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Preface
About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry 
standards consortium that produces and maintains computer industry specifications for interoperable, portable and 
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information 
Technology vendors, end users, government agencies and academia. 

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's 
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to 
enterprise integration that covers multiple operating systems, programming languages, middleware and networking 
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling 
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel); 
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG 
Specifications is available from the OMG website at: 

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
• UML

• MOF

• XMI

• CWM

• Profile specifications.

OMG Middleware Specifications
• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
• CORBAservices
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• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG 
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, 
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English. 
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.:  Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold:  Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification, 
or other publication.

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
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1 Scope

The specification expresses the models using OMG modeling languages. The Voice metamodel is defined as a MOF 
metamodel. In addition UML is used as one of the concrete syntaxes attached to the metamodel. The specification  
describes compliance points in “Conformance Points” below. The specification preserves maximum implementation 
flexibility, no PSM is given to support the specified PIM metamodel. Interoperability and substitutability are guaranteed 
thanks to the usage of completely defined syntaxes (XMI, UML Profile, and Textual). The degree of support of 
internalization is Uncategorized, no assumption is made that makes this specification not usable in a specific region. 

2 Conformance

Conformance for tools supporting this specification is specified along two orthogonal dimensions: the syntax dimension 
and the capability dimension. Each dimension specifies a set of named levels. Each intersection of the levels of the two 
dimensions specifies a valid conformance point. All conformance points are valid by themselves, which implies that there 
is no general notion of “Voice conformance.” Instead, a tool shall state which conformance points it implements, as 
described below.

2.1 Conformance Points
Any combination of two named levels, one from each dimension, constructs a conformance point. The figure below 
specifies the 6 different possible conformance points. A tool can claim to be conformant according to one or more of 
these conformance points.

Figure 2.1 - Conformance Points

By convention a conformance point is denoted using the abbreviation

Voice - <syntax level><capability level> 

If a tool complies to various compliance points the following abbreviation can be used:

Voice - <syntax level1><capability level1> - <syntax level2><capability level2>

 

Exportable

Executable

TextualUM LXM I

Exportable

Executable

TextualUM LXM I

Syntax dim ension

C
apability
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For example, a tool could be Voice-XMIExecutable and Voice-TextualExportable and another Voice-UmlExecutable. For 
the first tool the abbreviation Voice-XMIExecutable-Textual-Exportable can be used.

2.1.1 Syntax Dimension
The syntax dimension consists of the three named syntax levels:

• XMI: The Voice metamodel serving as the basis for XMI interchange is described in Chapter 8. 

• UML: The Voice UML Profile is described in Chapter 9.

• Textual: The textual notation of the Voice language is described in Chapter 10.

2.1.2 Capability Dimension
The capability dimension has two named levels:

• Executable: An implementation shall provide a facility to import or read, and then execute the given syntax (XMI, 
UML Profile or Textual). The execution shall be according to the semantics of the Voice metamodel.   

• Exportable: An implementation shall provide a facility to export a voice dialog definition into one of the three 
possible syntaxes (XMI, UML Profile or Textual).

3 Normative References

1.  Unified Modeling Language (UML), v1.3 specification (formal/00-03-01)

2. Meta Object Facility (MOF), v1.3 specification (formal/00-04-03)

4 Terms and Definitions

The models and terminology of the UML 1.3, MOF 1.3 and XMI 1.1 specification and the Model Driven Architecture 
have been used in this specification.

5 Symbols

No specific symbols are defined in this document.
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6 Additional Information

6.1 Changes to Adopted OMG Specifications
No changes to the adopted OMG specifications are requested in this specification.

6.2  How to Read this Specification
The rest of this document contains the technical content of this specification. The structure is as follows:

• Chapters 7 (Introduction), 8 (Metamodel), 9 (UML Profile), and 10 (Mapping to VoiceXML) comprise the 
specification. Annexes A and B contain additional information about the specification.

6.3  Acknowledgements
The following companies submitted and/or supported parts of this specification:

• Alcatel

• EURESCOM

• France Telecom  

• IBM

• HP

• Softeam

• Telelogic

A special thanks to Mariano Belaunde (France Telecom) who was the main submitter responsible for preparing this 
specification.
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7 Introduction

7.1 Overview
This specification addresses the need for standardizing a high-level notation for designing dialogs in interactive voice 
response applications, independently of any specific voice-based platform. The VoiceXML specification [VXML] from 
the W3C defines an  executable language for executing audio dialogs. 

The VoiceXML specification [VXML] from the W3C defines an executable language for executing audio dialogs. Figure 
7.1 shows an example of an interaction described using this language. The language enables a separation of service logic 
from interaction behavior and frees the developers from resource management. Its major goal is to bring the advantages 
of web-based development and content delivery to interactive voice response applications. Most of new competing voice 
portals are based on this standard. 

Figure 7.1 - Example of a VoiceXML document

A VoiceXML compliant platform will typically have a multi-tier architecture, as depicted in Figure 7.2. An application 
server generates dynamically the VoiceXML pages to be executed by the VoiceXML gateway. Distinct voice portal 
providers may share a VoiceXML gateway to execute the VoiceXML pages. However, for the high-level design of this 
dialog, there is no standard graphical notation defined: each voice portal provider proposes its own proprietary notation.

