
Wireless Access and Terminal Mobility
in CORBA

October 2004
Version 1.2

dtc/04-09-02

Note – This convenience report only contains Chapters 1 and 7 that are different from
the Version 1.1 (formal/04-04-02)

Overview 1
This document specifies an architecture and interfaces to support wireless access and
terminal mobility in CORBA.

Contents

This chapter contains the following sections.

1.1 Design Rationale
The basic design principles have been client-side ORB transparency and simplicity.
Transparency of the mobility mechanism to non-mobile ORBs has been the primary
design constraint. We have rejected all solutions that would require modifications to a
non-mobile ORB in order for it to interoperate with CORBA objects and clients
running on a mobile terminal. In other words, a stationary (non-mobile, or fixed
network) ORB does not have to implement this specification in order to interoperate
with CORBA objects and clients running on mobile terminals.

The specification was designed to provide a minimal useful functionality for CORBA
applications, in which the client, the server, or both of them are running on a host that
can move.

Section Title Page

“Design Rationale” 1-1

“Proof of Concept” 1-2

“References” 1-2
October 2004 CORBA Wireless Access & Terminal Mobility, v1.2 1-1

1

1.2 Proof of Concept
The design is heavily affected by experiences of the EC/ACTS project DOLMEN
(AC036) that implemented a prototype of CORBA extensions to support terminal
mobility. The DOLMEN solution is described, for example, in the OMG Document
telecom/98-08-08.

This specification has been implemented by University of Helsinki as an Open Source
extension to the MICO Open Source ORB, called MIWCO [MIWCO].

The GIOP over Bluetooth Tunneling Specification has been implemented in the
EC/ITEA project Vivian [VIVAN] as an extension to MIWCO.

1.3 References
[BT-SIG] Bluetooth SIG, Specification of the Bluetooth System - Version 1.1, Volume
1 & 2. February 2001, Available: http://www.blue-
tooth.com/developer/specification/specification.asp.

[GFD] WAP Forum. WAP General Formats Document. WAP Forum document WAP-
188-WAPGenFormats, Version 15-Aug-2000.

[MIWCO] MIWCO - An Open Source Implementation of Wireless CORBA.
Available: http://www.cs.helsinki.fi/u/kraatika/wCORBA.html.

[RFC 2988] Computing TCP's Retransmission Timer, IETF, RFC 2988, November
2000.

[VIVIAN] VIVIAN Consortium, GIOP Tunneling over Bluetooth L2CAP. Available:
http://www-nrc.nokia.com/Vivian/Public/Html/ltp.html.

[WDP] WAP Forum. Wireless Datagram Protocol Specification. WAP Forum
Document WAP-201-WDP, Approved Version 19-February-2000.
1-2 CORBA Wireless Access & Terminal Mobility, v1.2 October 2004

GIOP Tunneling 7
Contents

This chapter contains the following sections.

A GIOP tunnel is the means to transmit GIOP and tunnel control messages between a
Terminal Bridge and an Access Bridge. There is only one GIOP tunnel between a
given Terminal Bridge and Access Bridge. However, a graceful handoff behavior is
defined so that the Terminal Bridge can seamlessly transfer the GIOP Tunnel from the
current Access Bridge to a new one. If the terminal can have simultaneous transport
connectivity to two Access Bridges, then the Terminal Bridge creates a new tunnel to a
new Access Bridge before shutting down the tunnel to the previous Access Bridge.

A tunnel is shared by all GIOP connections to and from the terminal it is associated
with. The tunneling protocol allows multiplexing between the GIOP connections.

The GIOP Tunneling Protocol (GTP) is an abstract, transport-independent protocol. It
defines message formats for establishing, releasing, and re-establishing (recovery) the
tunnel as well as for transmitting and forwarding GIOP messages. The GTP protocol
also defines messages for establishing and releasing GIOP connections through the
Access Bridge. Figure 7-1 depicts the protocol architecture.

Section Title Page

“Tunnel Establishment” 7-2

“GIOP Tunneling Protocol” 7-2

“TCP Tunneling” 7-20

“UDP Tunneling” 7-20

“WAP Tunneling” 7-25
October 2004 Wireless Access & Terminal Mobility in CORBA, v1.2 7-1

7

Figure 7-1 GIOP Tunneling Protocol Architecture

Since the GIOP Tunneling Protocol is an abstract protocol, it needs to be mapped onto
one or more concrete protocols. This specification defines four concrete tunneling
protocols: TCP Tunneling, UDP Tunneling, WAP Tunneling, and Bluetooth Tunneling.

The GTP is designed so that the specification of a concrete tunneling protocol is
simple. The specification of a concrete tunneling protocol is provided as an adaption
layer between the GIOP Tunneling Protocol and a transport layer protocol. The
adaptation layer needs only to define how the transport is to be used and the data
format of the transport address of the transport end-point.

7.1 Tunnel Establishment
GIOP tunnel establishment consists of two phases: 1) Transport end-point detection
and 2) Establishment of the GIOP tunnel. Transport end-point detection is discussed
below. The establishment of the GIOP tunnel is specified in Section 7.2, “GIOP
Tunneling Protocol,” on page 7-2.

7.1.1 Transport End-Point Detection
The detection of transport end-points on the link, network, and transport layers. It also
depends on the provider of the Access Bridge. Therefore, transport end-point detection
is out of the scope of this specification.

7.2 GIOP Tunneling Protocol
The GIOP Tunneling Protocol (GTP) assumes that the underlying concrete tunneling
protocol (that is, the adaption layer between the GTP and a transport protocol) provides
the same reliability and ordered delivery of messages assumed by the GIOP. If the
underlying transport protocol does not provide this level of service, then the adaption
layer that resides between the GTP and the actual transport protocol will provide this
level of service.

Terminal ORB Access Bridge ORB peer ORB

GIOP GIOP
GIOP messages

TCPTCP TCP byte stream

IIOPIIOP
IIOP messages

GIOP GIOP
GIOP messages

GIOP GIOP
GIOP messages

TCPTCP TCP byte stream

IIOPIIOP
IIOP messages

GTP adaptation layer GTP adaptation layer
transport transport

GTP GTPGTP
msgs

GTP adaptation layer GTP adaptation layer
transport transport

GTP GTPGTP
msgs

Object
CORBA invocations

ObjectObject
CORBA invocations

Object
7-2 Wireless Access & Terminal Mobility in CORBA, v1.2 October 2004

7

The version of the GIOP Tunneling Protocol defined in this specification is 1.0 (major
1, minor 0).

All timeout values are in seconds.

7.2.1 GTP Message Structure
All GTP messages contain a header of eight octets and contents of variable (possibly
null) length.

The GTP header has the structure of

struct GTPHeader {
octet gtp_msg_type;
octet flags;
unsigned short seq_no;
unsigned short last_seq_no_received;
unsigned short content_length;

};

The gtp_msg_type element indicates the GIOP Tunneling Protocol message type. It
defines how the receiver should interpret the body of the GTP message.

