
Wireless Access and Terminal 
Mobility in CORBA

Draft Adopted Specification

May 14, 2001
OMG Document dtc/2001-05-01



Copyright © 2001 Borland Software Corporation.
Copyright © 2001 Highlander Engineering Inc.
Copyright © 2001 Nokia.
Copyright © 2001 Sonera Corporation.
Copyright © 2001 University of Helsinki. 
Copyright © 2001 Vertel Corporation.

All Rights Reserved.

The companies and organisations listed above hereby grant a royalty-free license to the Object Management Group 
(OMG) for world-wide distribution of this document or any derivative works thereof, so long as the OMG reproduces 
the copyright notices and the below paragraphs on all distributed copies.

The material in this document is provided for evaluation by the OMG. Submission of this document does not represent 
a commitment to implement any portion of this specification in the products of the above said companies and 
organisations.

While the information in the publication is believed to be accurate, the companies and organisations listed above 
make no warranty of any kind with regard to this material including but not limited to the implied warranties of 
merchantability and fitness for a particular purpose. The companies and organisations listed above shall not be liable 
for errors contained herein or for incidental or consequent damages in connection with the furnishing, performance 
or use of this material. The information contained in this document is subject to change without notice.

This document contains information which is protected by copyright. All Rights Reserved. No part of this work 
covered by copyright here on may be reproduced or used in any form or by any means - graphic, electronic, or 
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without 
permission of the copyright owners. All copies of this document must include the copyright and other information 
contained on this page.

The copyright owners grant the Object Management Group permission to reproduce and use the information 
contained in this document. The copyright owners grant a limited waiver of the copyright on this document to 
members of the Object Management Group so that they can each reproduce up to 50 copies of this document for their 
internal use as part of the OMG evaluation process.

RIGHTS RESERVED LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in 
subdivision (c)(1)(ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013.

All trademarks acknowledged.



Contact Persons

Ke Jin
Borland Software Corporation
951 Mariner’s Island Blvd. Suite 120
San Mateo, CA 94404
USA
Phone: +1 650 286 1900
Fax: +1 650 358 3099
Email: kejin@borland.com

Jon Currey
Highlander Engineering Inc.
208 East Pine Street
Lakeland, FL 33801
USA
Phone: +1 863 686 7767
Fax: +1 863 687 7767
Email: jon@highlander.com

Dr. Kimmo Raatikainen
Nokia Research Center
P.O. Box 407
FIN-00045 NOKIA GROUP
Finland
Phone: +358 7180 36275
Fax:   +358 7180 36308
Email: kimmo.raatikainen@nokia.com

Dr. Shahzad Aslam-Mir
VERTEL Corporation
5825 Oberlin Dr., Ste# 300
San Diego., CA. 92121
USA
Phone: +1 858 824 4128
Fax +1 858 824 4110
E-mail: sam-aslam-mir@vertel.com



Mr. Jouni Korhonen
Sonera Corporation
P.O. Box 970
FIN-00051 SONERA
Finland
Phone: +358 2040 65342
Fax:   +358 2040 64365
Email: jouni.korhonen@sonera.com

Prof. Kimmo Raatikainen
Department of Computer Science
P.O. Box 26 (Teollisuuskatu 23)
FIN-00014 UNIVERSITY OF HELSINKI
Finland
Phonel:   +358 9 1914 4243
Fax:   +358 9 1914 4441
Email: kimmo.raatikainen@cs.helsinki.fi



Overview 1
This document specifies an architecture and interfaces to support wireless access and 
terminal mobility in CORBA as requested in the RFP telecom/99-05-05.

1.1 Submission Overview
The submission is organized as follows.

In the current chapter we describe our design rational and make our statement of proof 
of concept. We also address each mandatory and optional requirement in the RFP as 
well as issues to be discussed.

In Chapter 2 we present the Architectural Framework. In Chapters 3 through 7 each of 
the key concepts, that is Mobile IOR, Home Location Agent, Access Bridge, Terminal 
Bridge, and GIOP Tunneling, is described in details.

Chapter 8 is devoted to handoff and access recovery.

In Chapter 9 we address the issues asked to be discussed: Interoperable Naming 
Service, Notification Service, and Messaging Service.

In Chapter 10 we summarize the mandatory and optional requirements.

The associated IDL specifications are given in Chapter 11.

1.2 Design Rationale
The basic design principles have been client-side ORB transparency and simplicity.

Transparency of the mobility mechanism to non-mobile ORBs has been the primary 
design constraint. The submitters have rejected all solutions which would require 
modifications to a non-mobile ORB in order for it to interoperate with CORBA objects 
Wireless Access and Terminal Mobility in CORBA 1-1



1

and clients running on a mobile terminal. In other words, a stationary (non-mobile, or 
fixed network) ORB does not have to implement this specification in order to 
interoperate with CORBA objects and clients running on mobile terminals.

The RFP requested a quite comprehensive specification to cover wireless access, 
terminal mobility and service provisioning in a mobile environment. The submitters 
decided to take a minimalistic approach. The response has been designed to provide a 
minimal useful functionality for CORBA applications, in which the client, the server, 
or both of them are running on a host that can move.

1.3 Proof of Concept
The design is heavily affected by experiences of the EC/ACTS project DOLMEN 
(AC036) that implemented a prototype of CORBA extensions to support terminal 
mobility. The DOLMEN solution is described, for example, in the OMG Document 
telecom/98-08-08.

Most of this specification has been implemented by University of Helsinki as an 
extension to MICO.

1.4 Mandatory Requirement

Architectural framework
Proposals shall provide an architectural framework, which is compliant to OMA, 
for a way how mobile terminals can dynamically attach to a mobility domain, 
detach from such a domain, and move from one mobility domain to another one. In 
particular, the proposed framework should be compliant to the CORBA 
Interoperability Architecture. Proposals shall also define the concept of 'mobility 
domain' in details, or propose an alternative concept relevant to wireless access and 
terminal mobility.

GIOP mapping onto Internet transport protocol (TCP or UDP) over wireless 
links

Proposals shall provide GIOP mappings onto TCP or UDP over wireless links. In 
particular, the proposals shall address handoff and reliability issues. Proposals must 
motivate the choice between TCP and UDP. If UDP is used, then proposals shall 
specify how interworking with IIOP is sustained. As minimum the mapping must 
provide recovery from sudden drop of a link-level connectivity.

Mechanism that hides from CORBA clients the mobility of terminals on which 
CORBA servers are running

When a CORBA server runs on a mobile terminal, its clients should not be aware 
that the server may change its location after registering its object reference to a 
naming service. Therefore, proposals shall specify how the mobility transparency is 
obtained.
1-2 Wireless Access and Terminal Mobility in CORBA



1

Mechanism for initial access to a new mobility domain
Proposals shall specify how a mobile terminal gets initial access to a mobility 
domain. In fixed networks initial access is taken care by the network technology 
and by the administrative domain. Therefore, it is implicit to ORB. When terminals 
can move from one network to another one and from one administrative domain to 
another one, it is unrealistic to assume that the same implicit procedure is available 
everywhere. Therefore, terminal mobility requires that an explicit standard 
procedure is specified. Proposals shall specify how mobility domains advertise 
availability of their services to mobile terminals that want to attach to the domain. 
Alternatively, proposals shall specify how a mobile terminal can contact a mobility 
domain. Proposals shall also specify how authentication of terminals should be 
carried out.

Mechanism for finding the necessary basic set of CORBA services in mobility 
domain

When a mobile terminal has attached a new mobility domain, the CORBA objects 
on the terminal need to find a basic set of CORBA services in that domain. 
Proposals shall specify what is the minimum basic set of CORBA services and how 
objects on a terminal learns what services are available in the domain.

Mechanism for advertising CORBA services available on a mobile terminal
When a mobile terminal wants that it can be contacted, it must provide one or more 
CORBA servers. Proposal shall specify how CORBA servers on a mobile terminal 
advertise and register themselves so that CORBA clients can obtain references of 
those servers.

Mechanism for handoff between mobility domain
In handoff, there are two basic ways of carrying it out: forward and backward. In 
the backward handoff the mobile terminal has connectivity to the old mobility 
domain that usually prepares the handoff. In the forward handoff the mobile 
terminal has lost the connectivity to the old mobility domain but obtained 
connectivity to a new mobility domain. In this case the handoff is prepared by the 
new one. In both cases no data should be lost. It should be noted that recovery of 
connectivity may result in gaining access to the old mobility domain (access 
recovery) or to a new one (forward handoff). Proposals shall specify the forward 
and backward handoff procedures as well as the access recovery procedure.

The Architectural Framework does not define the concept of ‘mobility domain’ as 
requested in the RFP. Instead, concepts of ‘home domain’, ‘visited domain’, and 
‘terminal domain’ are used.

The response does not define a GIOP mapping onto Internet transport protocol (TCP or 
UDP) over wireless links. Instead, the response defines how GIOP messages are to be 
tunneled between bridges. This was regarded as a more elegant way of using link 
specific transport mechanisms. The response specifies a generic GIOP Tunneling 
Protocol and how this protocol is run over TCP, UDP, and WAP Wireless Datagram 
Protocol (WDP).
Wireless Access and Terminal Mobility in CORBA 1-3



1

An initial access mechanism is not specified since it was regarded too network 
technology and access provider specific to be in the scope of OMG.

The response specifies a simple discovery mechanism similar to resolving initial 
references in the ORB pseudo-interface.

The response does not propose a mechanism for advertising CORBA services available 
on a mobile terminal. This was regard as unnecessary. Instead, objects on the terminal 
can use either Naming Service or Trader Service either in the Home Domain or in a 
Visited Domain.

The handoff support is defined as an optional feature. The main motivation was the 
fact that there are clear business cases for "discrete" terminal mobility. By discrete 
terminal mobility we mean terminal's ability to change its point of presence when there 
are no outstanding invocations. Typical examples would be a traveling employee 
visiting a remote site and a home user whom gets a temporary IP address from the ISP.

1.5 Optional Requirements

GIOP mappings onto other wireless transport protocols
Proposals may provide GIOP mappings onto one of the WAP protocols defined in 
the WAP 1.0 specifications. Proposals should give motivation for the selection of a 
WAP protocol.

Proposals may provide GIOP mappings onto wireless transport protocols other than 
required in 6.5.2.

Wireless/Mobility specific ES-IOP
Proposals may provide specification of an ES-IOP targeted for wireless and mobile 
networks. If such a specification (xES-IOP) is provided, then the proposal must also 
provide specification of IIOP/xES-IOP bridge.

This response does not directly address the optional requirements. However, the 
proposed GIOP Tunneling Protocol over WAP WDP can be regarded as a response to 
the first optional requirement.

1.6 Issues to be discussed

Relationship to Notification Service [telecom/98-11-01]
Proposals should discuss how Notification Service can be used together with the 
proposed technology.

Relationship to Messaging Service [orbos/98-05-05]
Proposals should discuss how Messaging Service can be used together with the 
proposed technology.
1-4 Wireless Access and Terminal Mobility in CORBA



1

Relationship to Interoperable Naming Service [orbos/98-10-11]
Proposals should discuss how Interoperable Naming Service can be used together 
with the proposed technology.

Proposals should also discuss how CORBA servers and clients on a mobile terminal 
use Naming Service of the mobility domain.

This response discusses usage of Notification Service, Interoperable Naming Service, 
and Messaging Service in Chapter 9.

The response specifies, as an optional feature, notifications of terminal mobility 
events.

1.7 References
[GFD] WAP Forum. WAP General Formats Document. WAP Forum document WAP-
188-WAPGenFormats, Version 15-Aug-2000.

[WDP] WAP Forum. Wireless Datagram Protocol Specification. WAP Forum 
Document WAP-200-WDP, Approved Version 19-February-2000.
Wireless Access and Terminal Mobility in CORBA 1-5



1

1-6 Wireless Access and Terminal Mobility in CORBA



Architectural Framework 2
The key concepts in the this specification are:

• Mobile IOR,

• Home Location Agent,

• Access Bridge,

• Terminal Bridge, and

• GIOP Tunneling Protocol.

The Mobile IOR is a relocatable object reference. It identifies the Access Bridge and 
the terminal on which the target object resides. In addition, it identifies the Home 
Location Agent that keeps track of the Access Bridge to which the terminal is currently 
attached. 

The Home Location Agent keeps track of the current location of the terminal. It 
provides operations to query and update terminal location. The Home Location Agent 
also provides operations to get a list of initial services and to resolve initial references 
in the home domain.

The Access Bridge is the network side end-point of the GIOP tunnel. It encapsulates the 
GIOP messages to the Terminal Bridge and decapsulates the GIOP messages from the 
Terminal Bridge. The Access Bridge also provides operations to get a list of initial 
services and to resolve initial references in the visited domain. The Access Bridge may 
also provide notifications of terminal mobility events.

The Terminal Bridge is the terminal side end-point of the GIOP tunnel. It 
encapsulates the GIOP messages to the Access Bridge and decapsulates the GIOP 
messages from the Access Bridge. The Terminal Bridge may also provide a mobility 
event channel that delivers notifications related to handoffs and connectivity losses.

The GIOP tunnel is the means to transmit GIOP messages between the Terminal 
Bridge and the Access Bridge. The generic GIOP Tunneling Protocol defines how 
GIOP messages are transmitted. The protocol also specifies necessary control 
Wireless Access and Terminal Mobility in CORBA 2-1



2

messages to establish, release, and re-establish a GIOP tunnel. The proposed GIOP 
Tunneling Protocol (GTP) is an abstract, transport-independent protocol. This response 
defines three concrete tunneling protocols, that is the way how GTP messages are 
transmitted over TCP, UDP and WAP WDP.

The overall architecture is depicted in Figure 2-1. It identifies three different domains: 
home domain, visited domain, and terminal domain. The Home Domain for a given 
terminal is the domain that hosts the Home Location Agent of the terminal. A Visited 
Domain is a domain that hosts one or more Access Bridges through which it provides 
ORB access to some mobile terminals. The Terminal Domain consists of a terminal 
device that hosts an ORB and a Terminal Bridge through which the objects on the 
terminal can communicate with objects in other networks.

Figure 2-1 Architecture for Terminal Mobility in CORBA

Home domain

Visited domain

Access
Bridge

Access
Bridge

Access
Bridge

Access
Bridge

Terminal
Domain

Terminal
Bridge

Home
Location

Agent

GIOP
tunnel
2-2 Wireless Access and Terminal Mobility in CORBA



Mobile IOR 3
A Mobile IOR is a special Interoperable Object Reference that hides the mobility of a 
terminal from clients that invoke operations on target objects located on the terminal. 
The Mobile IOR provides mobility transparency in a way that is itself transparent to 
the ORB that a client runs on. Hence the ORB that a non-mobile client runs on is not 
required to implement the Wireless Access and Terminal Mobility specification for 
terminal mobility to be available.

A Mobile IOR contains the normal IIOP Profile (TAG_INTERNET_IOP) required in 
an IOR, plus a ‘Mobile Terminal’ Profile (TAG_MOBILE_TERMINAL_IOP). There 
may be more than one IIOP Profile in the Mobile IOR. There can be only one Mobile 
Terminal Profile instance in the Mobile IOR.

3.1 IIOP Profiles in Mobile IOR
The ORB that a client runs on uses an IIOP Profile from the Mobile IOR (rather than 
the Mobile Terminal Profile) to route the client’s invocations to the Access Bridge 
currently serving the terminal on which the target object is located.

The IIOP Profile or Profiles in a Mobile IOR have the normal structure defined in 
IIOP::ProfileBody, but they have additional semantics regarding the address and object 
key fields within that structure. These semantics are transparent to the client ORB that 
makes use of one of these Profiles.

3.1.1 Address information in IIOP Profiles in Mobile IORs
Instead of indicating the address of the target object, the host and port information in 
an IIOP Profile in a Mobile IOR indicate the address of either the target object’s 
terminal’s Home Location Agent or the Access Bridge that the terminal was last 
known to be associated with. When a Mobile IOR is created at the terminal, the 
terminal ORB chooses whether the address of the terminal’s HLA or the Access 
Bridge the terminal is currently associated with is given in the IIOP Profile.
Wireless Access and Terminal Mobility in CORBA 3-1



3

If the address in the IIOP Profile is that of the terminal’s Home Location Agent, rather 
than its last known Access Bridge, when a client first performs an invocation upon the 
Mobile IOR, the HLA replies with a GIOP LOCATION_FORWARD message 
returning the object reference of the Access Bridge that the HLA believes the terminal 
is currently associated with.

If the address in the IIOP Profile is that of an Access Bridge rather than an HLA, the 
terminal may no longer be associated with that Access Bridge when a client makes its 
first invocation upon the Mobile IOR. If the terminal is now associated with another 
Access Bridge, the contacted Access Bridge replies with a GIOP 
LOCATION_FORWARD message returning the object reference of the Access Bridge 
that the terminal is currently associated with.

Similarly, if at any time after a client has made its first invocation upon a Mobile IOR 
the terminal becomes associated with another Access Bridge, then the contacted 
Access Bridge will reply to the client’s next invocation with a GIOP 
LOCATION_FORWARD message returning the object reference of the Access Bridge 
that the terminal is now associated with.

3.1.2 Mobile Object Key Format
In order to allow clients to make invocations from ORBs that only support versions of 
GIOP prior to version 1.2, Mobile IORs may optionally use a special format for the 
contents of the object key field within their IIOP Profiles. For details of this format see 
Section 3.4.

3.2 The Mobile Terminal Profile
The Mobile Terminal Profile within a Mobile IOR contains information that the Home 
Location Agent and Access Bridges require to provide mobility transparency for target 
objects that have Mobile IORs. The information is not required by the ORB that a 
client of a Mobile IOR runs on, and hence only ORBs used to implement Home 
Location Agents and Access Bridges need to be able to use this profile type.

3.2.1 Mobile Terminal Profile Structure
A Mobile Terminal profile is an IOP::TaggedProfile with a tag value of 
TAG_MOBILE_TERMINAL_IOP and profile data with the structure defined by 
MobileTerminal::ProfileBody.

const IOP::ProfileID TAG_MOBILE_TERMINAL_IOP = ????;

Note – The constant value is to be assigned by the OMG and added to the IOP module 
in the CORBA specification.
3-2 Wireless Access and Terminal Mobility in CORBA



3

module MobileTerminal {

typedef sequence<octet> TerminalId;
typedef sequence<octet> TerminalObjectKey;

struct Version {
octet major;
octet minor;

};

struct ProfileBody {
Version mior_version; // version of Mobile IOR
octet reserved;
TerminalId terminal_id; // unique terminal identifier
TerminalObjectKey terminal_object_key; // object_key on terminal
sequence <IOP::TaggedComponent> components;

};

...

};

The MobileTerminal::ProfileBody structure identifies the version of the Mobile 
Terminal Profile used, the id of the terminal the target object resides on and the object 
key of the target object on the terminal. It may optionally include one or more tagged 
components. A TAG_HOME_LOCATION_INFO component is specified, and may be 
present in the Mobile Terminal Profile’s component list. See  Section 3.2.2.

