
Date: April 2015

Value Delivery Modeling Language
Version 1.0

__

OMG Document Number: dtc/2015-03-10

Normative reference: http://www.omg.org/spec/VDML/1.0

Machine Consumable file:

 Normative: http://www.omg.org/spec/VDML/20150201/vdml.xmi

 1

http://www.omg.org/spec/VDML/1.0

Copyright © 2013, Cordys Corporation B.V.
Copyright © 2013, CSC
Copyright © 2015, Object Management Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change
without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-
free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute
copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed
to have infringed the copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:
(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;
(2) the use of the specifications is for informational purposes and will not be copied or posted on any network
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this specification. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which
a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or
scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only.
Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.
No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,

 2

IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR
PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE
COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING
LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph
(c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as
specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R.
12.212 of the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners
are as indicated above and may be contacted through the Object Management Group, 109 Highland Avenue,
Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified
Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA
logos™, XMI Logo™, CWM™, CWM Logo™, IIOP™ , IMM™ , MOF™ , OMG Interface Definition Language
(IDL)™ , and OMG SysML™ are trademarks of the Object Management Group. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In
the event that testing suites are implemented or approved by Object Management Group, Inc., software developed
using this specification may claim compliance or conformance with the specification only if the software
satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing
the Issue Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a
Bug/Issue (http://www.omg.org/report_issue.htm)

 3

http://www.omg.org/report_issue.htm

Contents
Table of Figures .. 9

Table of Tables ... 11

Preface .. 12

1 Scope ... 14

2 Conformance ... 17

2.1 Full VDML Conformance ... 17

2.2 VDML Metamodel Conformance ... 17

2.3 VDML Collaboration Modeling Conformance ... 17

3 References ... 19

3.1 Normative References ... 19

3.2 Non-Normative References... 19

4 Terms and Definitions ... 23

5 Symbols... 24

6 Additional Information ... 25

6.1 Acknowledgements ... 25

6.1.1 Submitting Organizations ... 25

6.1.2 Participants .. 25

6.1.3 Supporting organizations .. 25

6.2 IPR and Patents ... 26

6.3 Guide to the Specification ... 26

7 VDML Metamodel .. 27

7.1 Overview of VDML .. 27

7.1.1 VDML Model ... 28

7.1.2 Value and Value Proposition .. 28

7.1.3 Capability Definition... 29

7.1.4 Collaboration ... 30

7.1.5 Community ... 30

7.1.6 Business Network ... 31

7.1.7 Organization Unit (Org Unit) .. 32

7.1.8 Capability Method... 33

7.1.9 Activity ... 35

7.1.10 Port .. 38

 4

7.1.11 Resources and stores ... 38

7.1.12 Measures ... 39

7.1.13 Scenarios and contexts .. 40

7.1.14 Staff collaborations ... 43

7.1.15 Model integration .. 44

7.2 VDML Class definitions ... 46

7.2.1 Collaboration and Value Creation ... 46

7.2.1.1 Collaborations and participants ... 46

7.2.1.1.1 Actor Class ... 47

7.2.1.1.2 Person Class .. 47

7.2.1.1.3 Collaboration Class ... 47

7.2.1.1.4 Participant Class (Abstract) .. 48

7.2.1.1.5 Role Class... 49

7.2.1.1.6 CalendarService Class ... 50

7.2.1.2 Activity networks .. 50

7.2.1.2.1 Activity Class .. 51

7.2.1.2.2 ResourceUse Class ... 52

7.2.1.2.3 Assignment Class .. 54

7.2.1.2.4 DeliverableFlow Class .. 55

7.2.1.2.5 BusinessItem Class ... 57

7.2.1.2.6 Store Class ... 58

7.2.1.2.7 Pool Class ... 59

7.2.1.3 ValueAdds and ValuePropositions ... 60

7.2.1.3.1 ValueProposition Class ... 60

7.2.1.3.2 ValuePropositionComponent Class .. 62

7.2.1.3.3 ValueAdd Class ... 63

7.2.1.3.4 ValueElement Class (Abstract) .. 63

7.2.2 Collaboration Sub-Types .. 64

7.2.2.1 BusinessNetworks ... 65

7.2.2.1.1 BusinessNetwork Class .. 65

7.2.2.1.2 Party Class ... 65

7.2.2.2 Communities ... 65

7.2.2.2.1 Community Class ... 66

7.2.2.2.2 Member Class .. 66

7.2.2.3 OrgUnits and Capabilities ... 66

 5

7.2.2.3.1 OrgUnit Class ... 67

7.2.2.3.2 Position Class ... 68

7.2.2.3.3 CapabilityOffer Class .. 68

7.2.2.3.4 ReleaseControl Class ... 69

7.2.2.4 CapabilityMethods .. 69

7.2.2.4.1 CapabilityMethod Class .. 70

7.2.3 Models and Scenarios ... 71

7.2.3.1 ValueDeliveryModels ... 71

7.2.3.1.1 ValueDeliveryModel Class ... 72

7.2.3.2 Scenarios and AnalysisContexts ... 73

7.2.3.2.1 AnalysisContext Class (Abstract) .. 74

7.2.3.2.2 Scenario Class ... 75

7.2.3.2.3 DelegationContext Class .. 77

7.2.4 Core Elements ... 77

7.2.4.1 VdmlElements ... 77

7.2.4.1.1 VdmlElement Class (Abstract) ... 78

7.2.4.1.2 Attribute Class .. 78

7.2.4.1.3 Annotation Class .. 79

7.2.4.1.4 MeasurableElement Class (Abstract) ... 79

7.2.4.1.5 MeasuredCharacteristic Class ... 79

7.2.4.2 Expressions ... 80

7.2.4.2.1 Expression Class ... 80

7.2.4.2.2 Operand Class ... 80

7.2.4.3 PortContainers ... 81

7.2.4.3.1 Port Class (Abstract) ... 81

7.2.4.3.2 OutputPort Class ... 82

7.2.4.3.3 InputPort Class ... 83

7.2.4.3.4 PortContainer Class (Abstract) .. 84

7.2.4.4 PortDelegations ... 84

7.2.4.4.1 PortDelegation Class (Abstract) .. 84

7.2.4.4.2 InputDelegation Class ... 85

7.2.4.4.3 OutputDelegation Class .. 85

7.2.5 Libraries .. 86

7.2.5.1 BusinessItemLibrary ... 86

7.2.5.1.1 BusinessItemLibrary Class ... 86

 6

7.2.5.1.2 BusinessItemDefinition Class .. 87

7.2.5.1.3 BusinessItemCategory Class ... 87

7.2.5.1.4 BusinessItemLibraryElement Class (Abstract) .. 88

7.2.5.2 ValueLibrary ... 88

7.2.5.2.1 ValueLibrary Class .. 89

7.2.5.2.2 ValueDefinition Class .. 89

7.2.5.2.3 ValueCategory Class .. 90

7.2.5.3 CapabilityLibrary .. 90

7.2.5.3.1 CapabilityLibrary Class ... 91

7.2.5.3.2 CapabilityDefinition Class ... 92

7.2.5.3.3 CapabilityCategory Class ... 93

7.2.5.3.4 Capability Class (Abstract) ... 93

7.2.5.3.5 CapabilityDependency Class ... 94

7.2.5.4 PracticeLibrary .. 95

7.2.5.4.1 PracticeLibrary Class .. 95

7.2.5.4.2 PracticeDefinition Class .. 96

7.2.5.4.3 PracticeCategory Class .. 96

7.2.5.5 RoleLibrary ... 97

7.2.5.5.1 RoleLibrary Class .. 97

7.2.5.5.2 RoleDefinition Class .. 98

7.2.5.5.3 RoleCategory Class .. 98

7.2.6 Integration with SMM (Structured Metrics Metamodel) .. 99

7.2.6.1 Packages .. 99

7.2.6.2 SMM Main Concepts .. 99

8 Notation... 101

8.1 General .. 101

8.2 Role Collaboration .. 101

8.3 ValueProposition Exchange .. 103

8.4 Activity Network .. 104

8.5 Collaboration Structure ... 110

8.6 CapabilityLibrary .. 112

8.7 Capability Heatmap .. 114

8.8 Capability Management .. 114

8.9 Measurement Dependency .. 118

Annexes .. 120

 7

Annex A: Glossary ... 121

Annex B: Alignment with Existing Business Modeling Techniques ... 125

Value Networks .. 125

REA (Resources Events Agents) .. 127

e3value ... 130

Capability Maps .. 131

Value Stream ... 132

Business Model ... 133

Lindgren .. 133

Osterwalder ... 134

Possession, Ownership, Availability (POA) ... 136

VDML Support for BMM Strategic Planning .. 138

VDML Support for Balanced Scorecard and Strategy Map ... 143

VDML Relationship to BPMN ... 146

Annex C: Use Cases .. 149

 8

Table of Figures

Figure 1 - VDML Viewpoints ... 27
Figure 2 - Capability Offers .. 34
Figure 3 - Activity structure .. 36
Figure 4 - Two uses of a collaboration ... 41
Figure 5 - Scenarios and context trees .. 42
Figure 6 - Collaborations .. 47
Figure 7 - Activities .. 50
Figure 8 - Assignments ... 54
Figure 9 - DeliverableFlows ... 56
Figure 10 - BusinessItems ... 57
Figure 11 - Stores .. 58
Figure 12 - Values and ValuePropositions ... 60
Figure 13 - BusinessNetworks ... 65
Figure 14 - Communities .. 66
Figure 15 - OrgUnits and Capabilities .. 67
Figure 16 - CapabilityMethods ... 70
Figure 17 - ValueDeliveryModels .. 72
Figure 18 - Scenarios and AnalysisContexts .. 74
Figure 19 - VdmlElements .. 78
Figure 20 - Expressions .. 80
Figure 21 - PortContainers .. 81
Figure 22 - PortDelegations .. 84
Figure 23 - BusinessItemLibraries .. 86
Figure 24 - ValueLibraries .. 89
Figure 25 - CapabilityLibraries ... 91
Figure 26 - PracticeLibraries .. 95
Figure 27 - RoleLibraries .. 97
Figure 28 - VDML Metamodel package ... 99
Figure 29 - SMM main concepts... 99
Figure 30 - Role shape as oval .. 101
Figure 31 - Role shape with expand button .. 101
Figure 32 - DeliverableFlow shape for Tangible .. 102
Figure 33 - DeliverableFlow shape for Intangible .. 102
Figure 34 - DeliverableFlow for Tangible, connecting two Roles .. 102
Figure 35 - Role Collaboration diagram (BusinessNetwork example) ... 103
Figure 36 - ValueProposition shape .. 103
Figure 37 - Role providing a ValueProposition .. 103
Figure 38 - Role receiving a ValueProposition ... 103
Figure 39 - ValueProposition Exchange diagram (example) .. 104
Figure 40 - Swim-lane shape for Role (in Activity Network diagram) .. 104
Figure 41 - Activity shape ... 104

 9

Figure 42 - Activity shape, with expand button .. 104
Figure 43 - Store shape ... 105
Figure 44 - Pool shape .. 105
Figure 45 - Connector shape for DeliverableFlow (in Activity Network diagram) 105
Figure 46 - Connector shape for internalPortDelegation (in Activity Network diagram) 105
Figure 47 - Shape of OutputPort, on boundary of Activity... 106
Figure 48 - Shape of OutputPort, with Condition, on boundary of Activity... 106
Figure 49 - Shape of OutputPort, with ValueAdd, on boundary of Activity OutputPort 107
Figure 50 - Shape of OutputPort, with ValueAdd and Condition, on boundary of Activity 107
Figure 51 - Shape of InputPort, on boundary of Activity ... 107
Figure 52 - Shape of InputPort, with Condition, on boundary of Activity ... 107
Figure 53 - Shape of InputPort, receiving roleResource, on boundary of Activity 107
Figure 54 - Shape of InputPort, receiving role Resource, and with Condition, on boundary of Activity . 107
Figure 55 - Shape of OutputPort, on boundary of Store ... 107
Figure 56 - Shape of OutputPort, with Condition, on boundary of Store ... 108
Figure 57 - Shape of OutputPort, with ValueAdd, on boundary of Store ... 108
Figure 58 - Shape of OutputPort, with ValueAdd and Condition, on boundary of Store 108
Figure 59 - Shape of InputPort, on boundary of Store .. 108
Figure 60 - Shape of InputPort, with Condition, on boundary of Store .. 108
Figure 61 - Shape of Collaboration InputPort, connected to internalPortDelegation 108
Figure 62 - Shape of Collaboration OutputPort, connected to internalPortDelegation 109
Figure 63 - Shape of Collaboration OutputPort, with ValueAdd, and connected to internalPortDelegation
 .. 109
Figure 64 - Activity Network diagram (simple example) ... 109
Figure 65 - Activity Network diagram (simple example) ... 109
Figure 66 – Role Collaboration and Activity Network as synchronized views (example) 110
Figure 67 - Collaboration shape .. 110
Figure 68 - BusinessNetwork shape.. 110
Figure 69 - OrgUnit shape .. 110
Figure 70 - CapabilityMethod shape (in Collaboration Structure and Capability Management diagrams)
 .. 111
Figure 71 - Community shape ... 111
Figure 72 - Role containment connector ... 111
Figure 73 - Collaboration structure, with Role of parent Collaboration assigned to sub-Collaboration... 111
Figure 74 - Role Assignment connector ... 112
Figure 75 - Actor assigned to Role ... 112
Figure 76 - Collaboration Structure diagram (example) ... 112
Figure 77 - Capability shape (in CapabilityLibrary diagram) ... 113
Figure 78 - Capability hierarchy ... 113
Figure 79 - Capability shape with expand button (in CapabilityLibrary diagram) 113
Figure 80 - Expanded parent Capability, with sub-Capability .. 113
Figure 81 - CapabilityLibrary diagram (example) .. 114
Figure 82 - Capabilities with heatIndex about HeatThreshold (in Capability Heatmap) 114
Figure 83 - CapabilityOffer shape .. 115

 10

Figure 84 - Shape of connector between CapabilityOffer and a capabilityResource or method 115
Figure 85 - CapabilityOffers on boundary of OrgUnit, with expand button (in: Capability Management
diagram) .. 115
Figure 86 - OrgUnit expanded (in: Capability Management diagram) ... 116
Figure 87 - CapabilityOffers of OrgUnit with capabilityResource and method from other OrgUnit 116
Figure 88 - CapabilityOffers of OrgUnit with capabilityResource and method from other OrgUnit (not
shown) ... 117
Figure 89 - Connector shape for dependency of CapabilityMethod on other CapabilityOffer(s) 117
Figure 90 - Dependencies of CapabilityMethod on CapabilityOffers of methodOwner and other OrgUnits
 .. 117
Figure 91 - Capability Management diagram (example) .. 118
Figure 92 - MeasuredCharacteristic shape (in Measurement Dependency diagram) 118
Figure 93 - Shape of MeasurementRelationship, with “positive” influence ... 119
Figure 94 - Shape of MeasurementRelationship, with “negative” influence .. 119
Figure 95 - Measurement Dependency diagram (example) .. 119
Figure 96 - Value Network Map or Graph .. 126
Figure 97 - Example of a REA Model .. 128
Figure 98 - Example of an e3value Model .. 130
Figure 99 - Capability Heat Map .. 132
Figure 100 - The Business Model Cube (Lindgren) ... 133
Figure 101 - The Business Model Canvas (Osterwalder) ... 135
Figure 102 - Example of a POA Model .. 137
Figure 103 - Overview of BMM ... 140
Figure 104 - Strategic planning process .. 141
Figure 105 – VDML models for BSC/SM .. 144
Figure 106 - Modeling transformation phases .. 146

Table of Tables

Table 1 - Business Challenges and VDML Solutions .. 14
Table 2 - Mapping of VNA Concepts to VDML Concepts .. 126
Table 3 - Mapping of REA Concepts to VDML Concepts ... 129
Table 4 - Mapping of e3value Concepts to VDML Concepts ... 131
Table 5 - Mapping of Business Model Cube Concepts to VDML Concepts .. 134
Table 6 - Mapping of Business Model Canvas Concepts to VDML Concepts... 135
Table 7 - Mapping of POA Concepts to VDML Concepts ... 137

 11

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer
industry standards consortium that produces and maintains computer industry specifications for interoperable,
portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle
approach to enterprise integration that covers multiple operating systems, programming languages, middleware and
networking infrastructures, and software development environments. OMG’s specifications include: UML®
(Unified Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common
Warehouse Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG
Specifications are available from the OMG website at:
http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications
• CORBA/IIOP
• Data Distribution Services
• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications
• UML, MOF, CWM, XMI
• UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface
Specifications

• CORBAServices
• CORBAFacilities

 12

http://www.omg.org/

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and
PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management
Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary
English. However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier/Courier New - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,
specification, or other publication.

 13

1 Scope
The purpose of VDML is to provide a standard modeling language for analysis and design of the
operation of an enterprise with particular focus on the creation and exchange of value. It provides an
abstraction of the operation of an enterprise that is appropriate for business executives, along with
representation of supporting detail for business analysts to link strategy and business models to the
activities, roles, and capabilities that run the enterprise. The target users are business people—executives,
business architects, analysts and managers. Information systems analysts and designers may use VDML
models as specifications for the design of supporting information systems.

VDML is designed to address several critical business challenges: 1) It creates a robust way to model
both tangible and intangible value flows 2) It provides the capacity to model complex collaborations and
business networks 3) It provides a flexible way to model business activities to more readily support
continuous transformation in environments of high variability and 4) It supports more effective shared
capabilities optimization and deployment. Table 1, below, highlights these challenges and VDML
solutions.

Table 1 - Business Challenges and VDML Solutions

Business Challenge How VDML Meets the Challenge
Model both tangible and intangible
value flows.

• Models creation and exchange of both tangible (formal) and
intangible (informal or ad hoc) deliverables and values
exchanged between roles and their benefits.

• Compatible with intangible asset or resource management
• Can model both proposed and realized value
• Supports value stream analysis to address customer values

Model complex collaborations and
business networks

• Models traditional organizations
• Models communities, informal collaborations and business

networks
• Allows for drill down for analysis of performance and

responsibility and considering alternative demand scenarios.
• Clarifies responsibilities of roles in collaborations
• Provides a basis for using network analytics to assess business

models and value flows.
Model business transformations in
environments of high variability

• Provides a higher level of abstraction than business processes for
an enterprise perspective on transformation plans and priorities.

• Models multiple business entities and activities as an ecosystem
• Provides operational definition of critical business frameworks

(Osterwalder, balanced scorecard, value stream)
• Enables shared understanding of business requirements for

business transformation and support from BPM and IT
• Provides a way to model non routine, highly variable or non

standardized activities
Model shared capabilities and their
deployment across multiple
activities and lines of business

• Models organizational responsibilities and performance of
capabilities in multiple contexts.

• Provides a tighter linkage to value creation
• Helps to more effectively identify, build, change and deploy

 14

shared capabilities across multiple collaborations, business units,
and activities.

Given these challenges, VDML is designed to bring together the organization or network structure with
the creation and exchange of value and defines the capabilities that produce value. In particular, the
VDML metamodel has been developed to support value chain, value stream and capability analysis, and
has been refined to support Value Network Analysis (VNA), e3value modeling, REA (Resource Event
Agent) analysis and an owner/investor business model. Further, it is designed to support modeling of the
human collaborations and role-based interactions both within organizations and within networks that are
required to support value delivery. VDML can demonstrate the management of resources, assignment of
people and roles, exchanges with business partners and performance measures that help identify problems
and opportunities to improve the business.

Central to VDML is the concept of value. Value is a measurable factor of benefit delivered to a recipient
in association with a deliverable. Examples of value include the fitness of a product for a purpose, a
measure of product reliability, a probability of production defects, a commitment to future delivery of
another deliverable, a measure of product or brand prestige, information that provides a business
advantage, or any other feature or benefit that would affect the desirability of a product, service or
economic exchange. VDML is designed to support the optimization of stakeholder value for both internal
and external facing business activities. VDML supports value measurement from both operational and
recipient satisfaction perspectives. It supports modeling and analysis of both tangible and intangible
business value and is compatible with resource management frameworks utilizing intangible assets as
well as traditional financial assets and resources.

Also central to VDML is the ability to model collaborative business relationships and role based business
networks. At the level of business partner interactions, VDML can represent the net exchange of value
between business entities (e.g., companies, agencies or consumers) or go into the detail of transactional
exchanges for achieving exchange agreements and managing the exchange of economic resources. These
value exchange models can support analysis of the overall effect of exchanges between multiple
enterprises that enable each of the participants to realize a perceived net gain to sustain the relationship.
Such analyses also can be important for understanding the costs, risks, and delays of these transactions
and the viability of the business model.

For analysis of business operations, VDML supports a perspective of value-driven business design by
focusing on the activities and flow of deliverables that produce products or services and the delivery of
tangible and intangible values. The delivery of value can focus on end customers and external
stakeholders as well as value delivered to internal customers or the enterprise entity.

VDML can provide a framework and generate requirements for the design of business processes, but it
provides a view that is different from BPMN and other process modeling tools by focusing on the
consumption and production of deliverables and the statistical performance and contributions of value by
activities including cost, quality and duration. As such it provides a vital link between business strategy
and enterprise value models and business processes. However, VDML avoids the detail of the operational
control aspects of business processes. The focus is on delivery of value and the means to that end.

 15

VDML scales from key operational activities to full industry level business models and large scale
business networks. It is appropriate for commercial and non-commercial endeavors as well as government
agencies. A VDML model can extend from product concept to full commercialization, delivery and
customer support. It can support the capture of measurements to assess the impact of performance of
specific activities on the values of end products or services. It aligns these concepts with business
capabilities that can be managed, shared and optimized from an enterprise perspective, and it links all of
these with the responsible people, collaborations, and organizations that manage and perform these
capabilities.

The measurements of a VDML model represent statistical figures for delivery of a product or service, for
a market segment, a product line, a product mix or a line of business or other operational variations.
Where a line of business involves similar but different product configurations, the measurements can
represent a particular product mix. Different scenarios may be used to analyze different products or
product mixes that, for the most part, use the same capabilities.

More detailed analysis that reflects variability of products and operating circumstances would require
simulation. VDML does not directly support simulation, but a VDML model can capture the fundamental
data needed to support simulation such as System Dynamics, Monte Carlo Simulation and Discrete Event
Simulation. Changes to a VDML model would then be directly incorporated into the simulation and
results can be incorporated to update or create a VDML scenario. While these simulation techniques are
outside the scope of VDML, it is expected that some implementers may want to include such capabilities
with their products. The design of the VDML metamodel is intended to be compatible with extensions to
include simulation.

This specification includes a limited, normative, graphical notation. It is expected that notation will
evolve as users identify new ways to view their robust models. Implementations may implement non-
normative views that are familiar to users of existing techniques. It is expected that the graphical displays
will be complemented by tabular displays, some of which are suggested by the use cases.

This specification does not define the various measurements applicable to performance and value delivery
analysis. It is expected that these will be domain/industry-dependent and that industry or professional
groups will establish shared libraries to be imported as a basis for models in that industry. This
specification incorporates the SMM (Structured Metrics Metamodel) specification to represent the
measure libraries and the measurable properties of model elements.

The scope of a particular VDML model (a model created using VDML) will depend very much on the
purpose of the model. The expectation is that a VDML model can be applied to address specific
problems, but then can be maintained and grown to provide a sustainable, integrated abstraction of the
operation of the enterprise so that little need be added to the model to address problems and opportunities
that are encountered in the future.

 16

2 Conformance
2.1 Full VDML Conformance
A conformant implementation supports the normative graphical notation and imports and exports models
that conform to the VDML metamodel (Sub-clause 7.2) and the SMM (Structured Metrics Metamodel). .

2.2 VDML Metamodel Conformance
A product can claim “VDML Metamodel Conformance” if it can import and export XMI that is consistent
with the VDML metamodel (Sub-clause 7.2) and the SMM (Structured Metrics Metamodel) but does not
conform to the VDML notation Clause 8). This is a subset of Full VDML Conformance (Sub-clause 2.1).

2.3 VDML Collaboration Modeling Conformance
This subset of the VDML metamodel can be implemented for modeling organizational structures and
relationships. A VDML Collaboration Modeling implementation conforms if it can import and export
XMI that is consistent with the SMM (structured Metrics Metamodel) and with VDML Metamodel
Conformance (Sub-clause 2.2) but implements only the following classes:

• ValueDeliveryModel (7.2.3.1.1)
• VdmlElement (7.2.4.1.1)
• MeasurableElement (7.2.4.1.4)
• Attribute (7.2.4.1.2)
• Annotation (7.2.4.1.3)
• MeasuredCharacteristic (7.2.4.1.5)
• PortContainer (7.2.4.3.4)
• Collaboration (7.2.1.1.3)
• Role (7.2.1.1.5)
• RoleDefinition (7.2.5.5.2)
• RoleLibrary (7.2.5.5.1)
• RoleCategory (7.2.5.5.3)
• Participant (7.2.1.1.4)
• Actor (7.2.1.1.1)
• Person (7.2.1.1.2)
• Assignment (7.2.1.2.3)
• OrgUnit (7.2.2.3.1)
• Position (7.2.2.3.2)
• Community (7.2.2.2.1)
• Member (7.2.2.2.2)
• BusinessNetwork (7.2.2.1.1)
• Party (7.2.2.1.2)

 17

This level of conformance is a subset of VDML Metamodel Conformance (Sub-clause 2.2) and thus does
not include conformance with VDML notation (Sub-clause 8). Associations between the above classes
and any other VDML classes allow multiplicity of zero and may be ignored.

 18

3 References
3.1 Normative References

BMM, Business Motivation Model, version 1.1, May 2010, OMG Document Number: ptc/2010-05-01,
http://www.omg.org/spec/BMM/1.1 .

BPMN, Business Process Model and Notation, version 2.0, June 2010, OMG Document Number:
dtc/2010-06-05, http://www.omg.org/spec/BPMN/2.0 .

MOF, Meta Object Facility, version 2.4.1, June 2013, OMG Document Number: formal/2013-06-01,
http://www.omg.org/spec/MOF/2.4.1 .

SMM, Structured Metrics Metamodel, version 1.1, April 2015, OMG Document Number: ptc/2015-02-
02, http://www.omg.org/spec/SMM/1.1 .

SoaML, SOA Modeling Language, version 1.0, Release Date: March 2012,
http://www.omg.org/spec/SoaML/1.0/ .

UML, Unified Modeling Language, version 2.4.1, June 2013, OMG Document Number: formal/2011-08-
06, http://www.omg.org/spec/UML/2.4.1 .

3.2 Non-Normative References

Allee, V., The Future of Knowledge: Increasing Prosperity through Value Networks, Butterworth-
Heinemann 2003.

Allee, V., Value Network Analysis and Value Conversion of Tangible and Intangible Assets, Journal of
Intellectual Capital, Volume 9, issue 1, pp 5-24, January 2008, http://www.vernaallee.com/images/VAA-
VNAandValueConversionJIT.pdf .

Allee, V., Value Networks and the True Nature of Collaboration, ValueNet Works, 2011,
http://www.valuenetworksandcollaboration.com.

Ballantyne, D., Varey, R.J., Frow, P. and Payne, A., Service-dominant logic and value propositions: Re-
examining our mental models, Otago Forum 2, Paper no: 5, 2008,
http://www.business.otago.ac.nz/marketing/events/OtagoForum/Final%20forum%20papers/Otago%20Fo
rum%20Paper%205_Ballantyne.pdf .

BPMM, Business Process Maturity Model, version 1.0, Object Management Group, Release Date: June
2008, http://www.omg.org/spec/BPMM/1.0/PDF/ .

BPMN, Business Process Model and Notation, version 2.0, Object Management Group, Release Date:
January 2011, http://www.omg.org/spec/BPMN/2.0/ .

Brodie, L. and Gilb, T., Values for Value, AgileRecord, October 2010, http://www.gilb.com/dl448 .

Cummins, Fred A., Building the Agile Enterprise with SOA, BPM and MBM, Morgan Kaufman, 2009.

 19

http://www.omg.org/spec/BMM/1.1
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/MOF/2.4.1
http://www.omg.org/spec/SMM/1.1
http://www.omg.org/spec/SoaML/1.0
http://www.omg.org/spec/UML/2.4.1/
http://www.vernaallee.com/images/VAA-VNAandValueConversionJIT.pdf
http://www.vernaallee.com/images/VAA-VNAandValueConversionJIT.pdf
http://www.valuenetworksandcollaboration.com/
http://www.business.otago.ac.nz/marketing/events/OtagoForum/Final%20forum%20papers/Otago%20Forum%20Paper%205_Ballantyne.pdf
http://www.business.otago.ac.nz/marketing/events/OtagoForum/Final%20forum%20papers/Otago%20Forum%20Paper%205_Ballantyne.pdf
http://www.omg.org/spec/BPMM/1.0/PDF/
http://www.omg.org/spec/BPMN/2.0/
http://www.gilb.com/dl448

Cummins, Fred A., Building the Agile Enterpise (blog) includes several posts on VDML, 2011-2013.

Cummins, Fred A., and Henk de Man, VDML support for the Business Architecture Guild BizArch
Viewpoint, OMG document number bmi/2013-11-02, November, 2013, http://www.omg.org/cgi-
bin/doc?bmi/2013-11-02 .

Cummins, Fred A., and Henk de Man, Analysis of the Relationships between VDML and BPMN, OMG
document number bmi/2013-11-01, November, 2013, http://www.omg.org/cgi-bin/doc?bmi/2013-11-01 .

Gane, C. and Sarson, T, Structured Systems Analysis: Tools and Techniques, Prentice-Hall Software
Series, Prentice-Hall, Englewood Cliffs, New Jersey, 1979.

Geerts, G. L. and W. E. McCarthy, An Ontological Analysis of the Primitives of the Extended REA
Enterprise Information Architecture. The International Journal of Accounting Information Systems,
March 2002.

