

Date: April 2004

WSDL-SOAP to CORBA Interworking
Version 1,0

formal/04-04-01

Copyright © 2002, Cape Clear Software, Inc.
Copyright © 2002, Fujitsu Limited
Copyright © 2002, Hewlett Packard, Inc.
Copyright © 2002, IONA Technologies, Inc.
Copyright © 2002, Sankhya Technologies Private Limited

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required by
any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered
by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS
OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT
NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY
OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's Everywhere™, UML™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Table of Contents

1 Scope .. 1
2 Conformance ... 1
3 Normative References ... 1
4 Terms and Definitions .. 2
5 Symbols ... 2
6 Acknowledgments ... 3
7 WSDL to IDL Mapping ... 5

7.1 Feature Description .. 5
7.2 Optimization to Avoid Round-Trip Translation .. 5
7.3 WSDL to IDL Conversion.. 6

7.3.1 Generation of IDL Modules ... 6
7.3.2 Generation of IDL Interfaces ... 8
7.3.3 Generation of IDL Operations ... 8
7.3.4 Generation of IDL Attributes .. 10
7.3.5 Generation of IDL Typedef .. 10
7.3.6 Generation of User Exceptions ... 11

7.4 Simple Type Conversion... 12
7.4.1 Mapping for SOAP Data Types ... 12
7.4.2 Mapping for XML Schema Built-in Datatypes ... 13
7.4.3 Restriction to WSDL Type System .. 14
7.4.4 Mapping for Enumerators .. 15
7.4.5 Mapping for String Types .. 16
7.4.6 Mapping for Any .. 17
7.4.7 Anonymous XML Types .. 17

7.5 Mapping for Complex XML Schema Types .. 17
7.5.1 Mapping for Sequence Group Element ... 17
7.5.2 Mapping for Choice Group Element .. 18
7.5.3 Mapping for All Group Element ... 18
7.5.4 Mapping Elements with Cardinality Constraints to IDL Sequence Member 19
7.5.5 Mapping Attributes of Complex Type .. 19

7.6 Mapping for SOAP Array Type ... 20
7.7 Mapping IDL Name... 21
7.8 Identifier Information File .. 22
7.9 Input Data ... 23
7.10 Output Data .. 23

7.10.1 IDL File .. 23
7.10.2 SOAP Information File .. 24
7.10.3 Identifier Information File ... 24

Appendix A - Sample Input and Output of WSDL to IDL .. 25
WSDL-SOAP to CORBA Interworking, v1.0 i

ii WSDL-SOAP to CORBA Interworking, v1.0

1 Scope

This specification defines a mapping between WSDL specifications, with a SOAP Binding, to a corresponding set of
OMG IDL interface specifications.

This specification is applicable to the domain of WSDL specifications that use only the constructs that result from the
CORBA to WSDL-SOAP specification. This simplifies the mapping and allows for mapping from a restricted WSDL-
SOAP subset to CORBA IDL interfaces.

This specification assumes that the CORBA to WSDL-SOAP mapping includes an identifier for the source OMG IDL file
in the resulting WSDL specification. The WSDL to IDL translator can key off this identifier to revert to the original IDL
specification, rather than performing the translation algorithm specified in this specification.

2 Conformance

Implementations must support at least one of the following three conformance points:

1. Interworking between RPC/Encoded WSDL Soap Bindings and OMG IDL.

2. Interworking between RPC/Literal WSDL Soap Bindings and OMG IDL.

3. Interworking between Document/Literal WSDL Soap Bindings and OMG IDL.

A system that does not support a particular SOAP binding use for interaction translation (i.e., encoded vs. literal) need not
translate unsupported WSDL Soap bindings.

An additional optional conformance point pertains to the reverse translation optimization, specified in Section 7.2,
“Optimization to Avoid Round-Trip Translation,” on page 5.

• An implementation may support a CORBA Client interworking with a WSDL Port, for a WSDL Port Type that was
originally defined as an OMG IDL interface.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

CORBA to WSDL/SOAP Interworking, version FTF output, OMG Document ptc/03-05-15

Common Object Request Broker Architecture (CORBA/IIOP), version 3.0.3, OMG Document formal/2004-03-01
(Chapter 3 has IDL specification)

Java™ Language to IDL Mapping Specification, version 1.2, OMG Document formal/2002-08-06

Web Services Description Language (WSDL) 1.1, W3C Note 15 March 2001, http://www.w3.org/TR/wsdl

Simple Object Access Protocol (SOAP) 1.1, W3C Note 08 May 2000, http://www.w3.org/TR/SOAP

XML Schema Part 2: Datatypes, W3C Recommendation 02 May 2001, http://www.w3.org/TR/xmlschema-2/
WSDL-SOAP to CORBA Interworking, v1.0 1

4 Terms and Definitions

For the purposes of this specification, the terms and definitions given in the normative reference and the following apply.

The following terms are defined in CORBA/IIOP Specification:

• Interface

• Attribute

• Operation

• Module

• Exception

The following terms are defined in WSDL 1.1 Specification:

• Service

• Port

• Port type

• Message

• Binding

• Part

• Documentation

• Target namespace

The following terms are defined in SOAP 1.1 Specification:

• Soap Encoding

This specification defines no new additional terms.