There can be only one Mobile Terminal profile instance in the Mobile IOR.

3.2.2 TAG_HOME_LOCATION_INFO Component
The TAG_HOME_LOCATION_INFO component identifies the Home Location Agent 
of the terminal on which the Mobile IOR was created. If the mobile terminal has an 
Home Location Agent, then the TAG_HOME_LOCATION_INFO component must be 
present in the Mobile Terminal Profile.

If the mobile terminal does not have an Home Location Agent, then the object 
reference is only valid as long as the current GIOP tunnel between the Terminal Bridge 
and the Access Bridge exists. Such a terminal is referred as a “homeless terminal” in 
this specification.

The TAG_HOME_LOCATION_INFO component has a Home Location Agent object 
reference as its associated value, encoded as the CDR encapsulation of the data 
structure MobileTermial::HomeLocationInfo.

const IOP::ComponentID TAG_HOME_LOCATION_INFO = ????;

Note – The constant value is to be assigned by the OMG and go into the IOP module 
in the CORBA Core.
Wireless Access and Terminal Mobility in CORBA 3-3



3

module MobileTerminal {

...

struct HomeLocationInfo {
MobileTerminalHomeLocationAgent::home_location agent agent;

};

...

};

The TAG_HOME_LOCATION_INFO component can appear at most once in a 
TAG_MOBILE_TERMINAL_IOP profile.

3.3 Translation to Mobile Target Object
The first time a Home Location Agent or Access Bridge receives a GIOP message for 
an invocation on a particular Mobile IOR it needs some way to establish the terminal 
id and object key of the mobile target object, and associate it with the object key 
included in the GIOP message (so that in the future it will know that messages 
containing that object key are intended for that same mobile target object.)

In GIOP 1.2 the Home Location Agent or Access Bridge can reply to the first message 
with the status NEEDS_ADDRESSING_MODE, to request the object reference of the 
target object. It can then examine the contents of the Mobile Terminal profile within 
that object reference, to obtain the terminal id and object key. However, that solution 
excludes clients running on an ORB using GIOP 1.0 or 1.1 from invoking on the 
Mobile IOR, as the NEEDS_ADDRESSING_MODE status cannot be returned to them 
by the HLA or Access Bridge.

3.4 Interoperability with GIOP 1.0 and 1.1
Since, in GIOP 1.0 and 1.1 the object key is the only available way of identifying the 
target from data in a GIOP Request header, a special Mobile Object Key (MOK) 
format is specified to allow invocations from GIOP 1.0 and 1.1 clients to be made on 
mobile target objects. It is a structure that may optionally be used to format the 
contents of the object key in the IIOP profile in the Mobile IOR.

When the MOK format is used, the contents of the object key is an encapsulation of 
four octets with the ASCII values ‘M’, ‘I’, ‘O’, ‘R’, followed by the structure 
MobileTerminal::MobileObjectKey.

module MobileTerminal {
...
struct MobileObjectKey {

Version mior_version;
octet reserved;
TerminalId terminal_id;
TerminalObjectKey terminal_object_key;
3-4 Wireless Access and Terminal Mobility in CORBA



3

};
};

Use of the MOK format is optional. Even when the MOK format is used, the Mobile 
Terminal Profile is still included in the Mobile IOR - which means the terminal id and 
target object information are included twice in the object reference. This redundancy is 
allowed because the MOK solution is only offered to support legacy ORBs that do not 
support GIOP 1.2. The GIOP 1.2 mechanism is preferred, and hence always supported 
to assist the migration of systems to GIOP 1.2 support.

If the MOK format is used, the contents of the formatted key are only examined by the 
Home Location Agent and Access Bridge, which will use ORBs that implement the 
this specification. The MOK is not examined by client ORBs, which continue to 
consider the object key as an opaque piece of data. Hence non-mobile aware client 
ORBs are able to interoperate with target objects which have Mobile IORs that use the 
MOK format.

3.5 Additional Type Definitions
The MobileTerminal module contains all the type definitions used in this 
specification. They are provided below.
Wireless Access and Terminal Mobility in CORBA 3-5



3

module MobileTerminal {

...

typedef sequence<octet> GIOPEncapsulation; // used in GIOP tunneling
typedef sequence<octet> GTPEncapsulation; // used in GTP forwarding

enum HandoffStatus {
HANDOFF_SUCCESS,
HANDOFF_FAILURE,
NO_MAKE_BEFORE_BREAK

}; // used to report status of handoff

struct GTPInfo {
short protocol_id; // identifies GIOP Tunneling Protocol
Version gtp_version; // version of the GTP

}; // identifies the GIOP Tunneling Protocol
// negative values of protocol_id element are reserved for internal use

const short TCP_TUNNELING = 0;
const short UDP_TUNNELING = 1;
const short WAP_TUNNELING = 2;

struct AccessBridgeTransportAddress {
GTPInfo tunneling_protocol;
sequence<octet> transport_address; 

}; // identifies transport access point of the Access Bridge

typedef sequence<AccessBridgeTransportAddress> 
AccessBridgeTransportAddressList;

typedef string ObjectId; // same as CORBA::ORB::ObjectId
typedef sequence<ObjectId> ObjectIdList

 // same as CORBA::ORB::ObjectIdList

};
3-6 Wireless Access and Terminal Mobility in CORBA



3

Wireless Access and Terminal Mobility in CORBA 3-7



Home Location Agent 4
The Home Location Agent keeps track of the Access Bridge that a mobile terminal is 
currently associated with. That is, which Access Bridge objects on the terminal can 
currently be invoked. It provides operations to update and to query the current 
location. It also provides operations resolve initial references in the Home Domain.

4.1 Location Update
The HomeLocationAgent interface provides operations for Access Bridges to carry out 
location updates and to query the current location of a terminal. The terminal is 
identified by a terminal identifier, terminal_id. The Home Location Agent may require 
the use of the CORBA Security Service to invoke the update_location operation.

module MobileTerminal {

interface HomeLocationAgent {

void update_location (
in TerminalId terminal_id,
in AccessBridge new_access_bridge,

) raises (UnknownTerminalID, IllegalTargetBridge);

...
};

};

Parameters

terminal_id terminal for which the location update is done

new_access_bridge object reference of the Access Bridge that wants to serve the 
terminal

Exceptions

UnknownTerminalID The HLA raises this exception, if it is not the HLA serving the 
Wireless Access and Terminal Mobility in CORBA 4-1



4

terminal identified by the terminal_id

IllegalTargetBridge The HLA raises this exception, if it does not accept the Access 
Bridge identified by new_access_bridge to serve the terminal 
identified by terminal_id.

When an Access Bridge has lost the terminal, it deregisters the location of the terminal 
by invoking update_location(terminal_id, NIL) at the Home Location Agent.

If an Access Bridge needs to query the current location of a terminal, that is the Access 
Bridge currently serving the terminal, it can invoke the query_location operation at the 
Home Location Agent of the terminal. The Home Location Agent may require the use 
of the CORBA Security Service to invoke the query_location operation.

module MobileTerminal {

interface HomeLocationAgent {

...

void query_location (
in TerminalId terminal_id,
out AccessBridge current_access_bridge

) raises (UnknownTerminalID, UnknownTerminalLocation);

...

};
};

Parameters

terminal_id identifies the terminal the location of which is queried.

current_access_bridge object reference of the Access Bridge to which the HLA 
believes that the terminal is currently attached.

Exceptions

UnknownTerminalID The HLA raises this exception, if it is not the HLA serving the 
terminal identified by the terminal_id

UnknownTerminalLocation The HLA raises this exception, if the given terminal 
has not registered its current location through an Access Bridge, or 
the paging procedure did not find the Access Bridge to which the 
terminal is attached.

4.2 Discovery
The Home Location Agent provides discovery operations so that the terminals can 
resolve initial references to CORBA services available in the Home Domain. The 
operations are list_initial_services and resolve_initial_references. They are the same as 
provided by the ORB pseudo interface for local applications.
Wireless Access and Terminal Mobility in CORBA 4-2



4

module MobileTerminal {

interface HomeLocationAgent {

...

ObjectIdList list_initial_services();
Object resolve_initial_references(

in ObjectId identifier
) raises(InvalidName);

};
};

4.3 Message Processing
When the Home Location Agent receives a GIOP message targeted to a terminal, its 
behavior depends on whether or not it currently has an Access Bridge associated with 
that terminal. If it does, it replies with the LOCATION_FORWARD status and returns 
the Mobile IOR identifying the current Access Bridge. If not, it replies with the system 
exception OBJECT_NOT_EXIST (to a Request) or with the UNKNOWN_OBJECT 
status (to a Locate Request).

4.4 Terminal Ids
The TerminalIds need to be unique world-wide.

One possible scheme that may be used to achieve this is to concatenate the following 
information to produce each identifier:

• IP version (1 byte)

• IP address (4 or 16 bytes), and

• local_id (variable number of bytes).

The IP address can be any IP address that is owned by the organization that is 
generating the TerminalId, and the local_id is a unique identifier within that 
organization.

Any other scheme may be used though, as long as it produces globally unique 
identifiers.
4-3 Wireless Access and Terminal Mobility in CORBA



Access Bridge 5
The Access Bridge encapsulates/decapsulates the GIOP messages to/from the Terminal 
Bridge using a GIOP Tunneling Protocol. It also provides operations to get a list of 
initial services and to resolve initial references in the visited domain. In addition, the 
Access Bridge may support handoff. The Access Bridge may also provide notifications 
related to movements of terminals.

GIOP Tunneling Protocols are described in Chapter 7. The handoff procedures are 
described in Chapter 8.

5.1 Discovery
The Access Bridge provides discovery operations so that the terminals can resolve 
initial references to CORBA services available in the Visited Domain. The operations 
are list_initial_services and resolve_initial_references. They are the same as provided 
by the ORB pseudo interface for local applications.

module MobileTerminal {

interface AccessBridge {
ObjectIdList list_initial_services();

Object resolve_initial_references(
in ObjectId identifier

) raises(InvalidName);

...

};
};
Wireless Access and Terminal Mobility in CORBA 5-1



5

5.2 Query
The Access Bridge also provides query operations that can be used to query whether or 
not a specific terminal is attached to the bridge, and the address information for the 
Access Bridge:

module MobileTerminal {

interface AccessBridge {

...

Boolean terminal_attached (
in TerminalId terminal_id

);

void get_address_info (
out AccessBridgeTransportAddessList transport_address_list

);

...

};
};

If the HLA requires the CORBA Security Service to be used in location update, then 
the Access Bridge must use the CORBA Security Service to protect the usage of the 
terminal_attached operation. The Access Bridge may also use the CORBA Security 
Service to protect the get_address_info operation.

5.3 Message Processing
The Access Bridge acts as a relay between the server and client. It maintains bindings 
between terminal_id and the transport address of the GIOP tunnel to the terminal. For 
each terminal the Access Bridge keeps a state of outstanding invocations. An 
outstanding invocation is a GIOP message to which a reply is expected.

When the bridge gets a message targeted to a terminal, it encapsulates the message to 
the GIOP tunneling protocol in use and sends it to the GIOP tunnel address associated 
with the terminal_id.

If the Access Bridge does not have a tunneling association with the terminal, then it 
can query the current location of the terminal from the HLA or it can replace the IOR 
so that the HLA is in the IIOP Profile. In both cases the Access Bridge must reply with 
the LOCATION_FORWARD status.

If the IOR does not have TAG_HOME_LOCATION_INFO component or the Access 
Bridge does not know the HLA of the terminal, then the Access Bridge must reply 
with the system exception OBJECT_NOT_EXIST to a Request and with the 
UNKNOWN_OBJECT status to a Locate Request.
5-2 Wireless Access and Terminal Mobility in CORBA



5

If the Access Bridge gets a reply the target of which is on a terminal that has moved to 
a new Access Bridge, it can use the forwarding mechanism described in Chapter 8. If 
the Access Bridge does not support handoff, then it should silently discard the Reply 
message.

When the Access Bridge gets an encapsulated GIOP message from a terminal, it 
decapsulates the message and forwards it to the target.

5.4 Mobility Event Notifications
The Access Bridge may, optionally, raise terminal mobility related events through a 
Notification Service Event Channel. The following Event types are defined so that if 
the Access Bridge does this, it may use standard events:

module MobileTerminalNotification {

struct HandoffDepartureEvent {
MobileTerminal::TerminalId terminal_id;
MobileTerminal::AccessBridge new_access_bridge;

};

struct HandoffArrivalEvent {
MobileTerminal::TerminalId terminal_id;
MobileTerminal::AccessBridge old_access_bridge;

};

struct AccessDropoutEvent {
MobileTerminal::TerminalId terminal_id;

};

struct AccessRecoveryEvent {
MobileTerminal::TerminalId terminal_id;

};

...

};

When a terminal moves from an old Access Bridge to a new Access Bridge, the old 
Access Bridge supplies the HandoffDepartureEvent and the new Access Bridge 
supplies the HandoffArrivalEvent.

When a terminal establishes the GIOP tunnel to the Access Bridge for the first time, 
then Handoff, then the the new Access Bridge supplies the HandoffArrivalEvent with 
NIL as reference to the old Access Bridge. When a terminal closes the GIOP tunnel to 
the Access Bridge, then the Access Bridge supplies the HandoffDepartureEvent with 
NIL as reference to the new Access Bridge.

When an Access Bridge detects that transport connectivity to a terminal has dropped, it 
supplies the AccessDropoutEvent. If the terminal re-establishes the GIOP Tunnel to 
the same Access Bridge, then the Access Bridge supplies the AccessRecoveryEvent if 
Wireless Access and Terminal Mobility in CORBA 5-3



5

it has supplied the AccessDropoutEvent. If the terminal re-establish the GIOP Tunnel 
to a new Access Bridge, then the old Access Bridge supplies the 
HandoffDepartureEvent and the new Access Bridge supplies the HandoffArrivalEvent.
5-4 Wireless Access and Terminal Mobility in CORBA



Terminal Bridge 6
The Terminal Bridge encapsulates/decapsulates the GIOP messages to/from the Access 
Bridge using a GIOP Tunneling Protocol. The Terminal Bridge may support handoff. 
As an optional feature, the Terminal Bridge may also provide notifications of mobility 
related events for mobility-aware applications on the mobile terminal.

GIOP Tunneling Protocols and handoff procedures are described in Chapters 7 and 8, 
respectively.

6.1 Mobility Event Notifications
The Terminal Bridge may, optionally, raise terminal mobility related events through a 
Notification Service Event Channel. The following Event types are defined so that if 
the Terminal Bridge does this, it may use standard events.

module TerminalMobilityNotification {

...

struct TerminalHandoffEvent {
MobileTerminal::AccessBridge new_access_bridge;

};

struct TerminalDropoutEvent {
MobileTerminal::TerminalId terminal_id;

};

struct TerminalRecoveryEvent {
MobileTerminal::TerminalId terminal_id;

};
};
Wireless Access and Terminal Mobility in CORBA 6-1



6

When the Terminal Bridge detects that it has lost transport connectivity to the Access 
Bridge, it supplies the TerminalDropoutEvent. When the GIOP Tunnel has been re-
established, then the Terminal Bridge generates the TerminalRecoveryEvent if the 
Access Bridge is the same as before. If the Access Bridge is different, then the 
Terminal Bridge supplies the TerminalHandoffEvent.

When a handoff takes place, the Terminal Bridge supplies the TerminalHandoffEvent. 
The Terminal Bridge also supplies the TerminalHandoffEvent, when the Terminal 
establishes the GIOP Tunnel to an Access Bridge for the first time. When the Terminal 
Bridge closes the GIOP Tunnel, then it supplies the TerminalHandoffEvent with NIL 
as the new_access_bridge.
6-2 Wireless Access and Terminal Mobility in CORBA



GIOP Tunneling 7
A GIOP tunnel is the means to transmit GIOP and tunnel control messages between a 
Terminal Bridge and an Access Bridge. There is only ever one GIOP tunnel between a 
given Terminal Bridge and Access Bridge. However, a graceful handoff behavior is 
defined so that the Terminal Bridge can seamlessly transfer the GIOP Tunnel from the 
current Access Bridge to a new one. If the terminal can have simultaneous transport 
connectivity to two Access Bridges, then the Terminal Bridge creates a new tunnel to 
a new Access Bridge before shutting down the tunnel to the previous Access Bridge.

A tunnel is shared by all GIOP connections to and from the terminal it is associated 
with. The tunneling protocol allows multiplexing between the GIOP connections.

The GIOP Tunneling Protocol (GTP) is an abstract, transport-independent protocol. It 
defines message formats for establishing, releasing, and re-establishing (recovery) the 
tunnel as well as for transmitting and forwarding GIOP messages. The GTP protocol 
also defines messages for establishing and releasing GIOP connections through the 
Access Bridge. Figure 7-1 depicts the protocol architecture.

Figure 7-1 GIOP Tunneling Protocol Architecture

Terminal ORB Access Bridge ORB peer  ORB 

GIOP GIOP
GIOP messages

TCPTCP TCP byte stream

IIOPIIOP
IIOP messages

GIOP GIOP
GIOP messages

GIOP GIOP
GIOP messages

TCPTCP TCP byte stream

IIOPIIOP
IIOP messages

GTP adaptation layer GTP adaptation layer
transport transport

GTP GTPGTP 
msgs

GTP adaptation layer GTP adaptation layer
transport transport

GTP GTPGTP 
msgs

Object
CORBA invocations

ObjectObject
CORBA invocations

Object
Wireless Access and Terminal Mobility in CORBA 7-1



7

Since the GIOP Tunneling Protocol is an abstract protocol, it needs to be mapped onto 
one or more concrete protocols. This specification defines three concrete tunneling 
protocols: TCP Tunneling, UDP Tunneling, and WAP Tunneling.

The GTP is designed so that the specification of a concrete tunneling protocol is 
simple. The specification of a concrete tunneling protocol is provided as an adaption 
layer between the GIOP Tunneling Protocol and a transport layer protocol. The 
adaptation layer needs only to define how the transport is to be used and the data 
format of the transport address of the transport end-point.

7.1 Tunnel Establishment
GIOP tunnel establishment consists of two phases: 1) Transport end-point detection 
and 2) Establishment of the GIOP tunnel. Transport end-point detection is discussed 
below. The establishment of the GIOP tunnel is specified in Chapter 7.2.

7.1.1 Transport End-Point Detection
The detection of transport end-points on the link, network, and transport layers. It also 
depends on the provider of the Access Bridge. Therefore, transport end-point detection 
is out of the scope of this specification.

7.2 GIOP Tunneling Protocol
The GIOP Tunneling Protocol (GTP) assumes that the underlying concrete tunneling 
protocol (that is, the adaption layer between the GTP and a transport protocol) 
provides the same reliability and ordered delivery of messages assumed by the GIOP. 
If the underlying transport protocol does not provide this level of service, then the 
adaption layer that resides between the GTP and the actual transport protocol will 
provide this level of service.