Gilb, T., Value Delivery in Systems Engineering, October 2007, Published and used by INCOSE with
permission, http://www.gilb.com/dl137

Gilb, T. and Gilb, K., Done should mean value delivered to Stakeholders, AgileRecord, October 2011,
http://www.gilb.com/dl484 .

GoldSim, Summary of Major New Features and Changes, version 10.1, GoldSim Technology Group,
February 2010, http://www.goldsim.com/downloads/Documents/Version101Summary.pdf .

GoldSim, Probabilistic Simulation Environment, User's Guide, version 10.5, GoldSim Technology
Group, December 2010, http://www.goldsim.com/downloads/Documents/Version101Summary.pdf .

Gordijn, J. and Akkermans, H., Value based requirements engineering: Exploring innovative e-commerce
ideas. In Requirements Engineering Journal, Vol. 8(2):114-134, 2003,
http://e3value.few.vu.nl/docs/bibtex/pdf/Gordijn2003e3value.pdf, or a popular version of it:
http://e3value.few.vu.nl/docs/bibtex/pdf/Gordijn2001e3value.pdf .

Grant, R. M.,The Resource-Based Theory of Competitive Advantage: Implications for Strategy
Formulation. California Management Review, March 1991.

Harmon, Paul, Business Process Change: A Guide for Business Managers and BPM and Six Sigma
Professionals, Morgan Kaufman, 2007.

Hruby P., Kiehn J. And Scheller C.: Model-Driven Design Using Business Patterns, Springer-Verlag,
2006.

IBM, Component Business Modeling, http://www.haifa.ibm.com/projects/software/cbm/index.html .

ITIL, Service Design, ITIL version 3, August 2011, http://www.best-management-
practice.com/Publications-Library/IT-Service-Management-ITIL/ITIL-2011-Edition/Service-Design/ .

Johnson, M. W., Christensen, C. M., and Kagermann, H., Reinventing Your Business Model, Harvard
Business Review on Business Model Innovation, Harvard Business School Publishing Corporation, 2010.

 20

http://www.omg.org/cgi-bin/doc?bmi/2013-11-02
http://www.omg.org/cgi-bin/doc?bmi/2013-11-02
http://www.omg.org/cgi-bin/doc?bmi/2013-11-01
http://www.gilb.com/dl137
http://www.gilb.com/dl484
http://www.goldsim.com/downloads/Documents/Version101Summary.pdf
http://www.goldsim.com/downloads/Documents/Version101Summary.pdf
http://e3value.few.vu.nl/docs/bibtex/pdf/Gordijn2003e3value.pdf
http://e3value.few.vu.nl/docs/bibtex/pdf/Gordijn2001e3value.pdf
http://www.haifa.ibm.com/projects/software/cbm/index.html
http://www.best-management-practice.com/Publications-Library/IT-Service-Management-ITIL/ITIL-2011-Edition/Service-Design/
http://www.best-management-practice.com/Publications-Library/IT-Service-Management-ITIL/ITIL-2011-Edition/Service-Design/

Jones, D. and Womack, j., Seeing the Whole. Lean Enterprise Institute, March 2003, See an on-line
chapter in http://www.lean.org/Library/Seeing_the_Whole_Part1.pdf. Online version of Final Draft,
Journal of Intellectual Capital, Volume 9, No. 1, 2008.

Lindgren, P. and Jørgensen,R., M.-S. Li, Y. Taran, K. F. Saghaug, Towards a new generation of business
model innovation model, presented at the 12th International CINet Conference: Practicing innovation in
times of discontinuity, Aarhus, Denmark, 10-13 September 2011

Martin, J., The Great Transition: Using the Seven Disciplines of Enterprise Engineering, AMACOM.
New York,1995.

McCarthy, W. E., The REA accounting model: A generalized framework for accounting systems in a
shared data environment, Accounting Review, July 1987.

McFarland, Daniel A., The Pursuit of Organizational Intelligence, Blackwell Publishers, Oxford, UK,
1999.

Osterwalder, A., The Business Model Ontology- A Proposition in a Design Science Approach, Thesis,
University of Lausanne, 2004,
http://www.hec.unil.ch/aosterwa/PhD/Osterwalder_PhD_BM_Ontology.pdf .

Osterwalder, A. and Pigneur, Y., Business Model Generation: A Handbook for Visionaries, Game
Changers, and Challengers, John Wiley & Sons, 2010.

PMBOK, A Guide to the Project Management Body of Knowledge (PMBoK Guide), Project Management
Institute (PMI), 2000, http://www.cs.bilkent.edu.tr/~cagatay/cs413/PMBOK.pdf

Porter, M. E., Competitive Advantage: Creating and Sustaining Superior Performance, The Free Press,
New York, 1985.

Prahalad, C.K and Hamel, G., The Core Competence of the Corporation. Harvard Business Review,
May/June 1990.

Rother, M. and Shook, J., Learning to See. Lean Enterprise Institute, 1998.

Scheller. C.V., Hruby, P. Is POA the Precise Semantics of REA?, 3rd International Workshop on Value
Modeling and Business Ontologies, Stockholm, Sweden, 2009.

Scheller, C.V., Hruby, P. Modeling Services and Intellectual Property Rights Using POA (Possession,
Ownership, Availability), 5th International Workshop on Value Modeling and Business Ontologies, Gent,
The Netherlands, 2011.

SoaML, SOA Modeling Language, version 1.0, Release Date: March 2012,
http://www.omg.org/spec/SoaML/1.0/ .

SOA-RM, Reference Model for Service Oriented Architecture 1.0, OASIS, October 2006,
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html.

 21

http://www.lean.org/Library/Seeing_the_Whole_Part1.pdf
http://www.hec.unil.ch/aosterwa/PhD/Osterwalder_PhD_BM_Ontology.pdf
http://www.cs.bilkent.edu.tr/%7Ecagatay/cs413/PMBOK.pdf
http://www.omg.org/spec/SoaML/1.0
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html

Sowa, J. F. and Zachman, J. A., Extending and formalizing the framework for information systems
architecture, IBM Systems Journal, vol 31, no 3, 1992,
http://www.zachman.com/images/ZI_PIcs/ibmsj1992.pdf .

Stabell, C.B., and Fjeldstad, O.D., Configuring Value for Competitive Advantage: On Chains, Shops and
Networks, Strategic Management Journal, 19(5), 413-417, 1998,
http://www.agbuscenter.ifas.ufl.edu/5188/miscellaneous/configuring_value.pdf .

Teece, D. J., Pisano, G. and Shuen, A., Dynamic Capabilities and Strategic Management. Strategic
Management Journal, August 1997.

Vervest, P. H.M., Van Liere, D. W. and Zheng, Li (Eds.), The Network Experience, New Value from
Smart Business Networks, Springer, 2009,
http://www.erim.eur.nl/ERIM/publications/book_releases/Release?p_item_id=5157588&p_pg_id=93

Weill, P. and M. R. Vitale (2001). Place to space: Migrating to eBusiness Models. Boston, Harvard
Business School Press.

Whittle, R., and Myrick, C.B., Enterprise Business Architecture: The Formal Link Between Strategy and
Results, CRC Press, 2005.

Wikipedia, Value Chain, http://en.wikipedia.org/wiki/Value_chain .

Zachman, J. A., A framework for information systems architecture, IBM Systems Journal, vol 26, no
3, 1987, http://www.cesames.net/wp-content/uploads/2010/04/ibmsj2603e.pdf .

Zollo, M. and Winter, S. G., Deliberate Learning and the Evolution of Dynamic Capabilities.
Organization Science, 2002, Vol. 13, No. 3.

 22

http://www.zachman.com/images/ZI_PIcs/ibmsj1992.pdf
http://www.agbuscenter.ifas.ufl.edu/5188/miscellaneous/configuring_value.pdf
http://www.erim.eur.nl/ERIM/publications/book_releases/Release?p_item_id=5157588&p_pg_id=93
http://en.wikipedia.org/wiki/Value_chain
http://www.cesames.net/wp-content/uploads/2010/04/ibmsj2603e.pdf

4 Terms and Definitions
Terms and definitions are included in Annex A: Glossary.

 23

5 Symbols
Symbols are consistent with the MOF and UML specifications.

 24

6 Additional Information
6.1 Acknowledgements
This sub clause identifies the organizations and representatives that are formal submitters of this
specification as well as those who participated in the development of the specification and those who have
an interest in the result and support adoption.

6.1.1 Submitting Organizations
Cordys Corporation B.V.

Henk de Man, henkdman@gmail.com
Mudigonda Rajender, mrajender@gmail.com

CSC
Pavel Hruby phruby@csc.com
Victor L. Harrison 1vharrison7@gmail.com
Klaus Loehnert kloehner@csc.com

6.1.2 Participants
In addition to the submitters, the following people contributed directly to the development of this
specification.

Verna Allee, verna.allee@valuenetworks.com

Arne Berre, Arne.J.Berre@sintef.no

Fred Cummins, fred.a.cummins@gmail.com

Larry Hines, Larry.Hines@microfocus.com

Peter Lindgren, pel@production.aau.dk

Pete Rivett, pete.rivett@adaptive.com

6.1.3 Supporting organizations

Aalborg University

Peter Lindgren pel@production.aau.dk
Adaptive

Pete Rivett pete.rivett@adaptive.com
Agile Enterprise Design

Fred Cummins fred.a.cummins@gmail.com
AT&T
 Jenny Huang, jh2873@att.com
BizAgi, Ltd.

Jesus Sanchez Jesus.Sanchez@bizagi.com
Eindhoven Technical University
 Rik Eshuis, Ph.D
Fujitsu

Hiroshe Miyazaki miyazaki.hir-02@jp.fujitsu.com
InPaqt

 25

mailto:phruby@csc.com
mailto:1vharrison7@gmail.com
mailto:kloehner@csc.com
mailto:verna.allee@valuenetworks.com
mailto:Arne.J.Berre@sintef.no
mailto:fred.a.cummins@gmail.com
mailto:Larry.Hines@microfocus.com
mailto:pel@production.aau.dk
mailto:pete.rivett@adaptive.com
mailto:pel@production.aau.dk
mailto:pete.rivett@adaptive.com
mailto:fred.a.cummins@gmail.com
mailto:Jesus.Sanchez@bizagi.com
mailto:miyazaki.hir-02@jp.fujitsu.com

 Felix Janszen, felix.janszen@inpaqt.nl
Mega International
 Antoine Lonjon, antoine.lonjon@mega.com
Ministery of Defense, Netherlands
 J.C. van Es, jc.v.es@mindef.nl
Oelan

H. (Hans) van Bommel, hans.vanbommel@oelan.nl
Princeton Blue

Vitaly Khusidman, vitaly.khusidman@princetonblue.com .
REA Technology

Christian Vibe Scheller, cvs@reatechnology.com.
SINTEF

Arne Berre, Arne.J.Berre@sintef.no
Strategic Value Partners
 Neal McWhorter, nealmcwhorter@strategicvaluepartners.com
ValueNet Works

Verna Allee verna.allee@valuenetworks.com
Vlastuin Group

J.A.J.G.M. Lentjes, j.lentjes@vlastuin.nl

6.2 IPR and Patents
The submitters contributed this work to OMG on a Non-Assert basis.

6.3 Guide to the Specification
Clauses 1 - 6 are introductory topics, and clause 7 contains the metamodel specification that defines the
structure of a compliant metamodel. Additional information is provided by the following Annexes :

• Annex A: Glossary

• Annex B: Alignment with Existing Business Modeling Techniques

• Annex C: Use Cases

 26

mailto:felix.janszen@inpaqt.nl
mailto:antoine.lonjon@mega.com
mailto:jc.v.es@mindef.nl
mailto:hans.vanbommel@oelan.nl
mailto:vitaly.khusidman@princetonblue.com
mailto:cvs@reatechnology.com
mailto:Arne.J.Berre@sintef.no
mailto:nealmcwhorter@strategicvaluepartners.com
mailto:verna.allee@valuenetworks.com
mailto:j.lentjes@vlastuin.nl

7 VDML Metamodel
This clause specifies the normative, VDML metamodel. It starts with an overview to provide a general
understanding of the concepts to be modeled and the semantics and relationships of the model elements.
The next sub-clause describes the details of the metamodel elements and their attributes and relationships.

7.1 Overview of VDML
VDML provides a medium for the consistent representation and integration of business concepts and
viewpoints for business leaders to develop understanding, consensus and what-if scenarios, along with the
ability to exchange the resulting models between different but complaint modeling tools. Like BPMN,
VDML includes concepts of activities, roles, flows and participants, but VDML provides a higher level of
abstraction of business activity to focus on statistical characteristics of activities, resources, deliverables
and value contributions - along with concepts of business capabilities and extended organizational
relationships - to provide an enterprise-level perspective on the operation of the business. This enterprise
perspective supports recognition and understanding of problems and opportunities in the context of
market demand and enterprise optimization, and it highlights the relative importance of potential changes
to the structure and capabilities of the enterprise.

The VDML modeling concepts include an aggregation of concepts that occur in different enterprise-level,
business modeling and analysis techniques. As a result, a VDML model can support multiple
viewpoints—different abstractions of the design of an enterprise. Figure 1, below, depicts a number of
viewpoints that have been considered in the development of VDML. Several of these viewpoints are
established business modeling techniques; Annex B: Alignment with Existing Business Modeling
Techniques discusses the alignment of the concepts of a number of established techniques to VDML.

Figure 1 - VDML Viewpoints

 27

This specification includes minimal normative, graphical notation. It is expected that notations of
existing viewpoints will evolve and new views will be developed when more robust models can be
developed using VDML. Two substantial use cases are included in separate documents to illustrate the
graphical notation and application of VDML. See Annex C: Use Cases.

VDML, version 1, does not include a simulation capability, but the ability to extend VDML for Discrete
Event Simulation, Monte Carlo Simulation and System Dynamics has been considered in the metamodel.
The following sub-clauses will include discussions of optional extensions to some elements to support
simulation. These extensions are normative, but are not required for compliance with VDML, version 1.

The following sub-clauses will describe a number of aspects of modeling with VDML to help potential
users understand the benefits of VDML modeling, and to help implementers understand the semantics and
context of the model elements defined in the metamodel clause. Each of these sub-clauses describes the
business concepts and interactions of a cluster of closely related model elements. Some elements will be
mentioned in multiple clusters since these clusters are all interrelated.

7.1.1 VDML Model
A ValueDeliveryModel element contains, directly or indirectly, all of the elements of a particular
VDML model. A VDML model may have multiple Scenarios where each Scenario has different
Measurements associated with the model elements, representing different operating circumstances and
configurations. These Measurements may be entered by a user, computed by the model or imported
from production operations or a simulation. Different Scenarios can also delegate to different
Collaborations as sub-Collaborations (i.e., services). A common Scenario defines
Measurements that are "common" across all Scenarios in the model (i.e., they apply unless
modified for a specific Scenario). A ValueDeliveryModel is the unit of model exchange. A
model exchange between different VDML tools will include one or more Scenarios including the
common.

7.1.2 Value and Value Proposition
The creation and exchange of value is a fundamental driver of analysis using VDML. A value is a
measurable benefit delivered to a recipient in association with a business item/deliverable. The
Measurement represents the degree to which the property is present and may be either an objective or
subjective measure. A value may represent a feature that is intrinsic in the deliverable such as its
composition, its performance, or its weight, or other benefits conveyed by the deliverable to the recipient
such as price, a commitment to future purchases, a warranty, an environmental impact of the product or
trustworthiness. Different recipients will have different opinions regarding their level of satisfaction with
the particular value (different Measurements), but they should all agree on the operational
Measurement of the value contribution.

A deliverable will typically convey multiple values, and an exchange may involve multiple deliverables.
Together the bundle of deliverables and values will determine the level of appreciation of the recipient. A
ValueProposition embodies the values associated with the deliverable(s) and provides a
transformation from a Measurement of each value concerned to a level of satisfaction of that value for
the particular recipient (e.g., customer or market segment). These may be combined in a weighted
average to represent the overall level of satisfaction. This overall satisfaction, as well as some of the
values, may be compared to the ValueProposition of a competitor. The ValueProposition

 28

provides insight for identification of values that must be added or maintained and those that are
candidates to improve competitive position. Each ValueProposition represents the perspective of a
recipient. Since recipients may not explicitly define their preferences, each ValueProposition may
represent estimates of the recipient’s satisfaction by the modeling business entity.

ValueAdd elements represent value properties contributed by different activities participating in the
delivery of the product or service. A contribution can be positive or negative. For a product or line of
business, the ValueAdd elements for the same type of value are aggregated to determine the impact on
the ValueProposition. A value that is considered below recipient expectations or market demand
suggests a need for improvement. The ValueAdd elements for that value can help identify activities and
supporting Capabilities that might be improved to enhance recipient value.

Different ValueProposition Scenarios may be defined for different recipients. Each may
incorporate variations in production operations, different product features, or a different set of values of
interest and each will have their particular satisfaction levels for the values. Recipients include different
customer market segments, internal customers of services and the enterprise owners or stockholders.
When a value proposition represents the interests of business leaders or stockholders, the model may
represent a business future state so the recipient values can be viewed as transformation objectives.

7.1.3 Capability Definition
Business capabilities are fundamental to the delivery of a product or service. Sharing of business
capabilities can be a competitive advantage for product cost or quality as well as agility of the enterprise
in adapting to new technology or market opportunities. VDML provides a framework in which
Capabilities can be identified and optimized from an enterprise perspective.

Deliverables such as products or services are produced by using business Capabilities to perform
Activities that add value. A CapabilityOffer represents the ability of an organization to
perform a particular type of work and may involve people with particular skills and knowledge,
intellectual property, defined practices, operating facilities, tools and equipment. VDML provides for
specification of capabilities (CapabilityDefinition) in a taxonomy (CapabilityLibrary)
that specifies broad classifications, broken down into very specific Capabilities that, potentially, are
applicable to multiple products or lines of business. The taxonomy is the basis for a Capability map
display or a Capability “heat map” where certain Capabilities are highlighted for improvement.

A specific Capability may be performed by one Actor or a team of actors. A Capability may
also rely on other supporting Capabilities to perform specific Activities. These supporting
Capabilities typically are sharable in different contexts to achieve economies of scale or consistent
controls for multiple uses.

The purpose of the capability taxonomy is to promote consistency in the definitions of similar
Capabilities, and to provide the opportunity to recognize where the same or similar
Capabilities are being performed by different organizations. This presents the opportunity for
consolidation to realize economies of scale. It also provides reference to existing Capabilities
(CapabilityOffers) when a capability is needed to respond to changing market demands or to
develop a new product or line of business.

 29

Capabilities are owned by organization units (OrgUnits). The OrgUnit either has or can obtain
the necessary resources to deliver the Capability. This typically involves a Pool of people with the
necessary skills and knowledge along with facilities, practices, tools and equipment that are needed and
possibly services providing supporting Capabilities.

7.1.4 Collaboration
Collaboration is the fundamental organizational concept of VDML. A Collaboration represents the
interaction of multiple Participants for a shared purpose. Each Participant is in a Role that
represents that Participant’s relationship to the rest of the Participants and the shared purpose.
Each Participant may be an Actor (a human or automaton), or it may be another
Collaboration. Participants are assigned to one or more Roles, which allows any given
Participant to engage in multiple Collaborations. Those Roles, in turn may be assigned as
Participants in other Collaborations.

For example, a department in an enterprise is a collaboration. It may engage persons in Position
Roles as well as groups of persons in subordinate team OrgUnit Collaborations. A Role, such
as an engineer in a department, may be engaged by a committee, another Collaboration, or a specific
set of Activities. So, in the committee example, a person in the engineering Role, as an engineer,
also takes on the Role of representative of the department as a member of the committee.

A Role will be filled by a Participant that has the Capability required to perform the associated
Activity(s). That Capability may be provided by an Actor (person or machine) or another
Collaboration of Participants needed to achieve the needed Capability. The capability
taxonomy (CapabilityLibrary) provides a link to a CapabilityOffer(s) for identification of
an OrgUnit(s) that can provide the needed Capability.

A Collaboration may define the Activities performed by Participants in Roles. The
interactions between Roles may be represented as an Activity network. While the generic
Collaboration element can stand alone to represent any business collaboration or Activity
network, it has been specialized to four more specific types of Collaboration: Community,
BusinessNetwork, OrgUnit and CapabilityMethod. A Community is a loose association of
members that share a common interest. A BusinessNetwork represents Collaboration between
Parties that are typically, economically independent and that participate in an exchange in the
marketplace. An OrgUnit (organization) is a Collaboration that is a component of an organization
structure and is responsible for defined resources. A CapabilityMethod is a Collaboration for
specification of the operation of a sharable Capability (i.e., a service).

7.1.5 Community
Members of a Community are individuals or organizations that have come together due to a shared
interest. This includes professional organizations, standards organizations, political action groups, voters
in a particular jurisdiction, and market segments representing shared interests in certain products or
services. A community may provide an opportunity to share expertise, to join together for advocacy, or to
develop standard practices. Some communities are associated with a formal organization that provides
business functions and support for activities of the members. The Community may be viewed as a

 30

branch of the more formal organization structure consisting of Org Units, discussed below. A
Community may be formed by persons with shared interests from across a business organization to
share experiences and collaborate on innovation. Roles within the Community are Member Roles.

7.1.6 Business Network
A BusinessNetwork is a Collaboration between independent economic entities, participating in
an exchange of products, services and usually money. Participants may include companies,
government agencies, or other institutions (all VDML Collaborations) as well as individuals (e.g.,
retail customers). They collaborate for their mutual benefit, providing and receiving deliverables with
associated values.

These Participants play Party Roles in a BusinessNetwork. Each Participant
contributes to the BusinessNetwork Collaboration because they perceive that they realize a net
gain from exchanging deliverables in their Party Role. A BusinessNetwork model may be
configured to engage specific Participants with known interests and capabilities. In such a model it
is possible to develop more detailed representations of the operation of each Participant through
their Party Roles. Alternatively, Party Roles may involve classes of Participants such as a
market segment represented by a Community where it is understood that in a specific business
transaction, only one member of the Community would participate. This abstraction is essential for
reducing the scale of a VDML model where an enterprise may engage thousands of similar business
partners and millions of similar customers.

Each Party Role may exchange deliverables with some or all of the other Party Roles. Each of
the Party Roles perform Activities that produce or consume deliverables. These Activities
may delegate to other Collaborations, typically CapabilityMethods, to specify the internal
operations in greater detail. Of course, for a Participant other than the enterprise being modeled,
there may be no model details available to represent the internal business operation and different
Parties. In addition, a BusinessNetwork may model typical exchanges between the enterprise
being modeled and many other entities. For such a BusinessNetwork, certain Roles can be filled
by a Community representing entities that have similar interests and participate in the
BusinessNetwork in the same way with the understanding that only one Member of the
Community participates in the Party Role for a particular exchange. For example, a manufacturer
may engage in a BusinessNetwork with dealers. The “dealer” Party Role may be assigned to a
Community of dealers representing the potential Participants.

A BusinessNetwork may be composed of more specific BusinessNetworks as where a company
engages in separate but related business transactions, for example, the sales of printers and the associated
sales of printer cartridges. A BusinessNetwork may also represent a very broad set of relationships
that depict a target business as a member of an ecosystem. This is useful for identifying and
understanding the less obvious business relationships and effects that may be factors in the success of the
business including the impact on professional, environmental and social values. Such models may focus
on product lifecycles rather than individual product production and sales. See an example in Figure 96.

 31

In a BusinessNetwork model, deliverables and associated ValuePropositions that are sent and
received by each Party (Role) determine the overall value of participation for each Party and the
viability of the network. To determine the net economic value for a Party, each
ValueProposition provided may be assigned an economic value that reflects the cost of the
deliverable(s) with associated values, and each ValueProposition received may be assigned an
economic value based on the recipient’s value requirements and competitive pricing. It is at this level that
the interaction of multiple lines of business may be evaluated such as in a business strategy where printers
are sold at a loss to drive sales of cartridges.

7.1.7 Organization Unit (Org Unit)
VDML includes a representation of organizational structure because (1) organizations manage and
maintain the implementation of business capabilities, (2) organizations are collaborations where specific
people work together for a shared purpose, (3) organizations are accountable for the management and
utilization of resources and the operating performance of their capabilities, and (4) organization structure
is a fundamental aspect of any enterprise transformation.

An OrgUnit is the building block of organizations. For example, the top tier of a company, a business
unit, or a department are all OrgUnit Collaborations. These are persistent Collaborations
that generally have specific persons in Position Roles. OrgUnit is the only Collaboration
type that is an owner of resources such as people, machines, intellectual property, etc., and is thus the
only Collaboration that provides sharable capabilities.

An OrgUnit has Position Roles. Position Roles are formally defined and are usually
identified with the job classification of an appropriate participant. Position Roles may define the
budgeted positions, so some may be vacant. The Participant in a Position may be an employee
or a contractor, so a Position Role might be filled by an employee Role of the company or a
contractor Role of a contract Collaboration. From time-to-time, a Position Role may be
assigned to a Performer Role of a CapabilityMethod that defines a specific Activity to be
performed by the person in the Position Role. Individual assignments are not required in a VDML
model (version 1), but would be modeled to support a simulation.

An OrgUnit may be modeled as having specific Activities and deliverables, but, in general, an
OrgUnit will provide multiple Capabilities including internal administrative and support
operations that are not part of its primary business purpose. Some of these Capabilities are
provided by Actors (humans or machines) in OrgUnit Positions. Other more complex
Capabilities require more specific Collaborations of some or all of the OrgUnit
Participants. These Collaborations are performed as the need arises and can be defined with
CapabilityMethods that specify the Activities and Roles to be filled for each application of a
Capability.

Position Roles within an OrgUnit may also fill Roles in other Collaborations thus linking
the OrgUnit with other Collaborations including other OrgUnits. For example, an engineer in
a Position Role within an engineering group my fill a Role as a member of a technical committee
that has representatives from other groups to coordinate product design efforts. A person in an OrgUnit

 32

Position Role may participate in a Performer Role such as the submitter (Role) in a purchase
request Collaboration of the Purchasing department.

An OrgUnit generally exists in a hierarchical, organization structure that defines a chain of
responsibility over personnel and other resources and operations and has associated financial budgets and
accounts. Thus a company has divisions, the divisions have departments, the departments have groups or
teams, etc. Each ad hoc committee or project team is typically formed from Positions in more
persistent OrgUnits, and each has a reporting relationship to a persistent OrgUnit. OrgUnit is also
used for other Collaborations that represent persistent relationships between specific
Participants such as a standing review committee, a task force or a project team.

An OrgUnit will typically have a manager or leader responsible for the management of the OrgUnit
and its resources and operations. The leader is a Participant in the Collaboration, however,
being in a manager Position Role, that person also participates as a member of the parent OrgUnit
Collaboration. So a department may have groups (Collaborations) with a manager in each
group (individual) in a Position Role where that Position manager is also a Participant in
another Position Role of the parent department. However, some organizations are not simple
hierarchies. For example, another member of a group may be the financial analyst that also has a
Position Role in the department of the chief financial officer. A project team may have
Positions filled by persons in Position Roles in multiple OrgUnits—Roles in Roles.

An OrgUnit typically brings together people and other resources that work together to provide a
Capability represented as a CapabilityOffer. The Capability may be as broad as the
product engineering capability of a department, or may be more specific such as the engine design group.
An OrgUnit will, from time to time, engage sub-groups of its members to produce specific results.
These ad hoc Collaborations may be defined as CapabilityMethods, or may simply be project
teams. An OrgUnit may also offer Capabilities that are not defined in further detail. This may
indicate that the details are simply not modeled, or that the Capability is configured ad hoc to meet a
specific requirement.

Each Capability offered by an OrgUnit is identified by a CapabilityOffer. A
CapabilityOffer can identify the CapabilityMethod and/or Pool of Actors that provide the
Capability as well as significant resources that are used to deliver the Capability. Positions
and managed resources that support Capabilities of an OrgUnit are in Stores or Pools
(discussed later) associated with the CapabilityOffers that use them. A Capability may
produce value directly for a customer or it may contribute value when it is engaged in a specific
Activity of a value stream.

7.1.8 Capability Method
Some activity patterns of Collaborations are used over and over again, producing specific
deliverables and associated values. An OrgUnit may offer multiple Capabilities that each apply a
different, repeatable Activity pattern to support each CapabilityOffer. Each pattern is specified
with a CapabilityMethod. Each use of a CapabilityMethod will have a set of

 33

Measurements and Assignments of Performers for that use, specified by its
DelegationContext (discussed later).

When a requirement for use of a CapabilityMethod occurs, people are assigned to certain Roles,
they perform defined Activities, they use and consume resources, they create certain deliverables
and they produce a result. The details of this work can be represented with an Activity network with
Roles, deliverables and ValueAdds that are required to deliver a desired result. Any of the
Collaboration types discussed above can represent its work with an Activity network, but a
CapabilityMethod can be offered as a shared Capability, owned by a responsible OrgUnit and
supported by people and resources owned by an OrgUnit.

A CapabilityMethod defines a sharable Activity network. This is similar to a business process
definition that is used over and over to produce a result with potentially different input circumstances and
Role Assignments for each occurrence. However, a CapabilityMethod focuses on the statistical
aspects of Activities, the flow of deliverables and contributions of value, and thus provides a higher
level of abstraction of what the business does, how it performs and who is responsible rather than the
detail of the exceptions, variations and control mechanisms involved in orchestrating work on individual
work products.

Consequently, an Activity network can also represent a case type for case management where the
process is adaptive. For a case model, VDML Activity Measurements reflect the statistical
occurrences of an Activity for cases in the same scenario. A VDML model of case management is
closer to a CMMN (Case Management Model and Notation) model than a BPMN (Business Process
Model and Notation) process. In a CMMN case, Activities are linked by dependencies, typically
representing the availability of a result or a change in state of a business item.

