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1 Scope

This specification defines a mapping between WSDL specifications, with a SOAP Binding, to a corresponding set of 
OMG IDL interface specifications.

This specification is applicable to the domain of WSDL specifications that use only the constructs that result from the 
CORBA to WSDL-SOAP specification. This simplifies the mapping and allows for mapping from a restricted WSDL-
SOAP subset to CORBA IDL interfaces.

This specification assumes that the CORBA to WSDL-SOAP mapping includes an identifier for the source OMG IDL file 
in the resulting WSDL specification. The WSDL to IDL translator can key off this identifier to revert to the original IDL 
specification, rather than performing the translation algorithm specified in this specification.

2 Conformance

Implementations must support at least one of the following three conformance points:

1. Interworking between RPC/Encoded WSDL Soap Bindings and OMG IDL.

2. Interworking between RPC/Literal WSDL Soap Bindings and OMG IDL.

3. Interworking between Document/Literal WSDL Soap Bindings and OMG IDL.

A system that does not support a particular SOAP binding use for interaction translation (i.e., encoded vs. literal) need not 
translate unsupported WSDL Soap bindings.

An additional optional conformance point pertains to the reverse translation optimization, specified in Section 7.2, 
“Optimization to Avoid Round-Trip Translation,” on page 5.

• An implementation may support a CORBA Client interworking with a WSDL Port, for a WSDL Port Type that was 
originally defined as an OMG IDL interface.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this 
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. 

CORBA to WSDL/SOAP Interworking, version FTF output, OMG Document ptc/03-05-15

Common Object Request Broker Architecture (CORBA/IIOP), version 3.0.3, OMG Document formal/2004-03-01 
(Chapter 3 has IDL specification)

Java™ Language to IDL Mapping Specification, version 1.2, OMG Document formal/2002-08-06

Web Services Description Language (WSDL) 1.1, W3C Note 15 March 2001, http://www.w3.org/TR/wsdl

Simple Object Access Protocol (SOAP) 1.1, W3C Note 08 May 2000, http://www.w3.org/TR/SOAP

XML Schema Part 2: Datatypes, W3C Recommendation 02 May 2001, http://www.w3.org/TR/xmlschema-2/
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4 Terms and Definitions

For the purposes of this specification, the terms and definitions given in the normative reference and the following apply.

The following terms are defined in CORBA/IIOP Specification:

• Interface

• Attribute

• Operation

• Module

• Exception

The following terms are defined in WSDL 1.1 Specification:

• Service

• Port

• Port type

• Message

• Binding

• Part

• Documentation

• Target namespace

The following terms are defined in SOAP 1.1 Specification:

• Soap Encoding

This specification defines no new additional terms.

5 Symbols

List of symbols/abbreviations

WSDL Web Services Description Language

SOAP Simple Object Access Protocol

IDL Interface Definition Language

CORBA Common Object Request Broker Architecture
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7 WSDL to IDL Mapping

7.1 Feature Description
The overall goal of this specification is to provide a natural mapping from a valid set of WSDL service definition files to 
a valid set of OMG IDL specification files. 

An IDL file can be generated from a WSDL file, but the generated IDL file lacks some information required to implement 
a CORBA/SOAP interaction translation gateway. To supplement the information, WSDL to IDL converter could (in an 
implementation specific manner) generate an Identifier information file and a SOAP information file in addition to the 
IDL file.

This specification focuses on the standard mapping of the WSDL file to the corresponding IDL specification. In addition 
to the service definition, a WSDL file can have service endpoint information. This information cannot be translated into 
an IDL construct.

The WSDL 1.1 specification describes bindings of the following protocols. 

• SOAP

• HTTP GET/POST

• MIME

However, this specification of WSDL to IDL only converts SOAP bindings. All others are considered out of scope of this 
specification.

In particular, this specification supports WSDL SOAP bindings with style attribute value of “rpc” and use attribute value 
of either “literal” or “encoded.” In addition, it supports WSDL with style attribute value of “document” and use attribute 
value of “literal.”

7.2 Optimization to Avoid Round-Trip Translation
If a WSDL specification is the result of translation of an OMG IDL specification, then the reverse mapping from that 
translated WSDL specification should be the original IDL specification.