7.2.1 GTP Message Structure
All GTP messages contain a header of eight octets and contents of variable (possibly 
null) length.

The GTP header has the structure of
7-2 Wireless Access and Terminal Mobility in CORBA



7

struct GTPHeader {
unsigned short seq_no;
unsigned short last_seq_no_received;
octet gtp_msg_type;
octet flags;
unsigned short content_length;

};

The seq_no element runs from 1 (0x0001) to 65535 (0xFFFF). The value 0x0000 can 
only appear in tunnel establishment request messages and an associated reply. The 
sequence number counting follows the usual modulo arithmetic with the exception that 
the seq_no 0x0001 follows the seq_no 0xFFFF.

The last_seq_no_received element indicates the highest sequence number of GTP 
messages received by the sender.

The gtp_msg_type element indicates the GIOP Tunneling Protocol message type. It 
defines how the receiver should interpret the body of the GTP message.

The flags element indicates the Endianness used in the GTP header and in GTP control 
messages. The leftmost bit tells the Endianness: 0x00 Big-Endian and 0x80 Little-
Endian. The remaining seven bits are reserved for future usage.

The content_length element (unsigned short) tells the length of the GTP message.

7.2.2 GTP Messages
The GTP Messages are listed in the table below. Descriptions of the messages are 
given in the following subsections.

Table 7-1

Message name gtp_msg_type GTP version

IdleSync 0x00 1.0, 2.0

EstablishTunnelRequest 0x01 1.0, 2.0

EstablishTunnelReply 0x02 1.0, 2.0

ReleaseTunnelRequest 0x03 1.0, 2.0

ReleaseTunnelReply 0x04 1.0, 2.0

HandoffTunnelRequest 0x05 2.0

HandoffTunnelReplyCompleted 0x06 2.0

OpenConnectionRequest 0x07 1.0, 2.0

OpenConnectionReply 0x08 1.0, 2.0

CloseConnectionRequest 0x09 1.0, 2.0

CloseConnectionReply 0x0A 1.0, 2.0

ConnectionCloseIndication 0x0B 1.0, 2.0
Wireless Access and Terminal Mobility in CORBA 7-3



7

7.2.3 IdleSync Message
The IdleSync message does not have a message body.

Source: Terminal Bridge and Access Bridge

Description: It is used by the Terminal Bridge and the Access Bridge to acknowledge 
GTP messages after some implementation dependent timeout. This allows the other 
side of the tunnel to release sent messages in a timely fashion, during a period when no 
messages are being sent in the opposite direction. If messages are being sent in the 
opposite direction, there is no need to send this message, as the synchronization occurs 
through the gtp_header.last_seq_no_received element of each sent message.

Special Notes: None

Forwardable: Yes (This GTP message can be encapsulated and sent in the 
GTPForward message). This will be used by either the Terminal Bridge or an old 
Access Bridge to acknowledge replies to forwarded GTP messages.

7.2.4 EstablishTunnelRequest Message
The EstablishTunnelRequest message has a message body containing the CDR 
encoded value of

union EstablishTunnelRequestBody switch (RequestType) {
case InitialRequest: InitialRequestBody initial_request_body;
case RecoveryRequest: RecoveryRequestBody recovery_request_body;

};

with the following definitions

GIOPData 0x0C 1.0, 2.0

GIOPDataReply 0x0D 1.0, 2.0

GTPForward 0x0E 2.0

GTPForwardReply 0x0F 2.0

Error 0xFF 1.0, 2.0

Table 7-1

Message name gtp_msg_type GTP version
7-4 Wireless Access and Terminal Mobility in CORBA



7

typedef short RequestType;
const short InitialRequest = 0;
const short RecoveryRequest = 1;

struct InitialRequestBody {
MobileTeriminal::TerminalId terminal_id;
MobileTerminal::HomeLocationAgent home_location_agent_reference;
unsigned long time_to_live_request;

};

struct RecoveryRequestBody {
MobileTeriminal::TerminalId terminal_id;
MobileTerminal::HomeLocationAgent home_location_agent_reference;
struct LastAccessBridgeInfo {

MobileTerminal::AccessBridge access_bridge_reference;
unsigned long time_to_live_request;
unsigned short last_seqno_received;

} last_access_bridge_info;
unsigned long time_to_live_request;

};

Source: Terminal Bridge

Description: This message is sent by the Terminal Bridge to establish or re-establish a 
tunnel with an Access Bridge. The terminal_id and home_location_agent_reference 
will be used by the Access Bridge to accept or deny the request and to make the 
location update at the Home Location Agent of the terminal

The time_to_live_request element is used to indicate the terminal's desired life 
expectancy (in seconds) of this tunnel association upon should it be dropped.

If the Access Bridge is already serving the Terminal Bridge (recovery of a lost tunnel), 
then it will reply with ACCEPT status, and does not need to do any external 
notification of the Home Location Agent, or others. In this case, it will change the 
terminal tunnel state back to active and begin delivery of any messages past those 
indicated by the last_access_bridge_info.last_seqno_received element. 

If the Access Bridge is not already serving this Terminal (new tunnel establishment), 
then the access recovery procedure described in Chapter 8.4 is carried out.

Special Note: The gtp_header.seq_no and gtp_header.last_seq_no_received elements 
are always set to zero in this message.

Special Note: With regard to the various time_to_live parameters in all GTP messages, 
if the parameter is set to 0, then if sent by the terminal this indicates that the Access 
Bridge does not need to maintain any state or forward messages for a disconnected 
terminal. If sent by an Access Bridge, then the Access Bridge is indicating that it will 
not maintain any state and will not forward any messages for this terminal. In other 
word, the handoff will not be supported for this terminal.

Forwardable: No (This message cannot be encapsulated and sent via a GTPForward 
message)
Wireless Access and Terminal Mobility in CORBA 7-5



7

7.2.5 EstablishTunnelReply Message
The EstablishTunnelReply message has a message body containing the CDR encoded 
value of

union EstablishTunnelReplyBody switch (ReplyType) {
case InitialReply: InitialReplyBody initial_reply_body;
case RecoveryReply: RecoveryReplyBody recovery_reply_body;

};

with the following definitions

typedef short ReplyType;
const short InitialReplyt = 0;
const short RecoveryReply = 1;

enum AccessStatus {
ACCESS_ACCEPT,
ACCESS_ACCEPT_RECOVERY,
ACCESS_ACCEPT_HANDOFF,
ACCESS_ACCEPT_LOCAL,
ACCESS_REJECT_LOCATION_UPDATE_FAILURE,
ACCESS_REJECT_ACCESS_DENIED

};

struct InitialReplyBody {
AccessStatus status;
MobileTerminal::AccessBridge access_bridge_reference;
unsigned long time_to_live_reply;

};

struct RecoveryReplyBody {
AccessStatus status;
MobileTerminal::AccessBridge access_bridge_reference;
struct OldAccessBridgeInfo {

unsigned long time_to_live_reply;
unsigned short last_seqno_received;

} old_access_bridge_info;
unsigned long time_to_live_reply;

};

Source: Access Bridge

Description: This message is sent by the Access Bridge in response to an 
EstablishTunnelRequest message. The status element has the following possible 
values:

• ACCESS_ACCEPT: in InitialReplyBody, indicates the successful establishment of a 
new tunnel; not used in RecoveryReplyBody
7-6 Wireless Access and Terminal Mobility in CORBA



7

• ACCESS_ACCEPT_RECOVERY: in RecoveryReplyBody it indicates the 
successful re-establishment of an old tunnel to the old Access Bridge; not used in 
InitialReplyBody.

• ACCESS_ACCEPT_HANDOFF: in RecoveryReplyBody it indicates the successful 
re-establishment of an old tunnel to a new Access Bridge; not used in 
InitialReplyBody.

• ACCESS_ACCEPT_LOCAL: in InitialReplyBody, indicates acceptance of access 
without location update at HLA (so called homeless terminal).

• ACCESS_REJECT_LOCATION_UPDATE_FAILURE: The location update at the 
Home Location Agent failed and the Access Bridge does not support homeless 
terminals.

• ACCESS_REJECT_ACCESS_DENIED: Access was denied by the Access Bridge. 
Generic reason. May be sent if a connection bridge is out of resources and cannot 
accept any more Tunnels.

The ACCESS_ACCEPT_RECOVERY status indicates that the tunnel was established 
to the same Access Bridge as the last time a tunnel was established for this terminal. 
The Access Bridge will immediately set it's next GTP header gtp_header.seq_no to the 
next to the value of the last_access_bridge_info.last_seqno_received element obtained 
in the EstablishTunnelRequest message, and will re-send any GTP messages lost when 
the tunnel was dropped. Likewise, the Terminal must immediately set it's next GTP 
header gtp_header.seq_no to the next to the value of the 
old_access_bridge_info.last_seqno_received element of the RecoveryReplyBody, and 
will re-send any GTP messages lost when the tunnel was dropped.

If the tunnel was established to a new Access Bridge, then the Terminal Bridge should 
use the old_access_bridge_info.last_seqno_received element to indicate if any GTP 
messages sent by the terminal were lost by the old Access Bridge during a non-
graceful handoff, and re-send them via GTPForward messages. 

The time_to_live_reply element (not the old_access_bridge_info.time_to_live_reply 
element) is used to indicate the Access Bridge's agreed to life expectancy of this tunnel 
association, and will be less than or equal to the terminal's requested time to live.

Special Note: The gtp_header.seq_no and gtp_header.last_seq_no_received elements 
are always set to zero in this message.

Forwardable: No.

7.2.6 ReleaseTunnelRequest Message
The ReleaseTunnelRequest message has a message body containing the CDR encoded 
value of

struct ReleaseTunnelRequestBody {
unsigned long time_to_live;

};

Source: Terminal Bridge and Access Bridge
Wireless Access and Terminal Mobility in CORBA 7-7



7

Description: This message may be sent by either the Terminal Bridge or the Access 
Bridge to gracefully tear down a tunnel. If sent by the Terminal Bridge, the 
time_to_live represents the time it desires the Access Bridge to maintain connections 
and forward outstanding GIOP messages for this terminal. If sent by the Access Bridge 
then this time_to_live parameter represents the time it is willing to continue to forward 
GIOP messages for this terminal. 

The sender of this message will send no more GTP messages directly on this tunnel. 
And will wait until it receives the reply before releasing the transport connectivity. The 
sender of this message will initiate the tear down of the transport connectivity after 
receipt of the reply.

Special Notes: None.

Forwardable: No.

7.2.7 ReleaseTunnelReply Message
The ReleaseTunnelRequest message has a message body containing the CDR encoded 
value of

struct ReleaseTunnelReplyBody {
unsigned long time_to_live;

};

Source: Terminal Bridge and Access Bridge

Description: This message is sent by either the Terminal Bridge or the Access Bridge 
to acknowledge the graceful tear down of a tunnel. The time_to_live sent in this 
message must be less than or equal-to the time_to_live sent in the 
ReleaseTunnelRequest message. If sent by the terminal, the time_to_live parameter 
represents the time it desires the Access Bridge to maintain connections and forward 
outstanding GIOP messages for this terminal. If sent by the Access Bridge then this 
time_to_live parameter represents the time it's willing to continue to forward GIOP 
messages for this terminal.

The sender of this message will send no more GTP messages directly on this tunnel.

Upon sending or receiving this message, each end of the tunnel (Terminal and Access 
Bridge) may begin silently tearing down GIOP connections upon which there are no 
outstanding GIOP request messages.

The tunnel association for this terminal will be set to inactive_forwarding if the 
negotiated time_to_live is non-zero, and set to disconnected (and/or deleted) if 
time_to_live was negotiated to zero.

Special Notes: None.

Forwardable: No.
7-8 Wireless Access and Terminal Mobility in CORBA



7

7.2.8 HandoffTunnelRequest Message
The HandoffTunnelRequest message has a message body containing the CDR encoded 
value of

struct HandoffTunnelRequestBody {
MobileTerminal::AccessBridgeTransportAddress

new_access_bridge_transport_address_list;
};

Source: Access Bridge

Description: This message is sent by the Access Bridge to the Terminal Bridge in the 
network initiated handoff described in Chapter 8.2.

The Terminal Bridge will use the new_access_bridge_transport_address_list to attempt 
to establish a tunnel to a new Access Bridge. 

The sender of this message will send no more GTP messages directly on this tunnel 
until it received a HandoffTunnelReply message or times out after some 
implementation specific timeout waiting for the Terminal to establish a new Access 
Bridge. If it times out, then the Access Bridge may send a ReleaseTunnelRequest 
message to begin gracefully tearing down the tunnel. It will however continue to 
accept GTP messages sent by the Terminal Bridge and will hold them to either discard 
or process dependent upon the success or failure of the handoff.

The tunnel association for this terminal will be set to handoff_in_progress until receipt 
of a HandoffTunnelReply message.

Special Notes: None.

Forwardable: No.

7.2.9 HandoffTunnelReply Message
The HandoffTunnelReply message has a message body containing the CDR encoded 
value of

struct HandoffTunnelReplyBody {
MobileTerminal::HandoffStatus status;

};

Source: Terminal Bridge

Description: This message is sent by the Terminal Bridge in response to 
HandoffTunnelRequest message.

If the Terminal Bridge successfully established a new AccessBridge, then status is set 
to HANDOFF_SUCCESS. The Terminal Bridge sends a ReleaseTunnelRequest 
message to the Access Bridge and waits for ReleaseTunnelReply message from the 
Access Bridge.
Wireless Access and Terminal Mobility in CORBA 7-9



7

If the terminal does not support “make-before-break”, then the Terminal Bridge should 
not try to establish connectivity to a new Access Bridge but to send a 
HandoffTunnelReply with status set to NO_MAKE_BEFORE_BREAK. The Terminal 
Bridge sends a ReleaseTunnelRequest message to the Access Bridge and waits for a 
ReleaseTunnelReply message from the Access Bridge. After that the Terminal Bridge 
establish a tunnel to a new Access Bridge (see Chapter 8.2.5).

If the terminal could not establish a tunnel to a new Access Bridge, then it will return 
a HANDOFF_FAILURE status in this message. The tunnel will then remain open and 
active until released by either endpoint via the ReleaseTunnelRequest / 
ReleaseTunnelReply sequence.

Special Notes: None.

Forwardable: No.

7.2.10 OpenConnectionRequest Message
The OpenConnectionRequest message has a message body containing the CDR 
encoded value of

struct OpenConnectionRequestBody {
Object target_object_reference;
unsigned long open_connection_request_id;
unsigned long timeout;

};

Source: Terminal Bridge and Access Bridge

Description: This message is sent by either the Terminal Bridge or the Access Bridge 
to allocate a connection on the remote end of the tunnel. The 
open_connection_request_id will be returned in the OpenConnectionReply message. 
This handle is used so that the target_object_reference does not need to be returned in 
the OpenConnectionReply message.

The target_object_reference will be used by the receiver to connect to the target object.

The timeout is sent as an indication to the receiver of the sender's desired connection 
timeout. The receiver should return an error if this connection cannot be established 
within this period. Note that this timeout is by definition approximate because it does 
not take into account the transmission time of the request message. 

Special Notes: The Access Bridge may use GIOP::TargetAddress type (see CORBA 
2.4.2; page 15-34) instead of CORBA::Object type and encode it as an encapsulation.

Forwardable: No. New connections should be made through the current Access 
Bridge.

7.2.11 OpenConnectionReply Message
The OpenConnectionReply message has a message body containing the CDR encoded 
value of
7-10 Wireless Access and Terminal Mobility in CORBA



7

struct OpenConnectionReplyBody {
unsigned long open_connection_request_id;
OpenConnectionStatus status;
unsigned long connection_id; // 0xFFFFFFFF indicates failure

};

enum OpenConnectionStatus {
OPEN_SUCCESS,
OPEN_FAILED_UNREACHABLE_TARGET,
OPEN_FAILED_OUT_OUT_RESOURCES,
OPEN_FAILED_TIMEOUT,
OPEN_FAILED_UNKNOWN_REASON

};

Source: Terminal Bridge and Access Bridge

Description: This message is sent by either the Terminal Bridge or the Access Bridge 
in response to a OpenConnectionRequest message. The open_connection_request_id 
element is the same as that passed in the OpenConnectionRequest message for which 
this is a reply. If a connection was established, the connection_id (allocated by the 
receiver of the OpenConnectionRequest message) is returned, and status is set to 
OPEN_SUCCESS.

If the connection could not be established within the requested time period, then the 
connection_id is set to 0xFFFFFFFF and the status element is used to relay the failure 
reason.

Special Notes: None.

Forwardable: Yes. This is due to the fact that outstanding OpenConnectionRequests 
may have been in progress during a transition to a new Access Bridge. However, if the 
new connection has no outstanding messages on it, then it should be closed, and a 
connection_id = 0xFFFFFFFF returned in this forwarded message with status = 
OPEN_FAILED_TIMEOUT. 

7.2.12 CloseConnectionRequest Message
The OpenConnectionRequest message has a message body containing the CDR 
encoded value of

struct CloseConnectionRequestBody {
unsigned long connection_id; // 0xFFFFFFFF denotes all connections for sender

};

Source: Terminal Bridge and Access Bridge

Description: This message is sent by either the Terminal Bridge or the Access Bridge 
to close a currently open connection. If the connection_id is set to 0xFFFFFFFF, then 
all connections associated with this Tunnel should be closed. 

Special Notes: None.
Wireless Access and Terminal Mobility in CORBA 7-11



7

Forwardable: Yes. This will be used by either the Terminal Bridge or an old Access 
Bridge to gracefully shut down open GIOP connections after a terminal has moved to 
a new Access Bridge.

7.2.13 CloseConnectionReply Message
The CloseConnectionReply message has a message body containing the CDR encoded 
value of

struct CloseConnectionReplyBody {
unsigned long connection_id; // same as in request
CloseConnectionStatus status;

};

enum CloseConnectionStatus {
CLOSE_SUCCESS,
CLOSE_FAILED_INVALID_CONNECTION_ID,
CLOSE_FAILED_UNKNOWN_REASON

};

Source: Terminal Bridge and Access Bridge

Description: This message is sent by either the Terminal Bridge or the Access Bridge 
in response to a CloseConnectionRequest message. The connection_id element is the 
same as is sent in the CloseConnectionRequest message for which this is a reply.

Special Notes: None.

Forwardable: Yes. This will be used by either the Terminal or an old Access Bridge, 
to gracefully shut down open connections after a terminal as moved to a new Access 
Bridge.