Figure 2 - Capability Offers

 34

A CapabilityMethod is associated with a CapabilityOffer for the OrgUnit that has resources
to provide the Capability. Typically, the Roles of the CapabilityMethod will be filled by
persons in Positions of the provider OrgUnit. The CapabilityMethod is also associated with
an owner OrgUnit that has the responsibility and authority to develop and modify the
CapabilityMethod design. This recognizes that a CapabilityMethod may be developed and
maintained by one organization, and it may be used by multiple OrgUnits to provide the
Capability in different contexts. This will be typical of an administrative function, as well as
methods defined by a department and performed by different groups within the department.

Figure 2, above, illustrates the relationships between a CapabilityDefinition (library),
CapabilityOffers, CapabilityMethods and the owner and provider OrgUnits. The
CapabilityLibrary has two CapabilityDefinitions, A and B. Each are offered by both
OrgUnit X and OrgUnit Y as indicated by the “provides” association. Each also has a
CapabilityMethod for Capability A. OrgUnit Z owns a CapabilityMethod that can be
used (provided by) OrgUnit X or OrgUnit Y to provide Capability B. OrgUnit Z is responsible
for the design of the CapabilityMethod for Capability B (but not the supporting resources),
OrgUnit X and OrgUnit Y are responsible for the operation of the CapabilityMethod for
Capability B and the supporting resources. The CapabilityOffers will have associated
elements for resources that support the Capabilities in OrgUnit X and OrgUnit Y (not shown).
The graphical elements shown here are not normative (for illustration purposes only).
A CapabilityMethod, or any Collaboration providing a Capability, supports
Measurements for a typical delivery of the Capability. However, a CapabilityMethod is
designed to be shared and will be engaged by Activities in one or more Collaborations to
perform supporting work. Thus a CapabilityMethod may be engaged by an Activity of another
Collaboration as a “sub-Collaboration.” The OrgUnit that performs the
CapabilityMethod is engaged in the Role of the delegating Activity, and it uses the
CapabilityMethod to provide the desired Capability. The Role may perform multiple
Activities, so the OrgUnit must have CapabiityOffers that support the requirements of each
of those Activities.

7.1.9 Activity
Activities define work to be done by Participants in Roles within a Collaboration.
Each Activity is performed by one Role of one or more Participant Roles within the
Collaboration. Within a Collaboration, the same Role may perform multiple Activities
and may provide multiple Capabilities used by the Collaboration. The Collaboration
itself may perform a Role in Activities of another Collaboration. The Activity identifies
the type of Capability required to perform the Activity by reference to a
CapabilityDefinition, and the Role to be filled by a Participant that provides that
Capability. In some cases the Participant will be an Actor (human or automaton), in other
cases it will be filled by a Collaboration (usually an OrgUnit using a CapabilityMethod).
Note that if a Role performs multiple Activities, and the Activities require different
Capabilities, then the selected Participant must be capable of providing each of the
Capabilities required.
Figure 3, below, depicts a number of elements related to an Activity. In the example, the
Performer Role is filled by a Position Role (a Position in an OrgUnit), indicating that it is

 35

filled by a Participant in a Position, typically an Actor. (This diagram is for illustration only
and is not intended to be normative)

Figure 3 - Activity structure

An Activity consumes and produces BusinessItems as deliverables. A BusinessItem is
anything that can be acquired or created, that conveys information, obligation or other forms of value.
For example, it includes parts, products, units of fluids, orders, emails, notices, contracts, currency,
assignments, devices, property and other resources that can be conveyed from a provider to a recipient. A
BusinessItem flows between Activities and Stores, and it may flow through a delegation to a
sub-Collaboration, or be the input or output of a Collaboration.

Flow of BusinessItems into and out of Activities as well as Collaborations is depicted by
DeliverableFlows. Flow from one Activity to another indicates that the receiving Activity
requires the BusinessItem as input. The value contributions of each Activity are represented as
ValueAdds. As long as the input BusinessItem is essentially the same thing as the output, the
VDML BusinessItem element remains the same, occurring in multiple DeliverableFlows.

An Activity can have DeliverableFlows from one Activity or Store and to another
Activity or Store (but not from a Store to a Store). In the figure, the BusinessItem is on
both the input and output DeliverableFlows, indicating that the input and output are essentially the
same except the output has some added value. This could be a part going through progressive stages of
production. The ValueAdded to the BusinessItem is associated with the same OutputPort as
the DeliverableFlow of the BusinessItem. The ResourceUse, internal to the Activity,
connects to InputPorts and OutputPorts of the Activity to indicate the resources used by a
particular output (there could be additional InputPorts and OutputPorts). This use of graphical
elements is for illustration only and is not normative.

An Activity is expected to contribute to one or more values to its deliverable(s) and thus to the overall
result of the Collaboration (although not all values may be represented in a particular model). These
contributions are represented by ValueAdd elements. Value contributions are associated with
Measurements that have a positive or negative impact on the market value or desirability of the end

 36

product or service. ValueDefinitions are captured in a library (ValueLibrary), as are
Characteristics (SMM Library). Types of value can include product features and qualities as well
as Activity performance characteristics such as duration, cost and defect rate that affect recipient
(customer) satisfaction. Specific Measurements of interest are at the discretion of the modeler and are
generally determined by the ValueProposition expected by the recipient/customer.

Together, the Roles of a Collaboration and their Activities produce the desired result and
associated values. The ValueAdds of a Collaboration may be summarized for their impact on a
unit of production of the end product or service. Consequently, the Measurements associated with an
Activity and its ValueAdds are based on one unit of production or can be expressed in a way that is
meaningful for considering the value of the end product or service such as cost per unit. However, the
Measurements are averages or statistical measures reflecting variances over some time period rather
than the Measurements of one, selected unit of production. Where there is variability in the result,
such as different configurations of automobiles on a production line, the Measurements will represent
a particular product mix with statistical variance. Where it is important to represent different or more
specific product mixes, the same Collaboration can be used to represent different Scenarios.
Scenarios are discussed in more detail, below.

The flows of a VDML Activity network are always directed toward completion, so all ValueAdds
contribute to the end result. Conversely, all values can be traced back to their contributors. This is
possible, because VDML is not representing the actual paths of each unit of production, but rather the
statistical use of various Activities that contribute to results achieved over some period of time. That
representative set of results includes some Activities that are only active for some units of
production due to product features, operating exceptions, defects, repairs, sample testing, machine
failures, and so on. The resultant Measurements represent a typical unit of production, but may
include statistical Measurements of variance.

Repairs and rework may be a particular concern for large, complex products. A modeler may choose to
represent Activities for repair and rework and divert some percentage of production along this path.
Conversely, the modeler may simply add a rework factor into each Activity that will be applied to
adjust operating Measurements to reflect this additional work. Scrap Activities might receive
some percentage of production and direct it to a salvage operation, so the cost of production goes into the
end product less the recovery from salvage.

Time-to-delivery may be an important measure for customer satisfaction. This may be simply the sum of
durations of Activities or Stores acting as buffers to determine the total time for delivery.
However, the production process may be paced as with a production line, so that while some
Activities are shorter in duration, they do not save time for delivery. To express this, an
Activity, typically an initial Activity, may specify a recurrence interval that may affect the
duration and operating efficiency of subsequent Activities.

Note that various factors such as product mix, rework and recurrence intervals may be applied to the same
model in the context of different Scenarios so that the effects can be compared and alternatives can be
evaluated.

 37

7.1.10 Port
Ports are the connection points for inputs and outputs to Collaborations, Activities and
Stores (specializations of PortContainer). DeliverableFlows link Ports between
PortContainers. ValueAdds are associated with OutputPorts. OutputPorts define the
association of DeliverableFlows to ValueAdds, distinguishing between the ValueAdds
associated with different BusinessItems that are output.

Ports also provide for the association of InputPorts to OutputPorts within an Activity through
association with a ResourceUse. A ResourceUse may specify characteristics of use of resources
from an InputPort such as how much resource is used, and/or how long a resource is in use.
ResourceUse may also clarify dependencies between inputs (resources) and outputs (deliverables) that
may affect costs and durations associated with the Activity.

A ResourceUse can also define the allocation of DeliverableFlows among alternative Ports.
So where inputs to an Activity come from multiple, alternative DeliverableFlows, a
ResourceUse will determine the choice of alternative. This may be expressed as a preference, or as
percentage allocation, or for a simulation, this could apply selection criteria to individual transactions.

7.1.11 Resources and stores
A resource is something that is used or consumed by an Activity to deliver its value. This includes
parts, intellectual property, energy, a person, knowledge assets, a machine, a tool, and so on. The VDML
user should not attempt to represent all resources used by all Activities, but should focus on those
resources that are important to support a high-level analysis. So in most cases, production facilities, small
parts, supplies, heat, light and power will not be of concern. The cost of such resources can be included in
Capability overhead or additional Activity operating cost if they represent significant factors.
However, parts of high value or machines that must be scheduled probably are of sufficient interest to be
modeled.

Resources are held in a Store and are delivered as BusinessItems over a DeliverableFlow
from the Store to a target Activity. A resource may be replenished by DeliverableFlow of a
BusinessItem from a source Activity. An Activity may forward a resource as a Business Item
with a subsequent DeliverableFlow or delegate to a sub-Collaboration.

A resource may be consumable or reusable. A consumable resource is no longer available after it is
consumed by an Activity; a reusable resource is used by one or more Activities and then
returned to the Pool (a specialization of Store). A resource also may be fungible or non-fungible. A
non-fungible resource is uniquely identifiable and cannot be replaced by another resource of the same
type. Fasteners and other interchangeable parts are fungible. For example, an engine configured for a
particular automobile assembly is not fungible.

A Store may hold non-fungible resources to be matched to corresponding business items. For example,
a Store may hold engines and match them to the corresponding automobiles. In VDML (without
simulation) most individual business items are represented as typical of the model BusinessItem, so a
Store of non-fungible resources can specify an average Store size or holding period to represent the

 38

effect of matching to corresponding BusinessItems. In a simulation implementation, the Store
would match individual, incoming BusinessItems.

Reusable resources are managed by a Pool and are assigned for use. A Pool is a specialization of
Store that can track the availability and assignments of individual resources. Reusable resources are
associated with a responsible OrgUnit and individual resources may be assigned to Pools based on
their Capabilities. A Pool tracks the total number of resources for its Capability as well as the
number that are available for use. The modeler may explicitly represent the individual
BusinessItems for each resource, or just capture the Pool size and average number available,
depending on the level of detail required.

A CapabilityOffer can identify the Pool of an OrgUnit that provides reusable resources for that
Capability. A Pool is owned by the associated OrgUnit that is accountable for managing the
Pool. A reusable resource, represented by a BusinessItem, will be used by an Activity for some
duration, and may be passed to one or more subsequent Activities before being returned. The
cumulative duration of these uses will determine the consumption of available resource time. This, along
with the rate of production, will determine if the Pool of resources will always have resources available
or will introduce some additional wait-time for assignment of a resource.

In simulation, the availability of each, reusable resource must be managed by a Pool as a
BusinessItem. Each resource may have scheduled times when it is unavailable. An individual
resource may also be available to perform one of multiple Capabilities and thus may be assigned to
multiple Pools. When a resource is assigned for use, it is unavailable until returned to the Pool. The
availability must be associated with the specific resource since a resource could provide multiple
Capabilities competing for assignments. Availability of a resource may also be controlled based on
a CalendarService. This allows availability to reflect scheduled work time or other factors that may
remove a resource from availability. The CalendarService as well as attributes and relationships of
the Pool and the BusinessItems required to support Discrete Event Simulation are optional in
VDML version 1.

7.1.12 Measures
VDML incorporates SMM (Structured Metrics Metamodel) in order to leverage the SMM metamodel and
support the use of SMM Libraries to define Measures to be applied to VDML model elements. In
SMM, a Measure is a method that is applied to characterize an attribute of something by assigning a
comparable quantification or qualification. A Measure is applied to a Characteristic, such as
weight of a part, to determine a Measurement that expresses the value of the Characteristic for a
particular VDML model element.

SMM also provides for different Measurements to be expressed for the same thing in the context of
different Observations. In VDML, an Observation is associated with an AnalysisContext.
Thus a VDML element may have different Measurements for the same
MeasuredCharacteristic in different AnalysisContexts.

 39

VDML Characteristics reflect statistical Measurements per unit of production. A VDML
model may include Collaborations having different units of production. For example, an
automobile may be the unit of production for a final assembly line, but for a tire manufacturing operation
one tire is the unit of production, and five tires are needed for one automobile. On the other hand, a
product design is the unit of production of the Collaboration that produces a design for production
of many automobiles. These Collaborations are related, but their units of production are different,
so where these Collaborations interact, there must be appropriate adjustments for the ValueAdd
Measurements to produce consistent results.

For example, a tire production Collaboration will yield a cost per tire. The automobile production
cost must incorporate the cost of 5 tires. From a product lifecycle perspective, the product costs must
include the cost of product development and design revisions (additional design Collaborations)
(along with other sales and marketing costs) prorated over the expected production for the lifecycle of the
product.

7.1.13 Scenarios and contexts
In VDML, the operation of the business is represented by the interaction of multiple
Collaborations. The Role that performs an Activity in a Collaboration can be assigned to
a sub-Collaboration to provide the desired Capability. When the sub-Collaboration is an
OrgUnit, the OrgUnit can apply a CapabilityMethod identified by the OrgUnit’s
CapabilityOffer to deliver the Capability.

When the Activity of a Collaboration delegates to another Collaboration in order to engage
a shared Capability, that particular use of the sub-Collaboration may be one of many. For each
use of the Collaboration, there will be different Measurements of performance, depending on the
particular circumstances of that use. SMM supports the capture of multiple sets of Measurements by
associating these with different Observations. VDML uses this SMM facility by defining each use of
a Collaboration as an AnalysisContext where each AnalysisContext is associated with
an SMM Observation. In VDML, a root AnalysisContext for a VDML model is specialized as
a Scenario, and a context for a delegation is specialized as a DelegationContext.

A DelegationContext defines aspects of the particular delegation to the sub-Collaboration
referenced as the contextCollaboration. When an OrgUnit uses a CapabilityMethod, the
OrgUnit is assigned to the Role that performs the delegating Activity and the
CapabilityMethod is linked to the DelegationContext as the contextCollaboration—
the context defined for that application of the CapabilityMethod. If there is no
CapabilityMethod, or the Role is not assigned to an OrgUnit, then the sub-Collaboration is
both in the Role, and in the DelegationContext (through contextCollaboration).

 40

Figure 4 - Two uses of a collaboration

An AnalysisContext may also define Role Assignments as context-dependent. Thus the Role
Assignments in one occurrence of a Collaboration may be different from the Role
Assignments in another occurrence of the same Collaboration. This is particularly important
when the Participant in a Role is identified by an input to the Collaboration. In the
alternative, a Role Assignment is associated with the Collaboration (the owner of the Role),
and the Assignment is context-independent.

The InputPorts and OutputPorts of the delegating Activity are linked to InputPorts and
OutputPorts of the sub-Collaboration (e.g., CapabilityMethod) using
InputDelegations and OutputDelegations (which are context-based). Consequently, the
ValueAdd elements leading into the calling Activity are input to the sub-Collaboration, and
the ValueAdd elements of the sub-Collaboration become outputs of the calling Activity.

 41

Figure 4 illustrates two uses of the Y Collaboration within one use of the X Collaboration.
This diagram is not normative—for illustration only. These are all in the context of one Scenario (not
shown). Collaboration Y is assigned Role A in the depicted DelegationContext of
Collaboration X. Diagram (a) illustrates the DelegationContext of Y when used in
Activity X1; Diagram (b) illustrates the DelegationContext of Y when used in Activity X3.
Each DelegationContext identifies the SMM Observation (not shown) and the
DelegationContexts for Y identify the PortDelegation and Measurement elements
associated with that delegation. The illustration shows one input and one output linked through
PortDelegations. The dark rectangles associated with Y1 and Y2 represent Measurements, one
for each use of each Activity of the Y Collaboration. ValueAdd elements are not shown.

VDML takes this concept a step further to allow an entire VDML model to have multiple Scenarios,
different sets of Measurements to reflect different operating situations. For example, one Scenario
might represent Measurements for a particular product mix, and another Scenario could represent
the Measurements for an alternative product mix. Different Scenarios could be used to evaluate
differences in the use of different operating assumptions or sub-Collaborations, or for current and
future configurations and Measurements.

A Scenario element represents the root AnalysisContext for the set of Measurements for a
particular situation. The Scenario and the DelegationContexts of that Scenario form an
AnalysisContext tree of sub-Collaborations engaged in that Scenario as depicted in Figure
5, below (non-normative graphic). Since Assignments can also be context dependent, the delegations
of one Scenario can differ from those of another Scenario thus forming a different tree.

Figure 5 - Scenarios and context trees

Collaborations and other elements that do not occur as sub-Collaborations in the Scenario
are included in the root, Scenario context. The root Scenario context includes Stores that occur
in DeliverableFlows that cross from one Collaboration to another (crossing
DelegationContexts), as when the product of a Collaboration is delivered as an input to
another Collaboration.

 42

Any Scenario in a VDML model may involve delegation (engagement of sub-Collaborations),
apart from the "common" Scenario, which only serves to provide Measurements that are
"common" across all Scenarios in that VDML model.

7.1.14 Staff collaborations
VDML models will tend to have a primary focus on the “line” or “value stream” operations that
contribute directly to the delivery of a product or service and associated values to an end customer.
However, the business also requires “staff” operations that maintain and change the line operations.
These may be generally classified as support Capabilities, consistent with the value chain modeling
concepts of Porter (1985). They produce value for internal customers. This includes the staff
Activities in an organization that maintain the day-to-day operating Capabilities as well as
those that support capability transformation initiatives.

VDML cannot model the transition of Collaborations and Activities to accomplish a business
transformation. However, in addition to the mainstream business, (1) it can model the work of
transformation, (2) it can model the consequences of transformation (by comparing the “current state”
model to the “future state” model), and (3) it can model the work of day-to-day maintenance and support
that keeps the business running and sustains efficiencies.

The work of transformation involves a Collaboration and sub-Collaborations with Actors
contributing to changes in the design and implementation of business operations. This is no different
from other Collaborations except that elements of the mainstream business model are the subject
matter of the work. The elements affected will be referenced by BusinessItems in the
DeliverableFlows. This work is likely to include strategic planning initiatives.

The current business model and the future business model of a transformation can be modeled as different
Scenarios of the same VDML model if the future structure is not significantly different. Scenarios
can also be used to represent stages of progression of the transformation to consider the transitional
impact on the continued operation of the business.

The day-to-day staff operations to maintain and support the operation of the business are more closely
linked to the line operations. Maintenance and repair of equipment is a primary example. The
monitoring of equipment, preventive maintenance, and timely response to failure will have a significant
impact on line operations. The deliverables are operational machines, but the values realized are reduced
downtime and possibly reduced production defects. Consequently, production performance
Measurements of the operational Capability will reflect the values delivered by the machine
maintenance and repair Capability. The unit of production of machine maintenance will not be the
same as the unit of production of the primary operations, so values of the machine maintenance
Activities will need to be adjusted when applied to the primary value stream.

Other Capabilities that may not be considered production operations should be considered as part of
a product lifecycle. These may include product engineering, purchasing, product distribution and field
support as well as marketing and sales. These may have different units of production, but they can affect
product values. These aspects of the enterprise are less likely to be modeled or integrated into a model in
the short term, but they can certainly be modeled as separate value streams serving internal customers.

 43

7.1.15 Model integration
VDML may be used to model different aspects of an enterprise. For example, a VDML model might be
developed for each line of business. Another model might be developed for product engineering, or field
support. At some point it may be desirable to integrate these models for a more comprehensive
representation of how the business works. Some of the products may be bundled for sale so the values
will be merged. Some operations, such as product engineering, will contribute values that are not
provided by production operations such as ease-of-use and mean-time-to-failure. Integration of models
supports better understanding of the interactions of these different business aspects.

The most straight-forward integration will occur in a BusinessNetwork between autonomous
Parties—Participants that assume Roles in the BusinessNetwork. This integration is
defined in terms of the DeliverableFlows between the Parties. Integration of two lines of
business may occur in a Collaboration between the line-of-business value streams that brings
together the BusinessItems and ValueAdds of both and reconciles unit-of-production differences
to provide an integrated ValueProposition. This integration might be viewed as providing a VDML
model, that contains a Scenario with a BusinessNetwork as its contextCollaboration,
which BusinessNetwork contains Activities that delegate (via delegationContexts in that
Scenario) to the line-of-business Collaborations, which may be contained in separate VDML
models.

More often, integration will involve the integration of Capabilities of one model into a scenario of
the other model—bringing in CapabilityMethods, Stores and Pools and, possibly, other
Collaborations. Each model may have its own CapabilityLibrary,
BusinessItemLibrary, ValueLibrary, RoleLibrary and organization structure model that
may or may not be consistent with the other model(s). Integration will involve reconciliation of the
following points of intersection:

1 Reconciliation of libraries: CapabilityLibrary, BusinessItemLibrary,
ValueLibrary and RoleLibrary. Each of these must be a superset of the corresponding
libraries of the models being integrated. Duplicate names and names of duplicated definitions may
need to be reconciled.

2 Reconciliation of the organization structures as a superset of the OrgUnits in the two models
with overlaps removed. Overlapping OrgUnits may have duplicated CapabilityOffers so
duplicated CapabilityMethods, Stores and Pools will need to be removed. References
to names removed for duplicated elements will need to be reconciled.

3 A branch of a delegation tree in one Scenario may then be assigned as a delegation from an
Activity in the other Scenario. This requires that delegated DeliverableFlows,
BusinessItems and ValueAdds be reconciled as with any delegation. This will likely affect
the Measurements of both the delegated branch and the receiving Scenario since there will
be a propagation of effect of changes in DeliverableFlows in both input flows and output
flows.

 44

4 If a Collaboration in one model produces an input to a Collaboration in the other model
through a shared Store (i.e., a side effect DeliverableFlow) then these inputs and outputs
also must be reconciled.

These linkages can be facilitated by the modeling environment implementation. The user should be able
to (1) select a Scenario branch—the Collaboration of interest and all of the direct and indirect
delegations, (2) Identify the DelegationContext and Activity of the receiving Scenario that
will delegate to the selected branch. The implementation should then identify and facilitate the delegation
bindings (PortDelegations) as for any sub-Collaboration, and identify the non-delegation
inputs and outputs to be reconciled between the new branch and the parent model.

 45

7.2 VDML Class definitions
This sub-clause defines the details of each of the VDML metamodel classes under the following topics:

• Collaboration and value creation. It defines the concepts associated with Collaboration
including Activity networks and deliverables along with the contributions of
Activities and aggregation in ValueProposition.

• Collaboration sub-types. It defines the four sub-types of Collaboration: OrgUnit,
BusinessNetwork, Community and CapabilityMethod.

• Models and scenarios. It defines the scope of a ValueDeliveryModel (VDML model) and
the representation of Scenarios within a model. A Scenario is a set of Measurements
associated with elements of a ValueDeliveryModel in a particular situation; a model may
have multiple Scenarios. Within a Scenario, a Collaboration may be engaged in
different AnalysisContexts and thus have a set of Measurements associated with each
context.

• Core elements. It defines elements that represent primitive concepts in a
ValueDeliveryModel.

• Libraries. Libraries are collections of business concept specifications. Libraries may be shared
across multiple ValueDeliveryModels.

• Integration with SMM. It defines elements that represent primitive Measurements for values,
performance characteristics and other measurable aspects. Measurements are defined by the
SMM specification.

7.2.1 Collaboration and Value Creation
Collaborations define the fundamental structure of a ValueDeliveryModel.
Collaborations involve Participants in Roles working together to perform Activities.
Participants may be individuals or other Collaborations. Their Activities receive and
produce deliverables for which they may contribute values. Values are aggregated and embodied
by ValuePropositions for recipients of the end products.
This sub-clause covers the following:

• Collaborations and Participants describes the basic elements and relationships of
Collaborations

• Activity networks describes the elements and relationships of Activities and Stores
that occur within Collaborations including the Assignment of Roles and the flow of
BusinessItems.

• Values and ValuePropositions describes the contributions of ValueAdds by
Activities and their aggregation in ValuePropositions that address recipients of
end product.

7.2.1.1 Collaborations and participants
The diagram, below, describes the core structure of a ValueDeliveryModel. Collaborations
bring together Participants in assigned Roles to perform Activities. Participants may
be people or organizations or other Roles of people or organizations. So a person in a manager Role in

 46

one department (Collaboration) may, as manager, participate as a member (Role) in a planning
committee (Collaboration) —a Role in a Role.

Figure 6 - Collaborations

7.2.1.1.1 Actor Class
An individual (indivisible) Participant, which might be human (a Person) or non human
(e.g., a software agent or machine).

SuperClass
Participant
Property Description
scenario: Scenario [0..*] Scenarios that refer to the Actor as a contextCollaboration

(see 7.2.3.2.2).

7.2.1.1.2 Person Class
A human Actor.

SuperClass
Actor

7.2.1.1.3 Collaboration Class
Collection of Participants joined together for a shared purpose or interest.

Participants are assigned Roles that are specific to and contained in the Collaboration. A
Participant might be named in the model (as instance of the class Participant), or might be
dynamically determined from roleResource (see 7.2.1.2.3).

 47

VDML distinguishes OrgUnits, Communities, BusinessNetworks and
CapabilityMethods as sub-types of Collaboration.

SuperClass
PortContainer

Property Description
collaborationRole: Role [0..*] Roles specific to and contained in the

Collaboration.
ownedAssignment: Assignment [0..*] Assignment of Collaboration Roles to

Participants. These Assignments are specific
to and contained in the Collaboration, i.e., they
are not context-dependent.

activity: Activity [0..*] Activities that are contained in the
Collaboration and performed by Roles in the
Collaboration.

flow: DeliverableFlow [0..*] DeliverableFlows as contained in the
Collaboration.

businessItem: BusinessItem [0..*] BusinessItems as contained in the
Collaboration.

internalPortDelegation: PortDelegation [0..*] Delegations of Ports of the Collaboration
to Ports of PortContainers (Activities or
Stores) inside the Collaboration. This enables
that the internal structure of a Collaboration need
not be visible to the Activity that delegates its work
to the Collaboration.

delegationContext: DelegationContext [0..*] DelegationContexts that refer to the
Collaboration as their
contextCollaboration (see 7.2.3.2.3).

scenario: Scenario [0..*] Scenarios that refer to the Collaboration as a
contextCollaboration (see 7.2.3.2.2).

Constraints

• PortDelegations that are owned by a Collaboration MUST delegate Ports of the
Collaboration (as PortContainer) to Ports of Activities that are contained in the
Collaboration.

7.2.1.1.4 Participant Class (Abstract)
Anyone or anything that can fill a Role in a Collaboration. Participants can be Actors
(human or automatons) or Collaborations or Roles of Actors or Collaborations.

SuperClass
MeasurableElement

Property Description
assignment: Assignment [0..*] Assignments of Roles to the Participant.

 48

participantCalendar: CalendarService [0..1] Calendar that determines the availability of the
Participant, to perform work. When a
Participant is assigned to a Role, and that Role
has a calendarService, the Participant’s
calendarService overrides the Role’s
calendarService. If a Participant is a Role
and the Collaboration that contains the Role has a
calendarService, the Participant’s
calendarService overrides the
Collaboration’s calendarService.

7.2.1.1.5 Role Class
A Role is an expected behavior pattern or Capability profile associated with participation in a
Collaboration.

SuperClass
Participant

 Property Description
isLead: Boolean = false Indicates, if “true,” whether the Role is a leader in the

Collaboration
roleDefinition: RoleDefinition [0..1] Association to a RoleDefinition, as contained in a

RoleLibrary that is applied to enforce consistency
in the definition of Roles. Multiple Roles that are
associated with the same RoleDefinition, are
considered similar from the perspective of the library.

roleAssignment: Assignment [0..*] Assignments that assign the Role to
Participants

performedWork: Activity [0..*] Activities that are performed by the Role
port: Port [0..*] Ports for which the Role is responsible to handle

the inputs or outputs that they represent.
providedProposition: ValueProposition [0..*] ValuePropositions for which the Role is the

provider (see 7.2.1.3.1).
receivedProposition: ValueProposition [0..*] ValuePropositions for which the Role is the

recipient (see 7.2.1.3.1).

Constraints

• Activities that are performed by a Role MUST be contained in the same
Collaboration that also contains the Role.

• If an Assignment, that assigns a Role to a participant, is contained in a
Collaboration, the Collaboration MUST also contain the Role that is assigned.

• An InputPort that provides the roleResource to which a Role is assigned MUST be
contained by an Activity that is performed by that Role.

• Ports to which a Role refers (via port), MUST be Ports of Stores.

 49

7.2.1.1.6 CalendarService Class

A CalendarService can be used to determine resource availability with more precision. This is
relevant for simulation. Specification of calendar structure itself is not in scope of VDML.

SuperClass
VdmlElement

7.2.1.2 Activity networks
Activities define the work of Roles of Participants in a Collaboration. They are linked
in networks by DeliverableFlows through which they receive and produce or modify
BusinessItems (inputs and outputs). A network may also receive BusinessItems from
Stores or deliver them to Stores where the Resources may be held. DeliverableFlows are
connected to Activities and Stores through InputPorts and OutputPorts.

An Activity may identify a required capability by reference to a CapabilityDefinition and
engage an organization (OrgUnit) that provides that capability by selecting from organizations that
provide a CapabilityOffer for the required capability.

The diagram, below, focuses on Activities and associated elements.

Figure 7 - Activities

 50

7.2.1.2.1 Activity Class
Work contributed to a Collaboration by a Participant in a Role of the Collaboration. A
Role may be filled by another Collaboration and a Role may contribute to multiple
Activities in the same Collaboration. The Participant in the Role might be named in the
model (as instance of the class Participant), or might be dynamically determined from
roleResource (see 7.2.1.2.3).

