented by the association end
input. The input elements are visible to the test directive
and transitively visible to and accessible by the
assembled test techniques. The test techniques operate
on the input elements to produce the output elements
while processing the test directive. Output elements are
represented by the association end output.

A test directive may provide sub-directives by means of
the association end subDirective. Providing a nested test
directive enables testers to refine the test-related
activitiy for certain input elements.

Extension InstanceSpecification

Sub Class TestDesignDirective

UML Testing Profile 2 (UTP 2), Version 2.2 179

Associations

Change from UTP 1.2

8.8.2.2 TestDirectiveStructure
Description

Extension

Sub Class
Associations

Change from UTP 1.2

8.8.2.3 TestTechnique

/instanceOf : TestDirectiveStructure
[*]

Refers to the test directive structures of which the given
test directive is an instance of. The set of test directive
structures is derived from all Classifiers with
«TestDirectiveStructure» applied that are referred to as
classifiers by the underlying InstanceSpecification.
/technique {read-only, union}
TestTechnique [*]

The set of test techniques that are assembled and

governed by the test directive.

/subTestDirective {read-only, union}
TestDirective [*]

Refers to potentially nested test directives that shall be

carried out along with the nesting test directive.
TestDirective [*]

input {ordered} : Element [*]

Refers to the sequence of NamedElements on which the
test directive operates on.
output {ordered} : NamedElement [*]

Refers to the sequence of NamedElements which are
generated while carrying out the test directive.
«TestDirective» has been newly introduced by UTP 2.1.

The stereotype «TestDirectiveStructure» enables the
definition of user-defined or context-specific additional
information that augments a test directive. A Classifier
with «TestDirectiveStructure» applied might be of
arbitrary complexity. It enables the provision of
information that is relevant in a certain context.
Classifier
TestDesignDirectiveStructure

TestDirective [*]

«TestDirectiveStructure» has been newly introduced by
UTP 2.1.

Description A test technique is the specification of a test-related task used to carry out test-
related tasks manually or automatically. Test techniques are assembled and
governed by test directives. Information visible to the assembling test directive are
transitively visible and accessible theto the assembled test technique.

A test technique may define sub-techniques. Providing a sub test technique enables
testers to refine the given test techniques with respect to certain elements contained
in the test directive input and also to enrich existing (potentially pre-defined) test
techniques with user-defined respectively context-specific information.

Extension InstanceSpecification
Sub Class TestDesignTechnique
180

UML Testing Profile 2 (UTP 2), Version 2.2

Associations

Change from UTP 1.2

/instanceOf : TestTechniqueStructure [*]

Refers to the test technique structures of which the given test directive is an instance
of. The set of test technique structures is derived from all Classifiers with
«TestTechniqueStructure» applied that are referred to as classifiers by the
underlying InstanceSpecification.

TestDirective [*]
/subTestTechnique {union, read-only} : TestTechnique [*]

The set of nested test techniques that augment the given test technique.
TestTechnique [*]
«TestTechnique» has been newly introduced by UTP 2.1.

8.8.2.4 TestTechniqueStructure

Description

Extension

Sub Class
Associations

Change from UTP 1.2

The stereotype «TestTechniqueStructure» enables the
definition of user-defined or context-specific additional
information that augments a test technique. A Classifier
with «TestTechniqueStructure» applied might be of
arbitrary complexity. It enables the provision of
information that is relevant in a certain context.
Classifier
TestDesignTechniqueStructure

TestTechnique [*]
«TestTechniqueStructure» has been newly introduced
by UTP 2.1.

UML Testing Profile 2 (UTP 2), Version 2.2 181

182 UML Testing Profile 2 (UTP 2), Version 2.2

9 Model Libraries

This section describes a set of type libraries relevant to UTP.

9.1 UTP Types Library

9.1.1 Predefined types
The following diagram shows the predefined types provided by UTP 2.

«data typen «data typen
AnyType verdict

Figure 9.1 - Predefined types

Name Description

AnyType The pre-defined type AnyType is the least common
ancestor of any type known in the context of a certain
test type system. As a result, StructuralFeatures typed
with AnyType can be assigned any value, regardless
whether primitive or complex.

verdict The pre-defined type verdict represents the basis for the
verdict-related mechanisms and user-specfic extensions
thereof. Tester may subclass the verdict type in order to
define specialized verdict types.

9.1.2 Predefined verdict instances

The verdict instances predefined by UTP 2 are none, pass, inconclusive, fail and error. Test modellers can make use
of those predefined verdicts out of the box to avoid redundancy.

There is a predefined (default) precedence rule for these verdicts, with ascending precedence from left to right: none
< pass < inconclusive < fail < error. That means that setting a verdict is a one-way street. It is not permitted to re-
assign a verdict with lower precedence to a test set, test case or procedural element, whereas the other way round,
verdicts with higher precedence may override verdicts with lower precedence at any point in time during vedict
calculation process. The default verdict precedence reflects the default arbitration specification semantics. This
semantics can be modified or even completely overriden by user-defined arbitration specifications. If any additional
user-defined verdict types are introduced (e.g., complex verdict types and user-defined instances thereof), it is left
open how precedence of those user-defined verdicts and the default verdicts integrate with each other.

Even though the predefined verdict instances are expressed using InstanceSpecifications, it is not forbidden to use
other representation formats such as LiteralString, Expression or even OpaqueExpression to express user-defined
verdict instances in a UTP-based test model.

none : verdict pass : verdict inconclusive : verdict fail : verdict error : verdict

Figure 9.2 - Predefined verdict instances

Name Description

error The predefined verdict 'error' indicates a result of a test set, test case or
procedural element, where a non-test item related problem occured. This
might be a technical problem in the test environment (e.g., breakdown of a
network connection that is required for executing the test case), a malfunction
of a component in the test environment or an incorrectly executed test

UML Testing Profile 2 (UTP 2), Version 2.2 183

Name Description
procedure, test case or test set. 'Error' differs from a 'fail' in a sense that the
test item did not eausedcause the deviation between the expected and the
actual responses.

fail The predefined verdict 'fail' indicates a result of a test set, test case or
procedural element, where the test item does not react as expected.
inconclusive The predefined verdict 'inconclusive' indicates that a situation where it is not

possible to determine whether the test item behaved as expected or not. It is,
however, not predefined when the verdict 'inconclusive' shall bet assigned.
This depends on the rules of the applied arbitration specification. The default
arbitration specifications do not utilize this verdict instance.

The concept was obtained from [ISO/IEC 9646-1] where it says: "Test verdict
given when the observed test outcome is such that neither a pass nor a fail
verdict can be given"".

none The predefined verdict 'none' indicates that a situation where either a test set,
test case or procedural element has not yet been executed, or verdict
calculation has not yet taken place (e.g., in post-execution comparison).

pass The predefined verdict 'pass' indicates a result of a test set, test case or
procedural element, where both the tester but in particular the test item
behaved, respectively responded as expected.

9.2 UTP Auxiliary Library

9.21 UTP Auxiliary Library

The UTP auxiliary library collects well-established and commonly accepted information whose use is optional. The
purpose of the auxiliary library is to provide users with a set of useful and predefined types and values to foster
reusability across modeling tools and approaches. For example, the ISO 25010 quality model is supposed to be used
by multiple organizational units within the test process. Instead of building proprietary and potentially technically
conflicting representations of the very same quality model, users may reuse the ISO 25010 [ISO25010] quality
model that comes along with UTP itself. Of course, such types and values are often tailored to specific needs (e.g.,
Robustness testing is a frequently used testing type which is actually given in ISO 9216 or ISO 25010), but still
needs to be specified. However, the existence of the UTP auxiliary model does not prevent such an approach.

9.2.11 The UTP auxiliary library
Overview of the UTP auxiliary library.

184 UML Testing Profile 2 (UTP 2), Version 2.2

«model library»
UTP Auxiliary Library

«model library» «model library»
ISTQB Library Test Design Facility Library

S P

Predefined Test Design Predefined Test Design
Technique Structures Techniques

Figure 9.3 - The UTP auxiliary library

9.21.2 ISTQB Library
The ISTQB library offers concepts that can be used to organize some aspects of the test process, if required. In
particular, the ISTQB library offers a commonly used set of test levels and test set purposes.

9.2.1.21 Overview of the ISTQB library
The following diagram shows the predefined test process library provided by UTP to be used for the specification of
test contexts and test sets.

UML Testing Profile 2 (UTP 2), Version 2.2 185

«model library»
ISTQB Library

genumerationy
ISTQB Test Level

genumerationn
ISTQB Test Set Purpose

wenumerationn
ISTQB Agile Test Set Purpose

component test level
integration test level

Smoke Test
Intake Test

Build verification test
Feature acceptance festing

system test level
acceptance test level

Manual Test Feature verification testing

Automated Test Feature validation testing

Negative Test
Regression Testing
Alpha Testing

Beta Testing

API Testing
Failover Test

Stress Testing

Load Testing
Recoverability Test
Interface testing
Acceptance testing

Figure 9.4 - Overview of the ISTQB library

"A set of automated tests which validates the integrity of each new build and verifies its key/core
functionality, stability and testability. It is an industry practice when a high frequency of build releases
occurs (e.g., Agile projects) and it is run on every new build before the build is released for further

Acceptance testing of a feature, often broken down into Feature verification testing and Feature

Usually carried out automatically may be done by developers or testers; and involves testing against

N D Enumeration literals
a es
m cr
e ip

tio

n
IS Build verification test
T
Q
B
A_ testing." [ISTQB]
gil
e
Te
st
Se Feature acceptance testing
t
Pu S .
- validation testing.
os Feature verification testing
e

the user story’s acceptance criteria.
Feature validation testing
186

UML Testing Profile 2 (UTP 2), Version 2.2

(‘DE&?Z

wO H 3

Te
st

Le
ve

es
Cr
ip
tio

8B g »

on
set
of
tes

le
ve
Is.

tes

le
ve

is
co
ns
id
er
ed
as

set
of
tes
tin

ac
tiv
iti
es
rel
at
ed
to
th

ou
ter

oS

bo

Enumeration literals

Usually carried out manually and can involve developers, testers, and business stakeholders working
collaboratively to determine whether the feature is fit for use, to improve visibility of the progress
made, and to receive real feedback from the business stakeholders.

component test level

A test designed to provide information about the quality of the component.

integration test level

A test designed to provide information about the direct interface between two integrated components,
for example in the form of a parameter list.

system test level

A test designed to assess the quality of the complete system after integration.

acceptance test level

A test designed to demonstrate to the customer the acceptability of the final system in terms of their
specified requirements.

UML Testing Profile 2 (UTP 2), Version 2.2 187

(‘DE&?Z

WO -5

Te
st
Se

Pu

p
0s

188

D
es
cr
ip
tio
n
un
da
rie
S
of
th
e
tes

ite

set

Enumeration literals

Smoke Test

"A subset of all defined/planned test cases that cover the main functionality of a component or system,
to ascertaining that the most crucial functions of a program work, but not bothering with finer details."

ISTOB

Intake Test

"A special instance of a smoke test to decide if the component or system is ready for detailed and
further testing. An intake test is typically carried out at the start of the test execution phase." [ISTQB

Manual Test

A test set whose test cases will be executed manually.
Automated Test

A test set whose test cases will be executed automatically.
Negative Test
"Tests aimed at showing that a component or system does not work." [ISTQB

Regression Testing

"Testing of a previously tested program following modification to ensure that defects have not been
introduced or uncovered in unchanged areas of the software, as a result of the changes made."

ISTOB

Alpha Testing

"Simulated or actual operational testing by potential customers/users or an independent test team at
the software developers’ site, but outside the development organization. Alpha testing is employed for
off-the-shelf software as a form of internal acceptance testing." [ISTQB

UML Testing Profile 2 (UTP 2), Version 2.2

D Enumeration literals
es

cr

ip

tio

(‘DE&?Z

Beta Testing

"Operational testing by potential and/or existing customers/users at an external site not otherwise
involved with the developers, to determine whether or not a component of system satisfies the user
needs and fits within the business processes. Note: Beta testing is often employed as a form of
external acceptance testing in order to acquire feedback from the market." [ISTQB

API Testing

"Testing the code which enables communication between different processes, programs and/or
systems. API testing often involves negative testing, e.g., to validate the robustness of error handling."

ISTOB

Failover Test

"Testing by simulating failure modes or actually causing failures in a controlled environment.
Following a failure, the failover mechanism is tested to ensure that data is not lost or corrupted and
that any agreed service levels are maintained (e.g., function availability or response times)." [ISTOB

Stress Testing

"A type of performance testing conducted to evaluate a system or component at or beyond the limits
of its anticipated or specified workloads, or with reduced availability of resources such as access to
memory or servers. [After IEEE 610]" [ISTOB

Load Testing

"A type of performance testing conducted to evaluate the behavior of a component or system with
increasing load, e.g. number of parallel users and/or numbers of transactions to determine what load
can be handled by the component or system." [[STQB

Recoverability Test
"The process of testing to determine the recoverability of a software product." [ISTQB

Interface testing

"An integration test type that is concerned with testing the interfaces between components or

systems." [ISTOB

Acceptance testing

UML Testing Profile 2 (UTP 2), Version 2.2 189

D Enumeration literals

o g Z
S

"Formal testing with respect to user needs, requirements, and business processes conducted to
determine whether or not a system satisfies the acceptance criteria and to enable the user, customers or
other authorized entity to determine whether or not to accept the system." [ISTQOB

9.21.3 Test Design Facility Library

The test design facility library provides a set of test design techniques as well as some default test design technique
structures that can be used out of the box for the specification of the test design activities. Since these test design
techniques are by definition not dependent upon the test design input element, they are called context-free test
design techniques.

9.2.1.3.1 The UTP test design facility library
The following diagram shows the predefined test design techniques provided by UTP 2 to be used for the
specification of test directives.

«model libraryn
Test Design Facility Library

Predefined Test Design Predefined Test Design
Techniques Technique Structures

Figure 9.5 - The UTP test design facility library

9.2.1.3.2 Predefined Test Design Techniques

UTP offers a set of context-free test design techniques, meaning that these test design techniques do not require any
further information from the test design input of the assembling test design directive. They can be immediately used
by the generic test design directive or any other predefined or specialized test design technique or test design
directive.

9.2.1.3.2.1 Predefined context-free test design techniques
The following diagram depicts the predefined and ready-to-use test design technique provided by UTP 2.

190 UML Testing Profile 2 (UTP 2), Version 2.2

«DecisionTableTesting. : ‘

T
|
|

‘«CouseEffecﬁesﬁng» ‘ ‘

«ClossiﬁcoﬁonTreeMefhod»[‘

T
|
|
|

OneRepresentative

«CombinatorialTesting

)

AllCombinations

«TransitionCoverage. ﬁ

AllTransitions

«ErrorGuessingy ﬁ
:

DefaultEG

AllRepresentatives

AN

«PairwiseTestingn

DefaultPT

«StateCoveragaey ﬁ

AllStates

«ChecklistBasedTesting. ﬁ

DefaultCBT

DefaultDTT DefaultCET DefaultCTM
«EquivalenceClassTesting «EquivalenceClassTesting AN «BoundaryValueAnalysis» N
nRepresentatives =0
nBoundaryRepresentatives = 1

OneBoundaryValue

- - N\
«TransitionPairCoveragey [

DefauliTPT

«ExploratoryTesting. N

DefaultET

Figure 9.6 - Predefined context-free test design techniques

Name
AllCombinations

AllRepresentatives

AllStates

UML Testing Profile 2 (UTP 2), Version 2.2

Description

A predefined instance of the CombinatorialTesting
TestDesignTechnique ready for being assembled by
TestDesignDirectives. The semantics is that all possible
combinations of input parameters must be covered by
the resulting test cases.

A predefined instance of the
EquivalenceClassPartitioning TestDesignTechnique
ready for being assembled by TestDesignDirectives. All
representatives of the equivalence classes must be
selected.

The predefined instance of the StateCoverage
TestDesignTechnique ready for being assembled by
TestDesignDirectives. The default semantics is that all
States of the corresponding State Machine(s) must be
covered by the resulting test cases.

191

Name
AllTransitions

DefaultCBT

DefaultCET

DefaultCTM

DefaultDTT

DefaultEG

DefaultET

DefaultPT

DefaultTPT

OneBoundaryValue

OneRepresentative

Description

The predefined instance of the TransitionCoverage
TestDesignTechnique ready for being assembled by
TestDesignDirectives. The default semantics is that all
Transitions of the corresponding State Machine(s) must
be covered by the resulting test cases.

The predefined instance of the ChecklistBasedTesting
TestDesignTechnique ready for being assembled by
TestDesignDirectives.

The predefined instance of the CauseEffectAnalysis
TestDesignTechnique ready for being assembled by
TestDesignDirectives.

The predefined instance of the
ClassificationTreeMethod TestDesignTechnique ready
for being assembled by TestDesignDirectives.

The predefined instance of the DecisionTableTesting
TestDesignTechnique ready for being assembled by
TestDesignDirectives.

The predefined instance of the ErrorGuessing
TestDesignTechnique ready for being assembled by
TestDesignDirectives.

The predefined instance of the ExploratoryTesting
TestDesignTechnique ready for being assembled by
TestDesignDirectives.

The predefined instance of the PairwiseTesting
TestDesignTechnique ready for being assembled by
TestDesignDirectives.

The predefined instance of the TransitionPairTesting
TestDesignTechnique ready for being assembled by
TestDesignDirectives. The default semantics is that at
least all pairs of subsequent Transitions must be covered
by the resulting test cases.

The predefined instance of the BoundaryValueAnalysis
TestDesignTechnique ready for being assembled by
TestDesignDirectives. The default semantics is that a
single value at the boundaries of the equivalence class
must be selected.

A predefined instance of the
EquivalenceClassPartitioning TestDesignTechnique
ready for being assembled by TestDesignDirectives.
Exactly one representative of each equivalence class
must be selected.

9.2.1.3.3 Predefined Test Design Technique Structures
The predefined test design technique structures offer some structural information to enrich test design techniques, if
required.

9.2.1.3.3.1 Overview of the predefined test design technique structures
The following diagram depicts the predefined and ready-to-use test design technique structures provided by UTP.
They can be used to build proprietary generic test design techniques or to augment the predefined test design

techniques.

192 UML Testing Profile 2 (UTP 2), Version 2.2

SimpleErrorGuessingStructure SimpleChecklistBasedStructure

appliedErrorTaxonomy : String [*]| | appliedChecklist : String [*]

GraphTraversalStructure «enumeration»

GraphTraversalAlgorithmKind

algortinm : GraphTraversalAlgorithm = shortest

random
shortest
longest

Figure 9.7 - Overview of the predefined test design technique structures

Name Description

GraphTraversalStructure A test design technique structure that enables testers to
specify the traversal algorithm a test designing entity
must apply.

SimpleChecklistBasedStructure A checklist-based test design technique that enables test

engineers to refer to some checklists that should be used
for test design.

SimpleErrorGuessingStructure An error guessing test design technique that enables test
engineers to refer to some error taxonomies that should
be used for test design.

Name Description Enumeration literals
GraphTraversal AlgorithmKind A set of graph traversal strategies. random

A test designing entity must take a
random walk through the graph in
order to achieve a certain coverage
criterion of the test design input
element.

shortest

A test designing entity must take the
shortest path possible in order to
achieve a certain coverage criterion
of the test design input element.
longest

A test designing entity must take the
longest path possible to achieve a
certain coverage criterion of the test
design input element.

UML Testing Profile 2 (UTP 2), Version 2.2 193

Annex A (Informative): Examples

This section illustrates some concepts of the UML Testing Profile by means of different examples. These examples
were provided by different companies reflecting different approaches to MBT, different interpretations of MBT with
UTP and finally different methodologies for applying UTP. It underlines the flexibility and open-endedness of UTP.

AA1 Croissants Example

A1.1 The Test Item

This example illustrates some of the major concepts of UTP 2 on the "not so serious" test item (French)
"Croissants". This is a particularly interesting example since the test item is not a software system (at least not in the

classical sense ;-), but a rather common physical system (i.e., croissants).

—

Figure A.1 - The Croissants Example

A111 Given Requirements on the Test Item

Id Type Description

RQ-0001 functional Each croissant shall have
a chocolate core

RQ-0002 functional Each croissant shall have
a consistency of greater
than 3

RQ-0003 functional Each croissant shall be

considered as "good

Req. on
Croissant

Croissant

Croissant

194 UML Testing Profile 2 (UTP 2), Version 2.2

Id Type Description Req. on
tasting" by more than
80% of ordinary people

A.1.2 Test Requirements
The following diagram shows the hierarchy of test objectives as well as the constraints on this test series expressed

as test requirements.

«Test Objectiven
TOO0O0: Quality verified

Pl A i

N

’

7

«part of» i«por’r ofy «part ofy
«Test Objectiven «Test Objectiven «Test Objectiven
TOO01: Taste verified TOO02: Structure verified TOO03: Color verified

TRO1: Humans TRO2: Waste

project constraint

project constraint

Taste shall be verified by at least 5 humans | Don't waste more than 10 croissants

Figure A.2 - Test Objectives

A.1.21 Given Test Objectives
Name Description Priority
TOO00: Quality verified The high quality of the croissants n/a
we enjoy during our working
meetings is ensured.
TOO1: Taste verified The quality of the flavor of the high
croissants we enjoy during our
working meetings is ensured.
TOO02: Structure verified The physical composition of the medium
croissants we enjoy during our
working meetings is ensured.
TOO03: Color verified The tasteful look of the croissants high
we enjoy during our working
meetings is ensured.

UML Testing Profile 2 (UTP 2), Version 2.2 195

A.1.2.2 Given Requirements
TRO1: Humans

Description Taste shall be verified by at least 5 humans
Requirement type project constraint
Requirement kind Quality

TRO02: Waste

Description Don't waste more than 10 croissants
Requirement type project constraint
Requirement kind Resource Consumption

A1.3 Test Design

The following diagram shows the applied test design strategy as well as the test directives derived from that test
design strategy.

