

Date: April 2008

UML Profile and Metamodel for Voice-based
Applications Specification

Version 1.0

OMG Document Number: formal/2008-04-06
Standard document URL: http://www.omg.org/spec/VOICP/1.0/PDF
Associated Files*: http://www.omg.org/spec/VOICP/20070701

http://www.omg.org/spec/VOICP/20070701/voice_metamodel.xml
http://www.omg.org/spec/VOICP/20070701/voice_profile.xml

* original file: ptc/2007-07-04

Copyright © 2005, Alcatel
Copyright © 2005, EURESCOM
Copyright © 2005, France Telecom
Copyright © 2005, HP
Copyright © 2005, IBM
Copyright © 2008, Object Management Group, Inc.
Copyright © 2005, Softeam
Copyright © 2005, Telelogic

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required by
any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered
by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™, CWM Logo™, IIOP™ , MOF™ , OMG Interface Definition Language (IDL)™, and OMG Systems Modeling
Language (SysML)™ are trademarks of the Object Management Group. All other products or company names mentioned are
used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by
completing the Issue Reporting Form listed on the main web page http://www.omg.org, under
Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Table of Contents

Preface ..v

1 Scope ... 1

2 Conformance .. 1
2.1 Conformance Points ... 1

2.1.1 Syntax Dimension .. 2
2.1.2 Capability Dimension ... 2

3 Normative References .. 2

4 Terms and Definitions ... 2

5 Symbols .. 2

6 Additional Information ... 3
6.1 Changes to Adopted OMG Specifications .. 3
6.2 How to Read this Specification .. 3
6.3 Acknowledgements ... 3

7 Introduction ... 5
7.1 Overview ... 5

8 The Voice Metamodel ... 7
8.1 Introduction ... 7
8.2 Voice Service Modeling .. 7

8.2.1 Environment ... 9
8.2.2 Service ... 9
8.2.3 Entity .. 9
8.2.4 Functionality ... 9

8.3 Voice Dialog Modeling .. 9
8.3.1 Dialog ... 11
8.3.2 DialogState ... 13
8.3.3 WaitState .. 13
8.3.4 Transition ... 13
8.3.5 Transient Node ... 14
8.3.6 DialogNode .. 15
UML Profile and Metamodel for Voice-based Applications, v1.0 i

8.3.7 Trigger .. 15

8.4 Input Event Concepts ... 15
8.4.1 InputEvent .. 15
8.4.2 Concept .. 16
8.4.3 DTMF, AnyDTMF, AnyDigit .. 16
8.4.4 Inactivity ... 16
8.4.5 Reject ... 16
8.4.6 ExternalEvent .. 16
8.4.7 Recording ... 16

8.5 Grammars ... 16
8.5.1 Grammar .. 17

8.6 Message Related Concepts ... 17
8.6.1 Message ... 18
8.6.2 MessagePart .. 19
8.6.3 FixPart .. 19
8.6.4 SilencePart ... 19
8.6.5 VariablePart .. 19
8.6.6 MessageElement .. 19
8.6.7 UseElement .. 19
8.6.8 ConditionalPart ... 19
8.6.9 Condition .. 20

8.7 Action Concepts ... 20
8.7.1 ActionSequence ... 20
8.7.2 Action ... 21
8.7.3 Play .. 21
8.7.4 Assignment ... 21
8.7.5 Call ... 21
8.7.6 Uninterpreted .. 21
8.7.7 Return ... 21
8.7.8 IfThenElse .. 21
8.7.9 While .. 21

8.8 Core Concepts .. 21

9 The Voice UML Profile .. 25
9.1 Structure of a Voice Service Model .. 25
9.2 Voice Metamodel to UML Correspondences .. 26
9.3 Stereotypes of the UML Voice Profile ... 30
9.4 Using Activity Diagrams to Represent Dialog Behavior.......................... 31
9.5 Examples .. 31

9.5.1 A Main Identification Dialog .. 32
9.5.2 A Dialog to Check Feasibility .. 32
ii UML Profile and Metamodel for Voice-based Applications, v1.0

9.5.3 A Menu Dialog .. 33

10Textual Notation ... 35
10.1 Examples .. 35
10.2 Grammar of the Concrete Syntax ... 35

Annex A: General Requirements ... 43

Annex B: References ... 45

Index .. 47
UML Profile and Metamodel for Voice-based Applications, v1.0 iii

iv UML Profile and Metamodel for Voice-based Applications, v1.0

Preface
About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
• UML

• MOF

• XMI

• CWM

• Profile specifications.

OMG Middleware Specifications
• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
• CORBAservices
 v

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
vi

1 Scope

The specification expresses the models using OMG modeling languages. The Voice metamodel is defined as a MOF
metamodel. In addition UML is used as one of the concrete syntaxes attached to the metamodel. The specification
describes compliance points in “Conformance Points” below. The specification preserves maximum implementation
flexibility, no PSM is given to support the specified PIM metamodel. Interoperability and substitutability are guaranteed
thanks to the usage of completely defined syntaxes (XMI, UML Profile, and Textual). The degree of support of
internalization is Uncategorized, no assumption is made that makes this specification not usable in a specific region.

2 Conformance

Conformance for tools supporting this specification is specified along two orthogonal dimensions: the syntax dimension
and the capability dimension. Each dimension specifies a set of named levels. Each intersection of the levels of the two
dimensions specifies a valid conformance point. All conformance points are valid by themselves, which implies that there
is no general notion of “Voice conformance.” Instead, a tool shall state which conformance points it implements, as
described below.

2.1 Conformance Points
Any combination of two named levels, one from each dimension, constructs a conformance point. The figure below
specifies the 6 different possible conformance points. A tool can claim to be conformant according to one or more of
these conformance points.

Figure 2.1 - Conformance Points

By convention a conformance point is denoted using the abbreviation

Voice - <syntax level><capability level>

If a tool complies to various compliance points the following abbreviation can be used:

Voice - <syntax level1><capability level1> - <syntax level2><capability level2>

Exportable

Executable

TextualUM LXM I

Exportable

Executable

TextualUM LXM I

Syntax dim ension

C
apability
UML Profile and Metamodel for Voice-based Applications, v1.0 1

For example, a tool could be Voice-XMIExecutable and Voice-TextualExportable and another Voice-UmlExecutable. For
the first tool the abbreviation Voice-XMIExecutable-Textual-Exportable can be used.

2.1.1 Syntax Dimension
The syntax dimension consists of the three named syntax levels:

• XMI: The Voice metamodel serving as the basis for XMI interchange is described in Chapter 8.

• UML: The Voice UML Profile is described in Chapter 9.

• Textual: The textual notation of the Voice language is described in Chapter 10.

2.1.2 Capability Dimension
The capability dimension has two named levels:

• Executable: An implementation shall provide a facility to import or read, and then execute the given syntax (XMI,
UML Profile or Textual). The execution shall be according to the semantics of the Voice metamodel.

• Exportable: An implementation shall provide a facility to export a voice dialog definition into one of the three
possible syntaxes (XMI, UML Profile or Textual).

3 Normative References

1. Unified Modeling Language (UML), v1.3 specification (formal/00-03-01)

2. Meta Object Facility (MOF), v1.3 specification (formal/00-04-03)

4 Terms and Definitions

The models and terminology of the UML 1.3, MOF 1.3 and XMI 1.1 specification and the Model Driven Architecture
have been used in this specification.

5 Symbols

No specific symbols are defined in this document.
2 UML Profile and Metamodel for Voice-based Applications, v1.0

6 Additional Information

6.1 Changes to Adopted OMG Specifications
No changes to the adopted OMG specifications are requested in this specification.

6.2 How to Read this Specification
The rest of this document contains the technical content of this specification. The structure is as follows:

• Chapters 7 (Introduction), 8 (Metamodel), 9 (UML Profile), and 10 (Mapping to VoiceXML) comprise the
specification. Annexes A and B contain additional information about the specification.

6.3 Acknowledgements
The following companies submitted and/or supported parts of this specification:

• Alcatel

• EURESCOM

• France Telecom

• IBM

• HP

• Softeam

• Telelogic

A special thanks to Mariano Belaunde (France Telecom) who was the main submitter responsible for preparing this
specification.
UML Profile and Metamodel for Voice-based Applications, v1.0 3

4 UML Profile and Metamodel for Voice-based Applications, v1.0

7 Introduction

7.1 Overview
This specification addresses the need for standardizing a high-level notation for designing dialogs in interactive voice
response applications, independently of any specific voice-based platform. The VoiceXML specification [VXML] from
the W3C defines an executable language for executing audio dialogs.