SuperClass
PortContainer

Property Description
performingRole: Role [0..1] The Role in the Collaboration that performs

the Activity
capabilityRequirement: Capability [0..1] The Capability that is required by the

Activity to perform its work, and which is
defined via association to a Capability, as
contained in a CapabilityLibrary that is
applied to enforce consistency in the definition of
Capabilities.

appliedCapabilityOffer: CapabilityOffer [0..1] The CapabilityOffer that is applied to
perform the work. It matches the Capability
that is required by the Activity. When more
than one CapabilityOffer is available in the
business, that matches this Capability, a choice
has to be made, and is persisted in the model via
this property.

delegationContext: DelegationContext [0..1] The AnalysisContext, as set by the
Activity, in which a Collaboration
(typically a CapabilityMethod) is analyzed,
to which the Activity delegates its work (i.e.,
that the Activity uses as sub-
Collaboration)

resourceUse: ResourceUse [0..*] Specifications of the use or consumption of a
resource, received as input, by the
Activity.

implementedPractice: PracticeDefinition [0..*] Indications of which practices are implemented by
means of the Activity, via association to a
PracticeDefinition, as contained in a
PracticeLibrary, that is applied to enforce
consistency in the definition of practices. The same
practices might also require other Activities to
implement them.

duration: MeasuredCharacteristic [1] The average duration of an Activity.
recurrenceInterval: MeasuredCharacteristic [0..1] The time interval between two successive

recurrences of the Activity. As any
MeasuredCharacteristic, it can be
associated with a Measurement that can be

 51

stochastically determined, which is also useful in
e.g., Discrete Event Simulation. The interval can
also be considered equivalent to “takt time” or
“cadence time” in Lean Value Stream Maps (see
Rother et al. (1998)). The Activity that has the
recurrenceInterval (i.e., the scheduled
Activity) maybe called the “pacemaker” in
Lean Value Stream Maps.

Constraints

• The Role that performs an Activity MUST be contained in the Collaboration that also
contains the Activity.

• The durations of each of the ResourceUses of an Activity MUST NOT be longer than
the duration of the Activity.

• The offset of Ports of the Activity MUST NOT be longer than the duration of the
Activity.

• For each Port of an Activity, the sum of its offset and the longest duration of a
ResourceUse that relates to it, MUST NOT be longer than the duration of the Activity.

• An Activity MUST NOT have a recurrenceInterval, when it receives inputs other
than from Stores.

• ResourceUse of an Activity MUST relate to Ports of that Activity.
• When an Activity contains more than one InputPort to receive roleResource, i.e.,

InputPorts to which the Role is assigned that performs the Activity, the Activity
MUST have a ResourceUse that relates to the set of these InputPorts (actually making
them alternatives to each other), or each DelegationContext in which the Activity-
containing Collaboration is used, MUST specify a contextBasedAssignment (see
7.2.3.2.1) that assigns the Role to the roleResource that is received on one of these
InputPorts.

7.2.1.2.2 ResourceUse Class
Specifies the use or consumption of a resource within an Activity, to which the resource serves
as input. This may involve the specification of how much resource is used, the duration during
which it is used, as well as, possibly other Measurements. A ResourceUse may also specify
alternative sources for a resource. In VDML a resource is considered anything that is “used” or
“consumed” in the production of a deliverable.

SuperClass
MeasurableElement

Property Description
resource: InputPort [0..*] {ordered} The resource for which the use is specified.

When more than one resource is specified,
these resources serve as alternatives to each

 52

other. Preferences within the set of alternatives is
implied by the ordering of the set of
resources.

resourceIsConsumed: Boolean = true Specifies whether the resource is consumed,
or whether it is re-usable after Activity
completion

isExclusive: Boolean = false Specifies whether more than one resource can
be used from a set of alternative resources. If
“true” only a one resource can be used
(typically the one with highest preference). If
“false”, more than one resource can be used
from a set of alternative resources.

quantity: MeasuredCharacteristic [1] The quantity of the resource that is required
to perform the Activity

deliverable: OutputPort [0..1] ResourceUse might be dependent on an
output of the Activity. If specified, the
quantity of the ResourceUse specifies how
much resource is required per unit of the
deliverable. Example: An Activity that
assembles a car requires four wheels. Each car
(deliverable) requires four wheels
(resource).

inputDriven: Boolean = false If “false” (the default situation) the
ResourceUse quantity specifies how much
input (i.e., resource) is required, possibly
dependent on an output (i.e.,
deliverable), and instances of the
Activity, that use resource from the
Store, can only be created based on other
inputs (e.g., a sales order) than the
resource that is related to the ResourceUse
(the input can be said to be “pulled” by the
Activity). If “true”, the quantity specifies
how much output results from processing an
input (e.g., in de-assembly), and an
Activity instance will be created as soon as
resource is available in the Store that
provides the input (the input can be said to
“push” Activity).

condition: Expression [0..1] Specifies the condition under which the
resource is used.

planningPercentage: MeasuredCharacteristic [0..1] Specifies probability of use of the resource.
duration: MeasuredCharacteristic [0..1] The average duration of use of a re-usable

resource, or, when the resource is
consumed, the average time it takes to produce a
deliverable from the resource, by the
Activity.

 53

Constraints

• A ResourceUse MUST NOT have a duration when the resource is consumed (i.e.,
resourceIsConsumed = true), unless the deliverable is also specified for the
ResourceUse.

• The unit of the Measure (as specified by SMM) that determines the Measurement of
planningPercentage, MUST be “percent”.

• ResourceUse MUST NOT be defined in relation to resources that are not received from
Stores.

7.2.1.2.3 Assignment Class
The diagram, below, defines the association of a Participant to an Activity through an
Assignment. The Participant may be determined through receipt of a BusinessItem that
identifies a Participant. Assignments are context-dependent, as will be described in the sub-
clause on Scenarios and contexts.

Figure 8 - Assignments

An Assignment specifies how a Role in a Collaboration is or can be filled. An Assignment
might be structurally defined in the model, as Assignment of a Role to a Participant, such as an
OrgUnit, Position or Actor. In that case the Assignment is contained by the Collaboration
that also contains the Role. An Assignment might also be DelegationContext-specific. In that
case the Assignment is contained by a DelegationContext in which the Collaboration that
contains the Role is used. ContextBasedAssignments are typically, though not necessarily,
controlled dynamically in “run-time”. The assignee to which the Role is assigned dynamically, is

 54

typically be defined by a resource that the Activity, that is performed by the Role, might obtain
from a Pool of resources.

SuperClass
VdmlElement

Property Description
assignedRole: Role [1] The Role that is assigned by the Assignment
participant: Participant [0..1] The Participant to which the Role is assigned
roleResource: InputPort [0..*] The resources that are received through the InPutPorts and

to which the Role is assigned. These resources are identified by
the BusinessItems associated with the DeliverableFlows
that connect to the InputPorts or to the InputPorts that are
delegated to these InputPorts (see 7.2.4.4.2). The
BusinessItems denote “classes of things” from which the
Participant in the Role is determined dynamically.

Constraints

• An Assignment MUST NOT assign a Role to both a Participant and roleResource.
• A Role MUST NOT be assigned to more than one Participant that is a Collaboration,

unless the additional Assignments are context-based, i.e., contained by
DelegationContext (see 7.2.3.2.3).

• A Role MUST NOT be assigned itself (directly, or indirectly via other Assignments).
• A Role MUST not be assigned its containing Collaboration.
• BusinessNetworks and CapabilityMethods MUST NOT be Participants in

Positions (i.e., Roles in OrgUnits) or Members (i.e., Roles in Communities).
• BusinessNetworks MUST NOT be Participants in Performers (i.e., Roles in

CapabilityMethods).

7.2.1.2.4 DeliverableFlow Class
The diagram, below, shows the linkage of a DeliverableFlow to OutputPorts and InputPorts
on sending and receiving Activities or Stores. The DeliverableFlow conveys one or more
BusinessItems.

 55

Figure 9 - DeliverableFlows

A DeliverableFlow is a transfer of a deliverable from a provider (or producer) to a
recipient (or consumer). A deliverable is a BusinessItem that is provided by a provider,
i.e., produced by an Activity or delivered from a Store.

SuperClass
MeasurableElement

Property Description
deliverable: BusinessItem [1] Product or service, modeled as BusinessItem, produced by an

Activity or delivered from a Store, and that can be conveyed to
another Activity or Store.

isTangible: Boolean = true If “true”, the deliverable represents something that is contracted,
mandated or expected by the recipient and which may generate
revenue. If “false,” the deliverable, as “intangible,” represents
something that is unpaid or non-contractual or that make things work
smoothly or efficiently
and help build relationships (see Allee (2008))

recipient: InputPort [1] Identifies the InputPort that receives the deliverable that is
transferred via the DeliverableFlow

provider: OutputPort [1] Identifies the OutputPort that provides the deliverable that is
transferred via the DeliverableFlow

duration:
MeasuredCharacteristic [0..1]

Represents the average delay that deliverables are subject to,
when transferred from recipient to provider. This delay is
caused by unbalance due to e.g., recipient’s capacity to process
the deliverable, or to differences between provider’s and
recipient’s batchSizes.

channel: String [0..1] Mechanism to execute a DeliverableFlow, such as e-mail, face-
to-face conversation, SOAP, REST, physical transportation, postal
service, telephone, fax, FTP, etc.

 56

Constraints

• A DeliverableFlow MUST connect Ports of two Activities, or a Port of an
Activity with a Port of a Store.

• A DeliverableFlow that connects to a Port of a Store MUST not have duration.
• A DeliverableFlow MUST NOT connect Ports of Activities that are contained in

different Collaborations.

7.2.1.2.5 BusinessItem Class
A BusinessItem is anything that can be acquired or created, that conveys information, obligation or
other forms of value and that can be conveyed from a provider to a recipient. For example, it
includes parts, products, units of fluids, orders, emails, notices, contracts, currency, assignments, devices,
property and other resources.

BusinessItems are classes of things that, dependent on the context in which they occur, might
represent resources or deliverables. For example, a BusinessItem might be resource that
is used by one Activity, and produced as deliverable by another.

The diagram, below, indicates the association of a BusinessItem to a
BusinessItemDefinition in the BusinessItemLibrary.

Figure 10 - BusinessItems

SuperClass
MeasurableElement

Property Description
isFungible: Boolean = true If “true”, instances of the BusinessItem are

interchangeable, otherwise only a particular instance can
satisfy a need

isShareable: Boolean = false If “true”, instances of the BusinessItem can be used
simultaneously in multiple locations.

definition: BusinessItemDefinition [0..1] Association to a BusinessItemDefinition, as
contained in a BusinessItemLibrary that is applied to
enforce consistency in the definition of BusinessItems.
Multiple BusinessItems that are associated with the
same BusinessItemDefinition, are considered
similar from the perspective of the library.

 57

flow: DeliverableFlow [0..*] DeliverableFlows that convey the BusinessItem
(see 7.2.1.2.4).

store: Store [0..*] Stores in which the BusinessItem is stored (see
7.2.1.2.6).

method: CapabilityMethod [0..*] CapabilityMethods to which the BusinessItem
serves as methodResource (see 7.2.2.4).

7.2.1.2.6 Store Class
The diagram, below, shows the relationship between a Store and a BusinessItem representing the
Resources that are held by that Store. A Store is specialized to a Pool if the resources are
reusable and thus may be tracked and returned to the Pool after use.

Figure 11 - Stores

A Store is a container of resource. The resource that is stored is identified by a
BusinessItem.

SuperClass
PortContainer

Property Description
resource: BusinessItem [1] The BusinessItem that identifies the resource

that is being stored
storeOwner: OrgUnit [1] The OrgUnit that owns the Store (see 7.2.2.3).
inventoryLevel: measuredCharacteristic [0..1] The average number of instances of the resource

 58

kept in Store. It might result from simulation. Its
Measurement, like of any
MeasuredCharacteristic might also be
stochastically determined. Inventory level is essential
to simulation.

duration: measuredCharacteristic [1] The average time during which a resource is kept
in Store

supportedCapability: CapabilityOffer [0..*] The CapabilityOffers that the resource in
the Store supports

storeContext: AnalysisContext [0..*] AnalysisContexts that refer to the Store as
their contextStore (see 7.2.3.2.1).

Constraints

• The BusinessItem that is received in the Store, or provided by the Store, via
DeliverableFlows, MUST be the same as the BusinessItem that is associated with the
Store as resource.

7.2.1.2.7 Pool Class
A Pool is a Store that contains re-usable resource, i.e., resource that is returned to the Pool
after having been used, so that it is again available for use.

SuperClass
Store

Property Description
poolSize: measuredCharacteristic [0..1] The average number of resource instances that reside in the

system, i.e., that are in the Pool (counted by
inventoryLevel), or are in use by Activities.

position: Position [0..*] Positions that are assigned, directly, or indirectly via other
Roles, to Actors that are considered members of the
Pool.

poolCalendar: CalendarService [0..1] Calendar that determines the availability of the resource,
when residing in the Pool, to perform work. The
CalendarService that is assigned to a Position that is
associated to the Pool, overrides the poolCalendar, as far
as that Position is concerned.

Constraints

• The inventoryLevel of a Pool MUST NOT be bigger than the poolSize of that Pool.
• Positions that are associated with a Pool MUST NOT be assigned, directly, or indirectly via

other Roles, to Collaborations.

 59

7.2.1.3 ValueAdds and ValuePropositions
The diagram below shows the structure that defines a ValueProposition. A ValueProposition
expresses a recipient’s levels of satisfaction with the associated values. A recipient may be an
individual entity or a representative of a market segment. OutputPorts on an Activity or Store
identify ValueAdd elements representing the value contributions of the Activity or Store, which
value contributions maybe incremental, or they may be cumulative until that point in the value stream. A
ValuePropositionComponent may aggregate value (from ValueAdd element(s) and/or other
ValuePropositionComponent(s)), and transform its valueMeasurement to a recipient
satisfactionLevel.

Figure 12 - Values and ValuePropositions

The concept of “Value” as is adopted in VDML can be defined as “a measurable factor of benefit, of
interest to a recipient, in association with a BusinessItem”.

7.2.1.3.1 ValueProposition Class
A ValueProposition is the expression of the values offered to a recipient evaluated in terms of
the recipient’s level of satisfaction.

SuperClass
MeasurableElement

 60

Property Description
component: ValuePropositionComponent [0..*] The components that constitute the

ValueProposition
overallSatisfaction: ValuePropositionComponent [0..1] Optional component that expresses the

“overall satisfaction” of the recipient
of the ValueProposition, with the
components of that
ValueProposition.

It is important that the satisfaction of the
recipient (typically a customer) with
the values that are embodied by the
components of the
ValueProposition can be determined
and expressed for the
ValueProposition as a whole, in a
way that enables further aggregation (see
7.2.1.3.4) of that
overallSatisfaction into other
ValueElements.

The overallSatisfaction is
typically computed as the weighted
average satisfaction of components of
the ValueProposition, based on their
satisfactionLevel and
percentageWeight properties (see
7.2.1.3.2).

provider: Role [0..1] The Role that provides the
ValueProposition. This Role
optionally contains the
ValueProposition in the metamodel.

recipient: Role [0..1] The Role that receives the
ValueProposition, as provided by
the provider.

Constraints

• The overallSatisfaction of a ValueProposition MUST be a component of that
ValueProposition.

• The overallSatisfaction of a ValueProposition MUST NOT itself have
percentageWeight.

• The provider of a ValueProposition MUST NOT be the recipient of that
ValueProposition.

 61

7.2.1.3.2 ValuePropositionComponent Class
A part of a ValueProposition that expresses the perspective of the recipient of the
ValueProposition on a particular value, as associated with a BusinessItem that is delivered to
that recipient. This perspective includes the relative importance of that value to the recipient,
expressed as a percentageWeight. It might also include the level of satisfaction of the
recipient, with that value, based on a ranking or grading of that value (see SMM (2015)). As with
any MeasurableElement, the user is enabled to add MeasuredCharacteristics if more
Measurements are required. A ValuePropositionComponent, as ValueElement (see
7.2.1.3.4), might be aggregated from ValueAdd(s) (see 7.2.1.3.3) and/or other
ValuePropositionComponent(s). It typically aggregates from ValueAdds on the
OutputPorts of Activities in the network of Activities that result into the BusinessItem
that is delivered (as deliverable) to the recipient of the ValueProposition.

SuperClass
ValueElement

Property Description
percentageWeight: MeasuredCharacteristic [0..1] The relative importance of the value, as

embodied by the
ValuePropositionComponent, to the
recipient, expressed as a percentage.
This property, together with the property
that expresses the recipient’s
satisfactionLevel, may guide the
provider in establishing priorities for
improvement of Capabilities that
contribute to value delivery.

satisfactionLevel: measuredCharacteristic [0..1] The MeasuredCharacteristic that
contains the level of satisfaction of the
recipient with the value, as embodied
by the
ValuePropositionComponent, and
is typically based on a ranking or grading of
the valueMeasurement of that value
(see SMM (2015)). This property, together
with the percentageWeight property,
may guide the provider in establishing
priorities for improvement of
Capabilities that contribute to value
delivery.

Constraints

• The unit of the Measure (as specified by SMM) that determines the Measurement of
percentageWeight of the ValuePropositionComponent MUST be “percent.”

 62

7.2.1.3.3 ValueAdd Class
A ValueAdd represents the value contribution of a PortContainer (i.e., an Activity, Store or
Collaboration) and is associated with an OutputPort of that PortContainer. A ValueAdd,
as ValueElement, might be aggregated from other ValueAdds, e.g., a ValueAdd of a
Collaboration as aggregated from ValueAdds of Activities that are contained in the
Collaboration. It might also be aggregated from ValuePropositionComponents, such as of
ValuePropositions from suppliers.

The valueMeasurement of a ValueAdd, that is a leaf of a ValueElement aggregation structure
(see 7.2.1.3.4), is typically dependent on or derived from Measurements of one or more
MeasuredCharacteristics of the PortContainer that contains the OutputPort that carries
the ValueAdd, or of elements that are associated with that PortContainer. These
MeasuredCharacteristics will often identify performance Characteristics, such as aspects
of costs, time (duration) or quality.

SuperClass
ValueElement

7.2.1.3.4 ValueElement Class (Abstract)
A ValueElement is a generalization of ValueAdd and ValuePropositionComponent. It also
enables value aggregation, i.e., aggregation of a ValueElement from/to other ValueElements.
Value aggregation is also a means to trace value, as embodied by a ValuePropositionComponent,
back to the sources of value in the value stream, i.e., to the Activities, sub-Collaborations and
Stores, and possibly supplier values (modeled as components of suppliers’
ValuePropositions) that contribute to that value.

SuperClass
MeasurableElement

Property Description
valueDefinition: ValueDefinition [0..1] The associated ValueDefinition, as

contained in a ValueLibrary, used to define
the type of value that the ValueElement
represents.

isAtomic: Boolean [0..1] = true This optional property can be used to enforce
whether or not a ValueElement can be
aggregated from ValueElements of the same
type (i.e., that refer to the same
ValueDefinition). This is particularly useful
to enforce consistency during the development of
a model.

When a ValueElement isAtomic, this
means that it is a leaf in the structure of
aggregation of ValueElements of the same
type of value (i.e., of ValueElements that
refer to the same ValueDefinition in the

 63

ValueLibrary). When a ValueElement is
not atomic (i.e., isAtomic equals "false"), this
means that it is an internal node in the structure of
aggregation of ValueElements of the same
type of value.

For example, my_profit, my_cost and
my_revenue are ValueElements, referring
respectively to profit, cost and revenue as
ValueDefinitions, whereby my_profit is
aggregated from my_cost and _my_revenue, and
my_cost is aggregated from more granular cost
elements, referring to the same
ValueDefinition (cost). ValueElement
my_profit would be atomic, but a cost element
that aggregates from other cost elements would
not be atomic.

aggregatedFrom: ValueElement [0..*] Represents ValueElement objects that are
aggregated.

aggregatedTo: ValueElement [0..*] Represents ValueElement objects that
aggregate ValueElement.

valueMeasurement: MeasuredCharacteristic [0..1] The MeasuredCharacteristic which
associated Measurement contains the result of
measuring of the value that is embodied by the
ValueElement

benchmark: MeasuredCharacteristic [0..*] The MeasuredCharacteristic that defines
a benchmark for the Measurement of value
that is embodied by the ValueElement.
A benchmark is typically measured based on a
grading or ranking of valueMeasurement (see
SMM (2015)).

Constraints

• When valueDefinition of a ValueElement is empty, isAtomic MUST be empty.
• The valueDefinition of a ValueElement that isAtomic MUST be different from the

valueDefinition of aggregatedFrom of the ValueElement.
• At least one of the ValueDefinition-referring aggregatedFrom of a non-atomic (i.e., for

which isAtomic equals “false”) ValueElement MUST refer to the same ValueDefinition
as that non-atomic ValueElement refers to.

7.2.2 Collaboration Sub-Types
VDML defines four different specializations of Collaboration: BusinessNetwork,
Community, Org Unit and CapabilityMethod. These specializations add specific semantics
and place certain restrictions on the structure of each type including the types of Roles that can
participate and the Roles each Collaboration type can fill.

 64

7.2.2.1 BusinessNetworks
A BusinessNetwork is a Collaboration between independent business (or economic) entities,
potentially companies, agencies, individuals or anonymous members of Communities of independent
business entities, participating in an economic exchange.

Figure 13 - BusinessNetworks

7.2.2.1.1 BusinessNetwork Class
A BusinessNetwork can only have Party Roles. A BusinessNetwork can have nested
BusinessNetworks within it.

SuperClass
Collaboration

Property Description
party: Party [0..*] Roles specific to and contained in the BusinessNetwork.

7.2.2.1.2 Party Class
A Party identifies a Role in a BusinessNetwork.

SuperClass
Role

7.2.2.2 Communities
A Community is a loose association of Participants with some shared purpose or interest. For
example, a Community may be used to represent a market segment or a membership organization.
Communities are restricted to having only Member Roles.

 65

Figure 14 - Communities

7.2.2.2.1 Community Class
A Community is a loose Collaboration of Participants with similar characteristics or
interests that work together for some shared purpose such as sharing knowledge. Examples are
Communities of interest or expertise within or outside the organization, industry membership
organizations, and market segments.

SuperClass
Collaboration

Property Description
member: Member [0..*] Roles specific to and contained in the Community.

7.2.2.2.2 Member Class
A Member identifies a Role in a Community.

SuperClass
Role

7.2.2.3 OrgUnits and Capabilities
OrgUnits represent the structure of an organization. They exist to manage people and resources.
OrgUnits can have Capabilities that typically define how the OrgUnit uses its people and
resources. An OrgUnit makes its Capabilities available through CapabilityOffers that
references associated CapabilityDefinitions. Note that multiple OrgUnits may offer the same
Capability.

A CapabilityOffer may identify Stores and/or Pools from which it draws resources where
Pools are people with particular skills.

The Activity network for a CapabilityOffer may be defined by a CapabilityMethod that
identifies the Roles and their Activities.

 66

Figure 15 - OrgUnits and Capabilities

7.2.2.3.1 OrgUnit Class
An administrative or functional organizational Collaboration, with responsibility for defined
resources, including a Collaboration that occurs in the typical organization hierarchy, such as
business units and departments (and also the company itself), as well as less formal organizational
Collaboration such as a committee, project, or task force.

SuperClass
Collaboration

Property Description
position: Position [0..*] Roles specific to and contained in the OrgUnit.
capabilityOffer: CapabilityOffer [0..*] The CapabilityOffers as owned, managed and

provided by the OrgUnit
ownedMethod: CapabilityMethod [0..*] The CapabilityMethods that are owned by the

OrgUnit. CapabilityMethods might be owned by
other OrgUnits than the ones that provide the
CapabilityOffers that are supported by the
CapabilityMethods.

ownedStore: Store [0..*] The Stores of resources that are owned by the
OrgUnit

location: String [0..1] The (optionally defined) location where the OrgUnit
resides. Location may be used as geographic location.
The way in which location is defined is left to the user.

 67

7.2.2.3.2 Position Class
A Position identifies a Role in an OrgUnit.

SuperClass
Role

Property Description
actorPool: Pool [0..*] The Pools that the Actors, that fill the Positions (directly or indirectly

via other Roles), are considered to be members of

7.2.2.3.3 CapabilityOffer Class
A CapabilityOffer represents the ability to perform a particular kind of work and deliver desired
value, by applying resources that are managed together, possibly based on formalized methods
(CapabilityMethods).

SuperClass
MeasurableElement

Property Description
capability: Capability [0..1] The Capability that is offered, and which is defined

via association to a Capability, as contained in a
CapabilityLibrary, that is applied to enforce
consistency in the definition of Capabilities.

capabilityProvider: OrgUnit [1] The OrgUnit that owns, manages and provides the
CapabilityOffer

method: CapabilityMethod [0..*] The CapabilityMethods that support the
Capability that is offered

capabilityResource: Store [0..*] The resources that support the Capability.
releaseControl: ReleaseControl [0..*] The strategies to control the priority of the work to be

performed by the CapabilityOffer.
location: String [0..1] The (optionally defined) location where the

CapabilityOffer resides. Location may be used
as geographic location. The way in which location is
defined is left to the user. Location of a
CapabilityOffer can be used as basis to choose
between multiple CapabilityOffers that offer the
Capability that is required by an Activity.

applyingActivity: Activity [0..*] The Activities to which the CapabilityOffer is
applied (see 7.2.1.2.1).

heatIndex: MeasuredCharacteristic [0..1] A Measurement that is compared with the
heatThreshold as defined for the Scenario (see
7.2.3.2.2). When the heatIndex is beyond the
heatThreshold, the CapabilityOffer is
assumed to require business innovation / transformation
management focus. When one or more
CapabilityOffers have heatIndex value beyond
the heatThreshold, the associated Capability

 68

maybe highlighted on a “heatmap” (see 8.7).

7.2.2.3.4 ReleaseControl Class
A ReleaseControl defines the strategy to control the priority of the work to be performed by a
CapabilityOffer. Examples of such strategies are “first come first served”, “shortest processing
time first”, “Activities for similar deliverable Characteristics first”, “serving demand of
highest priority customer first”, “Activities that are on critical path, given demand fulfillment due
date, first”, etc.

At any moment in time, the work to be performed by a CapabilityOffer is represented by a set of
Activity instances, from possibly multiple Activities (from possibly different
Collaborations) that require the CapabilityOffer. The ReleaseControl strategy
determines the “next” Activity instance that can start, from the subset of these instances that could
start, i.e., for which the resources (including the roleResource), that are required to start, are
available. Once a particular Activity instance is started, it will start using these resources, and the
ReleaseControl will determine which Activity instance will start next, etc.

When no is defined for a CapabilityOffer, the assumed strategy is “first come first served.”

releaseControl is mainly used to support Discrete Event Simulation, though it might generally
provide insight in how the CapabilityOffer is applied and how its resources are organized to
perform the work. In the absence of simulation it essentially provides annotation.

SuperClass
VdmlElement

Property Description
strategy: String The strategy that determines the priority for work release, as specified

by the ReleaseControl. It may ontain a descriptive string or it may
contain a URL that specifies an operation which is specified outside the
model

scenario: Scenario [0..*] The Scenarios according to which the ReleaseControls are
applied.

7.2.2.4 CapabilityMethods
A CapabilityMethod can define the activity networks by which an OrgUnit delivers a capability.
When an Activity engages an OrgUnit to fill a role and provide an offered capability, the
CapabilityMethod defines how the OrgUnit will perform that Activity. The Activity
provides inputs to the CapabiltyMethod, and receives results from the CapabilityMethod
through the PortDelegation mechanism discussed later.

 69

Figure 16 - CapabilityMethods

7.2.2.4.1 CapabilityMethod Class
A Collaboration specification that defines the Activities, DeliverableFlows,
BusinessItems, capabilityRequirements and Roles that deliver a Capability and
associated value contributions (defined via ValueAdds, see 7.2.1.3). For each application of the
CapabilityMethod, within a Scenario or in multiple Scenarios, there may be distinct
Measurements of performance and value contribution, and Role Assignments suitable to the
application context. A CapabilityMethod does not own resources but receives them from other
sources in the course of performing its Activities.

SuperClass
Collaboration

Property Description
performer: Performer [0..*] Roles specific to and contained in the

CapabilityMethod.
capability: Capability [0..1] The Capability that is provided through the

CapabilityMethod, and which is defined via
association to a Capability, as contained in a
CapabilityLibrary that is applied to enforce
consistency in the definition of Capabilities.

methodOwner: OrgUnit [1] The OrgUnit that owns the CapabilityMethod.
OrgUnits that apply the CapabilityMethod, to
support their CapabilityOffers, need not be
methodOwner.

supportedCapability: CapabilityOffer [0..*] The CapabilityOffers that the
CapabilityMethod supports.

methodResource: BusinessItem [0..*] Resources that support, strengthen or accelerate the
CapabilityMethod, and which cannot be
controlled at the Activity level, i.e., for which use
or consumption via InputPorts, counting of use or

 70

consumption and inventory control do not apply.
Typical examples are knowledge resources such as
patents, or licenses of applications. A business process
execution engine is an example of such an application.

implementedPractice: PracticeDefinition [0..*] Indications of which practices are implemented by
means of the CapabilityMethod, via association
to a PracticeDefinition, as contained in a
PracticeLibrary that is applied to enforce
consistency in the definition of practices. The
same practices might also require other
CapabilityMethods to implement them.

Constraints

• When a CapabilityMethod supports more than one CapabilityOffer, possibly
provided by different OrgUnits, the Capability as provided by these
CapabilityOffers MUST be the same.

• When a CapabilityMethod supports a CapabilityOffer, then, when both refer to a
Capability, they MUST refer to the same Capability.

7.2.3 Models and Scenarios
A ValueDeliveryModel represents the elements and relationships of the design of an enterprise or,
more often, a segment of an enterprise. All the elements of a model are directly or indirectly associated
with a ValueDeliveryModel element. A modeling environment may have multiple
ValueDeliveryModels that represent different versions of the enterprise design, designs of different
segments of the enterprise or even different enterprises. Each model is independent.