WSDL file

WSDL to IDL Conversion

 IDL  SOAP Information File  Identifier Information 
File 
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To accomplish this, the IDL to WSDL translation specified by the CORBA to WSDL/SOAP Interworking specification 
provides a hint, in the form of an XML schema annotation giving both a reference to the source IDL and the version of 
the mapping used. Hints may be provided that refer to the source IDL file, or to the repository ID for a given generated 
construct (including any prefixes defined by a #pragma prefix directives).

The reverse translation from WSDL to IDL would use this hint to shortcut the translation process by having the original 
IDL specification be the reverse translation from the WSDL.  

This will avoid round trip divergence of the IDL specifications associated with a WSDL service, which would result using 
the WSDL to IDL mapping translations to generate a new IDL specification associated with the WSDL output from the 
CORBA to WSDL-SOAP mapping specification.

The interaction translation mechanisms required to support a CORBA Client accessing a WSDL Port differ depending on 
the origin of the port definition.  

In particular, an implementation of this specification may encounter a WSDL port type that resulted from a translation of 
an IDL definition. When that happens, the interaction translation mechanisms, defined in this specification, to support a 
CORBA client accessing such a WSDL Port are inappropriate.  The appropriate mechanisms are similar to those required 
to support a CORBA server sending a response to a WSDL port for an Operation that originated as an IDL interface 
operation. These translation mechanisms are specified in the CORBA to WSDL/Soap specification (formal/03-11-02). 

Note – Since the interaction time translation mechanisms to support this reverse specification translation option are different
than those designed to support specifications originating as WSDL port types, this feature is an optional conformance point for
this specification.

7.3 WSDL to IDL Conversion
IDL specification is generated from a given WSDL according to the rules shown in the following sub-sections.

7.3.1 Generation of IDL Modules

A WSDL document may contain several different target namespaces associated with WSDL and XML constructs, which 
are translated to corresponding IDL constructs.  

A WSDL description can contain multiple namespaces, including:

• The wsdl:definitions element can have its own target namespace.

• The wsdl:definition can use wsdl:import to import a wsdl namespace.

• Zero or more schema in the types section each have a target namespace (which is allowed, by WS-I profile, to be same 
as target namespace for the wsdl description).

• The schema in a types section can use xsd:import to import multiple namespaces.

An IDL module declaration is created from the WSDL <definitions> element.

The WSDL <definitions> element has two optional attributes, “targetNamespace” and “name.” An IDL module is 
generated for a WSDL file as described below:

1. If the targetNamespace attribute is present for the WSDL <definitions> element, everything before the final “/” is 
mapped to IDL typeprefix or #pragma prefix directive in the generated IDL file.  The portion of the targetNamespace 
after the final “/” is mapped as the IDL module name for the generated IDL definition.  Any ‘:’ character is mapped 
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to an underscore ‘_’ character.  If the generated module name contains a “.” or any special character, it is mapped to 
an underscore ‘_’ character.

2. If the targetNamespace attribute is not present, and the WSDL name attribute is present, the value of the WSDL 
name attribute is used as the IDL module name. No IDL typeprefix or #pragma prefix directive is generated in this 
case.

3. If neither targetNamespace nor the WSDL name attribute is present in the <definitions> element, then no IDL 
module is generated.

Using the same algorithm as specified above to map from the target namespace value to an IDL module name and type 
prefix, the mapping from WSDL to IDL shall use a separate IDL module for each of the target namespaces that contain 
constructs that are mapped to IDL constructs.

For example:

<!--WSDL -->
<?xml version="1.0"?>
<definitions name="StockQuote" ...>

...

...
</definitions>

is mapped to IDL as follows:

// OMG IDL

module StockQuote {
…
…

};

The following WSDL construct maps as shown below

<!--WSDL -->
<?xml version="1.0"?>
<definitions name="StockQuote" 

targetNamespace=”http://example.com/stockquote.wsdl”
... >

...

...
</definitions>

In pre-CORBA 3.0 IDL using pragma prefix as shown below:

// OMG IDL

#pragma prefix “http_//example.com”
module stockquote_wsdl {

…
…

};

Or in CORBA 3.0 or later IDL using typeprefix as shown below:
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// OMG IDL

module stockquote_wsdl {
typeprefix stockquote_wsdl “http_//example.com”;

…
…

};

7.3.2 Generation of IDL Interfaces

An IDL interface declaration is created for each WSDL <portType> defined in the WSDL file.

The value of the name attribute of WSDL <portType> element is used as the IDL interface name.

For example:

<!--WSDL -->
<portType name="StockQuotePortType">

...