The VoiceXML specification [VXML] from the W3C defines an executable language for executing audio dialogs. Figure
7.1 shows an example of an interaction described using this language. The language enables a separation of service logic
from interaction behavior and frees the developers from resource management. Its major goal is to bring the advantages
of web-based development and content delivery to interactive voice response applications. Most of new competing voice
portals are based on this standard.

Figure 7.1 - Example of a VoiceXML document

A VoiceXML compliant platform will typically have a multi-tier architecture, as depicted in Figure 7.2. An application
server generates dynamically the VoiceXML pages to be executed by the VoiceXML gateway. Distinct voice portal
providers may share a VoiceXML gateway to execute the VoiceXML pages. However, for the high-level design of this
dialog, there is no standard graphical notation defined: each voice portal provider proposes its own proprietary notation.

Figure 7.2 - Multi-tier architecture in voiceXML based portals

C (computer): Would you like coffee, tea or milk?
H (human): Orange juice.
C: I did not understand what you said.
C: Would you like coffee, tea or milk?
H: Tea
C: (continues in document drink2.asp)

<?xml version="1.0"?>
<vxml version="1.0">
<form>

<field name="drink">
<prompt>Would you like coffee, tea, or milk?</prompt>

<grammar src="drink.gram" type="application/x-jsgf"/>
</field>

<block>
<submit next="http://www.drink.example/drink2.asp"/>

</block>
</form>
</vxml>

C (computer): Would you like coffee, tea or milk?
H (human): Orange juice.
C: I did not understand what you said.
C: Would you like coffee, tea or milk?
H: Tea
C: (continues in document drink2.asp)

<?xml version="1.0"?>
<vxml version="1.0">
<form>

<field name="drink">
<prompt>Would you like coffee, tea, or milk?</prompt>

<grammar src="drink.gram" type="application/x-jsgf"/>
</field>

<block>
<submit next="http://www.drink.example/drink2.asp"/>

</block>
</form>
</vxml>

Voice & DTMF
command

Recorded &
Synthesised
speech

Service Vocal

Application server Data
Bases

Data
Bases

VoiceXML
Gateway

Dialog Logic

Business Logic
VoiceXML,
Grammars,
pre-recorded
messages

Voice & DTMF
command

Recorded &
Synthesised
speech

Service Vocal

Application server Data
Bases

Data
Bases

VoiceXML
Gateway

Dialog Logic

Business Logic

Voice & DTMF
command

Recorded &
Synthesised
speech

Service Vocal

Application server Data
Bases

Data
Bases

VoiceXML
Gateway

Dialog Logic

Business Logic
VoiceXML,
Grammars,
pre-recorded
messages

UML Profile and Metamodel for Voice-based Applications, v1.0 5

From an end-user perspective, it is very important to be able to design dialogs independently of the selected voice
platform (whether VoiceXML-based or not). Because the technology is rapidly evolving in this field, a voice service
provider may need to change the underlying implementation technology and in the meantime re-use the existing dialog
specifications.

UML as a well-accepted general-purpose design notation appears as being a natural candidate to serve as the basis for the
graphical notation. UML 2 has improved significantly the capacity to describe complex behavior. On the other hand, the
MOF formalism has proved to be a convenient way to define the concepts that are relevant to a specific domain, in our
case, voice dialog specification.
6 UML Profile and Metamodel for Voice-based Applications, v1.0

8 The Voice Metamodel

8.1 Introduction
The Voice metamodel defines the concepts needed to represent complete executable dialogs. It contains firstly behavioral
concepts that represent the dialog as a state-machine – the different kinds of nodes, the transitions – then it contains the
concepts to represent the various kinds of input events (DTMF, speech recognition and so on), and finally the concepts to
represent basic actions. In addition object oriented structuring (Package, Class, Operation) is used to represent the
business code that needs to be manipulated to render the voice service.

Figure 8.1 contains the various packages of the metamodel.

Figure 8.1 - Structure of the Voice metamodel

8.2 Voice Service Modeling
This section presents the concepts needed to describe interactive voice dialogs. In particular this includes the concepts to
describe how the dialogs between a voice service and an end-user are sequenced.

DialogLogic

ServiceAnalysis

Messages

Actions

Signals

Core
UML Profile and Metamodel for Voice-based Applications, v1.0 7

Figure 8.2 - The environment of a voice service

Figure 8.3 - Service specific concepts

Service

Type
(from Core)

InputEvent
(from Signals)

Operation
(from Core)

Environment

*

0..1

+definedService

*

+environment

0..1

*

0..1

+referencedService

*

+proxyOwner
0..1

*

0..1

+predefinedType

*

0..1

*0..1

+predefinedEvent

*0..1

*

0..1

+predefinedOperation
*

0..1

NamedElement
(from Core)

VoiceService Actor

Functionality

*

*

+participant
*

*

Service
*

*

*
+parent

* **

+offeredFunctionali ty

**

Actor

Entity

Type
(from Core)

Class
(from Core)

PackageableElement
(from Core)NamedElement

Functionality

Package
(from Core)

Service

0..1

0..1

+entityPackage

0..1

+entitiesOwner

0..1

0..1

0..1

+functional ityPackage

0..1

+functional itiesOwner
0..1
8 UML Profile and Metamodel for Voice-based Applications, v1.0

8.2.1 Environment
The environment is the root instance for a voice service defining dialogs. It contains all the global declarations used by
the dialogs.

8.2.2 Service
A Service represents a coherent set of functionalities that an end-user perceives as a whole and to which it is able to
describe. Example: a remote address book hosted by the telecommunication operator and accessed through voice.

Properties

• offeredFunctionality : Functionality
Designates the list of functionalities offered by this service.

• parent : Service
The parent service in the hierarchy of declared services.

8.2.3 Entity
An Entity represents any business data that need to be manipulated in order to provide a service. Examples:

• A record containing an entry in the address book of a user.

• An Entity is a kind of Class, which may define properties and operations.

8.2.4 Functionality
A unit of behavior that provides an added-value to the user. A service is decomposed in functionalities. Examples:

• The function that allows consulting its address book.

• The function that allows updating its address book.

8.3 Voice Dialog Modeling
This section presents the concepts needed to describe interactive voice dialogs. In particular this includes the concepts to
describe how the dialogs between a voice service and an end-user are sequenced.
UML Profile and Metamodel for Voice-based Applications, v1.0 9

Figure 8.4 - Behaviors

Figure 8.5 - Dialogs

Behavior

ActionSequence

DialogNode
(from DialogLogic)

Transition
isElse : Boolean*

1 +outgoing

*
+origin1

*1
+incoming *+target1

StateMachine

*

0..1

+node
*

0..1

*

0..1

+transition
*

0..1

Signature
(from Core)

Trigger

ModelElement
(from Core)

PackageableElement
(from Core)

InputEvent
(from Signals)

ActionSequence
(f rom Core)

Trigger
1* +ev ent1*

Expression
(from Core)

Functionality
(f rom Serv iceAnaly sis)

Message
(f rom Messages)

Concept
(f rom Signals)

DialogNode

MessagePart
(from Messages)

ExternalEvent
(f rom Signals)

MessageElementCondition
(f rom Messages)

Variable
visibility : VisibilityKind
isShared : Boolean*

0..1 +argHandle

*

0..1

Transition
isElse : Boolean*

1 +outgoing

*
+origin1

*1

+incoming

*

+target

1
0..1 0..10..1

+ef f ect

0..1

0..n

0..1

+trigger
0..n

0..1

0..1

0..1 +guard

0..1

0..1Operation
(f rom Core)

Dialog

0..1

0..1

+accessDialog

0..1

+accessedFunctionality

0..1

*
0..1

+message *
+ownerDialog 0..1

*0..1 +concept *+ownerDialog0..1

*

1

+node
*

1

*

0..1

+messagePart

*

+ownerDialog

0..1 *

0..1 +externalEv ent

*

0..1

*

0..1

+condition
*

+ownerDialog

0..1

0..* 0..1

+subDialog

0..*

+ownerDialog

0..1

0..n

0..1

+v ariable

0..n

+localVariableOwner

0..1

0..*

0..1

+globalVariable

0..*

+globalVariableOwner0..1

*

1

+transit ion
*

1

*

0..1

+operation

*

0..1

VoiceService
(f rom Serv iceAnaly sis)

1

0..1

+mainDialog 1

+mainParentServ ice
0..1

*

0..1

+extraDialog

*

+parentServ ice0..1

standalone:Boolean
10 UML Profile and Metamodel for Voice-based Applications, v1.0

Figure 8.6 - Nodes hierarchy

Figure 8.7 - Sub dialogs and diversion nodes

8.3.1 Dialog
A dialog describes the interaction between a voice service and an end-user in order to provide a given functionality. A
specific dialog can be associated to the whole voice service. Its purpose is to manage the access to each functionality that
is provided by the service.