Figure 7.2 - Multi-tier architecture in voiceXML based portals

C (computer): Would you like coffee, tea or milk?
H (human): Orange juice.
C: I did not understand what you said.
C: Would you like coffee, tea or milk?
H: Tea
C: (continues in document drink2.asp)

<?xml version="1.0"?> 
<vxml version="1.0"> 
<form> 

<field name="drink">
<prompt>Would you like coffee, tea, or milk?</prompt> 

<grammar src="drink.gram" type="application/x-jsgf"/> 
</field> 

<block> 
<submit next="http://www.drink.example/drink2.asp"/>

</block> 
</form> 
</vxml> 

C (computer): Would you like coffee, tea or milk?
H (human): Orange juice.
C: I did not understand what you said.
C: Would you like coffee, tea or milk?
H: Tea
C: (continues in document drink2.asp)

<?xml version="1.0"?> 
<vxml version="1.0"> 
<form> 

<field name="drink">
<prompt>Would you like coffee, tea, or milk?</prompt> 

<grammar src="drink.gram" type="application/x-jsgf"/> 
</field> 

<block> 
<submit next="http://www.drink.example/drink2.asp"/>

</block> 
</form> 
</vxml> 
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From an end-user perspective, it is very important to be able to design dialogs independently of the selected voice 
platform (whether VoiceXML-based or not). Because the technology is rapidly evolving in this field, a voice service 
provider may need to change the underlying implementation technology and in the meantime re-use the existing dialog 
specifications.

UML as a well-accepted general-purpose design notation appears as being a natural candidate to serve as the basis for the 
graphical notation. UML 2 has improved significantly the capacity to describe complex behavior. On the other hand, the 
MOF formalism has proved to be a convenient way to define the concepts that are relevant to a specific domain, in our 
case, voice dialog specification. 
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8 The Voice Metamodel

8.1 Introduction
The Voice metamodel defines the concepts needed to represent complete executable dialogs. It contains firstly behavioral 
concepts that represent the dialog as a state-machine – the different kinds of nodes, the transitions – then it contains the 
concepts to represent the various kinds of input events (DTMF, speech recognition and so on), and finally the concepts to 
represent basic actions. In addition object oriented structuring (Package, Class, Operation) is used to represent the 
business code that needs to be manipulated to render the voice service.

Figure 8.1 contains the various packages of the metamodel.

Figure 8.1 - Structure of the Voice metamodel

8.2 Voice Service Modeling
This section presents the concepts needed to describe interactive voice dialogs. In particular this includes the concepts to 
describe how the dialogs between a voice service and an end-user are sequenced.

DialogLogic

ServiceAnalysis

Messages

Actions

Signals

Core
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Figure 8.2 - The environment of a voice service

Figure 8.3 - Service specific concepts
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8.2.1 Environment
The environment is the root instance for a voice service defining dialogs. It contains all the global declarations used by 
the dialogs. 

8.2.2 Service
A Service represents a coherent set of functionalities that an end-user perceives as a whole and to which it is able to 
describe. Example: a remote address book hosted by the telecommunication operator and accessed through voice.

Properties

• offeredFunctionality : Functionality
Designates the list of functionalities offered by this service.

• parent : Service
The parent service in the hierarchy of declared services.

8.2.3 Entity
An Entity represents any business data that need to be manipulated in order to provide a service. Examples: 

• A record containing an entry in the address book of a user. 

• An Entity is a kind of Class, which may define properties and operations.

8.2.4 Functionality
A unit of behavior that provides an added-value to the user. A service is decomposed in functionalities. Examples: 

• The function that allows consulting its address book.

• The function that allows updating its address book.

8.3 Voice Dialog Modeling
This section presents the concepts needed to describe interactive voice dialogs. In particular this includes the concepts to 
describe how the dialogs between a voice service and an end-user are sequenced.
UML Profile and Metamodel for Voice-based Applications, v1.0        9



Figure 8.4 - Behaviors

Figure 8.5 - Dialogs
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Figure 8.6 - Nodes hierarchy

Figure 8.7 - Sub dialogs and diversion nodes

8.3.1 Dialog
A dialog describes the interaction between a voice service and an end-user in order to provide a given functionality. A 
specific dialog can be associated to the whole voice service. Its purpose is to manage the access to each functionality that 
is provided by the service.

A dialog is described as a graph of nodes, in which the sequencing of the dialogs is represented thanks to transitions.

Two kinds of nodes play a specific role:

1. The nodes representing the situation where the system waits for a user action (WaitState).

2. The nodes that reference a dialog defined elsewhere (SubDialogState).
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These two nodes represent a stable situation for the voice system: a state is associated with them. The other nodes are 
unstable nodes or transient nodes.  The system does not stop when these nodes are reached: they are not states for the 
system.

A dialog may define and manipulate variables. These variables can contain values to be provided to the user, such as the 
number of available messages. These variables may also contain data that will influence the flow of dialogs, for instance, 
the telephone number used by the user when calling the service.

A dialog may have input and output parameters. This is represented by the Signature metaclass, which is a base class of 
Dialog.

Properties

• accessedFunctionality : Functionality
The functionalities being used in the dialog.

• globalVariable : Variable
The variables that are accessible to all dialogs. 
Only the main dialog can declare global variables.

• variable : Variable
The local variable declared by this dialog.

• concept : Concept
The concepts that the dialog expects as a result of speech analysis and/or DTMF.

• externalEvent : ExternalEvent
Events produced by the environment that the dialog is aware. Example: hang-up

• message : Message
The messages that are defined locally by this dialog.

• condition : MessageElementCondition
The conditions associated with the conditional parts of a messages owned by this dialog.

• condition : MessagePart
The message parts used by the messages of this dialog.

• ownerDialog : Dialog
the owner of the dialog within the hierarchy of dialogs.
The message parts used by the messages of this dialog.

• operation : Dialog
Specific reusable behavior defined for this dialog.

• node : DialogNode
the nodes of the graph representing the behavior. 

• transition : Transition
The transitions of the graph representing the dialog.
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• standalone : Boolean
States whether the dialog is allowed to refer to global variables. If standalone is True, no global variables can be 
used.