...
</portType>

is mapped to IDL as follows:

// OMG IDL

interface StockQuotePortType {
…
…

};

7.3.3 Generation of IDL Operations

An IDL operation declaration is created for each WSDL <operation> element appearing inside a WSDL <portType> 
element.

The syntax of an IDL operation declaration is given below. It consists of operation name <op_name>, operation return 
type <return_type>, a comma separated list of parameters <parameter>, and optional raises and context 
expression, each of which is generated from the WSDL <operation> element as mentioned below:

<return_type>  <op_name> ( <parameter> [,   ])
        [ raises  ( exception_ name [,    ] ) ] 
        [ context ( context_name [,    ] ) ];

Operation name:

The IDL operation name <op_name> is generated from the value of the name attribute in <operation> ele-
ment in WSDL <portType> declaration.

Operation type:

WSDL defines four types of operations: One-way, Request-response, Solicit-response, and Notification. All of 
these are mapped to normal IDL operations. If only <input> message element exists in the <portType> element, 
then it is mapped to an IDL operation with return type void and with no output parameters. IDL oneway opera-
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tions are not used.

Data type of return value:

The return type of the IDL operation is determined based on the following rules:
•  If the Operation is of Request-Response format, the return type is the first part under the element 

<wsdl:output> if that part doesn’t appear in the “parameterOrder” list. Otherwise the return type is void. 
•  If the Operation is of Solicit-Response format, the return type is the first part under the element 

<wsdl:input> if that part doesn’t appear in the “parameterOrder” list. Otherwise the return type is void. 
•  If it is One-Way or Notification, the return type is void.

Parameters:

An IDL <parameter> is generated for each WSDL <part> element appearing inside a WSDL <message> ele-
ment.

The syntax of the IDL operation parameter is given below. IDL supports “in,” “out,” and “inout” parameter 
attributes.

in
out        data_type  parameter_name
inout

IDL operation parameter generation is determined based on the following rules.

1. If the parameterOrder attribute is specified in the <wsdl:operation> element in <portType> declaration, parameter 
list is returned in the same order specified as the parts in the parameterOrder attribute. Each parameter type is deter-
mined as follows:

• Part that is specified in both a Request/Solicit message and a Response message will be an “inout” parameter. 

• Part that is specified only in a Request/Solicit message will be an “in” parameter. One-Way, Notification will only 
have “in” parameters. 

• Part that is specified only in Response message will be an “out” parameter. 

2. If the parameterOrder attribute is not specified in the <wsdl:operation> element in <portType> declaration, it is 
determined as follows: 

• Construct a list of all the parts in Request/Solicit/One-Way/Notification messages in the order of parts specified, 
excluding the first part of the Response message of Request/Solicit-Response operations. 

•  Use the list as if specified for the parameterOrder attribute and process accordingly. 

If the <part> element specifies “element” attribute instead of “type,” it points to the Schema that defines the ele-
ment. This becomes the “in” parameter if the ‘message’ is referred by <wsdl:input> element in a <wsdl:opera-
tion> element in <wsdl:portType>, or the “out” parameter if the ‘message’ is referred by <wsdl:output> element 
and appears in the parameterOrder attribute. If the <wsdl:output> element doesn’t appear in the parameter-
Order attribute, then it becomes the return type.

Raises expressions:

If <wsdl:fault> exists in an <operation> element inside a <portType> element, it is mapped to an IDL User 
Exception, and a raises expression is generated for the corresponding IDL operation declaration. The generated 
raises expression lists all the mapped user exceptions for that IDL operation.
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The name of the generated IDL User Exception is the value of the name attribute in the <wsdl:fault> element. 
The generated User Exception structure consists of mapped data members that are a list of “parts” that comprise 
the <wsdl:message> pointed to by the fault message name in <wsdl:fault> element (<wsdl:fault 
name="fault_message_name">).

Refer to Section 7.3.6, “Generation of User Exceptions,” on page 11 for an example mapping.

Context expressions:

Context expression is not generated. It is not necessary for SOAP.

The following is an example of mapping a WSDL <operation> element to an IDL operation.