5 Symbols

List of symbols/abbreviations

WSDL Web Services Description Language

SOAP Simple Object Access Protocol

IDL Interface Definition Language

CORBA Common Object Request Broker Architecture
2 WSDL-SOAP to CORBA Interworking, v1.0

6 Acknowledgments

The following companies submitted and/or supported this specification:

• Cape Clear

• Fujitsu

• Hewlett-Packard

• IONA

• Sankhya Technologies Private Limited
WSDL-SOAP to CORBA Interworking, v1.0 3

4 WSDL-SOAP to CORBA Interworking, v1.0

7 WSDL to IDL Mapping

7.1 Feature Description
The overall goal of this specification is to provide a natural mapping from a valid set of WSDL service definition files to
a valid set of OMG IDL specification files.

An IDL file can be generated from a WSDL file, but the generated IDL file lacks some information required to implement
a CORBA/SOAP interaction translation gateway. To supplement the information, WSDL to IDL converter could (in an
implementation specific manner) generate an Identifier information file and a SOAP information file in addition to the
IDL file.

This specification focuses on the standard mapping of the WSDL file to the corresponding IDL specification. In addition
to the service definition, a WSDL file can have service endpoint information. This information cannot be translated into
an IDL construct.

The WSDL 1.1 specification describes bindings of the following protocols.

• SOAP

• HTTP GET/POST

• MIME

However, this specification of WSDL to IDL only converts SOAP bindings. All others are considered out of scope of this
specification.

In particular, this specification supports WSDL SOAP bindings with style attribute value of “rpc” and use attribute value
of either “literal” or “encoded.” In addition, it supports WSDL with style attribute value of “document” and use attribute
value of “literal.”

7.2 Optimization to Avoid Round-Trip Translation
If a WSDL specification is the result of translation of an OMG IDL specification, then the reverse mapping from that
translated WSDL specification should be the original IDL specification.

WSDL file

WSDL to IDL Conversion

 IDL SOAP Information File Identifier Information
File
WSDL-SOAP to CORBA Interworking, v1.0 5

To accomplish this, the IDL to WSDL translation specified by the CORBA to WSDL/SOAP Interworking specification
provides a hint, in the form of an XML schema annotation giving both a reference to the source IDL and the version of
the mapping used. Hints may be provided that refer to the source IDL file, or to the repository ID for a given generated
construct (including any prefixes defined by a #pragma prefix directives).

The reverse translation from WSDL to IDL would use this hint to shortcut the translation process by having the original
IDL specification be the reverse translation from the WSDL.

This will avoid round trip divergence of the IDL specifications associated with a WSDL service, which would result using
the WSDL to IDL mapping translations to generate a new IDL specification associated with the WSDL output from the
CORBA to WSDL-SOAP mapping specification.

The interaction translation mechanisms required to support a CORBA Client accessing a WSDL Port differ depending on
the origin of the port definition.

In particular, an implementation of this specification may encounter a WSDL port type that resulted from a translation of
an IDL definition. When that happens, the interaction translation mechanisms, defined in this specification, to support a
CORBA client accessing such a WSDL Port are inappropriate. The appropriate mechanisms are similar to those required
to support a CORBA server sending a response to a WSDL port for an Operation that originated as an IDL interface
operation. These translation mechanisms are specified in the CORBA to WSDL/Soap specification (formal/03-11-02).

Note – Since the interaction time translation mechanisms to support this reverse specification translation option are different
than those designed to support specifications originating as WSDL port types, this feature is an optional conformance point for
this specification.

7.3 WSDL to IDL Conversion
IDL specification is generated from a given WSDL according to the rules shown in the following sub-sections.

7.3.1 Generation of IDL Modules

A WSDL document may contain several different target namespaces associated with WSDL and XML constructs, which
are translated to corresponding IDL constructs.

A WSDL description can contain multiple namespaces, including:

• The wsdl:definitions element can have its own target namespace.

• The wsdl:definition can use wsdl:import to import a wsdl namespace.

• Zero or more schema in the types section each have a target namespace (which is allowed, by WS-I profile, to be same
as target namespace for the wsdl description).

• The schema in a types section can use xsd:import to import multiple namespaces.

An IDL module declaration is created from the WSDL <definitions> element.

The WSDL <definitions> element has two optional attributes, “targetNamespace” and “name.” An IDL module is
generated for a WSDL file as described below:

1. If the targetNamespace attribute is present for the WSDL <definitions> element, everything before the final “/” is
mapped to IDL typeprefix or #pragma prefix directive in the generated IDL file. The portion of the targetNamespace
after the final “/” is mapped as the IDL module name for the generated IDL definition. Any ‘:’ character is mapped
6 WSDL-SOAP to CORBA Interworking, v1.0

to an underscore ‘_’ character. If the generated module name contains a “.” or any special character, it is mapped to
an underscore ‘_’ character.

2. If the targetNamespace attribute is not present, and the WSDL name attribute is present, the value of the WSDL
name attribute is used as the IDL module name. No IDL typeprefix or #pragma prefix directive is generated in this
case.

3. If neither targetNamespace nor the WSDL name attribute is present in the <definitions> element, then no IDL
module is generated.

Using the same algorithm as specified above to map from the target namespace value to an IDL module name and type
prefix, the mapping from WSDL to IDL shall use a separate IDL module for each of the target namespaces that contain
constructs that are mapped to IDL constructs.

For example:

<!--WSDL -->
<?xml version="1.0"?>
<definitions name="StockQuote" ...>

...

...
</definitions>

is mapped to IDL as follows:

// OMG IDL

module StockQuote {
…
…

};

The following WSDL construct maps as shown below

<!--WSDL -->
<?xml version="1.0"?>
<definitions name="StockQuote"

targetNamespace=”http://example.com/stockquote.wsdl”
... >

...