The flags element indicates the Endianness used in the GTP header and in GTP control
messages. The leftmost bit tells the Endianness: 0x00 Big-Endian and 0x80 Little-
Endian. The remaining seven bits are reserved for future usage.

The seq_no element runs from 1 (0x0001) to 65535 (0xFFFF). The value 0x0000 can
only appear in tunnel establishment request messages and an associated reply. The
sequence number counting follows the usual modulo arithmetic with the exception that
the seq_no 0x0001 follows the seq_no 0xFFFF.

The last_seq_no_received element indicates the highest sequence number of GTP
messages received or, in certain cases, processed by the sender.

The content_length element (unsigned short) tells the length of the GTP message.

7.2.2 GTP Messages
The GTP Messages are listed in the table below. Descriptions of the messages are
given in the subsections that follow.

Table 7-1 GTP Messages

Message name gtp_msg_type GTP Level

IdleSync 0x00 1, 2

EstablishTunnelRequest 0x01 1, 2

EstablishTunnelReply 0x02 1, 2

ReleaseTunnelRequest 0x03 1, 2
October 2004 CORBA Wireless Access & Terminal Mobility: GIOP Tunneling Protocol 7-3

7

7.2.3 IdleSync Message
The IdleSync message does not have a message body.

Source
Terminal Bridge and Access Bridge

Description
It is used by the Terminal Bridge and the Access Bridge to acknowledge GTP messages
after some implementation dependent timeout. This allows the other side of the tunnel
to release sent messages in a timely fashion, during a period when no messages are
being sent in the opposite direction. If messages are being sent in the opposite
direction there is no need to send this message as the synchronization occurs through
the gtp_header.last_seq_no_received element of each sent message.

Special Notes
None

Forwardable
Yes - this GTP message can be encapsulated and sent in the GTPForward message.
This will be used by either the Terminal Bridge or an old Access Bridge to
acknowledge replies to forwarded GTP messages.

ReleaseTunnelReply 0x04 1, 2

HandoffTunnelRequest 0x05 2

HandoffTunnelReplyCompleted 0x06 2

OpenConnectionRequest 0x07 1, 2

OpenConnectionReply 0x08 1, 2

CloseConnectionRequest 0x09 1, 2

CloseConnectionReply 0x0A 1, 2

ConnectionCloseIndication 0x0B 1, 2

GIOPData 0x0C 1, 2

GIOPDataError 0x0D 1, 2

GTPForward 0x0E 2

GTPForwardReply 0x0F 2

Error 0xFF 1, 2

Table 7-1 GTP Messages

Message name gtp_msg_type GTP Level
7-4 Wireless Access & Terminal Mobility in CORBA, v1.2 October 2004

7

7.2.4 EstablishTunnelRequest Message
The EstablishTunnelRequest message has a message body containing the CDR
encoded value of

union EstablishTunnelRequestBody switch (RequestType) {
case INITIAL_REQUEST: InitialRequestBody initial_request_body;
case RECOVERY_REQUEST: RecoveryRequestBody recovery_request_body;
case NETWORK_REQUEST: NetworkRequestBody network_request_body;
case TERMINAL_REQUEST: TerminalRequestBody terminal_request_body;

};

with the following definitions

typedef short RequestType;
const short INITIAL_REQUEST = 0;
const short RECOVERY_REQUEST = 1;
const short NETWORK_REQUEST = 2;
const short TERMINAL_REQUEST = 3;

struct InitialRequestBody {
MobileTerminal::TerminalId terminal_id;
MobileTerminal::HomeLocationAgent home_location_agent_reference;
unsigned long time_to_live_request;

};

struct RecoveryRequestBody {
MobileTerminal::TerminalId terminal_id;
MobileTerminal::HomeLocationAgent home_location_agent_reference;
struct LastAccessBridgeInfo {

MobileTerminal::AccessBridge access_bridge_reference;
unsigned long time_to_live_request;
unsigned short last_seqno_received;

} last_access_bridge_info;
unsigned long time_to_live_request;

};

typedef RecoveryRequestBody NetworkRequestBody;
typedef RecoveryRequestBody TerminalRequestBody;

Source
Terminal Bridge

Description
This message is sent by the Terminal Bridge to establish or re-establish a tunnel with
an Access Bridge. The INITIAL_REQUEST denotes that a new tunnel is requested. In
tunnel re-establishment the new Access Bridge needs to know which re-establishment
procedure to use:
October 2004 CORBA Wireless Access & Terminal Mobility: GIOP Tunneling Protocol 7-5

7

• Access Recovery (see Section 8.4, “Access Recovery,” on page 8-11):
RECOVERY_REQUEST

• Network Initiated Handoff (see Section 8.2, “Network Initiated Handoff,” on
page 8-3): NETWORK_REQUEST

• Terminal Initiated Recovery (see Section 8.3, “Terminal Initiated Handoff,” on
page 8-8): TERMINAL_REQUEST

The terminal_id and home_location_agent_reference will be used by the Access
Bridge to accept or deny the request and to make the location update at the Home
Location Agent of the terminal.

The time_to_live_request element is used to indicate the terminal’s desired life
expectancy (in seconds) of this tunnel association upon should it be dropped.

Special Note
The gtp_header.seq_no and gtp_header.last_seq_no_received elements are
always set to zero in this message.

Special Note
With regard to the various time_to_live parameters in all GTP messages, if the
parameter is set to 0, then if sent by the terminal this indicates that the Access Bridge
does not need to maintain any state or forward messages for a disconnected terminal. If
sent by an Access Bridge, then the Access Bridge is indicating that it will not maintain
any state and will not forward any messages for this terminal. In other words, the
handoff will not be supported for this terminal.

Forwardable
No - this message cannot be encapsulated and sent via a GTPForward message.

7.2.5 EstablishTunnelReply Message
The EstablishTunnelReply message has a message body containing the CDR
encoded value of

union EstablishTunnelReplyBody switch (ReplyType) {
case INITIAL_REPLY: InitialReplyBody initial_reply_body;
case RECOVERY_REPLY: RecoveryReplyBody recovery_reply_body;
case NETWORK_REPLY: NetworkReplyBody network_reply_body;
case TERMINAL_REPLY: TerminalReplyBody terminal_reply_body;

};

with the following definitions

typedef short ReplyType;
const short INITIAL_REPLY = 0;
const short RECOVERY_REPLY = 1;
7-6 Wireless Access & Terminal Mobility in CORBA, v1.2 October 2004

const short NETWORK_REPLY = 2;

7

const short TERMINAL_REPLY = 3;

enum AccessStatus {
ACCESS_ACCEPT,
ACCESS_ACCEPT_RECOVERY,
ACCESS_ACCEPT_HANDOFF,
ACCESS_ACCEPT_LOCAL,
ACCESS_REJECT_LOCATION_UPDATE_FAILURE,
ACCESS_REJECT_ACCESS_DENIED,
ACCESS_REJECT_RECOVERY_FAILURE

};

struct InitialReplyBody {
AccessStatus status;
MobileTerminal::AccessBridge access_bridge_reference;
unsigned long time_to_live_reply;

};

struct RecoveryReplyBody {
AccessStatus status;
MobileTerminal::AccessBridge access_bridge_reference;
struct OldAccessBridgeInfo {

unsigned long time_to_live_reply;
unsigned short last_seqno_received;

} old_access_bridge_info;
unsigned long time_to_live_reply;

};

typedef RecoveryReplyBody NetworkReplyBody;
typedef RecoveryReplyBody TerminalReplyBody;

Source
Access Bridge

Description
This message is sent by the Access Bridge in response to an
EstablishTunnelRequest message. The status element has the following possible
values:

• ACCESS_ACCEPT: in InitialReplyBody, indicates the successful establishment
of a new tunnel; not used in RecoveryReplyBody.