8.3.2 DialogState
A DialogState is an abstraction that represents a situation in which a condition holds (often this condition is implicit). It 
may represent a passive situation, such as waiting for a user input, or an active situation like executing a sub-dialog.

8.3.3 WaitState
A WaitState represents a situation in which the system expects an action from the user or another kind of event like time 
expiration or a rejection. It represents a context for the capture or the interpretation of the inputs.

Properties

• delay
the expiration time parameter before an Inactivity event is generated. 

8.3.3.1 SubDialogState

A SubDialogState represents an invocation of a sub-dialog. The sub-dialog is defined separately. When the called sub-
dialog terminates its execution, the invoking dialog resumes its execution. 

An invocation of a dialog (InvocationDialog) may have arguments (expressions) if the sub-dialog declares parameters.

Properties

• called : DialogState
The dialog state being invoked.

8.3.3.2 AnyState

When a Transition is associated to an AnyState, this is equivalent to associate the transitions to all the states of the dialog.

8.3.3.3 ListState

When a Transition is associated to a ListState, this is equivalent to associate the transitions to all the states of the list.

8.3.3.4 HistoryState

Represents the state of the dialog that is more recent. It is used to define generic transitions, associated with a list of states 
or the AnyState. It expressions behaviors like “whatever is the current state, come back after the end of the transition.”

The deep property is relevant only if the state to come back is a sub-dialog. When the value is true, the sub-dialog goes 
to the last visited internal state, and this recursively until reaching a simple state (WaitState). If false, the sub-dialog is re-
executed from its default entry point.

8.3.4 Transition
A Transition represents the possibility to go from a node to another node. It represents a control flow between two nodes, 
that is to say, the set of actions, guards, or event capture that are treated between the two nodes.
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From the external environment, an end-user only perceives the stable extremities, that is to say, the nodes where the 
system pauses and gives the initiative to the user. Between two user actions the system goes from a stable node to another 
stable node (the nodes that the user can perceive), possibly crossing unstable transitions.

The service exits a stable state by reacting to one of the events that potentially can occur in that state. A typical event will 
be an action from the user, like a DTMF pressed touch or speaking. Another kind of event is a timer expiration. The 
system can additionally be simulated by “continuous” signals that are boolean guard conditions. Sometimes it may happen 
that a transition is triggered only when the two kinds of stimulus occur (a user input or timer expiration and a continuous 
signal).

The events that are associated with a transition are:

• A source node

• An optional trigger: corresponds to the presence of non continuous stimuli

• An optional guard: a Boolean condition on the data available to the dialog (for instance the current number of 
inactivities)

• An optional effect: the set of actions that are executed if the transition is activated

• The target node

Properties

• origin : DialogNode
The source node of the transition

• target : TargetNode
The target of the transition

• trigger : Trigger
A reference of the event to be recognized to execute the transition.

• effect : Action
The list of actions to execute.

• TransientNode

8.3.5 Transient Node
A TransientNode is an abstraction that represents different kinds of nodes that are not states for the dialog. The different 
kind of transient nodes are:

• InitialNode: represents the default entry point of the dialog

• ChoiceNode: Represents a conditional branch

• JunctionNode: Denotes a location in the dialog graph to allow redirecting various transitions

• NextNode: End of the dialog and return to the caller 
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• DiversionNode: End of the dialog with a forced escape to the dialog indicated by the diversion node. The caller ends 
its execution (no return as for sub-dialogs). Arguments can be passed to the target of the diversion node and it is 
permitted to invoke recursively the diversion nodes.

• StopNode: Represents the end of the whole service

8.3.6 DialogNode
A dialog node is an abstraction that represents all kinds of nodes that can be a source or a target for a transition.

8.3.7 Trigger
A trigger identifies an event that can produce the activation of a transition. They can be associated with variables, for 
instance, when the event is the recognition of a word pronounced by the user, this word is stored in an argument of the 
trigger.

Properties

• event : InputEvent
The event that is expected to fire the transition.

• guard : expression
A condition that is required for firing the transition.

8.4 Input Event Concepts
In this section we describe the various kinds of inputs to be managed by the voice service. Figure 8.8 presents this part of 
the metamodel.

Figure 8.8 - Input events of a dialog

8.4.1 InputEvent
An input event is an abstraction that represents all the kinds of inputs to which a dialog needs to respond.

Reject

DTMF
key : DTMFKind

InactivityNamedElement
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Recording

AbstractDTMF

MessageEnd
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*

0..1
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Properties

• parameter : the slot of the input event used to pass values.

8.4.2 Concept
A Concept is the result of the interpretation of the phrases or words pronounced by the user. This interpretation is 
produced thanks to speech recognition. If the system uses a semantic analyzer, a Concept typically represents the outcome 
of the analyzer.

8.4.3 DTMF, AnyDTMF, AnyDigit
Represents a DTMF code. It reflects a press button action from the user on the terminal. The property key holds the value 
of the key being pressed.

AnyDTMF, used in conjunction with a Trigger, represents the arrival of any DTMF code.

AnyDigit, used in conjunction with a Trigger, represents the arrival of any DTMF code, except for the "#" and '*' special 
characters.

8.4.4 Inactivity
Inactivity represents the fact that the system does not receive any input after a delay expires since a given state of the 
system is entered. The property delay that is associated to any state represents the timeout.

8.4.5 Reject
Reject represents the situation in which the system has detected an input but the confidence on the result is very low.

8.4.6 ExternalEvent
An ExternalEvent represents changes in the environments that potentially affect the dialog, such as the arrival of a 
message of a change made to a database.

8.4.7 Recording
An event of type Recording represents a phrase or a word pronounced by the user that was not interpreted but stored 
somewhere for further usage.