Within each model, there may be different Scenarios each representing a set of Measurements and
potentially different delegations under different circumstances.

7.2.3.1 ValueDeliveryModels
The diagram below represents the direct associations of model elements with a
ValueDeliveryModel element.

 71

Figure 17 - ValueDeliveryModels

7.2.3.1.1 ValueDeliveryModel Class
A ValueDeliveryModel is a model that supports business analysis and design based on evaluation of
performance and stakeholder satisfaction achieved through the Activities and interactions of people
and organizations using business Capabilities to apply resources and deliver stakeholder values.

This class represents the entry point into a ValueDeliveryModel and provides the top-level container
for all the elements of it.

The fact that these elements are contained in a ValueDeliveryModel does not prohibit association of
them, or elements contained in them with other ValueDeliveryModels, or elements that are directly
or indirectly contained in them. It is essential to consider that ValueDeliveryModels do not prohibit
re-use, but rather enable re-use.

SuperClass
AnalysisContext

 Property Description
scenario: Scenario [1..*] Scenarios that are contained in the

ValueDeliveryModel
metricsModel: SmmModel [0..*] SmmModels (as specified by SMM) that are

contained in and specific to the
ValueDeliveryModel

businessItemLibrary: BusinessItemLibrary [0..*] BusinessItemLibraries that are contained
in and specific to the ValueDeliveryModel

 72

capabilityLibrary: CapabilityLibrary [0..*] CapabilityLibraries that are contained in
and specific to the ValueDeliveryModel

valueLibrary: ValueLibrary [0..*] ValueLibraries that are contained in and
specific to the ValueDeliveryModel

roleLibrary: RoleLibrary [0..*] RoleLibraries that are contained in and
specific to the ValueDeliveryModel

practiceLibrary: PracticeLibrary [0..*] PracticeLibraries that are contained in and
specific to the ValueDeliveryModel

collaboration: Collaboration [0..*] Collaborations that are contained in the
ValueDeliveryModel

actor: Actor [0..*] Actors that are contained in the
ValueDeliveryModel

Constraints

• A ValueDeliveryModel MUST NOT have more than one common Scenario (i.e., a
Scenario with isCommon = true).

7.2.3.2 Scenarios and AnalysisContexts
The diagram below defines the associations of a Scenario, DelegationContexts, and elements of
Collaborations. AnalysisContext is an abstract class of elements that form a delegation tree
with Scenario at the root. Each element in the tree may have a corresponding SMM Observation;
this means it has a distinct set of Measurements for the Collaboration and/or Store
elements associated with that context. Each delegation by an Activity to a Collaboration is
represented by a DelegationContext that can also define Role Assignments for that delegation
and PortDelegation elements that link inputs and outputs of the delegation. Role
Assignments can be defined per Scenario as well.

This delegation structure allows a Collaboration to occur in different contexts within a Scenario,
and it also allows an Activity to delegate to different Collaborations in different Scenarios.

 73

Figure 18 - Scenarios and AnalysisContexts

7.2.3.2.1 AnalysisContext Class (Abstract)
An AnalysisContext defines the set of Measurements of a particular use of one or more
Collaborations, or Stores when used as decoupling points between Collaborations. It may
also define Assignments of Roles in its contextCollaboration(s).

SuperClass
VdmlElement

 Property Description
contextObservation: Observation [0..*] A contextObservation is an Observation (as

specified by SMM) that contains the Measurements
(of MeasuredCharacteristics) that are specific
to the AnalysisContext (i.e., the
observationContext).

For purpose of creating a VDML model with
embedded Measurements a single Observation
per AnalysisContext is sufficient. For other
purposes, such as monitoring performance after
implementation of the VDML model in the business,
additional Observations can be used to capture
Measurements for the same AnalysisContext.
VDML does not specify how to distinguish between
these Observations, given their purpose. A VDML
tool may do that in various ways. E.g. by allowing a
single Observation for modeling purpose, or by
requiring that the whenObserved property of an
Observation, as specified by SMM is left empty for
the modeling-time Observation and is set as the
moment of taking a monitoring snapshot for the other

 74

Observations.
contextBasedAssignment: Assignment [0..*] Assignments of Roles that are contained in the

contextCollaborations of the Scenario
(when the AnalysisContext is a Scenario), or
that are contained in the contextCollaboration
of the DelegationContext (when the
AnalysisContext is a
DelegationContext). These Assignments are
AnalysisContext-specific, i.e., context-dependent.

delegationContext: DelegationContext [0..*] The set of DelegationContexts that are owned
by the AnalysisContext.

contextStore: Store [0..*] The Stores that are analyzed in the
AnalysisContext. When the
AnalysisContext is a Scenario, the
contextStores serve as decoupling buffers
between Collaborations that are analyzed under
that Scenario, and which Collaborations are
related to either the Scenario itself, or to
DelegationContexts in the nesting tree of that
Scenario.

Constraints

• When an Activity delegates its work to a Collaboration, the DelegationContext in
which this delegation occurs, MUST be owned by a DelegationContext in which the
Activity-containing Collaboration itself is used, or MUST be owned by a Scenario
(as the top of an AnalysisContext tree), when the Activity-containing
Collaboration is directly related to that Scenario.

• When an Activity delegates its work in more than one DelegationContext, these
DelegationContexts MUST be owned by different AnalysisContexts, being
DelegationContexts and/or Scenarios, in which the Activity-containing
Collaboration itself is used.

7.2.3.2.2 Scenario Class
A Scenario defines a consistent business use case and set of Measurements of a
ValueDeliveryModel by specifying a, possibly recursive, AnalysisContext for elements in
scope of that use case. The nesting of AnalysisContexts allows a Collaboration to be used
as a sub-Collaboration by more than one Activity, each of which sets its particular
DelegationContext and Measurements. It may also, as AnalysisContext, define
Assignments of Roles in its contextCollaborations.

SuperClass
AnalysisContext

 Property Description

 75

type: String The type of the Scenario, e.g., “As-is / monitoring-
based,” “To-be / estimation-based,” “To-be / simulation-
based,” etc.

isCommon: Boolean = false If “true,” the Scenario represents the common
Scenario of a ValueDeliveryModel. The
common Scenario may define a Measurement for
any MeasuredCharacteristic of any
MeasurableElement in a
ValueDeliveryModel, which Measurement
applies as initial Measurement in any
AnalysisContext (other than the common
Scenario) in which the MeasurableElement is
analyzed, until the contextObservation of that
AnalysisContext contains a Measurement for
that MeasuredCharacteristic.

contextCollaboration: Collaboration [0..*] Collaborations, in scope of the Scenario and
that serve as top-level Collaborations in that
Scenario. For an OrgUnit particpant in the
calling Collaboration, if there is a
CapabilityMethod, it is identified by this
association. The Participant in the same Role in
the calling Collaboration may apply different
CapablityMethods for different Activities.

contextActor: Actor [0..*] Actors, in scope of the Scenario and for which the
Scenario’s contextObservation imposes
Measurements

horizon: MeasuredCharacteristic [0..1] The time distance into the future that the Scenario
spans

releaseControl: ReleaseControl [0..*] ReleaseControls that apply in the Scenario
heatThreshold: MeasuredCharacteristic
[0..1]

A MeasuredCharacteristic that serves as
criterion to determine whether CapabilityOffers
for a certain Capability require business innovation
/ transformation management focus. Such focus is
assumed to be required when a CapabilityOffer’s
heatIndex is beyond the heatThreshold.

Constraints

• The common Scenario (i.e., the Scenario for which isCommon equals “true”) MUST not
contain DelegationContexts, and MUST not have contextStores,
contextCollaborations and releaseControls.

• A Scenario MUST NOT have more than one releaseControl for the same
CapabilityOffer.

 76

7.2.3.2.3 DelegationContext Class
AnalysisContext, set by an Activity and in which the Activity delegates its work to a
Collaboration. A DelegationContext also defines the PortDelegations of Activity
inputs and/or outputs to/from Collaboration inputs and/or outputs, and may, as
AnalysisContext, define Assignments of Roles in its contextCollaboration.

SuperClass
AnalysisContext

 Property Description
parentContext: AnalysisContext [1] The AnalysisContext that contains the

DelegationContext
contextCollaboration: Collaboration [1] The Collaboration to which work is

delegated by an Activity, and which is
analyzed in the DelegationContext

contextBasedPortDelegation: PortDelegation [0..*] PortDelegations that map Ports of the
delegatedActivity to Ports of the
contextCollaboration of the
DelegationContext. These
PortDelegations are
DelegationContext-specific

delegatedActivity: Activity [1] Activity that delegates its work to the
contextCollaboration.

Constraints

• PortDelegations that are contained by a DelegationContext MUST map Ports of
the DelegationContext’s delegatedActivity to Ports of the
DelegationContext’s contextCollaboration.

7.2.4 Core Elements
Core elements

7.2.4.1 VdmlElements
VdmlElement is a shared abstract class for primary model elements. It defines the associations to
attach Attributes and Annotations, and its specialization, MeasuredElement is the abstract
super-class for elements that can have associated Measurements. This diagram begins to show
integration with SMM, discussed later.

 77

Figure 19 - VdmlElements

SMM (see SMM (2015)) can associate Measurements with any measurand (i.e., object that is
measured). In VDML we apply Measurements more narrowly, by enforcing that they can only be
associated with MeasuredCharacteristics as defined by VDML. This is achieved by
specialization of SMM-defined association between Element and Measurement, and redefining
measurand (property owned by that association) to measuredCharacteristic (property owned
by the specialized association).

7.2.4.1.1 VdmlElement Class (Abstract)
A VdmlElement is the root of the hierarchy of all classes in VDML. It is an abstract class.

Property Description
name: String The name of the VdmlElement
description: String A description of the VdmlElement
represents: String [0..1] A reference to something that the VdmlElement represents, such as

a model element in any MOF-based model, an object in an application
database, a web page, or anything uri-addressable (optional).

attribute: Attribute [0..*] User defined attributes of the VdmlElement
annotation: Annotation [0..*] User defined annotations to the VdmlElement

7.2.4.1.2 Attribute Class
An Attribute allows information to be attached to any VdmlElement in the form of a name-value
pair. Attributes provide a simple mechanism to add user defined information to model elements.

SuperClass
VdmlElement

 78

Property Description
text: String Contains the name of the Attribute.
value: String Contains the current value of the Attribute

7.2.4.1.3 Annotation Class
Annotations allow textual descriptions to be attached to any VdmlElement.

SuperClass
VdmlElement

Property Description
tag: String Contains the text of the Annotation to the target model element.

7.2.4.1.4 MeasurableElement Class (Abstract)
Abstract class that represents the subset of VdmlElements that can have user defined
MeasuredCharacteristics.

SuperClass
VdmlElement

Property Description
measuredCharacteristic: MeasuredCharacteristic [0..*] User defined

MeasuredCharacteristics of the
MeasurableElement

7.2.4.1.5 MeasuredCharacteristic Class
MeasurableElement property that has Measurements as instance values. It is defined based on a
Characteristic in a MeasureLibrary. A Measure as defined in the MeasureLibrary,
against that Characteristic, is used to determine the Measurement(s) of the
MeasurableElement.

SuperClass
VdmlElement

Property Description
characteristicDefinition: Characteristic [0..1] The Characteristic as defined in a

MeasureLibrary (as specified by SMM).
measurement: Measurement [0..*] Measurements that specify the instance values of

the MeasuredCharacteristic

Constraints

• When a MeasuredCharacteristic is associated with more than one Measurement, each
Measurement MUST be contained in a separate Observation (as specified by SMM), as
associated with a separate AnalysisContext (see 7.2.3.2.1).

 79

7.2.4.2 Expressions
An Expression specifies the operational mechanism by which one or more alternative elements are
selected. The actual selection of elements would occur during business operations or a simulation. In the
absence of simulation, the expression provides the basis for statistical analysis of the selection criteria.

Figure 20 - Expressions

7.2.4.2.1 Expression Class
An Expression defines a statement which will evaluate on a (possibly empty) set of model objects
(instances of metamodel objects), when executed in a context. An Expression does not modify the
environment in which it is evaluated.

SuperClass
VdmlElement

Property Description
body: String [0..1] Specifies the statement that is evaluated
operand: Operand [0..*] The operands that are used in the body of the Expression

7.2.4.2.2 Operand Class
An Operand is an object on which the body of an Expression is evaluated.

SuperClass
VdmlElement

Property Description
measuredCharacteristic: MeasuredCharacteristic [1] The MeasuredCharacteristic that

serves as operand in the Expression
alias: String [0..1] Short substitute for the fully qualified name of

the operand, in the context of the
Expression.

 80

7.2.4.3 PortContainers
Collaborations, Activities and Stores can have inputs and outputs. Ports define
the connection points for inputs and outputs, and PortContainer is the abstract superclass that
associates Ports with Collaborations, Activities and Stores. Ports, via their related
DeliverableFlows, are also associated with the input and output BusinessItems.

Figure 21 - PortContainers

7.2.4.3.1 Port Class (Abstract)
A Port is a connection point to a PortContainer, used to handle inputs and outputs (e.g.,
consume inputs, produce outputs or delegate inputs or outputs to Ports of other
PortContainers).

SuperClass
MeasurableElement

Property Description
isIntermediate: Boolean = false Specifies whether communication with the

PortContainer, via the Port, can occur at
any time, or only at the start (for an
InputPort) or end (for an OutputPort) of
the lifecycle of an instance of the
PortContainer. This difference is only
relevant for PortContainers that require
instances to conduct their behavior, which are
Activities and CapabilityMethods.

offset: measuredCharacteristic [0..1] Specifies, for an InputPort, the elapse of

 81

time between start of the Activity and the
receipt of the input. For an OutputPort it
specifies the elapse of time between the delivery
of the output and the completion of the
Activity.

planningPercentage: MeasuredCharacteristic [0..1] Specifies probability of use of the Port.
condition: Expression [0..1] Specifies the condition under which the

Port is used.
batchSize: MeasuredCharacteristic [0..1] Specifies the number of units of an input or

output that are communicated together via a
Port.

handler: Role [0..1] Specifies the Role that is responsible for
handling the particular input or output that
the Port represents.

Constraints

• PortContainers other than Activities and Collaborations that are
CapabilityMethods MUST NOT contain Ports with isIntermediate = false.

• PortContainers that are Collaborations MUST NOT have Ports with a
planningPercentage.

• PortContainers that are Collaborations MUST NOT have Ports with a
condition.

• PortContainers that are Collaborations MUST NOT have Ports with a
batchSize.

• PortContainers that are Collaborations or Stores MUST NOT have Ports with
offset.

• When offset is defined on a Port, the Port MUST be defined as intermediate Port (i.e.,
isIntermediate = true).

• An intermediate Port of an Activity MUST have an offset.
• The unit of the Measure (as specified by SMM) that determines the Measurement of

planningPercentage, MUST be “percent.”

7.2.4.3.2 OutputPort Class
Port that is used to handle outputs from PortContainers.

SuperClass
Port

Property Description
outputDefinition: BusinessItemLibraryElement [0..1] Association to a

BusinessItemLibraryElement, as
contained in a BusinessItemLibrary,
used to define the type of output that the
OutputPort can handle.

 82

output: DeliverableFlow [0..1] DeliverableFlow that refers to the
OutputPort as its provider (see
7.2.1.2.4).

resourceUse: ResourceUse [0..*] Objects that define ResourceUse relative to
the OutputPort as deliverable (see
7.2.1.2.2).

valueAdd: ValueAdd [0..*] ValueAdd objects that represent the values
that are delivered by the OutputPort (see
7.2.1.3).

delegatedOutput: OutputDelegation [0..*] The OutputDelegations that refer to the
OutputPort as their target (see
7.2.4.4.3).

outputDelegation: OutputDelegation [0..*] The OutputDelegations that delegate the
OutputPort (see 7.2.4.4.3).

7.2.4.3.3 InputPort Class
Port that is used to handle inputs to PortContainers.

SuperClass
Port

Property Description
inputDefinition: BusinessItemLibraryElement [0..1] Association to a

BusinessItemLibraryElement, as
contained in a BusinessItemLibrary,
used to define the type of input that the
InputPort can handle.

correlationExpression: Expression [0..1] Expression that is evaluated to specify the
instance of a non-fungible BusinessItem
(i.e., BusinessItem with isFungible =
false)

input: DeliverableFlow [0..1] DeliverableFlow that refers to the
OutputPort as its recipient (see
7.2.1.2.4).

resourceUse: ResourceUse [0..*] Objects that define ResourceUse for the
InputPort as resource (see 7.2.1.2.2).

delegatedInput: InputDelegation [0..*] The InputDelegations that refer to the
InputPort as their target (see 7.2.4.4.2).

inputDelegation: inputDelegation [0..*] The InputDelegations that delegate the
InputPort (see 7.2.4.4.2).

assignment: Assignment [0..*] The Assignment that assigns the Role to
the roleResource that is provided by the
InputPort (see 7.2.1.2.3)

Constraints

 83

• A Port that is not an InputPort of an Activity and that is not recipient of a non-
fungible BusinessItem from a Store, MUST NOT have a correlationExpression.

7.2.4.3.4 PortContainer Class (Abstract)
A PortContainer is a container of Ports. VDML distinguishes Activities, Stores and
Collaborations as sub-types of PortContainer.

SuperClass
MeasureableElement

Property Description
containedPort: Port [0..*] Ports that are contained in the PortContainer

7.2.4.4 PortDelegations
The diagram, below, defines the links between Ports in a delegation. Essentially, specializations of
PortDelegation map the input of a delegating Activity to the input of an engaged
Collaboration, and the output of the engaged Collaboration to the output of the
delegating Activity. InputDelegations and OutputDelegations are also used to map the
input of a Collaboration to the input of an Activity that is contained in that
Collaboration, and the output of a Collaboration to the output of an Activity that is
contained in that Collaboration respectively.

Figure 22 - PortDelegations

7.2.4.4.1 PortDelegation Class (Abstract)
A PortDelegation provides a mapping between a Port of an Activity and a Port of a
Collaboration to which the Activity delegates its work (in a particular DelegationContext
(see 7.2.3.2.3). A PortDelegation can also provide a mapping between a Port of a
Collaboration and a Port of an Activity that is contained in the Collaboration. Ports of
Collaborations can be considered to represent an interface that enables abstraction of the internal

 84

work organization of Collaborations away from Activities that delegate their work to the
Collaboration.

SuperClass
VdmlElement

7.2.4.4.2 InputDelegation Class
A PortDelegation that maps an InputPorts.

SuperClass
PortDelegation

Property Description
source: InputPort[1] The InputPort that delegates its input to the target InputPort
target: InputPort[1] The InputPort to which the source InputPort delegates its input

Constraints

• An InputDelegation MUST either map an InputPort of an Activity to an
InputPort of a Collaboration, or it MUST map an InputPort of a Collaboration
to an InputPort of an Activity that is contained in the Collaboration.

• An InputPort of an Activity that is contained in a Collaboration MUST NOT be
mapped, via InputDelegation, to more than one InputPort of the containing
Collaboration.

7.2.4.4.3 OutputDelegation Class
A PortDelegation that maps OutputPorts.

SuperClass
PortDelegation

Property Description
source: OutputPort[1] The OutputPort that delegates its output to the target OutputPort
target: OutputPort[1] The OutputPort to which the source OutputPort delegates it output

Constraints

• An OutputDelegation MUST either map an OutputPort of an Activity to an
OutputPort of a Collaboration, or it MUST map an OutputPort of a
Collaboration to an OutputPort of an Activity that is contained in the
Collaboration.

• An OutputPort of an Activity that is contained in a Collaboration MUST NOT be
mapped, via OutputDelegation, to more than one OutputPort of the containing
Collaboration.

 85

7.2.5 Libraries
Each VDML library is a collection of definitions of a particular type of business concept. This ensures
that a particular concept has the same name and definition wherever it occurs in a
ValueDeliveryModel. The names and definitions are user-defined, but it is expected that there will
be shared libraries for specific industries so the same names and definitions are used in many companies
with local extensions as needed. The library structure provides for a taxonomy of concepts. Elements in
these libraries also have associated data that is useful to guide users in “discovering” parts of their
business designs, such as Activity networks, resources that support Capabilities, etc.

7.2.5.1 BusinessItemLibrary
The diagram, below, defines the library structure for BusinessItemDefinitions.

Figure 23 - BusinessItemLibraries

7.2.5.1.1 BusinessItemLibrary Class
A BusinessItemLibrary contains a taxonomy of BusinessItems, consisting of
BusinessItemDefinitions and categories of them, and is applied to enforce consistency in the
definition of BusinessItems. Multiple BusinessItems that are associated with the same
BusinessItemDefinition, are considered similar from the perspective of the
BusinessItemLibrary.

SuperClass
VdmlElement

 Property Description
businessItemLibraryElement: BusinessItemLibraryElement
[0..*]

BusinessItemLibraryElements
that are contained in the

 86

BusinessItemLibrary

7.2.5.1.2 BusinessItemDefinition Class
A BusinessItemDefinition is a standardized definition, that is applied to enforce consistency in
the definition of BusinessItems. Multiple BusinessItems that are associated with the same
BusinessItemDefinition, are considered similar from the perspective of the
BusinessItemLibrary.

SuperClass
BusinessItemLibraryElement

 Property Description
isFungible: Boolean = true If “true”, instances of BusinessItems, that

are defined by the
BusinessItemDefinition, are
interchangeable, otherwise only a particular
instance can satisfy a need

isShareable: Boolean = false If “true”, instances of the BusinessItems
that are defined by the
BusinessItemDefinition can be used
simultaneously in multiple locations.

category: BusinessItemCategory [0..*] Zero or more BusinessItemCategories
to which the BusinessItemDefinition
belongs

practiceDefinition: PracticeDefinition [0..*] PracticeDefinitions that specify the use
of a resource that is defined by the
BusinessItemDefinition (see 7.2.5.4).

capabilityDependency: CapabilityDependency [0..*] The CapabilityDependencies that refer
to the BusinessItemDefinition as their
deliverableDefinition (see 7.2.5.3.5).

supportedCapability: CapabilityDefinition [0..*] The CapabilityDefinitions that refer to
the BusinessItemDefinition as their
capabilityResourceDefinition (see
7.2.5.3.2).

Constraints

• If a BusinessItemDefinition belongs to a BusinessItemCategory, the
BusinessItemCategory MUST be contained in the same BusinessItemLibrary that
also contains the BusinessItemDefinition.

7.2.5.1.3 BusinessItemCategory Class
A BusinessItemCategory is a collection of BusinessItemDefinitions similar enough to
group them together, and which maybe be part of a hierarchy of BusinessItemCategories.

SuperClass
BusinessItemLibraryElement

 87

 Property Description
categoryItem: BusinessItemDefinition [0..*] BusinessItemDefinitions that belong to the

BusinessItemCategory
parentCategory: BusinessItemCategory [0..*] Parent BusinessItemCategories of the

BusinessItemCategory, in the hierarchy of
BusinessItemCategories

childCategory: BusinessItemCategory [0..*] Child BusinessItemCategories of the
BusinessItemCategory, in the hierarchy of
BusinessItemCategories

Constraints

• A BusinessItemCategory MUST be contained in the same BusinessItemLibrary as
parentCategories and childCategories (if defined) of the BusinessItemCategory.

7.2.5.1.4 BusinessItemLibraryElement Class (Abstract)
A BusinessItemLibraryElement is a generalization of BusinessItemDefinition and
BusinessItemCategory. It has been introduced to enable InputPorts (see 7.2.4.3.3) and
OutputPorts (see 7.2.4.3.2) to refer to either of these.

SuperClass
VdmlElement

 Property Description
characteristicDefinition: Characteristic [0..*] Characteristics from MeasureLibraries

(as specified by SMM) that may suggest
MeasuredCharacteristics that
BusinessItems and Ports may have that are
standardized by reference to the
BusinessItemLibraryElement.
MeasuredCharacteristics of these
BusinessItems and Ports may then refer to the
Characteristics in these
MeasureLibraries. Measures, in these
MeasureLibraries associated with these
Characteristics, may then suggest how
Measurement is achieved.

7.2.5.2 ValueLibrary
The diagram, below, defines the library structure for ValueDefinitions referenced by
ValueElements elements.

 88

Figure 24 - ValueLibraries

7.2.5.2.1 ValueLibrary Class
A ValueLibrary contains a taxonomy of values, consisting of ValueDefinitions and categories
of them, and is applied to enforce consistency in the definition of ValueElements (see 7.2.1.3.4).
Multiple ValueElements that are associated with the same ValueDefinition, are considered
similar from the perspective of the ValueLibrary.

SuperClass
VdmlElement

 Property Description
valueDefinition: ValueDefinition [0..*] ValueDefinitions that are contained in the

ValueLibrary
valueCategory: ValueCategory [0..*] ValueCategories that are contained in the

ValueLibrary

7.2.5.2.2 ValueDefinition Class
A ValueDefinition is a standardized definition that is applied to enforce consistency in the
definition of ValueElements (see 7.2.1.3.4). Multiple ValueElements that are associated with the
same ValueDefinition are considered similar from the perspective of the ValueLibrary.

SuperClass
VdmlElement

 Property Description
category: ValueCategory [0..*] Zero or more ValueCategories to which the

ValueDefinition belongs
characteristicDefinition: Characteristic [0..*] Characteristics from MeasureLibraries (as

specified by SMM) that may suggest

 89

MeasuredCharacteristics that
ValueElements may have that are standardized by
reference to the ValueDefinition.
MeasuredCharacteristics of these
ValueElements may then refer to these
Characteristics in these MeasureLibraries.
Measures, in these MeasureLibraries associated
with these Characteristics, may then suggest
how Measurement is achieved.

Constraints

• If a ValueDefinition belongs to a ValueCategory, the ValueCategory MUST
belong to the same ValueLibrary that also contains the ValueDefinition.

7.2.5.2.3 ValueCategory Class
A ValueCategory is a collection of ValueDefinitions similar enough to group them together,
and which maybe be part of a hierarchy of ValueCategories.

SuperClass
VdmlElement

 Property Description
categoryValue: ValueDefinition [0..*] ValueDefinitions that belong to the

ValueCategory
parentCategory: ValueCategory [0..*] Parent ValueCategories of the ValueCategory, in

the hierarchy of ValueCategories
childCategory: ValueCategory [0..*] Child ValueCategories of the ValueCategory, in

the hierarchy of ValueCategories

Constraints

• A ValueCategory MUST be contained in the same ValueLibrary as
parentCategories and childCategories (if defined) of the ValueCategory.

7.2.5.3 CapabilityLibrary
The diagram below defines the library structure for CapabilityDefinitions referenced by
CapabilityMethods, CapabilityOffers and Activities.

 90

Figure 25 - CapabilityLibraries

7.2.5.3.1 CapabilityLibrary Class
A CapabilityLibrary contains a taxonomy of Capabilities, consisting of
CapabilityDefinitions and categories of them, and is applied to enforce consistency in the
definition of Capabilities. Multiple CapabilityOffers that are associated with the same
Capability, are considered similar from the perspective of the CapabilityLibrary. Similarly,
multiple Activities that are associated with the same Capability, are considered to have similar
requirement from the perspective of the CapabilityLibrary.

A Capability is the ability to perform a particular kind of work and deliver desired value.

SuperClass
VdmlElement

 Property Description
capability: Capability [0..*] Standardized Capabilities that are

contained in the CapabilityLibrary.
These Capabilities are either
CapabilityDefinitions or
CapabilityCategories

 91

capabilityDependency: CapabilityDependency [0..*] CapabilityDependencies that are
contained in the CapabilityLibrary

7.2.5.3.2 CapabilityDefinition Class
A CapabilityDefinition is a standardized definition that is applied to enforce consistency in the
definition of CapabilityOffers of OrgUnits and capabilityRequirements of
Activities. Multiple CapabilityOffers that are associated with the same
CapabilityDefinition are considered similar from the perspective of the
CapabilityLibrary, and multiple Activities that are associated with the same
CapabilityDefinition are considered to have similar requirement from the perspective of the
CapabilityLibrary.

SuperClass
Capability

 Property Description
output: CapabilityDependency [0..*] Dependency that other

Capabilities, identified by their
respective
CapabilityDefinitions, might
have on the Capability, identified
by the CapabilityDefinition, in
that they require an output from it,
which output is identified by a
deliverableDefinition that is
related to the
CapabilityDependency

input: CapabilityDependency [0..*] Dependency that the Capability,
identified by the
CapabilityDefinition, might
have on other Capabilities,
identified by their respective
CapabilityDefinitions, in that
it requires an input from them, which
input is identified by a
deliverableDefinition that is
related to the
CapabilityDependency

capabilityResourceDefinition: BusinessItemDefinition [0..*] Definition of resources that may be
required to support
CapabilityOffers that are defined
by reference to the
CapabilityDefinition

practiceDefinition: PracticeDefinition [0..*] Definition of practices that may be
implemented, completely or in part, by
enforcing the Activities that
require Capabilities that are

 92

defined by the
CapabilityDefinition, or by the
CapabilityMethods that support
CapabilityOffers that are defined
by the CapabilityDefinition

7.2.5.3.3 CapabilityCategory Class
A CapabilityCategory is a collection of CapabilityDefinitions similar enough to group
them together, and which maybe be part of an hierarchy of CapabilityCategories.

SuperClass
Capability

7.2.5.3.4 Capability Class (Abstract)
A Capability element in a CapabilityLibrary is an abstract element that might represent a
CapabilityDefinition or a CapabilityCategory, introduced to enable enforcement of
standardized Capabilities and standardized capabilityRequirements by reference to either
one.