...
</definitions>

In pre-CORBA 3.0 IDL using pragma prefix as shown below:

// OMG IDL

#pragma prefix “http_//example.com”
module stockquote_wsdl {

…
…

};

Or in CORBA 3.0 or later IDL using typeprefix as shown below:
WSDL-SOAP to CORBA Interworking, v1.0 7

// OMG IDL

module stockquote_wsdl {
typeprefix stockquote_wsdl “http_//example.com”;

…
…

};

7.3.2 Generation of IDL Interfaces

An IDL interface declaration is created for each WSDL <portType> defined in the WSDL file.

The value of the name attribute of WSDL <portType> element is used as the IDL interface name.

For example:

<!--WSDL -->
<portType name="StockQuotePortType">

...

...
</portType>

is mapped to IDL as follows:

// OMG IDL

interface StockQuotePortType {
…
…

};

7.3.3 Generation of IDL Operations

An IDL operation declaration is created for each WSDL <operation> element appearing inside a WSDL <portType>
element.

The syntax of an IDL operation declaration is given below. It consists of operation name <op_name>, operation return
type <return_type>, a comma separated list of parameters <parameter>, and optional raises and context
expression, each of which is generated from the WSDL <operation> element as mentioned below:

<return_type> <op_name> (<parameter> [,])
 [raises (exception_ name [,])]
 [context (context_name [,])];

Operation name:

The IDL operation name <op_name> is generated from the value of the name attribute in <operation> ele-
ment in WSDL <portType> declaration.

Operation type:

WSDL defines four types of operations: One-way, Request-response, Solicit-response, and Notification. All of
these are mapped to normal IDL operations. If only <input> message element exists in the <portType> element,
then it is mapped to an IDL operation with return type void and with no output parameters. IDL oneway opera-
8 WSDL-SOAP to CORBA Interworking, v1.0

tions are not used.

Data type of return value:

The return type of the IDL operation is determined based on the following rules:
• If the Operation is of Request-Response format, the return type is the first part under the element

<wsdl:output> if that part doesn’t appear in the “parameterOrder” list. Otherwise the return type is void.
• If the Operation is of Solicit-Response format, the return type is the first part under the element

<wsdl:input> if that part doesn’t appear in the “parameterOrder” list. Otherwise the return type is void.
• If it is One-Way or Notification, the return type is void.

Parameters:

An IDL <parameter> is generated for each WSDL <part> element appearing inside a WSDL <message> ele-
ment.

The syntax of the IDL operation parameter is given below. IDL supports “in,” “out,” and “inout” parameter
attributes.

in
out data_type parameter_name
inout

IDL operation parameter generation is determined based on the following rules.

1. If the parameterOrder attribute is specified in the <wsdl:operation> element in <portType> declaration, parameter
list is returned in the same order specified as the parts in the parameterOrder attribute. Each parameter type is deter-
mined as follows:

• Part that is specified in both a Request/Solicit message and a Response message will be an “inout” parameter.

• Part that is specified only in a Request/Solicit message will be an “in” parameter. One-Way, Notification will only
have “in” parameters.

• Part that is specified only in Response message will be an “out” parameter.

2. If the parameterOrder attribute is not specified in the <wsdl:operation> element in <portType> declaration, it is
determined as follows:

• Construct a list of all the parts in Request/Solicit/One-Way/Notification messages in the order of parts specified,
excluding the first part of the Response message of Request/Solicit-Response operations.

• Use the list as if specified for the parameterOrder attribute and process accordingly.

If the <part> element specifies “element” attribute instead of “type,” it points to the Schema that defines the ele-
ment. This becomes the “in” parameter if the ‘message’ is referred by <wsdl:input> element in a <wsdl:opera-
tion> element in <wsdl:portType>, or the “out” parameter if the ‘message’ is referred by <wsdl:output> element
and appears in the parameterOrder attribute. If the <wsdl:output> element doesn’t appear in the parameter-
Order attribute, then it becomes the return type.

Raises expressions:

If <wsdl:fault> exists in an <operation> element inside a <portType> element, it is mapped to an IDL User
Exception, and a raises expression is generated for the corresponding IDL operation declaration. The generated
raises expression lists all the mapped user exceptions for that IDL operation.
WSDL-SOAP to CORBA Interworking, v1.0 9

The name of the generated IDL User Exception is the value of the name attribute in the <wsdl:fault> element.
The generated User Exception structure consists of mapped data members that are a list of “parts” that comprise
the <wsdl:message> pointed to by the fault message name in <wsdl:fault> element (<wsdl:fault
name="fault_message_name">).

Refer to Section 7.3.6, “Generation of User Exceptions,” on page 11 for an example mapping.

Context expressions:

Context expression is not generated. It is not necessary for SOAP.

The following is an example of mapping a WSDL <operation> element to an IDL operation.

<!--WSDL -->
<message name="GetTradePricesInput">

<part name="tickerSymbol" type="xsd:string"/>
<part name="timePeriod" type="xsd:int"/>

</message>

<message name="GetTradePricesOutput">
<part name="result" type="xsd:string"/>
<part name="frequency" type="xsd:float"/>

</message>

<portType name="StockQuotePortType">
<operation name="GetTradePrices"

parameterOrder="tickerSymbol timePeriod frequency">
<input message="tns:GetTradePricesInput"/>
<output message="tns:GetTradePricesOutput"/>

</operation>
</portType>

The above WSDL fragment is mapped to an IDL operation as follows:

// OMG IDL

interface StockQuotePortType {
wstring GetTradePrices(in wstring tickerSymbol,

in long timePeriod, out float frequency);
};

7.3.4 Generation of IDL Attributes

IDL attributes are not generated from WSDL.