8.5 Grammars
Grammars can be explicitly referred in a dialog specification and be attached to signals and to wait states. However the 
details of the grammar are not defined since this depends on the formalism chosen. The formalism (such as SGRS) and 
the language (French, English, and so on) can be explicitly indicated.
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Figure 8.9 - Grammar referencing

8.5.1 Grammar
A Grammar instance represents the usage of a grammar definition in a dialog specification. A grammar can be attached to 
an utterance signal (Concept), to a WaitState. It can be defined at the level of the environment (top-level), or at the level 
of a Service, or be specific to a Dialog. A grammar that is automatically computed can have its dynamic definition given 
as an operation. Alternatively, the content of the grammar may refer to a file (location property) or may be direction 
included within the grammar instance (through the content property).

Properties

• isComputed : Indicates whether the grammar is generated or if it is statically defined.

• formalism : The language being used to specify the grammar.

• content: the formal description of the grammar (when available)

• location : the location where the formal description of the grammar can be found. 

8.6 Message Related Concepts
In this section we present how messages are represented in the metamodel.
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Figure 8.10 - Message structure

8.6.1 Message
A message defines a unit of meaning pronounced by the service (for instance, a phrase). It is composed of a sequence of 
message elements and may contain conditional parts. It is possible to reuse parts of a message in different messages.
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Properties

• messageElement : the parts of this message.

• actionSpecification: an alternative way to specify its content using action.

• visibility : indicates the visibility level of this message within the specification.

• body : a text containing the result of merging the distinct parts.

8.6.2 MessagePart
An abstraction that represents the various elements that are used to build a complete message: fix parts, variable parts, 
silences.

8.6.3 FixPart
A fix part is a part of a message that is constant and indivisible, which may be recorded or synthesized (text to speech).

Properties

• content : the message to be synthetized and pronounced by the machine.

• format : the format used to render the message.

8.6.4 SilencePart
SilencePart represents a silence that duration is given by an expression.

8.6.5 VariablePart
A variable part represents to the part of a message that results from an expression evaluation. For instance the evaluation 
of a variable that returns ‘3’ will produce a ‘three’ message part.

Properties

• visibility : indicates the visibility level of this message within the specification.

• format : the format used to render the message.

8.6.6 MessageElement
A MessageElement is an abstraction that represents the different parts of a message (a usage of a message part and the 
conditional parts).  

8.6.7 UseElement
A UseElement represents the usage of a message part within a given message.

8.6.8 ConditionalPart
In a message, some parts may not be pronounced depending on Boolean conditions. If the condition is true, the ‘thenPart’ 
is pronounced, otherwise the ‘elsePart’ is pronounced.
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8.6.9 Condition
A Condition is a Boolean expression that is used as a decision in a conditional message.

8.7 Action Concepts
In this section we describe the kind of actions that can be realized during the execution of the voice dialog.

Figure 8.11 -  Actions

Figure 8.12 - Composite actions

8.7.1 ActionSequence
An action sequence is an ordered list of actions.
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8.7.2 Action
An Action is an abstraction that represents the various kinds of actions that can be executed during the provision of a 
voice service. These actions can be directly called from the dialog node or can be attached to the transitions.

8.7.3 Play
A Play instance represents the action of emitting a message. The play of a message can be interrupted or not interrupted 
depending on the ‘interruptible’ property value. If the message has parameters, the action of playing the messages has to 
provide arguments.

8.7.4 Assignment
This action consists to assign a value to a variable.

8.7.5 Call
This action represents the invocation of an operation, typically an operation hold by a business entity. The call can pass 
arguments if the called operation declares parameters.

8.7.6 Uninterpreted
An Uninterpreted instance represents an action described informally (typically using natural language). 

8.7.7 Return
This action represents the return of an operation.

8.7.8 IfThenElse
This action represents a conditional action.

8.7.9 While
This action represents a loop that will stop when the related condition evaluates to false.

8.8 Core Concepts
In this section we describe the structuring concepts needed to represent business data and business code. The concepts are 
mainly taken from UML 2 and MOF 2. The expressions are used in guards and in actions.
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Figure 8.13 -  Expressions

Figure 8.14 - Literals
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Figure 8.15 - Core structuring concepts
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Figure 8.16 - Types
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9 The Voice UML Profile

In this chapter we describe the UML 2.0 profile associated with the Voice metamodel described in Chapter 8. 

The profile is described using: 

• a table that gives for each “voice” concept the corresponding UML concepts and the graphical representation.

• a table with the list of all defined stereotypes, the base classes, and the tagged values associated with these stereotypes.

Some examples are provided to illustrate the usage of the UML notation.

9.1 Structure of a Voice Service Model
A UML model may contain the definition of a single voice service or the definition of various voice services. A 
“Framework” package contains the lists of predefined signals and predefined operations that are available to all services. 
Each voice service is represented by a Package stereotyped <<Service>>. A package containing the definition of entities 
can be either contained within a <<Service>> package or live at same level - typically imported from other UML models. 
The latter is useful for services sharing the same set of entities. 

The structure of a <<Service>> package should follow one of the two structural schemes: 

Old style:

Entities defined specifically for the service are defined within a package stereotyped <<EntitiesModel>>. The dialogs are 
represented by a package stereotyped <<DialogModel>>. The main dialog is the unique <<DialogModel>> package 
directly contained by the <<Service>> package. A <<DialogModel>> has the following structure: a class stereotyped 
<<InputContainer>> to contain the locally defined input events (UML signals), a class stereotyped 
<<VariableContainer>> to contain the global variables (only for the main dialog), a class stereotyped 
<<MessageContainer>> to contain the messages (UML operations), and a class stereotyped <<BehaviorContainer>> to 
contain the operation containing the behavior definition (state machine or activity graph). Sub dialogs are defined by 
nested packages stereotyped <<DialogModel>>.