For some Activities, especially in early stages of analysis and design, it is practical to define a
capabilityRequirement by reference to a CapabilityCategory. Later on the requirement
might be refined by referring to a distinct CapabilityDefinition in the
CapabilityCategory. Similarly, some CapabilityOffers might be best defined by reference
to a CapabilityCategory, whereas others can be defined by reference to a
CapabilityDefinition. Experience with commonly known industry standard
CapabilityLibraries have learned that it is often difficult to make a strict distinction between
CapabilityDefinitions and CapabilityCategories. For these reasons, reference to an
element that represents either a CapabilityDefinition or a CapabilityCategory, is useful.

SuperClass
VdmlElement

 Property Description
characteristicDefinition: Characteristic [0..*] Characteristics from MeasureLibraries

(as specified by SMM) that may suggest
MeasuredCharacteristics that Activities
may have that define their
capabilityRequirement by reference to the
Capability, or that CapabilityOffers may
have that offer the Capability.
MeasuredCharacteristics of these
Activities or CapabilityOffers may then
refer to these Characteristics in these
MeasureLibraries. Measures, in these
MeasureLibraries associated with these
Characteristics, may then suggest how

 93

Measurement is achieved.
parentCapability: Capability [0..*] Parent Capabilities of the Capability, in the

hierarchy of Capabilities
childCapability: Capability [0..*] Child Capabilities of the Capability, in the

hierarchy of Capabilities

7.2.5.3.5 CapabilityDependency Class
A CapabilityDependency suggests a possible dependency between two Capabilities, which
dependency clarifies that one Capability requires a deliverable that is provided by the other.

A CapabilityDependency might suggest a DeliverableFlow between two Activities,
when these Activities require the Capabilities that are defined by the
CapabilityDefinitions that are dependent on each other via the CapabilityDependency.
When an OrgUnit provides a CapabilityOffer, or a CapabilityMethod supports a
CapabilityOffer, for the Capability that is identified by a CapabilityDefinition that
relates to a CapabilityDependency, the deliverableDefinition of that
CapabilityDependency might suggest a Port that the OrgUnit or the CapabilityMethod
might require.

SuperClass
VdmlElement

 Property Description
deliverableDefinition: BusinessItemDefinition [1] Definition of the deliverable, the transfer of

which is suggested by the
CapabilityDependency

source: CapabilityDefinition [0..1] CapabilityDefinition that defines the
Capability that is applied to produce the
deliverable

target: CapabilityDefinition [0..1] CapabilityDefinition that defines the
Capability that, when applied uses or
consumes the deliverable

isTangible: Boolean = true If “true”, the deliverable, as defined by the
deliverableDefinition, represents
something that is contracted, mandated or
expected by the recipient and which may
generate revenue. If “false”, the deliverable,
as “intangible”, represents something that is
unpaid or non-contractual or that make things
work smoothly and help build relationships (see
Allee (2008))

isFromExternalSource: Boolean = true The source of the CapabilityDependency
is not defined explicitly. This suggests that, when
an Activity requires a Capability that is
defined by the target, the deliverable may
be provided by a Store or is target of an

 94

InputDelegation.
isForExternalTarget: Boolean = true The target of the CapabilityDependency

is not defined explicitly. This suggests that, when
an Activity requires a Capability that is
defined by the source, the deliverable
maybe received by a Store, or is target of an
OutputDelegation.

Constraints

• A CapabilityDependency with external source (i.e., isFromExternalSource = true)
MUST NOT have a source CapabilityDefinition connected.

• A CapabilityDependency with external target (i.e., isForExternalTarget = true)
MUST NOT have a target CapabilityDefinition connected.

7.2.5.4 PracticeLibrary
A PracticeLibrary contains a taxonomy of Practices, consisting of PracticeDefinitions and
categories of them, and is applied to enforce consistency in the definition of what Practices are
implemented by CapabilityMethods and/or Activities.

Figure 26 - PracticeLibraries

7.2.5.4.1 PracticeLibrary Class
A practice is a definition of a proven way to handle specific types of work and that have been
successfully used by multiple organizations.

 95

SuperClass
VdmlElement

 Property Description
practiceDefinition: PracticeDefinition [0..*] PracticeDefinitions that are contained in the

PracticeLibrary
practiceCategory: PracticeCategory [0..*] PracticeCategories that are contained in the

PracticeLibrary

7.2.5.4.2 PracticeDefinition Class
A PracticeDefinition is a standardized definition that is applied to enforce consistency in the
definition of what practices are implemented by CapabilityMethods and/or Activities.

SuperClass
VdmlElement

 Property Description
category: PracticeCategory [0..*] Zero or more PracticeCategories to which

the PracticeDefinition belongs
resourceDefinition: BusinessItemDefinition [0..*] Definitions of resources that Activities

or CapabilityMethods may require in order
to comply to the practice, that is identified by
the PracticeDefinition, that they
implement.

capability: capabilityDefinition [0..*] The CapabilityDefinitions that refer to
the PracticeDefinition.

Constraints

• If a PracticeDefinition belongs to a PracticeCategory, the PracticeCategory
MUST belong to the same PracticeLibrary that also contains the
PracticeDefinition.

7.2.5.4.3 PracticeCategory Class
A PracticeCategory is a collection of PracticeDefinitions similar enough to group them
together, and which maybe be part of a hierarchy of PracticeCategories.

SuperClass
VdmlElement

 Property Description
categoryPractice: PracticeDefinition [0..*] PracticeDefinitions that belong to the

PracticeCategory
parentCategory: PracticeCategory [0..*] Parent PracticeCategories of the

PracticeCategory, in the hierarchy of
PracticeCategories

 96

childCategory: PracticeCategory [0..*] Child PracticeCategories of the
PracticeCategory, in the hierarchy of
PracticeCategories

Constraints

• A PracticeCategory MUST be contained in the same PracticeLibrary as
parentCategories and childCategories (if defined) of the PracticeCategory.

7.2.5.5 RoleLibrary
The diagram below shows the meta-model of RoleLibraries. A RoleLibrary contains a
taxonomy of Roles, consisting of RoleDefinitions and categories of them, and is applied to
enforce consistency in the definition of what Roles are defined as parts of Collaborations.

Figure 27 - RoleLibraries

7.2.5.5.1 RoleLibrary Class
A RoleLibrary contains a taxonomy of Roles, consisting of RoleDefinitions and categories of
them, and is applied to enforce consistency in the definition of Roles. Multiple Roles that are
associated with the same RoleDefinition are considered similar from the perspective of the
RoleLibrary.

SuperClass
VdmlElement

 Property Description
roleDefinition: RoleDefinition [0..*] RoleDefinitions that are contained in the

RoleLibrary
roleCategory: RoleCategory [0..*] RoleCategories that are contained in the RoleLibrary

 97

7.2.5.5.2 RoleDefinition Class
A RoleDefinition is a standardized definition that is applied to enforce consistency in the definition
of Roles. Multiple Roles that are associated with the same RoleDefinition are considered similar
from the perspective of the RoleLibrary.

SuperClass
VdmlElement

 Property Description
category: RoleCategory [0..*] Zero or more RoleCategories to which the

RoleDefinition belongs
characteristicDefinition: Characteristic [0..*] Characteristics from MeasureLibraries

(as specified by SMM) that may suggest
MeasuredCharacteristics that Roles may
have that are standardized by reference to the
RoleDefinition.
MeasuredCharacteristics of these Roles
may then refer to these Characteristics in these
MeasureLibraries. Measures, in these
MeasureLibraries associated with these
Characteristics, may then suggest how
Measurement is achieved.

Constraints

• If a RoleDefinition belongs to a RoleCategory, the RoleCategory MUST belong to
the same RoleLibrary that also contains the RoleDefinition.

7.2.5.5.3 RoleCategory Class
A RoleCategory is a collection of RoleDefinitions similar enough to group them together, and
which maybe be part of a hierarchy of RoleCategories.

SuperClass
VdmlElement

 Property Description
categoryRole: RoleDefinition [0..*] RoleDefinitions that belong to the RoleCategory
parentCategory: RoleCategory [0..*] Parent RoleCategories of the RoleCategory, in the

hierarchy of RoleCategories
childCategory: RoleCategory [0..*] Child RoleCategories of the RoleCategory, in the

hierarchy of RoleCategories

Constraints

A RoleCategory MUST be contained in the same RoleLibrary as parentCategories and
childCategories (if defined) of the RoleCategory.

 98

7.2.6 Integration with SMM (Structured Metrics Metamodel)
This sub-clause defines the relationship between VDML and SMM. SMM provides the representation of
Measurements within VDML Scenarios (SMM Observations).

7.2.6.1 Packages
The VDML metamodel is contained in a single package, called VDML.

Figure 28 - VDML Metamodel package

For purpose of support of integrated measurement of performance and value characteristics, VDML
depends on the Structured Metrics Metamodel (SMM), as specified in SMM (2015). The SMM
metamodel package is imported in the VDML metamodel package, as indicated in the package diagram.

The next sub-clause will provide a high level summary of the main SMM concepts as far as is required to
understand VDML.

7.2.6.2 SMM Main Concepts

Figure 29 - SMM main concepts

Details of SMM classes and the MOF (or CMOF) class, as represented in Figure 29, as well as, where
appropriate, in other diagrams in this document, will not be specified in the VDML specification itself.

The reader can refer to SMM (2015) and MOF (2013) for details.

 99

For convenience, we use the following definitions, as popularized versions of more formal and technical
definitions in SMM (2015):

• A Measure is method that is applied to characterize an attribute of something by assigning a
comparable quantification or qualification.

• A Measurement is the result of applying a Measure.
• A Characteristic is a distinguishing feature or quality that can be qualified or quantified by

applying a Measure.

Basically, an SMM model contains zero or more MeasureLibraries and zero or more
Observations. A MeasureLibrary contains, amongst others, defined Measures, which may be
(re-)used to determine Measurements in different contexts. Each Measure is defined against a
Characteristic (or “trait”), which is contained in the MeasureLibrary as well. A unit is
defined per each Measure. Observations contain Measurements, via so-called
ObservedMeasures, which are applications of Measures to obtain these Measurements. A
Measurement contains the result of applying the Measure to a measurand (i.e., any object that is
measured). In SMM a measurand is defined as Element (as specified by CMOF). Element (from
CMOF) represents anything that can be modeled. In VDML a measurand is more narrowly defined
(see 7.2.4.1).

The reader should refer to SMM (2015) for a total and detailed specification of SMM.

 100

8 Notation

8.1 General
VDML notation is provided by diagrams that cover the following areas:

• Role Collaboration
• ValueProposition Exchange
• Activity Network
• Collaboration Structure
• CapabilityLibrary
• Capability Heatmap
• Capability Management
• Measurement Dependency

These are specified in subsequent sub-clauses in this clause. Next to distinct notation elements, also a few
examples diagrams are provided that apply these elements in combination. Though some of these
example diagrams might apply colors, colors do not imply any normative semantics.

8.2 Role Collaboration
The concepts of Role, as contained in a Collaboration, is fundamental to VDML, and thus a Role
is represented on most of the diagrams.

In an Activity Network diagram (see 8.4) a Role is represented as a swim-lane. In other diagrams, in
particular Role Collaboration diagram, a Role is represented as oval.

The Role shape (oval) in Figure 30 does not have an expand button, which implies that it is not assigned,
or, if it is assigned, it is assigned to an Actor (possibly represented as BusinessItem) or other Role.

Figure 30 - Role shape as oval

The Role shape in Figure 31 has an expand button, to indicate Assignment of the Role to a
Collaboration. The Participant that fills the Role may contain its own Roles.

Figure 31 - Role shape with expand button

Figure 32 shows a DeliverableFlow with isTangible = true (see 7.2.1.2.4). It is shown as solid
connector. The name along the alongside the connector represents the name of the deliverable (the
BusinessItem that is associated as deliverable). Optionally a sequence number can be added

 101

(behind the double colon), to support “story telling” based on a Role Collaboration diagram. A potential
sequence number may be derived from the metamodel, but is a convenience feature of the diagram itself,
as multiple Role Collaboration diagrams, on the same underlying Collaboration in the model,
might apply different sequence numbers.

Figure 32 - DeliverableFlow shape for Tangible

Figure 33 shows a DeliverableFlow with isTangible = false (see 7.2.1.2.4). It is shown as
dashed connector.

Figure 33 - DeliverableFlow shape for Intangible

Figure 34 represents how, in a Role Collaboration diagram, two Role shapes are connected via a
connector that represents a DeliverableFlow.

Figure 34 - DeliverableFlow for Tangible, connecting two Roles

DeliverableFlows connect Ports of two Activities, or a Port of an Activity and a Port
of a Store. A Role may perform Activities, defined as its performedWork, and a Role may
be responsible for handling inputs or outputs of Stores, which handling is defined by reference to
the Store Ports (see 7.2.1.1.5). The detail concerned with Activities, Stores and their Ports
is abstracted out of the Role Collaboration diagram. Just the DeliverableFlow connector, as
connecting two Roles, is shown. Activity Network diagrams (see 8.4) show how
DeliverableFlows connect Activities or Activities and Stores.

A DeliverableFlow that connects Activities that are performed by the same Role MUST NOT
be represented (as connector) in a Role Collaboration diagram. Similarly, a DeliverableFlow that
connects an Activity, performed by a Role, and a Store, via a Port for which that same Role is
defined as handler (see 7.2.4.3.1), MUST NOT be represented (as connector) in a Role Collaboration
diagram. Only connectors that indicate transfer of deliverable between Roles, are depicted.

A Role Collaboration diagram might also be used to represent how Roles collaborate (i.e., exchange
deliverables) through other Roles in which they serve as Participant.

Figure 35 provides, as example, the Role Collaboration diagram for a BusinessNetwork.
Transporters place orders, based on which the Manufacturer produces and delivers the product (e.g.,
trailers). Transporters also provide feedback, in the form of ideas for further innovation of the product.
The Manufacturer uses these ideas to apply new innovations and to make these available to the
transporters market. The transporters market might be modeled as Community, which fills the
Transporter’s Party, which is indicated by the expand button on the corresponding Role shape.

 102

Figure 35 - Role Collaboration diagram (BusinessNetwork example)

8.3 ValueProposition Exchange
In a ValueProposition Exchange diagram, a ValueProposition is shown as square (see Figure
36). The ValueProposition name is placed outside the square.

Figure 36 - ValueProposition shape

Figure 37 shows a Role providing a ValueProposition. The connector represents the association
that connects the Role and the ValueProposition via respectively its provider’s and
providedProposition ends (see 7.2.1.3).

Figure 37 - Role providing a ValueProposition

Figure 38 shows a Role receiving a ValueProposition. The connector represents the association
that connects the Role and the ValueProposition via respectively its recipient’s and
receivedProposition ends (see 7.2.1.3).

Figure 38 - Role receiving a ValueProposition

Figure 39 shows, as example, the ValueProposition Exchange between the Parties in the
BusinessNetwork that is also underlying the Role Collaboration diagram in Figure 35. Note that the
same Role might provide and receive multiple ValuePropositions, from possibly multiple other
Roles, thought this simple example only shows two Roles, each of which provides just one
ValueProposition. The name of the ValueProposition that is provided by the Manufacturer
suggests that it is about value associated with the delivery of trailers (the product) of a certain product
family of trailers (here called XTrailer).

 103

Figure 39 - ValueProposition Exchange diagram (example)

When compared to the Role Collaboration diagram, the ValueProposition Exchange diagram
provides a more abstract view on the Collaboration. Roles are depicted in both. A
ValueProposition, as depicted in a ValueProposition Exchange diagram, consists of
ValuePropositionComponents, which are associated with ValueAdds as contained by
OutputPorts at the provider’s end of DeliverableFlows that are depicted in the Role
Collaboration diagram (see Metamodel diagram in Figure 12).

8.4 Activity Network
In an Activity Network diagram, a Role is represented as swim-lane (see Figure 40).

Figure 40 - Swim-lane shape for Role (in Activity Network diagram)

As indicated in Figure 41, an Activity is shown as rectangle with rounded corners.

Figure 41 - Activity shape

An Activity shape with expand button (see Figure 42) represents an Activity that delegates its
work to a Collaboration.

Figure 42 - Activity shape, with expand button

 104

Stores and Pools are represented in both Activity Network diagram and Capability
Management diagram (see 8.8). A Store is shown as bottom-up pyramid, with its name placed outside
the shape (see Figure 43).

Figure 43 - Store shape

As indicated in Figure 44, a Pool is shown as bottom-up pyramid with re-use marker.

Figure 44 - Pool shape

In an Activity Network diagram, DeliverableFlows are represented via a solid connector shape
(see Figure 45). Also here, the name along the alongside the connector represents the name of the
deliverable. Unlike connectors in a Role Collaboration diagram, in an Activity Network
diagram there is no visualization of the distinction between Tangibles and Intangibles, and there
is no indication of sequence number of the connector.

Figure 45 - Connector shape for DeliverableFlow (in Activity Network diagram)

In an Activity Network diagram, internalPortDelegations (see 7.2.1.1.3) are represented via
a dotted connector shape (see Figure 46). Also here, the name along the alongside the connector
represents the name of the deliverable.

Figure 46 - Connector shape for internalPortDelegation (in Activity Network diagram)

Both DeliverableFlows and internalPortDelegations are used in connection to Ports.
The following table shows the shape for a Port, and its variations. These variations depend on whether
the corresponding PortContainer is an Activity or Store, or whether it is a Collaboration,
and furthermore, whether the Port is used as InputPort (see 7.2.4.3.3) or OutputPort (see
7.2.4.3.2), and whether the Port carries a Condition or planningPercentage (see 7.2.4.3.1),
whether the OutputPort carries ValueAdd(s) (see 7.2.4.3.2), and whether the Activity
InputPort receives roleResource (see 7.2.1.2.3).

 105

Port
Shape

Port
Container

Shape
description

Shape placement Input or
Output

With
Value
Add

With Condition
and/or planning
Percentage

Provides role
Resource for
Role

Activity,
Store

Small open
square

On boundary of
shape of Port
Container

Either - - -

Small open
square, with
splitter

Either - √ -

Small open
square, with
thick
boundary

Input - - √

Small open
square, with
splitter and
thick
boundary

Input - √ √

Small filled
square

Output √ - -

Small filled
square, with
splitter

Output √ √ -

Collabora
tion

Bottom-left
open
pyramid

Free-floating in
Activity
Network diagram of
Collaboration

Either - - -

Bottom-left
filled
pyramid

Output √ - -

The following figures show the use of Ports in combination with DeliverableFlows and
internalPortDelegations in Activity Network diagrams.

Figure 47, Figure 48, Figure 49, and Figure 50 show the possible variations of Activity
OutputPort shapes. The solid connector, connecting to the OutputPort, denotes a
DeliverableFlow, and the name alongside the connector denotes the name of the deliverable,
being the BusinessItem that is associated with the DeliverableFlow.

Figure 47 - Shape of OutputPort, on boundary of Activity

Figure 48 - Shape of OutputPort, with Condition, on boundary of Activity

 106

Figure 49 - Shape of OutputPort, with ValueAdd, on boundary of Activity OutputPort

Figure 50 - Shape of OutputPort, with ValueAdd and Condition, on boundary of Activity

Similarly, Figure 51, Figure 52, Figure 53, and Figure 54 show the possible variations of Activity
InputPort shapes.

Figure 51 - Shape of InputPort, on boundary of Activity

Figure 52 - Shape of InputPort, with Condition, on boundary of Activity

Figure 53 - Shape of InputPort, receiving roleResource, on boundary of Activity

Figure 54 - Shape of InputPort, receiving role Resource, and with Condition, on boundary of Activity

Figure 55, Figure 56, Figure 57, and Figure 58 show the possible variations of Store OutPort shapes.
Similar shapes are used for Pools.

Figure 55 - Shape of OutputPort, on boundary of Store

 107

Figure 56 - Shape of OutputPort, with Condition, on boundary of Store

Figure 57 - Shape of OutputPort, with ValueAdd, on boundary of Store

Figure 58 - Shape of OutputPort, with ValueAdd and Condition, on boundary of Store

Figure 59 and Figure 60 show the possible variations of Store InPort shapes. Note that Stores do
not apply any Capability, and hence do not require a variation of InputPort shape that denotes the
receipt of roleResource.

Figure 59 - Shape of InputPort, on boundary of Store

Figure 60 - Shape of InputPort, with Condition, on boundary of Store

The shape of a Collaboration InputPort, as connected via an internalPortDelegation, is
shown in Figure 61. The text that is placed outside the shape indicates the name of the
BusinessItemLibraryElement that is associated as inputDefinition (see 7.2.4.3). When an
Activity Network diagram is shown in a particular DelegationContext (see 7.2.3.2.3), the text
indicates the name of the BusinessItem that is associated as deliverable with the
DeliverableFlow that connects to the InputPort that is delegated to the Collaboration
InputPort.

Figure 61 - Shape of Collaboration InputPort, connected to internalPortDelegation

Figure 62 shows the shape of a Collaboration OutPort, as connected via an
internalPortDelegation. The text that is placed outside the shape indicates the name of the
BusinessItemLibraryElement that is associated as outputDefinition (see 7.2.4.3). When
an Activity Network diagram is shown in a particular DelegationContext (see 7.2.3.2.3), the
text indicates the name of the BusinessItem that is associated as deliverable with the
DeliverableFlow that connects to the OutputPort that is delegated to the Collaboration
OutputPort.

 108

Figure 62 - Shape of Collaboration OutputPort, connected to internalPortDelegation

Figure 63 shows the shape of a Collaboration OutPort, carrying ValueAdd. Also this Port is
shown as connected via an internalPortDelegation.

Figure 63 - Shape of Collaboration OutputPort, with ValueAdd, and connected to internalPortDelegation

Figure 64 provides a simple example of an Activity Network diagram.

Figure 64 - Activity Network diagram (simple example)

Another simple Activity Network diagram, demonstrating the application of a partly different set of
elements, is given in Figure 65.

Figure 65 - Activity Network diagram (simple example)

Note that both a Role Collaboration diagram and an Activity Network diagram can provide
(synchronized) views on the same underlying model of a Collaboration. Figure 66 extends the
Role Collaboration diagram example (of Figure 35) by also showing the Activity Network diagram
of the same BusinessNetwork. Note that the DeliverableFlow that conveys “Order” is not
shown in the Role Collaboration diagram, as it does not denote transfer of deliverable between
Roles.

 109

Figure 66 – Role Collaboration and Activity Network as synchronized views (example)

8.5 Collaboration Structure
Figure 67 shows the shape, a squared corner rectangle, by which a Collaboration is shown in a
Collaboration Structure diagram.

Figure 67 - Collaboration shape

A BusinessNetwork, being a specialized Collaboration, is shown via a Collaboration
shape with a BusinessNetwork marker (see Figure 68).

Figure 68 - BusinessNetwork shape

An OrgUnit, being a specialized Collaboration, is shown via a Collaboration shape with an
OrgUnit marker (see Figure 69).

Figure 69 - OrgUnit shape

 110

A CapabilityMethod, being a specialized Collaboration, is shown via a Collaboration
shape with a CapabilityMethod marker (see Figure 70).

Figure 70 - CapabilityMethod shape (in Collaboration Structure and Capability Management diagrams)

A Community, being a specialized Collaboration, is shown via a Collaboration shape with a
Community marker (see Figure 71).

Figure 71 - Community shape

In a Collaboration Structure diagram, a Role, not assigned to a Collaboration is shown as a
Role oval (the same shape as indicated in Figure 30).

Containment of a Role in a Collaboration is shown by the solid connector as represented in Figure
72.

Figure 72 - Role containment connector

When a Role, as contained in a Collaboration (e.g., the OrgUnit MyCompany in Figure 73), is
assigned to another Collaboration (e.g., the OrgUnit R&D in Figure 73), the Role containment
connector connects to a small oval shape, representing that Role, adjacent to the boundary of the
Collaboration at the Participant’s end of the connector. The name of the Role is placed
outside the Role shape.

Figure 73 - Collaboration structure, with Role of parent Collaboration assigned to sub-Collaboration

 111

Figure 73 shows how a Collaboration Structure diagram is capable of representing an organization
structure, based on the VDML metamodel. Collaboration Structure diagram is more universal than
only applicable to organization structure however (see the example in Figure 76).

As indicated in Figure 74, in a Collaboration Structure diagram, Assignment of a Role to
another Role or to an Actor (possibly dynamically determined based on roleResource, see
7.2.1.2.3), is shown as dashed directed connector.

Figure 74 - Role Assignment connector

Figure 75 visualizes Assignment of a Role to an Actor. The Actor is represented by its name
only.

Figure 75 - Actor assigned to Role

Figure 76 provides an example of a Collaboration Structure diagram.

Figure 76 - Collaboration Structure diagram (example)

8.6 CapabilityLibrary
As indicated in Figure 77, in a CapabilityLibrary diagram, a Capability (see 7.2.5.3) is shown
as square corner rectangle.

 112

Figure 77 - Capability shape (in CapabilityLibrary diagram)

The relationship between parentCapability and childCapability (see 7.2.5.3) is shown via
containment of the childCapability within the boundary of its parentCapability (see Figure
78).

Figure 78 - Capability hierarchy

Figure 79 shows the shape of a Capability with expand button.

Figure 79 - Capability shape with expand button (in CapabilityLibrary diagram)

When the shape of a Capability is expanded (via the expand button), the shapes of its
childCapabilities are shown as embedded (i.e., contained within its boundary). Alternatively its
childCapabilities can be represented on a separate CapabilityLibrary diagram.

As Figure 80 indicates, a Capability shape that shows as expanded, can be collapsed via its expand
button (shown with “-“ marker, indicating that the Capability is shown as expanded).

Figure 80 - Expanded parent Capability, with sub-Capability

Figure 81 shows an example of a CapabilityLibrary diagram.

 113

Figure 81 - CapabilityLibrary diagram (example)

8.7 Capability Heatmap
The notation of a CapabilityLibrary diagram can be re-used, and further refined, to support
Capability Heatmaps.

Figure 82 visualizes Capability hierarchy in a way similar as is indicated in Figure 78. The thick
boundaries of Capabilities “Child1” and “Parent” denote that one or more “Child1”-corresponding
CapabilityOffers (see 7.2.2.3.3) have their heatIndex equal to or above heatThreshold (see
7.2.3.2.2).

Figure 82 - Capabilities with heatIndex about HeatThreshold (in Capability Heatmap)

A normal boundary (as for Capability “Child2”) indicates that heatIndex of related
CapabilityOffers is below heatThreshold.

8.8 Capability Management
CapabilityOffers are shown in a CapabilityManagement diagram. Their shape is a stretched
hexagon, with the CapabilityOffer’s name placed inside.

 114

Figure 83 - CapabilityOffer shape

A dashed connector (see Figure 84) is used to represent the association between a CapabilityOffer
and a CapabilityMethod (referenced as method) or a Store or Pool (referenced as
capabilityResource) that supports it (see 7.2.2.3).

Figure 84 - Shape of connector between CapabilityOffer and a capabilityResource or method

In a Capability Management diagram, an OrgUnit is shown as square corner rectangle, with name
label placed on its boundary. CapabilityOffers, representing the Capabilities that are
provided by the OrgUnit, are placed on its boundary as well (see Figure 85). An expand button is used
to expand the OrgUnit (the “+” marker in the expand button in Figure 85 indicates that the OrgUnit is
shown as collapsed.

Figure 85 - CapabilityOffers on boundary of OrgUnit, with expand button (in: Capability Management
diagram)

Figure 86 shows the same OrgUnit as expanded. When expanded, CapabilityMethods and
Stores (or Pools) that support the CapabilityOffers, are shown as contained within the
OrgUnit’s boundary. When the OrgUnit is expanded, its Position Roles that are assigned to
(sub-) OrgUnits, are shown within the OrgUnit’s boundary as well, to facilitate navigation to
Capability Management diagrams of these sub-OrgUnits. For reasons of diagram scalability,
Positions that are associated with Pools (see 7.2.2.3), SHOULD NOT be shown as contained within
the OrgUnit’s boundary (note that there may be many such Positions). Positions that are not
(yet) assigned to Participants MAY be shown inside the boundary.

 115

Figure 86 - OrgUnit expanded (in: Capability Management diagram)

CapabilityOffers of one OrgUnit might be supported by CapabilityMethods or Stores
(or Pools) that are owned by other OrgUnits. Figure 87 shows this, in a situation where both the
OrgUnit that owns a CapabilityOffer and the OrgUnits that own the
CapabilityMethod(s) and/or Store(s) (or Pool(s)) that support it, are included in the same
Capability Management diagram.

Figure 87 - CapabilityOffers of OrgUnit with capabilityResource and method from other OrgUnit

An alternative way of modeling is provided in Figure 88: Though the CapabilityMethod(s) and/or
Store(s) (or Pool(s)) that support CapabilityOffer(s) of another OrgUnit are represented
in the Capability Management diagram of the CapabilityOffer(s)-owning OrgUnit, the
OrgUnit(s) that own these CapabilityMethod(s) and/or Store(s) (or Pool(s)) are not
represented in that diagram.

 116

Figure 88 - CapabilityOffers of OrgUnit with capabilityResource and method from other OrgUnit (not shown)

A CapabilityMethod, supporting a CapabilityOffer, might depend on other
CapabilityOffers. It can depend on another CapabilityOffer when it contains one or more
Activities, to which the other CapabilityOffer is applied (see 7.2.1.2.1).

Optionally this dependency can be visualized in a Capability Management diagram, as a dotted
connector (see Figure 89).

Figure 89 - Connector shape for dependency of CapabilityMethod on other CapabilityOffer(s)

Figure 90 shows a Capability Management diagram, where one CapabilityMethod depends on
three CapabilityOffers, whereby these dependencies are visualized by the dotted connector of
Figure 89.

Figure 90 - Dependencies of CapabilityMethod on CapabilityOffers of methodOwner and other OrgUnits

Figure 91 provides an example of a Capability Management diagram.