7.3.5 Generation of IDL Typedef

An IDL typedef is generated for the XML schema type restrictions for XML schema data types used as the datatype of
return values and parameters.

For example:

<!--WSDL -->
<xsd:simpleType name="Number">

<xsd:restriction base="xsd:int"/>
10 WSDL-SOAP to CORBA Interworking, v1.0

</xsd:simpleType>

<xsd:simpleType name="AnotherNumber">
<xsd:restriction base="Number"/>

</xsd:simpleType>

is mapped to the following IDL:

// OMG IDL

typedef long Number;
typedef Number AnotherNumber;

7.3.6 Generation of User Exceptions

If <wsdl:fault> exists in an <operation> element inside a <portType> element, it is mapped to an IDL User Exception.

The name of the generated IDL User Exception is the value of the name attribute in the <wsdl:fault> element. The
generated User Exception structure consists of mapped data members that are lists of “parts” that comprise the
<wsdl:message> pointed to by the fault message name in <wsdl:fault> element (<wsdl:fault
name="fault_message_name">).

For example:

<!--WSDL -->
<message name="BadInput">

<part name="errorMessage" type="xsd:string"/>
<part name="errorCode" type="xsd:int"/>

</message>

<portType name="StockQuotePortType">
<operation name="GetTradePrices" Ö>

<input Ö />
<output Ö />
<fault message="BadInput"/>

</operation>
</portType>

is mapped to IDL as follows:

// OMG IDL

interface StockQuotePortType {

exception BadInput {
wstring errorMessage;
long errorCode;

};

GetTradePrices(…) raises BadInput;
};
WSDL-SOAP to CORBA Interworking, v1.0 11

7.4 Simple Type Conversion
This section shows how simple types used in WSDL are mapped to CORBA.

7.4.1 Mapping for SOAP Data Types

According to the SOAP 1.1 specification, all types defined in section “3. Built-in datatypes” of “W3C Working Draft
“XML Schema Part2: Datatypes” are adopted as simple types. The SOAP-ENC schema and namespace declares an
element for all these simple types. Mapping of SOAP data type to IDL data type is performed according to the table
below.

(In the following table, the SOAP data types are shown in the conventional “SOAP-ENC” namespace, to distinguish them
from the IDL types).

SOAP data type CORBA data type

SOAP-ENC:int long
SOAP-ENC:unsignedInt unsigned long
SOAP-ENC:short short

SOAP-ENC:unsignedShort unsigned short
SOAP-ENC:long long long
SOAP-ENC:unsignedLong unsigned long long
SOAP-ENC:float float
SOAP-ENC:double double
SOAP-ENC:boolean boolean
SOAP-ENC:string wstring

The mapping for string datatype is discussed in Section 7.4.5, “Mapping for String
Types,” on page 16.

SOAP-ENC:unsignedByte octet
Enumerations
.

enum

Error if the base is not a string.
The mapping for enumerations is discussed in Section 7.4.4, “Mapping for Enumera-
tors,” on page 15.

Arrays sequence, if one-dimensional variant, array, otherwise
The mapping for Array datatype is discussed in Section 7.6, “Mapping for SOAP Ar-
ray Type,” on page 20

Structs struct
12 WSDL-SOAP to CORBA Interworking, v1.0

7.4.2 Mapping for XML Schema Built-in Datatypes

WSDL supports the XML Schema built-in datatypes that are defined in “3. Built-in datatypes” of W3C Working Draft
“XML Schema Part2: Datatypes.” These XML Schema built-in datatypes map onto a corresponding IDL type as shown in
the table below.

(In the following table, the XML Schema types are shown in the conventional “xsd” namespace, to distinguish them
from the IDL types).

XML Schema Data Type CORBA Data Type

primitive xsd:string wstring

The mapping for string datatype is discussed in
Section 7.4.5, “Mapping for String Types,” on
page 16.

xsd:boolean boolean
xsd:float float
xsd:double double
xsd:decimal See Section 7.4.3, “Restriction to WSDL Type

System,” on page 14
xsd:duration See Section 7.4.3
xsd:dateTime See Section 7.4.3
xsd:time See Section 7.4.3
xsd:date See Section 7.4.3
xsd:gYearMonth See Section 7.4.3
xsd:gYear See Section 7.4.3
xsd:gMonthDay See Section 7.4.3
xsd:gDay See Section 7.4.3
xsd:gMonth See Section 7.4.3
xsd:hexBinary See Section 7.4.3
xsd:base64Binary See Section 7.4.3
xsd:anyURI wstring
xsd:QName See Section 7.4.3
xsd:NOTATION See Section 7.4.3

derived xsd:normalizedString wstring
xsd:token wstring
xsd:language wstring
xsd:NMTOKEN wstring
xsd:NMTOKENS wstring
xsd:Name wstring
WSDL-SOAP to CORBA Interworking, v1.0 13

If the XML Schema name space is one of the following, the above conversion takes place. It will be possible to override
the conversion rule with external property files.

