
WS-POS
V 1.3.1
Change bar version

OMG Document Number: formal/20-01-04

Normative Reference: https://www.omg.org/spec/WS-POS/1.3.1

Associated Normative Machine Consumable Files:

https://www.omg.org/spec/WS-POS/20180301/JAX-WSContract.zip
https://www.omg.org/spec/WS-POS/20180301/WCFContract.zip
https://www.omg.org/spec/WS-POS/20180301/WSDL.zip
https://www.omg.org/spec/WS-POS/20180301/XSD.zip

https://www.omg.org/spec/WS-POS/20180301/JAX-WSContract.zip
https://www.omg.org/spec/WS-POS/20180301/WCFContract.zip
https://www.omg.org/spec/WS-POS/20180301/WSDL.zip
https://www.omg.org/spec/WS-POS/20180301/XSD.zip

2 WS-POS, v1.3.1

Copyright © 2008, National Retail Federation
Copyright © 2022, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change without
notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of
the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have
infringed the copyright in the included material of any such copyright holder by reason of having used the specification
set forth herein or having conformed any computer software to the specification.
Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in
any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made
to this specification. This limited permission automatically terminates without notice if you breach any of these terms
or conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or
control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved. No
part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

WS-POS, v1.3.1 3

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED
ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR
PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE
COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF
PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION
WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii)
of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and
(2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48
C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above
and may be contacted through the Object Management Group, 9C Medway Road, PMB 274, Milford, MA 01757,
U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG
Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®, and
XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using
this specification may claim compliance or conformance with the specification only if the software satisfactorily
completes the testing suites.

4 WS-POS, v1.3.1

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(http://www.omg.org/report_issue.)

Chairman UnifiedPOS Committee:

H Paul Gay Epson America

UnifiedPOS Committee Members:

Gerald Armentrout IBM
Kazunori Chihara Seiko Epson Corporation
Kunio Fukuchi Fujitsu Frontech Limited
Tadashi Furuhata Seiko Epson Corporation
Denis Kuniss Wincor-Nixdorf
Jürgen Moser Bizerba
Lawrence Owen STAR MICRONICS CO., LTD.
Daniel Schwertführer Bizerba
Brian Spohn NCR Corporation
Michael Webb Data Logic, Inc.

Contributors:

Richard Halter Global Retail Technology Advisors, LLC

OPOS-J Work Team For WS-POS Version 1.3.1
Chairmen OPOS-J Work Team:

Toru Yanagisawa NEC Platforms, Ltd.
Masanori Sambe Toshiba TEC Corporation
Eiki Murakami Sorimachi Giken Co., Ltd.

Core OPOS-J Members:

Tadashi Furuhata Seiko Epson Corporation
Hideo Nakamura Seiko Epson Corporation
Kunio Fukuchi Fujitsu Frontech Limited
Toyohiro Yasumoto VINX CORP.
Tako Tamura Sorimachi Giken Co., Ltd.
Kiyotaka Abe Sorimachi Giken Co., Ltd.
Kenichi Nagai STAR MICRONICS CO., LTD.
Yuji Mori STAR MICRONICS CO., LTD.
Akio Tajima NCR Japan, Ltd.
Takahiro Akutsu Hitachi Information & Communication Engineering, Ltd.
Mitsuhiro Igarashi NEC Platforms, Ltd.
Takahide Kubota Toshiba TEC Corporation
Kazunori Chihara Seiko Epson Corporation
Toshihiko Hayashi OMRON SOFTWARE Co., Ltd.

Contributors OPOS-J:

Soichi Fujii Microsoft Co., Ltd.
Hiroshi Ota Microsoft Co., Ltd.
Mitsuo Nagata VINX CORP.

WS-POS, v1.3.1 5

TABLE OF CONTENTS

1. PREFACE ... 7
1. ABSTRACT ... 8

1.1 OVERVIEW UPDATED IN VERSION 1.3 ... 8
1.2 CONFORMANCE REQUIREMENTS ... 9
1.3 ARTS WS-POS STANDARDS STACK .. 10
1.3.1 WEB SERVICE COMPONENTS .. 11
1.3.2 ADDITIONAL COMPONENTS UPDATED IN VERSION 1.2.. 11
1.4 OUT OF SCOPE UPDATED IN VERSION 1.2 ... 11

2. WS-POS COMPONENTS .. 12
2.1 EXPLANATION OF WS-POS RELATED TERMINOLOGY .. 12
2.2 MESSAGING BASE ... 13
2.3 SERVICE DESCRIPTION AND DISCOVERY ... 14
2.4 WS-POS BEHAVIOR MODELS ADDED IN VERSION 1.2 .. 18
2.4.1 INTRODUCTION TO PROPERTIES, METHODS AND EVENTS ADDED IN VERSION 1.2 18
2.4.1.1 PROPERTY, METHOD AND EVENT ADDED IN VERSION 1.3 19
2.4.2 WS-POS COMMUNICATION MODEL ADDED IN VERSION 1.2 .. 19
2.4.3 SESSION MANAGEMENT AND DEVICE CONTROL ADDED IN VERSION 1.2 20
2.4.4 INTRODUCTION OF WS-POS SESSION MANAGER CONCEPT ADDED IN VERSION 1.2 20
2.4.5 IDENTIFYING WS-POS SESSION ADDED IN VERSION 1.2 .. 21
2.4.5.1 SECURITY CONSIDERATION ADDED IN VERSION 1.3 .. 21
2.4.6 TYPICAL SEQUENCE TO ESTABLISH WS-POS SESSION ADDED IN VERSION 1.2 22
2.4.7 CALLING WS-POS SERVICE METHOD SAND USING PROPERTIES
ADDED IN VERSION 1.2 .. 23
2.4.8 MULTIPLE WS-POS SERVICE CONSUMER CLAIM REQUESTS ON A WS-POS SERVICE PROVIDER
UPDATED IN VERSION 1.2 .. 24
2.4.9 WS-POS METHOD SAND DEVICE METHODS UPDATED IN VERSION 1.3 29
2.4.10 WS-POS EVENTS HANDLING USING BI-DIRECTIONAL COMMUNICATION
UPDATED IN VERSION 1.2 .. 30
2.4.11 WS-POS VENTS HANDLINGON POLLING ADDED IN VERSION 1.2 33
2.4.12 RESOLUTION OF FREQUENT COMMUNICATION EVENTS IN THE EVENT NOTIFICATION
ADDED IN VERSION 1.3 .. 38
2.4.13 WS-POS SERVICE NETWORK CONNECTION MANAGEMENT CONSIDERATIONS
ADDED IN VERSION 1.2 .. 43
2.4.14 WS-POS SERVICE NETWORK CONNECTION MANAGEMENT, EVENT – BI-DIRECTIONAL COMMUNICATIONS
ADDED IN VERSION 1.2 .. 46
2.4.15 WS-POS SERVICE NETWORK CONNECTION MANAGEMENT, EVENT – POLLING
ADDED IN VERSION 1.2 .. 51
2.4.16 WS-POS METHOD REFERENCES (UPOS UML STYLE) UPDATED IN VERSION 1.2 58
2.4.17 WSPOS EVENT AND WSPOS EVENT RESPONSE ADDED IN VERSION 1.2 70
2.4.18 WS-POS EVENT REFERENCE IN BI-DIRECTIONAL COMMUNICATION
UPDATED IN VERSION1.3 ... 76
2.4.19 MODIFICATIONS TO XMLPOS UPDATED IN VERSION 1.3 82
2.4.20 FILE PATH FOR A METHOD CALL ADDED IN VERSION 1.2 87
2.4.21 RETRIEVING CONSUMERID THAT HAS BEEN SUCCESSFULLY CLAIMED
ADDED IN VERSION 1.3 .. 88
2.5 STATUS, STATE MODEL AND EXCEPTIONS .. 92
2.6 SHARED DEVICE MODEL ... 93
2.7 EVENT MESSAGES ... 94
2.8 INPUT MODEL ... 96
2.9 OUTPUT MODEL .. 98
2.10 DEVICE POWER REPORTING MODEL .. 100
2.11 ARTS XMLPOS COMMAND SET ... 101
2.12 ARTS XMLPOS EVENT SET ... 101

6 WS-POS, v1.3.1

2.13 ARTS XMLPOS SCHEMA ... 102
2.14 WS-POS WSDL .. 103
2.15 BACKWARD COMPATIBILITY ADDED IN VERSION 1.2 ... 108
2.16 SECURITY ... 108
2.17 XML PAYLOAD ... 110

3. GENERAL FLOW .. 111
3.1 GENERAL WS-POS FLOWS ... 111
3.2 SIMPLE USE CASE .. 112
3.3 USE CASE CATALOG .. 116
3.4 SCOPE ... 116
3.5 SUB SCOPE: LINKAGE BETWEEN IN-STORE KIOSK AND POS (DEVICES) ... 120
3.6 SUB SCOPE: LINKAGE BETWEEN SALES ASSISTANCE TERMINALS AND POS DEVICES 124
3.7 SUB SCOPE: BATCH PAYMENT IN COMMERCIAL COMPLEX .. 129
3.8 SUB SCOPE: MONITORING IN-STORE KIOSK EQUIPMENT AND COOPERATION WITH BACK-OFFICE ON
OCCURRENCE OF PROBLEMS. ... 133
3.9 SUB SCOPE: POS SYSTEM IN CONSIDERATION OF COOPERATION BETWEEN VARIOUS INDUSTRIES 138
3.10 SUB SCOPE: LINKAGE BETWEEN DISPLAY SHELF AND REAR SYSTEM.. 142
3.11 SUB SCOPE: COOPERATION BETWEEN ELECTRONIC SHELF LABEL AND SHELVING ALLOCATION
INFORMATION ... 150
3.12 SUB SCOPE: SELF-SERVICE REFUELING ... 155

4. DOCUMENT HISTORY .. 163
5. REFERENCED DOCUMENTS AND SOFTWARE SUPPORT FILES ... 166

5.1 REFERENCED DOCUMENTS .. 166
5.2 SOFTWARE SUPPORT FILES ... 166
5.3 SOFTWARE SUPPORT FILES ADDED IN VERSION 1.2 ... 168
5.4 SOFTWARE SUPPORT FILES ADDED IN VERSION 1.3 ... 168

6. WS-POS CLASS DIAGRAMS UPDATED IN VERSION 1.2 ... 170
7. APPLICATION DEVELOPMENT SUPPORT UPDATED IN VERSION 1.2 171

WS-POS, v1.3.1 7

1. Preface

OMG
Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG
Specifications are available from the OMG website at:
http://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF
format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group,
Inc. at:

OMG Headquarters
9C Medway Road, PMB 274
Milford, MA 01757
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to
https://issues.omg.org/issues/create-new-issue

8 WS-POS, v1.3.1

1. ABSTRACT

1.1 Overview Updated in Version 1.3
The W3C Glossary, http://www.w3.org/TR/ws-gloss/, defines a Web Service as “a software system
designed to support interoperable machine-to-machine interaction over a network. It has an interface
described in a machine-understandable format (specifically WSDL). Other systems interact with the
Web service in a manner prescribed by its description using SOAP-messages, typically conveyed
using HTTP with an XML serialization in conjunction with other Web-related standards.”
Web Services for Point of Service (WS-POS) is a technical document intended to provide retail
devices, terminals and servers with the capabilities necessary to interoperate in a detached, dynamic
network as well as more typical retail LANs by leveraging these W3C specifications.
WS-POS Version 1.1 represents an update of the original release of the standard with emphasis on
refined WSDL support for all UnifiedPOS Version 1.14 peripheral devices as well as enhancements
and bug fixes. This amended material was created almost exclusively as a result of implementation
experience and subsequent refinement submissions from the OpenPOS Technology Council of
Japan.
WS-POS Version 1.2 builds on the previous versions and adds important enhancements to provide
better Event management, adding “heart beat” methodology to aide in application interaction with
network attached POS peripherals, provide for “polling” of POS peripherals to help with Event
services, and adding logic for a consumer ID to aide in management of services available to an
application program.
In WS-POS version 1.3, version 1.2 as the base, taking into account for the transmission and
reception of binary data, how to resolve frequent event communication in the event notification for
more efficient handling of those events with embedded parameter returns with event notification,
and how to acquire the encrypted value of the consumer ID which has been successful in Claim for
the use case where multiple WS-POS service consumers shares one WS-POS service provider and
one of the consumer unintentionally locks the service provider have been added.
A significant part of this document is a profile of the minimal web-service specifications necessary
to support remote device interoperability. This profile serves to constrain, articulate, and enable the
usage of the WS specifications in order to facilitate interoperability and ensure appropriateness of
the chosen web-services specifications for a Web Services implementation at the retail store. The
WS-POS specification also utilizes UnifiedPOS XMLPOS and other significant details intended to
permit an easy and interoperable implementation of a Web Service for Point of Service solution.

http://www.w3.org/TR/ws-gloss/

WS-POS, v1.3.1 9

1 Publish
business functions
described in WSDL
using UDDI

1 Publish
business functions
described in WSDL
using UDDI

2 Find
service functions
described in WSDL
using UDDI

2 Find
service functions
described in WSDL
using UDDI

2 Find
service functions
described in WSDL
using UDDI

3 Bind
business function
using SOAP

3 Bind
business function
using SOAP

3 Bind
business function
using SOAP

Service Consumer

•Requires business functions
•Searches registry for matching functions
•Binds and make requests

Service Consumer

•Requires business functions
•Searches registry for matching functions
•Binds and make requests

Service Provider

•Exposes business functions as Web services
•Publishes functions to registry
•Listens to and accepts requests

Service Provider

•Exposes business functions as Web services
•Publishes functions to registry
•Listens to and accepts requests

Service Registry

•Maintains repository of business functions
•Accessed via UDDI

Service Registry

•Maintains repository of business functions
•Accessed via UDDI

Figure 1: Web Services Architecture

Figure 1 illustrates a typical connectivity model for Web Services in general, and more importantly,
the one that will be used for WS-POS. First, a Service Provider registers with a Service Registry
(UDDI) identifying the services it provides. Second, the Service Consumer finds the locations of
the Service Providers who supply the services it needs to perform its task. Finally, it binds directly
to the identified Service Providers to exchange the necessary messages to perform that service.

1.2 Conformance Requirements
In order to ensure interoperability as defined by this specification, an implementation must meet all
the requirements set forth in this specification. These requirements are defined using the following
format:

Id Name Description
XY001 Requirement Name This is a requirement description

IP POLICY
This specification was originally created under the ARTS IP Policy which can be found here:
http://www.omg.org/cgi-bin/doc?retail/2017-12-01. With the transition to the Object Management
Group, this standard is now published under a default reasonable and non-discriminatory (“RAND”)
licensing obligation for members with only limited exceptions.

Note: The following XML examples include “namespace references”. These are not actual file
locations but placeholders for the appropriate namespace where the support files can be found.
In summary, when an application uses the schema examples as a basis for their code, it is necessary
to replace the placeholders with valid namespace locations.

http://www.omg.org/cgi-bin/doc?retail/2017-12-01

10 WS-POS, v1.3.1

1.3 WS-POS Standards Stack

The following diagram shows the WS-POS stack components necessary to be compliant with this
standard.

Figure 2: WS-POS Stack

SOAP, SOAP Attachments

Transport (HTTP)

Security

Description &
Discovery

Messaging &
Encoding

Transport

WS-Security

WS-Transport Layer Security

XML, XML Infoset

WSDL WS-
Metadata Exchange UDDI

XMLPOS ARTS
XML Standards

WS-POS ARTS
WS-POS

WS-POS, v1.3.1 11

1.3.1 Web Service Components
The web services definition of WS-POS addresses these key areas:

• The Messaging base: a description of the core that all messaging in WS-POS is based upon.

• Service discovery: How resources and services are located.

• Service description: How services and messages of interest will describe themselves.

1.3.2 Additional Components Updated in Version 1.2
• Security: provides a description of the mechanisms that must be in place to ensure an

appropriate level of security.

• XML Payload: The payload of a message.

• Service Definitions: In order to enable clients to easily find available devices using Universal
Data Discovery and Integration (UDDI), it is necessary to define the names and definitions
of device services.

• (Added in Version 1.2) Methods for handling unintended disconnect scenarios between a
WS-POS Service Provider and a WS-POS Service Consumer (see section 2.4 WS-POS
Behavior Models).

1.4 Out of Scope Updated in Version 1.2
Management, dynamic service discovery, and events at the web service level have not been
addressed in this version of the specification.
This version limits itself to data flow within the “retail store” environment. Future versions may
expand in scope to include data flow to and from the enterprise. This has the implication that all
security outside of interactions between UDDI, Client, and Device require implementation practices
considered under the guidance of good systems design practices.
This specification does not specify:

• Methods for selecting a device service to use from a list of possible devices services. This
is an area an application needs to manage.

• Methods to preload devices with security credentials or validate security credentials.

• How to verify that devices or clients are valid.

• Address Payment Card Industry (PCI) data requirements. It is recognized that the
information contained within the messages will need to follow the PCI standard. Those
requirements are defined by the PCI committee.

12 WS-POS, v1.3.1

2. WS-POS COMPONENTS
This section provides details concerning each component of the WS-POS stack.

2.1 Explanation of WS-POS Related Terminology

2.1.1 XML POS
XML POS is a definition in XML of the operations, states, and attributes that should be supported
by POS devices standardized by ARTS.

2.1.2 Web Service
A Web Service provides a standard method of interoperability for different software to operate on
various platforms (W3C). Many of the implementations are defined in the WSDL definition
language and use a protocol to exchange information in XML format called SOAP while using
HTTP for transport. In some cases, Web Service refers to the technology itself while in other cases
it refers to services implemented by the technology.

2.1.3 Web Service based on the WS-POS specification
This specification describes a Web Service based on the WS-POS specification as a WS-POS
service.

2.1.4 Provider and consumer of a WS-POS service
This specification describes the WS-POS service provider who is providing the WS-POS service
and WS-POS service consumer who is using the WS-POS service.

2.1.5 Methods in WS-POS
Methods in WS-POS are expressed as Web Service operations. This specification uses WS-POS
methods instead of the term of Web Service operations.

WS-POS, v1.3.1 13

2.1.6 Properties in WS-POS
Properties in WS-POS are realized using Getter/Setter methods. For example, the DeviceEnabled
property defined by UnifidPOS is expressed by the GetDeviceEnabled method as a Getter method
while the SetDeviceEnabled method is expressed as a Setter method. In read-only properties, there
are no Setter methods. This specification typically does not describe Getter method/Setter methods
hereafter. Please note that Getter/Setter methods are used to acquire/set properties.
2.1.7 Events in WS-POS
Events in WS-POS notify WS-POS service consumers about device events defined by Unified

POS from WS-POS service providers.
WS-POS calls the client from the Web Service in order to receive device events defined in Unified
POS by the application. Applications that receive events must notify the services about the end
point for reception.

2.2 Messaging Base
2.2.1 Description
The messaging base is the set of technologies utilized as a core basis for all the other areas. It
provides a starting point for description of all the messages that are employed.

2.2.2 WS-I Basic Profile
A WS-POS service is described by WSDL 1.1, based upon WS-I Basic Profile version 1.2. This
consists of using SOAP 1.1 over HTTP, with WS-Addressing Core 1.0, and Web Service
Description Language (WSDL) Version 1.1. The WSDL 1.1 description includes the service offered
(type/interface), method of use (bind), and location (endpoint). These are the mainstream defaults
for web service usage, and are typically seen as the “ground rules” by which the Web Services
“world” operates.

Id Name Description
MB001 Basic Profile An implementation MUST be conformant to WS-I Basic Profile

version 1.2

14 WS-POS, v1.3.1

2.3 Service Description and Discovery

UDDI

tModeltModel

WSDL

Business
Entity

Business
Service

tModel

Binding
Template

Service Type
Definition

WSDL

ARTS
Schemas

SOAP
Binding

Step 1

Populate tModels

Service

Names

Service
Implementation

WSDL

Step 2
Create
Service

Definition

Physical
Service
Location

ARTS
Schemas

Figure 3: ARTS Schema - WSDL - UDDI Relationship

Populating a UDDI registry is a two-step operation. First, the tModel (Technical Model) is
populated from a WSDL with the appropriate Service information, usually provided by a Service
Provider. Then, the Business Service is populated with links to the group of tModels necessary to
perform a specific Business Service.

From the registry a Service Consumer may then look up the Business Services it needs to perform
its task. Once an appropriate Business Service is determined, the Service Consumer may query the
UDDI registry for contact information for each individual Web Service of that type.

UDDI 3.0.2 can be used to discover WS-POS services. WS-POS service providers register WS-POS
services in the UDDI service registry.

The relationships between the WSDL description and the information registered in UDDI are the
noted as follows:

WSDL UDDI

types

message

binding

tModel

Service businessService

Port bindingTemplate

In addition, the ARTS Device Type (Scanner, POSPrinter, etc.) is set in businessEntity of UDDI.

WS-POS, v1.3.1 15

2.3.1 Service Description
2.3.1.1 Description
Standardized data is required to ensure interoperability by:

1. Formally describing the service being offered by the service provider
2. Defining the message structure necessary to invoke the functionality of the specific service
from the service provider
3. Ensuring that the choreography of the service provider and the service consumer is in sync

An additional benefit that comes with a good service description is the ability to utilize effective
commercial tools to assist in the development and verification of interoperability conformance
between the service provider and the service consumer.
2.3.1.2 Metadata
WSDL 1.1, as explained in WS-I Basic Profile V1.2, is employed as the core service description
facility.

WS-MetaDataExchange is required to retrieve the metadata information relevant to the respective
Web services utilized.

16 WS-POS, v1.3.1

2.3.2 Discovery Updated in Version 1.2

2.3.2.1 Description
The ability to find and work with peripheral devices on the LAN (or non-LAN devices represented
by proxies on the LAN) is a key requirement for WS-POS. Thus, discovering existing services (or
new services after they are introduced) is an important part of the overall solution.

2.3.2.2 Universal Description, Discovery, and Integration

Business
Entity

Business
Entity

tModeltModelTechnical
Model

Binding
TemplateBinding

Template

Binding
TemplateBinding

Template

Binding
TemplateBinding

Template

Binding
TemplateBinding

Template

Business
ServiceBusiness

Service

Business
ServiceBusiness

Service

Business
ServiceBusiness

Service

Figure 4: UDDI Overview

WS-POS uses version 3.0.2 of the Universal Description Discovery and Integration (UDDI)
specification. A UDDI registry runs on a server and provides a single place for web services in a
network to register, and to discover other web services. Version 3.x reduces much of the network
chatter associated with previous versions of UDDI.

Id Name Description
DI001 UDDI An implementation MUST be conformant to UDDI version 3.0.2

WS-POS, v1.3.1 17

2.3.2.3 Registering a device service with UDDI

<service>

<port>

<port>

<import>

Service Implementation

<types>
<message>
<portType
<binding>

Service Type Definition

Reusable
Definition of a

Service

Instance of a
Service businessEntity

businessService

bindingTemplate

bindingTemplate

tModelCreate
First

Create
Second

UDDIWSDL

Figure 5: Registering a WSDL with a UDDI Registry

The device services register with UDDI using the mapping scheme described in the technical note
from OASIS “Using WSDL in a UDDI Registry”, Version 2.0.2.

18 WS-POS, v1.3.1

2.3.2.4 Searching for a Service with UDDI
In order to locate a service, all that is required is a search of the UDDI for the business entities that
contain the desired services as described in the table below.

ARTS Device Type
(businessEntity)

User Service
(businessService)

Administrative Service
(businessService)

Scanner ScanItems ScannerAdmin

2.3.2.5 Removing a device service from UDDI
Device services should make every effort to ensure that they are not registered with UDDI before
going out of service.

2.4 WS-POS Behavior Models Added in Version 1.2
The WS-POS specification defines cooperative behavior between a WS-POS service consumer that
uses a WS-POS service and a WS-POS service provider who provides the service.

In WS-POS Version 1.2, the following behaviors were added.

Behavior Background

Event polling methodology A RIA (Rich Internet Application) that is running on the Web
browser cannot open the port, since it is protected by the browser
security program. The WS-POS Ver.1.1 specification required that
the WS-POS service consumer open the event receiving end
points. However, it is not possible for a RIA to implement this.

Network disconnection
monitoring

WS-POS Ver. 1.1 was not able to facilitate good network
connection management. There was no mechanism provided for
either a WS-POS service consumer or a WS_POS provider to
detect an interrupted network connection. This would lead to a
fault situation where the WS-POS service provider could not
release a claimed device.

Session management In situations where multiple WS-POS service consumers required
access to the same WS-POS service provider, WS-POS Ver. 1.1
did not provide for unique WS-POS consumer session identifiers.
The WS-POS service provider could not identify and guarantee
that it was responding to the correct WS-POS service consumer
requestor.

2.4.1 Introduction to Properties, Methods and Events Added in Version 1.2
Over the network, WS-POS handles the Properties, Methods and Events that are described in Device
Behavior Models in the ARTS UnifiedPOS standard. Refer to the “Device Behavior Model” in
UnifiedPOS specification for more details.

WS-POS, v1.3.1 19

2.4.1.1 Property, Method and Event Added in Version 1.3
In WS-POS, ARTSBinary of special encoded string type is used for property types which has
binary data, method and event parameter type.
WS-POS service consumer must convert binary data which includes 0 to ARTSBinary to send it to
WS-POS service provider.
Return value from WS-POS service provider may be ARTSBinary. Therefore, WS-POS service
consumer must convert the return value.
The ARTSBinary is defined in XMLPOS. Refer Appendix A29-32 of UnifiedPOS 1.14.1
specification and ARTS XML Best Practices for the details of ARTSBinary.

2.4.2 WS-POS Communication Model Added in Version 1.2
WS-POS defines following two models for the communication between WS-POS service consumer
and WS-POS service provider.
 Bi-Directional Communication
 Polling Communication (Added in Version 1.2)

To facilitate Bi-Directional Communication, the WS-POS service consumer opens a unique port
for receiving events. This concept is
shown in Figure 6.

Figure 6 Bi-Directional Communication concept

Refer to Section 2.4.10 for more details on receiving events using the Bi-Directional
Communication method.
WS-POS defines a Polling Communication mechanism whereby the WS-POS service consumer
invokes a WS-POS service provider method call to enable the WS-POS service consumer to
receive events. The concept is shown in Figure 7.

WS-POS
Service Provider

WS-POS
Service Consumer

WS-POS Service Interface

POS Device
Application

Event Notification

Method Call

Event Event

20 WS-POS, v1.3.1

Figure 7 Polling Communication concept

Refer to Section 2.4.11 for more details on receiving events using the Polling Communication
method.

2.4.3 Session Management and Device Control Added in Version 1.2
WS-POS handles the communication session between the WS-POS service consumer and the WS-
POS service provider. It also performs the device control function for the application interfaces to
the peripheral. Those two functions manage access and control at two different levels.
The WS-POS session management controls the connection between a WS-POS service consumer
and a WS-POS service provider. Its primary functions include opening a session, closing a session
and uniquely identifying the WS-POS service consumer where multiple WS-POS service consumers
access a single WS-POS service provider.
The device control function of WS-POS service provider defines the application interfaces to access
the UnifiedPOS device under its control. Its primary functions are opening (not opening a session),
claiming, enabling, closing and allowing access to the Properties, Methods, and Events necessary
to control a UnifiedPOS peripheral device.
Refer to Section 2.4.9 for more details on session management and using the device control API.

2.4.4 Introduction of WS-POS Session Manager Concept Added in Version 1.2
The WS-POS service provider must be able to respond to service requests from multiple WS-POS
service consumers. WS-POS 1.2 defines the management of the network sessions between the WS-
POS service provider and one or more WS-POS service consumers.

Successful session management is dependent upon a WS-POS service consumer having a unique
ID to identify itself. The WS-POS service consumer injects its unique ID into the first message
argument when the openSession method call is sent to the WS-POS service provider. Subsequent
WS-POS service consumer and WS-POS service provider communications are managed as sessions
identified by the unique consumer IDs.

The following diagram shows that the WS-POS service provider in each device has one session
manager. Notice also that within the session manager, multiple uniquely identified instances of a

WS-POS
Service Provider

WS-POS
Service Consumer

WS-POS Service Interface

POS Device
Application

Event Polling

Method Call

Event Event

WS-POS, v1.3.1 21

UnifiedPOS SO may exist. The session manager ensures that the WS-POS service consumer and
the WS-POS service provider can successfully communicate with the correct SO Instance.