A dialog is described as a graph of nodes, in which the sequencing of the dialogs is represented thanks to transitions.

Two kinds of nodes play a specific role:

1. The nodes representing the situation where the system waits for a user action (WaitState).

2. The nodes that reference a dialog defined elsewhere (SubDialogState).

TransientNode

AnyState HistoryState

ListState
excluded : Boolean = false

DialogState

0..*

1..n

0..*

+state

1..n

WaitState
delay : Float

InitialNode

FinalNode

NextNodeStopNode

JunctionNode

NamedElement

DialogNode

DecisionNode

SubDialogState
DiversionNode

DecisionNode

DiversionNode

Dialog
1

...

+target

1

+diversionNode

...
Expression

(from Core)

1

0..1

+condition

1

+owningDecision
0..1

0..*0..1

+argument

0..*0..1

SubDialogState

1

0..*

+cal led

1

+subDialogState

0..*

0..*0..1 +argument
0..*0..1
UML Profile and Metamodel for Voice-based Applications, v1.0 11

http://www.w3.org/TR/2003/CR-voicexml20-20030220/
http://www.w3.org/TR/2003/CR-voicexml20-20030220/
http://www.w3.org/TR/2002/CR-sppech-grammar-20020626/
http://www.w3.org/TR/2002/CR-sppech-grammar-20020626/

These two nodes represent a stable situation for the voice system: a state is associated with them. The other nodes are
unstable nodes or transient nodes. The system does not stop when these nodes are reached: they are not states for the
system.

A dialog may define and manipulate variables. These variables can contain values to be provided to the user, such as the
number of available messages. These variables may also contain data that will influence the flow of dialogs, for instance,
the telephone number used by the user when calling the service.

A dialog may have input and output parameters. This is represented by the Signature metaclass, which is a base class of
Dialog.

Properties

• accessedFunctionality : Functionality
The functionalities being used in the dialog.

• globalVariable : Variable
The variables that are accessible to all dialogs.
Only the main dialog can declare global variables.

• variable : Variable
The local variable declared by this dialog.

• concept : Concept
The concepts that the dialog expects as a result of speech analysis and/or DTMF.

• externalEvent : ExternalEvent
Events produced by the environment that the dialog is aware. Example: hang-up

• message : Message
The messages that are defined locally by this dialog.

• condition : MessageElementCondition
The conditions associated with the conditional parts of a messages owned by this dialog.

• condition : MessagePart
The message parts used by the messages of this dialog.

• ownerDialog : Dialog
the owner of the dialog within the hierarchy of dialogs.
The message parts used by the messages of this dialog.

• operation : Dialog
Specific reusable behavior defined for this dialog.

• node : DialogNode
the nodes of the graph representing the behavior.

• transition : Transition
The transitions of the graph representing the dialog.
12 UML Profile and Metamodel for Voice-based Applications, v1.0

• standalone : Boolean
States whether the dialog is allowed to refer to global variables. If standalone is True, no global variables can be
used.

8.3.2 DialogState
A DialogState is an abstraction that represents a situation in which a condition holds (often this condition is implicit). It
may represent a passive situation, such as waiting for a user input, or an active situation like executing a sub-dialog.

8.3.3 WaitState
A WaitState represents a situation in which the system expects an action from the user or another kind of event like time
expiration or a rejection. It represents a context for the capture or the interpretation of the inputs.

Properties

• delay
the expiration time parameter before an Inactivity event is generated.

8.3.3.1 SubDialogState

A SubDialogState represents an invocation of a sub-dialog. The sub-dialog is defined separately. When the called sub-
dialog terminates its execution, the invoking dialog resumes its execution.

An invocation of a dialog (InvocationDialog) may have arguments (expressions) if the sub-dialog declares parameters.

Properties

• called : DialogState
The dialog state being invoked.

8.3.3.2 AnyState

When a Transition is associated to an AnyState, this is equivalent to associate the transitions to all the states of the dialog.

8.3.3.3 ListState

When a Transition is associated to a ListState, this is equivalent to associate the transitions to all the states of the list.

8.3.3.4 HistoryState

Represents the state of the dialog that is more recent. It is used to define generic transitions, associated with a list of states
or the AnyState. It expressions behaviors like “whatever is the current state, come back after the end of the transition.”

The deep property is relevant only if the state to come back is a sub-dialog. When the value is true, the sub-dialog goes
to the last visited internal state, and this recursively until reaching a simple state (WaitState). If false, the sub-dialog is re-
executed from its default entry point.

8.3.4 Transition
A Transition represents the possibility to go from a node to another node. It represents a control flow between two nodes,
that is to say, the set of actions, guards, or event capture that are treated between the two nodes.
UML Profile and Metamodel for Voice-based Applications, v1.0 13

From the external environment, an end-user only perceives the stable extremities, that is to say, the nodes where the
system pauses and gives the initiative to the user. Between two user actions the system goes from a stable node to another
stable node (the nodes that the user can perceive), possibly crossing unstable transitions.

The service exits a stable state by reacting to one of the events that potentially can occur in that state. A typical event will
be an action from the user, like a DTMF pressed touch or speaking. Another kind of event is a timer expiration. The
system can additionally be simulated by “continuous” signals that are boolean guard conditions. Sometimes it may happen
that a transition is triggered only when the two kinds of stimulus occur (a user input or timer expiration and a continuous
signal).

The events that are associated with a transition are:

• A source node

• An optional trigger: corresponds to the presence of non continuous stimuli

• An optional guard: a Boolean condition on the data available to the dialog (for instance the current number of
inactivities)

• An optional effect: the set of actions that are executed if the transition is activated

• The target node

Properties

• origin : DialogNode
The source node of the transition

• target : TargetNode
The target of the transition

• trigger : Trigger
A reference of the event to be recognized to execute the transition.

• effect : Action
The list of actions to execute.

• TransientNode

8.3.5 Transient Node
A TransientNode is an abstraction that represents different kinds of nodes that are not states for the dialog. The different
kind of transient nodes are:

• InitialNode: represents the default entry point of the dialog

• ChoiceNode: Represents a conditional branch

• JunctionNode: Denotes a location in the dialog graph to allow redirecting various transitions

• NextNode: End of the dialog and return to the caller

14 UML Profile and Metamodel for Voice-based Applications, v1.0

• DiversionNode: End of the dialog with a forced escape to the dialog indicated by the diversion node. The caller ends
its execution (no return as for sub-dialogs). Arguments can be passed to the target of the diversion node and it is
permitted to invoke recursively the diversion nodes.

• StopNode: Represents the end of the whole service

8.3.6 DialogNode
A dialog node is an abstraction that represents all kinds of nodes that can be a source or a target for a transition.

8.3.7 Trigger
A trigger identifies an event that can produce the activation of a transition. They can be associated with variables, for
instance, when the event is the recognition of a word pronounced by the user, this word is stored in an argument of the
trigger.

Properties

• event : InputEvent
The event that is expected to fire the transition.

• guard : expression
A condition that is required for firing the transition.

8.4 Input Event Concepts
In this section we describe the various kinds of inputs to be managed by the voice service. Figure 8.8 presents this part of
the metamodel.

Figure 8.8 - Input events of a dialog

8.4.1 InputEvent
An input event is an abstraction that represents all the kinds of inputs to which a dialog needs to respond.