• ACCESS_ACCEPT_RECOVERY: in RecoveryReplyBody it indicates the
successful re-establishment of an old tunnel to the old Access Bridge; not used in
InitialReplyBody.

• ACCESS_ACCEPT_HANDOFF: in RecoveryReplyBody it indicates the
successful re-establishment of an old tunnel to a new Access Bridge; not used in
InitialReplyBody.
October 2004 CORBA Wireless Access & Terminal Mobility: GIOP Tunneling Protocol 7-7

7

• ACCESS_ACCEPT_LOCAL: in InitialReplyBody, indicates acceptance of
access without location update at HLA (so called homeless terminal).

• ACCESS_REJECT_LOCATION_UPDATE_FAILURE: The location update at
the Home Location Agent failed and the Access Bridge does not support homeless
terminals.

• ACCESS_REJECT_ACCESS_DENIED: Access was denied by the Access
Bridge. Generic reason. May be sent if a connection bridge is out of resources and
cannot accept any more Tunnels.

• ACCESS_REJECT_RECOVERY_FAILURE: The Access Bridge did not get the
information needed in the recovery from the old Access Bridge.

The ACCESS_ACCEPT_RECOVERY status indicates that the tunnel was
established to the same Access Bridge as the last time a tunnel was established for this
terminal. The Access Bridge will immediately set its next GTP header
gtp_header.seq_no to the next to the value of the
last_access_bridge_info.last_seqno_received element obtained in the
EstablishTunnelRequest message, and will re-send any GTP messages lost when
the tunnel was dropped. Likewise, the Terminal must immediately set its next GTP
header gtp_header.seq_no to the next to the value of the
old_access_bridge_info.last_seqno_received element of the
RecoveryReplyBody, and will re-send any GTP messages lost when the tunnel was
dropped.

If the tunnel was established to a new Access Bridge, then the Terminal Bridge should
use the old_access_bridge_info.last_seqno_received element to indicate if any
GTP messages sent by the terminal were lost by the old Access Bridge during a non-
graceful handoff, and re-send them via GTPForward messages.

The time_to_live_reply element (not the
old_access_bridge_info.time_to_live_reply element) is used to indicate the
Access Bridge’s agreed to life expectancy of this tunnel association, and will be less
than or equal to the terminal’s requested time to live.

Special Note
The gtp_header.seq_no and gtp_header.last_seq_no_received elements are
always set to zero in this message.

Forwardable
No

7.2.6 ReleaseTunnelRequest Message
The ReleaseTunnelRequest message has a message body containing the CDR
encoded value of
7-8 Wireless Access & Terminal Mobility in CORBA, v1.2 October 2004

7

struct ReleaseTunnelRequestBody {
unsigned long time_to_live;

};

Source
Terminal Bridge and Access Bridge

Description
This message may be sent by either the Terminal Bridge or the Access Bridge to
gracefully tear down a tunnel. If sent by the Terminal Bridge, the time_to_live
represents the time it desires the Access Bridge to maintain connections and forward
outstanding GIOP messages for this terminal. If sent by the Access Bridge, then this
time_to_live parameter represents the time it is willing to continue to forward GIOP
messages for this terminal.

The sender of this message will send no more GTP messages directly on this tunnel.
And will wait until it receives the reply before releasing the transport connectivity. The
sender of this message will initiate the tear down of the transport connectivity after
receipt of the reply.

Special Notes
None

Forwardable
No

7.2.7 ReleaseTunnelReply Message
The ReleaseTunnelRequest message has a message body containing the CDR
encoded value of

struct ReleaseTunnelReplyBody {
unsigned long time_to_live;

};

Source
Terminal Bridge and Access Bridge

Description
This message is sent by either the Terminal Bridge or the Access Bridge to
acknowledge the graceful tear down of a tunnel. The time_to_live sent in this
message must be less than or equal to the time_to_live sent in the
ReleaseTunnelRequest message. If sent by the terminal, the time_to_live
parameter represents the time it desires the Access Bridge to maintain connections and
October 2004 CORBA Wireless Access & Terminal Mobility: GIOP Tunneling Protocol 7-9

7

forward outstanding GIOP messages for this terminal. If sent by the Access Bridge,
then this time_to_live parameter represents the time its willing to continue to forward
GIOP messages for this terminal.

The sender of this message will send no more GTP messages directly on this tunnel.

Upon sending or receiving this message, each end of the tunnel (Terminal and Access
Bridge) may begin silently tearing down GIOP connections upon which there are no
outstanding GIOP request messages.

The tunnel association for this terminal will be set to inactive_forwarding if the
negotiated time_to_live is non-zero, and set to disconnected (and/or deleted) if
time_to_live was negotiated to zero.

Special Notes
None

Forwardable
No

7.2.8 HandoffTunnelRequest Message
The HandoffTunnelRequest message has a message body containing the CDR
encoded value of

struct HandoffTunnelRequestBody {
MobileTerminal::AccessBridgeTransportAddressList

new_access_bridge_transport_address_list;
};

Source
Access Bridge

Description
This message is sent by the Access Bridge to the Terminal Bridge in the network
initiated handoff described in Section 8.2, “Network Initiated Handoff,” on page 8-3.

The Terminal Bridge will use the new_access_bridge_transport_address_list to
attempt to establish a tunnel to a new Access Bridge.

The sender of this message will send no more GTP messages directly on this tunnel
until it received a HandoffTunnelReply message or times out after some
implementation specific timeout waiting for the Terminal to establish a new Access
Bridge. If it times out, then the Access Bridge may send a ReleaseTunnelRequest
message to begin gracefully tearing down the tunnel. It will however continue to
accept GTP messages sent by the Terminal Bridge and will hold them to either discard
or process dependent upon the success or failure of the handoff.
7-10 Wireless Access & Terminal Mobility in CORBA, v1.2 October 2004

7

The tunnel association for this terminal will be set to handoff_in_progress until
receipt of a HandoffTunnelReply message.