 \ 7 »
-

«Test Strategy»

TDSO1
7 C-.__«governsy
«governsy
«Test Design Directiven «Test Design Directiven
CR-X1072-B Chocolate test

Figure A.3 - Test Strategy

A.1.3.1 Test Design Strategies shown on "Test Strategy”
TDSO01
Description At least 5 members of the UTP 2 will take a bite of a
croissant.

A1.3.2 Test Directives shown on "Test Strategy"”

Chocolate test

Description Keep every piece of chocolate at least 10 seconds on
your tongue.

Applies to Chocolate Portion

Requires capability Gustaoceptionary Proficiency

196 UML Testing Profile 2 (UTP 2), Version 2.2

CR-X1072-B

Description Apply Croissant-Standard CR-X1072-B to test them.
Applies to Croissant
Requires capability Knowledge of CR-X1072-B

A1.4 Test Configuration

The figure below shows the Test Configuration of the Croissants abstracted as a UML class diagram.

Basket

(Test ltemy Croissant

Chocolate Portion

Figure A.4 - Objects

Based on this description, the following figure shows the concrete test configuration instantiated as a composite
structure diagram.

«Test Componenty
Basket

«Test Item»n 3
: [Croissant]

Figure A.5 - Test Configuration

A.1.5 Test Cases

The test cases (particularly the test procedures) in this test set are not specified fully and formally but rather in a
structured informal way. This is to show that test cases in UTPs don't always have to be fully formalized.

A.1.5.1 Test Set "Manual croissants test"”
The following diagram shows the Test Set "Manual croissants test" containing the relevant test cases and how they
relate to the stated test objectives. Further, the test requirements constraining this test set also are shown.

UML Testing Profile 2 (UTP 2), Version 2.2 197

«Test Sety
Test Set "Manual croissants test"

«Test Objectiven
TOO01: Taste verified

I
wverifyn
|

«Test Objectiven
TOO02: Structure verified

|
I | .
wverifyn Leverifyn
! |

L

«Test Objectiven
TOO03: Color verified

?%

?%

%

«Test Casen
TCO1: test taste

«Test Requirement
TRO1: Humans

project constraint
Taste shall be verified by at least 5 humans

«Test Casen
TCO02: test structure

«Test Casen
TCO03: test color

«Test Requirementy»
TRO2: Waste

project constraint
Don't waste more than 10 croissants

Figure A.6 - Test Map

Test Cases shown on "Test Map"

TCO1: test taste
Test objectives
Priority
Precondition
Test procedure

Postcondition

Verifies
Estimated effort
Is abstract

TCO02: test structure
Test objectives
Priority

Precondition

Test procedure

198

TOO1: Taste verified

high

. There must be a Croissant available

Apply the following steps:

. Break the Croissant in its middle

. Check whether there is chocolate in it

. Bite into the Croissant

. Evaluate its taste

. Eat the remains or throw them into the waste
basket

. The Croissant is eaten

TOO01: Taste verified
10 seconds
FALSE

TOO02: Structure verified

low

. There must be a Croissant available
. The Croissant must not be broken
Apply the following steps:

. Press the Croissant with two fingers

UML Testing Profile 2 (UTP 2), Version 2.2

. Check the elasticity of the Croissant
. Bend the Croissant until it breaks
. Check the breaking angle
. Eat the remains or throw them into the waste
basket
Postcondition . The Croissant is broken
Verifies TOO02: Structure verified
Estimated effort 20 seconds
Is abstract FALSE
TCO03: test color
Test objectives TOO03: Color verified
Priority medium
Precondition . There must be a Croissant available
Test procedure Apply the following steps:
. Look at the Croissant
. Evaluate its color
Postcondition . There is still a Croissant available
Verifies TOO03: Color verified
Estimated effort 5 seconds
Is abstract FALSE

A.2 LoginServer Example

The LoginServer example represents a simplified version of a real case study taken from the EU FP7 research
project REMICS. It was optimized for the initial submission section to demonstrate the core concepts of UTP 2 that
are stable enough and unlikely to be substantially changed in the revised submissions. The LoginServer offers
functionality to log into a system (in the mentioned REMICS project, the login functionality was integrated into a
Cloud-based system for managing travel excursions). In this example section, the following capabilities of UTP 2
are demonstrated:

e Defining the structure of a test plan using test contexts as well as test level and test types.

e Specification of test requirements as a result of the test analysis activities.

e Modeling of the logical interfaces of the test item (also known as test item - test item) optimized for
deriving logical test cases.

e Modeling of the test type system and data specifications required for deriving appropriate data.

e Specification of structural aspects of the test environment, in particular the required test components, test
configuration and connection between the test environment and the test item.

e Modeling of logical test cases using sequence diagrams (i.e., Interactionsy).

e Informal and rough description of a mapping from UTP 2 test cases expressed as sequence diagrams (i.e.
Interactions) to semantically equivalent TTCN-3 test scripts.

This example demonstrates the Test Model-only approach to model-based testing. There are no further (e.g., design
or requirements) models available for reuse. In addition, the methodology follows the so called test
requirement/requirements analysis , since the test design activities are guided by test requirements which, in turn, are
derived from the test basis. Both the applied MBT approach and the test approach (which is called test practice in
ISO 29119) of the LoginServer example are just a single interpretation of how UTP 2 could be used and embedded
into a methodology. The described test process and its distinct phases (e.g., test planning, test analysis, etc.) are
inspired by the ISTQB fundamental test process.

UML Testing Profile 2 (UTP 2), Version 2.2 199

A.21 Requirements Specification
The following table shows a simplified excerpt of the requirements for the LoginServer example. These few
requirements suffice to demonstrate most of the core concepts of UTP 2.

Table A.9.1 - LoginServer Requirements

Id Name Description

Fl1 User login The user shall be able to log into the
system using a valid ID/password
combination.

F2 Failed user login The system shall reject the login

request and answer with an
appropriate error message, if the
user tries to log into the system with
a known ID but invalid password.

F3 Unknown user login The system shall reject the login
request and answer with an
appropriate error message, if an
unknown user (i.e., a non-registered
ID) requests a login.

F4 User banishing The system shall banish an ID and
answer with an appropriate
message, if a user tries to log into
system three times in a row with an
invalid ID/password combination.

F5 Mail address modification A user who is logged into the
system shall be able to update his
mail address. A valid mail address
complies to the following regular
expression: [a-zA-Z0-9. %+-
H@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,4}

F6 User logout A user who is logged in shall be
able to log out from the system.
F7 Login response time The system shall respond to login

request within 5 seconds.

A.2.2 Test Planning

In the test planning phase, the test manager usually starts specifying the test plan. This means that the resources for
testing are estimated, requested and allocated. Furthermore, the test process is broken down into so called test sub-
processes, each strives to fulfil the test objectives of this test sub-process. These test sub-processes are called test
context in UTP 2.

Based on the knowledge about the system to be tested (also known as test item or test item), the test manager
decides on the number of test sub-processes, their objectives and the strategies used to fulfil those test objectives.
The diagram below shows the corresponding structure of the test specification for the LoginServer test item.

200 UML Testing Profile 2 (UTP 2), Version 2.2

«modelLibrary»
PrimitiveTypes

A
é «import»
i
«TestContext» . ‘ «modelLibrary»
LoginServer Test Specification «lm’l:)/o,':’» -7 ISO 25010
«TestContext» «’:\
testLevel = system testing level
testType = Accuracy ; e
o & «import» 3| «modelLibrary»
UTP Test Types
Test objectives Test
requirements

Figure A.7 - The LoginServer Test Context

Due to the simplicity of the LoginServer, the entire test plan only consists of a single test context. In more
sophisticated test processes, the test plan is usually sub-structured into multiple test (sub-)plans, so called master and
level test plans. The test context copes with this need, since it allows for sub-structure test contexts. The diagram
above also demonstrate the use of two model libraries provided by the UTP Auxiliary library in order to specify the
test level and test type that are addressed by the given test context. In this example, the test context LoginServer Test
Specification targets functional system testing. Each test case accessible to the test context is considered to be
designed for the mentioned test level and test type. This enables tester to apply the very same test case to different
test types and test levels (if needed). For example, it is a good practice to reuse functional test cases with different
data sets or a different, yet compatible test configuration for security or performance testing.

The LoginServer Test Specification contains two ordinary packages for storing the test objectives and test
requirements. Whereas the specification of test objectives is not shown in this example, the derivation of test
requirements as one of the most important outcomes of the test analysis phase will be shown in the next section.

A.2.3 Test Analysis

The activities in the test analysis phase are, first and foremost, dedicated to aralyzeanalyzing the test basis in order
to comprehend both the test item and what is expected from the test item. Test basis is an abstract concept that
comprises any information that helps deriving test cases for a certain test item with respect to the test objectives of
the given test sub-process (i.e., test context). The requirements specification usually represents an important part of
the test basis for functional system testing.

A231 Derivation and Modeling of Test Requirements

In UTP, test requirements specify which features of a requirement should be verified by corresponding test cases.
test requirements are an important means to establish traceability between test cases and the test basis, in particular
the requirements. The degree of detail of test requirements varies between test processes and depends on different
aspects like the applied test methodology, details of the test basis, sufficient time available to actually specify,
review and validate those test requirements etc.

UML Testing Profile 2 (UTP 2), Version 2.2 201

For the given example, only a subset of all possible test requirements is derived from the functional system
requirements. For later submission, this specification will provide a more elaborated and complete example.

Table 9.2 - Test Requirements

Id
TR-F1-1

TR-F1-2

TR-F5-1

TR-F5-2

TR-F5-3

TR-F6-1

TR-F6-2

TR-F7-1

Description

Ensure that a user successfully logs
into the system, if the login request is
performed using a valid ID and
corresponding password.

Ensure that the system responses with
an error message “Invalid ID” if an
invalid ID was provided with the
login request.

Ensure that the system responses with
a message “Mail address updated” if
the modification request was
successful. This requires a valid mail
address.

Valid mail addresses shall comply
with the following regular
expression:

[a-zA-Z0-9. %+-]+@[a-zA-Z0-9.-
1+\.[a-zA-Z]{2.,4}

Ensure that the system issues an error
message “Invalid Format” if the mail
address the user submitted for
modification does not comply with
the regular expression given in F5.
Ensure that the system rejects the
modification request if the user is not
logged into the system with the error
message “Login required”.

Ensure that a user, who is currently
logged into the system and requests a
logout from the system, is actually
logged out. The system shall
respendsrespond with a message
“User logged out”

Ensure that the system responds with
an error message “Logout requires to
be logged in” if a user who is not
logged into the system sends a logout
request.

Ensure that the system responds to
login requests within 5 seconds.

Covers
User login

User login

Mail address
modification

Mail address
modification

Mail address
modification

User logout

User logout

Login

response time

Comments

No information about response of the
definition of valid ID yet. Req.
change request submitted (RCR-ID:
0015)

Invalid ID behavior discussed with
system architect. An according req.
change request was submitted (RCR-
ID: 0016)

No information about response of the
system available yet. Req. change
request submitted (CR-ID: 0064).
The current expected result is very
likely to change in future.

No information about response of the
system available yet. Req. change
request submitted (CR-ID: 0065).
The current expected result is very
likely to change in future.

No information about response of the
system available yet. Req. change
request submitted (CR-ID: 0065).
The current expected result is very
likely to change in future.

The diagram below depicts the content of the corresponding test requirement package. To keep the diagram clean,
only unique identifier of the test requirements are shown. In this methodology, test requirements do not have a
name, so the name is automatically (by virtue of a UTP 2 tool) kept in synch with the unique identifier.
Unfortunately and deliberately for this example, the targeted requirements are not available as model artifacts, but
stored somewhere else (e.g., a dedicated requirements management tool like DOORS or even Excel). Traceability
from test requirements to requirements (i.e., from the test specification to the test basis) by means of UTP 2 can at
most be established informally.

202

UML Testing Profile 2 (UTP 2), Version 2.2

LoginServer Test Specification::

Test requirements

«TestRequirement»
TR-F1-1

«TestRequirement»
TR-F1-2

«TestRequirement»
ID =*“TR-F1-1*

«TestRequirement»
ID = “TR-F1-2"

«TestRequirement»
TR-F5-1

«TestRequirement»
TR-F5-2

«TestRequirement»
TR-F5-3

«TestRequirement»
ID = “TR-F5-1*

«TestRequirement»
ID = “TR-F5-2"

«TestRequirement»
ID = “TR-F5-3"

«TestRequirement»
TR-F6-1

«TestRequirement»
TR-F6-2

«TestRequirement»
ID = “TR-FB6-1“

«TestRequirement»
ID = “TR-FB6-2“

«TestRequirement»
TR-F7-1

«TestRequirement»
ID = "“TR-F7-1"

Figure A.8 - Test Requirements

A.2.3.2 Modeling the Type System and Logical Interfaces

Since the test model is designed in a standalone manner, it is in the responsibilities of the test analysts to identify
and specify the means for interacting with the test item. test requirements usually provide further information for the
design of the logical interfaces of the test item and the test type system used for information exchange. For example,
the phrase “a user ... logs into the system if the login request is performed using a valid ID and corresponding
Password.” indicates that has to be an operation that allows providing an ID and a Password for a login request. Of
course, the same holds true, of course, for the specification of constraints on data in order to build data
specifications. The test requirements TR-F1-1 and TR-F5-1 are examples in which constraints on data are specified.
These data constraints could be exploited for data-based test design strategies like equivalence class partitioning or
boundary value analysis. Whatever test design technique will be applied, UTP 2 offers the required capabilities to
capture such data constraints and explicitly specify data specifications as means of equivalence classes or even
classification trees.

The diagram below shows the logical interface operations and test type systems derived from the test requirements
TR-F1-1, TR-F2-1, TR-F6-1 and TR-F6-2.

UML Testing Profile 2 (UTP 2), Version 2.2 203

«dataType»
LoginReq

«dataType»
User

id : String [1]
password : String [1]

id : String [1]
name : String [0..1]
mail : MailAddress [0..1]

«enumeration»

«enumeration»

LoginRes LogoutRes
InvalidlD Successfull
InvalidPassword LogoutRequiresLogin
UnknownUser
UserBanned
Successfull

«interface»
ServerLogininterface

login(request : LoginReq [1], out msg : LoginRes [1]) : User [0..1]
logout(user : User [1]) : LogoutRes

Figure A.9 - Logical Interface of LoginServer (1)

The diagram below depicts the logical interface operations and test type systems derived from the test requirements
TR-F5-1, TR-F52, and TR-F5-3.

L «dataType»
«primitive» ProfileModRes
String
user : User
A\ status : ModMessage
T «enumeration»
T ModMessage
«primitive»
«DataPartition» Successfull
MailAddresse InvalidFormat
=S LoginRequired
Constraint , format® B

{
[a-zA-Z0-9. %+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,4}
}

«interface»
UserProfilelnterface

modMailAddress(user : User, newMail : MailAddress) : ProfileModRes

Figure A.10 - Logical Interface of LoginServer (2)

A.23.3 Modeling Test Data

The data specification MailAddress specialized the primitive type String (provided by the UML PrimitiveTypes
package imported by the surrounding test context) and restricts the values for this type according to requirement F5
and test requirements TR-F5-1. The actual specification of the Constraint ‘format’ is represented by a LiteralString

(this cannot be inferred by the means of the diagram). The diagram below shows the corresponding object diagram
of the relevant parts of the diagram above.

204 UML Testing Profile 2 (UTP 2), Version 2.2

String:PrimitiveType MailAddress:Primitive Type

general /) specific? context

generalization ownedRule

format:Constraint

9

specification \7

:Generalization

:LiteralString

value = [a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,4}

Figure A.11 - Object Diagram specifying data-

Both names and representation of derived artifacts are just examples how UTP 2 could be applied to support test
analysis and depend on the respective methodology.

A24 Test Design

The main target of the test design activity is to derive test cases by following either systematic test design techniques
or in an ad-hoc manner. However, performed, the test design activity is responsible for:

e Deriving according to test data based on the test type system

e Deriving the test architecture and test configuration including the communication channels between the test
components and the test item

e Designing test cases based on the findings of the test analysis activities
e Link test cases to test objectives and/or test requirements

A241 Test Architecture and Test Configuration

The test architecture comprises of the test item and the corresponding test components required driving the
execution of test cases against the test item. The diagram below depicts the specification of two components within
the LoginServer Test Specification. The decision made to go for two distinct interfaces for the LoginServer instead
of a single interface results in a bigger modeling efforts, since an interface component (see BasicPortConfiguration)
is required in order to offer multi-offering Ports. This diagram does not make use of any UTP 2 stereotypes but
relies completely on the class modeling capabilities of UML. The Port ~basicPort of type Client is a conjugated Port
typed by BasicPortConfiguration.

«interface»
ServerLogininterface

«interface»
UserProfilelnterface

BasicPortConfiguration |Z |
UserProfilelnterface UserProfileInterface
«component» (o «corr_:ponent»
Client o i LoginServer
. N !"}/' 5
~basicPort ‘ (o~ basicPort
N ServerLogininterface

ServerlLogininterface

UML Testing Profile 2 (UTP 2), Version 2.2

205

Figure A.12 - LoginServer Component Specification

The role each of those components will play in the given test context is not prescribed. Binding of roles for types is
accomplished by the test configuration. The test configuration also describes the communication channels over
which information exchange among the test component(s) and the test item will be established later. UTP 2 allows
for at least two ways to specify the test configuration:

. Shared test configuration: The shared test configuration mechanism enables the test analyst to bind test
cases to a previously defined test configuration. By doing so, the test configuration might be reused by
different test cases. One means to shared test configuration is by utilizing Collaborations. This is not shown
in this example.

° Isolated test configuration: In contrast to shared test configuration, the isolated test configuration builds the
test configuration every time from scratch. This option is only possible, if «TestCase» is applied on (a
subclass of) Behavior directly. Since Behavior is a StructuredClassifier it is possible to directly make use of
the stereotypes «Testltem» and «TestComponent» within the composite structure of the respective
Behavior. However, this prevents the advantages of reuse.

The diagram below denotes the very simple test configuration contained in the test case TC1_F1. The test case could
be seen as a test case declaration which can be created and fostered very early in the test process. The test
configuration comprises two parts, one being stereotyped as «TestComponent» and the other stereotyped as
«Testltem», whose compatible Ports are connected by Connector c1. The Connector is an important means for
specifying over which communication channel the information exchange between test component(s) and test items
are supposed to take place during the execution of the test case.

«TestCase, interaction»
TC1_F1

«TestComponent» connector1 ‘ «Testltem»
client : Client sut : LoginServer

I L
‘ ~basicPort basicPort‘

Figure A.13 - LoginServer Test Configuration

UTP 2 does not prescribe nor emphasize which variant to be used. Often, this depends on the applied test modeling
methodology, the applied tooling, and the acceptance of the test analysts. For example, if generative approaches to
test design are applied, then it might not be important to reuse test configurations throughout several test cases for
the test configurations would be automatically derived from the boundary descriptions of the «Testltemy.

A.24.2 Specification of Complex Test Data

The test type system specifies which data types are supposed to be exchanged within test cases among the test
components and the test item. For the actual specification of test cases, values or instances for the test type systems
need to be defined. This is in particular necessary for complex data types (e.g., DataType, Class, Signal etc.). The
diagram below shows the InstanceSpecifications for the data types LoginReq and User required for the realization of
test cases.

206 UML Testing Profile 2 (UTP 2), Version 2.2

userivalid:LoginReq user1:User

id = “mustermann2014*
name= “Max Mustermann®
mail = “[a-zA-Z0-9._%+-]+@[a-zA-20-9.-]+\.[a-zA-Z]{2,4}"

id = “mustermann2014*
password = “TrustNo1*

userlinvalid:LoginReg

id = “mustermann2014*
password = “WhyNot*

userireduced:User

id = “mustermann2014*

mailModSuccessfull:ProfileModRes userimod:.User
j id = “mustermann2014*
name= ,Max Mustermann®

user | password = “maximus@tld.com*”

status = Successfull

Figure A.14 - Test Data Specification

The interesting aspect in the data specification is the difference in dealing with the mail address attribute in the User-
type InstanceSpecification. In the first case (userl), the Slot value is set to the regular expression, which was taken
over from the type definition of MailAddress. It will later on be used to define expected results of the login
operation. The semantics of such a concept is that as long as the actual response for a user’s mail address complies
with the stated regular expression, the actual response matches the expect response action and will not cause the test
case to Fail.

The InstanceSpecification userlreduced omits all slots that are not required for a user object. This will later on be
used for the modification of a user’s mail address. In the last case (userlmod) a concrete and very precise mail
address was stated for the very same user. This InstanceSpecification is used as part of the profile modification
response (i.e., data type ProfileModRes) after an update of the mail address was requested. This is necessary, since it
is important to see that the modification of was actually successful. All other data values are defined directly within
the test cases as ordinary ValueSpecifications.

A24.3 Test Requirements Realization

The actual design of test cases is the most important part of the test design phase. According to the applied
methodology for the given example, test requirements are supposed to be realized by test cases, and thus, test case
transitively verify or falsify the requirements that are covered by test requirements. The assignment of test
requirements to test cases is part of the test design phase and results in our case in the following (partially shown)
assignments (see diagram below).