Session Manager

App1
(Consumer)

Device
(POSPrinter2)

App2

Session Manager

Device
(Scanner)

App3

SO Instance (App1)

SO Instance (App2)

SO Instance (App2)

SO Instance (App3)

WS-POS Service Provider

Figure 8: Session Management layer and Device Control layer

2.4.5 Identifying WS-POS Session Added in Version 1.2
The WS-POS service consumer issues its consumer ID but a standard method for generating a
unique consumer ID should be utilized in order to ensure that it is unique within the system. (Usage
of a GUID for Windows/.NET and a UUID for Java are recommended.)

If the WS-POS service consumer does not have a unique ID, the WS-POS 1.2 standard requires
that a WS-POS service provider have the capability to create and unique ID and return it to the
WS-POS service consumer. This request for a unique ID should only be necessary one time, since
once the WS-POS service consumer then has a unique ID, it can store it and use it for all future
sessions
with any WS-POS service provider.

It is important to note that it is mandatory that the WS-POS service consumer ID be unique and
available before an open session request is made to the WS-POS service provider. This is
necessary because the WS-POS service provider must have a WS-POS Consumer ID for an
“openSession” method call and all subsequent P,M,E function requests the WS-POS service
consumer and the WS-POS service provider.

2.4.5.1 Security consideration Added in Version 1.3
When the consumer ID of the WS-POS service consumer is available and readable by other WS-
POS service consumers, a security breach of private information is possible. Only the originating
consumer and the connected service provider should have access to the consumer ID.
For example:
Consumer (A) claims the service provider (B) MSR and a unique WS-POS consumer ID is used for
identification. When a credit card is swiped and MSR TrackData is ready to be transmitted it should
only be sent from B to A. If a different Consumer (C) has access to Consumer (A) unique ID, it

22 WS-POS, v1.3.1

could be possible for Consumer (C) to imitate Consumer (A) and gain access to the MSR service
(B) MSR TrackData.
To reduce this risk, each time an openSession method is called, a unique Consumer ID is
dynamically generated and is only valid for that specific session.
For further information on consumer ID and security, see "2.4.21.1 Security Considerations".

2.4.6 Typical sequence to establish WS-POS session Added in Version 1.2
The following sequence diagram illustrates a typical WS-POS session establishment. In the diagram,
a session is established for two WS-POS consumers. Then the respective UnifiedPOS devices are
instantiated.

Figure 9: Establish Session

Note: The Consumer ID is a unique GUID or UUID
In the example above, the WS-POS Consumer 1 needs a unique ID. Using the endpoint address of
the WS-POS service provider it invokes a generateConsumerID request to the WS-POS Session
Manager. The unique ID is returned back to the WS-POS service consumer to use for all subsequent
communication.
WS-POS Consumer 2 already has a unique Consumer ID or is capable of generating one by itself.
The following sequence for a POSPrinter PrintNormal method call illustrates the session
management process.

 sd Session Establish

 WS-POS Service Provider

 WS-POS
 Consumer 2

 :WS-POS Session
 Manager

 :WS-POS Session

 WS-POS
 Consumer 1

 :WS-POS Session

 :UPOSDevice

 :UPOSDevice

generateConsumerID()

openSession(consumerID, endPointAddress)

:Create Instance
for Consumer 2

openDevice(consumerID)
open() Create

Instance()

open()

generateConsumerID()
:
consumerID

openSession(consumerID, endPointAddress)
:Create Instance
for Consumer 1

openDevice(consumerID)
open() Create

Instance()

open()

WS-POS, v1.3.1 23

Figure 10: POS Printer - Print Normal example

Note that the Consumer ID is used by the Session Manager of the WS-POS service provide and not
used by a UnifiedPOS device. A session is started using an openSession method and terminated
using a closeSession method. The UnifiedPOS device driver is instantiated in openDevice method
and it is terminated in the closeDevice method.

2.4.7 Calling WS-POS Service Methods and Using Properties
 Added in Version 1.2
In order to enable a WS-POS service consumer to use the methods and the properties of a WS-POS
service provider, the end point URL of the WS-POS service provider must be exchanged. The
WSDL is used to ensure access to the necessary WS-POS service provider methods and properties.

 sd 1 v s 1

 WS-POS Service Provider

 :WS-POS Session
 Manager

 WS-POS
 Consumer

 :WS-POS Session

 :UPOSDevice

generateConsumerID()

openSession(consumerID, endPointAddress)
Instantiate()return(OK)

openDevice(consumerID)
open()

Instantiate()

open()

return
(OK)

claim(consumerID, timeout)
claim(timeout) claim(timeout)

return(OK)return(OK)

setDeviceEnabled(consumerID, true)
setDeviceEnabled(true)

setEventEnabled(true)
return
(OK)

return(OK)

printNormal(consumerID, ...)
printNormal()

printNormal()
return(OK)return(OK)

setDeviceEnabled(consumerID, false) setDeviceEnabled(false) setEventEnabled(false)
return(OK)return(OK)

release(consumerID) release()
release()

return(OK)
return(OK)

closeDevice(consumerID) close() close()

Instance Dispose()
return
(OK)return(OK)

closeSession(consumerID)
Instance Dispose()

return(OK)

24 WS-POS, v1.3.1

For example, in modern programming, located in the WCF of .NET and the JAX-WS of Java, the
proxy code for the WS-POS service is generated from the WSDL. The schema and the WS-POS
service consumer use the WS-POS service provider functionality via this proxy code.

2.4.8 Multiple WS-POS Service Consumer Claim Requests on a WS-POS Service
Provider Updated in Version 1.2

Once the WS-POS service consumer has initiated a successful openDevice method call to the
enterprise WS-POS service provider, it must ensure that it has the focus to use the UnifiedPOS
supported service provider functions. The WS-POS service consumer must issue a successful claim
method call to the WS-POS service provider. Then it may be necessary to issue an enable method
call before it can use the functions of the service provider.

The following sequence diagram shows the process of obtaining the claimed status of the
UnifiedPOS device.

WS-POS, v1.3.1 25

Figure 11: Claim and Get Claim

When requests have been sent to the WS-POS service provider from multiple WS-POS service
consumers, the request that came from WS-POS service consumer that has executed a successful
claim method call and optionally a device dependent enable method call is then able to use the
functionality of the WS-POS service provider.

The following sequence diagram illustrates a scenario where WS-POS Consumer 2 cannot utilize
the WS-POS service provider until WS-POS Consumer 1 has executed a successful release method
call.

 sd m v s 1 claim and getclaimed

 :WS-POS Service Provider

 WS-POS
 Consumer1

 WS-POS
 Consumer2

openDevice(ConsumerID, endPointAddress)

return(OK)

openDevice(ConsumerID, endPointAddress)

return(OK)

claim(ConsumerID, timeout)

return(OK)

getClaimed(ConsumerID) :bool

return(TRUE)

setDeviceEnabled(ConsumerID, deviceEnabled=true)

return(OK)

claim(ConsumerID, timeout)

exception(OPOSTIMEOUT)

getClaimed(ConsumerID) :bool

return(FALSE)

setDeviceEnabled(ConsumerID, deviceEnabled=true)

return(NOT CLAIMED)

26 WS-POS, v1.3.1

Figure 12: Claim and Release

In a complex enterprise system there may be any number of WS-POS service consumers that wish
to use the functionality of a WS-POS service provider. When this is the case, an arbitration
mechanism must be available in order to ensure that a WS-POS service consumer has timely access
to its desired WS-POS service provider. WS-POS defines the following multiple WS-POS service
consumer claim request behavior that is used to resolve WS-POS service provider contention issues.
The following discussion and diagram illustrate how to handle multiple WS-POS service consumer
claim requests.

1. WS-POS service consumer 1 issues a claim method call to the WS-POS service provider.
Since no other WS-POS service consumer is currently using the requested WS-POS service
provider, the claim method is acknowledged with a successful
claim result.

 sd m v s 1 claim and release

 WS-POS
 Consumer1

 WS-POS
 Consumer 2

 :WS-POS Service Provider

 Object2

openDevice(ConsumerID, endPointAddress)

return(OK)

claim(ConsumerID, timeout)

return(OK)

openDevice(ConsumerID, endPointAddress)

return(OK)

claim(ConsumerID, timeout)

exception(OPOSTIMEOUT)

setDeviceEnabled(ConsumerID, deviceEnabled)

return(OK)

claim(ConsumerID, timeout)

exception(UPOSTIMEOUT)

printNormal(ConsumerID)

return(OK)

setDeviceEnabled(ConsumerID, deviceEnabled)

return(OK)

claim(ConsumerID, timeout)

exception(UPOSTIMEOUT)

release(ConsumerID)

return(OK)

claim(ConsumerID, timeout)

return(OK)

setDeviceEnabled(ConsumerID, deviceEnabled)

return(OK)

printNormal(ConsumerID)

return(OK)

WS-POS, v1.3.1 27

2. Next a WS-POS service consumer 2 issues a claim method call to the same WS-POS service
provider that WS-POS service consumer1 is currently using. The WS-POS service provider
queues the request but, using a long poll methodology, does not issue any acknowledgement
at this point. It uses the “Timer Value” that WS-POS service consumer 2 sent with its claim()
method call to set a timer which will expire if WS-POS consumer1 does not finish using the
WS-POS service provider before the timer expires.

3. If the timer expires, the WS-POS service provider returns a “Timer Value Expired” error

code back to WS-POS service consumer2 implying the WS-POS service provider is not
available for use at this time. The WS-POS service consumer2 can either issue another
claim method call with a new “Timer Value” to the WS-POS service provider or it may
decide to look for another WS-POS service provider in the enterprise that it can use for the
same functionality and issue a claim method call to it.

4. While WS-POS service consumer1 is using the WS-POS service provider and WS-POS

service consumer2 is waiting for the WS-POS service provider to become available, WS-
POS service consumer3 issues a claim method call to the same WS-POS service provider.
Now the WS-POS service provider queues up the WS-POS service consumer3 request
behind WS-POS service consumer2 request and sets a timer for WS-POS service consumer3
claim request using the WS-POS service consumer3 claim method call “Timer Value”.

5. The WS-POS service provider uses a FIFO mechanism to manage the WS-POS service

consumer claim method call queue. If WS-POS service consumer1 is finished with the WS-
POS service provider, it issues a release method call. Then the WS-POS service provider
responds back to WS-POS service consumer2 with a successful claimed notification. WS-
POS service consumer3 now moves up in the queue and waits for either a successful claimed
acknowledgement or “Timer Value Expired” notification.

28 WS-POS, v1.3.1

Figure 13: Claim and Release Cross Timing

 sd m v s 1 claim and release cross timing

 :UPOSDevice :WS-POS Service Provider

 WS-POS
 Consumer1

 WS-POS
 Consumer2

When other Claimer exist, this Claim waits for
other Release until it passes over timeout.

claim(ConsumerID, timeout)

claim(int)

return(OK)

return(OK)

claim(ConsumerID, long timeout value)

wait for Release of
UPOSDevice()

release(ConsumerID)

release()

return(OK)

return(OK)

Found - Release of UPOSDevice()

claim(int)

return(OK)

return(OK)

WS-POS, v1.3.1 29

2.4.9 WS-POS Methods and Device Methods Updated in Version 1.3
To facilitate the process of session management, WS-POS separates method calls into two groups.
The “WS-POS Methods” group references accessing the Session Manager layer while the “Device
Methods” group references the layer that controls the UnifiedPOS devices. The following tables
summarize the applicable methods.
2.4.9.1 WS-POS Methods
Method Description May Use After

generateConsumerID WS-POS service provider
generates consumer ID as a GUID
or a UUID, and WS-POS service
consumer retrieves it.

openSession Starts WS-POS Session (Device is
not opened)

closeSession Closes WS-POS Session openSession

getProviderSessionTimeout WS-POS service consumer
retrieves a session time-out value
set to WS-POS service provider.

openSession

keepAlive WS-POS service consumer calls
this method of the WS-POS
service provider to maintain a
session periodically.

openSession

pollForUPOSEvent WS-POS service consumer
performs polling whether or not an
event occurs for WS-POS service
provider.

openSession

setEventResponse WS-POS service consumer sets a
reply for the event acquired in
pollForUPOSEvent.

pollForUPOSEvent

getWSPOSVersion WS-POS consumer retrieves a
version of WS-POS which WS-
POS service provider implements.

getEncryptedClaimedConsumerID WS-POS service consumer
retrieves an encrypted value of the
consumerID of the session that has
been successfully claimed by WS-
POS service provider.

Version 1.3

setEventRequestProperties Sets property which is notified by
DataContainedEvent to WS-POS
service provider.
Switches DataEvent and
DataContainedEvent.

Version 1.3

30 WS-POS, v1.3.1

2.4.9.2 Device Methods
Method Description May Use After

openDevice Opens UnifiedPOS Device openSession

claim Claims a UnifiedPOS Device openDevice

release Releases a UnifiedPOS Device openDevice

closeDevice Closes UnifiedPOS Device openDevice

getBinaryConversion Get the BinaryConversion property of a
UnifiedPOS Device.

openDevice
Version 1.3

setBinaryConversion Set the BinaryConversion property of a
UnifiedPOS Device.

openDevice
Version 1.3

UnifiedPOS methods
(except “open” and
“close”)

Access to UnifiedPOS device
(See UnifiedPOS Specification for other methods)

openDevice
(WS-POS)

2.4.9.3 Methods Not Used in WS-POS 1.2
In order to facilitate WS-POS session management, the following UnifiedPOS methods are not used
in WS-POS 1.2

Method Description

open Instantiates a UnifiedPOS device

close Closes an instance of a UnifiedPOS device

The function of the WS-POS “openDevice” starts a manager session which then creates a link to a
UnifiedPOS device service object at the Device Service Layer. Similarly, the WS-POS “closeDevice”
disconnects a manager session which removes the link to a UnifiedPOS device service object at the
Device Service Layer. Therefore, in WS-POS 1.2, there is no need for the UnifiedPOS open and
close methods since the openDevice and closeDevice methods accomplish the service object linking
and delinking functions.

2.4.10 WS-POS Events Handling Using Bi-Directional Communication
 Updated in Version 1.2
Prior to WS-POS 1.2, Event handling relied upon bi-directional communication of messages for
status notification between a POS application and a POS peripheral.

WS-POS service providers may notify WS-POS service consumers of POS peripheral events
defined in the UnifiedPOS standard. WS-POS service consumers who would like to receive the
events for this notification must notify the WS-POS service provider of the end point address for
event reception.
The process consists of:

• The WS-POS service provider notifies the Unified POS device event to the end point address
for event reception registered by the WS-POS service consumer.

• The WS-POS service consumer notifies the WS-POS service provider to delete the event
reception end point address when event reception is no longer necessary.

WS-POS, v1.3.1 31

A sequence diagram of the procedure is shown in Figure 14.

Figure 14: Event Self Host - Event Reception End Point

 sd 1 v s 1 ev ent self host - ev ent reception end point

 WS-POS
 Consumer

 :WS-POS Service
 Provider

openSession(ConsumerID, endPointAddress)
«Notification of event reception end point»

Event Notification()

closeSession(ConsumerID)
«Deletion of event reception end point»

32 WS-POS, v1.3.1

In WS-POS 1.2, an additional mechanism has been provided; the process of using a method call and event
notification as shown below.

Figure 15: Method Call with Event Notification

Here the WSDL and XSD schema are defined to facilitate the WS-POS service provider sending an
event notification to the WS-POS service consumer. This process requires the WS-POS service
consumer to register its event end point notification address with the WS-POS service provider.
When the WS-POS service provider receives a POS Device event, it sends an event notification to
the WS-POS Service Consumer. Proxy code and a configuration file are used to support the specific
Java or C# programming environment.

The WS-POS service consumer passes its event notification end point address to the WS-POS
service provider as a parameter of openSession method. This end point address must be the entry
point for the service consumer’s WebService which is defined in the WSDL and XSD schema. A
contract written in Java or C# is provided in the WS-POS 1.2 Support Files for simpler
implementation and more support for the chosen programming environment. A contract to receive
the events uses the naming convention “device class + Event”. WebService methods to handle the
events are described in section 2.4.17.

When the WS-POS service consumer calls the closeSession method, the WS-POS service provider
deletes the previously registered WS-POS service consumer’s event end point address.

Figure 16 describes the process for servicing a POSPrinter ErrorEvent.

WS-POS
Service Provider

WS-POS
Service Consumer

WS-POS Service Interface

POS Device
Application

Event Notification

Method Call

Event Event

WS-POS, v1.3.1 33

Figure 16: Event Self Host - Error Event

2.4.11 WS-POS vents Handling on Polling Added in Version 1.2
In WS-POS 1.2, “Polling Methodology” was added as an alternative way for the application and
POS peripheral to pass status information.

In a Web Application, for reasons of browser security, there may be cases where the application
cannot open a port and bi-directional communication becomes technically impossible. In these
scenarios, a service consumer, running as a local application located in a local PC, may have its
input and output port access blocked by its system fire wall. Notification of events between a service
provider and a service consumer would never occur.

WS-POS Ver.1.2 introduces “polling” as an alternative in order to facilitate event processing.
Polling is conducted by the WS-POS service consumer who wants to receive (acquire) the POS
peripheral device events as defined by the UnifiedPOS standard. A polling sequence is used to see
whether or not the event for which the WS-POS service provider should be making notification is
being requested.

 sd 1 v s 1 ev ent self host - errorev ent

 Event Handling

 WS-POS Serv ice
 Consumer

 :WS-POS Service
 Provider

 :UPOSDevice

openSession(consumerID, endPointAddress)
:save ConsumerID,
EndPointAddress

openDevice(consumerID)
open()

claim(consumerID, timeout)
claim(int)

setDeviceEnabled(consumerID, true) setDeviceEnabled(true)

UposDeviceErrorEventListener(UposErrorEvent)
errorEvent(consumerID, eventID, timeStamp, errorCode,)

:
ErrorResonse :

ErrorResponse

setDeviceEnabled(consumerID, false)
setDeviceEnabled(false)

release(consumerID) release()

closeDevice(consumerID)
close()

closeSession(consumerID)
:
dispose

:clear ConsumerID,
EndPointAddress

34 WS-POS, v1.3.1

In order to assure timely event processing using this polling technique, the polling time interval
(frequency of polling) is adjustable. The required polling time interval must be adjusted in
accordance with the goals of an optimum system configuration.

When the poll by the WS-POS service consumer determines that the WS-POS service provider has
queued an event, the WS-POS service consumer processes the poll event using similar response
processing it would have used for a WS-POS service provider interrupt type event.

Once the event notification has been received, the WS-POS service consumer formulates the
appropriate event response to send to the WS-POS service provider. This event response may
include any of the UnifiedPOS defined actions for ErrorEvents and StatusUpdateEvents.

The WS-POS service provider may have any number of queued events. The WS-POS service
consumer should process the poll events systematically and quickly. The WS-POS service provider,
having received an event response from the WS-POS service consumer, and depending on the type
of event that has been generated, may immediately notify the WS-POS service consumer of another
event.

The WS-POS service consumer may terminate the polling when event reception (acquisition) is no
longer required.

Figure 17 illustrates a typical event processing using an ErrorEvent as an example.

Figure 17: Event Polling

Note that the WS-POS service consumer notifies the WS-POS service provider to clear the error
after the WS-POS service consumer has received the ErrorEvent.

 sd 1 v s 1 ev ent polliing

 WS-POS
 Consumer

 :UPOSDevice :WS-POS Service
 Provider

 network boundary

pollForUPOSEvent(ConsumerID, event) :WSPOSEvent

wait for device
event()

UposDeviceErrorEventListener(EventID=1)

return(EventID=1)

setEventResponse(ConsumerID, CLEAR, EventID=1)

return(CLEAR)

return(OK)

WS-POS, v1.3.1 35

Figure 18 shows the relationship of a method call and corresponding event notification.

Figure 18 Method call and Event notification

In this example, the event polling by the WS-POS service consumer for the purpose of event
reception and receipt by the WS-POS provider is supported by the programming environment and
is realized by the proxy code and configuration file by the WS-POS Service.

The polling from the WS-POS to the service provider uses a “long polling” methodology (WS-POS
Service Provider holds poll request if event is not pending or until a suitable timeout occurs). This
is executed to reduce the load affecting system operations that have been triggered by service
consumer and service provider processing.

WS-POS Service

POS
Device

Application

Event Polling

Method Call

Event Event

WS-POS
Service Provider

WS-POS
Service Consumer

36 WS-POS, v1.3.1

The standard polling concept is shown in Figure 19.

Figure 19: Long Polling Overview

When employing long polling, a service provider does not immediately return a “no event” message
when no event has occurred; instead it waits for an event or a timeout to be generated before it
returns a response message. In this way traffic and overhead processing loads can be reduced.
Ordinary polling requires that an immediate response of “event” or “no event” be sent by the service
provider to the service consumer upon receipt of a poll.

WS-POS, v1.3.1 37

When an event has not been generated over a long period of time, the polling wait reaches time-
out in the transport layer. If the polling times out, the WS-POS service consumer immediately
resumes polling. This behavior is shone in Figure 20.

Figure 20: Long Polling

38 WS-POS, v1.3.1

2.4.12 Resolution of frequent communication events in the Event notification
 Added in Version 1.3

Up to and including WS-POS version 1.2, the event handling in a WS-POS service consumer
utilized the following sequence:

1. DataEventEnabled is set to false at initial state. Events are enqueued.
2. When the WS-POS service consumer sets its dataEventEnabled to true, the WS-POS service

provider sets the dataEventEnabled to false, prepares for enqueuing following event, then
notifies the events enqueued event to the WS-POS service consumer.

3. The WS-POS service consumer acquires the property that was indicated by the event
message and responds appropriately.

4. The WS-POS service consumer sets its dataEventEnabled to true, and is ready for next WS-
POS service provider event.

This process works well for most situations. However, it is possible for some devices, a POS
Keyboard for example, to generate a large number of events in a short period of time. This can
cause a large backlog of the events, heavy network traffic with short “chatty” notification instances
and a noticeable drop in system performance. This becomes more of a problem when the WS-POS
service provider and the WS-POS service consumer are connected on different nodes on a large
physical network.
In the case of POSKeyboard, a series of single keystrokes can cause a large amount of network
traffic. Notice how this creates the following additional, network intensive, sub-steps.

1. A single POSKeyboard key is depressed and a dataEvent message is generated by the
POSKeyboard WS-POS service provider for a specific WS-POS service consumer.

2. The WS-POS service provider sets its dataEventEnabled property to false before notifying
dataEvent, then sends the event to the WS-POS service consumer.

3. In response, a message by the WS-POS service consumer is sent to the WS-POS service
provider requesting the posKeyEventType property.

4. The WS-POS service provider responds with a message back to the WS-POS service
consumer with the posKeyEventType property.

5. If the posKeyEventType property indicates that it has POS keyboard “key” data, the WS-
POS service consumer sends another message back to the WS-POS service provider to send
the posKeyData property value.

6. The WS-POS service provider then sends back a message to the WS-POS service consumer
with the posKeyData property value.

7. The WS-POS service consumer sets the dataEventEnabled to true and sends this in a
message back to the WS-POS service provider indicating that the WS-POS service consumer
is ready for the next event.

8. If another key has been depressed this sequence starts over again.

Depending upon the network connection and network traffic load factors, this “chatty” messaging
system degrades overall system performance resulting in slow and unsatisfactory WS-POS based
applications.
In WS-POS version 1.3, the sequence and data structure in the Event notification is improved to
reduce the network traffic necessary for data transmission between the WS-POS service consumer
and the WS-POS service provider. A new property value, dataContainedEvent has been introduced.
Now, when the WS-POS service provider sends an event to the WS-POS service consumer, a new
dataContainedEvent parameter can be used instead of the dataEvent parameter. The value of
dataContainedEvent is used to include the property value that is associated with the event. The WS-
POS service consumer can specify whether setDataEventEnabled property is set to true or not and
clearInputProperties method is called or not by evaluating the value of dataContainedEvent property.

WS-POS, v1.3.1 39

A WS-POS service consumer can specify the value of the property delivered by the
dataContainedEvent using the setEventRequestProperties method. If nothing is specified, the
default value to be transmitted is dataEvent instead dataContainedEvent.
During the polling process, the property value which is changed by dataEvent is included in
WSPOSEvent, which is the return value from a pollForUPOSEvent method. Also, whether
dataEventEnabled property is set to true or not and whether clearInputProperties method can be
called or not, is specified by the parameter associated by the setEventResponse.

The following figure is a comparison of the dataEvent sequence prior to WS-POS version 1.3 for
bi-directional communication. It shows the POSKeyboard as an example. When dataEvent is fired,
posKeyData and posKeyEventType property is retrieved, then set dataEventEnabled property to
true so that next dataEvent can be retrieved. This results in fewer messages and potentially better
network performance.

40 WS-POS, v1.3.1

f

WS-POS, v1.3.1 41

The following figure is comparison of the dataEvent sequence prior to WS-POS version 1.3 for
polling method. It shows the POSKeyboard as an example. When dataEvent is fired, posKeyData
and posKeyEventType property is retrieved, then set dataEventEnabled property to true so that next
dataEvent can be retrieved. This results in fewer messages and potentially better network
performance.

WS-POS, v1.3.1 43

2.4.13 WS-POS Service Network Connection Management Considerations
 Added in Version 1.2
Situations can arise where there is a communication breakdown between a WS-POS service
consumer and a WS-POS service provider. The problem could reside in the WS-POS service
consumer, the WS-POS service provider, or a break in the network connection that ties them
together. Detecting such error conditions, programmatically uncoupling WS-POS service
consumers from the WS-POS service providers, and providing network connection resilience
becomes a necessity. Note that in order to be successful, the WS-POS service provider must be
able to detect the status of the WS-POS service consumer and the WS-POS service consumer must
be able to detect the status of the WS-POS service provider. WS-POS 1.2 added a “WS-POS Keep
Alive” mechanism to detect and resolve these process and communication disruptions.

2.4.13.1 WS-POS Service Provider Detection of an Interrupted Connection with a
WS-POS Service Consumer

Initially, a WS-POS service consumer will request a connection to a WS-POS service provider by
using the openSession method call. The normal result will be a response back from the WS-POS
service provider that a successful connection has been made.

The WS-POS service provider can detect that the WS-POS service consumer is still active and
connected if it can rely on the WS-POS service consumer to periodically issue any of the
UnifiedPOS “valid after open” requests, including device status queries.

The WS-POS service consumer will send these requests at a programmable time interval defined as
the “Keep Alive Interval”.

The WS-POS service provider expects a WS-POS service consumer request within a programmable
time interval defined as the “Provider Session Time-out”.

If the WS-POS service provider receives a WS-POS service consumer request before a Provider
Session Time-out expires, it will reset and restart its internal timer, process the command, send an
event notification back, and wait for a new WS-POS service consumer request. The WS-POS
service consumer will also reset its timer to the Keep Alive Interval value. Note that the Provider
Session Time-out timer value must be greater than the Keep Alive Interval timer value.

If the WS-POS service provider does not receive such a request within the Provider Session Time-
out, the WS-POS service provider will assume the connection has been lost and will respond as
though it had received a closeSession method request from the WS-POS service consumer.

The Provider Session Time-out value is determined and set externally at Application Install and
System Configuration time. For example, in a .NET Framework/WCF implementation, the Provider
Session Timeout value is loaded into the .config file. In a JAX-WS implementation, the Provider
Session Time-out value is set in the properties file under WEB-INF\classes.

The WS-POS service consumer inputs the Provider Session Time-out value when it makes reference
to the ProviderSessionTimeout parameter. It then uses this value to calculate an appropriate timer
value for the KeepAliveInterval parameter.

44 WS-POS, v1.3.1

There may be multiple WS-POS service consumers communicating with a single WS-POS service
provider when a communication breakdown occurs. The WS-POS service provider must institute
error recover processes for each of these WS-POS service consumers connected to it at the time of
the communication breakdown.

Figure 21 illustrates how the WS-POS service provider would respond when a communication
breakdown occurs and error recovery is required.

Figure 21: Offline after Claim

In the case where the WS-POS service provider detects that the network communication is
disconnected, it will automatically respond as though it has received a closeSession method call
from each of its WS-POS service consumers. After network communication is restored, the WS-
POS service consumers are required to issue openSession method calls to the WS-POS service
provider(s) they were using before the network interruption occurred.

 sd m v s 1 offiine after claim

 :WS-POS Service Provider

 WS-POS
 Consumer1

 :UPOSDevice

 network boundary WS-POS
 Consumer2

WS-POS service detects off-l ine.
The session of Consumer1 is
cleared.
An OPOS device is Released.

A network changes to off-l ine.
GetState does not reach WS-
POS Service.

Consumer2 cannot Claim it.