New style:

Within the <<Service>> package, a dialog is directly defined by a behavior (either a state machine or an activity graph). 
The main dialog is the unique behavior directly contained by the <<Service>> package. Sub dialogs are defined as 
behaviors owned by the behavior representing the owning dialog. The input events are defined as signals owned by the 
<<Service>> package. Variables are defined as properties of the behavior and messages are defined as operations of the 
behavior.

These two styles are needed to cope with existing UML implementations. Old style can be used by UML 1.x conformant 
tools or UML2 tools that do not support the ability for a behavior to contain properties and operations.
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9.2 Voice Metamodel to UML Correspondences

Voice Metamodel 
Concept

UML 2.0 Concept Notation

VOICE DIALOGS

Dialog State machine stereotyped <<Dialog>> One or more state-transition diagrams 

WaitState State stereotyped <<WaitState>>

SubDialog-State Action stereotyped
<<SubDialogState>>

Transition Transition. Transition arrow.
The trigger and the actions of the 
"whole" transition are explicitly drawn as 
nodes linked by transitions.

Trigger Trigger A unique trigger symbol

Multiple triggers

Guard Constraint Within a transition within a trigger: 
expression with brackets attached to the 
transition arrow.

AnyState State named "*"

W ait
<<W aitState>>

 
<<SubDialogState>> 

Identification ( ) ; 

 Advice ( ) 

 Cancel(), Stop(), 
Terminate(),No()

**
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ListState ListState

Transient Node Pseudostate Specific to each kind of pseudostate.

InitialNode Pseudostate with kind Initial

ReturnNode FinalState

DiversionNode FinalState stereotyped "diversion"

ChoiceNode Choice

HistoryNode DeepHistory or ShallowHistory
 (for deep)

JunctionNode Junction  name

ACTIONS

Action Sequence Activity Rectangle containing the list of actions.
 

Alternative: sequence of rectangles 
connected by transition arrows.

Note: The action of playing a message is 
represented differently through the usage 
of a send symbol (see Play).

Play SendSignal-Action

Playing, WaitPlaying, Wait

 nbInactivities = 0;
nbReject = 0;

 WhichNumberTypeMsg ( ) 
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Assignment WriteStructural-FeatureAction
WriteVariable-Action

Specific keywords using a Java like 
notation.

Note: UML 2.0 does not define a 
concrete syntax for the specific actions.

Uninterpreted Comment

Return ReturnAction return keyword

IfThenElse ConditionalNode If then else  keywords

While LoopNode while keyword

INPUT EVENTS

InputEvent Signal 

Concept Signal stereotyped <<Concept>> Simple concept:

Parameterized concepts: 

DTMF Signal stereotyped <DTMF>>

<<signal,Concept>>

Advice

<<signal,Concept>>

NumberType
Charstring

<<signal,DTMF>>

Dtmf0
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ExternalEvent Signal stereotyped <<External 
Event>>

Voice metamodel
Concept

UML concept Textual Representation

MESSAGES

Message An operation stereotyped <<Message>> 
with a return parameter of type String.
The operation returns the concatenation 
of the message parts.

public static <<Message>> Charstring 
M_1 { 

  return   (cond_1?

     (FP_2()):

      (FP_3())+FP_3());

}

FixPart Operation stereotyped <<FixPart>> 
With a tagged value 'format', which 
default value indicates the format of the 
string (a date, a phone number, and so 
on).
The operation returns a string that 
represents the fix part to be pronounced.

Public static <<FixPart>> Charstring 
FP_1 ()

{

   return "Bonjour"; 

}

Silence Operation stereotyped <<Silence>>.
The operation returns a string that is the 
result of a call to a pre-defined "Silence" 
operation with a parameter to pass the 
duration of the silence.

Public static<<SilencePart>> 
Charstring S_1 () {

  Silence (3);

}

VariablePart Operation stereotyped 
 <<VariablePart>>:  With a tagged value 
'format,' which default value indicates 
the format of the string (a date, a phone 
number, and so on). The operation has a 
return value of string type and returns 
the evaluation of an expression that 
provides the content of the variable part.

Public static <<VariablePart>> VP_1 () 
{ nom; }

Condition Operation stereotyped <<Conditional>>
The operation has a return parameter of 
type boolean and its body is a boolean 
expression.

public static <<ConditionPart>> 
Boolean C_1 { return (heure>17)}

<<signal,ExternalEv ent>>

ArriveeMail
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9.3 Stereotypes of the UML Voice Profile
In this section we provide the list of stereotypes and, when applicable, the list of tagged values associated to a specific 
stereotype. No specific icons are defined to represent these stereotypes. In general the name of the stereotype corresponds 
with the name of the underlying concept in the Voice metamodel.

UseElement A call to the operation that represents 
the part of the message that is used. 
This invocation should be done in the 
body of the operation that represents 
the whole message.

public static <<Message>> Charstring M_1 { 

return (cond_1?(FP_2()):(FP_3())+FP_3());}

Conditional Element Conditional expression within the 
body of the operation representing 
the message.

public static <<Message>> Charstring M_1 { 

return (cond_1?(FP_2()):(FP_3())+FP_3());}

Stereotype UML 2.0 Base 
class

Voice MM concept Tagged 
Values

<<Dialog>> StateMachine Dialog

<< WaitState >> State WaitState

<<SubDialogState>> Action SubDialogState

<<Diversion>> FinalState DiversionNode

<<Accept>> Trigger Trigger

<<Concept>> Signal Concept

<<DTMF>> Signal DTMF

<<ExternalEvent>> Signal ExternalEvent

<<MessageContainer>> Class Ownership of Message

<<Inputcontainer>> Class Ownership of InputEvent

<<Message>> Operation Message

<<Silence>> Operation Silence

<<FixPart>> Operation FixPart format : String

<<VariablePart>> Operation Variable format : String

<<Service>> Package Service
Root of the definitions for a given 
VoiceService
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The following stereotypes are only applicable when the “old style” structural schema (see Section 9.1) is used: 
<<MessageContainer>>, <<InputContainer>>, <<BehaviorContainer>>, and <<DialogModel>>.