 117

Figure 91 - Capability Management diagram (example)

8.9 Measurement Dependency
SMM specifies MeasurementRelationships between Measurements. These relationships
represent aggregations, rankings or other transformations, dependent on the particular semantics of the
various types of Measurements (and their underlying Measures) as specified by SMM. VDML
associates Measurements (as specified by SMM) to MeasuredCharacteristics of
MeasuredElements (e.g., Activities, Ports, Stores, Collaborations, ValueAdds,
ValuePropositions, ..). Different AnalysisContexts (see 7.2.3.2.1), via their Obervation
(as specified by SMM) may enforce different Measurements on the same
MeasuredCharacteristic. Per AnalysisContext, or per Scenario (including all
AnalysisContexts in its AnalysisContext tree), MeasurementRelationships between
MeasuredCharacteristics can be shown in a Measurement Dependency diagram. A
Measurement Dependency diagram supports understanding of how Measurements “influence”
other Measurements, and thus facilitates detection of root-causes for lack of value contribution or
recipient’s satisfaction with value (as defined in a ValueProposition). A Measurement
Dependency diagram may also be helpful in visualizing and analyzing simulation results, based on a
Scenario in a ValueDeliveryModel.

In a Measurement Dependency diagram, a MeasuredCharacteristic (see 7.2.4.1.5) is denoted
by a thin-boundary rectangle shape (see Figure 92).

Figure 92 - MeasuredCharacteristic shape (in Measurement Dependency diagram)

Revision of includes adding a property influence to MeasureRelationship (the class in SMM
that “types” MeasurementRelationships). This is a property with enumeration type Influence,
having enumerated values "positive" and "negative." “Positive” means that, when a

 118

baseMeasurement’s value increases, the value of the Measurement on the other end of the
MeasurementRelationship will also increase. “Negative” means that, when a
baseMeasurement’s value increases, the value of the Measurement on the other side of the
MeasurementRelationship will decrease.

In a Measurement Dependency diagram, a MeasurementRelationship (as specified by SMM),
between Measurements of two MeasuredCharacteristics is denoted by a thin and solid
connector. A connector with a marker that contains a “+” symbol denotes a “positive” influence (see
Figure 93)

Figure 93 - Shape of MeasurementRelationship, with “positive” influence

A connector with a marker that contains a “-” symbol denotes a “negative” influence (see Figure 94).

Figure 94 - Shape of MeasurementRelationship, with “negative” influence

Figure 95 provides an example of a Measurement Dependency diagram.

Figure 95 - Measurement Dependency diagram (example)

 119

Annexes

Normative annexes are integral parts of the standard. An annex’s normative status (as opposed to
informative) shall be made clear by the way in which it is referred to in the text and under the heading of
the annex.

Informative annexes give additional information intended to assist the understanding or use of the
standard and shall not contain provisions to which it is necessary to conform in order to be able to claim
compliance with the standard. Their presence is optional. An annex’s informative status (as opposed to
normative) shall be made clear by the way in which it is referred to in the text and under the heading of
the annex.

The following Annexes are included:

Annex A: Glossary

Annex B: Alignment with Existing Business Modeling Techniques

Annex C: Use Cases

 120

Annex A: Glossary
(Normative)

Each definition indicates if it is VDML-specific (it’s source being VDML), or its origin from another
source. Several terms that are listed in the glossary denote commonly known concepts that have origins
from outside VDML. VDML avoids introducing new terms unnecessarily, but uses terms that people can
relate to. While the concepts are consistent, VDML provides definitions that are clear and in the context
of a VDML model. This ensures that both implementers and users will have a clear and consistent
understanding of VDML concepts and their relationships.

Activity. Work contributed to a collaboration by a participant in a Role of the collaboration. A role may
be filled by another collaboration and a role may contribute to multiple activities in the same
collaboration (source: VDML; example of use of term outside VDML: Osterwalder (2004)).

Activity network. A network of activities of participants in a collaboration that are lined by deliverable
flows (source: VDML).

Actor. An individual (indivisible) participant, which might be human (a person) or non human (e.g., a
software agent or machine) (source: VDML; example of use of term outside VDML: Gordijn and
Akkermans (2003)).

AnalysisContext. An AnalysisContext defines a set of measurements associated with a particular use of
a collaboration or a store used as a decoupling point between collaborations. When an activity delegates
to a collaboration, an AnalysisContext, specialized as Delegation Context,defines the delegations of
activity inputs and/or outputs to/from collaboration inputs and/or outputs, and may define assignments of
roles within the collaboration (source: VDML).

Attribute. An attribute allows information to be attached to any VDML element in the form of a name-
value pair. Attributes provide a simple mechanism to add user defined information to model elements
(source: VDML).

Business Item. A business item is anything that can be acquired or created, that conveys information,
obligation or other forms of value and that can be conveyed from a provider to a recipient. For example,
it includes parts, products, units of fluids, orders, emails, notices, contracts, currency, assignments,
devices, property and other resources (source: VDML).

Business Model. A business model describes the rationale of how an organization creates, delivers, and
captures value (source: Osterwalder and Pigneur (2010). Lindgren (2011).).

Business Network. A collaboration between independent business (or economic) entities, potentially
companies, agencies, individuals or anonymous members of communities of independent business
entities, participating in an economic exchange (source: VDML; example of use of term outside VDML:
Vervest et al. (2009)).

 121

Capability. Ability to perform a particular kind of work and deliver desired value (source: VDML;
examples of use of term outside VDML: Osterwalder (2004), SoaML (2012), ITIL (2011)).

Capability Method. A collaboration specification that defines the activities, deliverable flows, business
items, capability requirements and roles that deliver a capability and associated value contributions. For
each application of the capability method, within a scenario or in multiple scenarios, there may be distinct
measurements of performance and value contributions, and role assignments suitable to the application
context. A capability method does not own resources but receives them from other sources in the course
of performing its activities (source: VDML). An activity does not delegate directly to a capability method
but engages it through its organization unit based on a capability offer.

Channel. Mechanism to execute a deliverable flow, such as e-mail, face-to-face conversation, SOAP,
REST, physical transportation, postal service, telephone, fax, FTP, etc. (source: VDML).

Characteristic. Distinguishing feature or quality that can be qualified or quantified by applying a
measure (popularized version of definition in SMM (2015)).

Collaboration. Collection of participants joined together for a shared purpose or interest (source: VDML;
examples of use of term outside VDML: SoaML (2012), BPMN (2011)).

Community. A loose collaboration of participants with similar characteristics or interests (source:
VDML; examples of use of term outside VDML: Weill and Vitale (2001)).

Delegation Context. A specialized AnalysisContext, set by an activity and in which the activity delegates
its work to a collaboration. A delegation context also defines the delegations of activity inputs and/or
outputs to/from collaboration inputs and/or outputs, and may define assignments of roles within the
collaboration (source: VDML).

Deliverable. Product or service defined by an associated business item that is produced by an activity or
delivered from a store that can be conveyed to another activity or store (source: VDML; example of use
of term outside VDML: Allee (2008), ITIL (2011)).

Deliverable Flow. The transfer of a deliverable from a provider (or producer) to a recipient (or consumer)
(source: VDML).

Intangible. Deliverable that represents something that is unpaid or non-contractual that makes things
work smoothly or efficiently (as opposed to Tangible) (source: VDML; example of use of term outside
VDML: Allee (2008)).

Measure. A method that is applied to characterize an attribute of something by assigning a comparable
quantification or qualification (popularized version of definition in SMM (2015)).

Measurement. The result of applying a measure (popularized version of definition in SMM (2015)).

Organization. An administrative or functional structure normally interpreted as a network of
Organization Units at a higher level in an organizational hierarchy (source: VDML; example of use of
term outside VDML: ITIL (2011)).

 122

Organization Unit (or: OrgUnit). An administrative or functional organizational collaboration, with
responsibility for defined resources, including a collaboration that occurs in the typical organization
hierarchy, such as business units and departments (and also the company itself), as well as less formal
organizational collaboration such as a committee, project, or task force (source: VDML; example of use
of term outside VDML: Zachman framework, as introduced by Zachman (1987), and Sowa and Zachman
(1992), though a formal definition of the term seems to be omitted).

Participant. Anyone or anything that can fill a role in a collaboration. Participants can be actors (human
or automatons) or collaborations or roles of actors or collaborations. They maybe named in the model, or
dynamically determined in run-time (source: VDML; example of use of term outside VDML: Allee
(2008)).

Pool. A store that contains re-usable resource, i.e., resource that is returned to the pool after having been
used, so that it is again available for use (source: VDML; example of use of term outside VDML:
PMBOK (2000)).

Practice. Proven way to handle specific types of work and that have been successfully used by multiple
organizations (source: VDML; examples of use of term outside VDML: BPMM (2008), ITIL (2011)).

Process. A sequence or flow of Activities in an organization with the objective of carrying out work
(source: BPMN (2011)). VDML does not represent process, per se, but represents a process abstraction
with a network of activities and flows that represent dependencies and statistical characteristics of a
process.

Resource. Anything that is “used” or “consumed” in the production of a deliverable (source: VDML;
example of use of term outside VDML: Hruby et al. (2006)).

Role. An expected behavior pattern or capability profile associated with participation in a collaboration
(source: VDML; example of use of term outside VDML: Allee (2008)).

Scenario. A scenario defines a consistent business use case and set of measurements of a value delivery
model by specifying a, possibly recursive, AnalysisContext for elements in scope of that use case. The
nesting of contexts allows a collaboration to be used as a sub-collaboration by more than one activity,
each of which sets its particular delegation context and measurements (source: VDML).

Service. A service is a mechanism to enable access to one or more capabilities, where the access is
provided using a prescribed interface and is exercised consistent with constraints and policies as specified
by the service description (source: SOA-RM (2006)).

Store. Represents a container of resource. The resource that is stored is identified by a business item
(source: VDML; common concept in data flow diagrams (DFD), also known as Gane-Sarson diagrams, as
proposed and applied by Gane and Sarson (1979); common construct in simulation systems, such as
GoldSim, as explained in GoldSim (2010, 1) and GoldSim (2010, 2); data store in BPMN (2011) is a
similar construct, though with a more narrow meaning).

 123

Tangible. Deliverable that represents something that is contracted, mandated or expected by the recipient
and which may generate revenue (as opposed to Intangible) (source: VDML; example of use of term
outside VDML: Allee (2008)).

Value. A measurable factor of benefit, of interest to a recipient, in association with a business item
(source: VDML; example of uses of term outside VDML: Brodie and Gilb (2010), Gilb (2007), Gilb and
Gilb (2011)).

Value Chain. Set of activities that an organization carries out to create value for its customers (Porter
(1985)).

Value contribution. A measurable effect of an activity that affects the level of satisfaction of one or
more values in a value proposition (source: VDML).

Value Delivery Model. Model that supports multiple scenarios for business analysis and design based on
evaluation of performance and stakeholder satisfaction achieved through the activities and interactions of
people and organizations using business capabilities to apply resources and deliver stakeholder values
(source: VDML).

Value Network. Any set of roles and interactions in which participants engage in both tangible and
intangible exchanges to achieve economic or social good (Allee (2008)). Or: Any web of relationships
that generates both tangible and intangible value through complex dynamic exchanges between two or
more individuals, groups or organizations (Allee (2003)).

Value Proposition. Expression of the values offered to a recipient evaluated in terms of the recipient’s
level of satisfaction (source: VDML; examples of use of term outside VDML: Ballantyne et al. (2008),
Osterwalder (2004), Johnson et al. (2010)).

Value Stream. The network of activities that includes resources, value contributions and capabilities to
determine a value proposition for a customer who may be the ultimate customer or an internal end user of
the result (source: VDML; example of use of term outside VDML: Whittle and Myrick (2005)).

 124

Annex B: Alignment with Existing Business
Modeling Techniques

(Informative)

Overview

The following sub clauses describe the alignment of VDML concepts with the following, existing
business modeling techniques:

• Value Networks
• Resources, Events, Agents (REA)
• e3value
• Capability map
• Value Stream
• Cube Business Model
• Possession, Ownership, Availability (POA)
• VDML Support for BMM Strategic Planning
• VDML for Balanced Scorecard and Strategy Map
• VDML Relationship to BPMN

These sub clauses demonstrate the ability of the VDML metamodel to support the models of these
techniques. Tables are sorted, alphabetically, by concept names of the particular modeling technique.

Value Networks
Value Network Analysis (VNA) is an integrative modelling technique for analysis of business activity
(Allee 2003, 2008). It defines the specific Roles in a collaboration and their interactions that create value
through the exchange of Deliverables. Roles and deliverables are made visible through visual graphs.
Analyses include cost/benefit, value realization, perceived value and internal and external value impact.
The goal of the method is to increase and/or optimize value outputs, to leverage financial and non-
financial resources (including intangible assets) for improving financial and organizational performance,
to find new value opportunities and to improve operational performance and flows of value.

A Value Network Analysis begins with descriptions of contributing roles and value transactions
visualized as a graph or map. Nodes represent roles, and directional arrows between nodes describe
transactions. Each transaction has an attribute of tangible or intangible deliverable in the network. Roles
are filled by Participants in the network, which can be individuals or firms. Multiple Participants may be
candidates for a Role and a Participant may play multiple roles.

Typically solid lines indicate contractual, tangible revenue-generating or funding related deliverables and
their directional transactions. Dashed lines show the critical intangible or informal deliverables such as
knowledge exchanges and conveyed benefits that build relationships and keep things running smoothly.

Figure 96, below, shows a value network for interactions of a technology provider with other business
entities. Similar networks describe interactions between roles at different levels of operational detail
within a business entity.

 125

Figure 96 - Value Network Map or Graph

Table 2 shows the alignment of VNA concepts to VDML concepts. Only corresponding VDML concepts
are included in the table. See Annex A: Glossary for further VDML definitions.

Table 2 - Mapping of VNA Concepts to VDML Concepts

VDML Concept VNA Concept Remarks
Activity Activity In VNA, an activity defines the boundary and focus of a

value network or sub network and can include multiple
actions, roles, deliverables sequences and processes. In
VDML the boundary of a network of roles and activities
is referred to as a collaboration whereas an activity
describes work of a single role within the collaboration.
(See activity network below).

Attribute Attribute In VDML a user-defined, name-value pair associated
with a model element. VNA definition is compatible.

Channel Channel Definitions are the same.
Deliverable Deliverable Definitions are the same
Intangible Intangible Definitions are the same
Measure Measure Definitions are the same
Measurement Measurement Definitions are the same
Actor Participant In VNA Participant and Actor are used interchangeably.

In VDML an actor is an entity that does work while a
participant can be an actor, a collaboration or a role.

Participant Participant Definitions are the same
Resource Resource or Asset Definitions are the same. In VNA resources may include

intangible assets such as human competence, brand,
relationships, reputation, and methods. Also see Value

 126

Realization. In VDML, resources are conveyed by
deliverable flows while measurements of values (e.g.,
duration and quality) are conveyed by value
adds/contributions. In VNA resources are made
available to roles, who manage them in regard to the
deliverables they are responsible for generating or
handling as inputs. In VDML, control of resources is
more specific, using stores, activities of roles and
deliverable flows.

Role Role Definitions are the same
Scenario Scenario Definitions are compatible.
Tangible Tangible Definitions are the same
Deliverable Flow Transaction Concepts are the same. See Process
Value Value Definitions are the same
Activity network Value network

Definitions are compatible. In VNA, a value network
depicts interactions of roles and the flow of deliverables
between them. In VDML an activity network depicts the
activities of the roles (more detail) and the flow of
deliverables between them.

Collaboration Value Network Any collaboration can be modeled as a value network.
All value networks are collaborations. In VDML,
business network, community, organization unit and
capability method are specializations of collaboration. In
VDML an activity is distinguished from a collaboration
such that an activity can delegate to a shared
collaboration.

Value proposition Value realization In VNA, value realization is when a value input, either
tangible or intangible, has a positive impact on or
replenishes resources or assets. In VDML a value
proposition conveys to a recipient deliverable(s) with a
bundle of values that can become inputs to subsequent
activities of the recipient.

REA (Resources Events Agents)
William McCarthy developed the REA model in 1982 as a generalized accounting framework, but later
evolved it together with Guido Geerts into an ontology for economic systems, covering value delivery
among networks of economic agents Geerts, McCarthy (2002), McCarthy (1987).

Figure 97, below, depicts exchanges between three economic agents and a value conversion within an
enterprise, in the REA model. It shows the relationships between economic resources, economic events
and economic agents. The REA ontology describes the economic principles of trade and production
business processes, i.e., the use, consumption, production and exchanges of economic resources. One of
the fundamental REA concepts is duality, explaining what resources an agent gives up in order to receive
other resources. Duality also represents causality relationship, explaining why economic events happen
from the economic point of view. From an agent’s entrepreneurial perspective and over the lifetime of
the enterprise, the received resources must have a higher value than the provided resources. A business
process is a set of economic events related by the duality relationship.

 127

«conversion process» Production

«exchange process» Sales

«economic resource»
Item

«economic event»
Production of

Item

«produce»

«economic event»
Sale of Item

«economic event»
Cash Receipt

«stockflow» «duality»

«stockflow»

«economic event»
Consumption of

Raw Material

«economic resource»
Raw Material

«consume»

«economic event»
Cash

Disbursement

«economic event»
Raw Material

Purchase

«duality» «stockflow»

«economic resource»
Cash

«stockflow»

«duality»

«economic agent»
Vendor

«economic agent»
Enterprise

«receive»

«provide»

«provide» «receive»

«exchange process» Purchase

«economic agent»
Customer

«economic agent»
Enterprise

«receive»«receive»
«provide»

«provide»

«provide»

«receive»

Figure 97 - Example of a REA Model

The REA ontology also contains rules for verifying completeness of the model, i.e., every REA model
must specify who are the provider and recipient of every exchanged resource, how an agent receives and
gives up each of its resources, and why events happen. The REA ontology does not specify notation – any
data modeling technique can be used to describe REA models. Figure 97, above, illustrates an REA
model in the UML notation.

Scope of the REA model is determined by granularity of economic resources (a resource can contain
other resources), in contrast to VDML, where the scope is determined by granularity of a value
proposition (defined as a value stream that may incorporate other value streams) where value streams may
share capabilities) and collaboration, (a collaboration may contain other collaborations engaged in roles).

The REA model also contains concepts for describing what could or should happen, i.e., commitments,
contracts, schedules and policies.

A mapping of REA concepts to VDML concepts appears in Table 3, below.

 128

Table 3 - Mapping of REA Concepts to VDML Concepts

VDML Concept REA Concept Remarks
Business network Business process In REA, a set of economic events related by a duality

relationship. In VDML a similar set of activities (events)
are related as occurring within the context of a business
network.

Business network Contract Contract extends the business network concept to a
formal agreement, i.e., characteristic of a specific
business network.

Business network Exchange In VDML, business network collaboration defines the
scope of an exchange between parties. In VDML, there
can be business networks that are within business
networks, so more complex business networks can be
composed of more discrete networks.

Value proposition Commitment Extends value proposition concept as an obligation, i.e.,
interpretation of a value proposition as an obligation.

Duality Duality A property of an economic exchange by which each
contributor to an exchange receives compensation for its
contribution. Is an observed property of a VDML
business network.

Store or capability Economic resource In REA, something of economic value that is purchased,
sold, produced, used or consumed. A capability can be
represented as a resource that provides a service. In
VDML, a store holds resources. A resource flows as a
business item. Business items also may convey other
things such as orders, specifications, etc., that are input
or output of activities.

Party role (Business
network)

Economic agent Consistent with contract party and may be an actor or an
organization. Within a business entity, there will be
other, more specific economic agents that may be
represented as OrgUnits or Actors that are in the
organization structure of the primary economic agent
(e.g., company).

Activity Economic event Economic event may be a single VDML activity or an
activity that delegates to a collaboration of more detailed
activities. In REA, economic events are atomic and
cannot be decomposed – REA model granularity is
determined by granularity of economic resources.

Capability method
or practice

Policy In REA, a policy defines restrictions on patterns of
activities. There is no directly equivalent element in
VDML except that a capability method might be
designated as a required method. A planning percentage
may be used to determine the percentage of the time a
port/deliverable is the output of an activity and thus
could represent the effect of business rules. A practice
refers to a generally accepted approach to doing a type of
work and a capability method may be identified as
conforming to a practice, but the details of a practice are
not expressed in VDML, per se.

 129

Deliverable flow
(Role)

Provide and Receive In VDML, exchanges between activities are via
DeliverableFlows. An abstraction can show
DeliveableFlows as between the roles of the activities
where DeliverableFlows will not appear between
activities for the same role.

Deliverable flow
(Store)

Stockflow Deliverable flow is not restricted to resources, nor to
input or output of store.

Role association Responsibility Responsibility is a relationship of a role. A role may be
filled by a participant (another role, actor or
collaboration).

Value Value In REA the focus is on economic value and is determined
through the execution of an exchange and will depend on
the provider or recipient’s perspective. In VDML value
is a measurable characteristic of the product or service
delivered to a recipient and includes economic value
(price/cost), but also includes many other factors such as
reliability, timeliness, appearance, and provider’s
reputation that will be evaluated from the perspective of
the recipient.

e3value
This modeling language for evaluation of the viability of e-commerce business models or value
constellations, e3value, as presented by Gordijn and Akkermans (2003, 2004), represents a group of
economically independent entities, including market segments, that exchange transactions with economic
value for mutual benefit. This seems straightforward, but in e-commerce the number of entities, their
different interests and multiple exchanges can obscure the net value realized by the different participants.
Each of the participants must have a sustainable business model for the overall exchange to be viable.

Figure 98 - Example of an e3value Model

ConsumerConsumerConsumerConsumer

Manufacturer

Distributor

Retailer

GoodMoney

GoodMoney

GoodMoney

 130

Figure 98, above, illustrates an example e3value model. Table 4, below, aligns the more detailed e3value
concepts with VDML concepts.

Table 4 - Mapping of e3value Concepts to VDML Concepts

VDML Concept e3value Concept Remarks
Actor/collaboration Actor In e3value, an actor is restricted to an economically

independent entity. An economically independent entity
in VDML may be an actor or a collaboration. The
collaboration will generally be specialized as a
community (representing a set of potential actors such as
a market segment) or an organization unit such as a
company.

Business network Composite actor A business network may have supporting business
networks. A supporting business network consists of
parties working together to participate in a parent
business network.

Business network Constellation A collaboration/exchange of complementary transfers of
value between independent business entities

Deliverable flow Dependency element In e3value, a flow within a business entity. In VDML,
flows are between activities and roles (through activities)
internally or externally.

Community Market segment A market or market segment is a community of potential
parties in a business network or other collaboration.

Scenario Scenario Similar concept of applying different circumstances to
evaluation of the viability of the model.

Activity Value activity Value activity is a collection of operational activities
which can be assigned as a whole to actors.

Business network Value interface Not explicitly defined in VDML but is the aggregate of
value propositions provided and received by one party in
a business network. So a business network determines
the scope of value interface of each party.

Business item Value object The thing that is provided or received, which is of
economic value for at least one of the actors.

Value proposition Value offering May be a value proposition as well as a value proposition
that represents the aggregation of value propositions
provided or received.

Port Value port The point of departure or receipt of a value
object/business item

Unit of production Value transaction The set of value objects and transfers that represents a
complete cycle of exchanges between parties in a
constellation such that their net gain/loss can be assessed.

Deliverable flow Value transfer Flow of value between business entities (actors in
e3value or parties in VDML)

Capability Maps
In recent years, considerable attention has focused on capability mapping. A capability map defines a
hierarchy of capabilities required for the enterprise to deliver the desired results along with assessment of
the importance and performance of these capabilities. The capability map is analyzed to identify those
capabilities that require improvement—often called a capability “heat” map.

 131

A capability map, as used in capability analysis, defines a hierarchy of capabilities required for the
enterprise to deliver the desired results along with assessment of the importance and performance of these
capabilities. The capability map is analyzed to identify those capabilities that require improvement—
often called a capability “heat” map, an example of a part of which is shown in Figure 99, below.

According to Krohn (2011), the capability map is the framework for defining scope and analyzing impact.
A capability is “what” the business does. By focusing on the what, the map becomes very stable. “How”
something is done changes frequently; with every system implementation or process improvement, it is
altered. However, what is done remains relatively the same, year after year. The map organizes these
capabilities into a hierarchy, with each capability level providing progressively more detail. The hierarchy
enables to start with a broad discussion and then dive into more detail where needed. Creating a capability
map, containing commonly used or usable definitions of capabilities, with their associated detail,
establishes a common vocabulary across the business. This will enforce productivity in design or re-
design of business models, and will facilitate discovery of opportunities to consolidate or outsource (or
purposefully not doing so) capabilities.

The core concepts of capability mapping—the capability definitions and capability hierarchy— map
directly to the VDML capability definition and capability library. Figure 99, below, illustrates a typical
capability heat map where critical capabilities are highlighted. There does not appear to be a generally
accepted specification of additional detail to a capability map model, but VDML represents a number of
related concepts that would generally be expected to support the capability map: the organization(s) that
have and offer the capability, the activities performed to deliver the capability, the
capabilities/organizations that use the capability, the resources consumed and deliverables produced by
the capability, and the values contributed (at the activity level) by the capability.

Figure 99 - Capability Heat Map

Value Stream
A value chain has been described as “a [disaggregation of] a firm into its strategically relevant activities
in order to understand the behavior of costs and the existing potential sources of (competitive)
differentiation” Porter(1985). A value stream has been described as “an end-to-end collection of

 132

activities that create a result for a ‘customer’ who may be the ultimate customer or an internal ‘end user’
of the value stream” Martin (1995). The focus in both cases is on delivery of value to a customer.
VDML addresses both of these by supporting top-down, and industry or ecosystem analysis and
decomposition of activities and their contributions to cost and value, and by supporting end-to-end detail
of the contributions of activities to create a result for a customer, internal or external, as well as the
exchanges of value in the marketplace. The approach is up to the modeler.

Value stream mapping, as explained by Rother and Shook (1998), is a lean manufacturing technique used
to analyze and design the flow of materials and information required to bring a product or service to a
consumer. Customer value is the leading motivation, and focus is on improving value, by reducing waste.
It combines material flow (product produced) and information flow (e.g., sales orders or forecasts that
trigger production). Broader systems can be modeled via decoupling buffers or stores (called
“supermarkets”). The focus is on improving operational performance via detection and elimination of
non-value added (i.e., wasted) time.

VDML supports all of these approaches. There does not appear to be a generally accepted ontology for
value stream modeling, but the concepts can be inferred. In VDML, a value stream can be identified
within a VDML model as the network of capabilities and their activities that contribute to the values and
deliverables identified in a value proposition. Essentially this is a backward trace from the value
proposition and can extend to suppliers and outsourced capabilities/services.

Business Model
The following paragraphs discuss VDML alignment with both Lindgren’s and Osterwalder”s business
model frameworks. These both provide a high-level abstraction of what an organization does to achieve
its purpose.

Lindgren
A business model describes how an organization creates, captures, delivers, and consumes value from the
perspective of primary stakeholders. Peter Lindgren defines seven building blocks of a business model:
value proposition, user and consumer, value chain, competencies, network, relations and value formula,
Lindgren (2011). These are depicted in Figure 100 below (relationships are in the middle).

Figure 100 - The Business Model Cube (Lindgren)

 133

All of these building blocks and their related components can be described in terms of more detailed
VDML model elements focusing primarily on the business network level of value exchanges with
business partners and customers, but supported by the value streams that identify capabilities, resources,
costs and values. Table 5, below, outlines the relationship of Lindgren’s seven components to VDML
concepts.

Table 5 - Mapping of Business Model Cube Concepts to VDML Concepts

VDML Concept Business Model
Cube Concept

Remarks

Capabilities Competencies Competencies in BM may be more general, including
resources and methods.

Business network Network Network in BM includes business partners where the
relationships may not be restricted to particular business
exchanges. In VDML, a business network can define a
range of business relationships or it may be restricted to
the parties involved in a particular set of related
exchanges.

Deliverable flows Relations Relations in the BM Cube link internal activities and
capabilities with the external BM components. VDML
deliverable flows define these relations as well as
external exchanges within a business network context.

Party User and customer In BM cube framework user would refer to parties that do
not pay economically for the value proposition offered by
the Business Model; customer would most often refer to a
typical customer in a market or market segment. In
VDML, a customer is a particular party in a business
network and may be one of a community of potential
customers. Users can be represented as other
community(s). related to customer(s), possibly as a
business network collaboration.

Value stream Value chain The concept of a value stream is not an explicit element
in VDML, but is the network of activities and capabilities
that contribute to the deliverable(s) and values of a value
proposition.

Measure Value formula (Profit
formula)

In VDML, a measure defines how a measurement is
determined. Here, a measure may be a formula that
combines certain factors from the model to provide a
profit measurement (the result of applying the formula).

Value proposition Value proposition Same concept but more detailed in VDML

Osterwalder
Alex Osterwalder (2004, 2010) defines nine components: customer segments, customer relationships,
distribution channels, revenue streams, value propositions, key activities, key resources, cost structure and
key partners. These are depicted in Osterwalder’s graphic in Figure 101, below.

 134

Figure 101 - The Business Model Canvas (Osterwalder)

All of these components can be described in terms of more detailed VDML model elements focusing
primarily on the business network level of value exchanges with business partners and customers, but
supported by the value streams that identify capabilities, resources, costs and values. Table 6, below,
outlines the relationship of Lindgren’s seven components to VDML concepts.

Table 6 - Mapping of Business Model Canvas Concepts to VDML Concepts

VDML Concept Business Model
Canvas Concept

Remarks

Channel Channel In VDML, a deliverable flow with channel attribute to
define the mechanism of flow, e.g., telephone, email,
postal service, etc. In BM Canvas, flows typically are to
customers.

Value contribution
component (cost)

Cost structure In BM Canvas, cost structure describes all costs to
operate the business. In VDML, cost per unit of
production is one value that is captured for activities.
The VDML model would support aggregation of costs for
a capability by reference to the activities that use that
capability. The cost to the enterprise would require
multiplying the cost per unit of production by associated
production volumes (by activity). This can be user
defined, and could be computed for a value proposition
component.