Reject

DTMF
key : DTMFKind

InactivityNamedElement
(from Core)

InputEvent

Concept ExternalEvent

AnyDtmf AnyDigit

Recording

AbstractDTMF

MessageEnd

DtmfInput SystemInput

Parameter
(from Core)

InputEvent
*

0..1 +parameter

*

0..1
UML Profile and Metamodel for Voice-based Applications, v1.0 15

Properties

• parameter : the slot of the input event used to pass values.

8.4.2 Concept
A Concept is the result of the interpretation of the phrases or words pronounced by the user. This interpretation is
produced thanks to speech recognition. If the system uses a semantic analyzer, a Concept typically represents the outcome
of the analyzer.

8.4.3 DTMF, AnyDTMF, AnyDigit
Represents a DTMF code. It reflects a press button action from the user on the terminal. The property key holds the value
of the key being pressed.

AnyDTMF, used in conjunction with a Trigger, represents the arrival of any DTMF code.

AnyDigit, used in conjunction with a Trigger, represents the arrival of any DTMF code, except for the "#" and '*' special
characters.

8.4.4 Inactivity
Inactivity represents the fact that the system does not receive any input after a delay expires since a given state of the
system is entered. The property delay that is associated to any state represents the timeout.

8.4.5 Reject
Reject represents the situation in which the system has detected an input but the confidence on the result is very low.

8.4.6 ExternalEvent
An ExternalEvent represents changes in the environments that potentially affect the dialog, such as the arrival of a
message of a change made to a database.

8.4.7 Recording
An event of type Recording represents a phrase or a word pronounced by the user that was not interpreted but stored
somewhere for further usage.

8.5 Grammars
Grammars can be explicitly referred in a dialog specification and be attached to signals and to wait states. However the
details of the grammar are not defined since this depends on the formalism chosen. The formalism (such as SGRS) and
the language (French, English, and so on) can be explicitly indicated.
16 UML Profile and Metamodel for Voice-based Applications, v1.0

Figure 8.9 - Grammar referencing

8.5.1 Grammar
A Grammar instance represents the usage of a grammar definition in a dialog specification. A grammar can be attached to
an utterance signal (Concept), to a WaitState. It can be defined at the level of the environment (top-level), or at the level
of a Service, or be specific to a Dialog. A grammar that is automatically computed can have its dynamic definition given
as an operation. Alternatively, the content of the grammar may refer to a file (location property) or may be direction
included within the grammar instance (through the content property).

Properties

• isComputed : Indicates whether the grammar is generated or if it is statically defined.

• formalism : The language being used to specify the grammar.

• content: the formal description of the grammar (when available)

• location : the location where the formal description of the grammar can be found.

8.6 Message Related Concepts
In this section we present how messages are represented in the metamodel.

NamedElement
(from Core)

Environment
(from ServiceAnalysis)

Service
(from ServiceAnalysis)

Dialog
(from DialogLogic)

Operation
(from Core)

WaitState
(from DialogLogic)

Grammar
isComputed : Boolean
formalism : String
language : String
content : String
location : String

*
0..1

+ownedGrammar *
0..1

*0..1

+ownedGrammar

*0..1

*

0..1

+ownedGrammar *

0..1
0..1

*

+dynamicDefinition
0..1

*

*

*+grammar

*

*

Concept
(from Signals)

* *+grammar* *
UML Profile and Metamodel for Voice-based Applications, v1.0 17

Figure 8.10 - Message structure

8.6.1 Message
A message defines a unit of meaning pronounced by the service (for instance, a phrase). It is composed of a sequence of
message elements and may contain conditional parts. It is possible to reuse parts of a message in different messages.

FixPart
content : String
format : DiffusionType

DiffusionType
digits
number
count
phone
spelling
time
date
currency

<<enumeration>>

MessagePart

Signature
(from Core)

Message

MessagePart

UseElement

1

0..*

+usedMessagePart
1

+useElement
0..*

ModelElement
(from Core)

MessageElement

MessageElementCondition
visibility : VisibilityKind

ActionSequence
(from Core)

ActionSequence
(from Core)

ConditionalElement

Message
visibility : VisibilityKind
body : String

0..1

0..1

+actionSpecification
0..1

0..1

SilencePart

VariablePart
format : DiffusionType
visibility : VisibilityKind

0..1

0..1 +actionSpecification

0..1

0..1

MessageElementCondition
visibility : VisibilityKind

1

0..*

+condition
1

0..*

Variable
(from Core)

MessageElement

1..n

0..1

+thenPart

1..n {ordered} +thenOwner
0..1

0..n

0..1

+elsePart

0..n
{ordered}

+elseOwner

0..1

0..*0..1

+messageElement

0..*0..1

Expression
(from Core)

1

0..1

+duration

1

0..1

...0..1

+value

...0..1
1

0..1

+conditionExpression

1

0..1

ForEachElement

1

0..1

+iterator

1

0..1

...

0..1

+body
...

0..1

1

0..1

+source

1

0..1
18 UML Profile and Metamodel for Voice-based Applications, v1.0

Properties

• messageElement : the parts of this message.

• actionSpecification: an alternative way to specify its content using action.

• visibility : indicates the visibility level of this message within the specification.

• body : a text containing the result of merging the distinct parts.

8.6.2 MessagePart
An abstraction that represents the various elements that are used to build a complete message: fix parts, variable parts,
silences.

8.6.3 FixPart
A fix part is a part of a message that is constant and indivisible, which may be recorded or synthesized (text to speech).

Properties

• content : the message to be synthetized and pronounced by the machine.

• format : the format used to render the message.

8.6.4 SilencePart
SilencePart represents a silence that duration is given by an expression.

8.6.5 VariablePart
A variable part represents to the part of a message that results from an expression evaluation. For instance the evaluation
of a variable that returns ‘3’ will produce a ‘three’ message part.

Properties

• visibility : indicates the visibility level of this message within the specification.

• format : the format used to render the message.

8.6.6 MessageElement
A MessageElement is an abstraction that represents the different parts of a message (a usage of a message part and the
conditional parts).

8.6.7 UseElement
A UseElement represents the usage of a message part within a given message.

8.6.8 ConditionalPart
In a message, some parts may not be pronounced depending on Boolean conditions. If the condition is true, the ‘thenPart’
is pronounced, otherwise the ‘elsePart’ is pronounced.
UML Profile and Metamodel for Voice-based Applications, v1.0 19

8.6.9 Condition
A Condition is a Boolean expression that is used as a decision in a conditional message.

8.7 Action Concepts
In this section we describe the kind of actions that can be realized during the execution of the voice dialog.

Figure 8.11 - Actions

Figure 8.12 - Composite actions

8.7.1 ActionSequence
An action sequence is an ordered list of actions.

Uninterpreted
body : String

ModelElement
(from Core)

Action
(from Core)

ActionSequence
(from Core)

*

1

+action*

1{ordered}

IfThenElse While

Variable
(from Core)

Message
(from Messages)

Assignment

1

*
+variable 1

*

Play
interruptible : Boolean

1

*
+message

1

*

Expression
(from Core)

1

0..1

+value
1

0..1

*

0..1

+messageArgument

*

0..1

ReturnAction
0..1

0..1

+expression

0..1

+returnAction

0..1

CallExpression
(from Core)

CallAction

1

0..1

1

0..1

IfThenElse

Expression
(from Core)

1

0..1

+condition

1

0..1
ActionSequence

(from Core)

1

0..1

+thenPart
1

+thenOwner

0..1

0..1

0..1

+elsePart0..1

+elseOwner

0..1

While

1

+condition

1

1

0..1

+body 1

0..1
20 UML Profile and Metamodel for Voice-based Applications, v1.0

8.7.2 Action
An Action is an abstraction that represents the various kinds of actions that can be executed during the provision of a
voice service. These actions can be directly called from the dialog node or can be attached to the transitions.

8.7.3 Play
A Play instance represents the action of emitting a message. The play of a message can be interrupted or not interrupted
depending on the ‘interruptible’ property value. If the message has parameters, the action of playing the messages has to
provide arguments.

8.7.4 Assignment
This action consists to assign a value to a variable.

8.7.5 Call
This action represents the invocation of an operation, typically an operation hold by a business entity. The call can pass
arguments if the called operation declares parameters.

8.7.6 Uninterpreted
An Uninterpreted instance represents an action described informally (typically using natural language).