7.2.14 ConnectionCloseIndication Message
The ConnectionCloseIndication message has a message body containing the CDR 
encoded value of

struct ConnectionCloseIndicationBody {
unsigned long connection_id; // 0xFFFFFFFF means all connection for recepient
ConnectionCloseReason reason;

};

enum ConnectionCloseReason {
CLOSE_REASON_REMOTE_END_CLOSE,
CLOSE_REASON_RESOURCE_CONSTRAINT,
CLOSE_REASON_IDLE_CLOSED,
CLOSE_REASON_TIME_TO_LIVE_EXPIRED,
CLOSE_REASON_UNKNOWN_REASON

};

Source: Terminal Bridge and Access Bridge
7-12 Wireless Access and Terminal Mobility in CORBA



7

Description: This message is sent by either the Terminal Bridge or the Access Bridge 
to alert the other end of the tunnel that a connection was asynchronously closed, (not 
in response to a CloseConnectionRequest message).

If all open connections for this tunnel association were closed, then the connection_id 
element will be set to 0xFFFFFFFF.

The reason element is used to indicate the reason for the connection closure. The 
element field has the following meanings:

• CLOSE_REASON_REMOTE_END_CLOSE: The remote end of the GIOP 
connection closed the connection.

• CLOSE_REASON_RRESOURCE_CONSTRAINT: The sender closed this 
connection because of a resource constraint.

• CLOSE_REASON_RIDLE_CLOSED: The sender closed the connection after an 
implementation dependent timeout and after all outstanding GIOP requests had 
been completed and the connection could be safely closed.

• CLOSE_REASON_RTIME_TO_LIVE_EXPIRED: The time_to_live for this 
terminal who had moved expired.

The receiver of this message should mark the indicated connections as deleted in its 
local data structures. If a ConnectionCloseIndication message is received for a 
connection_id not valid on the receiver, (probably because the receiver had already 
deleted it locally), then the message will be silently discarded.

Special Notes: None.

Forwardable: Yes. This will be used by either the Terminal Bridge or an old Access 
Bridge to indicate asynchronous connection closures after a terminal has moved to a 
new Access Bridge. This is used to indicate that the time_to_live has expired with the 
reason set to CLOSE_REASON_TIME_TO_LIVE_EXPIRED. It is also sent with the 
reason set to CLOSE_REASON_IDLE_CLOSED if all outstanding GIOP requests 
have been completed and the connection was safely closable.

7.2.15 GIOPData Message
The GIOPData message has a message body containing the CDR encoded value of

struct GIOPDataBody {
unsigned long connection_id;
unsigned long giop_message_id;
MobileTerminal::GIOPEncapsulation giop_message;

};

Source: Terminal Bridge and Access Bridge
Wireless Access and Terminal Mobility in CORBA 7-13



7

Description: This message is sent by either the Terminal Bridge or the Access Bridge 
and contains an encapsulated GIOP message. The giop_message_id element is 
assigned by the sending bridge. It is used by the receiving bridge in GIOPDataReply 
message to indicate to which GIOP message it is a reply. The connection_id is the 
receiver's connection on which this message is to be sent.

Special Notes: None.

Forwardable: Yes. This will be used by either the Terminal Bridge or an old Access 
Bridge to forward GIOP messages.

7.2.16 GIOPDataReply Message
The GIOPDataReply message has a message body containing the CDR encoded value 
of

struct GIOPDataReplyBody {
unsigned long giop_message_id;
DeliveryStatus status;

};

enum DeliveryStatus {
DELIVERY_SUCCESS,
DELIVERY_FAILED_INVALID_CONNECTION_ID,
DELIVERY_FAILED_UNKNOWN_REASON

};

Source: Terminal Bridge and Access Bridge

Description: This message is sent by either the Terminal Bridge or the Access Bridge 
to acknowledge a GIOP message. If the GIOP message cannot be delivered to a 
connection by the receiver of the GIOPData message, then the status element must be 
set to the appropriate failure code. 

Special Notes: None.

Forwardable: Yes. This will be used by either the Terminal Bridge or an old Access 
Bridge to forward replies to GIOPData messages.

7.2.17 GTPForward Message
The GTPForward message has a message body containing the CDR encoded value of

struct GTPForwardBody {
MobileTerminal::AccessBridge access_bridge_reference;

// source if sent by Access Bridge, destination if sent by Terminal Bridge
unsigned long gtp_message_id;
MobileTerminal::GTPEncapsulation gtp_message;

// including GTP header
};
7-14 Wireless Access and Terminal Mobility in CORBA



7

Source: Terminal Bridge and Access Bridge

Description: This message is sent by either the Terminal Bridge or the Access Bridge 
to forward messages to/from an old Access Bridge. The gtp_message_id is allocated by 
the receiver so that it can identify the GTP message in the GTPForwardReply message. 
This handle is used so that the access_bridge_reference does not need to be returned in 
the GTPForwardReply message.

If the message is sent by a Terminal, then the gtp_from terminal operation will be 
invoked on the access_bridge_reference to forward the message to the "old" Access 
Bridge; see Chapter 8.5. 

If the message is sent by an Access Bridge, the access_bridge_reference will be the 
source of the forwarded GTP message.

Special Notes: None.

Forwardable: No. An GTPForward message cannot be encapsulated in another 
GTPForward message. However, Access Bridges can forward forwarded messages 
given to them by invoking the gtp_from_terminal and gtp_to_terminal operations.

7.2.18 GTPForwardReply Message
The GTPForwardReply message has a message body containing the CDR encoded 
value of

struct GTPForwardReplyBody {
unsigned long gtp_message_id;
ForwardStatus status;

};

enum ForwardStatus {
FORWARD_SUCCESS,
FORWARD_ERROR_ACCESS_BRIDGE_UNREACHABLE,
FORWARD_ERROR_UNKNOWN_SENDER,
FORWARD_UNKNOWN_FORWARD_ERROR

};

Source: Terminal Bridge and Access Bridge

Description: This message is sent by either the Terminal Bridge or the Access Bridge 
in response to a GTPForward message. The gtp_message_id element is the same as 
passed in the GTPForward message for which this is a reply.

If this reply message is sent by an Access Bridge, the FORWARD_SUCCESS status 
Indicates that the encapsulated GTP message was delivered to the old Access Bridge. 
Any needed GTP replies or GTP error messages will be returned in separate 
GTPForward messages from that Access Bridge. However, if the status is either 
FORWARD_ERROR_ACCESS_BRIDGE_UNREACHABLE or 
FORWARD_ERROR_UNKNOWN_SENDER, then the terminal should consider the 
tunnel on that access bridge to be lost. 
Wireless Access and Terminal Mobility in CORBA 7-15



7

If this reply message is sent by a Terminal Bridge, upon receipt of this message the 
Access Bridge will call back to the originating Access Bridge (by mapping 
gtp_message_id back to the access_bridge_reference and the gtp_message_id given 
through the gtp_to_terminal operation) by invoking it's gtp_from_terminal operation to 
deliver the status field. The FORWARD_SUCCESS status indicates that the 
encapsulated GTP message was accepted by the Terminal GTP engine. If the Terminal 
has already forgotten about or given up on the Access Bridge who sent the forwarded 
GTP message, then the status will be set to 
FORWAD_ERROR_UNKNOWN_SENDER. The Access Bridge will then consider 
that terminal lost, and begin tearing down it's tunnel end as if the time_to_live had 
expired. 

The Access Bridge sends the GTPForwardReply message by invoking the 
gtp_from_terminal operation at the originating Access Bridge, that is the one who 
invoked the gtp_to_terminal. The Access Bridge replaces the value of the 
gtp_message_id element in the message by the value used in the gtp_to_terminal 
operation.

Special Notes: None.

Forwardable: No. However, Access Bridges can forward forwarded messages given 
to them by invoking the gtp_from_terminal and gtp_to_terminal operations.

7.2.19 Error Message
The Error message has a message body containing the CDR encoded value of

struct ErrorBody {
unsigned short gtp_seq_no; // seq_no element in GTP header
ErrorCode error_code;

};

enum ErrorCode {
ERROR_UNKNOWN_SENDER,
ERROR_PROTOCOL_ERROR,
ERROR_UNKNOWN_FATAL_ERROR

};

Source: Terminal Bridge and Access Bridge

Description: This message is sent by either the Terminal Bridge or the Access Bridge 
to handle GTP protocol errors and to initiate a shutdown. The gtp_header.seq_no of the 
GTP message is provided for debugging purposes since this tunnel will be immediately 
destroyed. 

Special Notes: None.

Forwardable: Yes. This will be used by either the Terminal Bridge or an old Access 
Bridge to cause a disorderly shutdown since the Terminal Bridge and the old Access 
Bridge are obviously out of sync.
7-16 Wireless Access and Terminal Mobility in CORBA



7

7.3 TCP Tunneling
In TCP Tunneling the GTP messages are transmitted in a byte stream without any 
padding or message boundary marker.

The transport end-point is given as a string: <ip_address>:port_number, where 
<ip_address> is either a DNS name of a host or an IP address in dotted decimal 
notation.

7.4 UDP Tunneling
In UDP Tunneling the GTP messages are transmitted using the framing protocol, 
called UDP Tunneling Protocol, described below, in the payload of UDP datagrams.

The transport end-point is given as a string: <ip_address>:<port_number>, where 
<ip_address> is an IP address in dotted decimal notation (123.45.67.89, for example) 
so that the terminal does not need to do a DNS lookup.

7.4.1 UDP Tunneling Protocol
The UDP Tunneling Protocol (UTP) provides the reliability and ordered delivery of 
messages assumed by the GIOP Tunneling Protocol. UTP assumes that it does not get 
corrupted data.

UTP defines encapsulation of GTP messages. It also supports segmentation and re-
assembly of GTP messages and selective acknowledgements.

UTP is chunk-based in the sense that several GTP messages can be concatenated in 
one UTP message. A UTP message is the payload of a UDP datagram. A UTP message 
contains a UTP header and one or more UTP chunks.

The UTP header is four bytes: UTP Sequence Number (unsigned short) and Number of 
UTP chunks (unsigned short) in the UTP message. The network byte order (that is Big-
Endian) is always used to express numeric values. In UTP strings are always in 8-bit 
ANSI ASCII format.

The basic structure of a UTP chunk is TFLV: type-flags-length-value. However, some 
chunks do not have Flags, Length, and/or Value field.

• The Type field is one octet.

• If present the Flags field is one octet. It is used to denote fragmentation.

• The Length field is 0-2 octets telling the length of the Value field in the network 
byte order if the Value field can be of variable length.

• The Value field if present contains the payload of a UTP chunk.

The UTP chunks are:
Wireless Access and Terminal Mobility in CORBA 7-17



7

1. InitialAccessRequest: sent by the Terminal Bridge. The Flags (one octet) and 
Length (unsigned short) fields are present. The Value (variable length) field 
contains a cookie (sequence of octets) and the transport address end-point of the 
Terminal Bridge (string).

2. InitialAccessReply: sent by the Access Bridge. The Flags (one octet) and Length 
(unsigned short) fields are present. The Value (variable length) field contains a 
cookie (sequence of octets) and the transport address end-point of the Access 
Bridge (string).

3. Pause: sent by the Terminal or Access Bridge. No Flags, Length, and Value field. 
The receiving bridge should interpret this chunk so that the sending bridge will 
silently discard all UTP messages until it receives the Resume chunk.

4. Resume: sent by the Terminal or Access Bridge. No Flags, Length, and Value field. 
The receiving bridge should interpret this chunk so that the sending bridge will 
starts to accept the UTP chunks again.

5. Acknowledge: sent by the Terminal or Access Bridge. No Flag Field. The Length 
(one octet) tells the number of entries in the Value field. The actual length of the 
Value field in octets is the content of the Length field multiplied by two. The first 
unsigned short tells the highest Sequence Number of UTP messages received in 
order. The rest unsigned shorts tell which other UTP messages has been received.

6. GTPData: sent by the Terminal or Access Bridge. Flags (one octet) indicate 
fragmentation. The Length field (unsigned short) tells the length of the Value field.

7.4.2 Fragmentation
The two rightmost bits of the Flags field are used to denote fragmentation of the Value 
field:

- 0x00: middle segment

- 0x01: first segment

- 0x02: last segment

- 0x03: unfragmented chunk

7.4.3 InitialAccessRequest
The chunk Type is 0x01. The Flags field (one octet) indicate fragmentation. The 
Length field is two octets indicating the length of the Value field as an unsigned short.

The Value field contains CDR encoded value of

struct InitialAccessRequestChunk {
sequence<octet> cookie;
string terminal_bridge_udp_address;

};
7-18 Wireless Access and Terminal Mobility in CORBA



7

where cookie is some bit-pattern selected by the Terminal Bridge and 
terminal_bridge_udp_address is a string containing the IP address (in dotted decimal 
notation) of the terminal and the UDP port number to which the Access Bridge shall 
send the UTP messages (“123.45.67.89:9876”, for example).

The InitialAccessRequest chunk can only be sent by the Terminal Bridge.

7.4.4 InitialAccessReply
The chunk Type is 0x02. The Flags field (one octet) indicate fragmentation. The 
Length field is two octets indicating the length of the Value field as an unsigned short.

The Value field contains CDR encoded value of

struct InitialAccessReplyChunk {
sequence<octet> cookie;
string access_bridge_udp_address;

}

where cookie is the bit-pattern received in the InitialAccessRequest from the Terminal 
Bridge and access_bridge_udp_address is a string containing the IP address (in dotted 
decimal notation) of the Access Bridge and the UDP port number to which the 
Terminal Bridge shall send the UTP messages.

The InitialAccessReply chunk can only be sent by the Access Bridge.

7.4.5 Pause
The chunk Type is 0x03. The chunk does not have other field.

The receiving bridge should interpret this chunk so that the sending bridge will silently 
discard all UTP messages until it sends the Resume chunk.

Both Access and Terminal Bridge can use this chunk.

7.4.6 Resume
The chunk Type is 0x04. The chunk does not have other field.

The receiving bridge should interpret this chunk so that the sending bridge will accept 
UTP messages again.

Both Access and Terminal Bridge can use this chunk.

7.4.7 Acknowledge
The chunk Type is 0x05. The chunk does not have the Flags field. The Length (one 
octet) tells the number of entries in the Value field. The actual length of the Value 
field in octets is the content of the Length field multiplied by two.
Wireless Access and Terminal Mobility in CORBA 7-19



7

The first unsigned short in the Value field tells the highest Sequence Number of UTP 
messages received in order. The rest unsigned shorts tell which other UTP messages 
has been received.

Both Access and Terminal Bridge can use this chunk.

7.4.8 GTPData
The chunk Type is 0x06. The Flags field (one octet) indicate fragmentation. The 
Length field (unsigned short) tells the length of the Value field.

The Value field contains a GTP message or a part of it.

7.5 WAP Tunneling
The WAP Tunneling Protocol (WAPTP) uses the Wireless Application Protocol 
(WAP) to transmit GTP messages between Terminal and Access Bridge.

The main design principle in WAPTP has been simplicity of the implementation. It is 
assumed that WAPTP will be used in small embedded devices with limited 
capabilities.

WAPTP ensures that the assumptions stated by GTP are no violated, specifically that 
no corrupted data is delivered and that the order of GTP messages is preserved.

7.5.1 Wireless Datagram Protocol
WAPTP uses the Wireless Datagram Protocol (WDP) [WDP] of the WAP 
specification. It operates above the data capable bearer services supported by multiple 
network types. WDP specification describes reference models for wide variety of 
networks.

WDP provides a service similar to UDP, such as transmission of unreliable datagrams 
and use of port numbers to identify multiple applications in one transport address.

"WDP supports several simultaneous communication instances from a higher layer 
over a single underlying WDP bearer service. The port number identifies the higher 
layer entity above WDP." [WDP, 5.2]
"The services offered by WDP include application addressing by port numbers, 
optional segmentation and reassembly and optional error detection. The services 
allow for applications to operate transparently over different available bearer 
services." [WDP, 5.1]

If the used bearer does not provide segmentation and reassembly (SAR), then it is the 
responsibility of the WDP implementation to do it. 

"If the underlying bearer does not provide Segmentation and Reassembly the feature 
is implemented by the WDP provider in a bearer dependent way." [WDP, 7.1]
7-20 Wireless Access and Terminal Mobility in CORBA



7

The maximum size of datagram is bearer dependent. It is assumed that the GTP 
implementation does not attempt to send GTP messages that are larger than the 
maximum datagram size for given bearer (this implies that the ORB also knows this 
limitation and fragments GIOP messages accordingly).

WDP ensures the correct order of datagram segments, but not the order of datagrams 
themselves.

7.5.2 WAP Tunneling Protocol
In WAPTP GTP messages are transmitted in Invoke PDUs of WAP WDP, one GTP 
message in one WDP datagram.

WDP datagrams are not guaranteed to preserve order, so WAPTP MUST delay the 
delivery of GTP messages that have higher sequence number than expected.

7.5.3 WAPTP address types
The WDP supports several address types including IP addresses (both IPv4 and IPv6), 
MSISD (a telephone number) in various flavors (IS_637, ANSI_136, GSM, CDMA, 
iDEN, FLEX, TETRA), GSM_Service_Code, TETRA_ISI, and Mobitex MAN. The 
WDP transport address end-points are given as

struct WDPAddressFormat {
octet wdp_version;// mostly 0x00, depends on bearer; see [WDP]
octet wap_assigned_number;// identifies network, bearer, address

// type combination; see [WDP, Appendix C]
unsigned short wap_port;// Port number
string address;

};

The most usual address types are IP address and telephone number (MSISDN). An IP 
address must be in the decimal dotted notation, e.g. 123.1.2.23, so that the terminal 
does not need to make a DNS lookup. All possible stringified formats of telephone 
numbers are specified in [GFD].
Wireless Access and Terminal Mobility in CORBA 7-21



7

7-22 Wireless Access and Terminal Mobility in CORBA



Handoff and Access Recovery 8
Generally, a handoff consists of three distinct phases: the information gathering phase, 
the decision phase, and the execution phase. Bridge handoff, that is the handoff which 
is visible on the ORB level, is a part of the execution phase in cases where the mobile 
terminal moves from one Access Bridge to another.

The handoff support is an optional feature of this specification. The version of the 
GIOP Tunneling Protocol identifies whether (version 2.0) or not (version 1.0) handoff 
support is available.

There are two different cases of handoff: the backward handoff and the forward handoff 
(access recovery). The first one is the normal case whereas the second one is 
performed in order to re-establish connectivity after a sudden loss. In the following we 
use the term handoff to mean the backward handoff and the term access recovery to 
mean the forward handoff. 

The handoff may be network initiated or terminal initiated. The access recovery is 
always terminal initiated.

8.1 Initiation
The AccessBridge interface contains the start_handoff operation, which is called by an 
external handoff control application to initiate the handoff procedure. In the 
MobileTerimal module there is also the HandoffCallback interface that contains the 
report_handoff_status operation, which is used by the Access Bridge to report the 
outcome status of handoff to the external handoff control application.
Wireless Access and Terminal Mobility in CORBA 8-1



8

module MobileTerminal {

...

interface HandoffCallback {
void report_handoff_status (

in HandoffStatus status
);

};

...