Special Notes
None

Forwardable
No

7.2.9 HandoffTunnelReply Message
The HandoffTunnelReply message has a message body containing the CDR encoded
value of

struct HandoffTunnelReplyBody {
MobileTerminal::HandoffStatus status;

};

Source
Terminal Bridge

Description
This message is sent by the Terminal Bridge in response to HandoffTunnelRequest
message.

If the Terminal Bridge successfully established a new AccessBridge, then status is
set to HANDOFF_SUCCESS. The Terminal Bridge sends a
ReleaseTunnelRequest message to the Access Bridge and waits for
ReleaseTunnelReply message from the Access Bridge.

If the terminal does not support “make-before-break,” then the Terminal Bridge should
not try to establish connectivity to a new Access Bridge but to send a
HandoffTunnelReply with status set to NO_MAKE_BEFORE_BREAK. The
Terminal Bridge sends a ReleaseTunnelRequest message to the Access Bridge and
waits for a ReleaseTunnelReply message from the Access Bridge. After that the
Terminal Bridge establishes a tunnel to a new Access Bridge (see Section 8.2.5,
“Alternative Handoff Procedure,” on page 8-6).

If the terminal could not establish a tunnel to a new Access Bridge, then it will return
a HANDOFF_FAILURE status in this message. The tunnel will then remain open and
active until released by either endpoint via the ReleaseTunnelRequest /
ReleaseTunnelReply sequence.

Special Notes
None
October 2004 CORBA Wireless Access & Terminal Mobility: GIOP Tunneling Protocol 7-11

7

Forwardable
No

7.2.10 OpenConnectionRequest Message
The OpenConnectionRequest message has a message body containing the CDR
encoded value of

struct OpenConnectionRequestBody {
GIOP::TargetAddress target_object_reference;
unsigned long open_connection_request_id;
unsigned long timeout;

};

Source
Terminal Bridge and Access Bridge

Description
This message is sent by either the Terminal Bridge or the Access Bridge to allocate a
connection on the remote end of the tunnel. To avoid allocation conflicts, Access
Bridge uses even numbers and Terminal Bridge uses odd numbers (but not
0xFFFFFFFF, which is reserved as an error indicator; see Section 7.2.11,
“OpenConnectionReply Message,” on page 7-12). The
open_connection_request_id will be returned in the OpenConnectionReply
message. This handle is used so that the target_object_reference does not need to
be returned in the OpenConnectionReply message.

The target_object_reference will be used by the receiver to connect to the target
object.

The timeout is sent as an indication to the receiver of the sender’s desired connection
timeout. The receiver should return an error if this connection cannot be established
within this period. Note that this timeout is by definition approximate because it does
not take into account the transmission time of the request message.

Special Notes
None

Forwardable
No - new connections should be made through the current Access Bridge.

7.2.11 OpenConnectionReply Message
The OpenConnectionReply message has a message body containing the CDR
encoded value of
7-12 Wireless Access & Terminal Mobility in CORBA, v1.2 October 2004

7

struct OpenConnectionReplyBody {
unsigned long open_connection_request_id;
OpenConnectionStatus status;
unsigned long connection_id; // 0xFFFFFFFF indicates failure

};

enum OpenConnectionStatus {
OPEN_SUCCESS,
OPEN_FAILED_UNREACHABLE_TARGET,
OPEN_FAILED_OUT_OUT_RESOURCES,
OPEN_FAILED_TIMEOUT,
OPEN_FAILED_UNKNOWN_REASON

};

Source
Terminal Bridge and Access Bridge

Description
This message is sent by either the Terminal Bridge or the Access Bridge in response to
an OpenConnectionRequest message. The open_connection_request_id
element is the same as that passed in the OpenConnectionRequest message for
which this is a reply. If a connection was established, the connection_id (allocated
by the receiver of the OpenConnectionRequest message) is returned, and status is
set to OPEN_SUCCESS. To avoid allocation conflicts, Access Bridges use even
numbers and Terminal Bridges use odd numbers (but not 0xFFFFFFFF, which is
reserved as an error indicator; see next paragraph).

If the connection could not be established within the requested time period, then the
connection_id is set to 0xFFFFFFFF and the status element is used to relay the
failure reason.

Special Notes
None

Forwardable
Yes - this is due to the fact that outstanding OpenConnectionRequests may have
been in progress during a transition to a new Access Bridge. However, if the new
connection has no outstanding messages on it, then it should be closed and a
connection_id = 0xFFFFFFFF returned in this forwarded message with status =
OPEN_FAILED_TIMEOUT.

7.2.12 CloseConnectionRequest Message
The OpenConnectionRequest message has a message body containing the CDR
encoded value of
October 2004 CORBA Wireless Access & Terminal Mobility: GIOP Tunneling Protocol 7-13

7

struct CloseConnectionRequestBody {
unsigned long connection_id; // 0xFFFFFFFF denotes all connections

for sender
};

Source
Terminal Bridge and Access Bridge

Description
This message is sent by either the Terminal Bridge or the Access Bridge to close a
currently open connection. If the connection_id is set to 0xFFFFFFFF, then all
connections associated with this Tunnel should be closed.

Special Notes
None

Forwardable
Yes - this will be used by either the Terminal Bridge or an old Access Bridge to
gracefully shut down open GIOP connections after a terminal has moved to a new
Access Bridge.

7.2.13 CloseConnectionReply Message
The CloseConnectionReply message has a message body containing the CDR
encoded value of

struct CloseConnectionReplyBody {
unsigned long connection_id; // same as in request
CloseConnectionStatus status;

};

enum CloseConnectionStatus {
CLOSE_SUCCESS,
CLOSE_FAILED_INVALID_CONNECTION_ID,
CLOSE_FAILED_UNKNOWN_REASON

};

Source
Terminal Bridge and Access Bridge

Description
This message is sent by either the Terminal Bridge or the Access Bridge in response to
a CloseConnectionRequest message. The connection_id element is the same as
is sent in the CloseConnectionRequest message for which this is a reply.
7-14 Wireless Access & Terminal Mobility in CORBA, v1.2 October 2004

7

Special Notes
None

Forwardable
Yes - this will be used by either the Terminal or an old Access Bridge, to gracefully
shut down open connections after a terminal has moved to a new Access Bridge.

7.2.14 ConnectionCloseIndication Message
The ConnectionCloseIndication message has a message body containing the CDR
encoded value of

struct ConnectionCloseIndicationBody {
unsigned long connection_id; // 0xFFFFFFFF means all connection for recipient
ConnectionCloseReason reason;

};

enum ConnectionCloseReason {
CLOSE_REASON_REMOTE_END_CLOSE,
CLOSE_REASON_RESOURCE_CONSTRAINT,
CLOSE_REASON_IDLE_CLOSED,
CLOSE_REASON_TIME_TO_LIVE_EXPIRED,
CLOSE_REASON_UNKNOWN_REASON

};

Source
Terminal Bridge and Access Bridge

Description
This message is sent by either the Terminal Bridge or the Access Bridge to alert the
other end of the tunnel that a connection was asynchronously closed, (not in response
to a CloseConnectionRequest message).