Although the network changed to on-line, since the
session of Consumer1 is cleared, a CLOSED exception
is thrown.
Consumer1 have to re-Open.

openDevice(ConsumerID, endPointAddress)

return() :OK

openDevice(ConsumerID, endPointAddress)

return() :OK

getProviderSessionTimeout(ConsumerID)

return(PROVIDER_SESSION_TIMEOUT)

claim(ConsumerID, timeout)

claim(int)

return(OK)

return(OK)

getProviderSessionTimeout(ConsumerID)

exception(NETWORK)

getProviderSessionTimeout(ConsumerID)

return(PROVIDER_SESSION_TIMEOUT)

claim(ConsumerID, timeout)

exception(UPOSTIMEOUT)

getState(ConsumerID)

ClearOneSessionId(sessionId)

release()

return(OK)

getState(ConsumerID)

getState() :State

return(IDLE)

return(IDLE)

claim(ConsumerID, timeout)

claim(int)

return(OK)

return(OK)

getState(ConsumerID) :State

exception(CLOSED)

WS-POS, v1.3.1 45

2.4.13.2 WS-POS Service Consumer Detection of an Interrupted Connection with
a WS-POS Service Provider

Initially, a WS-POS service consumer will issue an openSession method call to a WS-POS service
provider it wishes to use. The normal result will be a response back from the WS-POS service
provider that a successful connection has been made. The WS-POS service consumer then uses the
WS-POS Keep Alive mechanism to allow the WS-POS service provider that its connection is active.

But the WS-POS service consumer must also be able to determine that an active connection with
the WS-POS service provider still exists. This process is handled as follows:

• The WS-POS service consumer sends a request to the WS-POS service provider, sets a timer
to the Keep Alive Interval value, and waits for the corresponding event notification back
from the WS-POS service provider.

• In the case where a network communication breakdown occurs, the expected event is never
received by the WS-POS service consumer. Instead the WS-POS service consumer Keep
Alive Interval timer expires and generates an error event.

• The WS-POS service consumer understands that this error event means the communication
with the WS-POS service provider has been interrupted. It reverts back to a state before a
openSession method call was sent to the WS-POS service provider.

• The WS-POS service consumer may send a new openSession method call request in order
to connect to the WS-POS service provider or look elsewhere for a different WS-POS service
provider to provide the required services.

46 WS-POS, v1.3.1

2.4.14 WS-POS Service Network Connection Management, Event – Bi-directional
Communications Added in Version 1.2
Network communication disconnect conditions can result in a number of bi-directional event error
scenarios. The following examples illustrate how recovery from an ErrorEvent would be handled
in each case.

2.4.14.1 Service Provider and Consumer Disconnection and Session Does Not Time
Out

Scenario: The event notification from the WS-POS service provider to the WS-POS service
consumer is not received. The Network communication is recovered prior to the WS-POS service
provider session time-out value.

In Figure 22, when an ErrorEvent is generated and the network is off-line, the WS-POS service
provider will re-try notification. An identical EventID is assigned and returned.

Note that the network communication is recovered prior to detecting a disconnection which would
result in a session time-out event.

Figure 22: Offline Shorter than Session Time Out in Bi-Directional Communication 1

 sd 1 v s 1 ev ent self host offline ephemeral 1

 :WS-POS Service Provider :UPOSDevice

 WS-POS
 Consumer

 network boundary

A network turns off-l ine at the time of
ErrorEvent, and it does not reach a consumer.

The network turns on-line.

retry until a notice is successful
or KeepAlive of another session
times out.
(same EventID)

printNormal(ConsumerID)

printNormal()

return(OK)

return(OK)

UposDeviceErrorEventListener(EventID=1)

errorEvent(EventID=1)

exception(NETWORK)

errorEvent(EventID=1)

return(CLEAR)

return(CLEAR)

WS-POS, v1.3.1 47

2.4.14.2 Consumer and Service Provider Disconnection and Session Does Not Time
Out

Scenario: The event notification from the WS-POS service provider to the WS-POS service
consumer is received but the response from the WS-POS service consumer does not reach the WS-
POS service provider. Network communication is recovered prior to reaching the WS-POS service
provider session time-out value.

When an ErrorEvent is generated and the network is off-line, the WS-POS service provider will
re-try notification. At this time an EventID is assigned, as shown in Figure 23.

Note that the WS-POS service provider re-tries because it cannot determine if the network went off-
line when sending an event or when receiving a response. This may result in the WS-POS service
consumer sending multiple event notifications for events with the same EventID.

Figure 23: Offline Shorter than Session Time Out in Bi-Directional Communication 2

 sd 1 v s 1 ev ent self host offline ephemeral 2

 :UPOSDevice :WS-POS Service Provider

 WS-POS
 Consumer

 network boundary

The network changed to off-l ine when a response was returned to
Provider.
Provider cannot distinguish the time of sending and reception.

The network changed to on-line.

retry until a notice is successful or
KeepAlive of another session times
out.
(same EventID)

Consumer may receive the same EventID
two or more times.

printNormal(ConsumerID)

printNormal()

return(OK)

return(OK)

UposDeviceErrorEventListener(EventID=1)

errorEvent(EventID=1)

exception(NETWORK)

errorEvent(EventID=1)

return(CLEAR)

return(CLEAR)

48 WS-POS, v1.3.1

2.4.14.3 Service Provider and Consumer Disconnection and Session Time Out

Scenario: The event notification from the WS-POS service provider to the WS-POS service
consumer is not received. Network communication is not recovered even if the WS-POS service
provider session time-out value is exceeded.

In case the WS-POS provider session time out value is exceeded and Network communication is
not recovered, the WS-POS service provider terminates the session and responds to event
notifications from UnifiedPOS devices. For ErrorEvents, a clear is assigned in the response to the
UnifiedPOS device.

Figure 24 illustrates this scenario. Note that in this case, the WS-POS service consumer is unable to
receive an ErrorEvent even if Network communication is recovered. The WS-POS service
provider has cleared the session and the WS-POS service consumer must re-execute the
openSession method call.

Figure 24: Offline Longer than Session Time Out in Bi-Directional Communication 1

 sd 1 v s 1 ev ent self host offline long time 1

 :WS-POS Service Provider :UPOSDevice

 network boundary WS-POS
 Consumer

A network turns off-l ine at
the time of ErrorEvent,
and it does not reach a
consumer.

keepAlive poll ing does not reach
Provider.

Off-l ine detection by keepAlive non-
reached.
Consumer ID and an event are cleared.
A device is Released.

Since session is cleared, CLOSED
returns.

Consumer have to re-Open.

retry until a notice is successful or
keepAlive of another session times out.
(same EventID)

CLEAR is set to a device.

A provider Releases a
device, if off-l ine is
detected.

The consumer can detect off-
l ine.

A network change to on-line.

printNormal(ConsumerID)

printNormal()

return(OK)

return(OK)

UposDeviceErrorEventListener(EventID=1)

errorEvent(EventID=1)

exception(NETWORK)

errorEvent(EventID=1)

exception(NETWORK)

getState(ConsumerID)

exception(NETWORK)

clearOneConsumerId(ConsumerID)

return(CLEAR)

release()

return(OK)

getState(ConsumerID) :State

exception(CLOSED)

openSession(ConsumerID, endPointAddress)

return(OK)

WS-POS, v1.3.1 49

2.4.14.4 Consumer and Service Provider Disconnection and Session Time Out

Scenario: The event notification from the WS-POS service provider to the WS-POS service
consumer is received but the response from the WS-POS service consumer does not reach the WS-
POS service provider. Network communication is not recovered even if the WS-POS service
provider session time-out value is exceeded.

In the event that the WS-POS provider session time-out value is exceeded and Network
communication is not recovered, the WS-POS service provider terminates the session and responds
to event notifications from UnifiedPOS devices. In case of ErrorEvents, a clear is assigned in the
response to the UnifiedPOS device.

Note that in this case, the WS-POS service consumer receives an ErrorEvent but, unable to get a
response to the WS-POS service provider, the WS-POS service provider assigns a clear in the
response to the UnifiedPOS device.

Even if Network communication is recovered, the WS-POS service provider is clearing the session
as though a closeSession method call was received so the WS-POS service consumer must re-
execute an openSession method call to reestablish a connection.

Figure 25 illustrates this scenario.

50 WS-POS, v1.3.1

Figure 25: Offline Longer than Session Time Out in Bi-Directional Communication 2

 sd 1 v s 1 ev ent self host offilne long time 2

 :UPOSDevice :WS-POS Service
 Provider

 network boundary WS-POS
 consumer

The network change to off-l ine.
RETURN cannot reach to provider

The network is continuing the
off-l ine state.

keepAlive poll ing does not reach
Provider.

Off-l ine detection by keepAlive
non-reached.
Session and an event are cleared.
A device is released.

CLEAR is set to a device.

The consumer can detect off-
l ine.

The provider releases a device.
if off-l ine is detected.

The network change to on-line

Since session is
cleared, CLOSED
returns.

the consumer have to re-Open.

printNormal(ConsumerID)

printNormal()

return(OK)

return(OK)

UposDeviceErrorEventListener(EventID=1)

errorEvent(EventID=1)

return(CLEAR)

exception(NETWORK)

errorEvent(EventID=1)

exception(NETWORK)

getState(ConsumerID)

exception(NETWORK)

clearOneConsumerId(ConsumerID)

return(CLEAR)

release()

return(OK)

getState(ConsumerID) :State

exception(CLOSED)

openSession(ConsumerID, endPointAddress)

return(OK)

WS-POS, v1.3.1 51

2.4.15 WS-POS Service Network Connection Management, Event – Polling
 Added in Version 1.2
The network connection management must be consistent between the WS-POS service consumer and
the WS-POS service provider. The conditions under which network communication disconnects
during event notification, using polling, are classified and their behaviors described in the chart
below:

 Explanation Sequence Diagram Behavior
A) Event polling from the

WS-POS service
consumer does not reach
the WS-POS service
provider. Network
communication is
recovered prior to
reaching the WS-POS
service provider session
time-out value.

 Consumer Provider

Event Polling

Off line

The WS-POS service
consumer re-executes
event polling.
If network communication
is recovered, normal
transmission conditions
will be resumed with no
error recovery necessary.

B) Event polling from the
WS-POS consumer
reaches the WS-POS
service provider but the
event polling return value
from the WS-POS service
provider does not reach
the WS-POS service
consumer. Network
communication is
recovered prior to
reaching the WS-POS
provider session time-out
value.

 Consumer Provider

Event Polling

Off line

The WS-POS service
consumer re-executes
event polling.
If network communication
is recovered, normal
transmission conditions
will be resumed with no
error recovery necessary.

Refer to Section 2.4.14.1:
Event polling return value
is not received and session
does not time out.

C) The polling of the WS-
POS service provider
from the WS-POS service
consumer concludes
normally, but the
setEventResponse is not
received.
Network communication
is recovered prior to
reaching the WS-POS
provider session time-out
value.

 Consumer Provider

Event Polling

Set Event Response

Off line

The WS-POS service
consumer re-executes the
setEventResponse.
If Network communication
is recovered, normal
transmission conditions
will be resumed with no
error recovery necessary.

52 WS-POS, v1.3.1

D) The polling of the WS-

POS service provider
from the WS-POS service
consumer concludes
normally and the event
response setting also is
received, but the return
for the
setEventResponse does
not reach the WS-POS
service consumer.
Network communication
is recovered prior to
reaching the WS-POS
provider session time-out
value.

 Consumer Provider

Event Polling

Set Event Response

Off line

The WS-POS service
consumer re-executes the
setEventResponse.

In case Network
communication is
recovered, it sends back an
ILLEGAL notification as
the setEventResponse.
Thereafter it will be the
same as a normal
sequence.

Refer to Section 2.4.14.2:
The return value for the
setEventResponse is not
received and the session
does not time out.

E) The event polling from
the WS-POS service
consumer does not reach
the WS-POS service
provider. Network
communication is not
recovered and the WS-
POS provider session
time-out value is
exceeded.

 Consumer Provider

Event Polling

Off line

The WS-POS service
consumer re-executes
event polling but network
communication is not
recovered even if the
provider session time-out
value is exceeded. The
WS-POS service consumer
determines that the session
with the WS-POS service
provider has been lost. The
WS-POS service provider
clears the session and
releases the UnifiedPOS
devices. When the
network communication
has recovered, the WS-
POS service consumer
reissues an openSession
method call. Thereafter it
will be the same as a
normal sequence.

WS-POS, v1.3.1 53

F) Event polling from the
WS-POS consumer
reaches the WS-POS
service provider but the
event polling return value
does not reach the WS-
POS service consumer.
Network communication
is not recovered and the
WS-POS provider
session time-out value is
exceeded.

 Consumer Provider

Event Polling

Off line

The WS-POS service
consumer re-executes
event polling but network
communication is not
recovered even if the
provider session time-out
value is exceeded.
The WS-POS service
consumer determines that
the session with the WS-
POS service provider has
been lost.
The WS-POS service
provider clears the session
and releases the
UnifiedPOS devices.
When the network
communication has
recovered, the WS-POS
service consumer reissues
an openSession method
call. Thereafter it will be
the same as a normal
sequence.
Refer to Section 2.4.14.3:
Event polling is not
received and the session
times out.

G) The polling of the WS-
POS service provider
from the WS-POS service
consumer concludes
normally but the
setEventResponse is not
received. Network
communication is not
recovered and the WS-
POS provider session
time-out value is
exceeded.

 Consumer Provider

Event Polling

Set Event Response

Off line

The WS-POS service
consumer re-executes the
setEventResponse and the
provider session time-out
value is exceeded
indicating the network
communication has not
recovered.
The WS-POS service
consumer determines that
the session with the WS-
POS service provider has
been lost.
The WS-POS service
provider clears the session
and releases the
UnifiedPOS devices.

54 WS-POS, v1.3.1

When the network
communication has
recovered, the WS-POS
service consumer reissues
the openSession method
call. Thereafter it will be
the same as a normal
sequence.

H) The polling of the WS-
POS service provider
from the WS-POS service
consumer concludes
normally and the event
response setting is
received but the return
for the
setEventResponse does
not reach the WS-POS
service consumer.
Network communication
is not recovered and the
WS-POS provider
session time-out value is
exceeded.

 Consumer Provider

Event Polling

Set Event Response

Off line

The WS-POS service
consumer re-executes the
setEventResponse and the
provider session time-out
value is exceeded
indicating the network
communication has not
recovered.
The WS-POS service
consumer determines that
the session with the WS-
POS service provider has
been lost.
The WS-POS service
provider clears the session
and releases the
UnifiedPOS devices.
When the network
communication has
recovered, the WS-POS
service consumer re-
executes the openSession
method call. Thereafter it
will be the same as a
normal sequence.

WS-POS, v1.3.1 55

2.4.15.1 Event Polling Return Value is Not Received and Session Does Not Time Out
In this scenario, when the event polling for the WS-POS service provider fails, the WS-POS service
consumer re-executes the event polling.

Figure 26: Offline Shorter than Session Time Out in Event Polling 1

The WS-POS consumer is able to receive events through re-polling after Network communication
has been recovered in order for the WS-POS provider to hold events from POS devices until the
setEventResponse succeeds.

 sd 1 v s 1 ev ent polling offilne ephemeral1

 WS-POS
 Consumer

 network boundary

 :WS-POS Service
 Provider

 :UPOSDevice

The network changed to off-l ine.

The network changed to on-line.

pollForUPOSEvent(ConsumerID, event) :WSPOSEvent

wait for device event()

UposDeviceErrorEventListener(EventID=1)

getEventFromSession(ConsumerID) :NO EVENT

setEventToSession(EventID=1)

return(EventID=1)

exception(NETWORK)

pollEvent(ConsumerID, event) :WSPOSEvent

getEventFromSession(ConsumerID) :
EventID=1return(EventID=1)

setEventResponse(ConsumerID, EventID=1, CLEAR)

clearEventRelatedSession(ConsumerID, EventID=1)

return(CLEAR)
return(OK)

56 WS-POS, v1.3.1

2.4.15.2 SetEventResponse Return Value is Not Received and Session Does Not Time
Out.
In this scenario, the network communication may disconnect when the setEventResponse is returned.
The WS-POS service consumer re-tries sending the setEventResponse to the WS-POS service
provider. At this time an ILLEGAL notification is returned in response to the initial event response
after network communication has been recovered indicating that the event does not exist.

Although a network exception occurs for the WS-POS service consumer, the WS-POS service
provider processes the event response and terminates the UnifiedPOS device event handler. As a
result, as no event which requires a response exists, the event response after Network communication
has been recovered causes an ILLEGAL notification to be returned.

Figure 27 illustrates this scenario.

Figure 27: Offline Shorter than Session Time Out in Event Polling 2

 sd 1 v s 1 ev ent polling offline ephemeral2

 WS-POS
 Consumer

 network boundary

 :WS-POS Service
 Provider

 :UPOSDevice

The network changed to off-l ine

The network changed to on-line

pollForUPOSEvent(ConsumerID, event) :WSPOSEvent

wait for event()

UposDeviceErrorEventListener(EventID=1)

getEventFromSession(ConsumerID) :NO EVENT

setEventToSession(EventID=1)

return(EventID=1)

setEventResponse(ConsumerID, EventID=1, CLEAR)

ClearEventRelatedSession(EventID=1, CLEAR) :OK

return(OK)

return(CLEAR)

exception(NETWORK)

setEventResponse(ConsumerID, EventID=1, CLEAR)

clearEventReleatedSession(EventID=1, CLEAR) :NO EVENT

return(ILLEGAL)

pollForUPOSEvent(ConsumerID, event) :WSPOSEvent

wait for event()

WS-POS, v1.3.1 57

2.4.15.3 Event Polling Is Not Received and Session Times Out

In this scenario, the network communication has not been recovered after the provider session time-
out value has been exceeded. The WS-POS service provider cancels the event along with the session.
When there is an ErrorEvent, a CLEAR operation is assigned in the response to the UnifiedPOS
device.

In this case, the WS-POS service consumer is unable to receive the ErrorEvent. As the WS-POS
service provider is clearing the session, even if Network communication is recovered, the WS-POS
service consumer must re-execute an openSession method call.

Figure 28 illustrates this scenario.

Figure 28: Offline Longer than Session Time Out in Event Polling

 sd 1 v s 1 ev ent polling offline long time

 WS-POS
 Consumer

 network boundary

 :WS-POS Service
 Provider

 :UPOSDevice

The network changed to off-l ine.

A network continues an
off-l ine state.

A provider detects off-l ine.

The network changed to on-line.

CLEAR is set to a device.

Since session related ConsumerID is
cleared, CLOSED is returned.

Consumer have to re-Open.

pollForUPOSEvent(ConsumerID, event) :WSPOSEvent

wait for event()

UposDeviceErrorEventListener(EventID=1)

getEventFromSession(ConsumerID) :NO
EVENT

setEventToSession(EventID=1)

return(EventID=1)

exception(NETWORK)

pollForUPOSEvent(ConsumerID, event)

exception(NETWORK)

getState(ConsumerID)

exception(NETWORK)

clearEventRelatedSession(EventID=1)

return(CLEAR)

clearOneSessionId(ConsumerID)

pollForUPOSEvent(ConsumerID, event) :WSPOSEvent

return(CLOSED)

openSession(ConsumerID, endPointAddress)

return(OK)

58 WS-POS, v1.3.1

2.4.16 WS-POS Method References (UPOS UML Style) Updated in Version 1.2
The following are available Session level methods.

2.4.16.1 generateConsumerID Method
Syntax generateConsumerID(out consumerID: string):

 void { raises-exception }
 Parameter Description

consumerID The Unique ID to identify a WS-POS service consumer to a
WS-POS Service Provider.

Remarks

Generates a consumerID which is “guaranteed” to be unique; suggestion is to use an
algorithm for a GUID or a UUID.

Errors

An Exception may be thrown when this method is invoked.

Value Meaning

E_FAILURE The WS-POS Service Provider is not able to successfully
calculate a consumerID .

WS-POS, v1.3.1 59

2.4.16.2 openSession Method
Syntax openSession(consumerID: string, consumerEventEndPoint: string):

 void {raises-exception}
 Parameter Description

consumerID

The Unique ID to identify a WS-POS service
consumer to a WS-POS Service Provider.

consumerEventEndPoint The Service end point of WS-POS service
consumer for WS-POS service provider to use
in notifying an event.
When this parameter is set to a NULL, the WS-
POS service provider does not send an event.
The WS-POS service consumer should
retrieve a UnifiedPOS event by calling the
pollForUPOSEvent method.

Remarks Establishes a session between WS-POS service consumer and WS-POS service

provider.

Errors An Exception may be thrown when this method is invoked.
 Value Meaning

E_ILLEGAL A session is open that has the same consumerID.

60 WS-POS, v1.3.1

2.4.16.3 closeSession Method
Syntax closeSession(consumerID: string):

 void {raises-exception}
 Parameter Description

consumerID The unique ID to identify a WS-POS service consumer to a WS-
POS Service Provider.

Remarks Terminates a session between a WS-POS service consumer and a WS-POS service

provider.

Errors An Exception may be thrown when this method is invoked.
 Value Meaning

E_ILLEGAL An openSession method has not been established.
An invalid WS-POS consumerID has been passed.
There is no WS-POS consumerID specified.

WS-POS, v1.3.1 61

2.4.16.4 getProviderSessionTimeout Method
Syntax getProviderSessionTimeout(consumerID: string, out timeout : int32):

 void {raises-exception}
 Parameter Description

consumerID The unique ID to identify a WS-POS service consumer to a
WS-POS Service Provider.

timeout The value the WS-POS Service Provider is using for session
response failure that the
WS-POS Service Consumer can monitor network
connection

Remarks This method returns WS-POS session timeout value in seconds, which is managed

by WS-POS service provider.

Errors An Exception may be thrown when this method is invoked.
 Value Meaning

E_ILLEGAL An openSession method has not been established.
An invalid WS-POS consumerID has been passed.
There is no WS-POS consumerID specified.

62 WS-POS, v1.3.1

2.4.16.5 keepAlive Method
Syntax keepAlive (consumerID: string):

 void {raises-exception}
 Parameter Description

consumerID The unique ID to identify a WS-POS service consumer to a WS-
POS Service Provider.

Remarks To keep the session between WS-POS service consumer and WS-POS service

provider alive, a WS-POS service consumer should regularly call this method. A WS-
POS service consumer must call the keepAlive method within a shorter time interval
than the time out value which is returned by getProviderSessionTimeout method.
WS-POS service provider terminates the session when the WS-POS service provider
does not receive a keepAlive method call within the timeout value returned by the
getProviderSessionTimeout method.
To reconnect a session, the openSession method must be called.

Errors An Exception may be thrown when this method is invoked.
 Value Meaning

E_ILLEGAL An openSession method has not been established.
An invalid WS-POS consumerID has been passed.
There is no WS-POS consumerID specified.

WS-POS, v1.3.1 63

2.4.16.6 pollForUPOSEvent Method
Syntax pollForUPOSEvent (consumerID: string, out WSPOSEvent: string):

 void {raises-exception}
 Parameter Description

consumerID The unique ID to identify a WS-POS service consumer to a
WS-POS service provider.

WSPOSEvent The specific event as defined in UnifiedPOS

Remarks A WS-POS service consumer calls this method to retrieve a UnifiedPOS event

occurrence. This can be any of the events defined in UnifiedPOS. If a UnifiedPOS
event has occurred, the event notification is returned to WS-POS service consumer.
Refer to section “2.4.17” for the details of WSPOSEvent.
If the WS-POS service consumer specifies a NULL in the consumerEventEndPoint
parameter of openSession method, the WS-POS service consumer can call the
pollForUPOSEvent method.
The pollForUPOSEvent method can be called after a openSession method call.
However, the pollForUPOSEvent method will always return an E_TIMEOUT if
no event has occurred before an openDevice method call.

Errors An Exception may be thrown when this method is invoked.

Some possible values of the exception’s ErrorCode are:
 Value Meaning

E_ILLEGAL An openSession method has not been established.
An invalid WS-POS consumerID has been passed.
There is no WS-POS consumerID specified.
pollForUPOSEvent method is called after openSession
method without setting a NULL in consumerEventEndPoint
parameter.

E_TIMEOUT No event has occurred within the event polling timeout value
which is set by the WS-POS service provider.

64 WS-POS, v1.3.1

2.4.16.7 setEventResponse Method
Syntax setEventResponse (consumerID: string, WSPOSEventResponse: string):

 void {raises-
exception}

 Parameter Description

consumerID The unique ID to identify a WS-POS service consumer
to a WS-POS service provider.

WSPOSEventResponse Information about the event retrieved by
pollForUPOSEvent method

Remarks After the WS-POS service consumer receives an event from the pollForUPOSEvent

method, the WS-POS service consumer will call this method to inform the WS-POS
service provider that it has finished its response to the event.
Refer to section “2.4.17” for the details of WSPOSEventResponse.
If the WS-POS service consumer does not call this method before the WS-POS
session timeout expires, the WS-POS service provider will begin an error recovery
process.

Errors An Exception may be thrown when this method is invoked.
 Value Meaning

E_ILLEGAL An openSession method has not been established.
An invalid WS-POS consumerID has been passed.
There is no WS-POS consumerID specified.

WS-POS, v1.3.1 65

2.4.16.8 getWSPOSVersion Method
Syntax getWSPOSVersion (out WSPOSVersion: string):

 void {raises-exception}

Remarks

Parameter Description

WSPOSVersion The version that the WS-POS service provider supports.

This method returns the WS-POS version implemented by the WS-POS service
provider.

2.4.16.9 getEncryptedClaimedConsumerID Method Added in Version 1.3
Syntax getEncryptedClaimedConsumerID (out encryptedClaimedConsumerID:

string):
 void {raises-
exception}

Remarks

Parameter Description

encryptedClaimedConsumerID Encrypted (Hash) value of consumerID of
WS-POS service consumer that has been
successfully claimed by WS-POS service
provider.

A WS-POS service consumer calls this method to retrieve the encrypted value of
the consumerID of another WS-POS service consumer that currently has claimed
the WS-POS service provider. The WS-POS service provider searches for a session
under its management, identifies the consumerID of the session that currently has
claimed the device, and returns the session's encrypted value. If no WS-POS
service consumer has claimed the device, the WS-POS service provider returns a
null.
In POS system environments where UnifiedPOS applications coexist in the same
physical hardware terminal and where the WS-POS service provider is running, the
POS device is considered as a shared device; a UnifiedPOS application claimed the
device, WS-POS service provider returns null, but the device is claimed.

66 WS-POS, v1.3.1

2.4.16.10 setEventRequestProperties Method Added in Version 1.3
Syntax setEventRequestProperties(parameters: List):

 void {raises-exception}

Remarks

Parameter Description

parameters List of property names to be notified in
DataContainedEvent. The property names are the
properties that a WS-POS service consumer retrieves by
DataContainedEvent. Those properties are the one that are
set in UnifiedPOS DataEvent. Ex: ScanDataType
(Scanner), Track1Data(MSR)…

WS-POS service consumer specifies the names of the properties to be notified in
DataContainedEvent to WS-POS service provider. If the name of the property is
specified with this method, DataContainedEvent is notified instead DataEvent.
If the parameter is null or empty, DataEvent is notified instead
DataContainedEvent.

WS-POS, v1.3.1 67

The following are available Device level methods.
2.4.16.11 openDevice Method
Syntax openDevice(consumerID: string):

 void {raises-exception}
 Parameter Description

consumerID The unique ID to identify a WS-POS service consumer to a
WS-POS service provider.

Remarks A WS-POS service consumer calls this method to open the UnifiedPOS device. The

WS-POS service provider instantiates and opens the UnifiedPOS device.

Errors An Exception may be thrown when this method is invoked.

Some possible values of the exception’s ErrorCode are:
 Value Meaning

E_ILLEGAL

E_NOEXIST

E_NOSERVICE

There is no session specified by consumerID. Or the device is
already opened. The Unified POS Control is already open.
The logical name which service provider uses is not registered
as a UnifiedPOS driver in the node where the WS-POS service
provider is running.
Could not establish a connection to the corresponding Unified
POS Service.

68 WS-POS, v1.3.1

2.4.16.12 closeDevice Method
Syntax closeDevice(consumerID: string):

 void {raises-exception}
 Parameter Description

consumerID The unique ID to identify a WS-POS service consumer to a WS-
POS Service Provider.

Remarks A WS-POS service consumer calls this method to close the UnifiedPOS device. The

WS-POS service provider closes its UnifiedPOS service object and terminates the
device instance.

Errors An Exception may be thrown when this method is invoked.