• http://www.w3.org/2001/XMLSchema

• http://www.w3.org/2000/10/XMLSchema

• http://www.w3.org/1999/XMLSchema

7.4.3 Restriction to WSDL Type System

The following datatypes cannot be directly mapped to a corresponding OMG IDL datatype. This interworking
specification provides a generic mapping of these unsupported types to individual typedefs of OMG IDL wstring, to hold
the UTF encoding of the XML schema type value.

decimal,

nonPositiveInteger,

nonNegativeInteger,

PositiveInteger,

NOTATION,

duration,

xsd:NCName wstring
xsd:ID wstring
xsd:IDREF wstring
xsd:IDREFS wstring
xsd:ENTITY wstring
xsd:ENTITIES wstring
xsd:integer fixed
xsd:nonPositiveInteger See Section 7.4.3
xsd:negativeInteger See Section 7.4.3
xsd:long long long
xsd:int long
xsd:short short
xsd:byte See Section 7.4.3
xsd:nonNegativeInteger See Section 7.4.3
xsd:unsignedLong unsigned long long
xsd:unsignedInt unsigned long
xsd:unsignedShort unsigned short
xsd:unsignedByte octet
xsd:positiveInteger See Section 7.4.3
14 WSDL-SOAP to CORBA Interworking, v1.0

time,

dateTime,

date,

gYearMonth,

gYear,

gMonthDay,

gDay,

gMonth,

hexBinary,

base64Binary,

Qname,

The IDL module (using omg.org type prefix) that defines the corresponding types is:

module stringmappedXMLtypes {
 typeprefix stringmappedXMLtypes "omg.org";
 typedef wstring decimal;
 typedef wstring nonPositiveInteger;
 typedef wstring nonNegativeInteger;
 typedef wstring PositiveInteger;
 typedef wstring NOTATION;
 typedef wstring duration;
 typedef wstring time;
 typedef wstring dateTime;
 typedef wstring date;
 typedef wstring gYearMonth;
 typedef wstring gYear;
 typedef wstring gMonthDay;
 typedef wstring gDay;
 typedef wstring gMonth;
 typedef wstring hexBinary;
 typedef wstring base64Binary;
 typedef wstring Qname,
};

7.4.4 Mapping for Enumerators

The enumeration in XML Schema is used to constrain the values of almost every simple type, except the boolean type. It
limits a simple type to a set of distinct values.

Enumeration in XML Schema derived by restriction on ‘string’ can be mapped to IDL enumeration.
WSDL-SOAP to CORBA Interworking, v1.0 15

Here is an example.

<!--WSDL -->
<simpleType name =”A_or_B_or_C” restriction base=”string”

<enumeration value = “A” />
<enumeration value = “B” />
<enumeration value = “C” />

</simpleType name>

// OMG IDL

enum A_or_B_or_C {A, B, C};

If the restriction is on any other datatype, it cannot be mapped to OMG IDL.

7.4.5 Mapping for String Types

String is the set of finite-length sequences of characters in XML. It is mapped to OMG IDL wstring datatype.

String datatypes derived by restriction of Schema components <length> and <maxLength> are treated as bounded
wstring.

Note – If the value of the <length> element is 1 and value of attribute fixed is true, it can be mapped to OMG IDL wchar
datatype. This specification only specifies mapping to IDL wstring datatype.

Example:

<!--WSDL -->
<element name="Country" type="string"/>

<element name="Place">
<simpleType>

<restriction base="string">
<length value="5"/>

</restriction>
</simpleType>

</element>

String Type WSDL IDL

bounded string derived by restriction of

• length N

• maxLength N

wstring <N>

wstring <N>
unbounded string wstring

string derived by restriction of

• minlength N

• pattern

wstring

wstring
16 WSDL-SOAP to CORBA Interworking, v1.0

// OMG IDL

wstring Country;
const short N=5;
wstring Place<N>;

7.4.6 Mapping for Any

The anyType represents an abstraction called the ur-type that is the base type from which all simple and complex types
are derived. An anyType type does not constrain its content in any way. It is possible to use anyType like other type. It
can be mapped to the OMG IDL datatype any.

Example:

<!--WSDL -->
<element name="T" type="anyType"/>

// OMG IDL

any T;

7.4.7 Anonymous XML Types

Anonymous types are deprecated in CORBA. While it is allowable, in some cases, to map an anonymous XML type
specification to an anonymous IDL type spec (e.g., for sequences as members of an IDL struct), there are cases that
require an explicit IDL type name (e.g., for operation parameters).

Whenever it is explicitly required by the IDL syntax, the anonymous XML types are mapped to an explicit IDL typedef.

The name of the type to use for the generated IDL typedef is constructed by prefixing the name of the element (which has
an anonymous XML type specification attached) with the string "T_." In case of collision with another type starting with
"T_," the translator will add sufficient extra "_" character(s) to the end of the prefix to resolve the collision.

7.5 Mapping for Complex XML Schema Types
This section shows how complex XML schema types used in WSDL are mapped to CORBA.

7.5.1 Mapping for Sequence Group Element

The sequence element in WSDL specifies that the child elements must appear in the order it is specified. It can be mapped
to the OMG IDL struct datatype.

Example:

<!--WSDL -->
<complexType name = “myStruct">

<sequence>
<element name="member_1" type="short"/>
<element name="member_2" type="long"/>
WSDL-SOAP to CORBA Interworking, v1.0 17

</sequence>
</complexType>

// OMG IDL

struct myStruct {
short member_1:
long member_2;

};

7.5.2 Mapping for Choice Group Element

The choice group element in WSDL allows only one of its children to appear in an instance. It can be mapped to
discriminated union of OMG IDL with the discriminator type taken as IDL datatype long.