<!--WSDL -->
<message name="GetTradePricesInput">

<part name="tickerSymbol" type="xsd:string"/>
<part name="timePeriod" type="xsd:int"/>

</message>

<message name="GetTradePricesOutput">
<part name="result" type="xsd:string"/>
<part name="frequency" type="xsd:float"/>

</message>

<portType name="StockQuotePortType">
<operation name="GetTradePrices" 

parameterOrder="tickerSymbol timePeriod frequency">
<input message="tns:GetTradePricesInput"/>
<output message="tns:GetTradePricesOutput"/>

</operation>
</portType>

The above WSDL fragment is mapped to an IDL operation as follows:

// OMG IDL

interface StockQuotePortType {
wstring GetTradePrices(in wstring tickerSymbol, 

in long timePeriod, out float frequency);
};

7.3.4 Generation of IDL Attributes

IDL attributes are not generated from WSDL.

7.3.5 Generation of IDL Typedef 

An IDL typedef is generated for the XML schema type restrictions for XML schema data types used as the datatype of 
return values and parameters.

For example:

<!--WSDL -->
<xsd:simpleType name="Number">

<xsd:restriction base="xsd:int"/>
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</xsd:simpleType>

<xsd:simpleType name="AnotherNumber">
<xsd:restriction base="Number"/>

</xsd:simpleType>

is mapped to the following IDL:

// OMG IDL

typedef long Number;
typedef Number AnotherNumber;

7.3.6 Generation of User Exceptions

If <wsdl:fault> exists in an <operation> element inside a <portType> element, it is mapped to an IDL User Exception. 

The name of the generated IDL User Exception is the value of the name attribute in the <wsdl:fault> element. The 
generated User Exception structure consists of mapped data members that are lists of “parts” that comprise the 
<wsdl:message> pointed to by the fault message name in <wsdl:fault> element (<wsdl:fault 
name="fault_message_name">).

For example:

<!--WSDL -->
<message name="BadInput">

<part name="errorMessage" type="xsd:string"/>
<part name="errorCode" type="xsd:int"/>

</message>

<portType name="StockQuotePortType">
<operation name="GetTradePrices" Ö>

<input Ö />
<output Ö />
<fault message="BadInput"/>

</operation>
</portType>

is mapped to IDL as follows:

// OMG IDL

interface StockQuotePortType {

exception BadInput {
wstring errorMessage;
long errorCode;

};

GetTradePrices( … ) raises BadInput;
};
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7.4 Simple Type Conversion
This section shows how simple types used in WSDL are mapped to CORBA.

7.4.1 Mapping for SOAP Data Types

According to the SOAP 1.1 specification, all types defined in section “3. Built-in datatypes” of “W3C Working Draft 
“XML Schema Part2: Datatypes” are adopted as simple types. The SOAP-ENC schema and namespace declares an 
element for all these simple types. Mapping of SOAP data type to IDL data type is performed according to the table 
below. 

(In the following table, the SOAP data types are shown in the conventional “SOAP-ENC” namespace, to distinguish them 
from the IDL types).

SOAP data type CORBA data type

SOAP-ENC:int long
SOAP-ENC:unsignedInt unsigned long
SOAP-ENC:short short

SOAP-ENC:unsignedShort unsigned short
SOAP-ENC:long long long
SOAP-ENC:unsignedLong unsigned long long
SOAP-ENC:float float
SOAP-ENC:double double
SOAP-ENC:boolean boolean
SOAP-ENC:string wstring

The mapping for string datatype is discussed in Section 7.4.5, “Mapping for String 
Types,” on page 16.

SOAP-ENC:unsignedByte octet
Enumerations
.

enum

Error if the base is not a string.
The mapping for enumerations is discussed in Section 7.4.4, “Mapping for Enumera-
tors,” on page 15.

Arrays sequence, if one-dimensional variant, array, otherwise
The mapping for Array datatype is discussed in Section 7.6, “Mapping for SOAP Ar-
ray Type,” on page 20

Structs struct
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7.4.2 Mapping for XML Schema Built-in Datatypes

WSDL supports the XML Schema built-in datatypes that are defined in “3. Built-in datatypes” of W3C Working Draft 
“XML Schema Part2: Datatypes.” These XML Schema built-in datatypes map onto a corresponding IDL type as shown in 
the table below. 

(In the following table, the XML Schema types are shown in the conventional “xsd” namespace, to distinguish them 
from the IDL types).