Some possible values of the exception’s ErrorCode are:
 Value Meaning

E_ILLEGAL There is no session specified by consumerID.

E_CLOSED Already closed.

2.4.16.13 getBinaryConversion Method Added in Version 1.3
Syntax getBinaryConversion(consumerID: string, out binaryConversion, int):

 void {raises-exception}
 Parameter Description

consumerID The unique ID to identify a WS-POS service consumer to a
WS-POS Service Provider.

binaryConversion Refer to UnifiedPOS specification for BinaryConversion.

Remarks A WS-POS service consumer calls this method to get the BinaryConversion property

of the UnifiedPOS device.
Refer to UnifiedPOS specification for BinaryConversion.

Errors An Exception may be thrown when this method is invoked.

Some possible values of the exception’s ErrorCode are:
 Value Meaning

E_ILLEGAL There is no session specified by consumerID.

E_CLOSED Already closed.

WS-POS, v1.3.1 69

2.4.16.14 setBinaryConversion Method Added in Version 1.3
Syntax setBinaryConversion(consumerID: string, binaryConversion, int):

 void {raises-exception}
 Parameter Description

consumerID The unique ID to identify a WS-POS service consumer to a
WS-POS Service Provider.

binaryConversion Refer to UnifiedPOS specification for BinaryConversion.

Remarks A WS-POS service consumer calls this method to set the BinaryConversion property

of the UnifiedPOS device.
Refer to UnifiedPOS specification for BinaryConversion.

Errors An Exception may be thrown when this method is invoked.

Some possible values of the exception’s ErrorCode are:
 Value Meaning

E_ILLEGAL There is no session specified by consumerID.

E_CLOSED Already closed.

70 WS-POS, v1.3.1

2.4.17 WSPOS Event and WSPOS Event Response Added in Version 1.2

2.4.17.1 WSPOSEvent
 The WSPOSEvent that is returned by the pollForUPOSEvent method call reflects a UnifiedPOS
device class pending event state.
For example, the pollForUPOSEvent method of POSPrinter class returns POSPrinterEvent type, and
PollForUPOSEvent of Scanner returns the ScannerEvent type.

Following table shows event types in the WSPOSEvent.

UPOS Event Description

DataEvent This is a DataEvent defined in the UnifiedPOS specification. A WS-
POS service provider sets relevant properties and data fields prior to
when the DataEvent occurs, and transfers to a WS-POS service
consumer. When other event occurs, a NULL is set.

StatusUpdateEvent This is a StatusUpdateEvent defined in UnifiedPOS specification. A
WS-POS service provider sets relevant properties and data fields prior
to when the StatusUpdateEvent occurs, and transfers to a WS-POS
service consumer. When other event occurs, a NULL is set.

DirectIOEvent This is a DirectIOEvent defined in UnifiedPOS specification. A WS-
POS service provider sets relevant properties and data fields prior to
when the DirectIOEvent occurs, and transfers to a WS-POS service
consumer. When other event occurs, a NULL is set.

OutputCompleteEvent This is a OutputCompleteEvent defined in UnifiedPOS specification.
A WS-POS service provider sets relevant properties and data fields
prior to when the OutputCompleteEvent occurs, and transfers to a
WS-POS service consumer. When other event occurs, a NULL is set.

ErrorEvent This is a ErrorEvent defined in UnifiedPOS specification. A WS-POS
service provider sets relevant properties and data fields prior to when
the ErrorEvent occurs, and transfers to a WS-POS service consumer.
When other event occurs, a NULL is set.

Note: With UnifiedPOS 1.14 an additional Event, “TransitionEvent” is defined for the Electronic
Value Reader/Writer Device class. It is handled in a similar manner as these events shown here.

WS-POS, v1.3.1 71

The WSPOSEvent represents event types that a UnifiedPOS device class returns. i.e. EventType
returned varies depending on device class. As an example, POSPrinterEvent for output device
POSPrinter is a combination of StatusUpdateEvent, DirectIOEvent, OutputCompleteEvent and
ErrorEvent. DataEvent is not defined for POSPrinter device class.

Figure 29: WSPOS POS Printer Event

The ScannerEvent of input device Scanner is a combination of DataEvent, StatusUpdateEvent,
DirectIOEvent and ErrorEvent. OutputCompleteEvent is not defined in Scanner device class.

Figure 30: WSPOS - Scanner Event

Refer to UnifiedPOS specification for details of DataEvent, StatusUpdateEvent, DirctIOEvent,
OutputCompleteEvent and ErrorEvent.

72 WS-POS, v1.3.1

Note: With UnifiedPOS 1.14 an additional Event, “TransitionEvent” is defined for the Electronic
Value Reader/Writer Device class. It is handled in a similar manner as these events shown here.
2.4.17.2 WSPOSEventResponse
WSPOSEventResponse that is set to setEventResponse method by a WS-POS service consumer is
an EventResponse type of a device class in actual implementation.
For example, the setEventResponse method for POSPrinter device should be set
POSPrinterResponse as WSPOSEventResponse. The setEventResponse method for Scanner device
should be set ScannerResponse as WSPOSEventResponse.

Following table shows event types in the WSPOSEventResponse.

Type Desciption Related Event

DataEventResponse When DataEvent in WSPOSEvent
that is returned by
pollForUPOSEvent method is
not a NULL, a WS-POS service
consumer should set a valid value
to DataEventResponse as
WSPOSEventResponse, then
notify a WS-POS service
provider.
DataEventResponse has an
EventID item. The WS-POS
service consumer should set
EventID value in
DataEventResponse, which is set
in DataEvent as a return value in
pollForUPOSEvent method call.

DataEvent

StatusUpdateEventRespose When StatusUpdateEvent in
WSPOSEvent that is returned by
pollForUPOSEvent method is
not a NULL, a WS-POS service
consumer should set a valid value
to StatusUpdateEventResponse as
WSPOSEventResponse, then
notify a WS-POS service
provider.
StatusUpdateEventResponse has
an EventID item. The WS-POS
service consumer should set
EventID value in
StatusUpdateEventResponse,

StatusUpdateEvent

WS-POS, v1.3.1 73

which is set in
StatusUpdateEvent as a return
value in pollForUPOSEvent
method call.

DirectIOEventResponse When DirectIOEvent in
WSPOSEvent that is returned by
pollForUPOSEvent method is
not a NULL, a WS-POS service
consumer should set a valid value
to DirectIOEventResponse as
WSPOSEventResponse, then
notify a WS-POS service
provider.
DirectIOEventResponse has an
EventID item. The WS-POS
service consumer should set
EventID value in
DirectIOEventResponse, which is
set in DirectIOEvent as a return
value in pollForUPOSEvent
method call. A WS-POS service
consumer can set any data in
DirectIOData in
DirectIOEventResponse.

DirectIOEvent

OutputCompleteEventResponse When OutputCompleteEvent in
WSPOSEvent that is returned by
pollForUPOSEvent method is
not a NULL, a WS-POS service
consumer should set a valid value
to OutputCompleteEventResponse
as WSPOSEventResponse, then
notify a WS-POS service
provider.
OutputCompleteEventResponse
has an EventID item. The WS-
POS service consumer should set
EventID value in
OutputCompleteEventResponse,
which is set in
OutputCompleteEvent as a
return value in
pollForUPOSEvent method call.

OutputCompleteEvent

ErrorEventResponse When ErrorEvent in
WSPOSEvent that is returned by

ErrorEvent

74 WS-POS, v1.3.1

pollForUPOSEvent method is
not a NULL, a WS-POS service
consumer should set a valid value
to ErrorEventResponse as
WSPOSEventResponse, then
notify a WS-POS service
provider.
ErrorEventResponse has an
EventID item and an
ErrorResponse item. The WS-
POS service consumer should set
EventID value in
ErrorEventResponse, which is set
in ErrorEvent as a return value
in pollForUPOSEvent method
call. The WS-POS service
consumer should also set either
“Clear, “ContinueInput” or
“Retry” in ErrorResponse.

The WSPOSEventResponse represents EventResponse types that a UnifiedPOS device class receives.
They are some of 5 event responses - DataEventResponse, StatuUpdateEventResponse,
DirectIOEventResponse, OutputCompleteEventResponse and/or ErrorEventResponse which is
related to DataEvent, StatusUpdateEvent, DirectIOEvent, OutputCompleteEvent and
ErrorEvent respectively.
Note: With UnifiedPOS 1.14 an additional Event, “TransitionEvent” is defined for the Electronic
Value Reader/Writer Device class. It is handled in a similar manner as these events shown here.

WS-POS, v1.3.1 75

For example, POSPrinterEventResponse of output device POSPrinter is a combination of
StatusUpdateEventResponse, DirectIOEventResponse, OutputCompleteEventResponse and
ErrorEventResponse.

Figure 31: WSPOS Event Response

76 WS-POS, v1.3.1

ScannerEventResponse of input device Scanner is a combination of DataEventResponse,
StatusUpdateEventResponse, DirectIOEventResponse and ErrorEventResponse.

Figure 32: WSPOS - Event Response

2.4.18 WS-POS Event Reference in Bi-Directional Communication
 Updated in Version1.3
A method reference of events used in WS-POS bi-directional communication is described in this
section.

These methods are published by WS-POS service consumer, and WS-POS service provider calls them.
Therefore, inout declaration of a parameter in this reference means that there is a case where the WS-
POS service consumer passes information to the WS-POS service provider such as data or obj in
DirectIOEvent, and errorResponse in ErrorEvent.
Depending on the device class, some of the event methods below may not be called by a WS-POS
service provider. For examples, the input device “Scanner” never calls outputCompleteEvent; the
output device “POSPrinter” never calls DataEvent.

In Polling event handling, these methods are never called by the WS-POS service provider. The WS-
POS service consumer should retrieve an event by using the pollForUPOSEvent method, and
respond to the event by using the setEventResponse method.

WS-POS, v1.3.1 77

2.4.18.1 dataEvent Method
Syntax dataEvent (consumerID: string, source: string, eventID: int32,

 timeStamp: DateTime, status: int32): void
 Parameter Description

consumerID The unique ID to identify a WS-POS service consumer to a
WS-POS service provider.

source UnifiedPOS device class

eventID Event ID notified by UnifiedPOS device

timeStamp Time stamp information notified by UnifiedPOS device

status Status information notified by UnifiedPOS device
UnifiedPOS Specification: The input status with its value
dependent upon the device category; it may describe the type or
qualities of the input data.

Remarks

After a bi-directional session is established, if a DataEvent is fired by a UnifiedPOS
device which was opened by a WS-POS service consumer request through a WS-
POS service provider, the WS-POS service provider passes this method back to the
WS-POS service consumer. Refer to UnifiedPOS specification for event handling.

2.4.18.2 directIOEvent Method
Syntax dataEvent (consumerID: string, source: string, eventID: int32,

timeStamp: DateTime, eventNumber: int32,
 inout data: int32, inout obj: object) : void

 Parameter Description

consumerID The unique ID to identify a WS-POS service consumer to a
WS-POS service provider.

source UnifiedPOS device class

eventID Event ID notified by UnifiedPOS device

timeStamp Time stamp information notified by UnifiedPOS device

eventNumber EventNumber information notified by UnifiedPOS device
UnifiedPOS Specification: Event number whose specific values
are assigned by the UnifiedPOS Service.

data Numeric data information notified by UnifiedPOS device

78 WS-POS, v1.3.1

UnifiedPOS Specification: Additional numeric data.
Specific values vary by the EventNumber and the
UnifiedPOS Service. This attribute is settable.

obj Object information notified by UnifiedPOS device
UnifiedPOS Specification: Additional data whose usage
varies by the EventNumber and the UnifiedPOS Service.
This attribute is settable.

Remarks

After a bi-directional session is established, if a DirectIOEvent is fired by a
UnifiedPOS device which was opened by a WS-POS service consumer request
through a WS-POS service provider, the WS-POS service provider passes this
method back to the WS-POS service consumer. Refer to UnifiedPOS specification
for event handling.

2.4.18.3 errorEvent Method
Syntax errorEvent (consumerID: string, source: string, eventID: int32,

timeStamp: DateTime, errorCode: int32, errorCodeExtended:
int32,
errorLocus: int32, inout errorResponse: int32) : void

 Parameter Description

consumerID The unique ID to identify a WS-POS service consumer to
a WS-POS service provider.

source UnifiedPOS device class

eventID Event ID notified by UnifiedPOS device

timeStamp Time stamp information notified by UnifiedPOS device

errorCode ErrorCode notified by UnifiedPOS device
UnifiedPOS Specification: Error Code causing the error
event.

errorCodeExtended ErrorCodeExtended notified by UPOS device
UnifiedPOS Specification: Extended Error Code causing the
error event. These values are device category specific.

errorLocus ErrorLocus notified by UPOS device
UPOS Specification: Location of the error.

errorResponse ErrorResponse notified by UPOS device
UPOS Specification: Error response, whose default value may
be overridden by the application (i.e., this property is settable).

WS-POS, v1.3.1 79

Remarks After a bi-directional session is established, if an ErrorEvent is fired by a
UPnifiedOS device which was opened by a WS-POS service consumer request
through a WS-POS service provider, the WS-POS service provider passes this
method back to the WS-POS service consumer. Refer to UnifiedPOS specification
for event handling.

2.4.18.4 outputCompleteEvent Method
Syntax outputCompleteEvent (consumerID: string, source: string, eventID: int32,

timeStamp: DateTime, outputID: int32) : void
 Parameter Description

consumerID The unique ID to identify a WS-POS service consumer to a
WS-POS service provider.

source UnifiedPOS device class

eventID Event ID notified by UnifiedPOS device

timeStamp Time stamp information notified by UnifiedPOS device

outputID OutputID notified by UnifiedPOS device
UnifiedPOS Specification: The ID number of the asynchronous
output request that is complete.

Remarks

After a bi-directional session is established, if an OutputCompleteEvent is fired by
a UnifiedPOS device which was opened by a WS-POS service consumer request
through a WS-POS service provider, the WS-POS service provider passes this
method back to the WS-POS service consumer. Refer to UnifiedPOS specification
for event handling.

80 WS-POS, v1.3.1

2.4.18.5 statusUpdateEvent Method
Syntax statusUpdateEvent (consumerID: string, source: string, eventID: int32,

timeStamp: DateTime, status: int32): void
 Parameter Description

consumerID The unique ID to identify a WS-POS service consumer to a
WS-POS service provider.

source UnifiedPOS device class

eventID Event ID notified by UnifiedPOS device

timeStamp Time stamp information notified by UnifiedPOS device

status Status information notified by UnifiedPOS device
UnifiedPOS Specification: Device category-specific status,
describing the type of status change.

Remarks

After a bi-directional session is established, if a StatusUpdateEvent is fired by a
UnifiedPOS device which was opened by a WS-POS service consumer request
through a WS-POS service provider, the WS-POS service provider passes this
method back to the WS-POS service consumer. Refer to UnifiedPOS specification
for event handling.

2.4.18.6 dataContainedEvent Method Added in Version 1.3
Syntax dataContainedEvent (consumerID: string, source: string, eventID: int32,

timeStamp: DateTime, status: int32,
parameters: KeyValuePairList): void

 Parameter Description

consumerID The unique ID to identify a WS-POS service consumer to a
WS-POS service provider.

source UnifiedPOS device class

eventID Event ID notified by UnifiedPOS device

timeStamp Time stamp information notified by UnifiedPOS device

status Status information notified by UnifiedPOS device
UnifiedPOS Specification: Device category-specific status,
describing the type of status change.

parameters The Key Value Pair list, specified by the
setEventRequestProperties method.

Remarks

After establishing a bi-directional communication session where the WS-POS service
consumer has specified the properties that will be delivered as part of an event (by

WS-POS, v1.3.1 81

previously calling the setEventRequestProperties method) and when the UnifiedPOS
device which was opened by WS-POS service provider fires a DataEvent, the WS-
POS service provider calls this method to deliver the notification and data associated
with the event to the WS-POS service consumer. Refer to UnifiedPOS specification
for more information on event handling.

82 WS-POS, v1.3.1

2.4.19 Modifications to XMLPOS Updated in Version 1.3
The following modifications are needed to support the XMLPOS schemas which are defined by
ARTS UnifiedPOS 1.14.1 and used within WS-POS 1.3.

• Convert ARTSBinary to String data
• Add getEncryptedClaimedConsumerID method
• Add the option of using DataEventResponse which allows for event data to be sent as defined

by the setEventResponse
• Add dataContainedEvent event
• Add key-value pair type to store the property values returned with a dataContainedEvent

event response
• Change type of DataEvent that is the return value of pollForUPOSEvent method
• Add the getBinaryConversion method and setBinaryConversion method

The definition of ARTSBinary in ARTS XML Best Practices limits the available characters for a
string type.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:simpleType name="ARTSBinary">
<xs:restriction base="xs:string">

<xs:pattern value="(\\u[0-9 | a-f]{4,4})*"/>
</xs:restriction>

</xs:simpleType>
</xs:schema>
However, since it is difficult for this restriction to be supported by all the possible programming
language contracts in a unified way, the WS-POS specification treats ARTSBinary as a string type.
This insures the compatibility of the contracts and the XML schema.

2.4.19.1 Addition and Deletion of Methods
The following methods are added for each UnifiedPOS 1.14.1 XMLPOS WSDL and xsd.

Method Description

generateConsumerID Generates Consumer ID as GUID or UUID

openSession Starts a WS-POS Session (Device is not opened)

closeSession Closes a WS-POS Session

getProviderSessionTimeout Returns Session Timeout value which WS-POS
service provider sets

WS-POS, v1.3.1 83

keepAlive WS-POS service consumer regularly calls this
method to keep session active

pollForUPOSEvent WS-POS service consumer calls this method to
check if an event has occurred

setEventResponse Selects the WS-POS service consumer response to
the event retrieved by the pollForUPOSEvent
method

getWSPOSVersion Returns WS-POS version information for the WS-
POS service provider

openDevice Opens a UnifiedPOS device

closeDevice Closes a UnifiedPOS device

getEncryptedClaimedConsumerID Added in WS-POS Version 1.3
Retrieves the encrypted value of the consumerID of
the session that has been successfully claimed by
WS-POS service provider.

setEventRequestProperties Added in WS-POS Version 1.3
The WS-POS service consumer uses this method to
specify the names of properties that will be returned
by the WS-POS service provider
DataContainedEvent.

getBinaryConversion Added in WS-POS Version 1.3
The WS-POS service consumer uses this method to
get the BinaryConversion property of UnifiedPOS
Device.
Refer to UnifiedPOS specification for
BinaryConversion.

setBinaryConversion Added in WS-POS Version 1.3
The WS-POS service consumer uses this method to
set the BinaryConversion property of UnifiedPOS
Device.
Refer to UnifiedPOS specification for
BinaryConversion.

84 WS-POS, v1.3.1

The following methods are deleted for each UnifiedPOS 1.14 XMLPOS WSDL and xsd.

Method Description

open This UnifiedPOS method is deleted and replaced by using the
openSession and openDevice methods.

close This UnifiedPOS method is deleted and replaced by using the
closeSession and closeDevice methods.

The following event is added for each UnifiedPOS 1.14.1 XMLPOS WSDL and xsd.
Added in Version 1.3

Event Description
dataContainedEvent When a DataEvent is fired by a UnifiedPOS device, the event

notification will return Key-Value pair data, defined by the
setEventRequestProperties method, to the WS-POS service
consumer.

2.4.19.2 Addition of ConsumerID Parameter
In WS-POS 1.2, the ConsumerID is used to identify WS-POS service consumer. It is mandatory that
the ConsumerID is a statistically unique identifier. The entity can be generated using any algorithm
that statistically guarantees that it is unique. Typical algorithms are the UUID or GUID and examples
for generation can be found in RFC4122 by “The Internet Society”,
http://www.ietf.org/rfc/rfc4122.txt . Since the ConsumerID is statistically unique, it only has to be
generated once if the WS-POS service consumer has the ability to permanently store and use it for all
future transactions. If the WS-POS service consumer does not have a unique ConsumerID, WS-POS
1.2 requires that the WS-POS service provider have an algorithm that will create a ConsumerID and
return it back to the WS-POS service consumer to utilize.
The ConsumerID parameter is the first parameter to all of methods (including Getter and Setter
properties). All of xsd schemas of XMLPOS listed in UnifedPOS 1.14.1 must be modified to account
for this requirement.

http://www.ietf.org/rfc/rfc4122.txt

WS-POS, v1.3.1 85

The following examples are used to illustrate this requirement.

UnifiedPOS 1.14 .1XML POS GetDeviceEnabled(no parameter) description -> XML POS for WS-
POS 1.2 – red characters are added

->

 <xs:element name="GetDeviceEnabled">
 <xs:complexType>
 <xs:sequence />
 </xs:complexType>
 </xs:element>
 <xs:element name="GetDeviceEnabledResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element

 minOccurs="0" name="GetDeviceEnabledResult"
type="xs:boolean" />

 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="GetDeviceEnabled">
 <xs:complexType>
 <xs:element

minOccurs="0" name="ConsumerID" nillable="true"
type="xs:string" />

 </xs:complexType>
 </xs:element>
 <xs:element name="GetDeviceEnabledResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element

minOccurs="0" name="GetDeviceEnabledResult"
 type="xs:boolean" />

 </xs:sequence>
 </xs:complexType>
 </xs:element>

86 WS-POS, v1.3.1

UnifiedPOS 1.14.1 XML POS SetDeviceEnabled(with parameter) description -> XML POS for WS-
POS 1.2 – red characters are added

->
All of UnifiedPOS 1.14.1 peripheral xsd’s need to be similarly modified.

 <xs:element name="SetDeviceEnabled">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0"

name="DeviceEnabled" type="xs:boolean" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="SetDeviceEnabledResponse">
 <xs:complexType>
 <xs:sequence />
 </xs:complexType>
 </xs:element>

 <xs:element name="SetDeviceEnabled">
 <xs:complexType>
 <xs:sequence>

<xs:element
minOccurs="0" name="ConsumerID" nillable="true"
type="xs:string" />

 <xs:element minOccurs="0"
name="DeviceEnabled" type="xs:boolean" />

 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="SetDeviceEnabledResponse">
 <xs:complexType>
 <xs:sequence />
 </xs:complexType>
 </xs:element>

WS-POS, v1.3.1 87

2.4.20 File Path for a Method Call Added in Version 1.2
Some of the UnifiedPOS methods, such as SetBitmap of POSPrinter class, have a parameter for
the file path name. In WS-POS, this is not appropriate, because a WS-POS service provider and
a WS-POS service consumer may run on different devices. To support the parameter in WS-POS
context without breaking UnifiedPOS API semantics, a path name parameter is defined as
follows:

• A path name parameter which is passed from a WS-POS service consumer to a WS-POS

service provider should be a URI (Uniform Resource Indicator).
• A WS-POS service provider should support at least “http: schema”.
• A WS-POS service provider is recommended to support “https:, file:” and “data: schemas”

as an option.
• When a WS-POS service consumer passes “file: URI” to a WS-POS service provider, the

URI is a file on the device where the WS-POS service provider is running.
• When a WS-POS service provider receives “file: URI”, the URI format depends on how a

WS-POS service provider implemented on a device. Therefore, it is out of scope of the WS-
POS specification.

The following steps represent a typical use case.
1. A WS-POS service consumer copies a file to a file sharing service such as Skydrive before the

WS-POS service consumer calls a WS-POS service provider.
 NOTE: The WS-POS service provider does not support authentication to access to the file sharing
service with the URI.
2. The WS-POS service consumer passes the URI to the WS-POS service provider as a request

parameter.
3. The WS-POS service provider retrieves the resource that is specified by the URI.
4. The WS-POS service provider may cache the resource on its local device to improve a response

for subsequent access requests.
5. The WS-POS service provider passes the resource retrieved to the device service. When the

device service requires a file resource on the local storage, the WS-POS service provider creates
a temporary file, and then passes the file path name to the temporary file. The temporary file is
deleted when the device method call is completed.

6. The WS-POS service provider returns the results of the device service method call.

2.4.20.1 Security Considerations
The following are some examples on the importance for the file content to be protected and secured:

• A WS-POS service provider must validate the file which is passed by a URI, especially, in the
case where a firmware update file for a peripheral device is transferred.

• If the URI is file: schema, the resource must be an accessible directory or file validated by a
WS-POS service consumer.

• If the URI is http: schema, the host in URI must be listed in an authorized list of WS-POS
service providers.

• If the URI is data: schema, the data length must be validated as the original file size.

88 WS-POS, v1.3.1

2.4.21 Retrieving consumerID that has been successfully claimed
 Added in Version 1.3
When more than one WS-POS service consumer is connected to a WS-POS service provider, there is
a case where a WS-POS service consumer may want to know which WS-POS service consumer is
successful in claim the UnifiedPOS device from the WS-POS service provider. In WS-POS version
1.3, a function which retrieves encrypted value of consumerID of WS-POS service consumer that has
successfully claimed is added as getEncryptedClaimedConsumerID method.
2.4.21.1 Security Considerations
To be able to obtain another WS-POS service consumer's consumerID makes any WS-POS service
consumer can access illegally to the device that is claimed by the WS-POS service consumer by using
the obtained consumerID.
For example, when consumerID of WS-POS service consumer (A) which claims MSR is obtained by
another WS-POS service consumer (B), the WS-POS service consumer (B) can read out TrackData
of MSR by using the obtained consumerID.
To avoid this, a method (getEncryptedCalimedConsumerID) that retrieves encrypted value of
consumerID instead retrieving consumerID of another WS-POS service consumer is defined.
In this way, even if the encrypted value is leaked, the security is high since it is difficult to decode
consumerID from the encrypted value.

WS-POS, v1.3.1 89

Figure 33 below shows a potential security breach because WS-POS service consumer (B) can
successfully read out the TrackData of MSR which is claimed by WS-POS service consumer (A),
since the consumer ID is not encrypted.

Figure 33: Get Claimed Consumer ID

Bad Actor

90 WS-POS, v1.3.1

Figure 34 shows no potential security breach because WS-POS service consumer (B) cannot
successfully read out the TrackData of MSR which is claimed by WS-POS service consumer (A),
since the consumer ID is encrypted.

Figure 34: Get Encrypted Claimed Consumer ID

The following sequence diagram shows an example on how to identify the WS-POS service consumer
A who keeps claiming the service for whatever the reason. In this example consumer C who wants to
use the WS-POS service, can externally make a request to the system administrator who has the
decryption key to identify consumer A as the one who has the blocking claim. The system
administrator can then communicate with consumer A and initiate a clear blocked claim policy to free
up the WS-POS service.

Bad Actor

Consumer C can get

encrypted consumer ID

only.

WS-POS, v1.3.1 91

92 WS-POS, v1.3.1

There are a few alternative ways to solve this problem. One is to allow the WS-POS service provider
to monitor and control the blocking WS-POS service consumer activities with timeouts. However,
this alternative resolution method makes the system architecture more complex with possible
additional methods and properties necessary. Therefore, in WS-POS Version 1.3, only
getEncryptedClaimedConsumerID method is added to solve the problem because of simplicity in
implementation.

2.5 Status, State Model and Exceptions
As shown below, there are some commonly used enumerations, events, and properties in which the
status, error code, and state model are set.
2.5.1 StatusUpdateEvent
StatusUpdateEvent is an event generated when the state unique to the specific class and status
variables are changed.
2.5.2 ControlState
ControlState is an enumeration to store the current state. Possible values are below.

Closed
Idle
Busy
Error

2.5.3 Exceptions
There is the possibility that all WS-POS service method calls throw UposException when they fail.
UposException is defined in each device under the namespace http://www.nrf-arts.org/UnifiedPOS/
by the XMLPOS schema of ARTS.

2.5.4 Public Properties

Name Description

ErrorCode
ErrorCode is an error code which represents the
cause of the error exception and is defined by an
enumeration.

ErrorCodeExtended

ErrorCodeExtended is an extension error code
which represents the cause of the error exception.
Values unique to the service can be stored in this
code.

http://msdn.microsoft.com/library/en-us/ccl/html/P_Microsoft_PointOfService_PosControlException_ErrorCode.asp
http://msdn.microsoft.com/library/en-us/ccl/html/P_Microsoft_PointOfService_PosControlException_ErrorCode.asp
http://msdn.microsoft.com/library/en-us/ccl/html/P_Microsoft_PointOfService_PosControlException_ErrorCodeExtended.asp
http://msdn.microsoft.com/library/en-us/ccl/html/P_Microsoft_PointOfService_PosControlException_ErrorCodeExtended.asp

WS-POS, v1.3.1 93

2.6 Shared Device Model
The shared device model of WS-POS supports devices that can be partially or completely shared by
multiple applications (WS-POS service consumer) as well as devices that can only be exclusively
used by one WS-POS service consumer simultaneously. All WS-POS service providers are open to
one or more applications. However, some behaviors that can be executed in a WS-POS service
provider limit applications that acquire access rights to a device to only one application.