«TestRequirement» «TestRequirement» «TestRequirement»
TR-F1-1 TR-F7-1 TR-F1-2
«TestRequirement» «TestRequirement» «TestRequirement»
ID = “TR-F1-1* ID = “TR-F7-1* ID = “TR-F1-2*
\\7\ P E\j’} /.' \
. L L
rea"zef _realizes |

«TestCase, interaction» «TestCase, interaction»
TC1_F1 TC2_F1

«TestRequirement»
TR-F5-1

«TestRequirement»
ID = “TR-F5-1¢

Al
LA

«TestRequirement»
TR-F5-2

«TestRequirement»
TR-F5-3

«TestRequirement»

«TestRequirement»

ID = “TR-F5-2*

A

ID = “TR-F5-3

A\
/\

LA

«TestCase, interaction»
TC2_F5

«TestCase, interaction»
TC2_F5

«TestCase, interaction»
TC3_F5

UML Testing Profile 2 (UTP 2), Version 2.2

207

The respective test configuration for each test case is not shown in the diagram for the sake of comprehensibility,

«TestRequirement»

«TestRequirement»

«TestRequirement»

TR-F1-1 TR-F7-1 TR-F1-2
«TestRequirement» «TestRequirement» «TestRequirement»
ID = “TR-F1-1* ID = “TR-F7-1* ID =“TR-F1-2°

vl Bz A\
realizes realizes T

«TestCase, interaction»
TC1_F1

«TestCase, interaction»

TC2_F1

«TestRequirement»
TR-F5-1

«TestRequirement»
TR-F5-2

«TestRequirement»
TR-F5-3

«TestRequirement»
ID = “TR-F5-1¢

«TestRequirement»
ID = “TR-F5-2“

«TestRequirement»
ID = “TR-F5-3

/\

LA

/\
A\
fS

/\
/\
L

«TestCase, interaction»
TC2_F5

«TestCase, interaction»
TC2_F5

«TestCase, interaction»
TC3_F5

Figure A.15 -— Realization of Test Requirements

but is present nevertheless for each test case and identical to the test configuration shown above.

A.24.4

The two diagrams below-""show the test procedures of two test cases for the test requirements TR-F1-1, TR-F1-2 and
TR-F7-1. This specification deliberately neglected the parameterization of test cases due to an unresolved issue filed

against UML Interactions.

208

Design of Test Case Procedures
Based on both the specification of the test requirements what to test and the precise specification of the test
configuration in order to realize how to test what has to be tested, the test case procedures can be derived. As already
shown, in this example sequence diagrams (i.e., Interactions) are going to be used as a test procedure. The semantics
of these test case interactions is that any deviation from the described interactions and message arguments will cause
the test case to Fail. However, if the actual response matches the expected ones during test execution, the test case
will Pass.

UML Testing Profile 2 (UTP 2), Version 2.2

sd TC1_F1_procedure)

client : Client sut : LoginServer

login(user : User, out msg : LoginRes) : User

\
|
|
|
1
} {usertvalid, -, -}
|
|
|
|
|
|

|
} {-, Successfull, user1} !
|
| |

sd TC2_F1_procedure

client : Client sut : LoginServer

login(user : User, out msg : LoginRes) : User

{usertinvalid, -, -}

|
{-, InvalidPassword, -} \
|
|

Figure A.16 — Two Test Procedures

The DurationConstraints ensure that any response to the login request that is recognized later than 5 time units (in
this case seconds) after the actual request will violate the DurationConstraint, and thus, cause the test case to Fail.
The message arguments used in these test cases are represented by InstanceValues that have the same name as the
InstanceSpecifications they refer to. Successful and InvalidPassword are EnumerationLiterals of the Enumeration
LoginRes. The messages are sent via the Connector connectorl of the corresponding test configuration. This enables
a precise definition of the Ports that should be used for sending stimuli and receiving expect response actions.

The diagram below depicts a test case for the successful modification of a logged in user’s mail address. It reuses
(actually reimplements for no explicit reuse — by means of InteractionUse of the test procedure of test case

TC1 _F1) the behavioral description for a successful user login request. The is usually called the preamble of the test
case (although the current version of UTP 2 has no means to explicitly denote parts of the behavioral description as
preamble or postamble; this is intended for revised submission).

UML Testing Profile 2 (UTP 2), Version 2.2 209

sd TC1_F5_procedure)

sut : LoginServer

client : Client

login(user : User, out msg : LoginRes) : User

{userivalid, -, -}

login(user : User, out msg : LoginRes) : User

{-, Successfull, user1}

[[
| |
| |
| |
| |
1 modMailAddress(user : User, newMail : MailAddress) : ProfileModRes }
| ~.|
} {user1reduced, “maximus@tld.com®, -} i
|
| |
| |
[[
|

|
i {-, -, mailModSuccessfull} !

Figure A.17 — Successful Test Case

The only technical deviation from the previously shown test cases is that the mailModAddress request message uses
a LiteralString with value “maximus@tld.com” as message argument. Otherwise, no further peculiarities need to be
discussed.

Note: The use of arguments of a message represented in curly brackets below the message arrow is not UML-
compliant; but was chosen for the sake of clarity.

A.2.5 Mapping to TTCN-3

The Testing and Test Control Notation version 3 (TTCN-3) standardized by the European Telecommunications
Standardization Institute (ETSI) prescribes a dedicated test language and test system framework that abide by the
keyword-driven testing principle. Since its final adoption is has been heavily used within the telecommunications
and automotive domain, but is in general, like UTP, independent of any domain. As TTCN-3 similarly to OMG
standards is not restricted to certain methodology, the following described mapping represents just one possible way
to translate UTP 2 test cases to TTCN-3. For example, it is restricted to Interactions for test case procedures,
whereas in principle each of the UML behavior kinds could be used for specifying test procedures.

A.2.51 Mapping the Test Type System

TTCN-3 comes along with a fine-grained and powerful type system that resembles the one provided by UML, which
was taken over by UTP. The following snippet shows the corresponding TTCN-3 code for the LoginServer test type
system starting with primitive types, over enumerations to complex types.

type charstring MailAddress
(pattern A"\ [a-zA-20-9. $+-\]1+@\[a-2zA-Z0-9.- \J+\.\
[a-zRA-Z\]\{2, 45\ 1") ;

type enumerated LoginRes

{InvalidID, InvalidPassword, UnknownUser, UserBanned, Suecessfulitl};
type enumerated LogoutRes

{Sweeessfutd]l, LogoutRequiresLogin};
type enumerated ModMessage

{Sweeessfuldl, InvalidFormat, LoginRequired};

210 UML Testing Profile 2 (UTP 2), Version 2.2

type record LoginReqg
{
charstring id,
charstring password
}
type record User
{
charstring id,
charstring name optional,
charstring mail optional

}
type record ProfileModRes

{
User user,
ModMessage status

A.2.5.2 Mapping Interface Descriptions

In TTCN-3, interface operations are represented by so called signature types. A signature is a type that can be
instantiated and resembles the invocation of an operation. The concept of an Interface as grouping namespace for
Operations has no correspondent concept in TTCN-3. In case of ambiguous signature names (i.e., two Operation
with the same name contained in different Interfaces) the qualified name of the Operation could be used as name of
the signature since TTCN-3 does not offer type overloading. The mapping presented in this example utilizes the
TTCN-3 group concept to logically cluster the signature types according to their containing UTP Interfaces;
however, one has to be aware of the fact that a TTCN-3 group has no further semantics than to group elements. A
TTCN-3 group is neither comparable to a UML Package nor any other Namespace for it does not have scoping
semantics. The suggested mapping of the LoginServer interface descriptions is shown in the following snippet:

group ServerLoginInterface

{
signature login (LoginReqg request, out LoginRes msg) return User;
signature logout (User user) return LogoutRes;

}

group UserProfilelInterface

{

signature modMailAddress (User user, MailAddress newMail) return ProfileModRes;

}

A.253 Mapping the Test Architecture
TTCN-3 relies on a component- and port-based architecture. That fits quite well with the offered concepts by UML,
and thus, UTP. The following snippet demonstrates the mapping of the LoginServer test architecture to TTCN-3:

type port BasicPortConfiguration procedure

{

inout login, logout, modMaillInterface;
}

type component LoginSever

{

port BasicPortConfiguration basicPort;

}
type component Client

{
port BasicPortConfiguration basicPortConjugated;

}

A254 Mapping the Test Data Specification

Data values utilized in message exchanges are called templates in TTCN-3. A template resembles an
InstanceSpecification or dedicated ValueSpecification in UTP (actually UML). Templates can be either defined
explicitly outside of a test case (called global templates), and thus, being reused by multiple test cases, or directly
within in a message (called inline). At first this specification is going to show the mapping of global templates:

UML Testing Profile 2 (UTP 2), Version 2.2 21

template LoginReq userlvalid() :=
{

id := "“mustermann2014“+",
password := "“TustNol"”

}i

template LoginReq userlinvalid() :=

{
id := "“mustermann2014"",

password := ““WhyNot™"”

bi
template User userl() :=

{

id := "“mustermann2014"+",
name := ““Max Mustermann";”,
mail := (pattern "f“\[a-zA-20-9. $+-\]1+@\[a-zA-Z0-9.- \]+\.\

[a-zA-Z\I\ {2, 4"\ }")
}i
template User userlreduced() :=

{

id := "“mustermann2014';",
name := omit,
mail := omit

bi
template User userlmod() :=

{

id := "“mustermann2014"+",
name := ““Max Mustermann";”,
mail := "“maximus@tld.com™”

}i
template ProfileModRes mailModSuccessfull () :=
{
user := userlmod,
status := Successful
}i

A.255 Mapping Test Cases and Test Configuration

In TTCN-3 a test configuration is inherently bound to a test case, whereas in UTP a test configuration could be
potentially shared across multiple test cases (even though this feature is not shown in the given example). The
following snippet shows the mapping of the test case TC1 F1:

//determines the roles for Client and LoginSever
//runs on declares Client as TestComponent
//system declares LoginServer as TestItem
testcase TCl F1() runs on Client system LoginServer
{
//establishes the Connector connectorl
map (self:basicPortConjugated, system:basicPort);

//invokes the login operation by sending an instance of the
//signature type login and starts an implicit timer with the
//duration of 5 seconds
basicPortConjugated.call (login:{userlvalid, -}, 5000.0)
{
//continually checks whether the expected response is received
//by the test system
[IbasicPortConjugated.getreply (login: {-, Svecessfuliil}
value userl)
{
//indicates that the test case has passed
setverdict (pass) ;
}
//continually checks whether any other response is received
[IbasicPortConjugated.getreply
{
//indicates that the test case has failed due to mismatch
//between actual and expected response
setverdict (fail)p;

212 UML Testing Profile 2 (UTP 2), Version 2.2

//continually checks whether the implicit timer expired
[]basicPortConjugated.catch (timeout)
{
//indicates that the test case has failed due to timout
setverdict (fail);

UML Testing Profile 2 (UTP 2), Version 2.2 213

A3 Videoconferencing Example

This example is inspired from the case study about a Videoconferencing System (VS) that is reported in [1] with the
aim of demonstrating the application of UTPV.2. This example illustrates some of the major concepts of UTP 2 on
the software of the VS such as test item, test item configuration, and test component configuration on the three key
features of the VS. One focuses on the establishing the videoconference, the second one related to sending
presentations in addition to the videoconference, and third one focuses on modeling behavior of VS in the presence
of packet loss.

The rest of this section is organized as follows. Section Given Requirements on the Test Item lists the key
requirements that are focused for modelling in this section, Section Modeling the Structure of the System
demonstrates how this specification models structure of the VS using the UML class diagrams with UTP, Section
Modeling the Behavior of the System demonstrates how this specification modeled the three key requirements as
UML State Machines and UTP, Section The TRUST Test Generator shows our test generator that generates
executable test cases from UML Class Diagrams and UML State Machines, and Section Mapping to Code shows an
example of mapping from the models to code.

A.3.1 Given Requirements on the Test Item
In this section, this specification will demonstrate modelling the four key functionalities of a VS that must be tested.
These functionalities are listed in the table below:

Table A.9.3 — Videoconferencing Requirements

Id Type Description

R-0001 functional A VS should be able to connect to
maximum n number of VSs at the
same time.

R-0002 functional A VS should be able to start

presentation even it is not in the
videoconference. In this case, the
presentation will be only shown to
the VS itself.

R-0003 functional A VS should be able to start
presentation when it is in a
videoconference. In this case, the
presentation will be transmitted to
all the connected VSs (referred as
end points).

R-0004 non-functional A VS should be able to handle
packet loss. If the VS cannot handle
packet loss of greater than x% for t
minutes, it disconnects the current
active call.

A.3.2 Modeling the Structure of the System

In this section, this specification models the structure of VS that is modeled as a UML class diagram. A VS can
establish calls with 1 to * number of endpoints, i.e., other VSs. The VS is stereotyped as «Testltem» and
«TestDesignlnput» to label the system being tested, whereas other endpoints (i.e., Endpoint) is stereotyped as
«TestComponent». The VS has five attributes, NumberOfParticipants, MaximumParticipants, Presentation, H323,
and packetLoss representing the current number of endpoints in a videoconference, maximum number of calls
supported by the VS, if the VS is in presentation or not, if H323 mode is on or not, and percentage of packet loss it
is facing. The packetLoss attribute is of type NFP_Percentage from the MARTE profile. The VS class has five
operations to support dialing to an endpoint (connectCall()), disconnecting a participant from a videoconference
(disconnectCall()), starting presentation (presentationOn()), stopping presentation (presentationOff()), and

214 UML Testing Profile 2 (UTP 2), Version 2.2

disconnecting all the participants in a call (disconnectAll()). In addition, this specification defines a constraint in
OCL on VS to model configuration for testing:

context VS inv:
self.H323

This constraint demonstrates that the VS must be configured to support a videoconference with h323 conferencing
protocol. The constraint is stereotyped as «TestltemConfiguration» to signify that the constraint is a configuration
for VS and is handled accordingly by test generator. In addition, «Testltem» has an attribute configuration {subsets
roleConfiguration} , which is linked to this OCL constraint with «TestltemConfiguration» (not shown in the figure).

A similar constraint for Endpoint is also specified in the figure below and is stereotyped as
«TestComponentConfigurationy.

H323 Configuration
aTestitemConfigurations
{self.H323)

aTestltem, TestDesigninputs
V5

MumberParticipants : Integer
MaximumParticipants : Integer
Presentation : Boolean

H323 : Boolean

packetLoss : NFP_Percentage
connectCall ()

disconnectCall {)
presentationOn ()
presentationOff ()
disconnectall ()

L., - endpoint
alestComponents
Endpoint
H323 : Boolean

{self.H323}

«TestComponentConfigurations Ij

Figure A.18 — UML Class Diagram

A.3.3 Modeling the Behavior of the System

The figure below shows the behavior of the VS modeled as a UML state machine stereotyped as «TestDesignInputy
to instruct test generator that the state machine should be used for generation of test cases. In our context it is
important to stereotype a state machine that must be used for generation of test cases since not all the state machines
are used for generation of test cases. The state machine has three regions: 1) The first region models first
requirement for testing, i.e., establishing videoconference, 2) The second region models the second two
requirements related to presenting while in a videoconference and presenting without a conference, and 3) The third
region models the fourth requirement.

UML Testing Profile 2 (UTP 2), Version 2.2 215

«TestDesigninput=Call and Presentation BehaviorJ

«CheckPropertyActions «DataSpecification» [number >= 1000 @ disconnectCall { number : Integer)
{self. NumberOfParticipants = 0}

Idle State Invariant j [self.Number OfParticipants = 3 and self. Number OfParticipants = self.MaximumParticipants)

and number <=4000)

; ‘ﬁ, connectCall (number : Integer) m
)%{ Idle L “I InCall |
|

[self.NumberOfParticipants = 2]
‘% disconnectCall { number : Integer)

[self.MumberOfParticipants = 1 and self. NumberOfParticipants < self. MaximumParticipants)
Y@ connectCall { number : Integer)

[self. NumberQOfParticipants = 1 and self NumberOfParticipants =
self. MaximumParticipants}

Connected State Invariant
«CheckPropertyActions

"% presentationOn ()

. In Presentation Presenting
Not Presenting "7 «CheckPropertyAction»

Not Presenting 1 {self.Presentation}
«CheckPropertyActions T
{not self.Presentation}

‘% presentationOff ()

No Packet Loss %% self.packetLoss.value > 0.0 Packet Loss Occured [self.packetloss.value > x]

' self.packetLoss.value = 0.0 Q

T "t mins”

Figure A.19 — UML State Machine Diagram

In the first region, this specification models the behavior of a VS related to establishing a videoconference. The first
region has two states, i.e., Idle and In Call demonstrating that the VS is Idle state, and the VS is in a videoconference
respectively. Each state has a state invariant defined as an OCL constraint based on the attributes defined in the VS
class diagram. For example, the Idle state has the following state invariant specified as an OCL constraint:

context VS inv:
self.NumberOfPartcipants = 0

The state invariant is stereotyped as «CheckPropertyAction» to instruct the test generator to use the constraint to
generate code that compares the actual state of VS at the runtime (e.g., value of NumberOfParticipants in this
example) with the one specified as CheckPropertyAction. If the state matches then it means everything is fine,
however, if the state doesn’t match it means there is a fault. The attributes of «CheckPropertyActiony are shown
below in the figure. For example, the checkedProperty attribute is linked to the NumberOfParticipants in the VS
class (only shown as Entries:1). The value of expected is set to true meaning that the expected evaluation value of
this constraint is true.

Property Yalue

w CheckPropertyAction
checkedProperty E Entries: 1
expected true
UTP::CheckPropertyAction:arbitrationSpecification null

Figure A.20 - Attribute values of «CheckPropertyAction»

Transitions in the state machine are modeled with Call Events corresponding to the operations defined in the VS
class. For example, from the Idle state, the transition with connectCall() trigger will lead to InCall if the call is
established successfully. In addition, some of the transitions have guard conditions with the stereotype
«DataSpecification». Recall that DataSpecification is "A named boolean expression composed of a data type and a
set of constraints applicable to some data in order to determine whether or not its data items are conformant to this
data specification" as defined in the conceptual model. A DataSpecification (e.g., guard condition in this example)
signifies that the transition from the Idle state to the In Call state with a guard condition number>=100 and number

216 UML Testing Profile 2 (UTP 2), Version 2.2

<=4000, (i.e., an OCL constraint) can only be triggered by calling the connectCall(number:Integer) Call Event with
a number between the range of values specified by the guard condition. In our context, this guard condition, i.e., an
OCL constraint is used by the test generator to generate valid values within the range to trigger a transition, for
example, the connectCall() operation in this case.

The second region of the state machine models the behavior of VS related to starting the presentation in parallel to
the videoconference. The region has two states (i.e., Not Presenting and In Presentation) showing the states that the
VS is not presenting and presenting respectively. As with the first region, each state has a state invariant modeled as

an OCL constraint. Similarly, the third region models the behavior of VS in presence of packet loss.

A.3.4 The TRUST Test Generator

The figure below shows a very high--level architecture of test case generator. The full details of the test generator
can be found in [3]. At a high level, the test generator called as TRUST takes UML State Machines and UML Class
Diagrams with stereotypes from UTP as input and generates executable test cases based on various coverage criteria
such as All State coverage and All Transition coverage (e.g., ts:TestStrategy with «StateTransitionTechniquey) [3].

According to [ISTQB] StateTransitionTechnique is "A black box test design technique in which Test Cases are

designed to execute valid and invalid state transitions". In addition, TRUST has a built--in algorithm that flattens the
state machines with hierarchy and concurrency before generating test cases. The details of the algorithm can also be
found in [3]. TRUST also invokes a test data generation tool called ESOCL that takes input an OCL constraint
(specified in class diagrams and state machines) and provides a set of data that satisfy the constraint based on a test
data generation strategy (e.g., td: TestDataGenerationStrategy with the«BoundaryValueAnalysis» stereotype).

According to [ISTQB], BoundaryValueAnalysis is "A black box test design technique in which Test Cases are

designed based on boundary values". The details of ESOCL can be found in [4].

« JTPW 2=
UML State Machines

=UTPW2=

UML Class Diagrams
I

«StateTransiionTechnique»

ts: TestStrategy

input

)

«<imports!

«Tool=
TRUST

gEﬂEI’EItES

«<import»

«Boundary'aluenalysis»
td : TestDataGenerationStrategy

Figure A.21 - Test Generator

1.*

«JestCases
Test Case

The figure below shows a high--level architecture of our Test Driver. The test driver takes input a test case and
executes it on the VS that communicates with the n number of endpoints. The test driver also sends commands to
configure endpoints based on test configurations specified in the test case. In our current example, the test driver

executes only test cases on one VS; however, in reality it can execute test cases on multiple VSs in a

videoconference. During the execution, test driver invokes an OCL Evaluator called DresdenOCL (www.dresden-
ocl.org/) to evaluate OCL constraints that were stereotyped as «CheckPropertyAction» against the actual state of the

UML Testing Profile 2 (UTP 2), Version 2.2

217

VS that eventually determines the success or failure of the execution of test cases.

wTestltems

Vs
i commiunicates with
execute test cases on 1.*
«TestCase» | «Tools configures — l
Test Script | Test Driver alest.ampanents»
P 1.* Endpoint
uses
«Tools
DresdenOCL

Figure A.22 - Test Driver

A.3.5 Mapping to Code

Below, this specification shows a sample code corresponding to test item configuration and test component
configuration. Line 1 and Line 2 reserves VS (A) and Endpoint (B) for the execution of test cases, whereas Line 3
enables H323 mode on test item based on the constraints with stereotype in «TestltemConfigurationy.

Line 1: self. A=test.api.initialize(‘a’)
Line 2: self.B=test.api.initialize(‘b’)
Line 3: self.A.H323 = true

Below, this specification shows the code corresponding to the start and stop presentation behavior and also the code
that checks state of the VS. Line 1 executes presentation start command on the VS and Line 2 checks whether the
VS is in correct state by checking the value for the Presentation attribute of the VS, which should be equal to true.

Line 1: Execute.Command(“Command.Presentation.Start()”, self.A)
Line 2: self.assertFalse(self.A.Presentation == true)

A.3.6 References

[1] Ali, Shaukat, Lionel Claude Briand, and Hadi Hemmati. "Modeling Robustness Behavior Using Aspect-Oriented
Modeling to Support Robustness Testing of Industrial Systems." Software and Systems Modeling 11 (2012): 633-
670.