8.7.7 Return
This action represents the return of an operation.

8.7.8 IfThenElse
This action represents a conditional action.

8.7.9 While
This action represents a loop that will stop when the related condition evaluates to false.

8.8 Core Concepts
In this section we describe the structuring concepts needed to represent business data and business code. The concepts are
mainly taken from UML 2 and MOF 2. The expressions are used in guards and in actions.
UML Profile and Metamodel for Voice-based Applications, v1.0 21

Figure 8.13 - Expressions

Figure 8.14 - Literals

ValueExpression

CharacterValue
value : Character

IntegerValue
value : Integer

FloatValue
value : Float

BooleanValue
value : Boolean

CharstringValue
value : String

ParenthesisExpression ConditionalExpression

CallExpression
operationName : String

Variable
visibility : VisibilityKind
isShared : Boolean

Ident
value : String

0..1

*
+variable

0..1

*

InformalExpression
value : String

DTMFValue
value : DTMFKind

DigitValue
value : DigitKind

PropertyExpression

EnumerationItem

EnumValue
value : String

0..1

*
+li teralDefini tion

0..1

*

Class

FeatureExpression

Expression
text : String

1

0..1

+source

1

+ownerFeatureExpression

0..1

NewExpression

1

0..n

+class1

0..n

0..n

0..1

+argument

0..n

CollectionLiteralPart

CollectionLiteralExpression

*

0..1

+part *

0..1

CollectionRange

Expression
text : String

0..1

0..1

+fi rst
0..1

+fi rstOwner 0..1

0..1

0..1

+last0..1

+lastOwner0..1

CollectionItem

1

0..1

+item

1

0..1

TypedElement

ValueExpression
22 UML Profile and Metamodel for Voice-based Applications, v1.0

Figure 8.15 - Core structuring concepts

Type TypedElement
1 *

+type

1 *

Tag
value : String

ParameterDirectionKind
in
out
inout
return

<<enumeration>>

NamedElement
<<qualifier>> name : String

Expression
text : String

Constraint

1

0..1

+speci fication
1

+constraintOwner

0..1

Property
isComposite : Boolean
isReadOnly : Boolean
isDerived : Boolean
isId : Boolean

Parameter
direction : ParameterDirectionKind

Signature

*
0..1

+formalParameter*
0..1

VisibilityKind
public
private

<<enumeration>>

PackageableElement

Package

*
0..1

+ownedElement

*
+owningPackage 0..1

*

*

+usedElement*

+usingPackage
*

DigitKind
zero
one
two
three
four
five
six
seven
eight
nine

<<enumeration>>

ModelElement

TagModelElement
description : String *0..1

+tag

*0..1

Action
text : String

ActionSequence

*

1

+action*

1

{ordered}

Variable
visibility : VisibilityKind
isShared : Boolean

Behavior

Operation

*

0..1

+variable
*

0..1

*

0..1

+behavior*

0..1

StateMachine
UML Profile and Metamodel for Voice-based Applications, v1.0 23

Figure 8.16 - Types

DataType

EnumerationType

EnumerationItem

1

1..*

1

+item
1..*

Type

ListType

1

*

+contentType

*

Operation

Class

0..1

*

0..1

+operation

*

ChoiceType

Expression

Property
isComposite : Boolean
isReadOnly : Boolean
isDerived : Boolean
isId : Boolean

0..1

*

0..1

+attribute *

11..* 1

+attribute

1..*

0..1

0..1

+defaul t 0..1

+defaul tOwner 0..1

DTMFKind
star
pound

<<enumeration>>

DigitKind
zero
one
two
three
four
five
six
seven
eight
nine

<<enumeration>>
24 UML Profile and Metamodel for Voice-based Applications, v1.0

9 The Voice UML Profile

In this chapter we describe the UML 2.0 profile associated with the Voice metamodel described in Chapter 8.

The profile is described using:

• a table that gives for each “voice” concept the corresponding UML concepts and the graphical representation.

• a table with the list of all defined stereotypes, the base classes, and the tagged values associated with these stereotypes.

Some examples are provided to illustrate the usage of the UML notation.

9.1 Structure of a Voice Service Model
A UML model may contain the definition of a single voice service or the definition of various voice services. A
“Framework” package contains the lists of predefined signals and predefined operations that are available to all services.
Each voice service is represented by a Package stereotyped <<Service>>. A package containing the definition of entities
can be either contained within a <<Service>> package or live at same level - typically imported from other UML models.
The latter is useful for services sharing the same set of entities.

The structure of a <<Service>> package should follow one of the two structural schemes:

Old style:

Entities defined specifically for the service are defined within a package stereotyped <<EntitiesModel>>. The dialogs are
represented by a package stereotyped <<DialogModel>>. The main dialog is the unique <<DialogModel>> package
directly contained by the <<Service>> package. A <<DialogModel>> has the following structure: a class stereotyped
<<InputContainer>> to contain the locally defined input events (UML signals), a class stereotyped
<<VariableContainer>> to contain the global variables (only for the main dialog), a class stereotyped
<<MessageContainer>> to contain the messages (UML operations), and a class stereotyped <<BehaviorContainer>> to
contain the operation containing the behavior definition (state machine or activity graph). Sub dialogs are defined by
nested packages stereotyped <<DialogModel>>.

New style:

Within the <<Service>> package, a dialog is directly defined by a behavior (either a state machine or an activity graph).
The main dialog is the unique behavior directly contained by the <<Service>> package. Sub dialogs are defined as
behaviors owned by the behavior representing the owning dialog. The input events are defined as signals owned by the
<<Service>> package. Variables are defined as properties of the behavior and messages are defined as operations of the
behavior.

These two styles are needed to cope with existing UML implementations. Old style can be used by UML 1.x conformant
tools or UML2 tools that do not support the ability for a behavior to contain properties and operations.
UML Profile and Metamodel for Voice-based Applications, v1.0 25

9.2 Voice Metamodel to UML Correspondences

Voice Metamodel
Concept

UML 2.0 Concept Notation

VOICE DIALOGS

Dialog State machine stereotyped <<Dialog>> One or more state-transition diagrams

WaitState State stereotyped <<WaitState>>

SubDialog-State Action stereotyped
<<SubDialogState>>

Transition Transition. Transition arrow.
The trigger and the actions of the
"whole" transition are explicitly drawn as
nodes linked by transitions.

Trigger Trigger A unique trigger symbol

Multiple triggers

Guard Constraint Within a transition within a trigger:
expression with brackets attached to the
transition arrow.

AnyState State named "*"

W ait
<<W aitState>>

<<SubDialogState>>

Identification () ;

 Advice ()

 Cancel(), Stop(),
Terminate(),No()

**
26 UML Profile and Metamodel for Voice-based Applications, v1.0

ListState ListState

Transient Node Pseudostate Specific to each kind of pseudostate.

InitialNode Pseudostate with kind Initial

ReturnNode FinalState

DiversionNode FinalState stereotyped "diversion"

ChoiceNode Choice

HistoryNode DeepHistory or ShallowHistory
 (for deep)

JunctionNode Junction name

ACTIONS

Action Sequence Activity Rectangle containing the list of actions.

Alternative: sequence of rectangles
connected by transition arrows.

Note: The action of playing a message is
represented differently through the usage
of a send symbol (see Play).

Play SendSignal-Action

Playing, WaitPlaying, Wait

 nbInactivities = 0;
nbReject = 0;

 WhichNumberTypeMsg ()
UML Profile and Metamodel for Voice-based Applications, v1.0 27

Assignment WriteStructural-FeatureAction
WriteVariable-Action

Specific keywords using a Java like
notation.

Note: UML 2.0 does not define a
concrete syntax for the specific actions.

Uninterpreted Comment

Return ReturnAction return keyword

IfThenElse ConditionalNode If then else keywords

While LoopNode while keyword

INPUT EVENTS

InputEvent Signal

Concept Signal stereotyped <<Concept>> Simple concept:

Parameterized concepts:

DTMF Signal stereotyped <DTMF>>

<<signal,Concept>>

Advice

<<signal,Concept>>

NumberType
Charstring

<<signal,DTMF>>

Dtmf0

28 UML Profile and Metamodel for Voice-based Applications, v1.0

ExternalEvent Signal stereotyped <<External
Event>>

Voice metamodel
Concept

UML concept Textual Representation

MESSAGES

Message An operation stereotyped <<Message>>
with a return parameter of type String.
The operation returns the concatenation
of the message parts.

public static <<Message>> Charstring
M_1 {

 return (cond_1?