2.6.1 Exclusive Use Device
The most common device types are “Exclusive Use Devices” and one such example is the POS
printer. This device can be used simultaneously by one application only (WS-POS service consumer)
due to its physical characteristics and characteristics of operation. The WS-POS service consumer
must call the Claim method and enable exclusive access before most of the methods, properties, and
events become effective. If a method is called or a property is set before the exclusive access right is
acquired, an illegal error occurs.

If two closely related WS-POS service consumers would like to use an exclusive use device by
sharing, there is a way where one WS-POS service consumer has exclusive access to the device for a
certain period of time only and releases the exclusive access right later in order to allow the other
WS-POS service consumer to also use the device.

If the Claim method is called again, the settable characteristics of devices are restored to the state
when the Release method is called. Examples of restoration include the brightness of the line display,
the read track of magnetic stripe readers, and the number of characters per POS printer line. The State
characteristics like the sensor property of the POSPrinter are not restored and are set to the current
state instead.

2.6.2 Sharable Devices
Some devices are sharable devices. One example is key lock. For sharable devices, the properties can
be accessed by the calling of its methods by multiple applications (WS-POS service consumers). In
addition, events are notified to all applications to which the device is open. However, a WS-POS
service consumer with exclusive access to the sharable device can limit the access to part of the
methods and properties and only this WS-POS service consumer can be notified of events.

94 WS-POS, v1.3.1

2.7 Event Messages
The event notifies the application (WS-POS service consumer) of various behavior and changes to
the device or removal of the device. There are the following five events.

Event Description

DataEvent Input data is stored in device class unique properties.

ErrorEvent An error occurred during an event-driven input or
asynchronous output.

StatusUpdateEvent State change of the device is reported.
OutputCompleteEvent Asynchronous output was normally completed.

DirectIOEvent This event is defined by a service provider and items that
cannot be covered by this specification will be provided.

The WS-POS service provider queues events when events are generated. Queued events are notified
(delivered) to the application (WS-POS service consumer) when they are ready to be notified. The
causes of delays in the sending and receiving of events include the following.

• The WS-POS service consumer has set the FreezeEvents property to true.
• The event type is a DataEvent or input ErrorEvent, and the DataEventEnabled property

is false.

For terminology concerning the notification of events, the following terms except for "Event" in this
paragraph are not used separately, and are published for reference.

Reference: The following terms concerning events are used in this specification.

Queue When a service decides the necessity of event notification (Fire) to the WS-POS service
consumer, the service packs the event in an internal event queue.

Deliver When the event queue is not empty and all requirements of the first event in the queue
are met, this event is removed from the queue and the event notification request for the
application is executed.

Fire It can be said that Fire is the combination of queuing (Queue) and notification
(Delivery). However, Fire sometimes is used in broad terms and refers to only one of
these steps. The meaning must be identified by the context.

Regulations concerning the management of the event queues are as follows.

• While the device is in the “enable” state, the WS-POS service provider is only queuing
(Queue) new events.

• There is a possibility that the WS-POS service provider conducts notification (Delivery) of
queued events until the WS-POS service consumer calls the release method (exclusive use
device) or the closeDevice method (all devices). Note that all remaining events are deleted
when either the release or the closeDevice methods are executed.

WS-POS, v1.3.1 95

• In the input device, the ClearInput method clears data and the input error event. Within the
event handler, the WS-POS service consumer can access properties and call methods.
However, the WS-POS service consumer must not call the release method and the
closeDevice method within the event handler since the release method must close event
handling (including the thread notifying (Delivering) the event) and closeDevice must close
the event handling before it returns.

96 WS-POS, v1.3.1

2.8 Input Model
The WS-POS input model supports event-driven input. In event-driven input, input data can be
received after DeviceEnabled is set to true. The received data is queued as DataEvent events for
notification to the application (WS-POS service consumer) when the requirements are met. If the
AutoDisable property is true when data is received, the WS-POS service provider sets
DeviceEnabled to false and automatically disables the device. As a result, further queuing of input
by the service is prevented and the device is physically disabled (if possible).

When the WS-POS service consumer is ready to receive input from the device, the WS-POS service
consumer sets the DataEventEnabled property to true. When the input is received, the WS-POS
service provider queues and notifies the DataEvent event. (If the input is already queued, the
DataEvent event is notified.) This event may include input status information. Immediately before
the event is notified, the WS-POS service provider stores input data and other information in the
device unique property based on necessity.

The WS-POS service provider makes further data events impossible by internally setting the
DataEventEnabled property to false immediately before the event is notified. As a result, any
subsequent input data is queued by the service while the WS-POS service consumer is processing the
current input and related properties. When the WS-POS service consumer completes processing of
the current input and is prepared to receive any subsequent data, it sets DataEventEnabled to true to
restart the notification of events.

If the input device is an exclusive use device, the WS-POS service consumer must both acquire and
enable the exclusive access right of the device prior to start of input reading by the device.

In case of sharable input devices, the WS-POS service consumer must open and enable the device
prior to the start of input reading by the device. The WS-POS service consumer must call the claim
method and request exclusive access to the device before the WS-POS service provider sends data
using the DataEvent event. When event-driven input is received, if the WS-POS service consumer
does not have the exclusive access right to the device, the input is queued until the exclusive access
right of the device is acquired (and the DataEventEnabled property becomes true). As a result,
multiple WS-POS service consumers can share the device in order and input focus can be given and
received effectively between WS-POS service consumers.

If the WS-POS service provider finds an error during the input processing of data from event-driven
input, the WS-POS service provider changes its State property to Error and queues one to two
ErrorEvent events in order to warn the WS-POS service consumer of the error state. Since this event
is not notified until the DataEventEnabled property becomes true, the WS-POS service consumer
can conduct processing in order. Error events are notified accompanied by data showing the next
error position.
InputData:

InputData is queued if an error occurs while one or more DataEvent events are queued. This
event is queued before all other DataEvent events. Due to this event, the WS-POS service
consumer can clear the input immediately or has the option of warning users of the error and
processing the buffered input data.

WS-POS, v1.3.1 97

The latter case is effective for scanners. Since error warnings can be quickly sent to users,
subsequent items are not be scanned until the error is removed. Previously scanned items can be
normally processed before error recovery is executed.

Input:
Input is notified when an error occurs and there is no usable data. (In general implementations,
this event is set at the end of the event queue.) If part of the input data has already been queued
when the error occurs, the ErrorEvent event whose error position is InputData is first queued
and notified. This error event is notified after all DataEvent events are notified. (When the
"InputData" event is notified and the event handler of WS-POS service consumer responds
"clear", this "Input" event is not notified.)

In any of the following conditions, the WS-POS service provider ends the Error state when the WS-
POS service consumer:

• “Reads” the Input data associated with the InputData ErrorEvent.
• “Responds” to the InputData ErrorEvent event with an ErrorResponse of “clear”.
• “Calls the ClearInput method.

The method for starting an event-driven input is dependent upon the WS-POS service consumer
making an input data request. Subsequent input data is not accepted (normally) until the method is
issued again. This will re-initialize the input buffer after the WS-POS service consumer has received
the previous input data from the device. Examples include the operation of reading MICR data and
signature capture data. No new data will be sent from these devices until the service consumer is
ready to accept new data. This type of event-driven input is defined as "Asynchronous input".

The DataCount property is used to keep track of the number of DataEvent events enqueued by the
WS-POS service provider.

All input data that is queued by the WS-POS service provider can be deleted by calling the
ClearInput method. The ClearInput method can be called after openDevice in sharable devices and
after claim in exclusive use devices.

For the general (Asynchronous) event-driven input model, specific methods, device classes and
properties are not required to be defined to return the input data. There are some devices that require
methods to return input data and populate specific properties. An example of this is the key lock
device. Its locked or unlocked key position status is held in a defined property value determined by
an input request. This type of an input is referred to as “Synchronous input".

98 WS-POS, v1.3.1

2.9 Output Model
The output of WS-POS consists of two output types of Synchronous and Asynchronous. Each device
class may support either, both or neither of these output types.

2.9.1 Synchronous Output
This output type is effective for when it is necessary to output data to a POS device promptly and the
application cannot continue until the data has been transferred. The advantage of synchronous output
lies in its simplicity.

The application (WS-POS service consumer) calls a class unique method which handles the data
output. The WS-POS service provider does not return control back to the application until all the
output data has been transferred or an error condition exists.

2.9.2 Asynchronous Output
If the POS device can only handle transfer of data at a low-speed or large blocks of data are required
to be transferred, this output type is effective. The application (WS-POS service consumer) sets up
a buffer of data that needs to be output to the POS device, executes an asynchronous method call,
returns to continue with other computing tasks, and receives a completion or error event when the
data has been transferred. Since the WS-POS service consumer can execute other processing when
the device is executing the output, the advantage of this output type lies in the ability of the application
to multi-task, potentially speeding up POS services.

WS-POS, v1.3.1 99

Further details to the process are as follows:

• The WS-POS service consumer calls a class unique method and starts output. The service
buffers the request within program memory, and the service sends it to the physical device
immediately as soon as reception processing becomes possible in the physical device. Then,
the service sets the identifier of this request in the OutputId property and returns back to the
application as soon as possible. When the device normally completes the request, the WS-
POS service provider notifies the application using an OutputCompleteEvent event. The
parameter of this event is the OutputId of the last successful output complete request.

• If an error occurs when an asynchronous data output is being executed, the ErrorEvent event
is fired. The event handler of the WS-POS service consumer can retry or clear the output of
any outstanding transfer request of queued data. The service remains in the Error state during
processing of the ErrorEvent event. (Note: If the cause of the error has not been removed
when the service returns from an ErrorEvent event, another ErrorEvent event will fire if
the POS device is still in an error state.)

• Asynchronous output is queued based on FIFO buffer technique. All buffered output
(including all asynchronous outputs) can be deleted by calling the ClearOutput method. The
OutputCompleteEvent event is not generated as a result of calling the ClearOutput method.
Calling the ClearOutput method should terminate all remaining data from being sent, if
possible.

100 WS-POS, v1.3.1

2.10 Device Power Reporting Model
In an application (WS-POS service consumer), the state of the POS device power must be available
for a query. This information is conveyed by the PowerState enumeration.

Note: This model does not target notification of the power supply state ("battery on" and "battery

low ", etc.) of PCs and the POS terminal main power unit. Notification of this information is
managed by utilizing the UnifiedPOS “POS Power” device specification.

2.10.1 Model
The power state of WS-POS devices may be denoted using one of the following conditions.

• Online The POS device is in the “Power On and Ready” mode. This means that it is
 available for use.

• Off The POS device is in the “Power Off” mode or it is not connected to the POS
 system. It implies that the POS Device is not available for use.

• Offline The POS device is in the “Not Ready” mode or cannot respond even though
 the POS device is in the “Power On” mode. It implies that the POS Device is
 not available for use. It may be necessary to push a physical button to place
 the POS device into an “Online” mode. While in the “Offline” state the POS
 device may not be able to respond to requests from an application.

• OffOffline The POS device is in an undeterminable “Off” or “Offline” state.

 This means the POS device is in a “Power Off” or “Not-Ready” mode; the
 device service is not able to distinguish between these two states.

The power state notification only functions for exclusive POS devices if the application is in the
programmatic “open, claim, enable” condition.

Note: Programmatic vs. Physical (Hardware)
“Enable/Disable” State

The context of where the terms “enable/disable” determines the meaning and usually is completely different. In WS-POS
application service definition, "enable" or "disable" is a programmatic logical state. In the WS-POS Power Supply
Notification model, physical (Hardware) context, “enable” or “disable” refers to the physical state of the POS device.
Depending on the POS device, even if the programmatic state is logically "enable", the physical (Hardware) may be in
the “disable” state, physically "offline". Conversely, if the programmatic state is logically "disable", the physical
(Hardware) state may be Online (“enable”) because it is in the power on and ready mode.

Regardless of the physical (Hardware) state, WS-POS Power State Notification is only available to the application when
in the programmatic “enable” state. This restriction is necessary since services can generally only communicate with
devices during a programmatic “enable state”. Even when a POS device is physically "Offline", the service may try and
fail a programmatic device "enable". However, once the POS device becomes “Online” (physical "enable") and the
programmatic state is “enable”, the service will not automatically change the state of the programmatic “enable” to
“disable” even if the power state changes.

WS-POS, v1.3.1 101

2.11 ARTS XMLPOS Command Set
In ARTS XMLPOS, the Command Set to transmit a series of processing for methods and properties
by batch message is defined.
Command Set is comprised of the following.

For example, in the batch processing of open, claim, enabled, checkHealth, disable, release and
close,

it is possible to batch up the commands and transmit them in one data exchange. As a result, the
message granularity between WS-POS service consumers and WS-POS service providers is flexible
and can be appropriately adjusted as the circumstances require.

2.12 ARTS XMLPOS Event Set
In ARTS XMLPOS, Event Set to notify the service consumer of multiple kinds of events collectively
is defined.
Event Set is comprised of the following.

 ARTS Header (ARTS Common Header Type)

 Command Body (Device Class Unique)
Command Body (Device Class Unique)
…

ARTS Header (ARTSCommonHeaderType)

open
 claim
 setDeviceEnabled (true)
 checkHealth
 setDeviceEnabled (false)
 release
close

 Event Body (Device Class Unique)
Event Body (Device Class Unique)
…

102 WS-POS, v1.3.1

2.13 ARTS XMLPOS Schema
WS-POS uses the ARTS XMLPOS schema for the definition of a device class. The ARTS XMLPOS
schema is provided in an “xsd” file.

The corresponding schema file names for device classes are as follows.

Schema Description
<Device Class Name> <Version>.xsd Schema defining the properties/methods of a

device class
<Device Class Name> CommandSet
<Version>.xsd

Schema defining Command Set of a device
class

<Device Class Name> Event
<Version>.xsd

Schema defining the events of a device class

<Device Class Name> EventSet
<Version>.xsd

Schema defining Event Set of a device class

Note: In this example, the Version is a character string that starts with prefix “V” and consists

of the “major version”, the “minor version”, and the “bug fix” version using period
“.” delimiters. (Example: V1.14)
Please refer to ARTS SOA Best Practices Technical Report for further version
information. The ARTS XMLPOS schema adopts the version of UnifiedPOS.

WS-POS, v1.3.1 103

2.14 WS-POS WSDL
The WSDL file group below defines the WSDL of the WS-POS service in accordance with the ARTS
XMLPOS schema. The WS-POS WSDL’s are based upon the corresponding version of the WS-POS
standard and the ARTS XMLPOS as defined in the corresponding version of ARTS UnifiedPOS
standard.

Although the following WSDL are compatible with the ARTS XMLPOS schema, since binding
information is also described in WSDL, the binding information must be changed in accordance with
that used by the WS-POS service provider for actual use. The binding information of WSDL included
in this WSDL file is the placeholder.

WSDL Description
<Device Class Name> <Version>.wsdl WSDL describing the properties /methods of

the device class
<Device Class Name> CommandSet
<Version>.wsdl

WSDL describing Command Set of the device
class

<Device Class Name> Event
<Version>.wsdl

WSDL describing the events of the device
class

<Device Class Name> EventSet
<Version>.wsdl

WSDL describing Event Set of the device
class

Note: In this example, the Version is a character string that starts with prefix “V” and

consists of the “major version”,
the “minor version”, and the “bug fix” version using period “.” delimiters. (Example:
V1.14)
Please refer to ARTS SOA Best Practices Technical Report for further version
information.
The ARTS XMLPOS schema adopts the version of Unified POS.

104 WS-POS, v1.3.1

2.14.1 Web Service Description Language (WSDL)

Figure 35: WSDL Overview

WS-POS employs WSDL 1.1, as explained in WS-I basic profile version 1.2, as the core service
description facility.

Id Name Description
SD001 WSDL A device’s web services MUST be conformant to WSDLs as

specified in the “Service Description” section of this specification

SD002 WSA-
Action

To be conformant, the receiving Web Services MUST discard SOAP
messages that do not contain WS-Addressing Action headers

WS-POS, v1.3.1 105

2.14.2 WS-POS WSDL Interoperability and Development Platform Requirements to
Ensure Equivalent Code Conversion
In order to ensure hardware and software interoperability, a WS-POS WSDL must be identical
whether it was created from Java code or .NET code.
In practice this means a WCF contract is used to process Windows .NET code to produce a WS-POS
WSDL. Also a JAX-WS contract is used to process Java code to create a WS-POS WSDL. Both of
these WS-POS WSDLs must be identical. This is the only way of ensuring that WS-POS
interoperability can be guaranteed regardless of the development language used to create the WSDL.
The following diagram graphically shows this relationship and the importance of equivalent WS-POS
WSDL creation.

Figure 36: Interoperability and Platform Equivalence to the Code Conversion

106 WS-POS, v1.3.1

The WS-POS standard uses the current UnifiedPOS standard XMLPOS messages to define
UnifiedPOS classes that are mapped using the ARTS defined WSDLs. This ensures consistent
WSDL mapping of the UnifiedPOS Properties, Methods, and Events for the peripheral devices. In
addition, the UnifiedPOS Device list of arguments, return values and exceptions are respectively
mapped by the WSDL to the Request message, Response message, and Fault message.
Finally, the UnifiedPOS data types are mapped to equivalent XML schema data types.

Figure 37 shows the relationships of these mappings.

UnifiedPOS Class WS-POS Service

WCF: DataContractSerializer, XMLSerializer
JAX-WS: JAXB (Java Architecture for XML Binding)

Operation

Request
Message

Response
Message

Property
Method
Event

Parameter
List

Return
Value

WCF: OperationContract
JAX-WS: WebMethod

Convert

Figure 37: UnifiedPOS and WSDL Mapping

WS-POS, v1.3.1 107

2.14.3 WSDL Documents Provided By ARTS
For each device type, ARTS provides two categories of WSDLs: one to describe the services that a
producing device implements, and another to describe the services a consuming application for that
device type needs to implement. Each of these provided WSDLs will contain one or more port types
with sets of operations, all the messages for each operation, and a corresponding SOAP binding for
each port type.

The ARTS WSDL files are part of the WS-POS 1.3 download package. The most recent WS-POS
documentation and WSDL package zip and tar files can be found under the WS-POS section at
http://www.omg.org/retail/unified-pos.htm.

2.14.4 WSDL Documents to Be Created by Implementers
For each device or client wishing to implement WS-POS, it is necessary to create a new WSDL
document that imports the corresponding ARTS WSDL. The implementer then creates a service with
an endpoint address and ports referring to one or more of the bindings in the ARTS WSDL.

Id Name Description
SD003 ARTS-

Binding
An implementing service must refer to the bindings from the
corresponding provided ARTS WSDL

http://www.omg.org/retail/unified-pos.htm

108 WS-POS, v1.3.1

2.15 Backward Compatibility Added in Version 1.2
2.15.1 How to use the WSDLs from Version 1.1 and from Version 1.2
The WSDLs defined and created for WS-POS 1.1 and WS-POS 1.2 are not the same, due to functional
changes made in version 1.2 of the WS-POS standard. This prevents interoperability between WS-
POS 1.1 consumers/providers and WS-POS 1.2 consumers/providers. It is highly recommended that
a user migrates to WS-POS 1.2 compliant service consumers and providers because of the increased
functionality added in the WS-POS 1.2 version.

 To be clear, the version of the WS-POS service consumer and the WS-POS service provider must
be the same.

2.16 Security
2.16.1 Description
Security is a key focus of the entire ARTS distributed peripheral system. In a consumer system of
this nature, which exchanges sensitive information such as credit card numbers and details of
purchases, it is imperative that the exchanged messages are secure. Measures must be taken to ensure
that devices are authenticated, that authorizations are assured, that transmitted information is always
safe from snooping and alteration and that the transmitted information goes to the proper endpoint.

2.16.2 Transport Layer Security Changed in Version 1.3
In this WS-POS technical specification, it is recommended to guarantee network transport layer
security, but is not defined specific method to secure the transport layer, so that a system integrator
can apply appropriate security standards in system design depending on user’s requirement.

WS-POS Service Provider

WS-POS 1.1
Service

Consumer

WS-POS 1.2
Service

Consumer

WS-POS 1.1
Service Provider

Endpoint

WS-POS 1.2
Service Provider

Endpoint

WS-POS Service
Provider

Implementation
Device

WS-POS, v1.3.1 109

2.16.3 Device Authentication with UDDI(Deprecated) Changed in Version 1.3
In this WS-POS technical specification, using UDDI for device authentication is not mandatory.
When UDDI is used for device authentication, it must follow the description below.
The UDDI server must have a method to verify that device keys are acceptable. This may take the
form of a preloaded table, verification with some outside authority, etc.
Devices must provide signatures for their interactions with UDDI. The UDDI server must then use
these signatures to validate that the device is allowed to use the server.

Id Name Description
SE001 DeviceAuthUDDI UDDI must reject all unsigned messages from

devices
SE002 DeviceAuthUDDIFail UDDI must reject all messages that are signed by

unauthorized devices.

110 WS-POS, v1.3.1

2.16.4 Client Authentication with UDDI(Deprecated) Changed in Version 1.3
In this WS-POS technical specification, using UDDI for client authentication is not mandatory. When
UDDI is used for client authentication, it must follow the description below
The UDDI server must have a method to verify that client keys are acceptable. This may take the
form of a preloaded table, verification from some outside authority, etc.
Clients must provide signatures for their interactions with UDDI. The UDDI server must then use
these signatures to validate that the client is allowed to use the server.

Id Name Description
SE003 ClientAuthUDDI UDDI must reject all unsigned messages from clients

SE004 ClientAuthUDDIFail UDDI must reject all messages that are signed by
unauthorized clients.

2.16.5 Client Authentication with Device
When interacting with devices, the client must sign all of its messages. The first message, which
opens the device, will contain an endpoint reference that the device will send events to. The device
must store an (endpoint reference, signature) name-value pair for the client in order to validate future
communications. When the client sends messages to the device, the device will use the endpoint
reference in the “<from>” WS-Addressing field along with the included signature to validate the
message. When opening and closing the device, the device must validate that the endpoint reference
in the “<from>” WS-Addressing field matches the endpoint reference in the SOAP-Body.

Id Name Description
SE005 ClientAuthDevice Device must reject all unsigned messages from clients

SE006 FromSIGMatch Device must reject all messages whose <from> element
in the header does not match the EndpointReference
stored for that signature

SE007 FromEPRMatch Device must reject all open and close messages in which
the EndpointReference in the SOAP body’s <in> doesn’t
match the <from> in the SOAP header

Note: A client only has the ability to register its own endpoint reference; no attempt to define how a
client can register any other endpoint references has been made. This is a known endpoint reference
registration limitation issue currently in all forms of web services event registration.

2.17 XML Payload
While it is described in the WSDLs, it is worth noting that the XML payload for all the SOAP
messages is almost entirely specified using XMLPOS, with the exception of the callback methods on
the clients.

WS-POS, v1.3.1 111

3. GENERAL FLOW

3.1 General WS-POS Flows
This section covers the prescribed methods for using the WS-POS stack.
3.1.1 Device service initializes

1. Setup device - Address, capabilities, naming, location of UDDI
2. Register with UDDI – authenticate itself, address, capabilities, naming

a. Message signed with device private key
b. UDDI validates signature

3.1.2 Device shutdown
1. Device deletes itself from UDDI
2. Power off scanner device

3.1.3 Client startup
1. Setup client entity service - address, capabilities, naming, location of UDDI

3.1.4 Client interaction with devices
1. Query UDDI for list of device services – authenticate itself

a. Message signed using Client private key
2. UDDI returns list of devices to client- Client chooses which device to connect to
3. Client entity service opens device service, registers for events (atomic)

a. Message signed with Client private key
4. Device validates signature
5. Device stores endpoint reference/certificate pair for future verification
6. Client entity service – claim, enable device service

a. both messages signed with Client private key
7. User interacts with device

a. device service sends events to the client (Signed with Device Private key)
8. As client changes settings, settings are stored in endpoint reference/certificate table

a. All messages to device are signed by Client
9. Client entity service disables, releases device

a. Message signed with Client private key
10. Client entity service closes device

a. Message signed with client private key
b. Device validates client endpoint reference against signature

112 WS-POS, v1.3.1

3.2 Simple Use Case
3.2.1 Client Entity Service Acquiring and Utilizing a Scanner Device Service
A client entity service used in a point-of-service solution allows the clerk to scan items. This service
acquires and utilizes a scanner device service to input transaction item identification. The client entity
service releases the scanner device service after the sales transaction completes.
3.2.1.1 SOA Main Flow Description

1. Setup UDDI – authentication parameters for scanner device service and client entity service
2. Power on the scanner device
3. Scanner device service initializes

• Setup scanner - Address, capabilities, naming, location of UDDI

• Register with UDDI – authenticate itself, provide implementation WSDL
i. Message signed with Scanner private key

ii. UDDI validates signature
4. The Client entity service is loaded and executed.