[2] Ali, Shaukat, Lionel Claude Briand, Andrea Arcuri, and Suneth Walawege. An Industrial Application of
Robustness Testing Using Aspect-Oriented Modeling, UML/MARTE, and Search Algorithms In ACM/IEEE 14th
International Conference on Model Driven Engineering Languages and Systems (Models 2011), Edited by Jon
Whittle, Tony Clark and Thomas Kiihne. .: ACM/IEEE, 2011.

[3] Ali, Shaukat, Hadi Hemmati, Nina Elisabeth Holt, Erik Arisholm, and Lionel Briand. Model Transformations As
a Strategy to Automate Model-Based Testing - a Tool and Industrial Case Studies. Simula Research Laboratory,
2010.

[4] Ali, Shaukat, Muhammad Zohaib Igbal, Andrea Arcuri, and Lionel Claude Briand. "Generating Test Data From
OCL Constraints With Search Techniques." IEEE Transactions on Software Engineering 39 (2013).

218 UML Testing Profile 2 (UTP 2), Version 2.2

A.4 Subsea Production System Example

A.4.1 Description of Case Study

A subsea production system is a cyber-physical system that produces oil and gas from subsea. Typically, such
subsea production systems are highly configurable in the sense that their hardware topologies and software
parameters can be configured based on requirements customer such as the size of a subsea field and its natural
environment (e.g., depth of sea). A subsea production system is composed of two sets of systems: topside and
subsea systems. Umbilical connections (e.g., cables or hoses which supply air, power, electrical power, fiber optics
to subsea equipment) are established to connect topside and subsea. Commands (e.g., opening valves) are sent by
operators via topside systems to subsea systems, which control different kinds of subsea actuators (e.g., choke and
valve) and monitor various sensors (e.g., pressure and temperature).

Please note that the case study is designed to demonstrate that the UTP 2 stereotypes can be used for developing
domain specific language based MBT methodologies such as RTCM [3].

A.4.2 Functionality to Test

To demonstrate the application of UTP 2 to this case study, this specification specifies one of the key functionalities
of Subsea Electronic Module (SEM), which has configurable software deployed to control subsea instruments. This
functionality OpenValve is specified using the Restricted Use Case Modeling methodology (RUCM) [1][2] and the
RUCM Editor, as shown in the figure below. Notice that the use case model (i.e., UCModel) is indicated as a
TestRequirement using <<TestRequirement>>, which is a UTP 2 stereotype.

[Ut] Model Explorer 52 = Q:f; = Untitled] Openvalve 3 =g

¥ = UTP 2 Case Study - Subsea Production System
] model.rtem
r@model_rucm
] Subsea Production System.rtcm

Use Case Specification

Use Case Name OpenValve

[Subsea Production System.ruom Brief Description A command of openning subsea gate valve acturators is deliverred from topside to subsea.
TEUCModeI {=<TestRequirement=>) Precondition Electrical Power Units (EPU) is in the normal state of providing power supply to the power
¥ & modelElements (8) B distribution networks of the subsea control system.
¥ (o OpenValve Primary Actor OffshoreOperator

b (_Emergency Shut Down
% OffshoreOperator
2 SubseaControlUnit (SGU) Dependency
=== Relationship (OffshoreOperator - OpenValve) Generalization
+== Relationship (SubseaCentrelUnit (SCU) - Open
¥ < diagrams (1)

Secondary Actors SubseaControlUnit (SCU)

» EUse Case Diagram {Untitled) Basic Flow Steps
(Untitled) ¥ OffshoreOperator requests the system to open a set of subsea gate valve acturators via the
HMI of Master Control Station.

2 DO

3 5CU sends a command of openning a subsea gate valve acturator to a
SubseaContrelMedule (SCM) via an umbilical connection with the TCP/IP protocols.

4 The SCM sends the command of openning a subsea gate valve acturator to its
SubseaElectronicModules (SEM).

5 The master SEM identifies the subsea gate valve acturator to open.

6 The master SEM opens the subsea gate valve acturator.

7 The master SEM VALIDATES THAT the pressure variation in the neighbouring gate valve
actuator is below 61 bars.

8 The master SEM VALIDATES THAT the opening time is within 50 seconds.

9 The master SEM temporarily stores all relevant data.

10 UNTIL All the valves have been opened.
Postcondition The set of subsea gate valve acturators have been properly opened.

Bounded Alternative RFS 7-8

el 1 The SEM initiates an unwanted shut-down.
2 INCLUDE USE CASE Emergency Shut Down
3 ABORT.

Postcondition The opened subsea gate vale acturator is shut-down.

Figure A.23 - Use Case OpenValve (Specified in RUCM)

"EmergentShutDown" ¥

UML Testing Profile 2 (UTP 2), Version 2.2 219

A4.3 Test Design Inputs

To test the OpenValve functionality presented in the figure above, this specification defines four test design inputs,
as shown in the figure below. Notice that this specification aims to test the functionality of OpenValve of SEM using
a simulator that is particularly designed for testing SEM.

— o erem e — e

¥] Subsea Production System.rtcm
v Jé << TestContext==SubseaElectronicModule {SEM)
<+ branchesOfModel (0]
¥ < modelElements ()
P 5| <<Procedures>»<<SatupProcedurelnvocations>
P |=_=| <= TestDesigninput=>TestOpenyalve
B |=_=| <= TestDesigninput=>SimulateOpenValve
b ﬁ c<TestDesigninput=>SimulateCloseValve
P ﬁ <= TestDesigninput=>SimulatePressureVariation
% TestEngineer

Figure A.24 - The Four TestDesigninput and one procedure-

The test objective of the test context SubseaElectronicModule (SEM) is defined as the description of the test
context: “<<TestObjective>> The goal of these tests is for system testing of the functionalities of <<Testltem>>
SEM.”

In the figure below, this specification presents the test design input of TestOpenValve, which is specified/modeled
using the Restricted Test Case Specification methodology (RTCM) [3]. Notice that the test case specification is
annotated with UTP 2 stereotypes using stereotype notations. For example, steps 3, 4 and 10 of the basic flow (i.e.,
<<Sequence>>Pass) are annotated as <<ExpectResponseAction>>. Step 1 is annotated with
<<CreateStimulusAction>> and steps 2, 6, 8 and 9 are annotated with <<Procedurelnvocation>> as these four steps
invoke other test case specifications with keywords INCLUDE TC SPEC. Steps with keyword VERIFIES THAT
are annotated with either <<ExpectResponseAction>> or <<CheckPropertyAction>>. TestSetup is annotated with
<<TestConfiguration>> and can be reused across test case specifications.

220 UML Testing Profile 2 (UTP 2), Version 2.2

Test Case Specification

Name << TestDesigninput>>TestOpenVyalve

Brief Description This test case specification tests < <TestRequirement>» < <UseCase> >0penValve.
Precondition MNone

(Test Data Specification)

Tester None

INCLUDE TC SPEC < <TestDesigninput>>5imulateOpenValve, INCLUDE TC SPEC

Dapandancy <<TestDesigninput>>SimulateCloseValve, INCLUDE TC SPEC < <TestDesigninput>>SimulatePressureVariation
Test Setup Name < <TestConfiguration>>Test Setup
v D i TestEngineer makes sure that <<Testitem>>5EM and < <TestComponent>>5imulator are connected and
escription
powerred on.
Basic Flow Steps

(Test Setup)
"< <Sequence>>setup” v

1 <<CreateStimulusAction>>TestEngineer turns on the power of SEM.

2 TestEngineer turns on the power of Simulator.

3 <<CreateLogEntryAction>>TestEngineer records the initial state of SEM.

4 < <CreateLogEntryAction=>TestEngineer records the initial state of Simulator.

Postcondition SEM is turned on. Simulator is turned on.
(Test Oracle)

Basic Flow Steps
(Test Sequence) 1 < <CreateStimulusAction= >TestEngineer uses Simulator to simulate the OpenValve command.
"< <Sequence>>pass' v) : .
2 <<Procedurelnvocation> > INCLUDE TC SPEC <<TestDesigninput>>5SimulateOpenyalve. iy
3 < <ExpectResponseAction> >TestEngineer VERIFIES THAT the OpenValve signal received by Simulator is
correct.

4 <<CheckPropertyAction>>TestEngineer VERIFIES THAT the openning time is within the allowed threshold.
<< CreateStimulusAction> >TestEngineer uses Simulator to simulate the CloseValve command.
6 <<=<Procedurelnvocation> = INCLUDE TC SPEC <<TestDesigninput>>5SimulateCloseValve iy

< <Parallel> > < <CreateStimulusAction> > TestEngineer uses Simulator to simulate the OpenValve command
7 MEANWHILE < <CreateStimulusAction=>TestEngineer uses Simulator to simulate the pressure variation in the
neighbouring gate valve actuator is above 61 bars.

<< Procedurelnvocation= > INCLUDE TC SPEC <<TestDesigninput> >5SimulateOpenyalve &
<< Procedurelnvocation> = INCLUDE TC SPEC < <TestDesigninput>>5SimulatePressureVariation iy
10 <<CheckPropertyAction=>TestEngineer VERIFIES THAT SEM initiates emergent shut-down.

Postcondition < <TestSetArbitrationSpecifications>The test is passed.
(Test Oracle)

Bounded Alt. Flow RF5 < <5equence>>pass 3-4,10
(Test Seque-nce) i 1 <<CreatelLogEntryAction=>TestEngineer reports a failure.
"< < Alternative> >fail" v 2 ABORT
Postcondition < <TestSetArbitrationSpecifications > The test is failed.
(Test Oracle)

Figure A.25 - test design input TestOpenValve

A4.4 Generation of Test Sets and Abstract Test Cases

By taking the test design inputs as the input, the test generator of RTCM [3] automatically generates abstract test
cases, as shown in the figure below. Based on different coverage criteria, from the test design input of
TestOpenValve, the generator can generate three test sets, which contain various numbers of abstract test cases.

UML Testing Profile 2 (UTP 2), Version 2.2 221

¥ [Subsea Production System.rtem *
v “3 <o TestContext=>SubseablectronicModule (SEM)
< branchesOfModel (0)
¥ < modelElements (5)
F [5] <<TestConfiguration==Test Setup
v E <cTestDesigninput>=TestOpenValve
b < basicFlow
preCondition (null)
briefDescription
extendSpecs (0]
includeSpecs (3)
testSetuplink
< alternativeFlows (1)
<+ branchSpecs (3)
v |T£*| <= TestSet==AbstractTestCases (All Condition)
¥ < branches {4)
¥ & <<TestCase-=Pass
P < steps (10)
b Bz =<TestCases=Fail
b B =<TestCases=Fail
b Bz =<TestCases=Fail
v |T£*| <= TestSet==AbstractTestCases (All FlowOfEvents)
¥ < branches {2)
b = <ccTestCase-=Pass
b Bz =<TestCases=Fail
v |T£*| <= TestSet==AbstractTestCases (All Steps)
¥ < branches {2)
b = <ccTestCase-=Pass
b Bz =<TestCases=Fail
| E << TestDesigninput>=>SimulateOpenvalve
[E <= TestDesigninput>>SimulateClose\Valve
b E == lestDesigninput>=SimulatePressureVariation
% TestEngineer

v
L

LEREE SR CR

4 ¥ YvYY

Figure A.26 - Generated test sets

The automated generation is possible due to the fact that use case specifications in RUCM and test case
specifications in RTCM can all be formalized as instances of the UCMeta [2] and TCMeta [3][4] metamodels
respectively. Paths can then be automatically generated from formalized specifications/paths by following various
coverage strategies (e.g., All Sentence Coverage and All FlowOfEvents Coverage).

One example of the abstract test cases generated from the test design input of TestOpenValve is provided in the

figure below for reference. The step marked with the red color means the step failed. The step marked with the
Green color means the step passes.

222 UML Testing Profile 2 (UTP 2), Version 2.2

Sirmulator Simulaces the OpenValve cormmand.

T } Sirmulater fendd e semulated OpenValve command o SEM
-'_|' TéestErgineer VALIDATES AT the Dis] i s b ol P e
HE rg VALIDATES AT the OipenVabve comimand if properdy simulated.
B TeitErngineer VALIDATES THAT the Openvabve command is properly sent by Smulator to SEM

3 TestEngineer reports a failure

ABORT

Figure A.27 - An Example of a generated abstract test case XE "abstract test case"-

A4.5 References

[1] Tao Yue, Lionel Briand, and Yvan Labiche, “Facilitating the Transition from Use Case Models to Analysis
Models: Approach and Experiments”, in Transactions on Software Engineering and Methodology (TOSEM),
Volume 22, Issue 1, 2013.

[2] Tao Yue, Lionel Briand, and Yvan Labiche. "Toucan: an Automated Framework to Derive UML Analysis
Models From Use Case Models.", in ACM Transactions on Software Engineering and Methodology (TOSEM) 24,
no. 3 (2015).

[3] Tao Yue, Shaukat Ali, and Man Zhang. Applying A Restricted Natural Language Based Test Case Generation
Approach in An Industrial Context, in International Symposium on Software Testing and Analysis (ISSTA)., 2015.
[4] Man Zhang, Tao Yue, Shaukat Ali, Huihui Zhang and Ji Wu. “A Systematic Approach to Automatically Derive
Test Cases From Use Cases Specified in Restricted Natural Lan-guages”, 8th System Analysis and Modelling
Conference (SAM), 2014

UML Testing Profile 2 (UTP 2), Version 2.2 223

A.5 ATM Example

A.51 General

This annex contains the Banking example introduced in the earlier version of UTP [UTP1.2]. The following model
has been updated for the current UTP standard. It shows how to utilize UTP, version 2, to specify test models for
unit level tests, component level tests and system tests.

The given example is motivated by an interbank exchange scenario in which a customer with an EU Bank account
wishes to deposit money into that account from an Automated Teller Machine (ATM) in the United States. The
figure below provides an overview of the architecture of the system. The ATM used by this customer interconnects
to the EU Bank, through the SWIFT Network!, which plays the role of a gateway between the logical networks of
the US Bank and the EU Bank.

i
SWIFT Network

EU Bank Network

US Bank Network

-

US Bank Client EU Bank Client

Figure A.28 - Overview on the InterBank Exchange Network (IBEN)

The figure below shows the UML system model? of the InterBank Exchange Network. In the model, five UML
packages called ATM, Bank, SWIFTNetwork, HW Control and Money are provided. The dashed arrows between the
packages show their import dependencies.

The following sub-sections demonstrate the use of UTP 2 for:

. unit test modeling on Money classes (Subsection 2);-)
. integration test modeling of the components 4A7M, HWControl and Bank (Subsection 3);-and-)
. system test modeling of IBEN system (Subsection 43)

I SWIFT = Society for Worldwide Interbank Financial Telecommunication
2 The diagrams of this example are modelled in Papyrus.

224 UML Testing Profile 2 (UTP 2), Version 2.2

[ATM ™ HWContro

P9 mank "uf,l"

M = ===

[Maney

i
B sWiFThemwork |y PRy

Figure A.29 - Packages of the InterBank Exchange Network (IBEN) System Model

A.5.2 Unit Test Example

This sub-section illustrates the use of UTP version 2 in order to define unit test level test cases. It reuses and extends
the Money and MoneyBag classes provided as examples of the well-known JUnit test framework ([JUnit_web],
[JUnit_Example]).

Before starting modeling tests, the test item is first explained. The figure below shows the package Money (blue
color) which will be tested.

[atm !"_H-u'.l::v".l-:li

:'_‘__ Bank III"II

5 iy '|"|I|'

!'|Sn="-'u'..~:\-'n| '.';,l' __..-"'-;

Figure A.30 - Package Money with Test Items for Unit Test of IBEN

The figure below shows the classes defined in the package Money?. It shows an interface class called IMoney, which
is realized by the class Money, and class MoneyBag.

3 Even though the naming of the package Money and of the class Money may lead to misunderstanding, the definition of the
example provided by www junit.org. is still used

UML Testing Profile 2 (UTP 2), Version 2.2 225

Tln_urfar_-u-
£ ivoaney

B + tamount: integer [1]

+ iCurmency: Strimg [1]

ﬁ + pquals] in m: IMonery): Boclean

|:| Moy

: MonoyBag

B+ tAmgunt: Imeger [1]
& + fCurrency: String [1]

B + famount: integer (1]
=+ TQurrency; String [1]

.ﬁ + Money| in amount: Integer, in Currency: String)
{8 +addl in m: Monayl: Monay
{8 +equals(in m: Maney): Boalean

{8 +comains{ in m: Money): Boclean
{8} +equalsi in m: Money): Boolean
{8 +addl in m: Money): Maney

Figure A.31 - Classes in Package Money in IBEN Modell

The ATM uses these classes in order to count the bills entered by a user when making a deposit in cash. Two test
requirements are defined:

. Verity that the Money class is appropriately counting the bills added by the user, when bills from the same
currency are entereds:.
. Verify that the Money and MoneyBag classes are appropriately recognizing the bills added by the user

when bills from different currencies are entered.

The figure below shows the test configuration between the test component named unitTestComponent and the test
items called myMoneyl and myMoney?2 of class Money and myMoneyBag of class MoneyBag. The test configuration
is modeled as UML Collaboration in order to be able to apply as CollaborationUse to the test cases.

wlall e Wt iahe
42 UninTasl_TestConfiguratan

sTesiems
+ myMoneyBag: Moneylag [1

= Tstlompones=

i ® unitTeatComponent: Manay_TeutComsseant [1]

aTesiigme

4+ myllonay1: Manay [1]

C_rryhiostyiag

Comvylonay |

Cmybionayd

i
aTgisteme
B+ mynoneyds Money [1]

Figure A.32 - Unit Test Configuration

The figure below shows the application of the unit test configuration to the test case addSameMoney TC. By using
the UML CollaborationUse the binding between the test configuration and the test case is guaranteed.

226 UML Testing Profile 2 (UTP 2), Version 2.2

aTestCases
J addsameMoney_TC

i* 4 theTestConfiguration: UnitTest_TestConfigury

Figure A.33 - Use of Test Configuration for Test Case AddSameMoney_TC

The figure below shows the test context of the unit test UnitTest Banking Example. Class Money is the item to be
tested. It is defined in package Money which is imported from the system model. The package must be imported in
order to get access during test execution. The test requirements approveAddSameMoney and
approveAddDifferentMoney should approve that the addition of two money objects returns an object of class Money
with the correct amount and currency. In the former requirement, money of the same currency will be added. In the
latter, money of different currencies are to be added. The test cases called addSameMoney and addDifferentMoney
verify the test test requirements.

STt lenls
UniiTer)_ Banking_Ex amgl

aTerrCases
aTent usas

LG Maney T
E e a4 Dvieianilaney_T)

Maney

T e

¢
wevrifese !
W v

sTautegumramants aTaatR eguiiaments

T
i
i
svarifioss 1

approvedddlamabiong P e A B0 Mo bl f

Figure A.34 - Test Context for the Unit Test

The figure below specifies the behavior of the test case called addSameMoney verifying the test requirement
approveAddSameMoney. In this test scenario, two objects of class Money are created, namely myMoney! with 20
USD and myMoney?2 with 50 USD. Afterward, myMoney2 is added to myMoney!. The result is sent back to the test

component for approval.

UML Testing Profile 2 (UTP 2), Version 2.2 227

aTesilases
] sd: pdgSamertoney TC

| :"' wnit TestComponant:Money, TestComponent

-3 Motsylasount = 30, Curency = USDH —
e S)i T Fyhanay Ly |

» Mgsgpamount = 50, Curtensy = Eura)

aCreptastimulutAstions
_'* Bodim = aryhloney2): IMoney

- -
g

1
i
1 -
J)l T myssoney2-Money
1
i
1
1
1
1

i s ExpactIpipanidfetian =
Dﬁ‘“{' S TR ————
Ty,
T o mOCEmi: IOy
-

i

]

[]

1 s[apectiliigansels tans
] sapac tedElemant={]
]

]

i

arbiratisnSpeciication =arbiraticaSpacification_sddhionty

Figure A.35 - Test case addSameMoney_TC

The correctness of the response is checked in either the default arbitration specification*, or as in this case, by the
user-defined arbitration specification called arbitrationSpecification_addMoney. Finally, the figure shows that in
case the result of add() is 70 USD, the arbitration specification sets the test verdict to Pass, otherwise to Fail.

arbitratonSpecification_add™oney
{ailed
eddi{Money] [Moneylamount [= 70) OR Money({Currency [= USD)) | verdict = “fail” —

add{Money} [Moneylamount = 70) AND Money(Currency = USD)] | verdict = “pass”

Figure A.36 - User-Defined Arbitration Specification

The second test requirement approveAddDifferentMoney is verified by test case addDifferentMoney (see figure
below). For this test case, a third test item of class MoneyBag is needed in order to be able to distinguish money of
different currencies. This test case uses the default arbitration specifications that should be provided by the tool
vendor.

4 The default arbitration is provided by the tool vendor.

228 UML Testing Profile 2 (UTP 2), Version 2.2

aTeICIe=
7] sat: sonDimeranieney, TG

I 1! i TeCemesnese |

]
i
i
1
: .. P —.-. T oty T A Orelty
1
i 1 [
| i 1
: 1 [
[
1 Creae ! L ~] =
' | L e P My ieg
1 1 [
1 i i
| s reateiminuiyListions [
i ey
W ma:-"': = Py ARy 1 | MDY . »
1 i
1 [
= Creatdinmiby shction = ! >
-
: "‘ (] = evpldgnry 21 IMGOEY :
i
1 ! i
1 i i
1 1 1
d ' i -
i Erpaeilisu inse . :
i NP EI EE : >
'_' petai|n m 1-'?\-1' = myhfcrgy 10 Besiean
i i
[
-Ln:rw:#aw-u-\-nh:-oﬂ- ¥
i L] 1Dl [} L]
1 i I i
1 i I i
: . :ﬂaul!ﬂ.-u_l.u:l:m- : -'_:_
B comans nin = myboney 2 Bockan :
i [
R ReipStaalilaf = [}
- e L
= }
[
[
[
[
[
[
[

-4: {erued

Figure A.37 - Test Case AddDifferentMoney

A.5.3 Integration Testing Example
This section illustrates how UTP 2 can be used for specifying tests at integration test level. The main focus of
integration testing is the communication of the test item and its test components.