Example:

<!--WSDL -->
<complexType name="myUnion">

<choice>
<element name="c" type="char"/>
<element name="s" type="short"/>

</choice>
</complexType>

// OMG IDL

union myUnion switch (long) {
case 1: char c;
case 2: short s;

};

7.5.3 Mapping for All Group Element

The all element in WSDL specifies that the child elements do not need to appear in the order they are specified. It is
mapped to the OMG IDL struct datatype, using the same rules as for a Sequence Group Element.

The interaction translator is responsible to arrange the child elements in the proper order to be mapped to the
corresponding IDL Struct.

Example:

<!--WSDL -->
<complexType name = "myAll">

<all>
<element name="a_member_1" type="short"/>
<element name="a_member_2" type="long"/>

</all>
</complexType>
18 WSDL-SOAP to CORBA Interworking, v1.0

/ OMG IDL
struct myAll {

short a_member_1:
long a_member_2;

};

7.5.4 Mapping Elements with Cardinality Constraints to IDL Sequence Member

For use in the complex type mappings above, there is a special rule for mapping elements of an XML complex type, when
those elements have minOccurs=0, or maxOccurs>1.

If an element, which is a member of an XML complex type, has minOccurs=0 or has maxOccurs>1, that element will be
mapped to an unnamed IDL Sequence.

Example:

<complexType name = "mesgInfoType">
 <xsd:sequence>
 <xsd:element name="infoItem1" type="short"/>
 <xsd:element name="optInfo" type="myStruct" minOccurs="0"/>
 </xsd:sequence>
</xsd:complexType>

// OMG IDL
struct mesgInfoType {
 short infoItem1:
 sequence<myStruct> optInfo;
};

7.5.5 Mapping Attributes of Complex Type

Attributes of sequence and all group complex types are mapped as additional members of the IDL struct.

Complex types that use attribute groups have the attributes in that group mapped explicitly as members of the IDL struct,
in the same order as if the attribute group definitions were expanded in line.

If a Complex Type with simpleContent has one or more attributes, that complex type is mapped to an IDL Struct, with the
first member of the IDL struct being of the simple type and having the name "value." The attributes are each mapped as
additional members of the IDL Struct.

If an XML schema attribute is defined anonymously (e.g., it uses an inline enumeration extension of string), the mapping
shall generate an explicit IDL typedef using the "T_" prefix applied to the name of the attribute as the type name, just as
for XML schema elements that are defined anonymously.

Attributes of a choice group element are not mapped.

If an attribute of the complex type is optional, then it is mapped to a struct member that is a sequence (just as if it were
an element with minOccurs=0). Optional attributes are represented as IDL sequences in order to allow zero members, to
cover the case of the attribute not being present.
WSDL-SOAP to CORBA Interworking, v1.0 19

Example:

<xsd:complexType> taggedShort
 <xsd:simpleContent>
 <xsd:extension base="xsd:short">
 <xsd:attribute name="type" tag="xsd:string" use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

// OMG IDL
struct taggedShort {
 short value;
 sequence<wstring> tag;
};

7.6 Mapping for SOAP Array Type
SOAP Array type extends the “SOAP-ENC:Array” type defined in the SOAP 1.1 encoding Schema. SOAP array datatype
is mapped to either a sequence or array OMG IDL construct based on the following cases:

1. One-dimensional SOAP array without size specification maps to OMG IDL unbounded sequence datatype.

2. One-dimensional SOAP array with size specification maps to OMG IDL bounded sequence datatype.

3. Multi-dimensional array with size specification maps to OMG IDL array datatype.

4. Multi-dimensional array without size specification cannot be mapped to an IDL construct and it is valid for the
translation mechanism to generate an error for this case.

The name of the mapped IDL sequence or array datatype is generated from the value of the <xsd:complexType> element.

The type of the SOAP array item, mentioned in the “type” attribute of the <xsd:element> or in the “wsdl:arrayType”
attribute, becomes the base type of the mapped IDL sequence or array. This type is mapped to an OMG IDL construct
according to the datatype mapping rules in this specification.

The IDL sequence or array bound is determined from the “maxOccurs” attribute of the <xsd:element>. If “maxOccurs”
value is “unbounded” for a multi-dimensional array, it can’t be mapped.

The dimension of the array is determined from the “SOAP-ENC:arrayType” attribute.

The following example shows the mapping of a SOAP Array datatype to OMG IDL unbounded sequence.

<!--WSDL -->
<xsd:complexType name = “ArrayOfLong">

<xsd:complexContent>
<xsd:restriction base="SOAP-ENC:Array">

<xsd:attribute
ref="SOAP-ENC:arrayType"
wsdl:arrayType="xsd:int[]"/>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>
20 WSDL-SOAP to CORBA Interworking, v1.0

// OMG IDL

typedef sequence<long> ArrayOfLong;

The following example shows the mapping of a SOAP Array datatype to OMG IDL bounded sequence.

<!--WSDL -->
<xsd:complexType name = “ArrayOfLong">

<xsd:complexContent>
<xsd:restriction base="SOAP-ENC:Array">

<xsd:sequence>
<xsd:element

name="item" type="xsd:int"
minOccurs="10" maxOccurs="10"/>

</sequence>
<xsd:attribute

ref="SOAP-ENC:arrayType"
wsdl:arrayType="xsd:int[]"/>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

// OMG IDL

typedef sequence<long, 10> ArrayOfLong;

7.7 Mapping IDL Name
Normally, names in WSDL map to identical names in IDL. However, names (e.g., IDL keywords) that cannot be used in
IDL need to be converted. Following the OMG specification “Java™ Language to IDL Mapping Specification,” the
conversion below shall be applied.