• Setup client entity service - address, capabilities, naming, location of UDDI

• Query UDDI for list of scanner device services – authenticate itself
i. Message signed using Client private key

5. UDDI returns list of devices - Client entity service chooses which scanner to connect to
6. Client entity service opens scanner device service, registers for events (atomic)

<?xml version="1.0" encoding="http://schemas.xmlsoap.org/soap/envelope/"
standalone="no"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsa=”http://www.w3.org/2005/08/addressing” xmlns:ns3="http://www.nrf-
arts.org/UnifiedPOS/Scanner/">
 <soapenv:Header>
 <wsa:To>http://scanner.WS-POS-example.omg.org:8081/services/Scanner-WS</wsa:To>
 <wsa:MessageID>urn:uuid:C5C856C8175724AD9E1195687902183</wsa:MessageID>
 <wsa:Action>http://www.nrf-arts.org/UnifiedPOS/Scanner/Open</wsa:Action>
 </soapenv:Header>
 <soapenv:Body>
 <ns3:Open>
 <ns3:EndpointAddress>http://192.168.1.1:8082/axis2/services/Client-
WS</ns3:EndpointAddress>
 </ns3:Open>
 </soapenv:Body>
</soapenv:Envelope>

• Message signed with Client private key

7. Scanner validates signature
Scanner stores endpoint reference/certificate pair

WS-POS, v1.3.1 113

8. Client entity service – claim, enable scanner device service (both messages signed with Client
private key)

<?xml version="1.0" encoding="http://schemas.xmlsoap.org/soap/envelope/"
standalone="no"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsa=”http://www.w3.org/2005/08/addressing” xmlns:ns3="http://www.nrf-
arts.org/UnifiedPOS/Scanner/">
 <soapenv:Header>
 <wsa:To>http://scanner.WS-POS-example.omg.org:8081/services/Scanner-WS</wsa:To>
 <wsa:MessageID>urn:uuid:C5C856C8175724AD9E1195687902183</wsa:MessageID>
 <wsa:Action>http://www.nrf-arts.org/UnifiedPOS/Scanner/Claim</wsa:Action>
 </soapenv:Header>
 <soapenv:Body>
 <ns3:Claim>
 <ns3:Timeout>1000</ns3:Timeout>
 </ns3:Claim>
 </soapenv:Body>
</soapenv:Envelope>

<?xml version="1.0" encoding="http://schemas.xmlsoap.org/soap/envelope/"
standalone="no"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsa=”http://www.w3.org/2005/08/addressing” xmlns:ns3="http://www.nrf-
arts.org/UnifiedPOS/Scanner/">
 <soapenv:Header>
 <wsa:To>http://scanner.WS-POS-example.omg.org:8081/services/Scanner-WS</wsa:To>
 <wsa:MessageID>urn:uuid:C5C856C8175724AD9E1195687902183</wsa:MessageID>
 <wsa:Action>http://www.nrf-
arts.org/UnifiedPOS/Scanner/SetDeviceEnabled</wsa:Action>
 </soapenv:Header>
 <soapenv:Body>
 <ns3:SetDeviceEnabled>
 <ns3:DeviceEnabled>true</ns3:DeviceEnabled>
 </ns3:SetDeviceEnabled>
 </soapenv:Body>
</soapenv:Envelope>

9. As client changes settings, settings are stored on a per-client basis
10. Clerk scans an item

114 WS-POS, v1.3.1

11. Scanner device service sends WS-POS event to the client entity service (calling the client
entity service callback method using XMLPOS) (Signed with Scanner Private key)

<?xml version="1.0" encoding="http://schemas.xmlsoap.org/soap/envelope/"
standalone="no"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsa=”http://www.w3.org/2005/08/addressing” xmlns:ns3=”http://www.nrf-
arts.org/UnifiedPOS/ScannerEvents/”>
 <soapenv:Header>
 <wsa:To>http://client.WS-POS-example.omg.org/services/Client-WS</wsa:To>
 <wsa:ReplyTo>
 <wsa:Address>http://www.w3.org/2005/08/addressing/none</wsa:Address>
 </wsa:ReplyTo>
 <wsa:MessageID>urn:uuid:548181C361F2A1EE5C1195691857095</wsa:MessageID>
 <wsa:Action>http://www.nrf-
arts.org/UnifiedPOS/ScannerEvents/DataEvent</wsa:Action>
 </soapenv:Header>
 <soapenv:Body>
 <ns3:DataEvent>
 <ns3:Source>http://scanner.WS-POS-example.nrf-arts.org/services/Scanner-
WS</ns3:Source>
 <ns3:EventID>1234</ns3:EventID>
 <ns3:TimeStamp>2011-01-09T12:34:56</ns3:TimeStamp>
 <ns3:Status>0</ns3:Status>
 </ns3:DataEvent>
 </soapenv:Body>
</soapenv:Envelope>

Client entity service receives the event
12. Client entity service disables, releases and closes scanner device

<?xml version="1.0" encoding="http://schemas.xmlsoap.org/soap/envelope/"
standalone="no"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsa=”http://www.w3.org/2005/08/addressing” xmlns:ns3="http://www.nrf-
arts.org/UnifiedPOS/Scanner/">
 <soapenv:Header>
 <wsa:To>http://scanner.WS-POS-example.omg.org/services/Scanner-WS</wsa:To>
 <wsa:MessageID>urn:uuid:C5C856C8175724AD9E1195687902183</wsa:MessageID>
 <wsa:Action>http://www.nrf-
arts.org/UnifiedPOS/Scanner/SetDeviceEnabled</wsa:Action>
 </soapenv:Header>
 <soapenv:Body>
 <ns3:SetDeviceEnabled>
 <ns3:DeviceEnabled>false</ns3:DeviceEnabled>
 </ns3:SetDeviceEnabled>
 </soapenv:Body>
</soapenv:Envelope>

<?xml version="1.0" encoding="http://schemas.xmlsoap.org/soap/envelope/"
standalone="no"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsa=”http://www.w3.org/2005/08/addressing” xmlns:ns3="http://www.nrf-
arts.org/UnifiedPOS/Scanner/">
 <soapenv:Header>
 <wsa:To>http://scanner.WS-POS-example.nrf-arts.org/services/Scanner-WS</wsa:To>
 <wsa:MessageID>urn:uuid:C5C856C8175724AD9E1195687902183</wsa:MessageID>
 <wsa:Action>http://www.nrf-arts.org/UnifiedPOS/Scanner/Release</wsa:Action>
 </soapenv:Header>
 <soapenv:Body>
 <ns3:Release />
 </soapenv:Body>
</soapenv:Envelope>

WS-POS, v1.3.1 115

13. Client entity service closes scanner, unregisters for events (Signed with Client private key)
<?xml version="1.0" encoding="http://schemas.xmlsoap.org/soap/envelope/"
standalone="no"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsa=”http://www.w3.org/2005/08/addressing” xmlns:ns3="http://www.nrf-
arts.org/UnifiedPOS/Scanner/">
 <soapenv:Header>
 <wsa:To>http://scanner.WS-POS-example.nrf-arts.org/services/Scanner-WS</wsa:To>
 <wsa:MessageID>urn:uuid:C5C856C8175724AD9E1195687902183</wsa:MessageID>
 <wsa:Action>http://www.nrf-arts.org/UnifiedPOS/Scanner/Close</wsa:Action>
 </soapenv:Header>
 <soapenv:Body>
 <ns3:Close>
 <ns3:EndpointAddress>http://192.168.1.1:8082/axis2/services/Client-
WS</ns3:EndpointAddress>
 </ns3:Close>
 </soapenv:Body>
</soapenv:Envelope>

14. Scanner device service notifies UDDI to delete service
15. Power off scanner device

116 WS-POS, v1.3.1

3.3 Use Case Catalog

This section provides example usage for the WS-POS Specification. They were provided by
domain experts from the OPOS-J Initiative Business Scenario Working Group Contributors in
Japan. These use cases were left as is in order to preserve the original intended meaning as
provided by the international community.
These are meant as examples to aid in the understanding of the WS-POS specification and are not
meant as an exhaustive list for usage.

3.4 Scope
Contributor: Seiko Epson Corporation
This section describes a high-level use case that covers new business scenarios based on WS-POS
in general. The subsequent use cases are the embodiment or combination of the basic use case
described here.
Space where all devices and applications behave as services

For an environment where input devices, output devices and input/output devices placed in every
space (including rest areas, common areas, as well as every store in shopping malls) behave as
services, the system offers an application program that provides new services by combining
various devices to generate space where a wide variety of ideas can suggest new services to
customers.
Definitions of entities:

Name Definition

Customer A person who is present in the space

Input device Devices installed in the space, such as cameras, vending machines,
rest chairs, automatic doors, and recycle bins

Output device Devices such as printers, projectors, LCD TVs (video systems),
speakers (sound facilities), and lighting equipment

Input/output device Devices such as POS systems and various kiosk terminals

Application service An application program that provides services by combining the
above input, output, and input/output devices

WS-POS, v1.3.1 117

SystemInput/Output Device

Output Device

Input Device

Provide Services

Combine Services

Retrieve data

Provide Services

Customer

A person who is
present in the space

Devices such as printer, projectors, LCD
TVs (video systems), speakers (sound
facilities), and lighting equipment

Devices such as POS systems
and various kiosk terminals

Devices installed in the space, such as
cameras, vending machines, rest chairs,
automatic doors and recycle bins

118 WS-POS, v1.3.1

High-Level Use Case

Use Case –

Stakeholders Concerns

Customer A customer wants to have a comfortable time in the space. A customer also
wants to enjoy satisfactions through delicate and better services.

Store manager A store Manager wants to draw more customers and increase sales by providing
high-value-added services to customers.

Device vendor A device vendor wants to increase sales by providing easy-to-use devices and
bringing the possibility of enhancing the added value of devices beyond
expectation.

Software
vendor

A software vendor wants to increase sales by providing the new value through
flexible combination of various device functions and new suggestions to Store
Managers through embodiment of various ideas.

Actors Description

Customer A person who visits the space to do some shopping or kill time.

Input device In addition to input devices such as surveillance cameras, information of sensors
attached to automatic doors may be supposed to be input devices. When sales
information of vending machines can be managed in real time, the information
can also be used as an input device.

Output device In addition to output devices such as printers installed on kiosk terminals, video
output devices (including projectors and LCD TVs), sound output devices
(including speakers), and software-controlled lighting and air conditioning
equipment can be used as output devices.

Input/output
device

Devices that have both input and output device functions (such as POS terminals
and kiosk terminals) can be used both as input devices and output devices.

Application
program

When each input, output, input/output device can be used as service equipment,
controlling output devices based on information from input devices enables
programs to provide a wide variety of services depending on ideas.

WS-POS, v1.3.1 119

Major Normal Scenario:

Label Scenario

1. A customer inputs information from Input Devices (but not always inputs information
consciously)

1.1. An input Device distributes the input information to Application Programs

1.2. An application Program analyzes the input information and set up output information

1.3 An application Program sends the output information to Output Devices

1.4 An output Device distributes the output information to Customers

1.5 A customer receives the output information from Output Devices (but not always
receives the information consciously)

120 WS-POS, v1.3.1

3.5 Sub Scope: Linkage between In-Store Kiosk and POS (Devices)

Contributor: Vinculum Japan Corporation

When a customer checks information (such as seat reservation information of a movie theater or
an airplane) with an in-store kiosk and reserves a ticket, the system outputs the reservation
information from a POS printer on the LAN.
 Definitions of entities:

Name Definition

Customer A person who reserves a ticket or purchases goods.

Kiosk terminal A terminal that manages various information display and ticket
reservations.

POS register A terminal to make accounts for in-store goods.

Sales clerk A person who operates the POS register.

POS receipt printer A terminal to output transaction receipts or ticket reservation
receipts.

Ticket reservation
information

Information (such as information on seat reservations) managed by
the kiosk terminal.

Transaction
information

Actual accounting information managed by the POS register.

WS-POS, v1.3.1 121

Customer

Reserve a ticket

Make accounts

KIOSK Terminal

POS Register

Sales
l k

POS Receipt Printer

Transaction
information

Ticket reservation information

Output a receipt

Link member and ticket
information

 It shall be described as the wording of
"kiosk terminal."

* Because the system structure in the
kiosk terminal is transparent.

122 WS-POS, v1.3.1

Activity Diagram

1.1 Scan
Member Card

1.3 Reserve
Ticket

Purchase
Other Items

1.2 Show ticket
Reservation Information

1.4 Make tentative
reservation

Show Customer
Information to Reserve
Ticket (such as Seat)

Show request message
to make payment at
POS register

Customer Sales Clerk Kiosk
Terminal

POS
Register

POS Receipt
Printer

WS-POS, v1.3.1 123

Customer Sales Clerk Kiosk
Terminal

POS
Register

POS Receipt
Printer

2.1 Ask to
Make payment

2.2 Give
member card

Start POS
payment

2.3 Scan
Member card

2.5 output
Tentative ticket

Show sides
screen

2.4 Link with
member numberRequest to

Output tentative
ticket

2.6 Scan bar code of
Tentative ticket

Get ticket price
information

2.7 Link with ticket
information

2.8 Show ticket price
information

Ask ticket price

Ticket
price

Request to
Output receipt

Tentative ticket with
bar code that POS
register can scan

Show information as one
transaction statement of
POS register

Output
Tentative receipt

124 WS-POS, v1.3.1

3.6 Sub Scope: Linkage between Sales Assistance Terminals and POS
Devices

Contributor: Toshiba Tec Corporation
At apparel retailers, the system that helps sales clerks provide the following services to
customers:
 Provide detailed information on items and the availability of items.
 Provide item-related information including arrival schedule of new items, recommended

apparel coordinations, and hot-selling items.
 Pre-purchase functions before making payment with POS for customer's purchased items.

This support system consists of the following:
 Backend services (created with Web service applications and others) that provide

search/reference functions for item information and purchase process functions,
 Sales assistance terminals carried by every sales clerk to read item codes (bar codes or

RFID is used) of items and provide information to customers by collaborating with the
backend services,

 POS terminals with a printer to print item information and receipts.

Customer Sales Clerk Kiosk
Terminal

POS
Register

POS Receipt
Printer

2.12 Make
payment

2.9 Scan other
items

2.11 Ask to
Make payment

Register payment
information

Give receipt

Send ticket

Confirm ticket
information

2.13 Link with
Confirmed information

Output
receipt

Confirm
transaction

2.10 Show subtotal
information

Request to
confirm
ticket

Request to
output receipt

Ticket Reservation
System will send ticket at
a later date

WS-POS, v1.3.1 125

Definition of entities:

Name Definition

Sales assistance
terminal

Carried by a sales clerk, an in-store information terminal (PDA or
tablet PC) for sales clerks to introduce items to customers and
search inventory upon customer's request. The terminal is used as
a client of the Sales Assistance System. To read item codes, the
terminal is equipped with a bar code reader or an RFID reader
device.

Receipt printer A printer connected to a POS terminal to print a receipt or an
acknowledgment at payment, normally.

POS terminal A terminal used by a sales clerk when customers make purchase
process. When the clerk registers items given from a customer with
the terminal, the terminal displays the total amount of the purchase.
Then the customer pays the amount. To handle price and discount
information, general POS terminals communicate with servers that
contain information on items and prices. Most POS terminals are
equipped with a receipt printer, a bar code scanner, price display
screens (including a screen for clerks and a screen for customers),
and POS keyboard.

Item Goods or services that a customer purchases. A customer makes
its payment by cash or other means in exchange for the item to
purchase.

When seen from the system side, an item has secondary
information including ID, name, and price.

Inventory Items on the store shelves or stored in backyards or warehouses.

Item-related
information such as
coordination rankings

Reference information for customers when they purchase an item.
Ranking information indicates the latest trend or popularity of
coordinations. Customers refer to the information when purchasing
items.

126 WS-POS, v1.3.1

Scan item
code

Enter
Size

Instruct to search
inventory

Show search
results

Search by item
code and size

Instruct to search popular
coordination ranking Search popular

coordination ranking
Scan item

code

Instruct to search
inventory

Show search
results

Print search result

Get pre-purchase
transaction ID

Register item ID
to purchase

Instruct to print ranking result
Print

Issue pre-purchase
information on Sales Data

Server

Store pre-purchase
information

Store pre-purchase
information on Sales Data

Server

Call out pre-purchase
information from Sales Data

Server

Call pre-purchase
information

Payment process

Sales Clerk

Sales Assistance
Terminal

Sales Assistance System Coordination Ranking
Server

POS Printer

Sales Data Server

POS Terminal

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

Activity Diagram

Customer Sales Cerk Sales Assistance
Terminal

Sales Assistance
System

POS Receipt
Printer

Sales Data Server

1.1 Ask stock to clerk

1.2.1 Read RFID tag of Item

1.2.2 Enter Requested size

1.2.3 Instruct stock search

1.3.1 Send Item ID and Size

1.3.2 Inventory search

1.4.1 Show search result

1.4.2 Reply Search Result

Item ID, Size

Search
Result

Sales
Clerk

WS-POS, v1.3.1 127

Customer Sales Cerk Sales Assistance

Terminal
Sales Assistance

System
POS Receipt

Printer

2.1 Ask fashion tips

2.2.1 Read item code

2.2.2 Instruct ranking search

2.3.1 Send item code

2.3.2 Search ranking

2.3.3 Send search result
2.4.1 Discover &

show available printers

2.4.2 Print ranking

2.4.3 Print

Item code

Ranking result

Print Order

128 WS-POS, v1.3.1

Sales Assistance
System

POS Receipt PrinterSales Assistance
Terminal

Sales Data ServerCustomer Sales Clerk

3.1 Ask clerk for purchasing
process

by using of Pre-purchase
transaction

3.2.1 Instruct for getting
Pre-purchase transaction ID

3.4 Instruct for sending
 Pre-purchase information

3.3 Enter item ID

Pre-purchase information 3.6 Store Pre-purchase
information

3.5 Send Pre-purchase
information

3.2.2 Request Pre-purchase
transaction ID

3.2.3 Send Pre-purchase
 transaction ID

Pre-purchase transaction ID

3.2.4 Receive Pre-purchase
transaction ID

WS-POS, v1.3.1 129

3.7 Sub Scope: Batch Payment in Commercial Complex
Contributor: Sorimachi Giken Co., Ltd.
At a commercial complex such as a department store or a shopping mall, the system makes
multiple payments at once at the dedicated payment corner or POS in any retail store instead of
making individual payment at the respective store.

This sub scope is independent of whether a customer takes items home or makes them delivered
to home.
When delivering, a customer has to write down its address only once at any store. Then the system
delivers all of the customer's items purchased in the commercial complex at once.

Definitions of entities:

Type Entitiy Description

Customer Customer

Clerk Entrance Clerk A clerk who performs an entrance process
at an entrance of a commercial complex

Sales Assistance
System

POS TerminalSales Clerk Sales Data ServerPOS Receipt PrinterCustomer

4.1 Ask clerk for
purchasing process of an item

4.2 Instruct for retrieving
Pre-purchase transaction

information

4.5 Confirm this information
 and ask for payment process

4.4 Show Pre-purchase
information for customer

4.6.2 Process purchase
information

4.6 Do payment process
using POS terminal

4.3.1 Request Pre-purchase
transaction information

4.3.2 Send Pre-purchase
 transaction information

Pre-purchase transaction
 information

4.3.3 Receive Pre-purchase
transaction information

4.6.1 Send purchase transaction

Purchase transaction
 information

4.6.3 Notify purchasing
process completion4.6.4 Confirm purchasing

process completion

130 WS-POS, v1.3.1

Exit Clerk A clerk who performs an exit process at an
exit of a commercial complex

Sales clerk A clerk who performs item registration
process and payment process in a store in
a commercial complex

Terminal ID card A card that identifies a customer
Including member cards, credit cards, and
instant issue cards

Entrance/exit
terminal

A terminal that reads or issues ID cards at
an entrance or an exit
A hand-held terminal equipped with a
card reader for reading ID cards is
assumed

Simple POS A POS that can only perform an item
registration process
A hand-held terminal equipped with a
card reader for reading ID cards and a bar
code scanner for reading item bar codes is
assumed.

POS A POS that can perform an item
registration process and a payment
process
A stationary POS equipped with a card
reader for reading ID cards and a bar code
scanner for reading item bar codes that
can perform payment process is assumed

Store server A server that centrally manages data of
simple POS terminals and POS terminals
in a store

Data Customer
information

Information on ID cards, ID codes, and
customers

Transaction
information

Information that consists of ID codes,
item codes and the payment status

WS-POS, v1.3.1 131

Commercial Complex

Customer

Entrance

Exit

Entrance
Process

Selling Space A

Item
Registration

Selling Space B

Payment Exit Process

Entrance Clerk

Exit Clerk Sales Clerk

Sales Clerk

Entrance/
Exit Terminal

Simple POS

POS

ID Card Store Server

Customer
Information
Transaction
Information

Entrance/
Exit Terminal

132 WS-POS, v1.3.1

Activity Diagram

C
u

s
to

m
e

r
E

n
tr

a
n

c
e

 C
le

rk

1.2 Entrance
Clerk makes
the terminal

Read ID card

1.4 Entrance
Clerk returns

ID Card to
Customer

S
a

le
s
 C

le
rk 2.2 Sales Clerk

Reads ID code
Of ID card with
Simple POS or

POS

2.5 Sales
Clerk reads

Item Code of
Item with Simple

POS or POS

2.7 Sales Clerk
informs Customer
of the total amount
and asks whether

Customer will
purchase item

2.9 Sales Clerk
give item to
Customer

3.2 Sales Clerk
reads ID Code of
ID Card with POS

3.5 Sales Clerk
informs Customer
of the total amount

3.7 Sales Clerk
enters payment
completion into

POS E
x
it
 C

le
rk

4.2 Exit Clerk
reads ID code of

ID Card with
Entrance/Exit

terminal

4.4 Exit Clerk tells
Customer to make

payment of
unsettled, if any

1.1 Customer
Gives ID card to
Entrance Clerk

2.1 Customer
Gives ID card to

Sales Clerk

2.4 Customer
Gives Item to
Purchase to
Sales Clerk

3.1 Customer
Gives ID Card to

Sales Clerk

3.6 Customer makes
Payment (by cash,

Credit card, electronic
Money or others)

4.1 Customer gives ID
Card to Exit Clerk

Exit

S
im

p
le

 P
O

S 2.3 A Simple POS
checks with Customer
Information in Store
server whether ID
Code is valid and
shows the result

2.6 A Simple POS
checks Item Code
with Store Server

and shows the price
and total amount

2.8 A Simple POS
enters transaction

information as
unsettled into
Store Server

P
O

S

3.3 POS checks with
Customer Information

in Store Server
whether ID Code is
valid and shows the

results

3.4 POS shows
unsettled

transaction
information related

to Item Code on
screen

3.8 POS enters
transaction

information as
settled in Store

Server

E
n

tr
a

n
c
e

/E
x
it

T
e

rm
in

a
l

4.5 Entrance/Exit Terminal
updates Customer

Information in Store Server
that Customer has left the

store

4.3 Entrance/Exit
Terminal retrieves

Transaction
Information from store
Server and shows it

1.3 Entrance/Exit Terminal
creates Customer

Information based on ID
Code and enters it into

Store Server

S
to

re
 S

e
rv

e
r

Entrance Process Item Registration Payment Process Exit Process

ID Card ID Card Item
ID Card

ItemID Card
ID Card

ID Card ID Card

ID Node

ID Code Item Code Total
Amount

ID Code

Customer
Information

Customer
Information

Item
Information

Transaction
Information

Customer
Information

Transaction
Information

Transaction
Information

ID Card Item
Information

Customer and Transaction
Information Customer Information

WS-POS, v1.3.1 133

3.8 Sub Scope: Monitoring In-Store KIOSK Equipment and Cooperation
with Back-office on Occurrence of Problems.

Contributor: Fujitsu Frontech Limited
The way of handling problems which might occur when a customer tries to let the machine read
a card to make payment or to print out the result with POS printer after viewing various
information (such as seat-reservation information for a movie theater or an airplane) on an in-
store kiosk and reserving a ticket.
Definition of entities:

Name Definition

Customer Customer is someone who reserves a ticket or purchases a product.

Kiosk terminal 1 Kiosk terminal is a terminal which controls the display of various kinds
of information and the reservation of tickets.
Multiple terminals are installed side-by-side and making up a department

Kiosk terminal 2

Kiosk terminal 3

POS printer POS printer is a component of the kiosk terminal which outputs a receipt
for a transaction or a receipt for ticket reservation.

Ticket-
reservation
information

Ticket-reservation information is management information for seat-
reservation information or others which are controlled by the kiosk
terminal

Transaction
information

Transaction information is information of actual results in accounting
which is controlled by the POS register.

Shop server Shop server is a server which controls services on the kiosk terminal.
Back-office PC Back-office PC is a terminal which performs various tasks such as

clerical works at the backyard of a store
POS register POS register is a terminal used to make accounts for commodities
Sales clerk Sales clerk is someone who operates the POS register
Clerk Clerk is someone who performs various tasks except the operation of

POS register
Electronic value
R/W

Electronic value R/W is a component of the kiosk terminal which
performs inputting and outputting of electronic cash and tickets.

134 WS-POS, v1.3.1

Activity Diagram
Normal Scenario 1/2

Customer KIOSK Terminal POS Printer Shop Server BackOfficePC Clerk POS register Sales Clerk

1.1 Confirm a reservation

1.2 Send the ticket information

1.3 Instruct the ticket
information to be printed

1.4 Error occurred when printing

1.5 Notify the error event

2.1 Send the error
information

2.2 Show the occurrence of a
KIOSK printer error

4.1 Notify that it is manageable

2.3 Show the occurrence of a
KIOSK printer error

4.2 Notify that it is manageable

4.4 Send that it is manageable

4.5Decide who will handle
the problem

4.6 Instruct to handle the
problem

3.1 Instruct to display the error
information and the options

3.2 Show the occurrence of
the problem and options for

the customer

3.3 Select an option

5. Wait for the clerk to handle
the problem

4.3 Send that it is manageable

WS-POS, v1.3.1 135

Normal Scenario 2/2
Customer KIOSK Terminal POS Printer Shop Server BackOfficePC Clerk POS register Sales Clerk

4.8 Show that it is being handled4.7 Show the instruction to
handle the problem

4.9 Start handling 4.10 Continue the register
operation

5.1 Problem handled

5.2 Notify the recovery

5.5 Send that retry is possible

5.6Show that retry is possible

5.7 Instruct to retry printing

5.8 Send the retry instruction

5.9 Retry print request

5.10 Print ticket information

5.11 Receive the receipt

5.3 Notify the completion of handling

5.4Show the completion of handling 5.4 Show the completion of handling

136 WS-POS, v1.3.1

Alternative Scenario 1
Customer KIOSK Terminal POS Printer Alternative KIOSK Alternative Printer Shop Server

A1.1.2 Save the transaction

A1.1. Select to sw itch KIOSK

A1.1.5 Completion of process

A1.1.6 Show the initial
screenA1.2.1 Enter the identif ication

inf ormation through the
alternativ e KIOSK

A1.2.4 Restart the transaction

A1.2.5Continue w ith the
process

A1.1.1 Send the selection to
sw itch

A1.1.3 Send identif ication
information

A1.2.2 Send identif ication
information

A1.2.3 Send the transaction
information

A1.1.4 Show transaction
identif ication information

Alternative Scenario 2
Customer KIOSK Terminal POS Printer Alternative KIOSK Alternative Printer Shop Server

A2.1.1 Send information on
terminal not being used

A2.2.1 Instruct not to allow
operation

A2.1. Select an alternative
printer

A2.2.2 Display that operation
is not allowed

A2.2.5 Request to print the
ticket information

A2.2.6 Print the ticket
information

A2.2.7 Receive the receipt

A2.2.4 Show the printer used
for printing

A2.2.9 Instruct to allow
operation

A22.10 Show the initial
screen

A2.2.3 Notify the alternative
printer

A2.1.2 Show candidates for
alternative printer

A2.1.3 Decide an alternative
printer

A2.1.4 Send that an alternative
printer was selected

A2.2.8 Send the information
that it was received

WS-POS, v1.3.1 137

Alternative Scenario 3
Customer KIOSK Terminal POS Printer Alternative KIOSK Alternative Printer Shop Server

A3.1.2 Save the transaction

A3.1.4 Show the transaction
identif ication information

A3.1. Sw itch to the POS
register

A3.1.5 Completion of
process

A3.1.6 Show the initial
screen

A3.2.2 Notif y the sales clerk about the
identif ication inf ormation

A3.2.3 Enter the identif ication
information

A3.2.4 Send the identif ication
information

A3.2.6 Restart the transaction

A3.2.9 Receive the receipt

A3.1.1 Send the sw itch
information

A3.2.5 Send the transaction
information

A3.2.7 Registering through register

A3.2.8 Print the ticket information

A3.2.1 Go to the POS
register

A3.1.3 Send the identif ication
information

Alternative Scenario 4

Customer KIOSK Terminal Electronic Value R/W Shop Server

A4.1.2 Convert the ticket
information to electronic value

A4.1.4Show a guide to set the
electronic value medium

A4.1. Sw itch to electronic value

A4.1.5 Set the medium

A4.1.6 Write the
electronic value

A4.1.7 Receive the
electronic value

受け取り

A4.1.3 Instruct to w rite the
electronic value

A4.1.1 Send the sw itch information

138 WS-POS, v1.3.1

3.9 Sub Scope: POS System in Consideration of Cooperation between
Various Industries

Contributor: Star Micronics Co., Ltd.
A customer purchases goods at a retail store or has a meal at a restaurant.
When making payment at a register, a coupon is issued which can be used at another industry
(such as at a restaurant) along with issuing a receipt.
Reservation of seats at a restaurant or the like is possible with a kiosk installed within a shopping
mall using this coupon.
Definition of entities:

Name Definition

Customer Someone who purchases goods or has a meal at a restaurant.
Shop clerk Someone who operates the POS register in the shop

Shop kiosk terminal A terminal which retrieves and displays bargain information
for shopping in the mall or which is used to reserve seats at
a restaurant. This terminal is operated by the customer.

Shop information system An information system which controls the receiving and
placing of orders and performs customer management for
the shop

Shop POS terminal A POS terminal installed in a shop. This terminal is operated
by a clerk at the shop

Restaurant clerk Someone who arranges seats for customer and who receives
order for dishes at a restaurant

Restaurant information system An information system which controls the receiving and
placing of orders and performs seat management and other
tasks in the restaurant.

Restaurant terminal A terminal for the information system which controls the
receiving and placing of orders and performs seat
management and other tasks in the restaurant. This terminal
is operated by a clerk at the restaurant

Restaurant kitchen printer A printer installed in the kitchen of a restaurant. It prints
what to cook at the appropriate time

Web Base Server System A POS mutual mediation system shared within a shopping
mall to support web-based data communication.

WS-POS, v1.3.1 139

Customer

Shopping mall WS server

Shop clerk

Restaurant
clerk

Make a payment

Shop POS register

Issue a coupon

Print a receipt

Shop POS printer

Print a coupon

Print a coupon

Restaurant POS printer

Print a receipt

Inquire about shop or
restaurant information

KIOSK terminal

Make a reservation

Print what to cook

Restaurant kitchen printer

Issue a coupon

Restaurant POS register

Make a payment

Formal order entry

Inquire about shop or restaurant
information

Print a restaurant reservation voucher
 Print a reservation voucher

KIOSK terminal printer

Register a restaurant reservation
Register a coupon issuance history

140 WS-POS, v1.3.1

Activity Diagram

WS-POS, v1.3.1 141

WS Server
Restaurant Clerk Restaurant Terminal Kitchen Printer Shopping MallCustomer Shop Clerk Shop terminal KIOSK Terminal KIOSK Printer

3.1 Hand the
reservation voucher to

the clerk

3.2Scan the
reservation voucher

3.3 Show the contents of
reservation

3.4 Confirm the
contents being

3.5 Confirm the
contents of reservation

3.6 Reconfirm the
reservation and then order

3.7 Enter the formal

3.8 Instruct the kitchen
printer to print

Issue a cooking direction
3.9 Lead the way to the

seat

4.1 Settlement request

4.2 Settlement
procedure

4.3 Settlement

4.4 Issue a receipt/
coupon

4.5 Hand the
receipt/coupon to the

customer

142 WS-POS, v1.3.1

3.10 Sub Scope: Linkage between Display Shelf and Rear System
Contributor: OMRON SOFTWARE Co., Ltd.
Definition of entities (Part 1):

Name Definition

Shelf replacing worker A shelf replacing worker is someone who places relevant
commodities on shelves while performing shelving allocation

Electronic inventory tag
with scanner

An electronic inventory tag with scanner is a device which reads
bar code indicating the product name and the location of the
shelf and displays the commodity information such as
commodity price (However, this device does not exist at
present)

Store controller A server which controls commodity information (such as
product name, selling price, quantity, and others).