The test requirements are to verify the logic of the ATM machine when a user initiates a money deposit transaction
to an account in another part of the world. Thus, the test requirements include:

. The hardware terminal (HWControl) provides user’s card and user’s pin-code. The ATM shall authorize
this card and its pin-code.
. After a successful authorization of user’s data, money shall be deposited into the bank. The ATM shall

assure a correct transaction communication with the Bank.

Since the logic of ATM itself is being tested, the rest of the IBEN (i.e. HWControl, Bank, and SWIFTNetwork) shall
be emulated. The figure below shows the test items of blue color.

UML Testing Profile 2 (UTP 2), Version 2.2 229

B amu

"] HWCamred

[Monay i

i"'_'_________

T
[

[

[

7 S THetweors ||;f

Figure A.38 - Test Items for Integration Test of IBEN

The logic of the ATM is specified in the figure below. It imports both the HWControl and the Bank packages where
only the interfaces to the hardware and the bank are needed. Component 4TM controls the logic of ATM and is the
test item for our integration test. It provides the /4 TM interface for the control logic and communicates with the
hardware and the bank via interface. Since the hardware and the bank are emulated in the test, only the interface
classes of the HWControl and Bank packages are needed (see the following three figures).

230

almtariasen

B atm

ﬁ + withdraw| in amount; IMongy): Boolgan
ﬂ + deposit] 0 amount: IMangy]: Boolean
.ﬁ. + isPinCarrect in & Integer): Baslean

lﬁ + selectOperation(in op: OpKind): Boolean
{§ + storeCardDatal in ¢: CardData)

@ + storeSWIFTHumber{ in bd: String, in Bccount: String)

aEnumarations
[E] OpKind

=] withdrawhMondy
= getBalance
=] wiraManey

E:I CardData

=] + pinCode: Integer [1]
£ + cardMumber: String [1]

8§ +isPinCorrect(in ¢ Integer): Boslean

Figure A.39 - Classes and Interface in Package ATM

UML Testing Profile 2 (UTP 2), Version 2.2

almierfaces
2 1Rnk

-ﬁ + findAccount] in ¢ CardData, owt result: Siriny

@ + checkCreditials! in account: String, out result: Boolea

a + debithocountl in account: String, in amouwnt: IMoney, ouwt result: Boole
-ﬁ + deposithccount] in sccount Siring, in amount IMoREy, oul resule Baole

nﬁ» + wareManed in amaunt IMoney, 6 wrge: Srieg, b atcount: Sering, out result Bool

Figure A.40 - Interface Class in Package Bank

sInterfaces
IHardware

rﬁ + getstatus{ out result: Boolean)
ﬁ + gjectMoney in amount: IMoney
ﬁ + acceptMoney(out result: IMoney
ﬁ + displayl in message: String

ﬁ + eject] out result: Boolean,

rﬁ + getTransactioninfo{ inout account: String, inout bic: Strir

Figure A.41 - Interface Class in Package HWControl

The figure below shows the test configuration of the test. It specifies the relationship between the test item, the

emulated test components for the hardware and bank (Aw and be), and a card data management component (card).

aCollaborations
<0 ImegratisnTesr_TestConfiguration

aTElEie 1 7 aTERI oM EDREil=
B« atm: ATM [1]) £« b HWEmulator [1]
C_Emulator
1
i Bank
1
aTetComporants 1 B = card: CardData [1])
= + be: BankEmulator [1]
= = ankEmulator [1 C_CardData

Figure A.42 - Integration Test Configuration

The figure below shows the binding of the test configuration to test case invalidPIN TCI.

UML Testing Profile 2 (UTP 2), Version 2.2

231

alestCases
Q invalidPIN_TC

= + theTestConfiguration: integrationTest_TestConfiguration|

Figure A.43 - Binding of Test Configuration to Test Case invalidPIN_TC

The ATM integration test package (see figure below) shows the model elements necessary to specify integration
tests. It imports the ATM package of the system model in order to get access to the elements to be tested. The
package contains two test components: BankEmulator and HWEmulator and three testcases: validWiring,
invalidPIN, and authorizeCard. The test components BankEmulator and HWEmulator realize the interfaces of the
HWControl and Bank packages and serve as emulators in order to communicate with the ATM.

=TesbComents
[ntegratonTes Baning Examos
=TesiCases aTedrluies aTautlang=
] rnealiaPe_TC] vasawining TG ; ButhesizeCand
[it}
T - : E]
' n A
avirifigin ! " E
: avtris S rifess
¥ N P
STusiRequinmans = Feutiteguraments
=3 Sprarutharkoation] apcesveTrarsmenon
3 Moy
Ll =t
e T o
aTanslameengnte :I::l!l?ofnpcl--n!- ——
o HaEmuaer o BamicEmiiaras - _I:-IM:_'.-
B tAocoust
|+ pin0: Baskeas (1)
i+ enereatin: Strng (1] R —
j o+ maidasge: Srring (1] BCOOUTIE
11 mani

Figure A.44 - Test Context for Integration Test

The following section only concentrates on the modeling of the test case invalidPIN, which approves the
requirement of a correct authorization mentioned on earlier. The objective of this test is:

e Verify that if a valid card is inserted, and an invalid pin-code is entered, the user is prompted to re-enter the
pin-code.

Behaviors of a test case can be specified using any UML behavior Diagrams (e.g. Interaction Diagram, State
Machine, Sequence Diagram etc.). In this case, UML Sequence Diagram has been chosen (see figure below).

The signals between the test components are all stereotyped by UTP 2 actions (e.g. <<CreateStimulus-Action>>).
By doing so, the default arbitration specifications are activated and it is assured that unexpected behavior is caught
within the arbitration specifications. In parallel, the setting of test case verdicts is also done in the arbitration

232 UML Testing Profile 2 (UTP 2), Version 2.2

specifications. The response time of isPinCorrect should last no more than 3 seconds, otherwise the arbitration
specification <<ExpectResponseAction>> will be carried out.

aTgstCasgw
b= | 8d: invalidPIN_TC

b HWE ... 5 atmeATa

L2 carg:cardData

aCraataStimulusActions

f., storaCardDatalc: CardData)

= ExpectResponsedctions

#-- display_message(myMessage: String)

aCrgateStimulusActions

. SR

fgll @0 alreateStimulusAction=
' & isPinCorrect()
i & isrinCarrect(0)
1
!
E H sExpectResponseActions
T R -
i #&-- isPinCorrectifalse)
i
i i sExpectResponsehctions
T e

& .- isPinCorrectifalse)

aExpectResponsaActions

- display_message(“invalid PIN)

|

1

- i
s ExpactResponseActions [

i

i

i

i

1

#-- display_massage|“Entar sgain®)

Figure A.45 - Test Case invalidPIN_TC

In many cases, there’s a need to specify the detailed behavior of individual test components (e.g., for test generation
purposes). Therefore, state machines provide good means. The figure below shows an excerpt of test behavior for
the HWEmulator test component which corresponds to test case invalidPIN _TC. The validation action
<<ExpectResponseAction>> evaluates the test result and sets the test case verdict.

UML Testing Profile 2 (UTP 2), Version 2.2 233

=TestComponent=
HWEmulator_SM

§ storeCardData

WaitMessage

<<expeciResponseAction s> displayRlessage|message) [(messsge=s"Enter PINY] | PinCorrectentersdPiN)

[checeMossage)

<gupectResponseActions> EPinCorrectjenteredPiN] [pinOK==true]

Figure A.46 - Statemachine for the Hardware Emulator

A.5.4 System Test Example
This chapter shows the UTP2 model for system level tests. The test model shows an interbank exchange scenario
where a customer with an EU bank account deposits money into his/her account from an ATM in the United States.

[AT) A Comral

e

B sy I

- - - - 1
.

;

]

i

L1

L1

[P SWIFTHetwork

Figure A.47 - Packages with Test Items for System Test of IBEN

In order to perform the system testing of IBEN, all the five packages in the system model are needed. The packages

234 UML Testing Profile 2 (UTP 2), Version 2.2

ATM, Money, and HWControl are known from the previous examples. The figure below illustrates the contents of
the Bank package. The /Bank interface provides methods to find, credit, and debit accounts. It checks credentials and
wires money from one account to another. The /4ccount interface also provides operations to credit and debit
accounts, in addition to checking the balance of an account.

sinteriaces
2 mank

+ wirghiongy{ in amount: Ioney, in target: String,
+ checioCreditials] in accound: Stringlc Boolean

+ debitAcoouni] n account: String, in amount: IMoney: Boolsan
+ depositAosoum] in accoant: Saring, in amount: iMoneyl: Boolean

H
@ + findAccount] in c: CardOata): String
&

i peoount: Sering): Boclaan

wintprigces
B Mecoust

.m + eheckBalance(l: Money

{8 +credinl in amouns: Monayl: Boolean
8 +debi{ in ameunt: Money): Boolean

aComponants

2] Bk

L]

[banik_Port: Moy 1]

B+ swiftPort: ISWIFT 1]

E o+ eccountPert: eceont [1]

Figure A.48 - Classes and Components in Bank Package

The figure below shows the content of the SWIFTNetwork package. The ISWIFT interface provides an operation to
transfer a given amount from a source account to a target account. Since system testing is a black-box test strategy,
only the communication between the interfaces is of interest.

alttaripies
EE igwiFT

ﬁ- + iranEher] @0 sounteAcent: Saring, A lasgeiAscat: StHing, in amowst: Maneyl: Baclasn

aDplaTypes
_'_B:-: SWIFTIA

sComponents P
= | SAFTHetwork

-+ M_Bar: ISWIFT [1]

4 _port: ISWIFT [1]

Figure A.49 - Classes and Components in the SWIFTNetwork Package

For the system testing, the following test requirements are defined:
1. EU and US initiated transactions must behave correctly.
2. Money can be transferred remfrom an US account to an EU account, and vice-versa.
3. An invalid transfer should be identified and canceled.
4. The system should handle up to 1000000 transactions in parallel without system failure.

The figure below shows the system test context. The test items are the SWIFTNetwork, the US and EU Banks, and

the ATM systems. Three test cases called runUSTrxn, runEUTrxn and loadTest are specified in this test context. The
test cases runUSTrxn or runEUTrxn approve that a transaction that is initiated from the US ATM will be transferred

UML Testing Profile 2 (UTP 2), Version 2.2

235

to the EU Bank, or vice versa. The test case loadTest verifies a non-functional test requirement. It shall approve that
IBEN behaves correctly even by high transaction requests. Two additional test components called
TransactionController and LoadManager provide the capability to execute and verify that the money is transferred

correctly.

aTpsiComigate
1 Syt emTadt_Baskingfuespie

sTpsCare e . gy X
LT aTeapbompanents
o] TressarreaCanirober

EL, = plHardwans: Hardeare (1) — l!]
B+ pRATRE LATM [1] [SwAF T hitwer

-1 = o USTesnDasa (1)

o prAocouss LADCowet [1] ":T:r"?—?‘
aTashTasde ﬂ
1 £ Bamic
= ruseuten e o T
aTadECernEaatie
B+ g EUFranDana [1] o] lnac s o

— 9 wrwConnpd L]

o

aTestCapgs
sy bAREAT aTeriHegu rampnts
- | LowaTesrmegaineme

=mpents

F-- -

Figure A.50 - System Test Context

The test configuration is illustrated in the figure below. The TransactionController drives both ATMs on the
European and US sides and is used to represent the accounts for both the US and EU banks. The LoadManager

provides and controls the workload of the load test. It has access to the test data in the SystemTestDataPool.

=Collaborations
00 BystemTeat TestConfiguratian

J— =Tgsthgms = Testiems
U 4 ggBaeic Bank [1] [+ mebwork: SWIFTRatwork [13 Bl + wsBank: Bank (1]
=] 1 .
1
1 1 1 1 T
5 i
aTailngms = Testitems
B+ puATM: ATM (1] 53+ upATM: ATM [1]
1 1
1 1 L

1 E + v TranssctnController [1]

1
1

Ed +da: SystemTastDataPesl [1) - M bt k]

Figure A.51 - System Test Configuration

236 UML Testing Profile 2 (UTP 2), Version 2.2

The figure below shows data used for the system test. 7TrxnData defines the transaction data.

i = phppenr. fareg |1
= . P 1]
i o= it MaAEy (1]
i = taxd0etia: Cardleta 1]

e — prrer—

L Trealis BTl
+ Bccount: String [¥] # + BEEawnt Barieg [1] 4|
+ balmace: imteger V]] + RS e 1] 3
& gmgunr gRapy 1) # a gl Wiy (1] !
» daeiiati Carieta (1) [#] = Easdlta: CardOata [1])

. .

“sDalabidin
e e

« Bt B TremDaa [1]

i+ BV EUTresDanta [1]
3+ USH USTanDets {1
+ USZ: USTranCuts 1)

Figure A.52 - Test Data and its Variations

The data pool SystemTestDataPool contains instances of TrxnData called EUI, EU2, USI and US2 (see figure
below. Two data partitions are defined in order to distinguish the EU transactions from the US transactions. These
data partitions are chosen from the data pool and have two data samples each. Data instance EU/ is shown in the
diagram explicitly by all its attribute values®. Another data instance called Fred defines a modification of EU1,

where 500 override the balance of 10000.

3 This diagram only shows the data values of EU1. Those of EU2, US1 and US2 are equivalently defined.

UML Testing Profile 2 (UTP 2), Version 2.2 237

[L] Fred: TrunData

balance : Integer = 500

=0vitiidais

[} Amount_EUT: Money

[ELN: ERRTracdData

tAmount ; Integer = 3500
tCurrengy ; @ring = EU

accound @ String = Fred

calance ; ager = 10000

amount : Money = Amount_EU1
cardDats : CandDats = CarsData EUY

@ CardData EU: CardData

plnCode : integer = 12346
cardMumber ; String = DEGT29102837

=] EU2: EUTranData

account & String = Watson

Ealancs : integer = 10000

amoasnit - Money = Amount_EU2
cardDate ; CordOute » ChrdDats EUT

[] Amount_EL2: Money

[CardData EU: Cardluata

el WS1: USTranData

sccowni : String = Fred
Ealanc : Integer = 10000

amount : Money = Amount_US1
caraData ; Cord0ate = CardData i

G USZ: USTranlata

sccount : String = Barbara

Balancd : integer = 10000

amount : Money = Amount_LUS2
cardDats ; CardDate = CasdData ST

] Amount UG T Moty

(2 CardiData &1 CardData

[Amsant U532 Mosey

[CordDuta_USE: CardDuts

Figure A.53 - Data Instances and its Modification

The figure below illustrates the behavior of test case loadTest which shall verify the test requirement 4 listed above.
This test case shall approve that minimum 100 and maximum 1000000 transactions can be successfully handled in
parallel. The LoadArbitrationSpecification will assure that whenever a transaction fails, the whole test will fail.

238 UML Testing Profile 2 (UTP 2), Version 2.2

aTedrCaies
[eFiCaseAs s LoadArpsarationSoechicaton |
] nat: icaatestTc

o

"b' aarTais]

N

|

(] 100, yoocooai 1)

e o |

! |]
' 1
1 1
H]
H [
r i
H i
|]
' .
]
H [
i | LI
[' n
H i i
i |]
: 1 i
H 1 i
: =iy ,.I ! 1
1 i [
r - i [
! [£] wuncetinea) H
I i i
i — i T
H] Rl I 1
H 1 i
' 1 FurELifren TE !
1 1 1
H i I i
H] [1
¥] ! (]
R B i g S -
H [1_| [urededinad] i ! []
1 !]
1 - ; f
1 [
: L] i i i
1 1 ! i
] i w?nm_m i
1 i
: T T T
i 1 [[
H 1 !]
H 1 I i
H i I M
H [: [
[i
: : 1 :
W J L]

Figure A.54 - Test Case loadTest

A.5.5 References

[UTP1.2] Object Management Group: "UML Testing Profile, version 1.2", OMG Document Number: formal/2013-
04-03

[JUnit_Example] http://junit.sourceforge.net/doc/cookbook/cookbook.htm

[JUnit_web] www.junit.org

UML Testing Profile 2 (UTP 2), Version 2.2 239

This page intentionally left blank.

240 UML Testing Profile 2 (UTP 2), Version 2.2

Annex B (Informative): Mappings

B.1

Name
ActualParameterValue

ActualResponseLogEntry
Alternative
AlternativeArbitrationSpecifica
tion

AnyValue

ArbitrationDirective
ArbitrationResult
ArbitrationSpecification
ArbitrationSpecificationBindin
g

ArbitrationTarget
AtomicProceduralElement

AtomicProceduralElementArbit
rationSpecification
AtomicProceduralElementLogE
ntry

BoundaryValueAnalysis
CauseEffectAnalysis
ChecklistBasedTesting
CheckPropertyAction
CheckPropertyArbitrationSpeci
fication
CheckPropertyLogEntry

ChoiceOfValues
ClassificationTreeMethod
CollectionExpression
CombinatorialTesting
ComplementedValue
Complements
CompoundProceduralElement
CompoundProceduralElementA
rbitrationSpecification
CreateLogEntryAction
CreateLogEntryArbitrationSpec
ification
CreateLogEntryLogEntry
CreateStimulusAction

CreateStimulusArbitrationSpeci
fication

CreateStimulusLogEntry
DataPartition
DataPool

UML Testing Profile 2 (UTP 2), Version 2.2

Mapping between UTP 1 and UTP 2

The following table summarizes the changes on stereotypes of UTP 2 compared with UTP 1.2:

Change from UTP 1.2
«ActualParameterValue» was newly introduced by UTP 2.1.

«ActualResponseLogEntry» was newly introduced by UTP 2.1.
«Alternative» has been newly introduced by UTP 2.
Newly introduced by UTP 2.

Changed and renamed from UTP 1.2. In UTP 1.2, «AnyValue» was called
«LiteralAny» and extended LiteralSpecification.

«ArbitrationDirective» was newly introduced by UTP 2.2.
«ArbitrationResult» has been newly introduced by UTP 2.
«ArbitrationSpecification» has been newly introduced into UTP 2.
«ArbitrationSpecificationBinding» was newly introduced by UTP 2.2.

«ArbitrationTarget» was newly introduced by UTP 2.2.
«AtomicProceduralElement» has been newly introduced by UTP 2.
Newly introduced by UTP 2.

«AtomicProceduralElementLogEntry» was newly introduced by UTP 2.1

«BoundaryValueAnalysis» has been newly introduced by UTP 2.
«CauseEffectAnalysis» has been newly introduced by UTP 2.
«ChecklistBasedTesting» has been newly introduced by UTP 2.
«CheckPropertyAction» has been newly introduced by UTP 2.
Newly introduced by UTP 2.

«CheckPropertyLogEntry» was newly introduced by UTP 2.1.

«ChoiceOfValues» has been newly introduced by UTP 2.
«ClassificationTreeMethod» has been newly introduced by UTP 2.

«Combinatorial Testing» has been newly introduced by UTP 2.
«ComplementedValue» has been newly introduced by UTP 2.
«Complements» has been newly introduced by UTP 2.
«CompoundProceduralElement» has been newly introduced by UTP 2.
Newly introduced by UTP 2.

«CreateLogEntryAction» has been newly introduced by UTP 2.
Newly introduced by UTP 2.

«CreateLogEntryLogEntry» was newly introduced by UTP 2.1.
«CreateStimulusAction» has been newly introduced by UTP 2.
Newly introduced by UTP 2.

«CreateStimulusLogEntry» was newly introduced by UTP 2.1.
«DataPartition» has been newly introduced by UTP 2.

Changed from UTP 1.2. In UTP 1.2 «DataPool» extended both Classifier and
Property.

241

Name

DataProvider
DataSpecification
DecisionTableTesting
EquivalenceClassPartitioning
ErrorGuessing
ExpectResponseAction
ExpectResponseArbitrationSpe
cification
ExperienceBasedTechnique
ExploratoryTesting

Extends
FormalParameterReference
GenericTestDesignDirective
GenericTestDesignTechnique
InvocationLogEntry
InvocationLogEntryStructure
Loop
LoopArbitrationSpecification
MatchingCollectionExpression
MessageEventLogEntry
MessageEventLogEntryStructur
e

Morphing
Negative

NegativeArbitrationSpecificatio
n

NSwitchCoverage
OpaqueProceduralElement
OpaqueProceduralElementLog
Entry

overrides

PairwiseTesting

Parallel

Parallel ArbitrationSpecification
ProceduralElement
ProceduralElementArbitrationS
pecification
Procedurelnvocation
ProcedurelnvocationArbitration
Specification
ProcedurelnvocationLogEntry
ProcedurelnvocationLogEntryS
tructure

RangeValue

Refines

RegularExpression
RoleConfiguration

Sequence
SequenceArbitrationSpecificati
on

StateCoverage

242

Change from UTP 1.2

«DataProvider» has been newly introduced by UTP 2.
«DataSpecification» has been newly introduced by UTP 2.
«DecisionTableTesting» has been newly introduced by UTP 2.
«EquivalenceClassPartitioning» has been newly introduced by UTP 2.
«ErrorGuessing» has been newly introduced by UTP 2.
«ExpectResponseAction» has been newly introduced by UTP 2.
Newly introduced by UTP 2.