};

Parameters

status outcome status of handoff procedure

module MobileTerminal {

...

interface AccessBridge {

...

void start_handoff(
in TerminalId terminal_id,
in AccessBridge new_access_bridge,
in HandoffCallback handoff_callback_target

);
...

};

...

};

Parameters

terminal_id identifies the terminal to be moved to a new Access Bridge.

new_access_bridge reference to the new Access Bridge

handoff_callback_target object to which the status of handoff will be reported.

8.2 Network Initiated Handoff
The network initiated handoff starts when an external application invokes the 
start_handoff operation in the Access Bridge currently serving the terminal. In the 
description below this Access Bridge is referred to as the old Access Bridge. The 
Access Bridge to which the terminal moves is referred to as the new Access Bridge.
8-2 Wireless Access and Terminal Mobility in CORBA



8

The handoff procedure assumes that the terminal can establish connectivity to the new 
Access Bridge before releasing the connectivity to the old Access Bridge. If this 
cannot be done, then the alternative procedure that is described in Chapter 8.2.5 must 
be used.

8.2.1 Old Access Bridge
1. The old Access Bridge gets involved when the start_handoff operation is invoked on 

it.

2. The old Access Bridge invokes the transport_address_request operation in the new 
Access Bridge, which returns a list of transport addresses of the new Access Bridge 
and a Boolean value indicating whether or not the new Access Bridge accepts the 
terminal.

3. If the terminal is not accepted, then the old Access Bridge only reports the 
HANDOFF_FAILURE status by invoking the report_handoff_status operation at the 
handoff_callback_target and the handoff procedure is (unsuccessfully) completed. 
The old Access Bridge continues to serve the Terminal Bridge as the current Access 
Bridge.

4. If the terminal was accepted by the new Access Bridge, then the old Access Bridge   
sends the HandoffTunnelRequest message to the Terminal Bridge.

5. The following two steps (6 and 7) can take place in any order.

6. When the old Access Bridge gets the HandoffTunnelReply message from the 
Terminal Bridge, then
• if the status indicates a failure in handoff, then the old Access Bridge   reports the 

HANDOFF_FAILURE status by invoking the report_handoff_status operation at 
the handoff_callback_target and the handoff procedure is (unsuccessfully) 
completed. The old Access Bridge continues to serve the Terminal Bridge as the 
current Access Bridge.

• if the status indicates a successful handoff, then the old Access Bridge waits for 
the ReleaseTunnelRequest message from the Terminal Bridge. After that it send 
the ReleaseTunnelReply message to the Terminal Bridge and releases its 
transport end-point to the Terminal Bridge.

7. When the new Access Bridge invokes the handoff_completed operation at the old 
Access Bridge, then the old Access Bridge knows that the new Access Bridge has 
taken the responsibility of the terminal.

8. It is assumed that the handoff status received by the old Access Bridge from the 
Terminal Bridge and the new Access Bridge is same. If they are not the same, then 
the old Access Bridge takes implementation depended actions to recover this error 
situation.

9. The old Access Bridge notifies all other Access Bridges interested in movements of 
the terminal (see Chapter 8.6).
Wireless Access and Terminal Mobility in CORBA 8-3



8

10. If the old Access Bridge supports Mobility Event Notifications, it generates a 
notification of a departing terminal.

11. The old Access Bridge reports the handoff status by invoking the 
report_handoff_status operation at the handoff_callback_target.

8.2.2 New Access Bridge
1. The new Access Bridge gets involved when the old Access Bridge invokes the 

transport_address_request operation at the new Access Bridge. If the new Access 
Bridge does not accept the terminal, then nothing need to be done. The new Access 
Bridge should take the invocation of the transport_address_request operation only as 
a hint of a forthcoming handoff because the Terminal Bridge may use the access 
recovery procedure instead of the handoff procedure; see Chapter 8.2.5.

2. The new Access Bridge gets the EstablishTunnelRequest message from the 
Terminal Bridge.

3. The new Access Bridge invokes the update_location operation at the Home Location 
Agent.

4. The new Access Bridge sends the EstablishTunnelReply message to the Terminal 
Bridge.

5. The new Access Bridge invokes the handoff_completed operation at the old Access 
Bridge.

6. If the location update failed, then the new Access Bridge frees its transport end-
point to the Terminal Bridge.

7. If the location update was successful and the new Access Bridge supports Mobility 
Event Notifications, it generates a notification of an arriving terminal.

8.2.3 Terminal Bridge
1. The Terminal Bridge gets involved when it receives the HandoffTunnelRequest 

message from the old Access Bridge.

2. The Terminal Bridge establishes transport connectivity to the new Access Bridge. If 
this fails, then the Terminal Bridge sends the HandoffTunnelReply message to the 
old Access Bridge that indicates a handoff failure, and the handoff procedure is 
(unsuccessfully) completed. The Terminal Bridge continues to use the GIOP Tunnel 
to the old Access Bridge.

3. The Terminal Bridge sends the EstablishTunnelRequest message to the new 
Access Bridge,

4. The Terminal Bridge waits for the EstablishTunnelReply message from the new 
Access Bridge.

5. The Terminal Bridge sends the HandoffTunnelReply message to the old Access 
Bridge.
8-4 Wireless Access and Terminal Mobility in CORBA



8

6.  If the request of tunnel establishment was rejected, then the Terminal Bridge 
continues to use the tunnel to the old Access Bridge.

7. If the tunnel to the new Access Bridge was granted, then the Terminal Bridge sends 
the ReleaseTunnelRequest message to the old Access Bridge. After receiving the 
ReleaseTunnelReply message from the old Access Bridge, the Terminal Bridge 
can release its transport end-point to the old Access Bridge.

8. If the Terminal Bridge supports Mobility Event Notifications, it generates a 
notification of handoff.

8.2.4 Message Sequence Chart

8.2.5 Alternative Handoff Procedure.
If the terminal cannot have simultaneous transport connectivity to the old and new 
Access Bridge, then the following procedure is used by the Terminal Bridge.

1. The Terminal Bridge gets involved when it receives the HandoffTunnelRequest 
message from the old Access Bridge.

2. The Terminal Bridge sends the HandoffTunnelReply message to the old Access 
Bridge in which the handoff status NO_MAKE_BEFORE_BREAK.

3. The Terminal Bridge sends the ReleaseTunnelRequest message to the old Access 
Bridge and waits for the ReleaseTunnelReply from the old Access Bridge.

4. The Terminal Bridge releases its transport end-point to the old Access Bridge.

5. The Terminal Bridge establish GIOP Tunnel to the new Access Bridge using the 
access recovery procedure described in Chapter 8.4.

TB old AB new AB

start_handoff

HandoffTunnelRequest
transport_address_request

EstablishTunnelRequest

Establishment of transport connectivity

HLA

location_upadte
EstablishTunnelReply

HandoffTunnelReply handoff_completed

ReleaseTunnelRequest

ReleaseTunnelReply notify other ABs

DeoartingTerminalNotificationHandoffNotification

ArrivingTerminalNotification

report_handoff_status

TB old AB new AB

start_handoff

HandoffTunnelRequest
transport_address_request

EstablishTunnelRequest

Establishment of transport connectivity

HLA

location_upadte
EstablishTunnelReply

HandoffTunnelReply handoff_completed

ReleaseTunnelRequest

ReleaseTunnelReply notify other ABs

DeoartingTerminalNotificationHandoffNotification

ArrivingTerminalNotification

report_handoff_status
Wireless Access and Terminal Mobility in CORBA 8-5



8

The old Access Bridge sees from the handoff status of NO_MAKE_BEFORE_BREAK 
that the terminal will use the access recovery procedure instead of the handoff 
procedure. The new Access Bridge sees this alternative handoff procedure as usual 
access recovery procedure.

8.2.6 IDL

module MobileTerminal {

...

interface AccessBridge {

...

void transport_address_request(
// Called by the old Access Bridge at the new Access Bridge

in TerminalId terminal_id,
out AccessBridgeTransportAddressList new_access_bridge_addresses,
out boolean terminal_accepted

);

...

};

...

};

Parameters

terminal_id identification of terminal that will move

new_access_bridge_addresses list of transport addresses that the terminal can contact 
in order to establish transport connectivity

terminal_accepted FALSE, if the called Access Bridge does not accept the terminal.
8-6 Wireless Access and Terminal Mobility in CORBA



8

module MobileTerminal {

...

interface AccessBridge {

...

void handoff_completed(
// called by the new Access Bridge at the old Access Bridge

in TerminalId terminal_id,
in HandoffStatus status

) ;

...

};

...

};

Parameters

terminal_id identifies the terminal

status status of handoff

8.3 Terminal Initiated Handoff
The terminal initiated handoff procedure requires that the terminal can establish 
connectivity to the new Access Bridge before releasing the connectivity to the old 
Access Bridge. If this cannot be done, then the terminal initiated handoff must be done 
using the access recovery mechanism: The Terminal Bridge closes connectivity to the 
old Access Bridge and then carries out the access recovery to the new Access Bridge.

Below we describe action taken by the Terminal Bridge and by the new and old Access 
Bridges.

8.3.1 Terminal Bridge
1. The Terminal Bridge establishes transport connectivity to the new Access Bridge.

2. The Terminal Bridge sends the EstablishTunnelRequest message to the new 
Access Bridge.

3. The Terminal Bridge waits for the EstablishTunnelReply message from the new 
Access Bridge.
Wireless Access and Terminal Mobility in CORBA 8-7



8

4. If the tunnel establishment was rejected, then the Terminal Bridge releases its 
transport end-point to the new Access Bridge and the handoff procedure is 
(unsuccessfully) completed. The Terminal Bridge continues to use the GIOP Tunnel 
to the old Access Bridge.

5. The Terminal Bridge sends the ReleaseTunnelReuqest message to the old Access 
Bridge.

6. After receiving the ReleaseTunnelReply message from the old Access Bridge, the 
Terminal Bridge can release its transport end-point to the old Access Bridge.

7. If the Terminal Bridge supports Mobility Event Notifications, it generates a 
notification of handoff.

8.3.2 New Access Bridge 
1. The new Access Bridge gets involved when it receives the 

EstablishTunnelRequest message from the Terminal Bridge.

2. The new Access Bridge invokes the location_update_operation at the Home 
Location Agent.

3. If the location update failed, then the new Access Bridge sends the 
EstablishTunnelReply message to the Terminal Bridge and releases its transport 
end-point to the Terminal Bridge and the handoff procedure is (unsuccessfully) 
completed.

4. The new Access Bridge invokes the handoff_in_progress operation at the old Access 
Bridge.

5. The new Access Bridge sends the EstablishTunnelReply message to the Terminal 
Bridge.

6. If the new Access Bridge supports Mobility Event Notifications, it generates a 
notification of an arriving terminal.

8.3.3 Old Access Bridge
1. The old Access Bridge gets involved, when the new Access Bridges invokes the 

handoff_in_progress operation at the old Access Bridge.

2. The old Access Bridge waits for the ReleaseTunnelRequest message from the 
Terminal Bridge.

3. After sending the ReleaseTunnelReply message to the Terminal Bridge, the old 
Access Bridge can release its transport end-point to the Terminal Bridge.

4. The old Access Bridge notifies all other Access Bridges interested in movements of 
the terminal (see Chapter 8.6).

5. If the old Access Bridge supports Mobility Event Notifications, it generates a 
notification of a departing terminal.
8-8 Wireless Access and Terminal Mobility in CORBA



8

8.3.4 Message Sequence Chart

8.3.5 IDL

module MobileTerminal {

...

interface AccessBridge {

...

void handoff_in_progress (
// called by the old Access Bridge in the new Access Bridge

in TerminalId terminal_id,
in AccessBridge new_access_bridge

);

...

};

...

};

Parameters

terminal_id identifies the terminal

new_access_bridge reference of the new access bridge

TB old AB new AB

EstablishTunnelRequest

Establishment of transport connectivity

HLA

location_upadte

EstablishTunnelReply

handoff_in_progress

ReleaseTunnelRequest

ReleaseTunnelReply notify other ABs

DeoartingTerminalNotificationHandoffNotification

ArrivingTerminalNotification

TB old AB new AB

EstablishTunnelRequest

Establishment of transport connectivity

HLA

location_upadte

EstablishTunnelReply

handoff_in_progress

ReleaseTunnelRequest

ReleaseTunnelReply notify other ABs

DeoartingTerminalNotificationHandoffNotification

ArrivingTerminalNotification
Wireless Access and Terminal Mobility in CORBA 8-9



8

8.4 Access Recovery
When the Terminal Bridge detects that the connectivity to the Access Bridge is lost, a 
dropout notification is generate in the terminal domain and the Terminal Bridge starts 
the access recovery procedure. There are two possible successful outcomes of the 
access recovery procedure:

• The access is re-established to the same Access Bridge as before.

• The access is established to a new Access Bridge.

8.4.1 Recovery to the Old Access Bridge

Terminal Bridge 
1. The Terminal Bridge establishes transport connectivity to an Access Bridge.

2. The Terminal Bridge sends the EstablishTunnelRequest message to the Access 
Bridge.

3. The Terminal Bridge waits for the EstablishTunnelReply message from the Access 
Bridge.

4. From the EstablishTunnelReply message the Terminal Bridge learns that the 
Access Bridge is the same as before and which is the last GTP message that the 
Access Bridge has received. The Terminal Bridge retransmits the lost GTP 
messages.

5. If the Terminal Bridge supports Mobility Event Notifications, it generates a 
recovery notification.

Old Access Bridge
1. The old Access Bridge receives the EstablishTunnelRequest from the Terminal 

Bridge.

2. From the EstablishTunnelRequest message the Access Bridge learns that the 
tunnel establishment is access recovery to it and which is the last GTP message that 
the Terminal Bridge has received.

3. The Access Bridge sends the EstablishTunnelReply message and retransmits the 
lost GTP messages.

4. If the old Access Bridge supports Mobility Event Notifications, it generates an 
access recovery notification only if it has generated the access dropout notification 
for the terminal.
8-10 Wireless Access and Terminal Mobility in CORBA



8

8.4.2 Recovery to New Access Bridge

Terminal Bridge
1. same as in recovery to the old Access Bridge

2. same as in recovery to the old Access Bridge

3. same as in recovery to the old Access Bridge

4. From the EstablishTunnelReply message the Terminal Bridge learns that the 
Access Bridge is a new one and which is the last GTP message that the old Access 
Bridge has received. Another possibility is that the EstablishTunnelReply indicates 
location update failure, which terminates the recovery procedure.

5. If the Terminal Bridge supports the Mobility Event Notifications, then it generates 
a handoff notification.

6. The Terminal Bridge retransmits the GTP messages that the old Access Bridge has 
lost thru the new Access Bridge.

New Access Bridge
1. The new Access Bridge receives the EstablishTunnelRequest from the Terminal 

Bridge.

2. From the EstablishTunnelRequest message the Access Bridge learns that the 
tunnel establishment is access recovery to a new Access Bridge and which is the 
last GTP message that the Terminal Bridge has received.

3. The new Access Bridge invokes the location_update operation at the Home Location 
Agent.

4. If the location update fails, the new Access Bridge sends the 
EstablishTunnelReply message that indicates location update failure and 
completes the recovery procedure by releasing its transport end-point to the 
Terminal Bridge.

5. If the location update was successful, the new Access Bridge invokes the 
recovery_request operation at the old Access Bridge.

6. The new Access Bridge sends the EstablishTunnelReply message to the Terminal 
Bridge.

7. If the new Access Bridge supports The Mobility Event Notifications, it generates a 
handoff arrival notification.

8. As long as needed the new Access Bridge forwards GTP messages between the 
Terminal Bridge and the old Access Bridge(s).
Wireless Access and Terminal Mobility in CORBA 8-11



8

Old Access Bridge
1. The old Access Bridge gets involved when the new Access Bridge invokes the 

recovery_request operation at it.

2. The old Access Bridge notifies other Access Bridges interested in movements of the 
terminal (see Chapter 8.6).

3. If the old Access Bridge supports Mobility Event Notifications, it generates a 
notification of a departing terminal.

4. The old Access Bridge retransmits the GTP messages that the Terminal Bridge has 
lost thru the new Access Bridge.

Message Sequence Chart

TB old AB new AB

EstablishTunnelRequest

Establishment of transport connectivity

HLA

location_upadte

EstablishTunnelReply

recovery_request

notify other ABs

DeoartingTerminalNotificationHandoffNotification

ArrivingTerminalNotification

Retransmissions thru the  
new Access Bridge

TB old AB new AB

EstablishTunnelRequest

Establishment of transport connectivity

HLA

location_upadte

EstablishTunnelReply

recovery_request

notify other ABs

DeoartingTerminalNotificationHandoffNotification

ArrivingTerminalNotification

Retransmissions thru the  
new Access Bridge
8-12 Wireless Access and Terminal Mobility in CORBA



8

IDL

module MobileTerminal {

...

interface AccessBridge {

...

void recovery_request (
// called by the new Access Bridge in the old Access Bridge

in TerminalId terminal_id,
in AccessBridge new_access_bridge,
in unsigned short highest_gtp_seqno_received_at_terminal,
out unsigned short highest_gtp_seqno_received_at_access_bridge

);

...

};

...

};

Parameters

terminal_id identifies the terminal

new_access_bridge reference to the new Access Bridge

highest_gtp_seqno_received_at_terminal highest GTP sequence number that the 
Terminal Bridge has received from the Access Bridge

highest_gtp_seqno_received_at_access_bridge highest GTP sequence number that 
the Access Bridge has received from the Terminal Bridge

8.5 GTP Message Forwarding
The GIOP requires that replies are sent in the same GIOP connection as the request 
came in. Since an Access Bridge is the GIOP connection end-point, replies must go 
through it even if the terminal has moved to another Access Bridge. Therefore, the 
AccessBridge interface contains two operations to be used in relaying GTP messages 
between the Terminal Bridge and an old Access Bridge thru the current Access Bridge.

When an old Access Bridge receives a GIOP message the actual destination of which 
is on a terminal that has moved, the old Access Bridge creates the corresponding GTP 
message(s) and invokes the gtp_to_terminal operation at the current Access Bridge. 
The old Access Bridge may use the query_location operation available in the 
Wireless Access and Terminal Mobility in CORBA 8-13



8

HomeLocationAgent interface to learn the current Access Bridge. The current Access 
Bridge uses the GTPForward message to deliver the GTP message to the Terminal 
Bridge.

When the Terminal Bridge wants to send a GIOP message thru an old Access, the 
Terminal Bridge creates the corresponding GTP message(s) and sends the 
GTPForward message(s) to the current Access Bridge. The current Access Bridge 
invokes the gtp_from_terminal operation at the old Access Bridge.

module MobileTerminal {

...

interface AccessBridge {

...

void gtp_to_terminal (
in TerminalId terminal_id,
in AccessBridge old_access_bridge,
in unsigned long gtp_message_id,
in GTPEncapsulation gtp_message

) raises (TerminalNotHere);

...

};

...