If all open connections for this tunnel association were closed, then the
connection_id element will be set to 0xFFFFFFFF.

The reason element is used to indicate the reason for the connection closure. The
element field has the following meanings:

• CLOSE_REASON_REMOTE_END_CLOSE: The remote end of the GIOP
connection closed the connection.

• CLOSE_REASON_RESOURCE_CONSTRAINT: The sender closed this
connection because of a resource constraint.

• CLOSE_REASON_IDLE_CLOSED: The sender closed the connection after an
implementation dependent timeout and after all outstanding GIOP requests had
been completed and the connection could be safely closed.
October 2004 CORBA Wireless Access & Terminal Mobility: GIOP Tunneling Protocol 7-15

7

• CLOSE_REASON_TIME_TO_LIVE_EXPIRED: The time_to_live for this
terminal who had moved expired.

The receiver of this message should mark the indicated connections as deleted in its
local data structures. If a ConnectionCloseIndication message is received for a
connection_id not valid on the receiver (probably because the receiver had already
deleted it locally), then the message will be silently discarded.

Special Notes
None

Forwardable
Yes - this will be used by either the Terminal Bridge or an old Access Bridge to
indicate asynchronous connection closures after a terminal has moved to a new Access
Bridge. This is used to indicate that the time_to_live has expired with the reason set
to CLOSE_REASON_TIME_TO_LIVE_EXPIRED. It is also sent with the reason set
to CLOSE_REASON_IDLE_CLOSED if all outstanding GIOP requests have been
completed and the connection was safely closable.

7.2.15 GIOPData Message
The GIOPData message has a message body containing the CDR encoded value of

struct GIOPDataBody {
unsigned long connection_id;
unsigned long giop_message_id;
MobileTerminal::GIOPEncapsulation giop_message;

};

Source
Terminal Bridge and Access Bridge

Description
This message is sent by either the Terminal Bridge or the Access Bridge and contains
an encapsulated GIOP message. The giop_message_id element is assigned by the
sending bridge. It is used by the receiving bridge in GIOPDataError message to
indicate unsuccessful delivery of a GIOP message. The connection_id is the
receiver’s connection on which this message is to be sent.

Special Notes
If the delivery of the encapsulated GIOP message is successful, this success is not
indicated explicitly to the sender of the GIOPData message. Instead, successful
delivery is implicitly indicated by normal acknowledgment of the GTP sequence
number of the GIOPData message.
7-16 Wireless Access & Terminal Mobility in CORBA, v1.2 October 2004

7

Forwardable
Yes - this will be used by either the Terminal Bridge or an old Access Bridge to
forward GIOP messages.

7.2.16 GIOPDataError Message
The GIOPDataError message has a message body containing the CDR encoded value
of

struct GIOPDataErrorBody {
unsigned long giop_message_id;
DeliveryStatus status;

};

enum DeliveryStatus {
DELIVERY_FAILED_INVALID_CONNECTION_ID,
DELIVERY_FAILED_UNKNOWN_REASON

};

Source
Terminal Bridge and Access Bridge

Description
This message is sent by either the Terminal Bridge or the Access Bridge to indicate
unsuccessful delivery of a GIOP message. The status element is set to the appropriate
failure code.

Special Notes
None

Forwardable
Yes - this will be used by either the Terminal Bridge or an old Access Bridge to
forward indications of unsuccessful delivery of a GIOP message.

7.2.17 GTPForward Message
The GTPForward message has a message body containing the CDR encoded value of

struct GTPForwardBody {
MobileTerminal::AccessBridge access_bridge_reference;

// source if sent by Access Bridge, destination if sent by Terminal Bridge
unsigned long gtp_message_id;
MobileTerminal::GTPEncapsulation gtp_message;

// including GTP header
};
October 2004 CORBA Wireless Access & Terminal Mobility: GIOP Tunneling Protocol 7-17

7

Source
Terminal Bridge and Access Bridge

Description
This message is sent by either the Terminal Bridge or the Access Bridge to forward
messages to/from an old Access Bridge. The gtp_message_id is allocated by the
receiver so that it can identify the GTP message in the GTPForwardReply message.
This handle is used so that the access_bridge_reference does not need to be
returned in the GTPForwardReply message.

If the message is sent by a Terminal, then the gtp_from_terminal operation will be
invoked on the access_bridge_reference to forward the message to the “old”
Access Bridge; see Section 8.5, “GTP Message Forwarding,” on page 8-14.

If the message is sent by an Access Bridge, the access_bridge_reference will be
the source of the forwarded GTP message.

Special Notes
None

Forwardable
No - a GTPForward message cannot be encapsulated in another GTPForward
message. However, Access Bridges can forward forwarded messages given to them by
invoking the gtp_from_terminal and gtp_to_terminal operations.

7.2.18 GTPForwardReply Message
The GTPForwardReply message has a message body containing the CDR encoded
value of

struct GTPForwardReplyBody {
unsigned long gtp_message_id;
ForwardStatus status;

};

enum ForwardStatus {
FORWARD_SUCCESS,
FORWARD_ERROR_ACCESS_BRIDGE_UNREACHABLE,
FORWARD_ERROR_UNKNOWN_SENDER,
FORWARD_UNKNOWN_FORWARD_ERROR

};

Source
Terminal Bridge and Access Bridge
7-18 Wireless Access & Terminal Mobility in CORBA, v1.2 October 2004

7

Description
This message is sent by either the Terminal Bridge or the Access Bridge in response to
a GTPForward message. The gtp_message_id element is the same as passed in the
GTPForward message for which this is a reply.

If this reply message is sent by an Access Bridge, the FORWARD_SUCCESS status
indicates that the encapsulated GTP message was delivered to the old Access Bridge.
Any needed GTP replies or GTP error messages will be returned in separate
GTPForward messages from that Access Bridge. However, if the status is either
FORWARD_ERROR_ACCESS_BRIDGE_UNREACHABLE or
FORWARD_ERROR_UNKNOWN_SENDER, then the terminal should consider the
tunnel on that access bridge to be lost.

If this reply message is sent by a Terminal Bridge, upon receipt of this message the
Access Bridge will call back to the originating Access Bridge (by mapping
gtp_message_id back to the access_bridge_reference and the
gtp_message_id given through the gtp_to_terminal operation) by invoking its
gtp_acknowledge operation to deliver the status field. The FORWARD_SUCCESS
status indicates that the encapsulated GTP message was accepted by the Terminal GTP
engine. If the Terminal has already forgotten about or given up on the Access Bridge
who sent the forwarded GTP message, then the status will be set to
FORWARD_ERROR_UNKNOWN_SENDER. The Access Bridge will then consider
that terminal lost, and begin tearing down its tunnel end as if the time_to_live had
expired.