«ExperienceBasedTechnique» has been newly introduced by UTP 2.
«ExploratoryTesting» has been newly introduced by UTP 2.
«Extends» has been newly introduced by UTP 2.
«FormalParameterReferenece» was newly introduced by UTP 2.1.
«GenericTestDesignDirective» has been newly introduced by UTP 2.
«GenericTestDesignTechnique» has been newly introduced by UTP 2.
«InvocationLogEntry» was newly introduced by UTP 2.1
«InvocationLogEntryStructure» was newly introduced by UTP 2.1
«Loop» has been newly introduced by UTP 2.

Newly introduced by UTP 2.

«CollectionExpression» has been newly introduced by UTP 2.
«MessageEventLogEntry» was newly introduced by UTP 2.1.
«MessageEventLogEntryStructure» was newly introduced by UTP 2.1.

«Morphing» has been newly introduced by UTP 2.
«Negative» has been newly introduced by UTP 2.

Newly introduced by UTP 2.

«NSwitchCoverage» has been newly introduced by UTP 2.
«OpaqueProceduralElementy has been newly introduced by UTP 2.
«OpaqueProceduralElementLogEntry» was newly introduced by UTP 2.1.

«overrides» was renamed by UTP 2. In UTP 1.2, it was named «modifies».
«PairwiseTesting» has been newly introduced by UTP 2.

«Parallel» has been newly introduced by UTP 2.

Newly introduced by UTP 2.

«ProceduralElement» has been newly introduced by UTP 2.

Newly introduced by UTP 2.

«Procedurelnvocation» has been newly introduced by UTP 2.
Newly introduced by UTP 2.

«ProcedurelnvocationLogEntry» was newly introduced by UTP 2.1.
«ProcedurelnvocationLogEntryStructure» was newly introduced by UTP 2.1

«RangeValue» has been newly introduced by UTP 2.
«Refines» has been newly introduced by UTP 2.
«RegularExpression» has been newly introduced by UTP 2.
«RoleConfiguration» is newly introduced in UTP 2.
«Sequence» has been newly introduced by UTP 2.

Newly introduced by UTP 2.

«StateCoverage» has been newly introduced by UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.2

Name
StateTransitionTechnique
SuggestVerdictAction
SuggestVerdictArbitrationSpeci
fication
SuggestVerdictLogEntry
TestCase

TestCaseArbitrationSpecificatio

n

TestCaselog

TestComponent
TestComponentConfiguration

Change from UTP 1.2

«StateTransitionTechnique» has been newly introduced by UTP 2.
«SuggestVerdictAction» has been newly introduced by UTP 2.
Newly introduced by UTP 2.

«SuggestVerdictLogEntry» was newly introduced by UTP 2.1.
Changed from UTP 1.2. «TestCase» extended Behavior and Operation in UTP
1.2.

Newly introduced by UTP 2.

Newly introduced by UTP 2.
Changed from UTP 1.2. In UTP 1.2., «TestComponent» only extended Class.

TestConfiguration

TestConfigurationRole
TestContext

TestDesignDirective
TestDesignDirectiveStructure
TestDesignlnput
TestDesignTechnique
TestDesignTechniqueStructure
TestDirective
TestDirectiveStructure
TestExecutionSchedule

Testltem

TestltemConfiguration
TestLog

TestLogElement
TestLogEntry

TestLogStructure
TestLogStructureBinding

TestObjective

TestProcedure

TestRequirement
TestSet

TestSetArbitrationSpecification

TestSetLog

TestTechnique
TestTechniqueStructure

UML Testing Profile 2 (UTP 2), Version 2.2

«TestComponentConfiguration» has been newly introduced into UTP 2.
«TestConfiguration» has been newly introduced into UTP 2. It was
conceptually represented by the composite structure of a «TestContext» in
UTP 1.2.

«TestConfigurationRole» is newly introduced in UTP 2.

Changed from UTP 1.2. In UTP 1.2 «TestContext» extended
StructuredClassifier and BehavioredClassifier as well as incorporated the
concepts TestSet, TestExecutionSchedule and TestConfiguration into a single
concept.

«TestDesignDirective» has been newly introduced by UTP 2.
«TestDesignDirectiveStructure» has been newly introduced by UTP 2.
«TestDesignInput» has been newly introduced by UTP 2.
«TestDesignTechnique» has been newly introduced by UTP 2.
«TestDesignTechniqueStructure» has been newly introduced by UTP 2.
«TestDirective» has been newly introduced by UTP 2.1.
«TestDirectiveStructure» has been newly introduced by UTP 2.1.
«TestExecutionSchedule» has been newly introduced by UTP 2. It was
conceptually represented as the classifier behavior of a «TestContext» in UTP
1.2.

«Testltem» has been newly introduced into UTP 2 and supersedes the «SUT»
stereotype in UTP 1.

«TestltemConfiguration» has been newly introduced into UTP 2.

Changed from UTP 1.2. In UTP 1.2 «TestLog» was used to capture the
execution of a test case or a test set (called test content in UTP 1.2). In UTP 2,
two dedicated concepts have been newly introduced therefore (i.e.,
«TestCaseLog» and «TestSetLog).

«TestLogElement» was newly introduced by UTP 2.1.

Changed from UTP 1.2. In UTP 1.2, «TestLogEntry» extended
OccurenceSpecification.

Newly introduced by UTP 2.

Newly introduced by UTP 2.

Changed from UTP 1.2. In UTP 1.2, «TestObjective» was called
«TestObjectiveSpecification».

«TestProcedure» has been newly introduced by UTP 2.

«TestRequirement» has been newly introduced into UTP 2.

«TestSet» has been newly introduced by UTP 2. It was part of the TestContext
in UTP 1.2.

Newly introduced by UTP 2.

Newly introduced by UTP 2.

«TestTechnique» has been newly introduced by UTP 2.1.
«TestTechniqueStructure» has been newly introduced by UTP 2.1.

243

Name Change from UTP 1.2

TransitionCoverage «TransitionCoverage» has been newly introduced by UTP 2.
TransitionPairCoverage «TransitionPairCoverage» has been newly introduced by UTP 2.
UseCaseTesting «UseCaseTesting» has been newly introduced by UTP 2.

verifies «verifies» has been newly introduced into UTP 2. In UTP 1.2 the «verify»

stereotype from SysML was recommended.

The three primitive data types including Timepoint, Duration, and Timezone are also removed from UTP 2.

The following stereotypes are also removed from UTP 2: «GetTimeZoneAction», «SetTimeZoneActiony,
«DataSelector», «CodingRuley, «LiteralAnyOrNull», and «TestLogEntry».

244 UML Testing Profile 2 (UTP 2), Version 2.2

Annex C (Informative): Value Specification Extensions

C.1 Profile Summary

The following table gives a brief summary on the stereotypes introduced by the UML Testing Profile 2 (listed in the
second column of the table). The first column specifies the mapping to the conceptual model shown in the previous
section and the third column specifies the UML 2.5 metaclasses that are extended by the stereotypes.

Stereotype UML 2.5 Metaclasses Concepts
ChoiceOfValues Expression data
CollectionExpression Expression data
ComplementedValue ValueSpecification data
MatchingCollectionExpression Expression e data

e data specification
RangeValue Expression data specification

C.2 Non-normative data value extensions

In addition to the normative ValueSpecification extensions of UTP, for sake of simplicity, UTP provides also some
more extensions as part of this non-normative annex. These kinds of ValueSpecifications are:

e Complemented: Represents a set of expected response argument values for a known type described by a the
complemented set of values described the underlying ValueSpecifciation and checks if actual response
argument value belongs to that set.

e RangeValue: Represents a set of ordered expected response argument values for a known type described by
its upper and lower boundaries. The Actual response argument value matches with each expected one if the
actual one belongs to the set defined by its boundaries.

e ChoiceOfValues: Represents a set of expected response argument values for a known type described by an
enumeration of values. The actual response argument value matches with expected one if the actual one
belongs to the set defined by the enumeration.

o MatchingCollectionExpression: Represents a set of expected response argument collection values for a
known type described by the members of the expected collection and the matching kind operator. The
actual response argument collection value match with the expected ones if the actual one belongs to the set
of collections values defined by members and the collection matching kind.

e CollectionExpression: Represents a collection value used for defining argument collection values for
stimuli or expected response values. If used as expected response argument collection value the actual
response argument collection value matches with the expected one if their respective members match with
each other. In case ordering is important, the members should also occur in the exact same order.

Implementations of the profile are free to decide how to incorporate and offer the non-normative extensions to the
users.

C.1.1 Overview of non-normative ValueSpecification Extensions

The diagram below shows some additional, non-normative extensions to the UML ValueSpecifications metamodel.
These UTP ValueSpecification extensions are deemed helpful for testers in order to be express data values used to
specify the payload for stimuli and expected responses. It is treated as non-normative extension nonetheless, because
all the given extensions could also be expressed by means of the OCL, which is considered as integral part of UML.
However, OCL imposes additional knowledge on the test engineers which may result in a reduced acceptance by the
industrial testing community. Therefore, this non-normative extension to the UTP provides dedicated concepts as
special ValueSpecifications which can be immediately used by the testers without knowing anything about OCL at
all. All these extended ValueSpecifications have been taken over from [TTCN-3] where they have been proven
beneficial for the design of executable test cases in the industry since many years.

UML Testing Profile 2 (UTP 2), Version 2.2 245

«metaclassy «metaclassy
ValueSpecification Expression
{Abstract}
4x’rends» «extendsy «extends» «extendsy
«stereotypen wstereotypen wstereotypen «tereotypen

{concepts = data}
ComplementedValue

{concepts = data}
ChoiceOfValues

{concepts = data specification}
RangeValue

maxinclusive : Boolean = "true’

{concepts = data}
CollectionExpression

«enumerationy
CollectionMatchingKind

subset
superset
permutation

/
minlnclusive : Boolean = “true \
1 1
1 1
\ max \/ min
«metaclassy «stereotypen

{Abstract}

ValueSpecification

{concepts = data,data specification}
MatchingCollectionExpression

matchingKind : CollectionMatchingKind [0..1] = subset'

Figure 9.8 - Overview of non-normative ValueSpecification Extensions

C.2.2

C.2.21
Description

Extension
Change from UTP 1.2

246

ChoiceOfValues

Stereotype Specifications

ChoiceOfValues represents an enumeration of possible
values defined for the payload of an expected response,
out of which at least one entry must match with the
payload of the actual response.

If a choice of possible values is used in a check
response data action, then the enumerated values denote
several possible check response data actions out of
which one possible value must match with the actually
received response data.

The list of possible values is expressed as the list of
ValueSpecifications composed by the underlying
Expression’s operand attribute. As defined above, any
available ValueSpecification can be enumerated as
choice of possible values.

As a recommendation, ChoiceOfValues must either be
only in check response data actions in test cases or for
test generation. It is highly recommended to not use
ChoiceofValues as payload for create stimulus action
for it may negatively affect the repeatability of test case
executions.

Expression

«ChoiceOfValues» has been newly introduced by UTP
2.

UML Testing Profile 2 (UTP 2), Version 2.2

C.2.2.2 CollectionExpression

Description

Extension
Sub Class

A CollectionExpression enables the modelling of collections based on the
ValueSpecification metaclass Expression. Using collections values is essential when
specifying stimuli and expected responses of a test case. By means of the stereotype
«CollectionExpression» it is possible to describe inline values for a given
ConnectableElement (i.e., Property or Parameter) and use those collections values as
payload for a stimulus or an expected response as required. The kind (i.e., order and
uniqueness) of the CollectionExpression is prescribed by the related
MultiplicityElement (i.e., Property or Parameter) of this CollectionExpression.

«CollectionExpression» might be used as payload for both stimulus and expected
responses. If it represents the payload of an expected response, the payload of the
actual responses must match with the expected CollectionExpression with respect to
both, items listed in the collection and their respective index in the actual payload
collection, if the corresponding ConnectableElement (i.e., Property or Parameter) is
ordered. Any deviation is supposed to result in a mismatch.

Expression

MatchingCollectionExpression

C.2.23 ComplementedValue

Description

Extension
Change from UTP 1.2

A ComplementedValue specifies a set of values that are
not contained in the set specified by the genuine
ValueSpecification.

ValueSpecification

«ComplementedValue» has been newly introduced by
UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.2 247

C.224 MatchingCollectionExpression
Description

Extension
Super Class
Attributes

Constraints

Change from UTP 1.2

248

A MatchingCollectionExpression is a
CollectionExpression that enables the tester to define
matching criteria when used as the payload of an
expected response. Thus, it is not allowed to use a
MatchingCollectionExpression as payload for a
stimulus, but only as payload for expected responses.

The CollectionMatchingKind attribute of the
CollectionExpression determines the matching
mechanism that must be applied on the actual payload
when received in order to calculate a match or mismatch
of actual and expected responses. These matching kinds
are the following:

. subset (default)
. superset
. permutation

If the corresponding MultiplicityElement (i.e., Property
or Parameter) has is ordered (i.e., isOrdered = true), the
collection items in the payload of the actual response
have to occur in the exact same order as the elements in
the expected response. Whether nested
CollectionExpressions are considered to be flattened for
the comparison of expected and actual responses is not
defined in UTP 2.

Expression

CollectionExpression

matchingKind : CollectionMatchingKind
[0..1] = subset'

Must be used as payload for an expected responses

A MatchingCollectionExpression must only specify the
payload of an expected response.
Use of permutation matching kind

The matchingKind permutation must only be applied if
the corresponding ConnectableElement (i.e., Property
or Parameter) of the expected response has set
isOrdered to false.

«CollectionExpression» has been newly introduced by
UTP 2.

UML Testing Profile 2 (UTP 2), Version 2.2

C.2.25 RangeValue
Description

Extension
Attributes

Associations

Constraints

Change from UTP 1.2

UML Testing Profile 2 (UTP 2), Version 2.2

A RangeValue represents a range between two naturally
ordered boundaries, the upper and the lower bound. A
RangeValue can be used as wildcard value (i.e.
qualified) instead of a concrete value (i.e. quantified).
Conceptually, a range represents an enumeration of the
values between the min and max values; however, it
does not represent a set or collection of values. In that
sense, RangeValue is semantically equivalent to a
ChoiceOfValue: ValueSpecification would explicitly
enumerate all value between the min and max boundary.
The eventual min value must always be less or equal
than the eventual max value. In case that the min and
max evaluate to the very same value, the range spans
only a single value.

If minlnclusive is set to true, the lower boundary
(represented by the min value) is included in the range,
otherwise it is excluded. Default is true (i.e., the min
value is included). If maxInclusive is set to true, the
upper boundary (represented by the max value) is
included in the range, otherwise it is excluded. Default
is true, i.e., the max value is included. For example, if
the min value evaluates to 10 and minInclusive is set to
false, the actual lowerBoundary is 11.

If a RangeValue is used in combination with an Integer-
or Real-typed element, the lower and upper bounds
describes the lowest and highest number of that numeric
instance. If a RangeValue used in combination with a
String-typed element (or subclasses thereof), the lower
and upper bounds determine the minimal and maximal
length of that String's instance. Users are allowed to
define other proprietary natural orderings (e.g., complex
types and re-use RangeValue to denote upper and lower
boundaries for these types). The semantics how the
ordering is defined; however, is out of scope of the

RangeValue concept.

If applied to an expected response, a RangeValue
matches with the actual received value from the test
item, and if the actual value is within the boundaries of
the expected RangeValue.

Expression
maxInclusive : Boolean [1l] = “true’
minInclusive : Boolean [1l] = “true’

min : ValueSpecification

max : ValueSpecification

Operands shall be empty

The attribute operand of the underlying Expression
must be empty.

«RangeValue» has been newly introduced by UTP 2.

249

C.23 Enumeration Specifications

Name
CollectionMatchingKind

250

Description

The CollectionMatchingKind lists
different possibilities how a
collections that specifies an
expected response shall be
compared with an actual response's
collection.

Enumeration literals
subset

The subsets matching kind indicates
that all the elements in the expected
response must be contained in the
actual response, but there can be
more elements in the actual
response. The expected response is
a real subset of the actual response.
superset

The supersets matching kind
indicates that the elements in
expected response represent those
values that might be contained in
the actual response, but there can be
possible less elements contained in
the payload of the actual response.
The expected response is a real
superset of the actual response.
permutation

The permutation matching kind
indicates that all the elements of the
expected response must be
contained in the actual response, but
in any arbitrary order. Permutation
can only be applied if the
corresponding MultiplicityElement
(i.e., Property or Parameter) is
unordered (i.e., isOrdered = false).

UML Testing Profile 2 (UTP 2), Version 2.2

This page intentionally left blank.

UML Testing Profile 2 (UTP 2), Version 2.2 251

Annex D: Index

(
(Informative) Conceptual Model [STUB], 13

/

/instanceOf, 112

/instances, 113

/realizedBy, 57

/realizes, 82

/testCase, 54

/utilizedBy, 82

[

[BMM], 9, 56

[DD], 9

[ES20187301], 9, 19

[ES202951], 9, 21

[ES20311901], 9, 19

[ES20311902], 9, 19

[ES20311903], 9, 19

[ES20311904],9, 19

[FUML], 10

[HWT2012], 10, 21

[IEC61508], 10, 18

[ISO1087-1], 10, 24

[ISO25010], 10, 141

[ISO29119], 10, 18, 19, 20, 21, 52, 61, 62, 63, 64, 65,
66, 68, 73

[ISO9126], 10

[ISTQB], 10, 19, 21, 44, 52, 64, 65, 66, 67, 68, 72,
73, 144, 145,172

[MDA], 10

[MDAa], 10

[MDADb], 10

[MDAd], 10

[MOF], 9

[OCL], 9

[OSLC], 10

SBVR], 10, 24

SEP2014a], 10, 39

SysML], 10, 25, 52, 57, 59

TCM2008], 11, 21

[TestIF], 11

[UL2007], 11, 21

[UML], 3,5, 6,9, 40, 41

[UPL2012], 11, 21

[UTP], 11

[WikiCT], 11, 39

[WikiM], 6, 11, 42

[XMI], 9

{

{read-only, union, subsets subTestDirective}
subDirective, 70

{read-only, union, subsets subTestTechnique}
subTechnique, 71

— e

252

{read-only, union, subsets technique} capability, 70

{subsets capability} appliedTestDesignTechnique, 67

{subsets subDirective} genericSubDirective, 67

A

a, 31, 33,40, 90

abstract test case, 5, 21, 31, 32, 50

abstract test configuration, 5, 29, 30

acceptance test level, 144

Acceptance testing, 145

Action, 84, 89

actual data pool, 5, 39, 40, 41

actual parameter, 5, 32, 33, 49, 120, 132

actualParameter {ordered, unique}, 132

ActualParameterValue, 49, 132, 195

ActualResponseLogEntry, 49, 134, 195

actualValue, 135

Additional Information, 13

against, 37, 97

AllCombinations, 147

Allowed invocation scheme, 79, 82, 84

AllRepresentatives, 147

AllStates, 147

AllTransitions, 147

Alpha Testing, 144

alternative, 5, 33, 34, 49, 81

Alternative, 49, 85, 86, 87, 195

AlternativeArbitrationSpecification, 49, 117, 118,
195

AnyType, 140

AnyValue, 49, 107, 108, 195

API Testing, 145

Application in Activities, 86, 88, 89, 92

Application in Interactions, 86, 88, 89, 92

Arbitration & Verdict Overview, 42

Arbitration of AtomicProceduralElements, 115, 116

Arbitration of CompoundProceduralElements, 116,
117

Arbitration of Test-specific Actions, 121, 122

arbitration specification, 5, 6, 7, 19, 20, 24, 25, 34,
35, 38,42, 43, 49, 50, 51, 78, 83, 84, 89, 90, 96,
97,98, 100, 102, 107, 110, 111, 113, 115, 116,
118, 120, 121, 130, 141, 183, 187, 188

Arbitration Specifications, 42, 110

Arbitration Specifications Overview, 111

ArbitrationResult, 49, 111, 112, 113, 195

arbitrationSpecification, 55, 90

ArbitrationSpecification, 49, 113, 114, 115, 120, 195

arbitrationSpecification {redefines
arbitrationSpecification}, 86, 87, 88, 89, 91, 92,
96, 98, 101, 102

artifact, 1, 2, 5,7, 8, 18, 21, 27, 28, 30, 44, 51, 52, 69,
71,75,77, 158,161

at least one, 29, 31, 33, 37, 40, 80, 97, 99, 102, 106

UML Testing Profile 2 (UTP 2), Version 2.2

At least one property, 97

At least one response, 102

At least one stimulus, 99

at most one, 25, 31, 43, 80, 82, 84

ATM Example, 179

atomic procedural element, 5, 7, 32, 34, 35, 36, 38,
49, 84, 85,87, 115, 118

AtomicProceduralElement, 49, 84, 87, 90, 91, 96, 97,
98, 101, 102, 195

AtomicProceduralElementArbitrationSpecification,
49,118, 120, 121, 122, 123, 124, 195

AtomicProceduralElementLogEntry, 49, 130, 131,
132, 134, 135, 195

Automated Test, 144

B

Behavior, 50, 51, 52, 58, 78, 79, 81, 82, 83, 84, 91,
92

BehavioredClassifier, 49, 50, 51, 81, 82, 113, 114,
115,117,118, 119, 120, 121, 122, 123, 124, 136

Beta Testing, 145

boolean expression, 5, 6, 31, 32, 33, 41, 86, 105

BoundaryValueAnalysis, 49, 64, 66, 148, 172, 195

Build verification test, 143

C

CallBehaviorAction, 50, 91

captures, 46

captures execution of, 46

CauseEffectAnalysis, 49, 64, 71, 195

Certifier, 16

check property action, 5, 37, 38, 49, 96, 97, 120, 123

check traceability, 16, 17

checkedProperty, 97, 171

ChecklistBasedTesting, 49, 64, 66, 195

CheckPropertyAction, 49, 87, 93, 96, 171, 172, 175,
195

CheckPropertyArbitrationSpecification, 49, 96, 118,
123, 195

CheckPropertyLogEntry, 49, 131, 134, 195

checks, 37, 97

Chocolate Portion, 152

Chocolate test, 152

ChoiceOfValues, 195, 199, 200

Class, 51, 52, 56, 57

ClassificationTreeMethod, 49, 65, 71, 195

Classifier, 49, 50, 51, 70, 72, 75, 76, 77, 104, 105,
106, 128, 130, 131, 133, 136, 138, 139