1. IDL keyword

If the WSDL identifier clashes with an IDL keyword, prepend an underscore “_” (to form an escaped identifier).

For example, the WSDL name oneway is mapped to the OMG IDL identifier _oneway.

2. WSDL Names starting with underscore

If the WSDL identifier begins with an underscore “_,” the underscore is replaced by “J_.”

For example, the WSDL name _fred is mapped to J_fred in IDL.

3. Unicode characters in WSDL

IDL does not support Unicode. Thus, if ‘$’ or a kanji character is included in the identifier, it is replaced by “U” and
a 4-digit hexadecimal number (in upper case).

For example, the WSDL name a$b is mapped to aU0024b in IDL.

4. Method is overloaded

IDL does not support overloaded methods. If the WSDL operation is overloaded, two underscores “__” are added to
the method name, followed by IDL type names of the parameters separated by two underscores “__.” A space in the
type (like in long long) is replaced with an underscore “_.” The underscore at the beginning of an escaped identifier is
WSDL-SOAP to CORBA Interworking, v1.0 21

removed.

For example, if the WSDL mapping results in the following two IDL operations, they are transformed as shown
below:

void hello();
void hello(in long x, in abc y);

This is transformed as:

void hello__();
void hello__long__abc(in long x, in abc y);

If the in/out parameter names are overloaded in the same method, it is an error. Also, if a method that doesn’t include
in/out is overloaded, it is an error.

5. WSDL identifiers that differ only in case

IDL names are not case sensitive. Thus, if there are two or more names that are distinguished only by case, an under-
score “_” is appended to the original name, and then decimal numbers indicating the positions of the uppercase char-
acters are appended, separated by an underscore. Indices are zero based.

For example, the WSDL names jack, Jack, and jAcK are mapped to IDL as jack_, Jack_0, and jAcK_1_3 respec-
tively.

However, it is an error for the following names to be distinguished only by case.

• module name

• interface name

6. If the identifiers are not unique after application of the mapping rules above, it is an error.

7.8 Identifier Information File
The Identifier Information file is a text file in XML format that collects identifiers.

• <name>~</name> sets the name before conversion (IDL) .

• <name_to>~</name_to> sets the name after conversion (WSDL).

• <name_to>~</name_to> is not generated if identifiers were not converted.
22 WSDL-SOAP to CORBA Interworking, v1.0

.

*: 0 or more
?: 0 or 1
+: 1 or more

7.9 Input Data
Input data is a WSDL file containing a WSDL document. Structure of a WSDL document is shown below.

<?xml version="1.0"?>
<definitions >

<types> </types>
<message> </message>
<portType> </portType>
<binding> </binding>
<service> </service>

</definitions>

7.10 Output Data

7.10.1 IDL File

Format of the generated IDL file is as follows:

module module_name {
interface interface_name {

typedef type type_name;
exception exception_structure_name {

data_type member_name;
};

<module>*
 <name>~</name>
 <name_to>~</name_to>?
 <interface>*
 <name>~</name>
 <name_to>~</name_to>?
 <typedef>*
 <name>~</name>
 <name_to>~</name_to>?
 </typedef>
 <exception>*
 <name>~</name>
 <name_to>~</name_to>?
 </exception>
 <method>*
 <name>~</name>
 <name_to>~</name_to>?
 </method>
 </interface>
</module>

module information

interface information

typedef information(includes struct, enum)

exception information

method information
WSDL-SOAP to CORBA Interworking, v1.0 23

type_name operation_name(in|inout|out
data_type parameter_name,...)
[raises(exception_structure_name,....)];

};
};

7.10.2 SOAP Information File

This file contains the information that is missing from IDL but necessary for the SOAP-CORBA gateway. Information
described in the SOAP information file is as follows.

7.10.3 Identifier Information File

This file contains a table of original names and converted names, in case names (identifiers) are converted. The <name>
element is generated even if they are not converted.

Parameter Name Parameter Value Description

SOAPAction Method name and
ACTION information

Specify the method name with full scope in the IDL
(e.g., ::module1::interface1::op1).

Following the method name, specify the value of soapAction property
in <soap:body> element.

Separate the method name and the value of soapAction by one or more
spaces.
24 WSDL-SOAP to CORBA Interworking, v1.0

A Sample Input and Output of WSDL to IDL

A.1 Input: Sample WSDL
Example 5: SOAP binding of request-response RPC operation over HTTP. The type of startTime and endTime is changed
from "xsd:timeInstant" to "xsd:string."