Special Notes
None

Forwardable
Yes - this is due to the fact that outstanding GTPForwardRequests may have been in
progress during a transition to a new Access Bridge.

7.2.19 Error Message
The Error message has a message body containing the CDR encoded value of

struct ErrorBody {
unsigned short gtp_seq_no; // seq_no element in GTP header
ErrorCode error_code;

};

enum ErrorCode {
ERROR_UNKNOWN_SENDER,
ERROR_PROTOCOL_ERROR,
ERROR_UNKNOWN_FATAL_ERROR

};
October 2004 CORBA Wireless Access & Terminal Mobility: GIOP Tunneling Protocol 7-19

7

Source
Terminal Bridge and Access Bridge

Description
This message is sent by either the Terminal Bridge or the Access Bridge to handle GTP
protocol errors and to initiate a shutdown. The gtp_header.seq_no of the GTP
message is provided for debugging purposes since this tunnel will be immediately
destroyed.

Special Notes
None

Forwardable
Yes - this will be used by either the Terminal Bridge or an old Access Bridge to cause
a disorderly shutdown since the Terminal Bridge and the old Access Bridge are
obviously out of sync.

7.3 TCP Tunneling
In TCP Tunneling the GTP messages are transmitted in a byte stream without any
padding or message boundary marker.

The transport end-point is given as a string: <ip_address>:port_number, where
<ip_address> is either a DNS name of a host or an IP address in dotted decimal
notation.

7.4 UDP Tunneling
In UDP Tunneling the GTP messages are transmitted using the framing protocol, called
UDP Tunneling Protocol, described below, in the payload of UDP datagrams.

The transport end-point is given as a string: <ip_address>:<port_number>, where
<ip_address> is an IP address in dotted decimal notation (123.45.67.89, for example)
so that the terminal does not need to do a DNS lookup.

7.4.1 UDP Tunneling Protocol
The UDP Tunneling Protocol (UTP) provides the reliability and ordered delivery of
messages assumed by the GIOP Tunneling Protocol. UTP assumes that it does not get
corrupted data.

UTP defines encapsulation of GTP messages. It also supports segmentation and re-
assembly of GTP messages and selective acknowledgments.

UTP is chunk-based in the sense that several GTP messages can be concatenated in one
UTP message. A UTP message is the payload of a UDP datagram. A UTP message
7-20 Wireless Access & Terminal Mobility in CORBA, v1.2 October 2004

contains a UTP header and one or more UTP chunks.

7

The UTP header is four bytes: UTP Sequence Number (unsigned short) and Number of
UTP chunks (unsigned short) in the UTP message. The network byte order (that is Big-
Endian) is always used to express numeric values. In UTP, strings are always in 8-bit
ANSI ASCII format.

The basic structure of a UTP chunk is TFLV: type-flags-length-value. However, some
chunks do not have Flags, Length, and/or Value field.

• The Type field is one octet.

• If present, the Flags field is one octet. It is used to denote fragmentation.

• The Length field is 0-2 octets telling the length of the Value field in the network
byte order if the Value field can be of variable length.

• The Value field if present contains the payload of a UTP chunk.

The UTP chunks are:

1. InitialAccessRequest: sent by the Terminal Bridge. The Flags (one octet) and
Length (unsigned short) fields are present. The Value (variable length) field
contains a cookie (sequence of octets) and the transport address end-point of the
Terminal Bridge (string).

2. InitialAccessReply: sent by the Access Bridge. The Flags (one octet) and Length
(unsigned short) fields are present. The Value (variable length) field contains a
cookie (sequence of octets) and the transport address end-point of the Access
Bridge (string).

3. Pause: sent by the Terminal or Access Bridge. No Flags, Length, and Value field.
The receiving bridge should interpret this chunk so that the sending bridge will
silently discard all UTP messages until it receives the Resume chunk.

4. Resume: sent by the Terminal or Access Bridge. No Flags, Length, and Value field.
The receiving bridge should interpret this chunk so that the sending bridge will start
to accept the UTP chunks again.

5. Acknowledge: sent by the Terminal or Access Bridge. No Flag Field. The Length
(one octet) tells the number of entries in the Value field. The actual length of the
Value field in octets is the content of the Length field multiplied by two. The first
unsigned short tells the highest Sequence Number of UTP messages received in
order. The rest unsigned shorts tell which other UTP messages have been received.

6. GTPData: sent by the Terminal or Access Bridge. Flags (one octet) indicate
fragmentation. The Length field (unsigned short) tells the length of the Value field.

7. CloseRequest: sent by the Terminal or Access Bridge. No Flags, Lenght, and Value
field.

8. CloseReply: sent by the Terminal or Access Bridge. No Flags, Lenght, and Value
field.

9. CloseIndication: sent by the Terminal or Access Bridge. No Flags, Lenght, and
Value field.
October 2004 CORBA Wireless Access & Terminal Mobility: UDP Tunneling 7-21

7

7.4.2 Sequence Numbering
Each communication session must start sequence numbering from 0x0001. In other
words the UTP message containing the InitialAccessRequest chunk (or its first
fragment) and the associated reply containing the InitialAccessReply chunk (or its first
fragment) MUST have UTP Sequence Number 0x0001.

The sequence number counting follows the usual modulo arithmetic with the exception
that the sequence number 0x0001 follows the sequence number 0xFFFF.

The UTP Sequence Number 0x0000 is reserved for UTP messages that only contain
the Acknowledge chunk and/or the Pause chunk. These messages MUST NOT be
acknowledged.

7.4.3 Retransmission Policy
Retransmissions in UDP Tunneling Protocol are controlled by selective
acknowledgements by retransmission timers as in TCP with SACK option enabled.

When the sender detects from the selective acknowledgements that the acknowledged
sequence has holes, the missing messages are immediately retransmitted.

A message is also retransmitted when its retransmission timer expires. The
retransmission timer MUST be computed as specified for TCP in RFC 2988 [RFC
2988].

7.4.4 Fragmentation
The two rightmost bits of the Flags field are used to denote fragmentation of the Value
field:

- 0x00: middle segment

- 0x01: first segment

- 0x02: last segment

- 0x03: unfragmented chunk

7.4.5 InitialAccessRequest
The chunk Type is 0x01. The Flags field (one octet) indicate fragmentation. The
Length field is two octets indicating the length of the Value field as an unsigned short.

The Value field contains CDR encoded value of

struct InitialAccessRequestChunk {
sequence<octet> cookie;
string terminal_bridge_udp_address;

};
7-22 Wireless Access & Terminal Mobility in CORBA, v1.2 October 2004

7

where cookie is some bit-pattern selected by the Terminal Bridge and
terminal_bridge_udp_address is a string containing the IP address (in dotted
decimal notation) of the terminal and the UDP port number to which the Access Bridge
shall send the UTP messages (“123.45.67.89:9876”, for example).