Clients of a «Morphing» Dependency, 106

CollaborationUse not allowed, 130

CollectionExpression, 195, 199, 201

CollectionMatchingKind, 202

Combinatorial Testing, 49, 65, 68, 71, 195

CombinedFragment, 49, 50, 86, 87, 88, 89, 92

complement, 5, 39, 40, 42, 45, 49, 104, 113

ComplementedValue, 195, 199, 201

Complements, 49, 104, 106, 195

component test level, 144

UML Testing Profile 2 (UTP 2), Version 2.2

compound procedural element, 5, 6, 7, 32, 33, 34, 35,
49, 84, 85, 86, 87, 88, 89,92, 111, 116

Compound Procedural Elements Overview, 85, 86

CompoundProceduralElement, 49, 84, 86, 87, 88, 89,
90, 92, 195

CompoundProceduralElementArbitrationSpecificatio
n, 49,117,118, 119, 120, 121, 195

Conceptual Model, 5, 53, 104

concrete test case, 5, 21, 31, 32, 50

concrete test configuration, 5§, 29, 30, 153

configuration {subsets roleConfiguration}, 75, 77,
170

Conformance, 13

constraint, 3, 5, 39, 40, 41, 52, 59, 103, 105

Constraint, 49, 50, 51, 74, 75, 77, 96, 97, 105, 106

create log entry action, 5, 37, 38, 49, 97, 124

create stimulus action, 5, 37, 38, 49, 93, 98, 99, 122,
200

CreateLogEntryAction, 49, 87, 93,97, 195

CreateLogEntryArbitrationSpecification, 49, 97, 118,
124, 195

CreateLogEntryLogEntry, 49, 131, 135, 195

CreateStimulusAction, 49, 87, 93, 98, 122, 175, 195

CreateStimulusArbitrationSpecification, 49, 98, 118,
122,195

CreateStimulusLogEntry, 49, 134, 195

Croissant, 150, 152, 154, 155

Croissants, 153

Croissants Example, 150

CR-X1072-B, 152

Cyclic modifications, 109

D

data, 2,4,5,6,7,8,18,21,24,27,28, 30,31, 37, 38,
39,40, 41,42, 61, 69, 71, 83, 97, 98, 103, 104,
105, 106, 107, 109, 110, 120, 155, 157, 163, 199,
200

data item, 5, 6, 7, 39, 40, 41, 42, 104, 105, 106, 107

data partition, 5, 39, 41, 105, 192

data pool, 5, 24, 39, 40, 41, 49, 105, 192

data provider, 5, 30, 39, 40, 41, 49

data specification, 5, 21, 39, 40, 41, 42, 49, 50, 103,
104, 105, 106, 107, 155, 159, 160, 199

Data Specifications, 103

Data Specifications Overview, 104

data structure, 41

data type, 5, 6, 39, 40, 41, 105, 106, 107

Data Value Extensions, 107, 108

Data Values, 103, 107

DataPartition, 49, 104, 105, 195

DataPool, 49, 105, 195

dataProvider, 70

DataProvider, 49, 75, 105, 195

dataSpecification, 104

DataSpecification, 49, 105, 106, 171, 195

dataSpecifications, 105

DataType in DataSpecification, 106

253

DecisionTableTesting, 49, 65, 71, 195

DefaultCBT, 148

DefaultCET, 148

DefaultCTM, 148

DefaultDTT, 148

DefaultEG, 148

DefaultET, 148

DefaultPT, 148

DefaultTPT, 148

Dependency, 49, 50, 51, 59, 104, 106, 107, 109, 136

Derivation and Modeling of Test Requirements, 157

description, 57, 59, 82

Description of Case Study, 174

design acceptance tests, 16, 17

design integration tests, 16, 17

Design of Test Case Procedures, 163

design system tests, 16, 17

design test cases, 16, 17

design test cases for a data-intensive system, 16, 17

design test cases for a system that includes humans,
16,17

design test cases for a system with time-critical
behavior, 16, 17

design test data, 16, 17

design test specifications, 16, 17

design unit tests, 16, 17

determine test coverage, 16, 17

determines, 42, 43, 113

directionKind, 131

DRASO1, 42, 113

DRASO02, 43

DRTAO1, 25, 37, 99

DRTAO2, 25, 37, 102

DRTAO3, 25, 37, 43, 97

DRTCO1, 31

DRTCO02, 31, 84

DRTCO03, 31, 82

DRTCO04, 31, 80

DRTCO05, 31, 84

DRTCO06, 31, 82

DRTCO07, 31, 80

DRTCO08, 31

DRTCO09, 43

DRTDO1, 40, 106

DRTDO02, 40

DRTDO03, 40, 106

DRTDO04, 40, 106

DRTDOS5, 40

DRTLOI, 46

DRTLO02, 46

DRTPO1, 33, 90

DRTPO02, 33, 80

DRTPO3, 33, 80

DRTPO04, 33, 80

DRTRO1, 29

DRTRO2, 29

254

duration, 6, 8, 32, 34, 35, 44, 46, 130

E

each, 25, 29, 31, 33, 40, 43, 46, 80, 82, 84, 106

Each test case returns a verdict statement, 82

emanates from, 40

endAfterPrevious, 90

Enforced expectation kind 'implicitExcept', 102

EquivalenceClassPartitioning, 49, 64, 66, 71, 147,
196

error, 93, 122, 123, 140

Error, 6, 43, 44, 66, 113

ErrorGuessing, 49, 66, 196

evaluate test results, 16, 17

exactly one, 40, 42, 43, 46, 113

execute test cases, 16, 18

Executed test cases and definition of test set members
must be consistent, 129

executedTestCase, 129

executedTestSet, 129

executedTestSetMember, 129

executing entity, 6, 44, 46, 58, 128, 129, 130, 136

executingEntity, 128

executionDuration, 128

executionStart, 128

expect response action, 6, 37, 38, 49, 100, 102, 107,
120, 123, 163, 164

expectationKind, 101, 102

expectedElement, 101, 102

ExpectResponseAction, 49, 87, 93, 100, 101, 102,
103, 123, 175, 196

ExpectResponseArbitrationSpecification, 49, 100,
118,123, 196

expects to receive, 37, 102

ExperienceBasedTechnique, 50, 64, 66, 71, 196

ExploratoryTesting, 50, 66, 196

Expression, 49, 50, 108, 110, 199, 200, 201, 202

Extends, 50, 106, 196

extension, 6, 39, 42, 50, 52, 58, 60, 64, 78, 87, 90,
105, 106, 107, 199

F

fail, 123, 140, 141

Fail, 6, 42,43, 44, 113, 163, 164, 183

Failed user login, 156

Failover Test, 145

Feature acceptance testing, 143

Feature validation testing, 143

Feature verification testing, 143

forbiddenElement, 98, 101, 102, 122, 123

formal parameter, 5, 6, 31, 32, 33, 34, 50, 132

formalParameter, 132

FormalParameterReference, 50, 131, 196

formalParameterReference {ordered, unique}, 131

Functionality to Test, 174

G

General, 179

generate test case instances, 16, 18

UML Testing Profile 2 (UTP 2), Version 2.2

Generation of Test Sets and Abstract Test Cases, 176

Generic Test Design Capabilities, 60, 61

GenericTestDesignDirective, 50, 60, 67, 69, 196

GenericTestDesignTechnique, 50, 60, 67, 71, 196

Given Requirements on the Test Item, 169

GraphTraversalAlgorithmKind, 149

GraphTraversalStructure, 148

guarantees, 31, 80, 82, 84

Gustaoceptionary Proficiency, 152

H

Human Test Executor, 16

I

1D, 54, 56, 57, 58, 76, 82, 84, 113

ignoredElement, 101, 102, 123

implement automatic test case execution, 16, 17, 18

implement onboard test cases, 16, 17, 18

implement test components, 16, 17, 18

implement tool support for UTP 2, 17, 18

implicitExpect, 102, 103

ImplicitExpectationKind, 103

implicitForbid, 103

implicitIgnore, 103

inconclusive, 140, 141

Inconclusive, 6, 42, 43, 44, 113

Informative References, 9

input {ordered}, 138

instance, 5, 6, 8, 41, 46, 128

instanceOf, 128, 137, 138

instanceOf {redefines instanceOf}, 70, 72

InstanceSpecification, 49, 50, 51, 64, 65, 66, 67, 68,
69,71,72,73,109, 112, 127, 128, 129, 130, 131,
132, 133, 134, 135, 137, 138

Intake Test, 144

integration test level, 144

Integration Testing Example, 184

Interaction, 78

InteractionFragment, 78, 84, 89

InteractionUse, 50, 91

Interface testing, 145

Internal structure of TestLogStructure Classifier, 130

Invocation Test Log Entry Details, 127

InvocationAction, 49, 50, 97, 98, 102

InvocationLogEntry, 50, 131, 132, 133, 134, 196

InvocationLogEntryStructure, 50, 130, 131, 133, 196

invocationStructure {redefines instanceOf}, 133, 134

invocationTarget, 133, 134

invokedProcedure, 92

invokes, 31, 33, 80

is smaller than, 33, 90

ISTQB Agile Test Set Purpose, 143

ISTQB Library, 142

ISTQB Test Level, 144

ISTQB Test Set Purpose, 144

It is impossible that, 31

It is necessary that, 25, 29, 31, 33, 37, 40, 42, 43, 46,
80, 82, 84,90, 97, 99, 102, 106, 113

UML Testing Profile 2 (UTP 2), Version 2.2

K

Knowledge of CR-X1072-B, 152

L

Language Architecture, 48

leads to, 36

Load Testing, 145

loggedValue, 135

Login response time, 156, 158

LoginServer Example, 155

longest, 149

loop, 6, 32, 34, 50, 78, 88, 118

Loop, 50, 78, 85, 87, 88, 196

LoopArbitrationSpecification, 50, 118, 196

M

Machine Test Executor, 16

Mail address modification, 156, 158

main, 92

main procedure invocation, 6, 7, 33, 34, 35, 80

Manual Test, 144

Mapping Interface Descriptions, 166

Mapping Test Cases and Test Configuration, 167

Mapping the Test Architecture, 166

Mapping the Test Data Specification, 166

Mapping the Test Type System, 165

Mapping to Code, 169, 173

Mapping to TTCN-3, 165

MatchingCollectionExpression, 196, 199, 201

matchingKind, 201

max, 202

maxInclusive, 202

meet, 69

Message, 49, 98, 101

MessageEventLogEntry, 50, 132, 134, 196

MessageEventLogEntryStructure, 50, 131, 133, 196

min, 202

Minimal test configuration, 76

minInclusive, 202

model, 28

Model Libraries, 13

Modeling Test Data, 160

Modeling the Behavior of the System, 169, 170

Modeling the Structure of the System, 169

Modeling the Type System and Logical Interfaces,
159

Morphing, 50, 104, 106, 107, 196

morphism, 5, 6, 7, 39, 40, 42, 50, 104, 106, 107

Must be used as payload for an expected responses,
201

N

NamedElement, 50, 51, 71, 89

nBoundaryRepresentatives, 64

nCombination, 65

nCombination {redefines nCombination}, 68

negative, 6, 34, 50

Negative, 50, 85, 87, 88, 196

Negative Test, 144

255

NegativeArbitrationSpecification, 50, 118, 119, 196

Nested Classifier not allowed, 82

none, 140, 141

None, 6, 42, 43,44, 113

Non-normative data value extensions, 199

Normative References, 9

nRepresentatives, 66

nRepresentatives {redefines nRepresentatives}, 64

NSwitchCoverage, 50, 67, 68, 72, 196

(0]

Object Management Group, Inc. (OMG), vii

ObjectFlow, 49, 96

Objects, 153

observedProperty, 135

of, 33, 43, 90

OMG specifications, vii

One postcondition per test case, 82

One postcondition per test execution schedule, 84

One postcondition per test procedure, 80

One precondition per test case, 82

One precondition per test execution schedule, 84

One precondition per test procedure, 80

OneBoundaryValue, 148

OneRepresentative, 148

Only applicable to UML Behavior building blocks,
89

OpaqueProceduralElement, 50, 84, 89, 90, 196

OpaqueProceduralElementLogEntry, 50, 131, 135,
196

Operands shall be empty, 202

Operation, 52

or, 43

output {ordered}, 138

overrides, 50, 109, 196

Overview of non-normative ValueSpecification
Extensions, 199, 200

Overview of test-specific actions, 36, 37

Overview of the ISTQB library, 142, 143

Overview of the predefined test design technique
structures, 148

Owned UseCases not allowed, 82

Owner of Constraint, 97

Owner of Property, 97

Ownership of «TestComponentConfiguration», 75

Ownership of «TestltemConfigurationy, 77

P

Package, 51, 54, 58, 106

PairwiseTesting, 50, 65, 68, 196

parallel, 6, 34, 50, 119

Parallel, 50, 85, 87, 89, 196

Parallel ArbitrationSpecification, 50, 118, 119, 196

parent, 112

part, 76

pass, 93, 123, 140, 141

Pass, 6,42, 43,44, 113, 159, 164, 183

PE end duration, 6, 33, 35, 90

256

PE start duration, 6, 33, 35, 90

permits to send, 37, 99

permittedElement, 98, 99, 122

permutation, 203

postcondition, 6, 31, 32, 80, 81, 82, 84

preconditon, 6, 31, 32, 80, 82, 84

Predefined context-free test design techniques, 146,
147

Predefined data-related Test Design Techniques, 61,
62

Predefined experience-based Test Design
Techniques, 63

Predefined high-level Test Design Techniques, 61

Predefined state-transition-based Test Design
Techniques, 62

Predefined Test Design Technique Structures, 148

Predefined Test Design Techniques, 146

Predefined types, 140

Predefined verdict instances, 140

prescribes the execution order of, 32, 33, 80

procedural element, 5, 6, 7, 19, 32, 33, 34, 35, 50, 78,
79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,
110,111,113, 115,117,118, 119, 120, 121, 128,
141

Procedural Element Arbitration Specifications, 115

procedural element verdict, 5, 6, 7, 36, 37, 38, 43, 44,
84, 87, 93,96, 100, 102, 110, 111, 113, 114

Procedural Elements, 78, 84

Procedural Elements Overview, 85

proceduralElement, 130

ProceduralElement, 14, 50, 84, 87, 89, 90, 196

proceduralElement {redefines proceduralElement},
131, 133, 134, 135

ProceduralElementArbitrationSpecification, 50, 113,
118,120, 196

procedure, 5, 6, 7, 8, 32, 33, 34, 35, 36, 42, 66, 71,
78,79, 80, 81, 82, 83, 84,91, 92, 110, 132, 163,
165

procedure invocation, 6, 7, 32, 34, 35, 50, 85, 91,
120, 121

Procedure sequentializes procedural element, 80

Procedurelnvocation, 50, 79, 81, 83, 85, 87, 91, 92,
175,196

ProcedurelnvocationArbitrationSpecification, 50,
118,121, 196

ProcedurelnvocationLogEntry, 50, 132, 133, 196

ProcedurelnvocationLogEntryStructure, 50, 131, 133,
196

ProcedurePhaseKind, 92

Product Manager, 16

Profile Specification [STUB], 13

Project Manager, 16

property, 5, 7,37, 38, 59, 64, 66, 68, 72, 96, 97, 120

Property, 49, 50, 51, 75, 76, 77, 97, 105, 131, 201

provide test data, 16, 18

provides data according to, 40

UML Testing Profile 2 (UTP 2), Version 2.2

purpose, 58

Q

QA Manager, 16

R

random, 149

RangeValue, 196, 199, 202

Recoverability Test, 145

referencedBy, 56, 57, 59, 70, 72, 113, 128

references, 57

References, 13,173, 178, 194

refers to, 25, 43

refinement, 7, 39, 42, 50, 107

Refines, 50, 105, 106, 107, 196

Regression Testing, 144

RegularExpression, 50, 107, 110, 196

Relation to keyword-driven testing, 19

requirement, 27

Requirements Engineer, 16

Requirements Specification, 155

requires, 31, 80, 82, 84

response, 2, 6, 7, 19, 36, 37, 38, 93, 100, 102, 103,
107,108, 110, 199, 200, 201, 202

Restriction of client and supplier, 109

Restriction of extendable metaclass, 59

Restriction of extendable metaclasses, 55, 56, 57,
128,130

resultFor, 112

review test specifications, 16, 18

role, 91, 92

role {ready-only, union}, 74

Role only in context of test cases relevant, 92

RoleConfiguration, 50, 73, 74, 75, 77, 196

roleConfiguration {read-only, union}, 77

RQ-0001, 150

RQ-0002, 150

RQ-0003, 150

S

select test data, 16, 17, 18

Semantics of Business Rules and Vocabularies, 24

sequence, 7, 19, 32, 34, 35, 50, 67, 72, 85, 119, 121,

128
Sequence, 50, 87, 92, 175, 196

SequenceArbitrationSpecification, 50, 118, 121, 196

setup, 92

setup procedure invocation, 7, 35

shortest, 149
SimpleChecklistBasedStructure, 149
SimpleErrorGuessingStructure, 149

Slot, 49, 132

Smoke Test, 144

Specialization of TestLogStructure Classifier, 130
specification, 56, 57

Specification of Complex Test Data, 162
Specification of Dependency client, 136
Specification of Dependency supplier, 136
specifies, 25, 40, 106

UML Testing Profile 2 (UTP 2), Version 2.2

specifies the configuration of, 29
startAfterPrevious, 90
State, 97
StateCoverage, 50, 68, 196
Statelnvariant, 97
StateTransitionTechnique, 50, 67, 68, 71, 72, 172,
196
stimulus, 5, 7, 37, 38, 93, 98, 99, 107, 201
Stress Testing, 145
StructuredActivityNode, 49, 50, 86, 87, 88, 89, 92
StructuredClassifier, 51, 76
subresult, 112
Subsea Production System Example, 174
subset, 202
subTestDirective {read-only, union}, 138
subTestTechnique {union, read-only}, 138
suggest verdict action, 7, 38, 50, 102, 123
suggestedVerdict, 135
SuggestVerdictAction, 50, 87, 93, 102, 196
SuggestVerdictArbitrationSpecification, 50, 102,
118,123, 197
SuggestVerdictLogEntry, 50, 131, 135, 197
superset, 203
Suppliers of a «Morphing» Dependency, 106
switchStates, 67
switchStates {redefined switchStates}, 72
System Designer, 16
System Operator, 16
System Test Example, 189
system test level, 144
T
targets, 40
TCO1
test taste, 154
TC02
test structure, 154
TCO03
test color, 155
TDSO01, 152
teardown, 92
teardown procedure invocation, 7, 35
technique {read-only, union}, 137
Terms and Definitions, 13
test action, 5, 6, 7, 8, 19, 31, 32, 33, 34, 36, 37, 38,

43, 44, 45,79, 80, 93, 94, 95, 96, 97, 98, 100, 102,

111,121

Test Analysis, 4, 24, 51, 157

Test Architecture, 29, 73

Test Architecture and Test Configuration, 161

Test Architecture Overview, 29, 73, 74

Test Behavior, 31, 78

test case, 2, 3,5,6,7,8,16,17, 18,19, 21, 22, 24,
25,26,27, 28,29, 30, 31, 32, 33, 34, 35, 36, 38,
39,42, 43,44, 45, 46, 50, 52, 53, 54, 56, 57, 58,
59, 64, 65, 66, 67, 68, 69, 71,72, 73,75, 78, 79,
80, 81, 82, 83, 90, 91, 93, 97, 102, 103, 110, 111,

257

113,114, 115, 120, 128, 129, 130, 136, 141, 153,
155,157,161, 162, 163, 164, 165, 166, 167, 169,
173,176, 177, 180, 181, 182, 183, 186, 187, 188,
190, 191, 193, 200, 201

Test case invokes one main procedure, 80

test case log, 5, 7,37,46,51,97, 113, 129

Test Case Overview, 31, 78, 79

test case verdict, 7, 36, 38, 43, 44, 46, 102, 110, 111,
113,114, 187, 188

Test Cases, 31, 153, 172

test component, 1, 5, 7, 19, 22, 29, 30, 39, 41, 51, 73,
74,75,79, 81, 93, 94, 96, 97, 98, 100, 102, 105,
155, 161, 162, 181, 182, 184, 186, 187, 188, 191

test component configuration, 7, 29, 30, 51, 73, 75,
169, 173

test configuration, 5, 7, 8, 18, 19, 27, 28, 29, 30, 50,
51,69, 71,73, 74,75, 76,717,778, 79, 81, 97, 102,
155,157,162, 163, 164, 167, 181, 186, 191

Test Configuration, 153

test context, 7, 8, 14, 18, 20, 21, 24, 25, 26, 27, 51,
53, 54, 56, 142, 155, 156, 157, 160, 162, 182, 190

Test Context Overview, 24, 25, 31, 52

Test Data, 39, 103

Test Data Concepts, 39, 40

Test Design, 4, 27,59, 152, 161

test design directive, 7, 8, 27, 28, 50, 51, 59, 60, 67,
69,71, 146

Test Design Directive, 51

Test Design Facility, 60

Test Design Facility Library, 146

Test Design Facility Overview, 27, 28

test design input, 7, 8, 19, 20, 24, 26, 27, 28, 51, 52,
54, 57,59, 68,69, 71, 146, 176, 177