9.4 Using Activity Diagrams to Represent Dialog Behavior
For more flexibility in the implementation, the dialog behavior which, from a semantic point of view is defined by a state 
machine, can be rendered by an activity diagram following some conventions.

When this variation in notation is used the following mappings should apply:

• An ActivityGraph replaces a StateMachine.

• An InitialNode replaces a Pseudostate with kind=initial

• A DecisionNode replaces a Pseudostate with kind=choice

• A  MergeNode replaces  a Pseudostate with kind=junction

• An ActivityFinalNode replaces a FinalState

• An Action replaces a State

The base classes for the stereotypes are changed according to these mappings.

9.5 Examples
This section presents some examples to illustrate the usage of the UML notation to modelize voice dialogs that are 
compliant with the metamodel defined in Chapter 8. These examples are taken from France Telecom voice services.

<<DialogModel>> Package Ownership of all the packages used to 
define the dialogs of a given service. 
Should be contained by a Service 
package.

<<EntitiesModel>> Package Ownership of the packages defining or 
declaring the business entities accessed 
by the voice service.

<<BehaviorContainer>> Class Ownership of the Operation containing 
the State Machien representing the 
behavior. 

<<Dialog>> Operation Dialog.
Ownership of the parameters of the 
Dialog and of the state machine defining 
the interaction. 

Stereotype UML 2.0 Base 
class

Voice MM concept Tagged 
Values
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9.5.1 A Main Identification Dialog
The dialog depicted by Figure 9.1 shows a dialog performs pronounces a welcome message and then performs an 
identification of the user. At the end of this step a parameter is returned indicating if the identification succeeded. If the 
identification is OK, the dialog is branched (DiversionNode) to another dialog; otherwise a warning message is 
pronounced and then the connection is closed.

Figure 9.1 - An identification dialog

9.5.2 A Dialog to Check Feasibility
In this example the dialog checks if the service that is requested can be provided. This dialog will typically be reused by 
different services. This dialog makes a call to a business entity (named PARSI in the figure) in order to decide what to do. 
He delivers a non-interruptible message (modeled as PlayAll instead of PlayStart), he assigns the result, and then 
terminates giving the control to the caller (final symbol named NEXT). 

MainDialog Statechart Diagram <<Dialog>> Target MainDialog() {1/1}MainDialog Statechart Diagram <<Dialog>> Target MainDialog() {1/1}

  

Welcome();Welcome();

Boolean authentified;Boolean authentified;

MainMenu()MainMenu()

Identification();Identification();

Authentification(authentified);Authentification(authentified);

authentifiedauthentified

[true][true]
PlayStart(ExitMsg())PlayStart(ExitMsg())

[false][false]

STOPSTOP
32                 UML Profile and Metamodel for Voice-based Applications, v1.0



Figure 9.2 -  A reusable feasibility check dialog

9.5.3 A Menu Dialog
This example illustrates a kind of menu dialog that asks the user if he wants to order something or just retrieve some 
information from the system. The machine waits for an input of the user, which can be a DTMF key or a phrase 
pronounced by the user.

FeasibilityControl <<Dialog>> Target FeasibilityControl(out 
Boolean feasible)

{1/1}FeasibilityControl <<Dialog>> Target FeasibilityControl(out 
Boolean feasible)

{1/1}

  

OrderSystem::VerifyFeasibility(clientNumber, 
serviceCode,"",ret, raison);
OrderSystem::VerifyFeasibility(clientNumber, 
serviceCode,"",ret, raison);

Charstring ret;
Reason reason;
Charstring ret;
Reason reason;

retret

["nok"]["nok"]

PlayAll(MsgNOK())PlayAll(MsgNOK())

"command authorised?""command authorised?"

feasible = true;feasible = true;

NEXTNEXT

["oui"]["oui"]

feasible = false;feasible = false;

NEXTNEXT

PlayAll(NoAnswerFromISMsg())PlayAll(NoAnswerFromISMsg())

["NonRep"]["NonRep"]
["ok","ko"]["ok","ko"]

NEXTNEXT

["non"]["non"]
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Figure 9.3 - A menu dialog

For each wait state there are transitions that describe the reaction of the services to the user stimuli. Each transition starts 
with a trigger, which may be a concept or a DTMF key, or an inactivity from the user. A transition can have a set of 
triggers, meaning that it can be activated by any of the triggers.

In the dialog description it is possible to do a branch to a given point of the dialog. This is expressed thanks to a junction 
node.