Shelving allocation system A server which controls the state of shelving allocation on
display shelf

Electronic inventory tag
system (Rear)

A server which instructs the electronic inventory tag with
scanner to display information and controls the state of display

WS-POS, v1.3.1 143

ｽｷｬﾅ付き電子棚札

個数（ﾊﾞｰｺｰﾄﾞ）入力する。

< スキャナ付電子棚札ＩＤ>

商品情報を表示する。

Shelf replacing worker

Display Shelf

Electronic Inventory Tag
with Scanner

Store Controller
Search the
commodity
information and notify
the information to the
electronic inventory
tag system and the
shelving allocation
system

Show the commodity
information

Input the commodity (bar
code), shelf location (bar
code) and quantity (bar code).
<Electronic inventory tag with
scanner ID>

Electronic inventory tag
system (Rear)

Shelving
allocation system

Register the
commodity
information, shelf
location and
quantity

Instruct the electronic
inventory tag
(individual ID) to
show the commodity
information and the
like

Electronic
Inventory Tag

CommodityCommodityCommodity

CommodityCommodityCommodity

CommodityCommodityCommodity

Figure 38: Linkage between Display Shelf and Rear System

144 WS-POS, v1.3.1

Definition of entities (Part 2):

Name Definition

Customer A customer is someone who obtains information
such as the selling price of the relevant commodity
(including the selling price for members) from an
electronic inventory tag

Electronic inventory tag with scanner: An electronic inventory tag with scanner is a device
which reads the membership bar code and displays
the commodity information such as the commodity
price (However, this device does not exist at
present).

Store controller A server which controls commodity information
(such as product name, selling price, selling price
for members, quantity, and others).

Electronic inventory tag system (Rear): A server which instructs the electronic inventory
tag with scanner to display information and
controls the state of display

WS-POS, v1.3.1 145

ｽｷｬﾅ付き電子棚札

会員ﾊﾞｰｺｰﾄﾞを入力する

会員用商品情報を表示する。
（会員割引価格等）

Customer

Display Shelf Store Controller

Search the
MembershipElectronic Inventory Tag with

scanner

Input the membership
bar code

Show the commodity
information for members

(such as the bargain price for
members)

Instruct to show the commodity
information for members

Electronic inventory tag
system (Rear)

146 WS-POS, v1.3.1

<Alternative method>

ｽｷｬﾅ付き電子棚札

会員ﾊﾞｰｺｰﾄﾞを入力する

会員用商品情報を表示する。
（会員割引価格等）

Customer

Display Shelf Store Controller

Search the
MembershipElectronic Inventory Tag with

scanner

Input the membership
bar code

Show the commodity
information for members

(such as the bargain price for
members)

Instruct to show the commodity
information for members

Electronic inventory tag
system (Rear)

Confirm that the
customer is a member
of this shop and then
notify the bargain price
for members to the
electronic inventory
tag system.

Customer
Management System

Search the membership
information

WS-POS, v1.3.1 147

Activity Diagram
Shelf

replacement
worker

Electronic
inventory tag
with scanner

Store controller
Electronic

inventory tag
system (Rear)

Shelving
allocation
system

1.3 Extract the
commodity

1.5 Show the
commodity

1.2 Read the
commodity bar code

1.1 Pick up a target
commodity

1.4 Instruct to show
the commodity

1.6 Confirm the
display on the

148 WS-POS, v1.3.1

Shelf
replacement

worker

Electronic
inventory tag
with scanner

Store controller
Electronic

inventory tag
system (Rear)

Shelving
allocation
system

2.3 Extract the
commodity

2.1 Pick up a
location information

2.2 Read the location
information bar code

2.4 Register the
location information,

commodity

WS-POS, v1.3.1 149

Customer
Electronic

inventory tag with
scanner

Store controller Electronic inventory
tag system (Rear)

3.3 Confirm the validity
of the membership

3.6 Confirm the selling
price of the target

commodity

3.1 Pick up a
membership card

3.2 Read the
membership bar code

3.4 Instruct to show the
selling price for members

3.5 Show the selling price
for members

150 WS-POS, v1.3.1

3.11 Sub Scope: Cooperation between Electronic Shelf Label and
Shelving Allocation Information

Contributor: Retail Science Co., ltd.

Figure 39: Cooperation between Electronic Shelf Label and Shelving Allocation Information

Target entities
• Shelving allocation (Shelving allocation system)
• Electronic shelf label controller
• Electronic shelf label device
• Shelving allocation maintenance information

Entities not targeted
• Store controller
• Selling price
• Commodity
• Sales/Stock

Stakeholders Concerns

Shelving
Allocation
Manager

A shelving allocation manager is in charge of creating and managing
display data for each shop. A shelving allocation manager is interested
in improving the productivity of a selling space by letting the shop carry
out improvement or elimination of commodity correctly according to
the plan.

WS-POS, v1.3.1 151

Stakeholders and their concerns

Stakeholders

Definition of Sub Scope

The group of entities related to the electronic shelf label shall be the overall scope. The
management of the connection between the location information of an electronic shelf label and
the commodity information, an interface between applications or between an application and a
device used to display information on electronic shelf labels, and shelving allocation maintenance
information displayed on electronic shelf labels shall be sub scope.

Definition of target entities

Name Definition

Shelving allocation
(Shelving allocation
system)

An application which imports and maintains shelving allocation
information created by an external shelving allocation system or the like
for each selling space in each shop of a retailing company and provides a
connection between an electronic shelf label device controlled by an
electronic shelf label controller and location of a commodity displayed on
a shelf of a shop. In some cases, the shelving allocation system is utilized
by extending itself.
Conventionally, a main requirement for “shelving allocation” is to
control commodity codes and location information in shelving
allocation, but in this case, the shelving allocation supports electronic
shelf label devices installed at a certain location on a shelf in providing
commodity information by further controlling serial numbers of the
electronic shelf label device, commodity codes, and location
information of the commodity.
The “shelving allocation” has a trigger to reflect display information
to the controller which controls the electronic shelf label device, or,
the “shelving allocation” has a controller function in itself to provide
information to the electronic shelf label device.

Electronic shelf
label controller

This controller controls a serial number of an electronic shelf label
device and information it displays. Electronic shelf label controller
cooperates with “shelving allocation,” and sends information to be
displayed on a specified electronic shelf label device to an electronic
shelf label.
Representative items as information to be maintained are the basic
information such as commodity name, price, and ordering unit, and the

Shop Operator A shop operator is under an obligation to reflect the shelving allocation
planned by the shelving allocation manager on actual shelves of the
shop. He/she wishes to do this by carrying out the task efficiently and
correctly to the extent possible.

152 WS-POS, v1.3.1

“shelving allocation maintenance information” used to support a
shelving allocation maintenance work, which is a target in this case.
According to the performance of electronic shelf label device, in some
cases, the electronic shelf label controller may have a control function
which is in conformity with a means of communication dedicated to
the device. And information such as commodity price is synchronized
with master information or the current selling price by a POS system’s
store controller via LAN.

Electronic shelf
label device

This is a device used to display information related to the commodity
for customers or employees, and contents to be displayed are
controlled by the electronic shelf label controller which manages an
electronic shelf label’s serial number.
It is desirable to use a device which can display the commodity name and
bar code on its LCD display or the like in consideration of an objective of
this case. And it might be necessary to switch between information for
customers and information for employees. As for the means of
communication with an electronic shelf label device, it may be
advantageous to be able to communicate directly with the device by using
wireless LAN connection or Bluetooth connection in the future in
consideration of its use for many purposes, but now, it is likely that the
use of wired communication or wireless infrared communication via an
electronic shelf label controller dedicated for the device will spread first
in consideration of aspects such as the cost and popularity.

Shelving
allocation
maintenance
information

Shelving allocation maintenance information is information related to
shelving allocation maintenance displayed on the electronic shelf label
device. The commodity name, price, and commodity code (bar code)
must be displayed on the electronic shelf label as an explanation of the
commodity, but in addition to them, in this scope, information related
to the shelving allocation maintenance, which is necessary for
employees, (display location information (gondola number, shelf
number, display order), number of faces, applicable period for the
commodity) are also required.

WS-POS, v1.3.1 153

Activity Diagram

Install electronic
shelf label

Display
commodity
information,
display shelf

location

Send location
information for
each device ID

Create and
register

allocation

Shop Operator

Shelf

Electronic Shelf Label

Shelving Allocation Client
PC(shop)

Electronic Shelf Label
Controller

Send label
information

Receive label
information for
each device ID

Register the
connection
between

electronic shelf
label and

uc

Shelving
Allocation
Manager

Shelving Allocation (System) Shelving Allocation Client
PC(HQ)

Register the
connection
between

electronic shelf
device ID and

commodity and
its location
information

154 WS-POS, v1.3.1

Activity Diagram (High level use case)

Shelving Allocation
Manager

Shop Operator Shelving Allocation
Client PC

Shelving Allocation
System

Electronic Shelf
Label Controller

Electronic Shelf
Label

Shelf

Start a shelving allocation
system, create and register a

shelving allocation

Call shelving allocation data,
maintain shelving allocation

and register it

Call a shelving allocation
data for the shop

Register the connection
between a commodity and an
electronic shelf label device ID

Installation of
electronic shelf labels

Call shelving allocation data for
a shelving allocation system

Obtain shelving allocation informaiton for
the shop and display it

Register connection data between a
commodity and an electronic shelf

label device ID

Save shelving allocation information data
for each commodity in each shop

Provide shelving allocation
information for the shop

Save connection data between a commodity
and an electronic shelf label device ID for

each commodity in each shop

Send commodity information and
Location information for each

Commodity to electronic shelf label ID
Send and receive commodity information

and location information for each
commodity to or from electronic shelf label

Send commoidty information to
electronic shelf label

Receive commodity
information to be displayed
and show it on the screen

Display commodity in a place
Specified by location information
Shown on electronic shelf label

Cooperation between the electronic shelf label and the
shelving allocation information <Initial placement>

WS-POS, v1.3.1 155

Activity Diagram (Extended use case 1)

Shelving Allocation
Manager

Shop Operator Shelving Allocation
Client PC

Shelving Allocation
System

Electronic Shelf
Label Controller

Electronic Shelf
Label

Shelf

Start a shelving allocation
system, create and register a

shelving allocation

Call shelving allocation data,
maintain shelving allocation

and register it

Call a shelving allocation
data for the shop

Connect an electronic shelf label
device ID to be added with a

commodity or cancel the connection
with unnecessary devices

Install additional electronic shelf
Labels or remove unnecessary

labels

Call shelving allocation data for
a shelving allocation system

Obtain shelving allocation informaiton for
the shop and display it

Register connection data between a
commodity and an electronic shelf

label device ID

Save shelving allocation information data
for each commodity in each shop

Provide shelving allocation
information for the shop

Save connection data between a commodity
and an electronic shelf label device ID for

each commodity in each shop

Send commodity information and
Location information for each

Commodity to electronic shelf label ID
Send and receive commodity information

and location information for each
commodity to or from electronic shelf label

Send commoidty information to
electronic shelf label

Receive commodity
information to be displayed
and show it on the screen

Display commodity in a place
Specified by location information
Shown on electronic shelf label

Cooperation between the electronic shelf label and the shelving
Allocation information <Partial change in commodity display>

Confirm the difference in the number of electronic
shelf labels required which occurred due to the

difference between the number of commodities in
the new shelving allocation and what in the

previous shelving allocation

If, there is no need to add or remove
the electronic shelf label devices

If, there is a need to
add or remove the

electronic shelf label
devices

3.12 Sub Scope: Self-Service Refueling
Contributor: NEC Infrontia Corporation

Perform a self-service refueling transaction at a SS (Service Station).
Definition of entities:

Name Definition

Customer Performs a self-service refueling at a SS

Car Refueled

Employee In response to the refueling transaction by the customer, he/she
allows refueling and stops refueling in a case of emergency
through SSC

Credit card Performs a refueling transaction using a credit card

Electronic money Performs a refueling transaction using electronic money

Cash transaction Performs a refueling transaction using cash

SSC (Self Service Console) Controls refueling equipment by allowing or prohibiting a
refueling

POS Performs a refueling transaction, ordering, stocking, single item
sales, card issuance, customer management, and commodity
management

156 WS-POS, v1.3.1

Card reader Reads and issues magnetic cards

Contactless reader Handles electronic money

Human-sensitive sensor Activates externally installed equipment when someone
approaches it

Voice synthesizer Lets the customer know what to do next with voice

Printer Prints a receipt when a refueling is completed

Payment machine Puts money in it for settlement in the case of cash transaction

Change machine Dispenses the change when a refueling transaction is completed

Externally installed
equipment

Specifies with it the type of settlement, type of oil, and amount
of oil outdoors.
Performs an advance approval process in the case of credit card
settlement.
Performs a credit confirmation in the case of electronic
settlement.
 Performs a money-receiving process and instructs the change
machine to dispense the change in the case of cash settlement.

Outputs a receipt through the printer when a refueling is
completed

Measuring machine Measures the amount of oil refueled

Refueling machine Refuels cars

Oil level indicator Measures the remaining amount of each type of oil in tank

Car-washing machine Washes cars

Router Performs communication with a credit center and a totalization
center

Forecourt Device
Communication BOX

Acts as a bridge between POS, externally installed equipment,
SSC, and Forecourt devices

Shop server Performs customer management, outputting of sales
management report, and exchanging information with the
primary distributor

Customer information Information related to a car (Maintenance, vehicle inspection,
oil change)
Management of information related to a customer (Hobby,
address, family makeup, age, etc.)

Transaction data Amount of refueled oil, payment type, unit price.

WS-POS, v1.3.1 157

Activity Diagram
Human-
sensitive
sensor

Voice
synthesizer

Customer Card
reader

Router Externally
installed

equipment

SSC Refueling
machine

Employee POS

Recognize a
human

Active

Message

Payment type

Data

Insert a card

Advance
approval

Communication
with center

158 WS-POS, v1.3.1

Human-
sensitive
sensor

Voice
synthesizer

Customer Card
reader

Router Externally
installed

equipment

SSC Refueling
machine

Employee POS

Approval OK

Message

Customer
inquiry

Customer
search

Campaign

Select oil type

Confirmation

Refueling
information

Volume of
refueled oil

WS-POS, v1.3.1 159

Human-
sensitive
sensor

Voice
synthesizer

Customer Card
reader

Router Externally
installed

equipment

SSC Refueling

machine

Employee POS

Refueling
instruction

Pick up a
nozzle

Start refueling

Allow refueling

160 WS-POS, v1.3.1

Activity Diagram
Voice

synthesizer
Car Customer Externally

installed
equipment

Refueling
machine

Measuring
machine

SSC Employee

Notify
permission to

refuel

Refueling
possible Display message

Start monitoring
refueling

Refuel
transaction

Fuel cap

Set the Refueling
machine

Refueling lever
ON

Start discharging Start measuring

Pick up a
 nozzle

Standby

WS-POS, v1.3.1 161

Voice
synthesizer

Car Customer Externally
installed

equipment

Refueling
machine

Measuring
machine

SSC Employee

Refueling lever
OFF

Stop refueling

Refueling
completed

Refueling
monitoring
completed

Tank full

Additional
refueling

Additional
refueling process

Put down the
nozzle

Measurement
completed

Refueling
monitoring
completed

Refueling
monitoring

process

162 WS-POS, v1.3.1

Activity Diagram
Voice synthesizer Customer Car Externally

installed
equipment

Printer Router POS

Message

Close the cap
Generate the

settlement
data

Send to the
center

Totalization

Receive the
card

Receive the
receipt

Eject the card

Output a
receipt

WS-POS, v1.3.1 163

4. DOCUMENT HISTORY
Version History
Ver Date Sections Description of Change
0.1 2007-

09-02
All Initial document creation

0.2 2007-
09-11

All Fixed references, reworded, split components between WS
and other

0.3 2008.
07.31

All Reorganized doc, added notes about what sections should
contain

0.4 2008.
08.26

Security,
Flow

Added specific security requirements, WS-POS Flow section,
Out-of-scope

0.5 2008.
09.24

All Events, Security, Service Description, Discovery

1.1 2011.
05.15

All Updated document to reflect inputs from field beta testing
provided by OPOS-J; updated support for WSDL generation
using WCF and JAX-WS and revised XMLPOS to ensure
interoperability; updated documentation for clarity; added WS-
POS class diagram .Net generated examples for all
UnifiedPOS 1.14 peripheral devices. Added software support
files to aide developers.

1.2

1.2

2013.
01.22

As Noted

As Noted

Version 1.2 of this specification contains several new chapters
and updates to existing chapters that provide clarifications and
necessary functional enhancements to Version 1.1. These are
detailed below, with links to the corresponding pages and/or
chapters as appropriate.

• Updated the Version and issue date on the front page.
• Updated Web Service Components Page 9
• Updated chapter “Service Description and Discovery”

starting on Page 14.
• Added a new chapter describing the “WS-POS

Behavior Models” starting on Page 18.
• Added a new chapter describing the “Introduction to

Properties, Methods and Events” starting on Page 18.
• Added a new chapter describing the “WS-POS

Communication Model” on Page 19.
• Added a new chapter describing the “Session

Management and Device Control” on Page 20.
• Added a new chapter describing the “Introduction of

WS-POS Session Manager concept” on Page 20.
• Added a new chapter describing the “Identifying WS-

POS Session” on Page 21.
• Added a new chapter describing the “Typical sequence

to establish WS-POS session” on Page 22.
• Added a new chapter describing the “Calling WS-POS

Service Methods and Using Properties” on Page 23.

164 WS-POS, v1.3.1

2013.
01.22

2013.
03.26

• Updated a chapter describing the “Multiple WS-POS
Service Consumer Claim Requests on a WS-POS
Service Provider” on Page 24.

• Added a new chapter describing the “WS-POS Method
and Device Method” on Page 29.

• Updated a chapter describing the “WS-POS Events
Handling on Bi-Directional Communication” on Page
30.

• Added a new chapter describing the “WS-POS Events
Handling on Polling” on Page 33.

• Added a new chapter describing the “WS-POS Service
Network Connection Management Considerations” on
Page 38.

• Added a new chapter describing the “WS-POS Service
Network Connection Management, Event – Bi-
directional Communications” on Page 46.

• Added a new chapter describing the “WS-POS Service
Network Connection Management, Event – Polling” on
Page 51.

• Added a new chapter describing the “WS-POS Method
Reference (UPOS UML Style)” on Page 58.

• Added a new chapter describing the “WSPOSEvent
and WSPOSEventResponse” on Page 70.

• Added a new chapter describing the “Modification to
XML POS” on Page 82.

• Added a new chapter describing the “File Path for a
Method Call” on Page 87.

• Added a new chapter describing the “Backward
Compatibility” on Page 108.

• Updated the “Document History” Chapter on Page 163.
• Added “Software Support Files” in Section 6 on

Page166.
• Added how to handle events in bi-directional

communication Page 30.
• Added a new chapter describing the “WS-POS Event

Reference in Bi-Directional Communication” Page 76.
1.3 2015.

10.23
As Noted • Version 1.3 includes new chapters and changes related

to sending and receiving binary data, enhancements to
provide for more efficient handling of frequent events
with embedded parameter returns with event
notification and retrieving the encrypted consumerID of
the WS-POS consumer that has been successfully
claimed a WS-POS service provider UnifiedPOS
device. Details are as follows and include the link to the

WS-POS, v1.3.1 165

associated chapter.Update version and release date in the
front page

• Updated “Overview” chapter on Page 8
• Added a new chapter describing “Security Consideration” on

Page 21
• Updated “WS-POS Methods and Device Methods” chapter

on Page 29
• Added a new chapter describing “Resolution of frequent

communication events in the Event notification” on Page 38

• Updated “WS-POS Method References (UPOS UML Style)”
chapter on Page 58

• Updated “WS-POS Event Reference in Bi-Directional
Communication” chapter on Page 76

• Updated “Modifications to XMLPOS” chapter on Page 82
• Added a new chapter describing “Retrieving consumerID

that has been successfully claimed” on Page 88
• Updated “Security” chapter on Page 108
• Added a new chapter describing “Software Support Files” on

Page 168
• Replaced “UPOS” to “UnifiedPOS” in this specification
• Added getBinaryConversion and setBinaryConversion

method on Page 30, 68, 69, 82, 82

1.3.1 2018.
02.06

all Version 1.3.1, released in 2018, represents only a
migration of this specification from the National Retail
Federation (NRF) to the Object Management Group
(OMG) through an extensive agreement. All Copyright
ownership is transferred to OMG under this agreement.
This version includes the replacement of the copyright
statements and minor text edits to accommodate this
transition.
The changes are detailed below. No other changes to
other sections of the standard were made and remain the
same as in Version 1.3.
• Updated the Version and issue date on the front.
• Updated the Copyright and Disclaimer notices.
• Updated the Version and member in “OPOS-J Work

Team For WS-POS Version 1.3.1”.
• Updated the Table of Contents to reflect additional

edits.
• Updated the version in “Software Support Files from

1.3 to 1.3.1

166 WS-POS, v1.3.1

5. REFERENCED DOCUMENTS AND SOFTWARE SUPPORT FILES

5.1 Referenced Documents
Term Definition
WS-I Basic Profile V1.2 http://www.ws-i.org/Profiles/BasicProfile-1.2.html

SOAP 1.1 http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

SOAP HTTP Binding http://www.w3.org/TR/2007/REC-soap12-part2-
20070427/#soapinhttp

SOAP HTTP Status Codes, Error
Conditions

http://www.w3.org/TR/2007/REC-soap12-part2-
20070427/#http-reqbindwaitstate

WS-Addressing 1.0 http://www.w3.org/Submission/2004/SUBM-ws-
addressing-20040810/

WSDL 1.1 http://www.w3.org/TR/wsdl

WS-MetadataExchange Publication http://specs.xmlsoap.org/ws/2004/09/mex/WS-
MetadataExchange.pdf

UDDI V3 http://www.oasis-open.org/committees/uddi-
spec/doc/spec/v3/uddi-v3.0.2-20041019.htm

TLS V1.2 https://www.ietf.org/rfc/rfc5246.txt

WS-Security V1.1 http://www.oasis-
open.org/committees/download.php/16790/wss-v1.1-
spec-os-SOAPMessageSecurity.pdf

Using WSDL in a UDDI Registry,
Version 2.0.2

http://www.oasis-open.org/committees/uddi-
spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm

UnifiedPOS 1.14 .1 www.omg.org

ARTS XML Best Practices www.omg.org

5.2 Software Support Files
The following software SDK files are available (See: http://www.omg.org/retail/unified-pos.htm)
to aid Developers in the creation of WS-POS compliant applications.
WS-POS Ver. 1.1 File Lists
1) WS-POS 1.1 equivalent XML Schema Files (XMLPOS 1.13 is used)
 File Name: WS-POS1.1XSD.zip
2) WS-POS 1.1 equivalent WSDL Files (Independent files and implementation dependent files)
 File Name: WS-POS1.1WSDL.zip
3) WS-POS 1.1 WCF Contract Files
 File Name: WS-POS1.1WCFContract.zip

http://www.ws-i.org/Profiles/BasicProfile-1.2.html
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2007/REC-soap12-part2-20070427/#soapinhttp
http://www.w3.org/TR/2007/REC-soap12-part2-20070427/#soapinhttp
http://www.w3.org/TR/2007/REC-soap12-part2-20070427/#http-reqbindwaitstate
http://www.w3.org/TR/2007/REC-soap12-part2-20070427/#http-reqbindwaitstate
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/
http://www.w3.org/TR/wsdl
http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf
http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf
http://www.oasis-open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm
http://www.oasis-open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm
http://www.nrf-arts.org/
http://www.nrf-arts.org/
http://www.omg.org/retail/unified-pos.htm

WS-POS, v1.3.1 167

4) WS-POS 1.1 JAX-WS Contract Files
 File Name: WS-POS1.1JAX-WSContract.zip
5) WS-POS 1.1 WCF Sample Program
 File Name: WS-POS1.1WCFSample.zip
6) WS-POS 1.1 JAX-WS Sample Program
 File Name: WS-POS1.1JAX-WSSample.zip

Important Notice For Condition of Use:
OMG and User agree that the Software is provided “AS IS” and that OMG makes no warranty as to the
Software. OMG DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
RELATED TO THE SOFTWARE, ITS USE OR ANY INABILITY TO USE IT, THE RESULTS OF ITS USE AND
THIS AGREEMENT.

168 WS-POS, v1.3.1

5.3 Software Support Files Added in Version 1.2
The following software SDK files are available (See: http://www.omg.org/retail/unified-pos.htm)
to aid Developers in the creation of WS-POS 1.2 compliant applications.
WS-POS Ver. 1.2 File Lists
1) WS-POS 1.2 equivalent XML Schema Files (XMLPOS 1.14*** is used)
 File Name: WS-POS1.2XSD.zip
2) WS-POS 1.2 equivalent WSDL Files (Independent files and implementation dependent files)
 File Name: WS-POS1.2WSDL.zip
3) WS-POS 1.2 WCF Contract Files
 File Name: WS-POS1.2WCFContract.zip
4) WS-POS 1.2 JAX-WS Contract Files
 File Name: WS-POS1.2JAX-WSContract.zip
5) WS-POS 1.2 Class Diagrams

***Note: WS-POS 1.2 is designed to support UnifiedPOS 1.14 which incorporates XMLPOS 1.14.
However, WS-POS 1.2 will also support previous versions of UnifiedPOS 1.13 and 1.12 where the
extended functionality in UnifiedPOS 1.14 may not be needed or support for XMLPOS 1.14, POS
For .Net 1.14, Common Control Objects 1.14, or JavaPOS Services 1.14 is not available. It is
strongly suggested when given a choice, UnifiedPOS 1.14 support be implemented.

Important Notice For Condition of Use:
OMG and User agree that the Software is provided “AS IS” and that OMG makes no warranty as to the
Software. OMG DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
RELATED TO THE SOFTWARE, ITS USE OR ANY INABILITY TO USE IT, THE RESULTS OF ITS USE AND
THIS AGREEMENT.

5.4 Software Support Files Added in Version 1.3
The following software SDK files are available (See: http://www.omg.org/retail/unified-pos.htm)
to aid Developers in the creation of WS-POS 1.3 compliant applications.
WS-POS Ver. 1.3 File Lists
1) WS-POS 1.3 equivalent XML Schema Files (XMLPOS for WS-POS 1.3***)
 File Name: WS-POS1.3XSD.zip
2) WS-POS 1.3 equivalent WSDL Files (Independent files and implementation dependent files)
 File Name: WS-POS1.3WSDL.zip
3) WS-POS 1.3 WCF Contract Files
 File Name: WS-POS1.3WCFContract.zip

http://www.omg.org/retail/unified-pos.htm
http://www.omg.org/retail/unified-pos.htm

WS-POS, v1.3.1 169

4) WS-POS 1.3 JAX-WS Contract Files
 File Name: WS-POS1.3JAX-WSContract.zip
5) WS-POS 1.3 Class Diagrams

***Note: XMLPOS for WS-POS 1.3 is XML schema file created with consideration of compatibility
to XMLPOS1.14.1 and previous version of WS-POS.

5.5 Software Support Files Updated in Version 1.3.1
The following software SDK files are available (See:Error! Hyperlink reference not valid.
https://www.omg.org/spec/WS-POS/) to aid Developers in the creation of WS-POS 1.3.1
compliant applications.
WS-POS Ver. 1.3.1 File Lists
1) WS-POS 1.3.1 equivalent XML Schema Files (XMLPOS for WS-POS 1.3.1***)
 File Name: WS-POS1.3.1XSD.zip
2) WS-POS 1.3.1 equivalent WSDL Files (Independent files and implementation dependent files)
 File Name: WS-POS1.3.1WSDL.zip
3) WS-POS 1.3.1 WCF Contract Files
 File Name: WS-POS1.3.1WCFContract.zip
4) WS-POS 1.3.1 JAX-WS Contract Files
 File Name: WS-POS1.3.1JAX-WSContract.zip
5) WS-POS 1.3.1 Class Diagrams
 File Name: WS-POSVer.1.3.1_Technical_Specification_ClassDiagram.docx

***Note: XMLPOS for WS-POS 1.3.1 is XML schema file created with consideration of compatibility
to XMLPOS1.14.1 and previous version of WS-POS.