};

Parameters

terminal_id identifies the terminal

old_access_bridge identifies the Access Bridge from which the reply comes

gtp_message_id a handle used in a possible GTP reply message to identify to which 
GTP message the reply is

gtp_message octet sequence containing the GTP message

Exceptions

TerminalNotHere indicates that the terminal has moved from the invoked Access 
Bridge
8-14 Wireless Access and Terminal Mobility in CORBA



8

module MobileTerminal {

...

interface AccessBridge {

...

void gtp_from_terminal (
in TerminalId terminal_id,
in unsigned long gtp_message_id,
in GTPEncapsulation gtp_message

) ;

...

};

...

};

Parameters

terminal_id identifies the terminal from which the GTP message is coming

gtp_message_id a handle to be used in a possible GTP reply message to identify to 
which GTP message the reply is

gtp_message octet sequence containing the GTP message

8.6 Terminal Tracking
An Access Bridge needs to know the current Access Bridge of the terminal as long as 
the Terminal Bridge has open GIOP connections thru the Access Bridge. Therefore, 
the AccessBridge interface has two operations related to terminal tracking.

When a terminal moves from Access Bridge A to Access Bridge B, then Access Bridge 
A notifies the Access Bridge from which the terminal came (let it be Access Bridge C) 
and all other Access Bridges that have subscribed handoff notice of that terminal from 
the Access Bridge A (let they be Access Bridges D and E). If the Access Bridges C, D, 
and E still want to follow the terminal, they must subscribe the handoff notice from the 
Access Bridge B, that is to invoke the subscribe_handoff_notice operation at the 
Access Bridge B.

When the terminal moves from the Access Bridge B, the Access Bridge B notifies the 
Access Bridge A and those Access Bridges who has subscribed the notice. The 
operation is handoff_notice.
Wireless Access and Terminal Mobility in CORBA 8-15



8

module MobileTerminal {

...

interface AccessBridge {

...

void handoff_notice (
in TerminalId terminal_id,
in AccessBridge new_access_bridge

) ;

...

};

...

};

Parameters

terminal_id identifies the terminal that has just moved

new_access_bridge reference to Access Bridge to which the terminal has moved

module MobileTerminal {

...

interface AccessBridge {

...

void subscribe_handoff_notice (
// called by an Access Bridge who wants to follow terminal movements
in TerminalId terminal_id,
in AccessBridge interested_access_bridge

)  raises (TerminalNotHere);

...

};

...

};

Parameters

terminal_id identifies the terminal to be followed

interested_access_bridge reference to Access Bridge that wants to receive a handoff 
8-16 Wireless Access and Terminal Mobility in CORBA



8

notice when the terminal moves again

Exceptions

TerminalNotHere indicates that the terminal has moved from the invoked Access 
Bridge
Wireless Access and Terminal Mobility in CORBA 8-17



8

8-18 Wireless Access and Terminal Mobility in CORBA



Issues to be Discussed 9
9.1 Notification Service
This specification does not affect the use of Notification Service. However, the 
Notification Service is expected to quite popular service to be used by applications in 
mobile terminal. Therefore, the reference of Notification Service in the visited domain 
should be available through the discovery operations of the Access Bridge.

This proposal specifies Mobility Event Notifications; see Chapters 5.4 and 6.1.

9.2 Use of Interoperable Naming Service
This specification does not affect the use of Interoperable Naming Service. The 
reference of Naming Service in the visited domain should be available through the 
discovery operations of the Access Bridge.

9.3 Usage of Messaging Service
This proposal does not give any specific uses for Messaging Service, nor is use of 
Messaging Service in any way affected by the proposed technology. However, it is 
possible to reduce the amount of messages sent with Messaging Service somewhat 
with simple optimization.

Since the Access Bridges used by the mobile terminal are better informed on the 
terminal's whereabouts and connectivity, it would be beneficial to implement 
Messaging Router functionality in the Access Bridge. In particular, the following two 
cases seem to benefit from this optimization, the first one more than the second:

• Assume the mobile terminal's connectivity has dropped, so it is inaccessible. Now 
the last Messaging Router on the path to the terminal will keep on pinging the 
mobile terminal through its current Access Bridge. But if the Access Bridge is itself 
Wireless Access and Terminal Mobility in CORBA 9-1



9

the last Router, it both knows that the terminal is unavailable and will know when 
the terminal becomes available, so it can wait without needlessly pinging until the 
terminal's connectivity is restored.

• In this case, we start with the same situation as above, but now the mobile terminal 
recovers connectivity at another Access Bridge. Now, after handoff between the old 
and new Access Bridge is complete, the last Router will receive a 
LOCATION_FORWARD and has to invoke the new Access Bridge also, whereas if 
the old Access Bridge is the last Router, it can send the message to the terminal 
directly, which saves a couple of sent messages.
9-2 Wireless Access and Terminal Mobility in CORBA



Mandatory /Optional Requirements 10
10.1 Mandatory Requirements
All products compliant to this specification must support the Mobile IOR as specified 
in Chapter 3.

10.1.1 Home Location Agent
A product compliant to this specification must implement all four operations specified 
in the HomeLocationAgent interface (see Chapter 4):

• update_location,
• query_location,
• list_initial_services, and
• resolve_initial_reference.

10.1.2 Access Bridge
A product compliant to this specification must implement GIOP Tunneling Protocol 
version 1.0 and either TCP, UDP or WAP Tunneling as described in Chapter 7. The 
product must also implement the following operations specified in the AccessBridge 
interface (see Chapter 5):

• list_initial_services,
• resolve_initial_reference,
• terminal_attached, and
• get_address_info.

The product must also acts as a relay between an ORB server and an ORB client 
fulfilling the message processing requirements of Chapter 5.3.
Wireless Access and Terminal Mobility in CORBA 10-1



10
10.1.3 Terminal Bridge
A product compliant to this specification must implement GIOP Tunneling Protocol 
version 1.0 and either TCP, UDP or WAP Tunneling as described in Chapter 7.

10.2 Optional Requirements

10.2.1 Home Location Agent
None.

10.2.2 Access Bridge
An Access Bridge may provide notifications of mobility related events through the 
NetworkMobilityChannel (Chapter 5.3) and support handoff.

An Access Bridge implementation supporting handoff MUST implement the GIOP 
Tunneling Protocol version 2.0 (Chapter 7) as well as the handoff and access recovery 
procedures and the mechanisms to GTP messaging forwarding and terminal tracking as 
described in Chapter 8 for an Access Bridge in any of its possible role.

The HandoffCallback interface and the following operations specified in the 
AccessBridge interface (Chapter 8) must be implemented:

• start_handoff,
• transport_address_request,
• handoff_completed,
• handoff_in_progress,
• recovery_request,
• gtp_to_terminal,
• gtp_from_terminal,
• handoff_notice, and
• subscribe_handoff_notice.

10.2.3 Terminal Bridge
An Terminal Bridge may provide notifications of mobility related events through the 
TerminalMobilityChannel (Chapter 6.1) and support handoff.

An Terminal Bridge implementation supporting handoff MUST implement the GIOP 
Tunneling Protocol version 2.0 (Chapter 7) as well as the handoff and access recovery 
procedures as described in Chapter 8 for the Terminal Bridge.
10-2 Wireless Access and Terminal Mobility in CORBA



IDL 11
The IDL of this specification is arranged in three modules: MobileTerimal, 
MobilityEventNotifications, and GTP (GIOP Tunneling Protocol).
Wireless Access and Terminal Mobility in CORBA 11-1



11
11.1 Module MobileTerminal
//File: MobileTerminal.idl

#ifndef _MOBILE_TERMINAL_IDL_
#define _MOBILE_TERMINAL_IDL_

#include <orb.idl>
#include <IOP.idl>

#pragma prefix "omg.org"

module MobileTerminal {

interface HomeLocationAgent;
interface AccessBridge;

typedef sequence<octet>  TerminalId;
typedef sequence<octet>  GIOPEncapsulation;
typedef sequence<octet>  GTPEncapsulation;

struct Version {
octet major;
octet minor;

};

struct ProfileBody {
Version mior_version; 
octet reserved;
TerminalId terminal_id;
sequence<octet> terminal_object_key;
sequence<IOP::TaggedComponent> components;

};

struct HomeLocationInfo {
HomeLocationAgent  agent;

};

struct MobileObjectKey {
Version mior_version; 
octet reserved;
TerminalId terminal_id;
sequence<octet> terminal_object_key;

};

enum HandoffStatus {
HANDOFF_SUCCESS,
HANDOFF_FAILURE,
NO_MAKE_BEFORE_BREAK

};
11-2 Wireless Access and Terminal Mobility in CORBA



11
const short  TCP_TUNNELING = 0;
const short  UDP_TUNNELING = 1;
const short  WAP_TUNNELING = 2;

struct GTPInfo {
short    protocol_id; // negative values are reserved for internal use
Version  gtp_version;

};

struct AccessBridgeTransportAddress {
GTPInfo  tunneling_protocol;
sequence<octet> transport_address;

};

typedef sequence<AccessBridgeTransportAddress>
AccessBridgeTransportAddressList;

typedef string ObjectId; // same as CORBA::ORB::ObjectId
typedef sequence<ObjectId> ObjectIdList;

// same as CORBA::ORB::ObjectIdList

exception IllegalTargetBridge {};
exception TerminalNotHere {};
exception UnknownTerminalId {};
exception UnknownTerminalLocation {};
exception InvalidName{}; // same asCORBA::ORB::InvalidNam

interface HomeLocationAgent {

void update_location (
in TerminalId terminal_id,
in AccessBridge new_access_bridge

) raises (UnknownTerminalId, IllegalTargetBridge);

void query_location (
in  TerminalId terminal_id,
out AccessBridge current_access_bridge

) raises (UnknownTerminalId, UnknownTerminalLocation);

CORBA::ORB::ObjectIdList list_initial_services ();

Object resolve_initial_references (
in CORBA::ORB::ObjectId  identifier

) raises (CORBA::ORB::InvalidName);

};

interface HandoffCallback {

void report_handoff_status (
in HandoffStatus  status
Wireless Access and Terminal Mobility in CORBA 11-3



11
);

};

interface AccessBridge {

CORBA::ORB::ObjectIdList list_initial_services ();

Object resolve_initial_references (
 in CORBA::ORB::ObjectId  identifier

) raises (CORBA::ORB::InvalidName);

boolean terminal_attached (
in TerminalId  terminal_id

);

void get_address_info (
out AccessBridgeTransportAddressList  transport_address_list

);

void start_handoff (
in TerminalId terminal_id,
in AccessBridge new_access_bridge,
in HandoffCallback handoff_callback_target

);

void transport_address_request (
in  TerminalId terminal_id,
out AccessBridgeTransportAddressList

new_access_bridge_addresses,
out boolean terminal_accepted

);

void handoff_completed (
in TerminalId terminal_id,
in HandoffStatus status

);

void handoff_in_progress (
in TerminalI terminal_id,
in AccessBridge new_access_bridge

);

void recovery_request (
in  TerminalId terminal_id,
in  AccessBridge new_access_bridge,
in  unsigned short highest_gtp_seqno_received_at_terminal,
out unsigned short highest_gtp_seqno_received_at_access_bridge

);

void gtp_to_terminal (
11-4 Wireless Access and Terminal Mobility in CORBA



11
in TerminalId terminal_id,
in AccessBridge old_access_bridge,
in unsigned long gtp_message_id,
in GTPEncapsulation gtp_message

) raises (TerminalNotHere);

void gtp_from_terminal (
in TerminalId terminal_id,
in unsigned long gtp_message_id,
in GTPEncapsulation gtp_message

);

void handoff_notice (
in TerminalId terminal_id,
in AccessBridge new_access_bridge

);

void subscribe_handoff_notice (
in TerminalId terminal_id,
in AccessBridge interested_access_bridge

) raises (TerminalNotHere);

};

};

#endif

11.2 Module MobilityEventNotification

//File: MobileTerminalNotification.idl

#ifndef _MOBILE_TERMINAL_NOTIFICATION_IDL_
#define _MOBILE_TERMINAL_NOTIFICATION_IDL_

#include <orb.idl>
#include <IOP.idl>

#include "MobileTerminal.idl"

#pragma prefix "omg.org"

module MobileTerminalNotification {

struct HandoffDepartureEvent {
MobileTerminal::TerminalId terminal_id;
MobileTerminal::AccessBridge new_access_bridge;

};

struct HandoffArrivalEvent {
Wireless Access and Terminal Mobility in CORBA 11-5



11
MobileTerminal::TerminalId terminal_id;
MobileTerminal::AccessBridge old_access_bridge;

};

struct AccessDropoutEvent {
MobileTerminal::TerminalId  terminal_id;

};

struct AccessRecoveryEvent {
MobileTerminal::TerminalId  terminal_id;

};

struct TerminalHandoffEvent {
MobileTerminal::AccessBridge  new_access_bridge;

};

struct TerminalDropoutEvent {
MobileTerminal::TerminalId  terminal_id;

};

struct TerminalRecoveryEvent {
MobileTerminal::TerminalId  terminal_id;

};

};

#endif

11.3 Moduke GTP GIOP Tunneling Protocol

//File: GTP.idl

#ifndef _GTP_IDL_
#define _GTP_IDL_

#include "MobileTerminal.idl"

#pragma prefix "omg.org"

module GTP {

struct GTPHeader {
unsigned short seq_no;
unsigned short last_seq_no_received;
octet  gtp_msg_type;
octet flags;
unsigned short content_length;

};

 typedef short  RequestType;
11-6 Wireless Access and Terminal Mobility in CORBA



11
const short  INITIAL_REQUEST = 0;
const short  RECOVERY_REQUEST = 1;

struct InitialRequestBody {
MobileTerminal::TerminalId terminal_id;
MobileTerminal::HomeLocationAgent home_location_agent_reference;
unsigned long time_to_live_request;

};

struct RecoveryRequestBody {
MobileTerminal::TerminalId         terminal_id;
MobileTerminal::HomeLocationAgent  home_location_agent_reference;

 struct LastAccessBridgeInfo {
MobileTerminal::AccessBridge  access_bridge_reference;
unsigned long                 time_to_live_request;
unsigned short                last_seq_no_received;

} last_access_bridge_info;
unsigned long  time_to_live_request;

};

union EstablishTunnelRequestBody switch (RequestType) {
case INITIAL_REQUEST: InitialRequestBody initial_request_body;
case RECOVERY_REQUEST: RecoveryRequestBody 

recovery_request_body;
};

typedef short  ReplyType;
const short  INITIAL_REPLY = 0;
const short  RECOVERY_REPLY = 1;

enum AccessStatus {
ACCESS_ACCEPT,
ACCESS_ACCEPT_RECOVERY,
ACCESS_ACCEPT_HANDOFF,
ACCESS_ACCEPT_LOCAL,
ACCESS_REJECT_LOCATION_UPDATE_FAILURE,
ACCESS_REJECT_ACCESS_DENIED

};

struct InitialReplyBody {
AccessStatus                  status;
MobileTerminal::AccessBridge  access_bridge_reference;
unsigned long                 time_to_live_reply;

};

struct RecoveryReplyBody {
AccessStatus                  status;
MobileTerminal::AccessBridge  access_bridge_reference;
struct OldAccessBridgeInfo {

unsigned long   time_to_live_reply;
unsigned short  last_seq_no_received;
Wireless Access and Terminal Mobility in CORBA 11-7



11
} old_access_bridge_info;
unsigned long  time_to_live_reply;

};

union EstablishTunnelReplyBody switch (ReplyType) {
case INITIAL_REPLY: InitialReplyBody initial_reply_body;
case RECOVERY_REPLY: RecoveryReplyBody recovery_reply_body;

};

struct ReleaseTunnelRequestBody {
unsigned long  time_to_live;

};

struct ReleaseTunnelReplyBody {
unsigned long  time_to_live;

};

struct HandoffTunnelRequestBody {
MobileTerminal::AccessBridgeTransportAddressList 

new_access_bridge_transport_address_list;
};

struct HandoffTunnelReplyBody {
MobileTerminal::HandoffStatus  status;

};

struct OpenConnectionRequestBody {
Object  target_object_reference;
unsigned long open_connection_request_id;
unsigned long timeout;

};

enum OpenConnectionStatus {
OPEN_SUCCESS,
OPEN_FAILED_UNREACHABLE_TARGET,
OPEN_FAILED_OUT_OF_RESOURCES,
OPEN_FAILED_TIMEOUT,
OPEN_FAILED_UNKNOWN_REASON

};

struct OpenConnectionReplyBody {
unsigned long open_connection_request_id;
OpenConnectionStatus status;
unsigned long connection_id;

};

struct CloseConnectionRequestBody {
unsigned long  connection_id;

};

enum CloseConnectionStatus {
11-8 Wireless Access and Terminal Mobility in CORBA



11
CLOSE_SUCCESS,
CLOSE_FAILED_INVALID_CONNECTION_ID,
CLOSE_FAILED_UNKNOWN_REASON

};

struct CloseConnectionReplyBody {
unsigned long connection_id;
CloseConnectionStatus status;

};

enum ConnectionCloseReason {
CLOSE_REASON_REMOTE_END_CLOSE,
CLOSE_REASON_RESOURCE_CONSTRAINT,
CLOSE_REASON_IDLE_CLOSED,
CLOSE_REASON_TIME_TO_LIVE_EXPIRED,
CLOSE_REASON_UNKNOWN_REASON

};

struct ConnectionCloseIndicationBody {
unsigned long connection_id;
ConnectionCloseReason reason;

};

struct GIOPDataBody {
unsigned long connection_id;
unsigned long giop_message_id;
MobileTerminal::GIOPEncapsulation giop_message;

};

enum DeliveryStatus {
DELIVERY_SUCCESS,
DELIVERY_FAILED_INVALID_CONNECTION_ID,
DELIVERY_FAILED_UNKNOWN_REASON

};

struct GIOPDataReplyBody {
unsigned long   giop_message_id;
DeliveryStatus  status;

};

struct GTPForwardBody {
MobileTerminal::AccessBridge access_bridge_reference;
unsigned long gtp_message_id;
MobileTerminal::GTPEncapsulation gtp_message;

};

enum ForwardStatus {
FORWARD_SUCCESS,
FORWARD_ERROR_ACCESS_BRIDGE_UNREACHABLE,
FORWARD_ERROR_UNKNOWN_SENDER,
FORWARD_UNKNOWN_FORWARD_ERROR
Wireless Access and Terminal Mobility in CORBA 11-9



11
};

struct GTPForwardReplyBody {
unsigned long  gtp_message_id;
ForwardStatus  status;

};

enum ErrorCode {
ERROR_UNKNOWN_SENDER,
ERROR_PROTOCOL_ERROR,
ERROR_UNKNOWN_FATAL_ERROR

};

struct ErrorBody {
unsigned short  gtp_seq_no;
ErrorCode error_code;

};

};