Entry <<Dialog>> Target OrderMenu(out Charstring res = "") {1/4}Entry <<Dialog>> Target OrderMenu(out Charstring res = "") {1/4}

PlayAll(MsgAboOuInfo())PlayAll(MsgAboOuInfo())

WaitVoiceWaitVoice

Order()Order()

NEXTNEXT

Information()Information()

NEXTNEXT

ServiceName
(serviceName)
ServiceName
(serviceName)

NEXTNEXT

modemode

[Voice][Voice]

[DTMF][DTMF]

WaitDTMFWaitDTMF

Repeat()Repeat()

entryentry

DtmfStar()DtmfStar()

mode =
DTMF;
mode =
DTMF;

entryentry

WaitDTMFWaitDTMF

DtmfPound()DtmfPound()

NEXTNEXT

DtmfStar()DtmfStar()

NEXTNEXT

Dtmf8()Dtmf8()

entryentry

Dtmf1()Dtmf1() Inactivity()Inactivity()

inactinact

res="Order";res="Order";

res="Information";res="Information";

res="Information";res="Information";

NEXTNEXT

res=serviceName;res=serviceName;

res="Menu";res="Menu";

Inactivity(),
Help()
Inactivity(),
Help()

inactinact

entryentry

  

res="Order";res="Order";
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10 Textual Notation

In this chapter we define a textual notation associated with the Voice metamodel. This notation is useful to voice dialog 
designers that have a “programmer” background. It is also useful to implement the Voice profile more easily since the 
details of a dialog – such as the actions and the body of the messages can be provided textually. Hence the UML tool 
implementing the profile will not be required to provide a complete support of this detailed part.

10.1 Examples
This section illustrates the usage of the notation. The identification dialog in Figure 9.1 can be rendered textually using 
the following syntax:

dialog identification {
  message ExitMessage() {return "Good bye";}
  behavior() {
    var auth:Boolean;
    call Welcome():
    call Identification();
     call Authentification(auth);
     decision {
        case "true" { divert mainDialog();}
         case "false" {plays}
      }
     stop;
     } // end of dialog behavior
 } // end of dialog

10.2 Grammar of the Concrete Syntax
This section gives formally the grammar.

Lexical elements: 

The list of reserved words:

service voiceservice entities package class operation message

messagepart event externalevent systemevent static global shared

property var extends maindialog dialog within in

inout out behavior play playall call divert

return stop decision case junction jump restart

wait when do accept if then else

endif null true false unlimited not and

or xor informal new Set Bag Sequence

OrderedSet standalone
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In the BNF these keywords are denoted by the corresponding word in capital letters. For instance DIALOG denotes the 
occurrence of the dialog keyword.

The following variable tokens are defined:

   ID: an alphanumeric identifier

   ICONST: integer value

   FCONST: float value

   SCONST: double quoted string

   CCONST: single quoted string

The following character tokens are defined:

    'PLUS'  -> '+'

    'MINUS' -> '-'

    'TIMES' -> '*'

    'DIVIDE' -> '/'

    'MOD'    -> '%'

    'EQ'     -> '=='

    'LT'     -> '<'

    'LE'     -> '<='

    'LT'     -> '<'

    'GE'     -> '>='

    'GT'     -> '>'

    'NE'     -> '<>'

    'NEX'    -> '!='

    'EQUALS' -> '='

    'PLUSEQUAL' -> '+='

    'MINUSEQUAL' -> '-='

    'ARROW'  -> '->'

    'PERIOD'  -> '.'

    'LPAREN'  -> '('

    'RPAREN'  -> ')'
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    'LBRACKET' -> '['

    'RBRACKET' -> ']'

    'LBRACE'   -> '{'

    'RBRACE'   -> '}'

    'COMMA'    -> ','

    'SEMI'     -> ';'

    'COLON'   -> ':'

    'DCOLON'   -> '::'

BNF

    toplevel : module_definition_list_opt
    module_definition_list_opt : module_definition_list
                         | empty
    module_definition_list : module_definition
           | module_definition_list module_definition
    module_definition : service
                         | entities
                         | dialog
    service : service_kind ID SEMI
    service_kind : SERVICE
                         | VOICESERVICE
    entities : entities_indicator package_def
    entities_indicator : ENTITIES
    package_def : package_head LBRACE package_content_list_opt RBRACE
    package_head : PACKAGE ID
                         | PACKAGE
    package_content_list_opt : package_content_list
                         | empty
    package_content_list : class
                    | package_def
                    | package_content_list class
                    | package_content_list package_def
    class : class_def
                    | class_decl

    class_def : class_head LBRACE class_content_list_opt RBRACE
    class_decl : class_head SEMI
    class_head : CLASS ID class_extension_opt
      class_content_list_opt : class_content_list
                    | empty
    class_content_list : property
                    | operation
                    | class_content_list property
                    | class_content_list operation
    property : property_kind_list declarator SEMI
    property_kind_list : property_kind
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                     | property_kind_list property_kind
    property_kind : PROPERTY
                     | VAR
                     | SHARED
                     | STATIC
                     | GLOBAL
    property_list : property
                     | property_list property
    id_list : ID
                    | id_list COMMA ID
    simple_signature : LPAREN param_list_opt RPAREN
    signature : simple_signature
                     | simple_signature COLON param_list
      param_list_opt : param_list
                     | empty
    param_list : param
                     | param_list COMMA param