Important Notice For Condition of Use:
OMG and User agree that the Software is provided “AS IS” and that OMG makes no warranty as to the
Software. OMG DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
RELATED TO THE SOFTWARE, ITS USE OR ANY INABILITY TO USE IT, THE RESULTS OF ITS USE AND
THIS AGREEMENT.

170 WS-POS, v1.3.1

6. WS-POS CLASS DIAGRAMS Updated in Version 1.2
Beginning in version 1.2, the examples of the Class Diagrams that describe the WS-POS services that
support the thirty-six POS peripheral devices that are described in the UnifiedPOS specification have
been moved to the software support files noted in section 6.3. They are included to help in the
understanding of the interrelationship of the processes and data that is necessary for a web services
implementation.

Important Note Concerning the UML Examples

The included class diagram examples were distilled from C# code using the Microsoft Visual Studio
2010 development tools. As a result, the programmatic dependent language features are valid for C#
only. A similar set of Class Diagrams for a Java implementation could also be generated using an
equivalent Java development tool but the programmatic dependent language features would be
different from what is shown.

The intent is to show the relative relationship of the UnifiedPOS defined Properties, Methods, Events,
and Data Parameters using standard UML imagery. The UnifiedPOS documentation should be
consulted for detailed Peripheral Device operational information.

The peripheral devices are shown in alphabetical order and equate to the respective peripheral device
chapters in the UnifiedPOS standard.

WS-POS, v1.3.1 171

7. APPLICATION DEVELOPMENT SUPPORT Updated in Version 1.2

The following provides an example of how a WS-POS mapping schema would work to resolve the
UnifiedPOS Properties, Methods, and Events to WSDLs, C# web service contracts, and Java web
service contracts.

First the example shows how the read-write property “DeviceEnable” and the method
“checkHealth” for the UnifiedPOS device category “Belt” would be represented as WSDL
document.

Second the corresponding Java and C# classes will be generated by using JAX-WS and WCF tools.
All other properties, methods for the Belt are omitted (by ‘…’) for better readability.

Note that the Events are specified in separate WSDL files and are not included here in this example.

/*------------ BeltV1.2.0.wsdl start ----------*/

<?xml version="1.0" encoding="utf-8"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
 xmlns:wsap="http://schemas.xmlsoap.org/ws/2004/08/addressing/policy"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://www.nrf-arts.org/UnifiedPOS/Belt/"
 xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:wsa10="http://www.w3.org/2005/08/addressing"
 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"
 name="BeltService"
 targetNamespace="http://www.nrf-arts.org/UnifiedPOS/Belt/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <wsdl:types>
 <xsd:schema targetNamespace="http://www.nrf-arts.org/UnifiedPOS/Belt/Imports">
 <xsd:import namespace="http://www.nrf-arts.org/UnifiedPOS/Belt/"
schemaLocation="BeltV1.14.xsd" />
 </xsd:schema>
 </wsdl:types>

…
<wsdl:message name="Belt_GetDeviceEnabled_InputMessage">
 <wsdl:part name="parameters" element="tns:GetDeviceEnabled" />
</wsdl:message>

 <wsdl:message name="Belt_GetDeviceEnabled_OutputMessage">
 <wsdl:part name="parameters" element="tns:GetDeviceEnabledResponse" />
 </wsdl:message>

 <wsdl:message name="Belt_GetDeviceEnabled_UposException_FaultMessage">
 <wsdl:part name="detail" element="tns:UposException" />
 </wsdl:message>

 <wsdl:message name="Belt_SetDeviceEnabled_InputMessage">
 <wsdl:part name="parameters" element="tns:SetDeviceEnabled" />
 </wsdl:message>

 <wsdl:message name="Belt_SetDeviceEnabled_OutputMessage">
 <wsdl:part name="parameters" element="tns:SetDeviceEnabledResponse" />
 </wsdl:message>

http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/soap/encoding/
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://schemas.xmlsoap.org/ws/2004/08/addressing
http://schemas.xmlsoap.org/ws/2004/08/addressing/policy
http://schemas.xmlsoap.org/ws/2004/09/policy
http://www.w3.org/2001/XMLSchema
http://www.nrf-arts.org/UnifiedPOS/Belt/
http://www.w3.org/2006/05/addressing/wsdl
http://schemas.xmlsoap.org/wsdl/soap12/
http://www.w3.org/2005/08/addressing
http://www.w3.org/2007/05/addressing/metadata
http://www.nrf-arts.org/UnifiedPOS/Belt/
http://schemas.xmlsoap.org/wsdl/
http://www.nrf-arts.org/UnifiedPOS/Belt/Imports
http://www.nrf-arts.org/UnifiedPOS/Belt/

172 WS-POS, v1.3.1

 <wsdl:message name="Belt_SetDeviceEnabled_UposException_FaultMessage">
 <wsdl:part name="detail" element="tns:UposException" />
 </wsdl:message>

…
 <wsdl:message name="Belt_CheckHealth_InputMessage">
 <wsdl:part name="parameters" element="tns:CheckHealth" />
 </wsdl:message>

 <wsdl:message name="Belt_CheckHealth_OutputMessage">
 <wsdl:part name="parameters" element="tns:CheckHealthResponse" />
 </wsdl:message>

 <wsdl:message name="Belt_CheckHealth_UposException_FaultMessage">
 <wsdl:part name="detail" element="tns:UposException" />
 </wsdl:message>

 …
<wsdl:portType name="Belt">

…
 <wsdl:operation name="GetDeviceEnabled">

 <wsdl:input wsaw:Action="http://www.nrf-arts.org/UnifiedPOS/Belt/GetDeviceEnabled"
 message="tns:Belt_GetDeviceEnabled_InputMessage" />

 <wsdl:output wsaw:Action="http://www.nrf-
arts.org/UnifiedPOS/Belt/GetDeviceEnabledResponse"
 message="tns:Belt_GetDeviceEnabled_OutputMessage" />

 <wsdl:fault wsaw:Action="http://www.nrf-arts.org/UnifiedPOS/Belt/UposException"
name="UposException"
 message="tns:Belt_GetDeviceEnabled_UposException_FaultMessage" />

 </wsdl:operation>

 <wsdl:operation name="SetDeviceEnabled">

 <wsdl:input wsaw:Action="http://www.nrf-arts.org/UnifiedPOS/Belt/SetDeviceEnabled"
 message="tns:Belt_SetDeviceEnabled_InputMessage" />

 <wsdl:output wsaw:Action="http://www.nrf-
arts.org/UnifiedPOS/Belt/SetDeviceEnabledResponse"
 message="tns:Belt_SetDeviceEnabled_OutputMessage" />

 <wsdl:fault wsaw:Action="http://www.nrf-arts.org/UnifiedPOS/Belt/UposException"
name="UposException"
 message="tns:Belt_SetDeviceEnabled_UposException_FaultMessage" />

 </wsdl:operation>

…
 <wsdl:operation name="CheckHealth">

 <wsdl:input wsaw:Action="http://www.nrf-arts.org/UnifiedPOS/Belt/CheckHealth"
 message="tns:Belt_CheckHealth_InputMessage" />

 <wsdl:output wsaw:Action="http://www.nrf-arts.org/UnifiedPOS/Belt/CheckHealthResponse"
 message="tns:Belt_CheckHealth_OutputMessage" />

 <wsdl:fault wsaw:Action="http://www.nrf-arts.org/UnifiedPOS/Belt/UposException"
name="UposException"
 message="tns:Belt_CheckHealth_UposException_FaultMessage" />
 </wsdl:operation>

…
 </wsdl:portType>

</wsdl:definitions>

/*------------ BeltV1.1.0.wsdl end ----------*/

http://www.nrf-arts.org/UnifiedPOS/Belt/GetDeviceEnabled
http://www.nrf-arts.org/UnifiedPOS/Belt/GetDeviceEnabledResponse
http://www.nrf-arts.org/UnifiedPOS/Belt/GetDeviceEnabledResponse
http://www.nrf-arts.org/UnifiedPOS/Belt/UposException
http://www.nrf-arts.org/UnifiedPOS/Belt/SetDeviceEnabled
http://www.nrf-arts.org/UnifiedPOS/Belt/SetDeviceEnabledResponse
http://www.nrf-arts.org/UnifiedPOS/Belt/SetDeviceEnabledResponse
http://www.nrf-arts.org/UnifiedPOS/Belt/UposException
http://www.nrf-arts.org/UnifiedPOS/Belt/CheckHealth
http://www.nrf-arts.org/UnifiedPOS/Belt/CheckHealthResponse
http://www.nrf-arts.org/UnifiedPOS/Belt/UposException

WS-POS, v1.3.1 173

Using the WCF tool “svcutil.exe” the following WCF contract in C# would be generated from:

/*--------- Belt.cs start -------------*/

using System;
using System.Collections.Generic;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.Text;

namespace UnifiedPOS.Belt
{
 [ServiceContract(Namespace = "http://www.nrf-arts.org/UnifiedPOS/Belt/")]
 public interface Belt
 {

 …

 [OperationContract(Action = "http://www.nrf-
arts.org/UnifiedPOS/Belt/GetDeviceEnabled",
 ReplyAction = "http://www.nrf-
arts.org/UnifiedPOS/Belt/GetDeviceEnabledResponse")]

 [FaultContract(typeof(UposException), Action = "http://www.nrf-
arts.org/UnifiedPOS/Belt/UposException", Name = "UposException")]
 bool GetDeviceEnabled();

 [OperationContract(Action = "http://www.nrf-
arts.org/UnifiedPOS/Belt/SetDeviceEnabled",
 ReplyAction = "http://www.nrf-
arts.org/UnifiedPOS/Belt/SetDeviceEnabledResponse")]

 [FaultContract(typeof(UposException), Action = "http://www.nrf-
arts.org/UnifiedPOS/Belt/UposException", Name = "UposException")]
 void SetDeviceEnabled(bool DeviceEnabled);

 …

 [OperationContract(Action = "http://www.nrf-arts.org/UnifiedPOS/Belt/CheckHealth",
 ReplyAction = "http://www.nrf-arts.org/UnifiedPOS/Belt/CheckHealthResponse")]

 [FaultContract(typeof(UposException), Action = "http://www.nrf-
arts.org/UnifiedPOS/Belt/UposException", Name = "UposException")]
 void CheckHealth(HealthCheckLevel Level);

 …
 }

 …
 [DataContract(Namespace = "http://www.nrf-arts.org/UnifiedPOS/Belt/")]

 public enum HealthCheckLevel
 {
 [EnumMember]
 External,
 [EnumMember]
 Interactive,
 [EnumMember]
 Internal,
 }

 …
}

/*--------- Belt.cs end -------------*/

http://www.nrf-arts.org/UnifiedPOS/Belt/
http://www.nrf-arts.org/UnifiedPOS/Belt/GetDeviceEnabled
http://www.nrf-arts.org/UnifiedPOS/Belt/GetDeviceEnabled
http://www.nrf-arts.org/UnifiedPOS/Belt/GetDeviceEnabledResponse
http://www.nrf-arts.org/UnifiedPOS/Belt/GetDeviceEnabledResponse
http://www.nrf-arts.org/UnifiedPOS/Belt/UposException
http://www.nrf-arts.org/UnifiedPOS/Belt/UposException
http://www.nrf-arts.org/UnifiedPOS/Belt/SetDeviceEnabled
http://www.nrf-arts.org/UnifiedPOS/Belt/SetDeviceEnabled
http://www.nrf-arts.org/UnifiedPOS/Belt/SetDeviceEnabledResponse
http://www.nrf-arts.org/UnifiedPOS/Belt/SetDeviceEnabledResponse
http://www.nrf-arts.org/UnifiedPOS/Belt/UposException
http://www.nrf-arts.org/UnifiedPOS/Belt/UposException
http://www.nrf-arts.org/UnifiedPOS/Belt/CheckHealth
http://www.nrf-arts.org/UnifiedPOS/Belt/CheckHealthResponse
http://www.nrf-arts.org/UnifiedPOS/Belt/UposException
http://www.nrf-arts.org/UnifiedPOS/Belt/UposException
http://www.nrf-arts.org/UnifiedPOS/Belt/

174 WS-POS, v1.3.1

For Java the JAX-WS contract generated with the JAX-WS tool “wsimport” would be look like the
following:

/*--------- Belt.java start -------------*/

package org.arts.unifiedpos.belt;

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;
import javax.xml.ws.Action;
import javax.xml.ws.FaultAction;
import javax.xml.ws.RequestWrapper;
import javax.xml.ws.ResponseWrapper;

@WebService(name = "Belt", targetNamespace = "http://www.nrf-arts.org/UnifiedPOS/Belt/")
public interface Belt
 {

 …
 @Action(input = "http://www.nrf-arts.org/UnifiedPOS/Belt/GetDeviceEnabled",
 output = "http://www.nrf-arts.org/UnifiedPOS/Belt/GetDeviceEnabledResponse",

 fault =
 {
 @FaultAction(className = org.arts.unifiedpos.belt.FaultException.class,
 value = "http://www.nrf-
arts.org/UnifiedPOS/Belt/UposException")
 })

 @WebMethod(operationName = "GetDeviceEnabled",
 action = "http://www.nrf-
arts.org/UnifiedPOS/Belt/GetDeviceEnabled")

 @WebResult(name = "GetDeviceEnabledResult",
 targetNamespace = "http://www.nrf-arts.org/UnifiedPOS/Belt/")

 @RequestWrapper(localName = "GetDeviceEnabled",
 targetNamespace = "http://www.nrf-arts.org/UnifiedPOS/Belt/",
 className = "org.arts.unifiedpos.belt.GetDeviceEnabled")

 @ResponseWrapper(localName = "GetDeviceEnabledResponse",
 targetNamespace = "http://www.nrf-arts.org/UnifiedPOS/Belt/",
 className = "org.arts.unifiedpos.belt.GetDeviceEnabledResponse")

 public Boolean getDeviceEnabled()
 throws FaultException;

 @Action(input = "http://www.nrf-arts.org/UnifiedPOS/Belt/SetDeviceEnabled",
 output = "http://www.nrf-arts.org/UnifiedPOS/Belt/SetDeviceEnabledResponse",

 fault = {@FaultAction(className =
org.arts.unifiedpos.belt.FaultException.class,

 value = "http://www.nrf-arts.org/UnifiedPOS/Belt/UposException")
 })

 @WebMethod(operationName = "SetDeviceEnabled",
 action = "http://www.nrf-
arts.org/UnifiedPOS/Belt/SetDeviceEnabled")

 @RequestWrapper(localName = "SetDeviceEnabled",
 targetNamespace = "http://www.nrf-arts.org/UnifiedPOS/Belt/",
 className = "org.arts.unifiedpos.belt.SetDeviceEnabled")

 @ResponseWrapper(localName = "SetDeviceEnabledResponse",
 targetNamespace = "http://www.nrf-arts.org/UnifiedPOS/Belt/",
 className = "org.arts.unifiedpos.belt.SetDeviceEnabledResponse")

http://www.nrf-arts.org/UnifiedPOS/Belt/
http://www.nrf-arts.org/UnifiedPOS/Belt/GetDeviceEnabled
http://www.nrf-arts.org/UnifiedPOS/Belt/GetDeviceEnabledResponse
http://www.nrf-arts.org/UnifiedPOS/Belt/UposException
http://www.nrf-arts.org/UnifiedPOS/Belt/UposException
http://www.nrf-arts.org/UnifiedPOS/Belt/GetDeviceEnabled
http://www.nrf-arts.org/UnifiedPOS/Belt/GetDeviceEnabled
http://www.nrf-arts.org/UnifiedPOS/Belt/
http://www.nrf-arts.org/UnifiedPOS/Belt/
http://www.nrf-arts.org/UnifiedPOS/Belt/
http://www.nrf-arts.org/UnifiedPOS/Belt/SetDeviceEnabled
http://www.nrf-arts.org/UnifiedPOS/Belt/SetDeviceEnabledResponse
http://www.nrf-arts.org/UnifiedPOS/Belt/UposException
http://www.nrf-arts.org/UnifiedPOS/Belt/SetDeviceEnabled
http://www.nrf-arts.org/UnifiedPOS/Belt/SetDeviceEnabled
http://www.nrf-arts.org/UnifiedPOS/Belt/
http://www.nrf-arts.org/UnifiedPOS/Belt/

WS-POS, v1.3.1 175

 public void setDeviceEnabled(
 @WebParam(name = "DeviceEnabled",
 targetNamespace = "http://www.nrf-arts.org/UnifiedPOS/Belt/")

 Boolean deviceEnabled)throws FaultException;

 …

 @Action(input="http://www.nrf-arts.org/UnifiedPOS/Belt/CheckHealth",
 output="http://www.nrf-arts.org/UnifiedPOS/Belt/CheckHealthResponse",

 Fault={@FaultAction(className=org.arts.unifiedpos.belt.FaultException.class,
 value="http://www.nrf-arts.org/UnifiedPOS/Belt/UposException")
 })

 @WebMethod(operationName = "CheckHealth",
 action = "http://www.nrf-arts.org/UnifiedPOS/Belt/CheckHealth")

 @RequestWrapper(localName = "CheckHealth",
 targetNamespace = "http://www.nrf-arts.org/UnifiedPOS/Belt/",
 className = "org.arts.unifiedpos.belt.CheckHealth")

 @ResponseWrapper(localName = "CheckHealthResponse",
 targetNamespace = "http://www.nrf-arts.org/UnifiedPOS/Belt/",
 className = "org.arts.unifiedpos.belt.CheckHealthResponse")
 public void checkHealth(
 @WebParam(name = "Level",
 targetNamespace = "http://www.nrf-arts.org/UnifiedPOS/Belt/")
 HealthCheckLevel level)
 throws FaultException;

 …
}

/*--------- Belt.java end -------------*/

http://www.nrf-arts.org/UnifiedPOS/Belt/
http://www.nrf-arts.org/UnifiedPOS/Belt/CheckHealth
http://www.nrf-arts.org/UnifiedPOS/Belt/CheckHealthResponse
http://www.nrf-arts.org/UnifiedPOS/Belt/UposException
http://www.nrf-arts.org/UnifiedPOS/Belt/CheckHealth
http://www.nrf-arts.org/UnifiedPOS/Belt/
http://www.nrf-arts.org/UnifiedPOS/Belt/
http://www.nrf-arts.org/UnifiedPOS/Belt/

176 WS-POS, v1.3.1

Because JAX-WS has no possibility to declare a DataContract as in C#, for WSDL input and output
actions, separate classes are generated providing the XML data access:

/*--------- CheckHealth.java start -------------*/

package org.arts.unifiedpos.belt;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlType;

@XmlAccessorType(XmlAccessType.FIELD)

@XmlType(name = "", propOrder = { "level" })

@XmlRootElement(name = "CheckHealth")

public class CheckHealth
 {

 @XmlElement(name = "Level")
 protected HealthCheckLevel level;

 public HealthCheckLevel getLevel()
 {
 return level;
 }

 public void setLevel(HealthCheckLevel value)
 {
 this.level = value;
 }
 }

/*--------- CheckHealth.java end -------------*/

However, as the CheckHealth method does not return any data, the CheckHealthResponse class is
empty:

/*--------- CheckHealthResponse.java start -------------*/

package org.arts.unifiedpos.belt;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlType;

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "")
@XmlRootElement(name = "CheckHealthResponse")
public class CheckHealthResponse
 {
 }

/*--------- CheckHealthResponse.java end -------------*/
 /*-- Example End*/

	1. Preface
	1. Abstract
	1.1 Overview Updated in Version 1.3
	1.2 Conformance Requirements
	ARTS IP POLICY

	1.3 ARTS WS-POS Standards Stack
	1.3.1 Web Service Components
	1.3.2 Additional Components Updated in Version 1.2
	1.4 Out of Scope Updated in Version 1.2

	2. WS-POS Components
	2.1 Explanation of WS-POS Related Terminology
	2.1.1 XML POS
	2.1.2 Web Service
	2.1.3 Web Service based on the WS-POS specification
	2.1.4 Provider and consumer of a WS-POS service
	2.1.5 Methods in WS-POS
	2.1.6 Properties in WS-POS
	2.1.7 Events in WS-POS

	2.2 Messaging Base
	2.2.1 Description
	2.2.2 WS-I Basic Profile

	2.3 Service Description and Discovery
	2.3.1 Service Description
	2.3.1.1 Description
	2.3.1.2 Metadata

	2.3.2 Discovery Updated in Version 1.2
	2.3.2.1 Description
	2.3.2.2 Universal Description, Discovery, and Integration
	2.3.2.3 Registering a device service with UDDI
	2.3.2.4 Searching for a Service with UDDI
	2.3.2.5 Removing a device service from UDDI

	2.4 WS-POS Behavior Models Added in Version 1.2
	2.4.1 Introduction to Properties, Methods and Events Added in Version 1.2
	2.4.1.1 Property, Method and Event Added in Version 1.3
	2.4.2 WS-POS Communication Model Added in Version 1.2
	2.4.3 Session Management and Device Control Added in Version 1.2
	2.4.4 Introduction of WS-POS Session Manager Concept Added in Version 1.2
	2.4.5 Identifying WS-POS Session Added in Version 1.2
	2.4.5.1 Security consideration Added in Version 1.3
	2.4.6 Typical sequence to establish WS-POS session Added in Version 1.2
	2.4.7 Calling WS-POS Service Methods and Using Properties Added in Version 1.2
	2.4.8 Multiple WS-POS Service Consumer Claim Requests on a WS-POS Service Provider Updated in Version 1.2
	2.4.9 WS-POS Methods and Device Methods Updated in Version 1.3
	2.4.9.1 WS-POS Methods
	2.4.9.2 Device Methods
	2.4.9.3 Methods Not Used in WS-POS 1.2

	2.4.10 WS-POS Events Handling Using Bi-Directional Communication Updated in Version 1.2
	2.4.11 WS-POS vents Handling on Polling Added in Version 1.2
	2.4.12 Resolution of frequent communication events in the Event notification Added in Version 1.3
	2.4.13 WS-POS Service Network Connection Management Considerations Added in Version 1.2
	2.4.13.1 WS-POS Service Provider Detection of an Interrupted Connection with a WS-POS Service Consumer
	2.4.13.2 WS-POS Service Consumer Detection of an Interrupted Connection with a WS-POS Service Provider

	2.4.14 WS-POS Service Network Connection Management, Event – Bi-directional Communications Added in Version 1.2
	2.4.14.1 Service Provider and Consumer Disconnection and Session Does Not Time Out
	2.4.14.2 Consumer and Service Provider Disconnection and Session Does Not Time Out
	2.4.14.3 Service Provider and Consumer Disconnection and Session Time Out
	2.4.14.4 Consumer and Service Provider Disconnection and Session Time Out

	2.4.15 WS-POS Service Network Connection Management, Event – Polling Added in Version 1.2
	2.4.15.1 Event Polling Return Value is Not Received and Session Does Not Time Out
	2.4.15.2 SetEventResponse Return Value is Not Received and Session Does Not Time Out.
	2.4.15.3 Event Polling Is Not Received and Session Times Out

	2.4.16 WS-POS Method References (UPOS UML Style) Updated in Version 1.2
	2.4.16.1 generateConsumerID Method
	2.4.16.2 openSession Method
	2.4.16.3 closeSession Method
	2.4.16.4 getProviderSessionTimeout Method
	2.4.16.5 keepAlive Method
	2.4.16.6 pollForUPOSEvent Method
	2.4.16.7 setEventResponse Method
	2.4.16.8 getWSPOSVersion Method
	2.4.16.9 getEncryptedClaimedConsumerID Method Added in Version 1.3
	2.4.16.10 setEventRequestProperties Method Added in Version 1.3
	2.4.16.11 openDevice Method
	2.4.16.12 closeDevice Method
	2.4.16.13 getBinaryConversion Method Added in Version 1.3
	2.4.16.14 setBinaryConversion Method Added in Version 1.3

	2.4.17 WSPOS Event and WSPOS Event Response Added in Version 1.2
	2.4.17.1 WSPOSEvent
	2.4.17.2 WSPOSEventResponse

	2.4.18 WS-POS Event Reference in Bi-Directional Communication Updated in Version1.3
	2.4.18.1 dataEvent Method
	2.4.18.2 directIOEvent Method
	2.4.18.3 errorEvent Method
	2.4.18.4 outputCompleteEvent Method
	2.4.18.5 statusUpdateEvent Method
	2.4.18.6 dataContainedEvent Method Added in Version 1.3

	2.4.19 Modifications to XMLPOS Updated in Version 1.3
	2.4.19.1 Addition and Deletion of Methods
	2.4.19.2 Addition of ConsumerID Parameter

	1.1.1
	2.4.20 File Path for a Method Call Added in Version 1.2
	2.4.20.1 Security Considerations

	2.4.21 Retrieving consumerID that has been successfully claimed Added in Version 1.3 ...
	2.4.21.1 Security Considerations

	2.5 Status, State Model and Exceptions
	2.5.1 StatusUpdateEvent
	2.5.2 ControlState
	2.5.3 Exceptions
	2.5.4 Public Properties

	2.6 Shared Device Model
	2.6.1 Exclusive Use Device
	2.6.2 Sharable Devices

	2.7 Event Messages
	2.8 Input Model
	2.9 Output Model
	2.9.1 Synchronous Output
	2.9.2 Asynchronous Output

	2.10 Device Power Reporting Model
	2.10.1 Model

	2.11 ARTS XMLPOS Command Set
	2.12 ARTS XMLPOS Event Set
	2.13 ARTS XMLPOS Schema
	2.14 WS-POS WSDL
	2.14.1 Web Service Description Language (WSDL)
	2.14.2 WS-POS WSDL Interoperability and Development Platform Requirements to Ensure Equivalent Code Conversion
	2.14.3 WSDL Documents Provided By ARTS
	2.14.4 WSDL Documents to Be Created by Implementers

	2.15 Backward Compatibility 　Added in Version 1.2
	2.15.1 How to use the WSDLs from Version 1.1 and from Version 1.2

	2.16 Security
	2.16.1 Description
	2.16.2 Transport Layer Security Changed in Version 1.3
	2.16.3 Device Authentication with UDDI(Deprecated) Changed in Version 1.3
	2.16.4 Client Authentication with UDDI(Deprecated) Changed in Version 1.3
	2.16.5 Client Authentication with Device

	2.17 XML Payload

	3. General Flow
	3.1 General WS-POS Flows
	3.1.1 Device service initializes
	3.1.2 Device shutdown
	3.1.3 Client startup
	3.1.4 Client interaction with devices

	3.2 Simple Use Case
	3.2.1 Client Entity Service Acquiring and Utilizing a Scanner Device Service
	3.2.1.1 SOA Main Flow Description

	3.3 Use Case Catalog
	3.4 Scope
	High-Level Use Case

	3.5 Sub Scope: Linkage between In-Store Kiosk and POS (Devices)
	Activity Diagram

	3.6 Sub Scope: Linkage between Sales Assistance Terminals and POS Devices
	Activity Diagram

	3.7 Sub Scope: Batch Payment in Commercial Complex
	Activity Diagram

	3.8 Sub Scope: Monitoring In-Store KIOSK Equipment and 　　　　　 Cooperation with Back-office on Occurrence of Problems.
	Activity Diagram

	3.9 Sub Scope: POS System in Consideration of Cooperation between Various Industries
	Activity Diagram

	3.10 Sub Scope: Linkage between Display Shelf and Rear System
	Activity Diagram

	3.11 Sub Scope: Cooperation between Electronic Shelf Label and Shelving Allocation Information
	Activity Diagram
	Activity Diagram (High level use case)

	3.12 Sub Scope: Self-Service Refueling
	Activity Diagram
	Activity Diagram
	Activity Diagram

	4. Document History
	5. Referenced Documents and software support files
	5.1 Referenced Documents
	5.2 Software Support Files
	5.3 Software Support Files Added in Version 1.2
	5.4 Software Support Files 　Added in Version 1.3
	5.5 Software Support Files 　Updated in Version 1.3.1

	6. ws-pos class diagrams Updated in Version 1.2
	7. Application Development Support Updated in Version 1.2