#endif
11-10 Wireless Access and Terminal Mobility in CORBA


	Wireless Access and Terminal Mobility in CORBA
	Draft Adopted Specification

	Ke Jin
	Borland Software Corporation
	951 Mariner’s Island Blvd. Suite 120
	San Mateo, CA 94404
	USA
	Phone: +1 650 286 1900
	Fax: +1 650 358 3099
	Email: kejin@borland.com
	Jon Currey
	Highlander Engineering Inc.
	208 East Pine Street
	Lakeland, FL 33801
	USA
	Phone: +1 863 686 7767
	Fax: +1 863 687 7767
	Email: jon@highlander.com
	Dr. Kimmo Raatikainen
	Nokia Research Center
	P.O. Box 407
	FIN-00045 NOKIA GROUP
	Finland
	Phone: +358 7180 36275
	Fax: +358 7180 36308
	Email: kimmo.raatikainen@nokia.com
	Dr. Shahzad Aslam-Mir
	VERTEL Corporation
	5825 Oberlin Dr., Ste# 300
	San Diego., CA. 92121
	USA
	Phone: +1 858 824 4128
	Fax +1 858 824 4110
	E-mail: sam-aslam-mir@vertel.com
	Mr. Jouni Korhonen
	Sonera Corporation
	P.O. Box 970
	FIN-00051 SONERA
	Finland
	Phone: +358 2040 65342
	Fax: +358 2040 64365
	Email: jouni.korhonen@sonera.com
	Prof. Kimmo Raatikainen
	Department of Computer Science
	P.O. Box 26 (Teollisuuskatu 23)
	FIN-00014 UNIVERSITY OF HELSINKI
	Finland
	Phonel: +358 9 1914 4243
	Fax: +358 9 1914 4441
	Email: kimmo.raatikainen@cs.helsinki.fi
	Overview
	1
	1.1 Submission Overview
	1.2 Design Rationale
	1.3 Proof of Concept
	1.4 Mandatory Requirement
	Architectural framework
	GIOP mapping onto Internet transport protocol (TCP or UDP) over wireless links
	Mechanism that hides from CORBA clients the mobility of terminals on which CORBA servers are running
	Mechanism for initial access to a new mobility domain
	Mechanism for finding the necessary basic set of CORBA services in mobility domain
	Mechanism for advertising CORBA services available on a mobile terminal
	Mechanism for handoff between mobility domain

	1.5 Optional Requirements
	GIOP mappings onto other wireless transport protocols
	Wireless/Mobility specific ES-IOP

	1.6 Issues to be discussed
	Relationship to Notification Service [telecom/98-11-01]
	Relationship to Messaging Service [orbos/98-05-05]
	Relationship to Interoperable Naming Service [orbos/98-10-11]

	1.7 References
	Architectural Framework
	2
	Figure�2�1 Architecture for Terminal Mobility in CORBA
	Mobile IOR

	3

	3.1 IIOP Profiles in Mobile IOR
	3.1.1 Address information in IIOP Profiles in Mobile IORs
	3.1.2 Mobile Object Key Format

	3.2 The Mobile Terminal Profile
	3.2.1 Mobile Terminal Profile Structure
	const IOP::ProfileID TAG_MOBILE_TERMINAL_IOP = ????;
	module MobileTerminal {
	typedef sequence<octet> TerminalId;
	typedef sequence<octet> TerminalObjectKey;
	struct Version {
	octet major;
	octet minor;
	};
	struct ProfileBody {
	Version mior_version; // version of Mobile IOR
	octet reserved;
	TerminalId terminal_id; // unique terminal identifier
	TerminalObjectKey terminal_object_key; // object_key on terminal
	sequence <IOP::TaggedComponent> components;
	};
	...

	3.2.2 TAG_HOME_LOCATION_INFO Component
	const IOP::ComponentID TAG_HOME_LOCATION_INFO = ????;
	module MobileTerminal {
	...
	struct HomeLocationInfo {
	MobileTerminalHomeLocationAgent::home_location agent agent;
	};
	...


	3.3 Translation to Mobile Target Object
	3.4 Interoperability with GIOP 1.0 and 1.1
	module MobileTerminal { ... struct MobileObjectKey { Version mior_version; octet reserved; Termin...

	3.5 Additional Type Definitions
	module MobileTerminal {
	...
	typedef sequence<octet> GIOPEncapsulation; // used in GIOP tunneling
	typedef sequence<octet> GTPEncapsulation; // used in GTP forwarding
	enum HandoffStatus {
	HANDOFF_SUCCESS,
	HANDOFF_FAILURE,
	NO_MAKE_BEFORE_BREAK
	}; // used to report status of handoff
	struct GTPInfo {
	short protocol_id; // identifies GIOP Tunneling Protocol
	Version gtp_version; // version of the GTP
	}; // identifies the GIOP Tunneling Protocol
	// negative values of protocol_id element are reserved for internal use
	const short TCP_TUNNELING = 0;
	const short UDP_TUNNELING = 1;
	const short WAP_TUNNELING = 2;
	struct AccessBridgeTransportAddress {
	GTPInfo tunneling_protocol;
	sequence<octet> transport_address;
	}; // identifies transport access point of the Access Bridge
	typedef sequence<AccessBridgeTransportAddress> AccessBridgeTransportAddressList;
	typedef string ObjectId; // same as CORBA::ORB::ObjectId
	typedef sequence<ObjectId> ObjectIdList
	Home Location Agent
	4


	4.1 Location Update
	module MobileTerminal {
	interface HomeLocationAgent {
	void update_location (
	in TerminalId terminal_id,
	in AccessBridge new_access_bridge,
	...
	};
	module MobileTerminal {
	interface HomeLocationAgent {
	...
	void query_location (
	in TerminalId terminal_id,
	out AccessBridge current_access_bridge
	) raises (UnknownTerminalID, UnknownTerminalLocation);
	...
	};

	4.2 Discovery
	module MobileTerminal {
	interface HomeLocationAgent {
	...
	ObjectIdList list_initial_services();
	Object resolve_initial_references(
	in ObjectId identifier
	) raises(InvalidName);
	};

	4.3 Message Processing
	4.4 Terminal Ids
	Access Bridge
	5

	5.1 Discovery
	module MobileTerminal {
	interface AccessBridge {
	Object resolve_initial_references(
	in ObjectId identifier
	) raises(InvalidName);
	...
	};

	5.2 Query
	module MobileTerminal {
	interface AccessBridge {
	...
	Boolean terminal_attached (
	in TerminalId terminal_id
	);
	void get_address_info (
	out AccessBridgeTransportAddessList transport_address_list
	);
	...
	};

	5.3 Message Processing
	5.4 Mobility Event Notifications
	module MobileTerminalNotification {
	struct HandoffDepartureEvent {
	MobileTerminal::TerminalId terminal_id;
	MobileTerminal::AccessBridge new_access_bridge;
	};
	struct HandoffArrivalEvent {
	MobileTerminal::TerminalId terminal_id;
	MobileTerminal::AccessBridge old_access_bridge;
	};
	struct AccessDropoutEvent {
	MobileTerminal::TerminalId terminal_id;
	};
	struct AccessRecoveryEvent {
	MobileTerminal::TerminalId terminal_id;
	};
	...
	Terminal Bridge
	6


	6.1 Mobility Event Notifications
	module TerminalMobilityNotification {
	...
	struct TerminalHandoffEvent {
	MobileTerminal::AccessBridge new_access_bridge;
	};
	struct TerminalDropoutEvent {
	MobileTerminal::TerminalId terminal_id;
	};
	struct TerminalRecoveryEvent {
	MobileTerminal::TerminalId terminal_id;
	};
	GIOP Tunneling
	7
	Figure�7�1 GIOP Tunneling Protocol Architecture



	7.1 Tunnel Establishment
	7.1.1 Transport End-Point Detection

	7.2 GIOP Tunneling Protocol
	7.2.1 GTP Message Structure
	struct GTPHeader {
	unsigned short seq_no;
	unsigned short last_seq_no_received;
	octet gtp_msg_type;
	octet flags;
	unsigned short content_length;
	};

	7.2.2 GTP Messages
	Table�7�1

	7.2.3 IdleSync Message
	7.2.4 EstablishTunnelRequest Message
	union EstablishTunnelRequestBody switch (RequestType) {
	case InitialRequest: InitialRequestBody initial_request_body;
	case RecoveryRequest: RecoveryRequestBody recovery_request_body;
	typedef short RequestType;
	const short InitialRequest = 0;
	const short RecoveryRequest = 1;
	struct InitialRequestBody {
	MobileTeriminal::TerminalId terminal_id;
	MobileTerminal::HomeLocationAgent home_location_agent_reference;
	unsigned long time_to_live_request;
	};
	struct RecoveryRequestBody {
	MobileTeriminal::TerminalId terminal_id;
	MobileTerminal::HomeLocationAgent home_location_agent_reference;
	struct LastAccessBridgeInfo {
	MobileTerminal::AccessBridge access_bridge_reference;
	unsigned long time_to_live_request;
	unsigned short last_seqno_received;
	} last_access_bridge_info;
	unsigned long time_to_live_request;

	7.2.5 EstablishTunnelReply Message
	union EstablishTunnelReplyBody switch (ReplyType) {
	case InitialReply: InitialReplyBody initial_reply_body;
	case RecoveryReply: RecoveryReplyBody recovery_reply_body;
	typedef short ReplyType;
	const short InitialReplyt = 0;
	const short RecoveryReply = 1;
	enum AccessStatus {
	ACCESS_ACCEPT,
	ACCESS_ACCEPT_RECOVERY,
	ACCESS_ACCEPT_HANDOFF,
	ACCESS_ACCEPT_LOCAL,
	ACCESS_REJECT_LOCATION_UPDATE_FAILURE,
	ACCESS_REJECT_ACCESS_DENIED
	struct InitialReplyBody {
	AccessStatus status;
	MobileTerminal::AccessBridge access_bridge_reference;
	unsigned long time_to_live_reply;
	};
	struct RecoveryReplyBody {
	AccessStatus status;
	MobileTerminal::AccessBridge access_bridge_reference;
	struct OldAccessBridgeInfo {
	unsigned long time_to_live_reply;
	unsigned short last_seqno_received;
	} old_access_bridge_info;
	unsigned long time_to_live_reply;

	7.2.6 ReleaseTunnelRequest Message
	struct ReleaseTunnelRequestBody {
	unsigned long time_to_live;

	7.2.7 ReleaseTunnelReply Message
	struct ReleaseTunnelReplyBody {
	unsigned long time_to_live;

	7.2.8 HandoffTunnelRequest Message
	struct HandoffTunnelRequestBody {
	MobileTerminal::AccessBridgeTransportAddress
	new_access_bridge_transport_address_list;

	7.2.9 HandoffTunnelReply Message
	struct HandoffTunnelReplyBody {
	MobileTerminal::HandoffStatus status;

	7.2.10 OpenConnectionRequest Message
	struct OpenConnectionRequestBody {
	Object target_object_reference;
	unsigned long open_connection_request_id;
	unsigned long timeout;

	7.2.11 OpenConnectionReply Message
	struct OpenConnectionReplyBody {
	unsigned long open_connection_request_id;
	OpenConnectionStatus status;
	unsigned long connection_id; // 0xFFFFFFFF indicates failure
	enum OpenConnectionStatus {
	OPEN_SUCCESS,
	OPEN_FAILED_UNREACHABLE_TARGET,
	OPEN_FAILED_OUT_OUT_RESOURCES,
	OPEN_FAILED_TIMEOUT,
	OPEN_FAILED_UNKNOWN_REASON

	7.2.12 CloseConnectionRequest Message
	struct CloseConnectionRequestBody {
	unsigned long connection_id; // 0xFFFFFFFF denotes all connections for sender

	7.2.13 CloseConnectionReply Message
	struct CloseConnectionReplyBody {
	unsigned long connection_id; // same as in request
	CloseConnectionStatus status;
	enum CloseConnectionStatus {
	CLOSE_SUCCESS,
	CLOSE_FAILED_INVALID_CONNECTION_ID,
	CLOSE_FAILED_UNKNOWN_REASON

	7.2.14 ConnectionCloseIndication Message
	struct ConnectionCloseIndicationBody {
	unsigned long connection_id; // 0xFFFFFFFF means all connection for recepient
	ConnectionCloseReason reason;
	enum ConnectionCloseReason {
	CLOSE_REASON_REMOTE_END_CLOSE,
	CLOSE_REASON_RESOURCE_CONSTRAINT,
	CLOSE_REASON_IDLE_CLOSED,
	CLOSE_REASON_TIME_TO_LIVE_EXPIRED,
	CLOSE_REASON_UNKNOWN_REASON

	7.2.15 GIOPData Message
	struct GIOPDataBody {
	unsigned long connection_id;
	unsigned long giop_message_id;
	MobileTerminal::GIOPEncapsulation giop_message;

	7.2.16 GIOPDataReply Message
	struct GIOPDataReplyBody {
	unsigned long giop_message_id;
	DeliveryStatus status;
	enum DeliveryStatus {
	DELIVERY_SUCCESS,
	DELIVERY_FAILED_INVALID_CONNECTION_ID,
	DELIVERY_FAILED_UNKNOWN_REASON

	7.2.17 GTPForward Message
	struct GTPForwardBody {
	MobileTerminal::AccessBridge access_bridge_reference;
	// source if sent by Access Bridge, destination if sent by Terminal Bridge
	unsigned long gtp_message_id;
	MobileTerminal::GTPEncapsulation gtp_message;
	// including GTP header

	7.2.18 GTPForwardReply Message
	struct GTPForwardReplyBody {
	unsigned long gtp_message_id;
	ForwardStatus status;
	enum ForwardStatus {
	FORWARD_SUCCESS,
	FORWARD_ERROR_ACCESS_BRIDGE_UNREACHABLE,
	FORWARD_ERROR_UNKNOWN_SENDER,
	FORWARD_UNKNOWN_FORWARD_ERROR

	7.2.19 Error Message
	struct ErrorBody {
	unsigned short gtp_seq_no; // seq_no element in GTP header
	ErrorCode error_code;
	enum ErrorCode {
	ERROR_UNKNOWN_SENDER,
	ERROR_PROTOCOL_ERROR,
	ERROR_UNKNOWN_FATAL_ERROR


	7.3 TCP Tunneling
	7.4 UDP Tunneling
	7.4.1 UDP Tunneling Protocol
	1. InitialAccessRequest: sent by the Terminal Bridge. The Flags (one octet) and Length (unsigned ...
	2. InitialAccessReply: sent by the Access Bridge. The Flags (one octet) and Length (unsigned shor...
	3. Pause: sent by the Terminal or Access Bridge. No Flags, Length, and Value field. The receiving...
	4. Resume: sent by the Terminal or Access Bridge. No Flags, Length, and Value field. The receivin...
	5. Acknowledge: sent by the Terminal or Access Bridge. No Flag Field. The Length (one octet) tell...
	6. GTPData: sent by the Terminal or Access Bridge. Flags (one octet) indicate fragmentation. The ...

	7.4.2 Fragmentation
	7.4.3 InitialAccessRequest
	struct InitialAccessRequestChunk {
	sequence<octet> cookie;
	string terminal_bridge_udp_address;

	7.4.4 InitialAccessReply
	struct InitialAccessReplyChunk {
	sequence<octet> cookie;
	string access_bridge_udp_address;

	7.4.5 Pause
	7.4.6 Resume
	7.4.7 Acknowledge
	7.4.8 GTPData

	7.5 WAP Tunneling
	7.5.1 Wireless Datagram Protocol
	7.5.2 WAP Tunneling Protocol
	7.5.3 WAPTP address types
	struct WDPAddressFormat {
	octet wdp_version; // mostly 0x00, depends on bearer; see [WDP]
	octet wap_assigned_number; // identifies network, bearer, address
	// type combination; see [WDP, Appendix C]
	unsigned short wap_port; // Port number
	string address;
	Handoff and Access Recovery
	8



	8.1 Initiation
	module MobileTerminal {
	...
	interface HandoffCallback {
	void report_handoff_status (
	in HandoffStatus status
	);
	};
	...
	module MobileTerminal {
	...
	interface AccessBridge {
	...
	void start_handoff(
	in TerminalId terminal_id,
	in AccessBridge new_access_bridge,
	in HandoffCallback handoff_callback_target
	);
	...
	};
	...

	8.2 Network Initiated Handoff
	8.2.1 Old Access Bridge
	1. The old Access Bridge gets involved when the start_handoff operation is invoked on it.
	2. The old Access Bridge invokes the transport_address_request operation in the new Access Bridge...
	3. If the terminal is not accepted, then the old Access Bridge only reports the HANDOFF_FAILURE s...
	4. If the terminal was accepted by the new Access Bridge, then the old Access Bridge sends the Ha...
	5. The following two steps (6 and 7) can take place in any order.
	6. When the old Access Bridge gets the HandoffTunnelReply message from the Terminal Bridge, then
	7. When the new Access Bridge invokes the handoff_completed operation at the old Access Bridge, t...
	8. It is assumed that the handoff status received by the old Access Bridge from the Terminal Brid...
	9. The old Access Bridge notifies all other Access Bridges interested in movements of the termina...
	10. If the old Access Bridge supports Mobility Event Notifications, it generates a notification o...
	11. The old Access Bridge reports the handoff status by invoking the report_handoff_status operat...

	8.2.2 New Access Bridge
	1. The new Access Bridge gets involved when the old Access Bridge invokes the transport_address_r...
	2. The new Access Bridge gets the EstablishTunnelRequest message from the Terminal Bridge.
	3. The new Access Bridge invokes the update_location operation at the Home Location Agent.
	4. The new Access Bridge sends the EstablishTunnelReply message to the Terminal Bridge.
	5. The new Access Bridge invokes the handoff_completed operation at the old Access Bridge.
	6. If the location update failed, then the new Access Bridge frees its transport end- point to th...
	7. If the location update was successful and the new Access Bridge supports Mobility Event Notifi...

	8.2.3 Terminal Bridge
	1. The Terminal Bridge gets involved when it receives the HandoffTunnelRequest message from the o...
	2. The Terminal Bridge establishes transport connectivity to the new Access Bridge. If this fails...
	3. The Terminal Bridge sends the EstablishTunnelRequest message to the new Access Bridge,
	4. The Terminal Bridge waits for the EstablishTunnelReply message from the new Access Bridge.
	5. The Terminal Bridge sends the HandoffTunnelReply message to the old Access Bridge.
	6. If the request of tunnel establishment was rejected, then the Terminal Bridge continues to use...
	7. If the tunnel to the new Access Bridge was granted, then the Terminal Bridge sends the Release...
	8. If the Terminal Bridge supports Mobility Event Notifications, it generates a notification of h...

	8.2.4 Message Sequence Chart
	8.2.5 Alternative Handoff Procedure.
	1. The Terminal Bridge gets involved when it receives the HandoffTunnelRequest message from the o...
	2. The Terminal Bridge sends the HandoffTunnelReply message to the old Access Bridge in which the...
	3. The Terminal Bridge sends the ReleaseTunnelRequest message to the old Access Bridge and waits ...
	4. The Terminal Bridge releases its transport end-point to the old Access Bridge.
	5. The Terminal Bridge establish GIOP Tunnel to the new Access Bridge using the access recovery p...