Test Design Inputs, 175

test design technique, 7, 8, 19, 20, 21, 24, 26, 27, 28,
49, 50, 51, 54, 59, 60, 61, 62, 63, 64, 65, 66, 67,
68, 69,71, 72,73, 146, 148, 149, 159, 172

Test Designer, 16

Test Directive Facility, 137

Test Directives, 136

Test Evaluation, 42, 110

test execution schedule, 7, 8, 19, 27, 28, 31, 32, 35,
42,51, 58, 69, 78, 83, 84,91, 111, 130

testitem, 1, 2,5,6,7, 8,19, 21, 22, 26, 27, 29, 30,
32, 36,37, 38, 39, 43,44, 51, 52, 57, 66, 73, 77,
79, 81, 93, 95, 96, 97, 98, 100, 101, 103, 141, 150,
155, 156, 159, 161, 162, 169, 173, 180, 181, 183,
184, 185, 186, 190, 202

test item configuration, 8, 29, 30, 51, 73, 77, 169, 173

Test Item Controlled Actions, 95

test level, 1, 8, 21, 24, 25, 26, 54, 142, 155, 157, 180,
184

testlog, 1,7, 8,19, 21, 44, 45, 46, 47, 51, 97, 110,
128,129, 130

Test Log Entries Details, 126

Test Log Entries Overview, 125, 126

258

Test Log Overview, 44, 46

test log structure, 8, 44, 45, 46, 51, 128, 129, 130,
136

Test Logging, 44, 124

Test Logging Overview, 124, 125

Test Map, 154

test objective, 7, 8, 18, 20, 25, 26, 28, 32, 44, 51, 52,
53, 54, 56, 59, 69, 81, 91, 110, 128, 156, 157

Test Objective Overview, 53, 54

Test Objectives, 151

Test Planning, 24, 51, 156

test procedure, 8, 18, 31, 32, 33, 35, 36, 42, 51, 57,
76,78, 79, 80, 81, 83, 84,91, 92, 153, 163, 164,
165

Test Procedure Arbitration Specifications, 111

Test procedure operates on test configuration, 79

Test procedure sequencializes test action, 80

Test Procedures, 31, 32, 33

test requirement, 8, 25, 26, 44, 51, 52, 57, 59, 91,
110, 128, 155, 157, 158, 159, 160, 163, 164, 181,
182, 183, 184, 190, 191, 193

Test Requirement and Test Objective Overview, 25,
26

Test Requirements, 151

Test Requirements Realization, 163

test set, 6, 7, 8, 17, 18, 20, 24, 25, 26, 27, 28, 31, 43,
44,45, 46, 47, 51, 52, 56, 57, 58, 59, 69, 78, 83,
110,111, 113, 115, 128, 129, 136, 141, 142, 144,
153

Test Set "Manual croissants test", 153

test set log, 8, 46, 47, 51, 129

test set purpose, 8, 27, 142

test set verdict, 8, 43, 44, 83,93, 110, 111, 113

Test Strategy, 152

test type, 8, 20, 21, 24, 25, 27, 54, 155, 157, 159,
160, 162

TestCase, 50, 53, 57, 76, 78, 81, 82, 83, 129, 136,
162,197

TestCaseArbitrationSpecification, 51, 113, 114, 123,
197

testCaseAS, 82

TestCaseLog, 51, 128, 129, 197

TestComponent, 14, 51, 73, 75, 76, 77, 105, 162,
169, 197

testComponent {subsets role}, 75

TestComponentConfiguration, 51, 73, 74, 75, 170,
197

testConfiguration, 55

TestConfiguration, 51, 73, 76, 81, 175, 197

TestConfigurationRole, 51, 73, 74, 75, 76, 77, 197

TestContext, 14, 51, 52, 53, 54, 55, 197

testDesignDirective, 55

TestDesignDirective, 51, 59, 60, 67, 69, 70, 137, 147,
148, 197

TestDesignDirectiveStructure, 51, 60, 70, 138, 197

testDesigningEntity, 70

UML Testing Profile 2 (UTP 2), Version 2.2

testDesignlnput, 55

TestDesignlnput, 51, 69, 71, 169, 170, 197

testDesignInput {redefines input}, 70

testDesignOutput {redefines output}, 70

testDesignTechnique, 55

TestDesignTechnique, 51, 59, 60, 64, 65, 66, 67, 68,
71, 73, 138, 147, 148, 197

TestDesignTechniqueStructure, 51, 60, 72, 139, 197

TestDirective, 51, 69, 137, 197

TestDirectiveStructure, 51, 70, 138, 197

Tester Controlled Actions, 94

TestExecutionSchedule, 51, 78, 82, 83, 84, 111, 115,
197

Testltem, 14, 51, 73, 76, 77, 97, 162, 169, 170, 175,
197

testltem {subsets role}, 77

TestltemConfiguration, 51, 73, 74, 77, 169, 170, 173,
197

testLevel, 55

testLog, 55

TestLog, 51, 127, 128, 129, 197

TestLogElement, 51, 127, 128, 130, 197

testLogEntry, 90

TestLogEntry, 51, 127, 130, 131, 197

testLogEntry {ordered, unique}, 129

TestLogStructure, 51, 130, 131, 136, 197

TestLogStructureBinding, 51, 136, 197

testObjective, 55

TestObjective, 51, 52, 56, 175, 197

TestProcedure, 51, 76, 78, 79, 81, 82, 83, 92, 197

testRequirement, 55

TestRequirement, 51, 52, 57, 82, 174, 197

testSet, 55

TestSet, 51, 52, 58, 59, 111, 115, 129, 197

TestSetArbitrationSpecification, 51, 113, 115, 197

testSetAS, 59, 84

TestSetLog, 51, 128, 129, 197

testSetMember, 58

Test-specific Action Arbitration Specifications, 121

Test-specific Actions, 31, 36, 78, 85, 93

Test-specific actions Overview, 93, 94

Test-specific Contents of Test Context, 53

Test-specific Procedures, 32, 78

TestTechnique, 51, 71, 138, 197

TestTechniqueStructure, 51, 72, 139, 197

testType, 55

the, 33, 37,90, 97

the same, 33, 90

The Test Item, 150

The TRUST Test Generator, 169, 172

The UTP auxiliary library, 141, 142

The UTP test design facility library, 146

time point, 8, 32, 36, 46

TOO00

UML Testing Profile 2 (UTP 2), Version 2.2

Quality verified, 151
TOO1
Taste verified, 151, 154
TO02
Structure verified, 151, 154, 155
TOO03
Color verified, 151, 155
toBeCovered, 68, 72
Tool Vendor, 17
TRO1
Humans, 151
TRO2
Waste, 152
Transition, 84, 89
TransitionCoverage, 51, 68, 72, 197
TransitionPairCoverage, 51, 67, 72, 197
Trigger, 49, 101
Type of Argument, 103
Type of elements for the explicit sets, 102
Type of forbidden elements, 98
Type of permitted elements, 99
Type of verdict ValueSpecification, 113
Typical Use Cases of UTP 2, 3
U
UML Testing Profile, 15
Unit Test Example, 180
Unknown user login, 156
update test specifications, 16, 18
Use of «Procedurelnvocationy, 80
Use of BehavioredClassifier, 82
Use of permutation matching kind, 201
UseCaseTesting, 51, 71, 73, 198
User banishing, 156
User login, 156, 158
User logout, 156, 158
UTP 2 Use Cases, 15
UTP 2 WG, 5,6, 7,8, 26,27, 28, 29, 30, 31, 32, 33,
34,35, 36, 37, 38, 40, 41, 42, 43, 44, 46, 47, 152
UTP Auxiliary Library, 13, 48, 141
UTP Types Library, 48, 113
\%
Valid duration, 90
value, 5, 6, 41, 132
valueFor, 132
ValueSpecification, 113, 199, 201
verdict, 5, 6,7, 8, 21, 39,42, 43, 44,78, 82, 83, 87,
90, 93, 100, 102, 103, 107, 110, 111, 112, 113,
114,115,117, 118, 119, 120, 121, 122, 123, 124,
128, 130, 140, 141, 183
Verdict of ArbitrationSpecification, 113
verifies, 51, 52,59, 198
Videoconferencing Example, 169

259

	1 Scope
	2 Conformance
	3 Terms and Definitions
	4 References
	4.1 Normative References
	4.2 Informative References

	5 Symbols
	6 Additional Information
	6.1 How to read this document
	6.2 Typographical conventions
	6.3 Typical Use Cases of UTP 2
	6.4 Relation to testing-relevant standards
	6.5 Relation to model-based testing
	6.6 Relation to keyword-driven testing
	6.7 Relation to the MARTE Profile
	6.8 Acknowledgements

	7 (Informative) Conceptual Model
	7.1 Test Planning
	7.1.1 Test Analysis
	7.1.1.1 Test Context Overview
	7.1.1.2 Concept Descriptions

	7.1.2 Test Design
	7.1.2.1 Test Design Facility Overview
	7.1.2.2 Concept Descriptions

	7.2 Test Architecture
	7.2.1 Test Architecture Overview
	7.2.2 Concept Descriptions

	7.3 Test Behavior
	7.3.1 Test Cases
	7.3.1.1 Test Case Overview
	7.3.1.2 Concept Descriptions

	7.3.2 Test-specific Procedures
	7.3.2.1 Test Procedures
	7.3.2.2 Concept Descriptions

	7.3.3 Test-specific Actions
	7.3.3.1 Overview of test-specific actions
	7.3.3.2 Concept Descriptions

	7.4 Test Data
	7.4.1 Test Data Concepts
	7.4.2 Concept Descriptions

	7.5 Test Evaluation
	7.5.1 Arbitration Specifications
	7.5.1.1 Arbitration & Verdict Overview
	7.5.1.2 Concept Descriptions

	7.5.2 Test Logging
	7.5.2.1 Test Log Overview
	7.5.2.2 Concept Descriptions

	8 Profile Specification
	8.1 Language Architecture
	8.2 Profile Summary
	8.3 Test Planning
	8.3.1 Test Analysis
	8.3.1.1 Test Context Overview
	8.3.1.2 Test-specific Contents of Test Context
	8.3.1.3 Test Objective Overview
	8.3.1.4 Stereotype Specifications
	8.3.1.4.1 TestContext
	8.3.1.4.2 TestObjective
	8.3.1.4.3 TestRequirement
	8.3.1.4.4 TestSet
	8.3.1.4.5 verifies

	8.3.2 Test Design
	8.3.2.1 Test Design Facility
	8.3.2.2 Generic Test Design Capabilities
	8.3.2.3 Predefined high-level Test Design Techniques
	8.3.2.4 Predefined data-related Test Design Techniques
	8.3.2.5 Predefined state-transition-based Test Design Techniques
	8.3.2.6 Predefined experience-based Test Design Techniques
	8.3.2.7 Stereotype Specifications
	8.3.2.7.1 BoundaryValueAnalysis
	8.3.2.7.2 CauseEffectAnalysis
	8.3.2.7.3 ChecklistBasedTesting
	8.3.2.7.4 ClassificationTreeMethod
	8.3.2.7.5 CombinatorialTesting
	8.3.2.7.6 DecisionTableTesting
	8.3.2.7.7 EquivalenceClassPartitioning
	8.3.2.7.8 ErrorGuessing
	8.3.2.7.9 ExperienceBasedTechnique
	8.3.2.7.10 ExploratoryTesting
	8.3.2.7.11 GenericTestDesignDirective
	8.3.2.7.12 GenericTestDesignTechnique
	8.3.2.7.13 NSwitchCoverage
	8.3.2.7.14 PairwiseTesting
	8.3.2.7.15 StateCoverage
	8.3.2.7.16 StateTransitionTechnique
	8.3.2.7.17 TestDesignDirective
	8.3.2.7.18 TestDesignDirectiveStructure
	8.3.2.7.19 TestDesignInput
	8.3.2.7.20 TestDesignTechnique
	8.3.2.7.21 TestDesignTechniqueStructure
	8.3.2.7.22 TransitionCoverage
	8.3.2.7.23 TransitionPairCoverage
	8.3.2.7.24 UseCaseTesting

	8.4 Test Architecture
	8.4.1 Test Architecture Overview
	8.4.2 Stereotype Specifications
	8.4.2.1 RoleConfiguration
	8.4.2.2 TestComponent
	8.4.2.3 TestComponentConfiguration
	8.4.2.4 TestConfiguration
	8.4.2.5 TestConfigurationRole
	8.4.2.6 TestItem
	8.4.2.7 TestItemConfiguration

	8.5 Test Behavior
	8.5.1 Test-specific Procedures
	8.5.1.1 Test Case Overview
	8.5.1.2 Stereotype Specifications
	8.5.1.2.1 TestProcedure
	8.5.1.2.2 TestCase
	8.5.1.2.3 TestExecutionSchedule

	8.5.2 Procedural Elements
	8.5.2.1 Procedural Elements Overview
	8.5.2.2 Compound Procedural Elements Overview
	8.5.2.3 Stereotype Specifications
	8.5.2.3.1 Alternative
	8.5.2.3.2 AtomicProceduralElement
	8.5.2.3.3 CompoundProceduralElement
	8.5.2.3.4 Loop
	8.5.2.3.5 Negative
	8.5.2.3.6 OpaqueProceduralElement
	8.5.2.3.7 Parallel
	8.5.2.3.8 ProceduralElement
	8.5.2.3.9 ProcedureInvocation
	8.5.2.3.10 Sequence

	8.5.2.4 Enumeration Specifications

	8.5.3 Test-specific Actions
	8.5.3.1 Test-specific actions Overview
	8.5.3.2 Tester Controlled Actions
	8.5.3.3 Test Item Controlled Actions
	8.5.3.4 Stereotype Specifications
	8.5.3.4.1 CheckPropertyAction
	8.5.3.4.2 CreateLogEntryAction
	8.5.3.4.3 CreateStimulusAction
	8.5.3.4.4 ExpectResponseAction
	8.5.3.4.5 SuggestVerdictAction

	8.5.3.5 Enumeration Specifications

	8.6 Test Data
	8.6.1 Data Specifications
	8.6.1.1 Data Specifications Overview
	8.6.1.2 Stereotype Specifications
	8.6.1.2.1 Complements
	8.6.1.2.2 DataPartition
	8.6.1.2.3 DataPool
	8.6.1.2.4 DataProvider
	8.6.1.2.5 DataSpecification
	8.6.1.2.6 Extends
	8.6.1.2.7 Morphing
	8.6.1.2.8 Refines

	8.6.2 Data Values
	8.6.2.1 Data Value Extensions
	8.6.2.2 Stereotype Specifications
	8.6.2.2.1 AnyValue
	8.6.2.2.2 overrides
	8.6.2.2.3 RegularExpression

	8.7 Test Evaluation
	8.7.1 Arbitration Specifications
	8.7.1.1 Arbitration Facility

	8.7.2 Arbitration Specifications
	8.7.2.1 Test Procedure Arbitration Specifications
	8.7.2.1.1 Arbitration Facility Overview
	8.7.2.1.2 Stereotype Specifications
	8.7.2.1.2.1 ArbitrationDirective
	8.7.2.1.2.2 ArbitrationResult
	8.7.2.1.2.3 ArbitrationSpecification
	8.7.2.1.2.4 ArbitrationSpecificationBinding
	8.7.2.1.2.5 ArbitrationTarget
	8.7.2.1.2.6 TestCaseArbitrationSpecification
	8.7.2.1.2.7 estSetArbitrationSpecification

	8.7.2.2 Procedural Element Arbitration Specifications
	8.7.2.2.1 Arbitration of AtomicProceduralElements
	8.7.2.2.2 Arbitration of CompoundProceduralElements
	8.7.2.2.3 Stereotype Specifications
	8.7.2.2.3.1 AlternativeArbitrationSpecification
	8.7.2.2.3.2 AtomicProceduralElementArbitrationSpecification
	8.7.2.2.3.3 CompoundProceduralElementArbitrationSpecification
	8.7.2.2.3.4 LoopArbitrationSpecification
	8.7.2.2.3.5 NegativeArbitrationSpecification
	8.7.2.2.3.6 ParallelArbitrationSpecification
	8.7.2.2.3.7 ProceduralElementArbitrationSpecification
	8.7.2.2.3.8 ProcedureInvocationArbitrationSpecification
	8.7.2.2.3.9 SequenceArbitrationSpecification

	8.7.2.3 Test-specific Action Arbitration Specifications
	8.7.2.3.1 Arbitration of Test-specific Actions
	8.7.2.3.2 Stereotype Specifications
	8.7.2.3.2.1 CreateStimulusArbitrationSpecification
	8.7.2.3.2.2 ExpectResponseArbitrationSpecification
	8.7.2.3.2.3 CheckPropertyArbitrationSpecification
	8.7.2.3.2.4 SuggestVerdictArbitrationSpecification
	8.7.2.3.2.5 CreateLogEntryArbitrationSpecification

	8.7.3 Test Logging
	8.7.3.1 Test Logging Overview
	8.7.3.2 Test Log Entries Overview
	8.7.3.3 Test Log Entries Details
	8.7.3.4 Invocation Test Log Entry Details
	8.7.3.5 Stereotype Specifications
	8.7.3.5.1 TestLogElement
	8.7.3.5.2 TestLog
	8.7.3.5.3 TestSetLog
	8.7.3.5.4 TestCaseLog
	8.7.3.5.5 TestLogStructure
	8.7.3.5.6 TestLogEntry
	8.7.3.5.7 AtomicProceduralElementLogEntry
	8.7.3.5.8 InvocationLogEntryStructure
	8.7.3.5.9 FormalParameterReference
	8.7.3.5.10 InvocationLogEntry
	8.7.3.5.11 ActualParameterValue
	8.7.3.5.12 ProcedureInvocationLogEntryStructure
	8.7.3.5.13 ProcedureInvocationLogEntry
	8.7.3.5.14 MessageEventLogEntryStructure
	8.7.3.5.15 MessageEventLogEntry
	8.7.3.5.16 CreateStimulusLogEntry
	8.7.3.5.17 ActualResponseLogEntry
	8.7.3.5.18 CheckPropertyLogEntry
	8.7.3.5.19 SuggestVerdictLogEntry
	8.7.3.5.20 CreateLogEntryLogEntry
	8.7.3.5.21 OpaqueProceduralElementLogEntry
	8.7.3.5.22 TestLogStructureBinding

	8.8 Test Directives
	8.8.1 Test Directive Facility
	8.8.2 Stereotype Specifications
	8.8.2.1 TestDirective
	8.8.2.2 TestDirectiveStructure
	8.8.2.3 TestTechnique
	8.8.2.4 TestTechniqueStructure

	9 Model Libraries
	9.1 UTP Types Library
	9.1.1 Predefined types
	9.1.2 Predefined verdict instances

	9.2 UTP Auxiliary Library
	9.2.1 UTP Auxiliary Library
	9.2.1.1 The UTP auxiliary library
	9.2.1.2 ISTQB Library
	9.2.1.2.1 Overview of the ISTQB library

	9.2.1.3 Test Design Facility Library
	9.2.1.3.1 The UTP test design facility library
	9.2.1.3.2 Predefined Test Design Techniques
	9.2.1.3.2.1 Predefined context-free test design techniques

	9.2.1.3.3 Predefined Test Design Technique Structures
	9.2.1.3.3.1 Overview of the predefined test design technique structures

	Annex A (Informative): Examples
	A.1 Croissants Example
	A.1.1 The Test Item
	A.1.1.1 Given Requirements on the Test Item

	A.1.2 Test Requirements
	A.1.2.1 Given Test Objectives
	A.1.2.2 Given Requirements

	A.1.3 Test Design
	A.1.3.1 Test Design Strategies shown on "Test Strategy"
	A.1.3.2 Test Directives shown on "Test Strategy"

	A.1.4 Test Configuration
	A.1.5 Test Cases
	A.1.5.1 Test Set "Manual croissants test"

	A.2 LoginServer Example
	A.2.1 Requirements Specification
	A.2.2 Test Planning
	A.2.3 Test Analysis
	A.2.3.1 Derivation and Modeling of Test Requirements
	A.2.3.2 Modeling the Type System and Logical Interfaces
	A.2.3.3 Modeling Test Data

	A.2.4 Test Design
	A.2.4.1 Test Architecture and Test Configuration
	A.2.4.2 Specification of Complex Test Data
	A.2.4.3 Test Requirements Realization
	A.2.4.4 Design of Test Case Procedures

	A.2.5 Mapping to TTCN-3
	A.2.5.1 Mapping the Test Type System
	A.2.5.2 Mapping Interface Descriptions
	A.2.5.3 Mapping the Test Architecture
	A.2.5.4 Mapping the Test Data Specification
	A.2.5.5 Mapping Test Cases and Test Configuration

	A.3 Videoconferencing Example
	A.3.1 Given Requirements on the Test Item
	A.3.2 Modeling the Structure of the System
	A.3.3 Modeling the Behavior of the System
	A.3.4 The TRUST Test Generator
	A.3.5 Mapping to Code
	A.3.6 References

	A.4 Subsea Production System Example
	A.4.1 Description of Case Study
	A.4.2 Functionality to Test
	A.4.3 Test Design Inputs
	A.4.4 Generation of Test Sets and Abstract Test Cases
	A.4.5 References

	A.5 ATM Example
	A.5.1 General
	A.5.2 Unit Test Example
	A.5.3 Integration Testing Example
	A.5.4 System Test Example
	A.5.5 References

	Annex B (Informative): Mappings
	B.1 Mapping between UTP 1 and UTP 2

	Annex C (Informative): Value Specification Extensions
	C.1 Profile Summary
	C.2 Non-normative data value extensions
	C.1.1 Overview of non-normative ValueSpecification Extensions
	C.2.2 Stereotype Specifications
	C.2.2.1 ChoiceOfValues
	C.2.2.2 CollectionExpression
	C.2.2.3 ComplementedValue
	C.2.2.4 MatchingCollectionExpression
	C.2.2.5 RangeValue

	C.2.3 Enumeration Specifications

	Annex D: Index