 (FP_2()):

 (FP_3())+FP_3());

}

FixPart Operation stereotyped <<FixPart>>
With a tagged value 'format', which
default value indicates the format of the
string (a date, a phone number, and so
on).
The operation returns a string that
represents the fix part to be pronounced.

Public static <<FixPart>> Charstring
FP_1 ()

{

 return "Bonjour";

}

Silence Operation stereotyped <<Silence>>.
The operation returns a string that is the
result of a call to a pre-defined "Silence"
operation with a parameter to pass the
duration of the silence.

Public static<<SilencePart>>
Charstring S_1 () {

 Silence (3);

}

VariablePart Operation stereotyped
 <<VariablePart>>: With a tagged value
'format,' which default value indicates
the format of the string (a date, a phone
number, and so on). The operation has a
return value of string type and returns
the evaluation of an expression that
provides the content of the variable part.

Public static <<VariablePart>> VP_1 ()
{ nom; }

Condition Operation stereotyped <<Conditional>>
The operation has a return parameter of
type boolean and its body is a boolean
expression.

public static <<ConditionPart>>
Boolean C_1 { return (heure>17)}

<<signal,ExternalEv ent>>

ArriveeMail
UML Profile and Metamodel for Voice-based Applications, v1.0 29

9.3 Stereotypes of the UML Voice Profile
In this section we provide the list of stereotypes and, when applicable, the list of tagged values associated to a specific
stereotype. No specific icons are defined to represent these stereotypes. In general the name of the stereotype corresponds
with the name of the underlying concept in the Voice metamodel.

UseElement A call to the operation that represents
the part of the message that is used.
This invocation should be done in the
body of the operation that represents
the whole message.

public static <<Message>> Charstring M_1 {

return (cond_1?(FP_2()):(FP_3())+FP_3());}

Conditional Element Conditional expression within the
body of the operation representing
the message.

public static <<Message>> Charstring M_1 {

return (cond_1?(FP_2()):(FP_3())+FP_3());}

Stereotype UML 2.0 Base
class

Voice MM concept Tagged
Values

<<Dialog>> StateMachine Dialog

<< WaitState >> State WaitState

<<SubDialogState>> Action SubDialogState

<<Diversion>> FinalState DiversionNode

<<Accept>> Trigger Trigger

<<Concept>> Signal Concept

<<DTMF>> Signal DTMF

<<ExternalEvent>> Signal ExternalEvent

<<MessageContainer>> Class Ownership of Message

<<Inputcontainer>> Class Ownership of InputEvent

<<Message>> Operation Message

<<Silence>> Operation Silence

<<FixPart>> Operation FixPart format : String

<<VariablePart>> Operation Variable format : String

<<Service>> Package Service
Root of the definitions for a given
VoiceService
30 UML Profile and Metamodel for Voice-based Applications, v1.0

The following stereotypes are only applicable when the “old style” structural schema (see Section 9.1) is used:
<<MessageContainer>>, <<InputContainer>>, <<BehaviorContainer>>, and <<DialogModel>>.

9.4 Using Activity Diagrams to Represent Dialog Behavior
For more flexibility in the implementation, the dialog behavior which, from a semantic point of view is defined by a state
machine, can be rendered by an activity diagram following some conventions.

When this variation in notation is used the following mappings should apply:

• An ActivityGraph replaces a StateMachine.

• An InitialNode replaces a Pseudostate with kind=initial

• A DecisionNode replaces a Pseudostate with kind=choice

• A MergeNode replaces a Pseudostate with kind=junction

• An ActivityFinalNode replaces a FinalState

• An Action replaces a State

The base classes for the stereotypes are changed according to these mappings.

9.5 Examples
This section presents some examples to illustrate the usage of the UML notation to modelize voice dialogs that are
compliant with the metamodel defined in Chapter 8. These examples are taken from France Telecom voice services.

<<DialogModel>> Package Ownership of all the packages used to
define the dialogs of a given service.
Should be contained by a Service
package.

<<EntitiesModel>> Package Ownership of the packages defining or
declaring the business entities accessed
by the voice service.

<<BehaviorContainer>> Class Ownership of the Operation containing
the State Machien representing the
behavior.

<<Dialog>> Operation Dialog.
Ownership of the parameters of the
Dialog and of the state machine defining
the interaction.

Stereotype UML 2.0 Base
class

Voice MM concept Tagged
Values
UML Profile and Metamodel for Voice-based Applications, v1.0 31

9.5.1 A Main Identification Dialog
The dialog depicted by Figure 9.1 shows a dialog performs pronounces a welcome message and then performs an
identification of the user. At the end of this step a parameter is returned indicating if the identification succeeded. If the
identification is OK, the dialog is branched (DiversionNode) to another dialog; otherwise a warning message is
pronounced and then the connection is closed.

Figure 9.1 - An identification dialog

9.5.2 A Dialog to Check Feasibility
In this example the dialog checks if the service that is requested can be provided. This dialog will typically be reused by
different services. This dialog makes a call to a business entity (named PARSI in the figure) in order to decide what to do.
He delivers a non-interruptible message (modeled as PlayAll instead of PlayStart), he assigns the result, and then
terminates giving the control to the caller (final symbol named NEXT).

MainDialog Statechart Diagram <<Dialog>> Target MainDialog() {1/1}MainDialog Statechart Diagram <<Dialog>> Target MainDialog() {1/1}

Welcome();Welcome();

Boolean authentified;Boolean authentified;

MainMenu()MainMenu()

Identification();Identification();

Authentification(authentified);Authentification(authentified);

authentifiedauthentified

[true][true]
PlayStart(ExitMsg())PlayStart(ExitMsg())

[false][false]

STOPSTOP
32 UML Profile and Metamodel for Voice-based Applications, v1.0

Figure 9.2 - A reusable feasibility check dialog

9.5.3 A Menu Dialog
This example illustrates a kind of menu dialog that asks the user if he wants to order something or just retrieve some
information from the system. The machine waits for an input of the user, which can be a DTMF key or a phrase
pronounced by the user.

FeasibilityControl <<Dialog>> Target FeasibilityControl(out
Boolean feasible)

{1/1}FeasibilityControl <<Dialog>> Target FeasibilityControl(out
Boolean feasible)

{1/1}

OrderSystem::VerifyFeasibility(clientNumber,
serviceCode,"",ret, raison);
OrderSystem::VerifyFeasibility(clientNumber,
serviceCode,"",ret, raison);

Charstring ret;
Reason reason;
Charstring ret;
Reason reason;

retret

["nok"]["nok"]

PlayAll(MsgNOK())PlayAll(MsgNOK())

"command authorised?""command authorised?"

feasible = true;feasible = true;

NEXTNEXT

["oui"]["oui"]

feasible = false;feasible = false;

NEXTNEXT

PlayAll(NoAnswerFromISMsg())PlayAll(NoAnswerFromISMsg())

["NonRep"]["NonRep"]
["ok","ko"]["ok","ko"]

NEXTNEXT

["non"]["non"]
UML Profile and Metamodel for Voice-based Applications, v1.0 33

Figure 9.3 - A menu dialog

For each wait state there are transitions that describe the reaction of the services to the user stimuli. Each transition starts
with a trigger, which may be a concept or a DTMF key, or an inactivity from the user. A transition can have a set of
triggers, meaning that it can be activated by any of the triggers.

In the dialog description it is possible to do a branch to a given point of the dialog. This is expressed thanks to a junction
node.