	8.2.6 IDL
	module MobileTerminal {
	...
	interface AccessBridge {
	...
	void transport_address_request(
	// Called by the old Access Bridge at the new Access Bridge
	in TerminalId terminal_id,
	out AccessBridgeTransportAddressList new_access_bridge_addresses,
	out boolean terminal_accepted
	);
	...
	...
	module MobileTerminal {
	...
	interface AccessBridge {
	...
	void handoff_completed(
	// called by the new Access Bridge at the old Access Bridge
	in TerminalId terminal_id,
	in HandoffStatus status
	) ;
	...
	...


	8.3 Terminal Initiated Handoff
	8.3.1 Terminal Bridge
	1. The Terminal Bridge establishes transport connectivity to the new Access Bridge.
	2. The Terminal Bridge sends the EstablishTunnelRequest message to the new Access Bridge.
	3. The Terminal Bridge waits for the EstablishTunnelReply message from the new Access Bridge.
	4. If the tunnel establishment was rejected, then the Terminal Bridge releases its transport end-...
	5. The Terminal Bridge sends the ReleaseTunnelReuqest message to the old Access Bridge.
	6. After receiving the ReleaseTunnelReply message from the old Access Bridge, the Terminal Bridge...
	7. If the Terminal Bridge supports Mobility Event Notifications, it generates a notification of h...

	8.3.2 New Access Bridge
	1. The new Access Bridge gets involved when it receives the EstablishTunnelRequest message from t...
	2. The new Access Bridge invokes the location_update_operation at the Home Location Agent.
	3. If the location update failed, then the new Access Bridge sends the EstablishTunnelReply messa...
	4. The new Access Bridge invokes the handoff_in_progress operation at the old Access Bridge.
	5. The new Access Bridge sends the EstablishTunnelReply message to the Terminal Bridge.
	6. If the new Access Bridge supports Mobility Event Notifications, it generates a notification of...

	8.3.3 Old Access Bridge
	1. The old Access Bridge gets involved, when the new Access Bridges invokes the handoff_in_progre...
	2. The old Access Bridge waits for the ReleaseTunnelRequest message from the Terminal Bridge.
	3. After sending the ReleaseTunnelReply message to the Terminal Bridge, the old Access Bridge can...
	4. The old Access Bridge notifies all other Access Bridges interested in movements of the termina...
	5. If the old Access Bridge supports Mobility Event Notifications, it generates a notification of...

	8.3.4 Message Sequence Chart
	8.3.5 IDL
	module MobileTerminal {
	...
	interface AccessBridge {
	...
	void handoff_in_progress (
	// called by the old Access Bridge in the new Access Bridge
	in TerminalId terminal_id,
	in AccessBridge new_access_bridge
	);
	...
	...


	8.4 Access Recovery
	8.4.1 Recovery to the Old Access Bridge
	Terminal Bridge
	1. The Terminal Bridge establishes transport connectivity to an Access Bridge.
	2. The Terminal Bridge sends the EstablishTunnelRequest message to the Access Bridge.
	3. The Terminal Bridge waits for the EstablishTunnelReply message from the Access Bridge.
	4. From the EstablishTunnelReply message the Terminal Bridge learns that the Access Bridge is the...
	5. If the Terminal Bridge supports Mobility Event Notifications, it generates a recovery notifica...

	Old Access Bridge
	1. The old Access Bridge receives the EstablishTunnelRequest from the Terminal Bridge.
	2. From the EstablishTunnelRequest message the Access Bridge learns that the tunnel establishment...
	3. The Access Bridge sends the EstablishTunnelReply message and retransmits the lost GTP messages.
	4. If the old Access Bridge supports Mobility Event Notifications, it generates an access recover...


	8.4.2 Recovery to New Access Bridge
	Terminal Bridge
	1. same as in recovery to the old Access Bridge
	2. same as in recovery to the old Access Bridge
	3. same as in recovery to the old Access Bridge
	4. From the EstablishTunnelReply message the Terminal Bridge learns that the Access Bridge is a n...
	5. If the Terminal Bridge supports the Mobility Event Notifications, then it generates a handoff ...
	6. The Terminal Bridge retransmits the GTP messages that the old Access Bridge has lost thru the ...

	New Access Bridge
	1. The new Access Bridge receives the EstablishTunnelRequest from the Terminal Bridge.
	2. >From the EstablishTunnelRequest message the Access Bridge learns that the tunnel establishment...
	3. The new Access Bridge invokes the location_update operation at the Home Location Agent.
	4. If the location update fails, the new Access Bridge sends the EstablishTunnelReply message tha...
	5. If the location update was successful, the new Access Bridge invokes the recovery_request oper...
	6. The new Access Bridge sends the EstablishTunnelReply message to the Terminal Bridge.
	7. If the new Access Bridge supports The Mobility Event Notifications, it generates a handoff arr...
	8. As long as needed the new Access Bridge forwards GTP messages between the Terminal Bridge and ...

	Old Access Bridge
	1. The old Access Bridge gets involved when the new Access Bridge invokes the recovery_request op...
	2. The old Access Bridge notifies other Access Bridges interested in movements of the terminal (s...
	3. If the old Access Bridge supports Mobility Event Notifications, it generates a notification of...
	4. The old Access Bridge retransmits the GTP messages that the Terminal Bridge has lost thru the ...

	Message Sequence Chart
	IDL
	module MobileTerminal {
	...
	interface AccessBridge {
	...
	void recovery_request (
	// called by the new Access Bridge in the old Access Bridge
	in TerminalId terminal_id,
	in AccessBridge new_access_bridge,
	in unsigned short highest_gtp_seqno_received_at_terminal,
	out unsigned short highest_gtp_seqno_received_at_access_bridge
	);
	...
	};
	...



	8.5 GTP Message Forwarding
	module MobileTerminal {
	...
	interface AccessBridge {
	...
	void gtp_to_terminal (
	in TerminalId terminal_id,
	in AccessBridge old_access_bridge,
	in unsigned long gtp_message_id,
	in GTPEncapsulation gtp_message
	) raises (TerminalNotHere);
	...
	};
	...
	module MobileTerminal {
	...
	interface AccessBridge {
	...
	void gtp_from_terminal (
	in TerminalId terminal_id,
	in unsigned long gtp_message_id,
	in GTPEncapsulation gtp_message
	) ;
	...
	};
	...

	8.6 Terminal Tracking
	module MobileTerminal {
	...
	interface AccessBridge {
	...
	void handoff_notice (
	in TerminalId terminal_id,
	in AccessBridge new_access_bridge
	...
	};
	...
	module MobileTerminal {
	...
	interface AccessBridge {
	...
	void subscribe_handoff_notice (
	// called by an Access Bridge who wants to follow terminal movements
	in TerminalId terminal_id,
	in AccessBridge interested_access_bridge
	...
	};
	...
	Issues to be Discussed
	9


	9.1 Notification Service
	9.2 Use of Interoperable Naming Service
	9.3 Usage of Messaging Service
	Mandatory /Optional Requirements
	10

	10.1 Mandatory Requirements
	10.1.1 Home Location Agent
	10.1.2 Access Bridge
	10.1.3 Terminal Bridge

	10.2 Optional Requirements
	10.2.1 Home Location Agent
	10.2.2 Access Bridge
	10.2.3 Terminal Bridge
	IDL
	11


	11.1 Module MobileTerminal
	//File: MobileTerminal.idl
	#ifndef _MOBILE_TERMINAL_IDL_
	#define _MOBILE_TERMINAL_IDL_
	#include <orb.idl>
	#include <IOP.idl>
	#pragma prefix "omg.org"
	module MobileTerminal {
	interface HomeLocationAgent;
	interface AccessBridge;
	typedef sequence<octet> TerminalId;
	typedef sequence<octet> GIOPEncapsulation;
	typedef sequence<octet> GTPEncapsulation;
	struct Version {
	octet major;
	octet minor;
	};
	struct ProfileBody {
	Version mior_version;
	octet reserved;
	TerminalId terminal_id;
	sequence<octet> terminal_object_key;
	sequence<IOP::TaggedComponent> components;
	};
	struct HomeLocationInfo {
	HomeLocationAgent agent;
	};
	struct MobileObjectKey {
	Version mior_version;
	octet reserved;
	TerminalId terminal_id;
	sequence<octet> terminal_object_key;
	};
	enum HandoffStatus {
	HANDOFF_SUCCESS,
	HANDOFF_FAILURE,
	NO_MAKE_BEFORE_BREAK
	};
	const short TCP_TUNNELING = 0;
	const short UDP_TUNNELING = 1;
	const short WAP_TUNNELING = 2;
	struct GTPInfo {
	short protocol_id; // negative values are reserved for internal use
	Version gtp_version;
	};
	struct AccessBridgeTransportAddress {
	GTPInfo tunneling_protocol;
	sequence<octet> transport_address;
	};
	typedef sequence<AccessBridgeTransportAddress>
	AccessBridgeTransportAddressList;
	typedef string ObjectId; // same as CORBA::ORB::ObjectId
	typedef sequence<ObjectId> ObjectIdList;
	// same as CORBA::ORB::ObjectIdList
	exception IllegalTargetBridge {};
	exception TerminalNotHere {};
	exception UnknownTerminalId {};
	exception UnknownTerminalLocation {};
	exception InvalidName{}; // same asCORBA::ORB::InvalidNam
	interface HomeLocationAgent {
	void update_location (
	in TerminalId terminal_id,
	in AccessBridge new_access_bridge
	) raises (UnknownTerminalId, IllegalTargetBridge);
	void query_location (
	in TerminalId terminal_id,
	out AccessBridge current_access_bridge
	) raises (UnknownTerminalId, UnknownTerminalLocation);
	CORBA::ORB::ObjectIdList list_initial_services ();
	Object resolve_initial_references (
	in CORBA::ORB::ObjectId identifier
	) raises (CORBA::ORB::InvalidName);
	};
	interface HandoffCallback {
	void report_handoff_status (
	in HandoffStatus status
	);
	};
	interface AccessBridge {
	CORBA::ORB::ObjectIdList list_initial_services ();
	Object resolve_initial_references (
	in CORBA::ORB::ObjectId identifier
	) raises (CORBA::ORB::InvalidName);
	boolean terminal_attached (
	in TerminalId terminal_id
	);
	void get_address_info (
	out AccessBridgeTransportAddressList transport_address_list
	);
	void start_handoff (
	in TerminalId terminal_id,
	in AccessBridge new_access_bridge,
	in HandoffCallback handoff_callback_target
	);
	void transport_address_request (
	in TerminalId terminal_id,
	out AccessBridgeTransportAddressList new_access_bridge_addresses,
	out boolean terminal_accepted
	);
	void handoff_completed (
	in TerminalId terminal_id,
	in HandoffStatus status
	);
	void handoff_in_progress (
	in TerminalI terminal_id,
	in AccessBridge new_access_bridge
	);
	void recovery_request (
	in TerminalId terminal_id,
	in AccessBridge new_access_bridge,
	in unsigned short highest_gtp_seqno_received_at_terminal,
	out unsigned short highest_gtp_seqno_received_at_access_bridge
	);
	void gtp_to_terminal (
	in TerminalId terminal_id,
	in AccessBridge old_access_bridge,
	in unsigned long gtp_message_id,
	in GTPEncapsulation gtp_message
	) raises (TerminalNotHere);
	void gtp_from_terminal (
	in TerminalId terminal_id,
	in unsigned long gtp_message_id,
	in GTPEncapsulation gtp_message
	);
	void handoff_notice (
	in TerminalId terminal_id,
	in AccessBridge new_access_bridge
	);
	void subscribe_handoff_notice (
	in TerminalId terminal_id,
	in AccessBridge interested_access_bridge
	) raises (TerminalNotHere);
	};
	};
	#endif

	11.2 Module MobilityEventNotification
	//File: MobileTerminalNotification.idl
	#ifndef _MOBILE_TERMINAL_NOTIFICATION_IDL_
	#define _MOBILE_TERMINAL_NOTIFICATION_IDL_
	#include <orb.idl>
	#include <IOP.idl>
	#include "MobileTerminal.idl"
	#pragma prefix "omg.org"
	module MobileTerminalNotification {
	struct HandoffDepartureEvent {
	MobileTerminal::TerminalId terminal_id;
	MobileTerminal::AccessBridge new_access_bridge;
	};
	struct HandoffArrivalEvent {
	MobileTerminal::TerminalId terminal_id;
	MobileTerminal::AccessBridge old_access_bridge;
	};
	struct AccessDropoutEvent {
	MobileTerminal::TerminalId terminal_id;
	};
	struct AccessRecoveryEvent {
	MobileTerminal::TerminalId terminal_id;
	};
	struct TerminalHandoffEvent {
	MobileTerminal::AccessBridge new_access_bridge;
	};
	struct TerminalDropoutEvent {
	MobileTerminal::TerminalId terminal_id;
	};
	struct TerminalRecoveryEvent {
	MobileTerminal::TerminalId terminal_id;
	};
	};
	#endif

	11.3 Moduke GTP GIOP Tunneling Protocol
	//File: GTP.idl
	#ifndef _GTP_IDL_
	#define _GTP_IDL_
	#include "MobileTerminal.idl"
	#pragma prefix "omg.org"
	module GTP {
	struct GTPHeader {
	unsigned short seq_no;
	unsigned short last_seq_no_received;
	octet gtp_msg_type;
	octet flags;
	unsigned short content_length;
	};
	typedef short RequestType;
	const short INITIAL_REQUEST = 0;
	const short RECOVERY_REQUEST = 1;
	struct InitialRequestBody {
	MobileTerminal::TerminalId terminal_id;
	MobileTerminal::HomeLocationAgent home_location_agent_reference;
	unsigned long time_to_live_request;
	};
	struct RecoveryRequestBody {
	MobileTerminal::TerminalId terminal_id;
	MobileTerminal::HomeLocationAgent home_location_agent_reference;
	struct LastAccessBridgeInfo {
	MobileTerminal::AccessBridge access_bridge_reference;
	unsigned long time_to_live_request;
	unsigned short last_seq_no_received;
	} last_access_bridge_info;
	unsigned long time_to_live_request;
	};
	union EstablishTunnelRequestBody switch (RequestType) {
	case INITIAL_REQUEST: InitialRequestBody initial_request_body;
	case RECOVERY_REQUEST: RecoveryRequestBody recovery_request_body;
	};
	typedef short ReplyType;
	const short INITIAL_REPLY = 0;
	const short RECOVERY_REPLY = 1;
	enum AccessStatus {
	ACCESS_ACCEPT,
	ACCESS_ACCEPT_RECOVERY,
	ACCESS_ACCEPT_HANDOFF,
	ACCESS_ACCEPT_LOCAL,
	ACCESS_REJECT_LOCATION_UPDATE_FAILURE,
	ACCESS_REJECT_ACCESS_DENIED
	};
	struct InitialReplyBody {
	AccessStatus status;
	MobileTerminal::AccessBridge access_bridge_reference;
	unsigned long time_to_live_reply;
	};
	struct RecoveryReplyBody {
	AccessStatus status;
	MobileTerminal::AccessBridge access_bridge_reference;
	struct OldAccessBridgeInfo {
	unsigned long time_to_live_reply;
	unsigned short last_seq_no_received;
	} old_access_bridge_info;
	unsigned long time_to_live_reply;
	};
	union EstablishTunnelReplyBody switch (ReplyType) {
	case INITIAL_REPLY: InitialReplyBody initial_reply_body;
	case RECOVERY_REPLY: RecoveryReplyBody recovery_reply_body;
	};
	struct ReleaseTunnelRequestBody {
	unsigned long time_to_live;
	};
	struct ReleaseTunnelReplyBody {
	unsigned long time_to_live;
	};
	struct HandoffTunnelRequestBody {
	MobileTerminal::AccessBridgeTransportAddressList new_access_bridge_transport_address_list;
	};
	struct HandoffTunnelReplyBody {
	MobileTerminal::HandoffStatus status;
	};
	struct OpenConnectionRequestBody {
	Object target_object_reference;
	unsigned long open_connection_request_id;
	unsigned long timeout;
	};
	enum OpenConnectionStatus {
	OPEN_SUCCESS,
	OPEN_FAILED_UNREACHABLE_TARGET,
	OPEN_FAILED_OUT_OF_RESOURCES,
	OPEN_FAILED_TIMEOUT,
	OPEN_FAILED_UNKNOWN_REASON
	};
	struct OpenConnectionReplyBody {
	unsigned long open_connection_request_id;
	OpenConnectionStatus status;
	unsigned long connection_id;
	};
	struct CloseConnectionRequestBody {
	unsigned long connection_id;
	};
	enum CloseConnectionStatus {
	CLOSE_SUCCESS,
	CLOSE_FAILED_INVALID_CONNECTION_ID,
	CLOSE_FAILED_UNKNOWN_REASON
	};
	struct CloseConnectionReplyBody {
	unsigned long connection_id;
	CloseConnectionStatus status;
	};
	enum ConnectionCloseReason {
	CLOSE_REASON_REMOTE_END_CLOSE,
	CLOSE_REASON_RESOURCE_CONSTRAINT,
	CLOSE_REASON_IDLE_CLOSED,
	CLOSE_REASON_TIME_TO_LIVE_EXPIRED,
	CLOSE_REASON_UNKNOWN_REASON
	};
	struct ConnectionCloseIndicationBody {
	unsigned long connection_id;
	ConnectionCloseReason reason;
	};
	struct GIOPDataBody {
	unsigned long connection_id;
	unsigned long giop_message_id;
	MobileTerminal::GIOPEncapsulation giop_message;
	};
	enum DeliveryStatus {
	DELIVERY_SUCCESS,
	DELIVERY_FAILED_INVALID_CONNECTION_ID,
	DELIVERY_FAILED_UNKNOWN_REASON
	};
	struct GIOPDataReplyBody {
	unsigned long giop_message_id;
	DeliveryStatus status;
	};
	struct GTPForwardBody {
	MobileTerminal::AccessBridge access_bridge_reference;
	unsigned long gtp_message_id;
	MobileTerminal::GTPEncapsulation gtp_message;
	};
	enum ForwardStatus {
	FORWARD_SUCCESS,
	FORWARD_ERROR_ACCESS_BRIDGE_UNREACHABLE,
	FORWARD_ERROR_UNKNOWN_SENDER,
	FORWARD_UNKNOWN_FORWARD_ERROR
	};
	struct GTPForwardReplyBody {
	unsigned long gtp_message_id;
	ForwardStatus status;
	};
	enum ErrorCode {
	ERROR_UNKNOWN_SENDER,
	ERROR_PROTOCOL_ERROR,
	ERROR_UNKNOWN_FATAL_ERROR
	};
	struct ErrorBody {
	unsigned short gtp_seq_no;
	ErrorCode error_code;
	};
	};
	#endif