Collaboration Customer
relationships

In BM Canvas, customer relationships are approaches to
engaging customers leading to business exchanges. In
VDML, collaborations can be defined to represent
different types of customer relationships including

 135

collaboration with automated and non automated services
and collaboration within communities.

Community Customer Segment In VDML, different customer segments are represented
by different communities where a business network will
typically engage a typical member as a party in the
network

Capability Library Key activities In BM Canvas, key activities refer to the most important
things a company must do. In VDML, the core things a
company does are identified as capabilities in a capability
library (taxonomy of capabilities). Key capabilities
would highlight those of primary importance. A
capability heat map might be used to highlight the key
capabilities (i.e., activities). These would likely be
capabilities at higher (broader) levels in the taxonomy.

Business network Key partnerships In BM Canvas, key partnerships refer to the network of
suppliers and partners necessary for successful operation
of the business. In VDML, a broad business network
may represent relationships and key deliverable
exchanges with multiple partners and suppliers. Sub-
business networks can be used to represent different BM
Canvas types of partnerships: Strategic, co-opetition,
joint venture, and buyer-supplier.

Capability Key resources The focus of BM Canvas is resources required to perform
including facilities, people, money, etc. In VDML, a
capability includes key resources as well as the activities
to apply the capability and produce value.

Business network Revenue stream In BM Canvas, revenue stream is a flow of income from
a product or service minus the cost of the product or
service. In VDML, the price/revenue and the cost are
attributes of value propositions exchanged with other
parties in a business network.

Value proposition Value proposition Same concept. BM Canvas refers to value propositions
offered to the market, while VDML expands the concept
to value propositions offered between roles in a
collaboration.

Possession, Ownership, Availability (POA)
Possession, Ownership, Availability (POA), is a method, notation and ontology for modeling business
processes focusing on value delivery, which is suitable for model-driven design of ERP and enterprise
information systems (Scheller, Hruby, 2009, 2011). The POA model defines specific roles in a business
process, and describes value delivery as flows of possession, ownership and availability of resources
between the roles, as well as deposits and withdrawals from the roles’ repositories. The concepts of
possession and ownership correspond to the same concepts in legal systems, and enable constructing the
chart of accounts and balance sheet of an economic entity. Availability determines the production-
possibility frontier of economic entities in the network.

 136

«relaxed role» Customer

«possession»
«ownership»
«availability»

Cash

«ownership»
«availability»

Transport Service

«possession»
Transport Service

«possession»
«ownership»
«availability»

Transport Service

«ownership»
«availability»

Transport Service

«possession»
«ownership»
«availability»

Cash
«activity»

Purchase ticket

«activity»
Travel

«repository»
Cash

«repository»
Ticket

«ownership»
«availability»

Transport Service

«relaxed role»
Railroad Operator

Figure 102 - Example of a POA Model

As the POA concepts can be mapped to the accounting concepts, the POA model can be used for
verifying consistency between an existing accounting system and the business process model. The
primary purpose of the POA model is specification of an executable, platform-independent model as
described in the OMG model-driven architecture, from which accounting and enterprise information
systems can be generated.

Figure 102, above, depicts value delivery between a Customer and a Railroad operator, where Ticket
represents a repository of availability and ownership of Transport Service. The Purchase ticket activity
represents an exchange of Cash for availability and ownership of Transport service. The Travel activity
represents receipt of possession of Transport Service, settlement of Customer’s claim, and consumption
of the service. Table 7 outlines the relationships between the POA concepts and the VDML concepts.

Table 7 - Mapping of POA Concepts to VDML Concepts

VDML Concept POA Concept Remarks
Activity Activity Definitions are compatible.

Value proposition Availability In POA, availability is defined as the conditional right to
possess a resource. Depending on the condition,
availability can represent anything from proposal to
binding contract.

Collaboration Business process Definitions are compatible. In POA, a business process
represents a description of how roles interact. Both in
POA and in VDML the boundary of a network of roles
and activities is a collaboration whereas an activity

 137

describes work of a single role within the collaboration.
Deliverable flow
(Store)

Deposit and
withdrawal

Definitions are compatible.

Deliverable flow
(Role)

Flow Definitions are compatible. In POA, flow represents
transfer of possession, ownership or availability of
resources from one role to another. In VDML, the
deliverable, represented as a Business Item, can be
defined as a transfer of possession, ownership or
availability.

Intangible Intangible Definitions are the same.
Store Repository Definitions are the compatible. Like in VDML,

repositories can be physical, such as warehouse, or
abstract entities, such as debt. Repositories of availability
and ownership (but not possession) may have negative
value.

Role Role Definitions are compatible. In POA, a role can be marked
as relaxed, meaning that the model does not have to
specify how the role obtained the consumed and used
resources. In VDML, roles are relaxed by default.

Tangible Tangible Definitions are the same. In POA, intangibility is a
property of a resource.

Pool Usage In POA usage represents resources required by an
activity, but without being consumed, such as usage of
tools or usage of information. In VDML this is a Pool (a
specialization of Store) managing a reusable resource.

Value Value and Minibudget Definitions are compatible.

VDML Support for BMM Strategic Planning
The OMG Business Motivation Model (BMM) defines a framework for the capture of strategic planning
information. This framework reflects widely accepted strategic planning techniques. The resulting
strategic plans define requirements for business changes, but there remains a significant gap between
these requirements and the realities of implementation. VDML (Value Delivery Modeling Language) can
help bridge this gap through a more rigorous specification of the current state of the business and the
future, desired state.

In this article, I will begin with a brief overview of BMM and then discuss the application of VDML to
further detail and refine the strategy and to support transformation planning and management. This
discussion is not intended as a standard method, but illustrates how VDML can be used to improve the
discipline and rigor of strategic planning and transformation.

Overview of BMM

The diagram, below, is an abstraction of the Business Motivation Model (BMM) taken from the OMG
specification. We will briefly discuss the Means and Ends that represent a strategic plan. Influencers and
Assessment are elements of the strategic planning process that provide input for development and
refinement of the plan, but they are not, per se, elements of a strategic plan.

 138

End

The End contains elements that define the desired future characteristics of the enterprise including the
Vision and Desired Result. A strategic plan, at the most abstract level, is expressed as a Vision of what
the enterprise wants to be and how it wants to be perceived. This is complementary to the Mission,
below.

The desired result consists of Goals and Objectives. A goal is a long-term, qualitative result that the
enterprise may already be pursuing or that may be advanced as a result of a business challenge or
opportunity. It defines a purpose for the strategy. Objectives are specific, measurable results to be
achieved by a strategy, and they support enterprise goals. While there may be many measures of
performance, objectives focus on selected, key measurements that reflect progress toward the strategy and
goals from a management and investor perspective.

Means

The Means contains elements that describe how the future state of the enterprise will be achieved based
on the Mission, Course of Action and Directives. The Mission expresses why the enterprise exists—what
it wants to accomplish. Successful pursuit of the Mission should support realization of the Vision.

A course of action is the approach to implementation of the Mission in pursuit of the Goals and
Objectives. It consists of Strategy and Tactics. A strategy defines how the mission will be pursued and
objectives will be achieved. In conventional strategic planning, it is an abstract description of how the
enterprise will operate in the future. Typically, there will be multiple aspects to a strategy, potentially
representing the integration of different ideas. Tactics are incremental changes to the state of the
enterprise that lead to the desired future state required by the Strategy. The distinction between strategy
and tactics is somewhat subjective. Tactics will focus on resolving particular problems and steps toward
implementing related changes.

Directives are the business policies and business rules that are to be incorporated in the future state of the
enterprise. Policies are statements of business operating requirements. Business rules define operating
criteria or constraints in specific circumstances. Business rules implement business policies.

 139

-

Figure 103 - Overview of BMM

Application of VDML

VDML does not address all aspects of a business transformation. I expect that VDML will be used to
support strategic planning and transformation, program management for the operations and capabilities of
the business. It will be complemented by related efforts such as development of policies, analysis and
development of markets, design of incentives and development of contractual relationships.

 140

Figure 104 - Strategic planning process

The basis for consideration of changes is a VDML As-Is model. This represents the current state of the
business and will contain measurements reflecting current business operations. It provides a context for
understanding problems and assessing solutions.

An idea is a potential strategy at an inspirational stage of development. When that idea is refined,
validated and accepted, it becomes a strategy (or a component of a more complex strategy). We start with
consideration of one idea to improve the business.

The diagram, below, depicts steps of development of an idea through transformation of the business. We
will discuss each of these steps in the paragraphs that follow.

 141

Step 1 involves consideration of alternative approaches to implementation of an idea under consideration.
Each alternative should be modeled as a VDML To-Be model. The VDML model will support analysis
of the idea to define a cohesive impact on the organization, capabilities, activities, resources, value
contributions and value propositions, potentially including business partners.

Step 2 involves selection of the preferred alternative. The To-Be model provides the basis for estimating
activity value contributions as a result of the changes along with their impact on value propositions. It
also provides the basis for estimation of transformation costs and duration.

In Step 3, VDML will provide the basis for planning the work of transformation. The changes identified
in step 2, above, must be organized into implementation phases. Each phase will have a package of
changes to be implemented together. Some changes may be dependent on others—the VDML deliverable
flows will help identify these dependencies. Each phase should achieve implementation of a stable
business state that can be measured. If possible, each phase should yield business benefit.

Step 4 is applied prior to each phase. A To-Be model is developed or refined for the next phase. The To-
Be model incorporates the activities, capabilities and resources to be developed in that phase. This, in
turn, identifies the organization units responsible for the changed business operations as well as the
organization units of related activities that will require collaboration and coordination.

In Step 5, objectives are developed for the next phase based on the To-Be model and the transformation
plan. The phase To-Be model includes measurements for the expected value contributions of activities
that are affected by the transformation. Changes to value contributions for each affected activity will be
targets for performance by the organization unit that provides the supporting capability. The impact on
aggregated values will be targets for the overall undertaking for the enterprise or the targeted line(s) of
business.

Step 6 involves doing the work of transformation. Each phase may be managed as a separate project with
a detailed plan. The project must address all aspects of the transformation for that phase including
changes in products, technology, organization, personnel, facilities, information systems, and activity
inputs and deliverables. Some aspects are beyond the scope of a VDML model, but the VDML model
will help identify them.

At the end of each phase, an As-Is model is developed in Step 7 as a new baseline. This model should be
very similar to the To-Be model for the phase, but the measurements are actual value measurements.
These measurements are compared to the To-Be expected value measurements to evaluate success of the
phase.

Continuous transformation

In the real world, enterprises do not focus on the implementation of one idea at a time. As some ideas are
being implemented, other ideas will emerge. These new ideas will affect some of the same business
elements undergoing transformation. Some ideas will be completed while work on other ideas remains to
be done. The following paragraphs extend the above transformation steps to reflect on-going, continuous
transformation for implementation of multiple ideas.

 142

In Steps 1 and 2, a new idea may be evaluated and change requirements identified based on the current
As-Is model as discussed, above, but the overall evaluation should also consider changes already planned
for other ideas that affect some of the same business elements.

In step 3, the changes for the new idea must be reconciled with the To-Be models of pending phases of
the current strategy, and the program plan must be updated to reflect these changes and align phases.

In Step 4, based on the alignment of new changes to pending changes, a To-Be model must be developed
or adjusted for at least the next phase.

In Step 5, to the extent the next phase is expected to achieve different results with the newest idea, it will
be necessary to reconsider which value measurements are appropriate objectives for that phase.

Step 6 involves completion of the current phase, potentially with changes for multiple ideas. In a
continuous transformation environment, implementation of some ideas may be completed while work on
other ideas continues.

Step 7 involves evaluation of phase objectives at the end of each phase as well as the end objectives for
completed ideas.

Summary

The primary contributions of VDML to strategic planning involve support for Goals, Strategies,
Objectives and Tactics

A VDML To-Be model provides the measurements and value propositions of an idea implementation for
consideration of its contributions toward goals. The VDML model for a particular implementation
becomes a detailed strategy. It provides detail for planning and evaluation of the transformation plan.
Measurements of the To-Be model and the transformation plan become the basis for objectives for
transformation phases and completion of strategies. Phases of the transformation plan may be considered
Tactics.

Application of VDML will bring a change to the way strategic planning and business transformation are
performed. Not only will it enable better planning and monitoring, but it will enable more effective
management of complex and multi-faceted transformations needed to keep up with rapid changes of
business and technology.

VDML Support for Balanced Scorecard and Strategy Map

The Balanced Scorecard (BSC) and Strategy Map (SM) are well-known, abstract models for structuring
business transformation objectives. The analysis of objectives helps refine a strategic plan, and the
resulting objectives provide a basis for continuing assessment of progress.

BSC/SM objectives represent desired changes to the state of the business—how changes to the
design/operation of the business will achieve improvements. Thus the changes represented by BSC/SM
objectives represent the difference between VDML As-Is and To-Be models.

 143

The BSC defines four perspectives that classify objectives: (1) Learning and Growth, (2) Internal, (3)
Customer, and (4) Financial. This classification drives a broader analysis starting with the development
of capabilities (Learning and Growth), through development of internal methods and processes (Internal),
to delivery of customer value (Customer), and finally to enterprise success and sustainability (Financial).

The Strategy Map introduces causal relationships—some objectives depend on achievement of other
objectives. An internal process will not be successful without the capabilities that support it (e.g., people,
machines, knowhow).

A VDML model represents the current or future state (sometimes the past) of the business and associated
operating measurements. A model could involve multiple lines of business and multiple value streams.
VDML models can extend the BSC/SM analysis and support more robust transformation planning and
assessment. The diagram, below, depicts this.

Figure 105 – VDML models for BSC/SM

So a VDML To-Be model can represent the improvements in performance and value creation if the
strategy is successful. As the basis for objectives, these To-Be measurements must be compared to
corresponding measurements in an As-Is (current state) model. The As-Is model will change as the
transformation progresses. If the transformation goes as planned, the As-Is model will become the same
as the To-Be model (transformation complete).

VDML can represent many of the measurements of interest for the BSC/SM objectives, so a BSC/SM
objective may obtain its target measurement from the To-Be model and its current measurement from the
As-Is model.

VDML can represent objectives of the BSC Financial Perspective as As-Is and To-Be value proposition
measurements and market segment forecasts. However, VDML does not provide support for the
development of these market forecasts. For example, profit is essentially price minus cost. VDML
supports cost detail, but price is a management decision based on market analysis. Market share is a
forecast based on price and other factors including future competition. VDML can capture those
measurements, but does not provide support for market analysis.

 144

Some measurements require more extensive analysis and mapping. For example, if a new capability is
needed, the need is represented by the absence of the capability in the As-Is model. The objective
measurement is essentially binary—it is either there or it isn’t. That’s not very useful for BSC/SM. We
can refine this if there is an appropriate measure of progress. For example, if the capability requires
skilled people, we might represent the need with a VDML store of people supporting the capability in the
To-Be model. However, the current progress is then just a measurement reported by the training and
hiring effort of the transformation. If we were to create a place for these measurements in the As-Is
model, that would be outside the scope of the As-Is model since it would not represent the current
operation of the business.

From a VDML perspective, the causal relationships of Strategy Maps (i.e., dependencies between
objectives) are of six different types: (1) changes to enterprise capabilities (i.e., “capital” in Learning and
Growth) that are necessary for implementation of Internal Perspective value stream changes, (2) changes
to capabilities that increase customer value (Customer Perspective) such as adoption of an advanced
technology, (3) changes to capabilities that improve investor value (Financial Perspective) such as
development of intellectual property, (4) changes to a value stream (potentially involving multiple
activity changes) that affect activity contributions to customer value (Customer Perspective), (5) changes
to the value stream that improve investor value (Financial Perspective) such as cost reductions, and (6)
changes in customer satisfaction levels that drive market changes reflected in investor value (Financial
Perspective).

While these are all supported by VDML, they require two VDML models—an As-Is model and a To-Be
model. Type (1) can be observed by a change in capabilities (new or modified) between the As-Is and
To-Be models. Type (2) can be observed as value stream changes that improve desired customer value
proposition measurements. Type (3) requires human recognition of the value investors will place on
improved enterprise capabilities. Type (4) can be observed by tracing the sources of changes to the
customer values in the To-Be model to the relevant customer value contributions that are improved from
the As-Is model. Type 5 can be observed from changes in value contributions (such as cost reductions)
that have a direct impact on investor value. Type 6 is based on changes in customer value propositions
but it requires market insight and feedback regarding trends and competition to determine the impact on
investor value. Many of these causal relationships may be based on VDML deliverable flows, but rather
they represent differences between VDML models.

In a substantial transformation, there must be phases of implementation. Without objectives (or
intermediate target objectives) for phases, management would have difficulty assessing progress on a
long-duration project with multiple components. Each phase should be represented by a VDML model
for the expected state of the business at the end of the phase. As the transformation progresses, a series of
As-Is models would be created to represent the new, current state of the business. The As-Is model
evolves toward the To-Be model so that measurements in the current state depict progress toward To-Be
targets as depicted in the diagram, below.

The BSC/SM model then becomes a series of phase models with As-Is and To-Be supporting models to
define intermediate targets—see the diagram, below. The To-Be VDML model of a phase becomes the
expected As-Is model of the next phase, and the BSC/SM short-term, phase model represents the

 145

objectives of the current phase. The overall BSC/SM model can be derived from the initial As-Is model
and the final To-Be model.

Figure 106 - Modeling transformation phases

While the full BSC/SM model can be stable (unless the end state of the business evolves), the current
phase BSC/SM model will be incrementally based on new versions of the As-Is model as the
transformation progresses, and it will be based on new To-Be models as new phases are started.

In summary, VDML can provide significant value in validating the strategy, setting and evaluating
objectives that identify causal relationships and developing the transformation plan. However, the
relationships between the BSC/SM objectives and the VDML models are diverse and require incremental
alignment with new versions of VDML models. Development of needed modeling techniques is left for
VDML implementers to explore.

VDML Relationship to BPMN
This sub-clause addresses the relationship of VDML to BPMN (Business Process Model and Notation).
While VDML and BPMN represent some similar concepts, they address different business problems and
areas of concern. They provide different viewpoints—they address the concerns of different stakeholders.

The intent of VDML is to address the needs of business leaders to define, manage and transform the
design of the enterprise. This requires a broad perspective to incorporate multiple aspects of the
enterprise. The focus of BPMN is defining and managing repeatable, reliable processes with an emphasis
on automation. The focus is much more specific but much deeper in detail addressing many exceptions
and variations. The community of concern is primarily managers, business analysts and systems
developers closer to the business operations. In terms of the draft MDA Guide, VDML supports a
business model and BPMN supports a logical system model.

The primary mode of application of VDML is “forward engineering” as described by the draft MDA
Guide. This involves development of a business solution by starting at an abstract level of design and
developing in stages of increasing detail. VDML enables business leaders to define and agree upon a
high-level business design that can then be used to guide more detailed solutions that may be delegated to
multiple business units. BPMN represents a primary tool for development of the next level of detail.

 146

However, not all applications of VDML fit that pattern. The manner in which VDML is used and its
relationship to BPMN will vary depending on the nature of the business problem being solved. A number
of different modes are discussed in the following paragraphs. A paper that explores the relationship
between VDML and BPMN in much more detail is available as OMG document number BMI/2013-11-
01.

Business network analysis

VDML Business Networks models can be developed to represent relationships with customers, suppliers
and others, typically in the context of certain collaborative activities such as a line of business, product
development relationships, regulatory compliance relationships, etc. The collaboration structure and
exchange of deliverables helps analysis focus on both tangible and intangible deliverables and the less
obvious but important exchanges. This may lead to changes in business relationships, clarification of
roles and deliverables, and development of improved internal business processes.

Customer value analysis

Customer value analysis will be based on value stream analysis. A basic value proposition must be
defined to identify values of concern to a customer or customer community. Then the value proposition
must be linked to collaboration and activity value contributions. In the absence of an existing VDML
model, development of the value stream will typically be performed top-down, considering high-level
activities or stages of the business and breaking these down into a hierarchy of activities and deliverable
flows. The values of a customer value proposition are traced back up the value stream to identify sources
of value and potential improvements. The level of detail will be driven by the level of confidence in the
measurements and the need to drive down to specific capabilities and responsible organizations. This
could start with BPMN processes, but typically this requires digging through too much detail. The
analysis will lead to focused consideration of process improvements (BPMN).

The analysis of customer value will lead to identification of activities might be improved to improve
customer value. This may also lead to a “capability map” that provides a visual breakdown of the
capabilities required by the activities with highlights to identify those capabilities that need improvement.

Capability analysis

Capability analysis can go beyond the identification of critical capabilities in a value stream. In a large
enterprise, multiple product lines or lines of business may require some of the same capabilities.
Capability analysis should identify similar capabilities, consider ways they can cooperate to improve their
performance, and assess the potential to consolidate for economies of scale. This may drive process
improvements or development of processes for a shared capability to meet the needs of multiple lines of
business.

When capabilities are consolidated as shared services, there is a need to understand their performance in
multiple contexts. Changing a capability for one line of business could adversely affect another. In
addition, analysis of investments in improvement of capabilities should consider how each capability
affects all of its uses to provide an enterprise-level perspective on allocation of investments. The
implementation of improvements will likely involve process improvements based on the capability
analysis.

 147

New product/LOB analysis

Development of business operations for a new product or line of business should involve leveraging
existing capabilities. VDML supports modeling the business at an level of abstraction that identifies
capability requirements without requiring a lot of detailed process analysis. Capability requirements can
be developed at an appropriate level of detail for strategic planning, to identify existing capabilities and
any changes to their requirements along with requirements for new capabilities. This provides a
framework for more detailed analysis, such as process modeling, to focus on the areas the need
development. Business leaders can more quickly assess both the cost and time required to realize the
needed production capability and make an informed business decision on the potential success of the
product.

Merger or acquisition

Mergers and acquisitions, if they are to realize any synergy, require some consolidation of capabilities.
VDML models can be used during due diligence to get a better understanding of the similarities and
differences of the enterprises and the potential for sharing capabilities. While the enterprises may have
similar products, that does not mean they have similar ways of doing business.

Here a transformation of BPMN to VDML, assuming processes are specified with BPMN, may be an
expeditious way to develop VDML models for comparison. If transformation is not possible, or if
starting at business processes is too big an undertaking, VDML can still support value stream models at
levels of detail appropriate to confirm similarities or expose differences so that much of the modeling
does not reach the business-process level of detail. These models will provide the basis for consideration
of to-be models to realize expectations of synergy in the merger.

Strategic transformation

Strategic transformation potentially involves substantial change to the way the business operates. Starting
with business processes will bias the result by making it difficult to see the forest for the trees. VDML
supports a higher level view of the business where sufficient detail can be developed to realize a
meaningful assessment of the scope and duration of the change, the performance expectations and
competitive position as well as the framework for organization of initiatives and development of business
processes and systems. Multiple VDML models can be used to define stages of transformation and define
incremental change rather than one, long-term undertaking with no benefit (or failure) until the end.

Accountability

VDML provides the linkage of customer value to contributing activities, to use of capabilities and to
responsible organizations so that organizations can be held accountable for poor results and recognized
for important improvements. VDML will drive meaningful performance measurement, and support
analysis that starts from a high level of abstraction and expands levels of detail to focus on a specific area
for improvement. It will also help clarify expectations and responsibility for shared capabilities.

 148

Annex C: Use Cases
(Informative)

Two substantial use cases were developed in support of the VDML development effort. These are
independent documents that are available on the OMG server: Note that these documents are not
normative. They were developed before the metamodel and notation were finalized and may include
some inconsistencies with the final specification.

Manufacturing use case: http://www.omg.org/cgi-bin/doc?bmi/2012-11-10

Healthcare use case: http://www.omg.org/cgi-bin/doc?bmi/2012-11-11

 149

http://www.omg.org/cgi-bin/doc?bmi/2012-11-10
http://www.omg.org/cgi-bin/doc?bmi/2012-11-11

	Table of Figures
	Table of Tables
	Preface
	1 Scope
	2 Conformance
	2.1 Full VDML Conformance
	2.2 VDML Metamodel Conformance
	2.3 VDML Collaboration Modeling Conformance

	3 References
	3.1 Normative References
	3.2 Non-Normative References

	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Acknowledgements
	6.1.1 Submitting Organizations
	6.1.2 Participants
	6.1.3 Supporting organizations

	6.2 IPR and Patents
	6.3 Guide to the Specification

	7 VDML Metamodel
	7.1 Overview of VDML
	7.1.1 VDML Model
	7.1.2 Value and Value Proposition
	7.1.3 Capability Definition
	7.1.4 Collaboration
	7.1.5 Community
	7.1.6 Business Network
	7.1.7 Organization Unit (Org Unit)
	7.1.8 Capability Method
	7.1.9 Activity
	7.1.10 Port
	7.1.11 Resources and stores
	7.1.12 Measures
	7.1.13 Scenarios and contexts
	7.1.14 Staff collaborations
	7.1.15 Model integration

	7.2 VDML Class definitions
	7.2.1 Collaboration and Value Creation
	7.2.1.1 Collaborations and participants
	7.2.1.1.1 Actor Class
	7.2.1.1.2 Person Class
	7.2.1.1.3 Collaboration Class
	7.2.1.1.4 Participant Class (Abstract)
	7.2.1.1.5 Role Class
	7.2.1.1.6 CalendarService Class

	7.2.1.2 Activity networks
	7.2.1.2.1 Activity Class
	7.2.1.2.2 ResourceUse Class
	7.2.1.2.3 Assignment Class
	7.2.1.2.4 DeliverableFlow Class
	7.2.1.2.5 BusinessItem Class
	7.2.1.2.6 Store Class
	7.2.1.2.7 Pool Class

	7.2.1.3 ValueAdds and ValuePropositions
	7.2.1.3.1 ValueProposition Class
	7.2.1.3.2 ValuePropositionComponent Class
	7.2.1.3.3 ValueAdd Class
	7.2.1.3.4 ValueElement Class (Abstract)

	7.2.2 Collaboration Sub-Types
	7.2.2.1 BusinessNetworks
	7.2.2.1.1 BusinessNetwork Class
	7.2.2.1.2 Party Class

	7.2.2.2 Communities
	7.2.2.2.1 Community Class
	7.2.2.2.2 Member Class

	7.2.2.3 OrgUnits and Capabilities
	7.2.2.3.1 OrgUnit Class
	7.2.2.3.2 Position Class
	7.2.2.3.3 CapabilityOffer Class
	7.2.2.3.4 ReleaseControl Class

	7.2.2.4 CapabilityMethods
	7.2.2.4.1 CapabilityMethod Class

	7.2.3 Models and Scenarios
	7.2.3.1 ValueDeliveryModels
	7.2.3.1.1 ValueDeliveryModel Class

	7.2.3.2 Scenarios and AnalysisContexts
	7.2.3.2.1 AnalysisContext Class (Abstract)
	7.2.3.2.2 Scenario Class
	7.2.3.2.3 DelegationContext Class

	7.2.4 Core Elements
	7.2.4.1 VdmlElements
	7.2.4.1.1 VdmlElement Class (Abstract)
	7.2.4.1.2 Attribute Class
	7.2.4.1.3 Annotation Class
	7.2.4.1.4 MeasurableElement Class (Abstract)
	7.2.4.1.5 MeasuredCharacteristic Class

	7.2.4.2 Expressions
	7.2.4.2.1 Expression Class
	7.2.4.2.2 Operand Class

	7.2.4.3 PortContainers
	7.2.4.3.1 Port Class (Abstract)
	7.2.4.3.2 OutputPort Class
	7.2.4.3.3 InputPort Class
	7.2.4.3.4 PortContainer Class (Abstract)

	7.2.4.4 PortDelegations
	7.2.4.4.1 PortDelegation Class (Abstract)
	7.2.4.4.2 InputDelegation Class
	7.2.4.4.3 OutputDelegation Class

	7.2.5 Libraries
	7.2.5.1 BusinessItemLibrary
	7.2.5.1.1 BusinessItemLibrary Class
	7.2.5.1.2 BusinessItemDefinition Class
	7.2.5.1.3 BusinessItemCategory Class
	7.2.5.1.4 BusinessItemLibraryElement Class (Abstract)

	7.2.5.2 ValueLibrary
	7.2.5.2.1 ValueLibrary Class
	7.2.5.2.2 ValueDefinition Class
	7.2.5.2.3 ValueCategory Class

	7.2.5.3 CapabilityLibrary
	7.2.5.3.1 CapabilityLibrary Class
	7.2.5.3.2 CapabilityDefinition Class
	7.2.5.3.3 CapabilityCategory Class
	7.2.5.3.4 Capability Class (Abstract)
	7.2.5.3.5 CapabilityDependency Class

	7.2.5.4 PracticeLibrary
	7.2.5.4.1 PracticeLibrary Class
	7.2.5.4.2 PracticeDefinition Class
	7.2.5.4.3 PracticeCategory Class

	7.2.5.5 RoleLibrary
	7.2.5.5.1 RoleLibrary Class
	7.2.5.5.2 RoleDefinition Class
	7.2.5.5.3 RoleCategory Class

	7.2.6 Integration with SMM (Structured Metrics Metamodel)
	7.2.6.1 Packages
	7.2.6.2 SMM Main Concepts

	8 Notation
	8.1 General
	8.2 Role Collaboration
	8.3 ValueProposition Exchange
	8.4 Activity Network
	8.5 Collaboration Structure
	8.6 CapabilityLibrary
	8.7 Capability Heatmap
	8.8 Capability Management
	8.9 Measurement Dependency

	Annexes
	Annex A: Glossary
	Annex B: Alignment with Existing Business Modeling Techniques
	Value Networks
	REA (Resources Events Agents)
	e3value
	Capability Maps
	Value Stream
	Business Model
	Lindgren
	Osterwalder

	Possession, Ownership, Availability (POA)
	VDML Support for BMM Strategic Planning
	VDML Support for Balanced Scorecard and Strategy Map
	VDML Relationship to BPMN

	Annex C: Use Cases