Entry <<Dialog>> Target OrderMenu(out Charstring res = "") {1/4}Entry <<Dialog>> Target OrderMenu(out Charstring res = "") {1/4}

PlayAll(MsgAboOuInfo())PlayAll(MsgAboOuInfo())

WaitVoiceWaitVoice

Order()Order()

NEXTNEXT

Information()Information()

NEXTNEXT

ServiceName
(serviceName)
ServiceName
(serviceName)

NEXTNEXT

modemode

[Voice][Voice]

[DTMF][DTMF]

WaitDTMFWaitDTMF

Repeat()Repeat()

entryentry

DtmfStar()DtmfStar()

mode =
DTMF;
mode =
DTMF;

entryentry

WaitDTMFWaitDTMF

DtmfPound()DtmfPound()

NEXTNEXT

DtmfStar()DtmfStar()

NEXTNEXT

Dtmf8()Dtmf8()

entryentry

Dtmf1()Dtmf1() Inactivity()Inactivity()

inactinact

res="Order";res="Order";

res="Information";res="Information";

res="Information";res="Information";

NEXTNEXT

res=serviceName;res=serviceName;

res="Menu";res="Menu";

Inactivity(),
Help()
Inactivity(),
Help()

inactinact

entryentry

res="Order";res="Order";
34 UML Profile and Metamodel for Voice-based Applications, v1.0

10 Textual Notation

In this chapter we define a textual notation associated with the Voice metamodel. This notation is useful to voice dialog
designers that have a “programmer” background. It is also useful to implement the Voice profile more easily since the
details of a dialog – such as the actions and the body of the messages can be provided textually. Hence the UML tool
implementing the profile will not be required to provide a complete support of this detailed part.

10.1 Examples
This section illustrates the usage of the notation. The identification dialog in Figure 9.1 can be rendered textually using
the following syntax:

dialog identification {
 message ExitMessage() {return "Good bye";}
 behavior() {
 var auth:Boolean;
 call Welcome():
 call Identification();
 call Authentification(auth);
 decision {
 case "true" { divert mainDialog();}
 case "false" {plays}
 }
 stop;
 } // end of dialog behavior
 } // end of dialog

10.2 Grammar of the Concrete Syntax
This section gives formally the grammar.

Lexical elements:

The list of reserved words:

service voiceservice entities package class operation message

messagepart event externalevent systemevent static global shared

property var extends maindialog dialog within in

inout out behavior play playall call divert

return stop decision case junction jump restart

wait when do accept if then else

endif null true false unlimited not and

or xor informal new Set Bag Sequence

OrderedSet standalone
UML Profile and Metamodel for Voice-based Applications, v1.0 35

In the BNF these keywords are denoted by the corresponding word in capital letters. For instance DIALOG denotes the
occurrence of the dialog keyword.

The following variable tokens are defined:

 ID: an alphanumeric identifier

 ICONST: integer value

 FCONST: float value

 SCONST: double quoted string

 CCONST: single quoted string

The following character tokens are defined:

 'PLUS' -> '+'

 'MINUS' -> '-'

 'TIMES' -> '*'

 'DIVIDE' -> '/'

 'MOD' -> '%'

 'EQ' -> '=='

 'LT' -> '<'

 'LE' -> '<='

 'LT' -> '<'

 'GE' -> '>='

 'GT' -> '>'

 'NE' -> '<>'

 'NEX' -> '!='

 'EQUALS' -> '='

 'PLUSEQUAL' -> '+='

 'MINUSEQUAL' -> '-='

 'ARROW' -> '->'

 'PERIOD' -> '.'

 'LPAREN' -> '('

 'RPAREN' -> ')'
36 UML Profile and Metamodel for Voice-based Applications, v1.0

 'LBRACKET' -> '['

 'RBRACKET' -> ']'

 'LBRACE' -> '{'

 'RBRACE' -> '}'

 'COMMA' -> ','

 'SEMI' -> ';'

 'COLON' -> ':'

 'DCOLON' -> '::'

BNF

 toplevel : module_definition_list_opt
 module_definition_list_opt : module_definition_list
 | empty
 module_definition_list : module_definition
 | module_definition_list module_definition
 module_definition : service
 | entities
 | dialog
 service : service_kind ID SEMI
 service_kind : SERVICE
 | VOICESERVICE
 entities : entities_indicator package_def
 entities_indicator : ENTITIES
 package_def : package_head LBRACE package_content_list_opt RBRACE
 package_head : PACKAGE ID
 | PACKAGE
 package_content_list_opt : package_content_list
 | empty
 package_content_list : class
 | package_def
 | package_content_list class
 | package_content_list package_def
 class : class_def
 | class_decl

 class_def : class_head LBRACE class_content_list_opt RBRACE
 class_decl : class_head SEMI
 class_head : CLASS ID class_extension_opt
 class_content_list_opt : class_content_list
 | empty
 class_content_list : property
 | operation
 | class_content_list property
 | class_content_list operation
 property : property_kind_list declarator SEMI
 property_kind_list : property_kind
UML Profile and Metamodel for Voice-based Applications, v1.0 37

 | property_kind_list property_kind
 property_kind : PROPERTY
 | VAR
 | SHARED
 | STATIC
 | GLOBAL
 property_list : property
 | property_list property
 id_list : ID
 | id_list COMMA ID
 simple_signature : LPAREN param_list_opt RPAREN
 signature : simple_signature
 | simple_signature COLON param_list
 param_list_opt : param_list
 | empty
 param_list : param
 | param_list COMMA param

 param : declarator
 | param_direction declarator
 param_direction : IN
 | INOUT
 | OUT
 simple_declarator : type_specifier
 | ID COLON type_specifier
 declarator : simple_declarator
 | simple_declarator EQUALS expr
 operation : operation_decl
 | operation_def
 operation_decl : operation_header SEMI
 operation_def : operation_header LBRACE operation_body RBRACE
 operation_header : operation_kind ID signature
 operation_kind : OPERATION
 | MESSAGE
 | MESSAGEPART
 | EVENT
 | EXTERNALEVENT
 | SYSTEMEVENT
 operation_body : action_list_opt
 class_extension_opt : class_extension
 | empty
 class_extension : EXTENDS scoped_id
 scoped_id : ID
 | scoped_id DCOLON ID
 type_specifier : scoped_id
 | type_constructor LPAREN type_specifier RPAREN
 dialog : dialog_decl
 | dialog_def
 'dialog_decl : dialog_head SEMI'
 'dialog_def : dialog_head LBRACE dialog_content_list_opt RBRACE'
 'dialog_head : ’standalone’? dialog_kind ID within_dialog_opt'
38 UML Profile and Metamodel for Voice-based Applications, v1.0

 within_dialog_opt : within_dialog
 | empty
 within_dialog : WITHIN ID
 dialog_kind : MAINDIALOG
 | DIALOG
 dialog_content_list_opt : dialog_content_list
 | empty
 dialog_content_list : dialog_content
 | dialog_content_list dialog_content
 dialog_content : dialog_behavior
 | property
 | operation
 dialog_behavior : dialog_behavior_head LBRACE behavior_content RBRACE
 dialog_behavior_head : BEHAVIOR simple_signature
 behavior_content : property_list node_list_opt
 | node_list_opt
 node_list_opt : node_list
 | empty
 node_list : node
 | node_list node
 simple_node_list : simple_node
 | simple_node_list simple_node
 node : simple_node
 | complex_node
 simple_node : prompt
 | subdialog
 | control
 | do
 complex_node : decision
 | wait
 | when
 prompt : PLAY expr SEMI
 | PLAYALL expr SEMI
 subdialog : diagcallkind expr SEMI
 diagcallkind : CALL
 | DIVERT
 control : RETURN SEMI
 | JUMP ID SEMI
 | JUMP jump_kind COLON ID SEMI
 | JUNCTION ID SEMI
 | RESTART SEMI
 | STOP SEMI
 jump_kind : WAIT
 | JUNCTION
 | DECISION
 decision : decision_head LBRACE decision_body? RBRACE
 decision_head : DECISION ID LPAREN expr RPAREN
 | DECISION LPAREN expr RPAREN
 wait : wait_head LBRACE wait_body RBRACE
 wait_head : WAIT ID
 when : WHEN expr node
UML Profile and Metamodel for Voice-based Applications, v1.0 39

 do : do_head LBRACE action_list_opt RBRACE
 | do_head action
 do_head : DO
 arg_list_opt : arg_list
 | empty
 arg_list : expr
 | arg_list COMMA expr
 unary_op : MINUS
 | NOT
 | INFORMAL
 | NEW

 access_op : PERIOD
 | ARROW
 logic_and_op : AND
 | XOR
 cmp_op : EQ
 | NE
 | LT
 | GT
 | LE
 | GE
 add_op : PLUS
 | MINUS
 mult_op : TIMES
 | DIVIDE
 | MOD
 expr : or_expr
 or_expr : and_expr
 | or_expr logic_or_op and_expr
 and_expr : cmp_expr
 | and_expr logic_and_op cmp_expr
 cmp_expr : additive_expr
 | cmp_expr cmp_op additive_expr
 additive_expr : mult_expr
 | additive_expr add_op mult_expr