    param : declarator
                     | param_direction declarator 
    param_direction : IN
                     | INOUT
                     | OUT
    simple_declarator : type_specifier
                     | ID COLON type_specifier
    declarator : simple_declarator
                     | simple_declarator EQUALS expr
    operation : operation_decl
                     | operation_def
    operation_decl : operation_header SEMI
    operation_def : operation_header LBRACE operation_body RBRACE
    operation_header : operation_kind ID signature
    operation_kind : OPERATION
                      | MESSAGE
                      | MESSAGEPART
                      | EVENT
                      | EXTERNALEVENT
                      | SYSTEMEVENT
    operation_body : action_list_opt
    class_extension_opt : class_extension
                      | empty
    class_extension : EXTENDS scoped_id
    scoped_id : ID
                      | scoped_id DCOLON ID
    type_specifier : scoped_id
                      | type_constructor LPAREN type_specifier RPAREN
    dialog : dialog_decl
                      | dialog_def
    'dialog_decl : dialog_head SEMI'
    'dialog_def : dialog_head LBRACE dialog_content_list_opt RBRACE'
    'dialog_head : ’standalone’? dialog_kind ID within_dialog_opt'
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    within_dialog_opt : within_dialog
                     | empty
    within_dialog : WITHIN ID
    dialog_kind : MAINDIALOG
                    | DIALOG
    dialog_content_list_opt : dialog_content_list
                    | empty
    dialog_content_list : dialog_content
                    | dialog_content_list dialog_content
    dialog_content : dialog_behavior
                    | property
                    | operation
    dialog_behavior :  dialog_behavior_head LBRACE behavior_content RBRACE
    dialog_behavior_head :  BEHAVIOR simple_signature
    behavior_content : property_list node_list_opt
                     | node_list_opt
    node_list_opt : node_list
                    | empty
    node_list : node
                    | node_list node
    simple_node_list : simple_node
                    | simple_node_list simple_node
    node : simple_node
                    | complex_node
    simple_node : prompt
                    | subdialog
                    | control
                    | do
    complex_node : decision
                    | wait
                    | when
    prompt : PLAY expr SEMI
                    | PLAYALL expr SEMI
    subdialog : diagcallkind expr SEMI
    diagcallkind : CALL
                    | DIVERT
    control : RETURN SEMI
                    | JUMP ID SEMI
                    | JUMP jump_kind COLON ID SEMI
                    | JUNCTION ID SEMI
                    | RESTART SEMI
                    | STOP SEMI
    jump_kind : WAIT
                    | JUNCTION
                    | DECISION
    decision : decision_head LBRACE decision_body? RBRACE
    decision_head : DECISION ID LPAREN expr RPAREN
                     | DECISION LPAREN expr RPAREN
    wait : wait_head LBRACE wait_body RBRACE
    wait_head : WAIT ID
    when : WHEN expr node
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    do : do_head LBRACE action_list_opt RBRACE
                    | do_head action
    do_head : DO
    arg_list_opt : arg_list
                     | empty
    arg_list : expr
                     | arg_list COMMA expr
    unary_op : MINUS
                     | NOT
                     | INFORMAL
                     | NEW

    access_op : PERIOD
                    | ARROW
    logic_and_op : AND
                    | XOR
    cmp_op : EQ
                    | NE
                    | LT
                    | GT
                    | LE
                    | GE
    add_op : PLUS
                    | MINUS
    mult_op : TIMES
                    | DIVIDE
                    | MOD
    expr : or_expr
    or_expr : and_expr
                    | or_expr logic_or_op and_expr
    and_expr : cmp_expr
                    | and_expr logic_and_op cmp_expr
    cmp_expr : additive_expr
                     | cmp_expr cmp_op additive_expr
    additive_expr : mult_expr
                     | additive_expr add_op mult_expr

    mult_expr : unary_expr
                    | mult_expr mult_op unary_expr
    unary_expr : postfix_expr
                    | unary_op unary_expr

    postfix_expr : primary_expr
                    | postfix_expr LBRACKET expr RBRACKET
                    | postfix_expr LPAREN arg_list_opt RPAREN
                    | postfix_expr access_op ID
    

   primary_expr : literal
                   | scoped_id
                   | LPAREN expr RPAREN
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   literal : literal_simple
                   | literal_collection 
   literal_collection : type_constructor LBRACE collection_item_list_opt RBRACE    

    collection_item_list_opt : collection_item_list
                    | empty

    collection_item_list : expr
                     | collection_item_list COMMA expr

    type_constructor : SET
                      | BAG
                      | SEQUENCE
                      | ORDEREDSET

   literal_simple : ICONST
                      | FCONST
                      | CCONST
                      | SCONST

              | TRUE
              | FALSE
              | UNLIMITED

                      | NULL
    action_list_opt : action_list
                      | empty
    action_list : action
                      | action_list action
    action : expr SEMI
                      | expr EQUALS expr SEMI
                      | IF expr THEN action ENDIF
                      | IF expr THEN action ELSE action ENDIF
                      | RETURN expr SEMI

    decision_body : case_element
                     | decision_body case_element
    'case_element : case_head LBRACE case_body RBRACE'

    case_head : CASE expr
                     | ELSE

    case_body : simple_node_list
                    | empty

    wait_body : trigger_element
                    | wait_body trigger_element

    trigger_element : trigger_head LBRACE trigger_body RBRACE
    trigger_head : ACCEPT event_call_list
                    | ACCEPT LBRACKET expr RBRACKET event_call_list 
                    | ELSE
    event_call_list : expr
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                    | event_call_list COMMA expr
    trigger_body : simple_node_list 
                    | empty
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Annex A:  General Requirements

(informative)

A.1 Summary Of Requests Versus Requirements
The conformance points defined by this specification (see Section 2.1) allow a tool to support only one of the three input 
syntaxes associated to the Voice metamodel (XMI serialization, UML Profile, or Textual). 

A.2 Resolution Of General Requirements
The specification follows the general requirements of the RFP. We provide here a summary of how these general 
requirements are resolved.

The specification expresses the models using OMG modeling languages: The Voice metamodel is defined as a MOF 
metamodel. In addition UML is used as one of the concrete syntaxes attached to the metamodel. The document specifies 
conformance points in Section 2.1. The document preserves maximum implementation flexibility: no PSM is given to 
support the specified PIM metamodel. Interoperability and substitutability is guaranteed thanks to the usage of completely 
defined syntaxes (XMI, UML Profile, and Textual). The degree of support of internalization is Uncategorized: no 
assumption is made that makes this specification not usable in a specific region. 
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