The InitialAccessRequest chunk can only be sent by the Terminal Bridge.

Note: UTP message containing this chunk (or its first fragment) MUST have sequence
number 0x0001.

7.4.6 InitialAccessReply
The chunk Type is 0x02. The Flags field (one octet) indicate fragmentation. The
Length field is two octets indicating the length of the Value field as an unsigned short.

The Value field contains CDR encoded value of

struct InitialAccessReplyChunk {
sequence<octet> cookie;
string access_bridge_udp_address;

}

where cookie is the bit-pattern received in the InitialAccessRequest from the
Terminal Bridge and access_bridge_udp_address is a string containing the IP
address (in dotted decimal notation) of the Access Bridge and the UDP port number to
which the Terminal Bridge shall send the UTP messages.

The InitialAccessReply chunk can only be sent by the Access Bridge.

Note: UTP message containing this chunk (or its first fragment) MUST have sequence
number 0x0001.

7.4.7 Pause
The chunk Type is 0x03. The chunk does not have other field.

The receiving bridge should interpret this chunk so that the sending bridge will silently
discard all UTP messages until it sends the Resume chunk.

Both Access and Terminal Bridge can use this chunk.

Note 1: If the UTP message contains only the Pause chunk (with or without the
Acknowledge chunk), then the UTP Sequence Number MUST be 0x0000. The receiver
SHOULD NOT acknowledge such a message.

Note 2: After sending the Pause chunk, the sender SHOULD reply to each arriving
message by a UTP message containing the Pause chunk. The UTP message MAY also
contain Acknowledge and/or GTPData chunks.

7.4.8 Resume
October 2004 CORBA Wireless Access & Terminal Mobility: UDP Tunneling 7-23

The chunk Type is 0x04. The chunk does not have other fields.

7

The receiving bridge should interpret this chunk so that the sending bridge will accept
UTP messages again.

Both Access and Terminal Bridge can use this chunk.

Note: The Resume chunk SHOULD be included in each UTP message until the sender
has received an acknowledgement for a message containing a Resume chunk.

7.4.9 Acknowledge
The chunk Type is 0x05. The chunk does not have the Flags field. The Length (one
octet) tells the number of entries in the Value field. The actual length of the Value field
in octets is the content of the Length field multiplied by two.

The first unsigned short in the Value field tells the highest Sequence Number of UTP
messages received in order. The rest unsigned shorts tell which other UTP messages
have been received.

Both Access and Terminal Bridge can use this chunk.

Note: If the UTP message contains only the Acknowledge chunk (with or without the
Pause chunk), then the UTP Sequence Number MUST be 0x0000. The receiver
SHOULD NOT acknowledge such a message.

7.4.10 GTPData
The chunk Type is 0x06. The Flags field (one octet) indicates fragmentation. The
Length field (unsigned short) tells the length of the Value field.

The Value field contains a GTP message or a part of it.

7.4.11 Close Request
The chunk Type is 0x07. The chunk does not have any other fields.

The chunk can be sent either by the Terminal Bridge or by the Access Bridge.

The bridge sends this chunk when it wants to close the communication session. After
sending this chunk the bridge mwaits for the UTP message cointaining the CloseReply
chunk. The bridge sending the CloseRequest chunk MUST process and acknowledge
all UTP messages until receiving the CloseReply chunk.

When a bridge receives the CloseRequest chunk, it SHOULD immediately retransmit
all unacknowledged UTP messages as well as all remaining GTP messages before
sending the CloseReply chunk.

7.4.12 CloseReply
The chunk Type is 0x08. The chunk does not have any other fields.
7-24 Wireless Access & Terminal Mobility in CORBA, v1.2 October 2004

7

The chunk can be sent either by the Terminal Bridge or by the Access Bridge in
response to the CloseRequest chunk.

The bridge receiving the CloseRequest chunk SHOULD NOT send the CloseReply
chunk before all other UTP messages have been acknowledgeged. After sending the
CloseReply chunk, the bridge SHOULD wait for the acknowledgement before
releasing all data structures associated with the UTP communication session.

The bridge receiving the CloseReply chunk SHOULD acknowledge the UTP message
containing the CloseReply chunk by a UTP message having sequence number 0x0000.
After sending this reply the bridge can release all data structures associated to the UTP
communication session.

If a bridge receives CloseReply chunk, but it has not send the CloseRequest chunk, the
bridge SHOULD send the CloseIndication chunk. See section 7.4.n 'CloseIndication'.

7.4.13 CloseIndication
The chunk Type is 0x09. The chunk does not have any other fields.

The chunk can be sent either by the Terminal Bridge or by the Access Bridge.

The bridge send this chunk to inform the peer bridge that it will close the
communication session. The bridge MAY wait for the acknowledgement of the UTP
message containing the CloseIndication chunk. In this case the bridge SHOULD
discard all arriving UTP messages and response by retransmitting the UTP message
containing the CloseIndication chunk. However, the bridge does not need to wait for
the acknowledgement of the UTP message containing the CloseIndication chunk. It
can immediately, after sending the CloseIndication chunk, release all data structures
related to this communication session and stop accepting messages to the UDP port.

When the peer bridge receives the CloseIndication chunk, it SHOULD immediately
acknowledge that UTP message and stop using the UDP end-point of the peer bridge.
After sending the acknowledgement, the bridge SHOULD release all data structures
related to the UTP communication session.

7.5 WAP Tunneling
The WAP Tunneling Protocol (WAPTP) uses the Wireless Application Protocol (WAP)
to transmit GTP messages between Terminal and Access Bridge.

The main design principle in WAPTP has been simplicity of the implementation. It is
assumed that WAPTP will be used in small embedded devices with limited capabilities.

WAPTP ensures that the assumptions stated by GTP are not violated, specifically that
no corrupted data is delivered and that the order of GTP messages is preserved.
October 2004 CORBA Wireless Access & Terminal Mobility: WAP Tunneling 7-25

7

7.5.1 Wireless Datagram Protocol
WAPTP uses the Wireless Datagram Protocol (WDP) [WDP] of the WAP specification.
It operates above the data capable bearer services supported by multiple network types.
WDP specification describes reference models for a wide variety of networks.

WDP provides a service similar to UDP, such as unreliable transmission of datagrams
and use of port numbers to identify multiple applications in one transport address.

"WDP supports several simultaneous communication instances from a higher layer
over a single underlying WDP bearer service. The port number identifies the higher
layer entity above WDP." [WDP, 5.2]

"The services offered by WDP include application addressing by port numbers,
optional segmentation and reassembly and optional error detection. The services
allow for applications to operate transparently over different available bearer
services." [WDP, 5.1]

If the used bearer does not provide segmentation and reassembly (SAR), then it is the
responsibility of the WDP implementation to do it.