 mult_expr : unary_expr
 | mult_expr mult_op unary_expr
 unary_expr : postfix_expr
 | unary_op unary_expr

 postfix_expr : primary_expr
 | postfix_expr LBRACKET expr RBRACKET
 | postfix_expr LPAREN arg_list_opt RPAREN
 | postfix_expr access_op ID

 primary_expr : literal
 | scoped_id
 | LPAREN expr RPAREN
40 UML Profile and Metamodel for Voice-based Applications, v1.0

 literal : literal_simple
 | literal_collection
 literal_collection : type_constructor LBRACE collection_item_list_opt RBRACE

 collection_item_list_opt : collection_item_list
 | empty

 collection_item_list : expr
 | collection_item_list COMMA expr

 type_constructor : SET
 | BAG
 | SEQUENCE
 | ORDEREDSET

 literal_simple : ICONST
 | FCONST
 | CCONST
 | SCONST

 | TRUE
 | FALSE
 | UNLIMITED

 | NULL
 action_list_opt : action_list
 | empty
 action_list : action
 | action_list action
 action : expr SEMI
 | expr EQUALS expr SEMI
 | IF expr THEN action ENDIF
 | IF expr THEN action ELSE action ENDIF
 | RETURN expr SEMI

 decision_body : case_element
 | decision_body case_element
 'case_element : case_head LBRACE case_body RBRACE'

 case_head : CASE expr
 | ELSE

 case_body : simple_node_list
 | empty

 wait_body : trigger_element
 | wait_body trigger_element

 trigger_element : trigger_head LBRACE trigger_body RBRACE
 trigger_head : ACCEPT event_call_list
 | ACCEPT LBRACKET expr RBRACKET event_call_list
 | ELSE
 event_call_list : expr
UML Profile and Metamodel for Voice-based Applications, v1.0 41

 | event_call_list COMMA expr
 trigger_body : simple_node_list
 | empty
42 UML Profile and Metamodel for Voice-based Applications, v1.0

Annex A: General Requirements

(informative)

A.1 Summary Of Requests Versus Requirements
The conformance points defined by this specification (see Section 2.1) allow a tool to support only one of the three input
syntaxes associated to the Voice metamodel (XMI serialization, UML Profile, or Textual).

A.2 Resolution Of General Requirements
The specification follows the general requirements of the RFP. We provide here a summary of how these general
requirements are resolved.

The specification expresses the models using OMG modeling languages: The Voice metamodel is defined as a MOF
metamodel. In addition UML is used as one of the concrete syntaxes attached to the metamodel. The document specifies
conformance points in Section 2.1. The document preserves maximum implementation flexibility: no PSM is given to
support the specified PIM metamodel. Interoperability and substitutability is guaranteed thanks to the usage of completely
defined syntaxes (XMI, UML Profile, and Textual). The degree of support of internalization is Uncategorized: no
assumption is made that makes this specification not usable in a specific region.
UML Profile and Metamodel for Voice-based Applications, v1.0 43

44 UML Profile and Metamodel for Voice-based Applications, v1.0

Annex B: References

(Informative)

1. Metamodel and a UML profile for Voice Applications RFP, OMG Document telecom/2004-04-02

2. Voice XML Markup language http://www.w3.org/TR/2003/CR-voicexml20-20030220/

3. Speech Recognition Grammar Specification

 http://www.w3.org/TR/2002/CR-sppech-grammar-20020626/

4. IST MODA-TEL project: MDA applied to telecommunications: http://www.modatel.org

5. How to build a speech recognition application, Bruce Balentine and David Morgan. EIG Press.
UML Profile and Metamodel for Voice-based Appl;ications, v1.0 45

46 UML Profile and Metamodel for Voice-based Applications, v1.0

INDEX

A
Acknowledgements 3
Action Concepts 20
ActionSequence 20
Action 21
Activity diagrams to represent dialog behavior 31
AnyDigit 16
AnyDTMF 16
AnyState 13
Assignment 21

B
BNF 37

C
Call 21
Capability dimension 2
capability dimension 1
Character tokens 36
Concept 16
ConditionalPart 19
Condition 20
Conformance 1
Conformance point 1
Core Concepts 21

D
Definitions 2
DialogNode 15
dialogs 7
DialogState 13
Dialog 11
DTMF 16

E
Entity 9
Environment 9
Examples 31
ExternalEvent 16

F
FixPart 19
Functionality 9

G
General requirements 43
Grammar instance 17
Grammars 16

H
HistoryState 13
How to Read this Specification 3

I
IfThenElse 21
Inactivity 16
Input Event Concepts 15
InputEvent 15
issues/problems vi

K
Keywords 36

L
ListState 13

M
Message 18
Message Related Concepts 17
MessageElement 19
MessagePart 19
MOF 6
MOF metamodel 1
Multi-tier architecture 5

N
Normative References 2

O
Object Management Group, Inc. (OMG) v
Object oriented structuring 7
OMG specifications v

P
Play 21

R
Recording 16
References 2
Reject 16
Requirements 43
Reserved words 35
Return 21

S
Scope 1
Service 9
SilencePart 19
state-machine 7
Stereotypes (list of) 30
SubDialogState 13
Symbols 2
Syntax dimension 2
syntax dimension 1

T
Terms and definitions 2
Textual Notation 35
Tokens 36
TransientNode 14
Transition 13
Trigger 15
typographical conventions vi

U
UML 6
UML Profile 25
Uninterpreted 21
Usage Examples 31
UseElement 19

V
Variable tokens 36
VariablePart 19
Voice Dialog Modeling 9
Voice metamodel 7
Voice metamodel to UML correspondences 26
Voice Service Model (structure) 25
Voice Service Modeling 7
VoiceXML specification 5
UML Profile and Metamodel for Voice-based Applications, v1.0 47

W
WaitState 13
While 21
48 UML Profile and Metamodel for Voice-Based Applications, v1.0

	Preface
	1 Scope
	2 Conformance
	2.1 Conformance Points
	2.1.1 Syntax Dimension
	2.1.2 Capability Dimension

	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications
	6.2 How to Read this Specification
	6.3 Acknowledgements

	7 Introduction
	7.1 Overview

	8 The Voice Metamodel
	8.1 Introduction
	8.2 Voice Service Modeling
	8.2.1 Environment
	8.2.2 Service
	8.2.3 Entity
	8.2.4 Functionality

	8.3 Voice Dialog Modeling
	8.3.1 Dialog
	8.3.2 DialogState
	8.3.3 WaitState
	8.3.4 Transition
	8.3.5 Transient Node
	8.3.6 DialogNode
	8.3.7 Trigger

	8.4 Input Event Concepts
	8.4.1 InputEvent
	8.4.2 Concept
	8.4.3 DTMF, AnyDTMF, AnyDigit
	8.4.4 Inactivity
	8.4.5 Reject
	8.4.6 ExternalEvent
	8.4.7 Recording

	8.5 Grammars
	8.5.1 Grammar

	8.6 Message Related Concepts
	8.6.1 Message
	8.6.2 MessagePart
	8.6.3 FixPart
	8.6.4 SilencePart
	8.6.5 VariablePart
	8.6.6 MessageElement
	8.6.7 UseElement
	8.6.8 ConditionalPart
	8.6.9 Condition

	8.7 Action Concepts
	8.7.1 ActionSequence
	8.7.2 Action
	8.7.3 Play
	8.7.4 Assignment
	8.7.5 Call
	8.7.6 Uninterpreted
	8.7.7 Return
	8.7.8 IfThenElse
	8.7.9 While

	8.8 Core Concepts

	9 The Voice UML Profile
	9.1 Structure of a Voice Service Model
	9.2 Voice Metamodel to UML Correspondences
	9.3 Stereotypes of the UML Voice Profile
	9.4 Using Activity Diagrams to Represent Dialog Behavior
	9.5 Examples
	9.5.1 A Main Identification Dialog
	9.5.2 A Dialog to Check Feasibility
	9.5.3 A Menu Dialog

	10 Textual Notation
	10.1 Examples
	10.2 Grammar of the Concrete Syntax

	Annex A: General Requirements
	A.1 Summary Of Requests Versus Requirements
	A.2 Resolution Of General Requirements

	Annex B: References