<?xml version="1.0"?>
<definitions name="StockQuote"

 targetNamespace="http://example.com/stockquote.wsdl"
xmlns:tns="http://example.com/stockquote.wsdl"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://example.com/stockquote/schema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>
<schema targetNamespace="http://example.com/stockquote/schema"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns="http://www.w3.org/2001/XMLSchema">
<complexType name="TimePeriod">

<all>
<element name="startTime" type="xsd:string"/>
<element name="endTime" type="xsd:string"/>

</all>
</complexType>
<complexType name="ArrayOfFloat">

<complexContent>
<restriction base="soapenc:Array">

<attribute ref="soapenc:arrayType"
wsdl:arrayType="xsd:float[]"/>

</restriction>
</complexContent>

</complexType>
</schema>

</types>

<message name="GetTradePricesInput">
<part name="tickerSymbol" type="xsd:string"/>
<part name="timePeriod" type="xsd1:TimePeriod"/>

</message>

<message name="GetTradePricesOutput">
<part name="result" type="xsd1:ArrayOfFloat"/>
<part name="frequency" type="xsd:float"/>

</message>

<portType name="StockQuotePortType">
<operation name="GetTradePrices"

parameterOrder="tickerSymbol timePeriod frequency">
<input message="tns:GetTradePricesInput"/>
<output message="tns:GetTradePricesOutput"/>

</operation>
</portType>

<binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="GetTradePrices">
WSDL-SOAP to CORBA Interworking, v1.0 25

<soap:operation soapAction="http://example.com/GetTradePrices"/>
<input>

<soap:body use="encoded"
namespace="http://example.com/stockquote"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>

<soap:body use="encoded"
namespace="http://example.com/stockquote"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>

</operation>
</binding>

<service name="StockQuoteService">
<documentation>My first service</documentation>
<port name="StockQuotePort" binding="tns:StockQuoteSoapBinding">

<soap:address location="http://example.com/stockquote"/>
</port>

</service>
</definitions>

A.2 Output: Sample OMG IDL
#pragma prefix “http_//example.com"

module stockquote_wsdl {

interface StockQuotePortType {
typedef sequence<float> ArrayOfFloat;
typedef struct TimePeriod {

wstring startTime;
wstring endTime;

};

ArrayOfFloat GetTradePrices(
in wstring tickerSymbol,
in TimePeriod timePeriod,
out float frequency);

};
};

A.3 Output: Sample SOAP Information File
SOAP inforamtion file
list of SOAPAction information
SOAPAction ::StockQuoteService::StockQuoteSoapBinding::GetTradePrices http://example.com/
GetTradePrices
26 WSDL-SOAP to CORBA Interworking, v1.0

A.4 Output: Sample Identifier Information File
<module>

<name>stockquote_wsdl</name>
<interface>

<name>StockQuotePortType</name>
<typedef>

<name>ArrayOfFloat</name>
</typedef>
<typedef>

<name>TimePeriod</name>
</typedef>
<method>

<name>GetTradePrices</name>
</method>

</interface>
</module>
WSDL-SOAP to CORBA Interworking, v1.0 27

28 WSDL-SOAP to CORBA Interworking, v1.0

Index

A
All Group Element 18
Anonymous XML types 17
Any 17
Attribute 2
Attributes of Complex Type 19

B
Binding 2

C
Cardinality Constraints to IDL Sequence Member 19
Choice Group Element 18
Common Object Request Broker Architecture (CORBA/IIOP) 1
Complex XML Schema Types 17
Conformance points 1
CORBA

Common Object Request Broker Architecture 2
CORBA to WSDL/SOAP Interworking 1

D
Documentation 2

E
Enumerators 15
Exception 2
Exceptions 11

H
Hints 6
HTTP GET/POST 5

I
Identifier Information File 22, 24
IDL

Interface Definition Language 2
IDL Attributes 10
IDL File 23
IDL Interfaces 8
IDL Modules 6
IDL Name 21
IDL Operations 8
IDL Typedef 10
Input Data 23
Interface 2

J
Java™ Language to IDL Mapping Specification 1

M
Message 2
MIME 5
Module 2
Multiple namespaces 6

N
Namespaces 6
Normative documents 1

O
Operation 2
Output Data 23

P
Part 2
Port 2
Port type 2, 6
Protocols 5

S
Sample Input and Output of WSDL to IDL 25
Sequence Group Element 17
Service 2
Service definition 5
Service endpoint information 5
Simple Object Access Protocol (SOAP) 1
Simple Type Conversion 12
SOAP 5

Simple Object Access Protocol 2
SOAP Array Type 20
SOAP Data Types 12
Soap Encoding 2
SOAP Information File 24
String Types 16
Style attribute value 5

T
Target namespace 2
Type Conversion 12

U
Use attribute value 5
User Exceptions 11

W
Web Services Description Language (WSDL) 1
WSDL

Web Services Description Language 2
WSDL Port 6
WSDL to IDL Conversion 6
WSDL Type System 14

X
XML schema annotation 6
XML Schema Built-in Datatypes 13
XML Schema Part 2

Datatypes, W3C Recommendation 1
WSDL-SOAP to CORBA Interworking, v1.0 29

30 WSDL-SOAP to CORBA Interworking, v1.0

WSDL-SOAP to CORBA Interworking
Reference Sheet

The formal version of WSDL-SOAP to CORBA Interworking is based on these documents:

• Revised submission document: mars/03-05-07

• FTF Report: ptc/03-10-16

• Convenience document: ptc/03-11-05
April 5, 2004 1

2 April 5, 2004

	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Acknowledgments
	7 WSDL to IDL Mapping
	7.1 Feature Description
	7.2 Optimization to Avoid Round-Trip Translation
	7.3 WSDL to IDL Conversion
	7.4 Simple Type Conversion
	7.5 Mapping for Complex XML Schema Types
	7.6 Mapping for SOAP Array Type
	7.7 Mapping IDL Name
	7.8 Identifier Information File
	7.9 Input Data
	7.10 Output Data

	A Sample Input and Output of WSDL to IDL
	Index
	Reference Sheet