"If the underlying bearer does not provide Segmentation and Reassembly the feature
is implemented by the WDP provider in a bearer dependent way." [WDP, 7.1]

The maximum size of datagram is bearer dependent. It is assumed that the GTP
implementation does not attempt to send GTP messages that are larger than the
maximum datagram size for given bearer (this implies that the ORB also knows this
limitation and fragments GIOP messages accordingly).

WDP ensures the correct order of datagram segments, but not the order of datagrams
themselves.

7.5.2 WAP Tunneling Protocol
In WAPTP, GTP messages are transmitted in Invoke PDUs of WAP WDP, one GTP
message in one WDP datagram.

WDP datagrams are not guaranteed to preserve order, so WAPTP MUST delay the
delivery of GTP messages that have higher sequence numbers than expected.

7.5.3 WAPTP address types
The WDP supports several address types including IP addresses (both IPv4 and IPv6),
MSISD (a telephone number) in various flavors (IS_637, ANSI_136, GSM, CDMA,
iDEN, FLEX, TETRA), GSM_Service_Code, TETRA_ISI, and Mobitex MAN. The
WDP transport address end-points are given as CDR encapsulation of

struct WDPAddressFormat {
octet wdp_version;// mostly 0x00, depends on bearer; see [WDP]
octet wap_assigned_number;// identifies network, bearer, address

// type combination; see [WDP, Appendix C]
7-26 Wireless Access & Terminal Mobility in CORBA, v1.2 October 2004

unsigned short wap_port;// Port number

7

string address;
};

The most usual address types are IP address and telephone number (MSISDN). An IP
address must be in the decimal dotted notation (e.g., 123.1.2.23) so that the terminal
does not need to make a DNS lookup. All possible stringified formats of telephone
numbers are specified in [GFD].

7.6 Bluetooth Tunneling
Because the purpose of tunneling is just to deliver GIOP messages over wireless links,
tunneling should be done as low as possible in the Bluetooth stack (Figure 7-2) to have
minimum overhead.

Figure 7-2 Bluetooth Protocol Stack [BT-SIG]

Any Bluetooth profile, or even the RFCOMM protocol, is not appropriate because they
have many additional features that are not needed for tunneling. The Baseband
protocol through the Host Controller Interface (HCI) is not sufficient because it does
not support protocol multiplexing and de-multiplexing for upper layers. Therefore,
L2CAP is the most suitable protocol in the Bluetooth stack to be used in GIOP
Tunneling.

Since L2CAP is right above HCI, it has a low overhead but still provides protocol
multiplexing and de-multiplexing for upper layers. L2CAP provides connection-
oriented data services, a reliable channel and ordered delivery of messages using the
mechanisms available at the Baseband layer. It also provides notification of disorderly
connection lost. However, L2CAP have limits for packet size, so GTP message
segmentation and reassembly MUST be implemented in order to provide a possibility
to send messages of any size.

vCard/vCal
OBEX

WAE
WAP

UDP
IP

TCP

PPP

RFCOMM

AT
Commands TCS BIN SDP

L2CAP

LMP

Baseband

Bluetooth Radio

Audio

Host Controller Interface

vCard/vCal
OBEX

WAE
WAP

UDP
IP

TCP

PPP

RFCOMM

AT
Commands TCS BIN SDP

L2CAP

LMP

Baseband

Bluetooth Radio

Audio

Host Controller Interface
October 2004 CORBA Wireless Access & Terminal Mobility: Bluetooth Tunneling 7-27

7

In Bluetooth Tunneling the GTP messages are transmitted using L2CAP Tunneling
Protocol (LTP) in the payload of L2CAP packets.

The transport end-point is given as a string: <BD_ADDR>#<PSM>, where
<BD_ADDR> is a unique 48-bit Bluetooth device address given in coloned
hexadecimal notation (e.g., 7F:00:00:01:05:B3) and <PSM> is protocol/service
multiplexer given as an unsigned integer in range 0...65535 (two octets).

7.6.1 LTP Tunneling Protocol
The L2CAP Tunneling Protocol (LTP) provides the reliability and ordered delivery of
messages assumed by the GIOP Tunneling Protocol. LTP assumes that is does not get
corrupted data.

LTP defines encapsulation of GTP messages. It also supports segmentation and
reassembly of GTP messages.

A LTP message is the payload of a L2CAP packet. One LTP message contains either
one GTP message or a fragment of one GTP message. The structure of a LTP message
is FLV: flags-length-value. The network byte order (that is Big-Endian) is always used
to express numeric values.

• The Flags field is one octet. It is used to denote fragmentation (segmentation).

• The Length field is 2 octets telling the length of the Value field in the network byte
order (that is Big-Endian).

• The Value field contains the LTP payload, that is one GTP message or a fragment of
a GTP message.

7.6.2 Fragmentation
The two rightmost bits of the Flags field is used to denote fragmentation of the Value
field:

- 0x00: middle segment

- 0x01: first segment

- 0x02: last segment

- 0x03: unfragmented message
7-28 Wireless Access & Terminal Mobility in CORBA, v1.2 October 2004

	Overview
	1.1 Design Rationale
	1.2 Proof of Concept
	1.3 References

	GIOP Tunneling
	7.1 Tunnel Establishment
	7.1.1 Transport End-Point Detection

	7.2 GIOP Tunneling Protocol
	7.2.1 GTP Message Structure
	7.2.2 GTP Messages
	7.2.3 IdleSync Message
	7.2.4 EstablishTunnelRequest Message
	7.2.5 EstablishTunnelReply Message
	7.2.6 ReleaseTunnelRequest Message
	7.2.7 ReleaseTunnelReply Message
	7.2.8 HandoffTunnelRequest Message
	7.2.9 HandoffTunnelReply Message
	7.2.10 OpenConnectionRequest Message
	7.2.11 OpenConnectionReply Message
	7.2.12 CloseConnectionRequest Message
	7.2.13 CloseConnectionReply Message
	7.2.14 ConnectionCloseIndication Message
	7.2.15 GIOPData Message
	7.2.16 GIOPDataError Message
	7.2.17 GTPForward Message
	7.2.18 GTPForwardReply Message
	7.2.19 Error Message

	7.3 TCP Tunneling
	7.4 UDP Tunneling
	7.4.1 UDP Tunneling Protocol
	7.4.2 Sequence Numbering
	7.4.3 Retransmission Policy
	7.4.4 Fragmentation
	7.4.5 InitialAccessRequest
	7.4.6 InitialAccessReply
	7.4.7 Pause
	7.4.8 Resume
	7.4.9 Acknowledge
	7.4.10 GTPData
	7.4.11 Close Request
	7.4.12 CloseReply
	7.4.13 CloseIndication

	7.5 WAP Tunneling
	7.5.1 Wireless Datagram Protocol
	7.5.2 WAP Tunneling Protocol
	7.5.3 WAPTP address types

	7.6 Bluetooth Tunneling
	7.6.1 LTP Tunneling Protocol
	7.6.2 Fragmentation