XML Schema Data Type CORBA Data Type

primitive xsd:string wstring

The mapping for string datatype is discussed in 
Section 7.4.5, “Mapping for String Types,” on 
page 16.

xsd:boolean boolean
xsd:float float
xsd:double double
xsd:decimal See Section 7.4.3, “Restriction to WSDL Type 

System,” on page 14
xsd:duration See Section 7.4.3 
xsd:dateTime See Section 7.4.3 
xsd:time See Section 7.4.3 
xsd:date See Section 7.4.3 
xsd:gYearMonth See Section 7.4.3 
xsd:gYear See Section 7.4.3 
xsd:gMonthDay See Section 7.4.3 
xsd:gDay See Section 7.4.3 
xsd:gMonth See Section 7.4.3 
xsd:hexBinary See Section 7.4.3 
xsd:base64Binary See Section 7.4.3 
xsd:anyURI wstring
xsd:QName See Section 7.4.3 
xsd:NOTATION See Section 7.4.3 

derived xsd:normalizedString wstring
xsd:token wstring
xsd:language wstring
xsd:NMTOKEN wstring
xsd:NMTOKENS wstring
xsd:Name wstring
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If the XML Schema name space is one of the following, the above conversion takes place. It will be possible to override 
the conversion rule with external property files.

• http://www.w3.org/2001/XMLSchema

• http://www.w3.org/2000/10/XMLSchema

• http://www.w3.org/1999/XMLSchema

7.4.3 Restriction to WSDL Type System

The following datatypes cannot be directly mapped to a corresponding OMG IDL datatype. This interworking 
specification provides a generic mapping of these unsupported types to individual typedefs of OMG IDL wstring, to hold 
the UTF encoding of the XML schema type value.

decimal, 

nonPositiveInteger, 

nonNegativeInteger, 

PositiveInteger,

NOTATION,

duration,

xsd:NCName wstring
xsd:ID wstring
xsd:IDREF wstring
xsd:IDREFS wstring
xsd:ENTITY wstring
xsd:ENTITIES wstring
xsd:integer fixed
xsd:nonPositiveInteger See Section 7.4.3 
xsd:negativeInteger See Section 7.4.3 
xsd:long long long
xsd:int long
xsd:short short
xsd:byte See Section 7.4.3 
xsd:nonNegativeInteger See Section 7.4.3 
xsd:unsignedLong unsigned long long
xsd:unsignedInt unsigned long
xsd:unsignedShort unsigned short
xsd:unsignedByte octet
xsd:positiveInteger See Section 7.4.3 
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time,

dateTime,

date,

gYearMonth,

gYear,

gMonthDay,

gDay,

gMonth,

hexBinary,

base64Binary,

Qname,

The IDL module (using omg.org type prefix) that defines the corresponding types is:

module stringmappedXMLtypes {
   typeprefix stringmappedXMLtypes "omg.org";
   typedef wstring decimal;
   typedef wstring nonPositiveInteger;
   typedef wstring nonNegativeInteger;
   typedef wstring PositiveInteger;
   typedef wstring NOTATION;
   typedef wstring duration;
   typedef wstring time;
   typedef wstring dateTime;
   typedef wstring date;
   typedef wstring gYearMonth;
   typedef wstring gYear;
   typedef wstring gMonthDay;
   typedef wstring gDay;
   typedef wstring gMonth;
   typedef wstring hexBinary;
   typedef wstring base64Binary;
   typedef wstring Qname,
};

7.4.4 Mapping for Enumerators

The enumeration in XML Schema is used to constrain the values of almost every simple type, except the boolean type. It 
limits a simple type to a set of distinct values.

Enumeration in XML Schema derived by restriction on ‘string’ can be mapped to IDL enumeration.
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Here is an example.

<!--WSDL -->
<simpleType name =”A_or_B_or_C” restriction base=”string”

<enumeration value = “A” />
<enumeration value = “B” />
<enumeration value = “C” />

</simpleType name>

// OMG IDL

enum A_or_B_or_C {A, B, C};

If the restriction is on any other datatype, it cannot be mapped to OMG IDL.

7.4.5 Mapping for String Types

String is the set of finite-length sequences of characters in XML. It is mapped to OMG IDL wstring datatype.

String datatypes derived by restriction of Schema components <length> and <maxLength> are treated as bounded 
wstring.

Note – If the value of the <length> element is 1 and value of attribute fixed is true, it can be mapped to OMG IDL wchar
datatype. This specification only specifies mapping to IDL wstring datatype.

Example:

<!--WSDL -->
<element name="Country" type="string"/>

<element name="Place">
<simpleType>

<restriction base="string">
<length value="5"/>

</restriction>
</simpleType>

</element> 

String Type WSDL IDL

bounded string derived by restriction of

• length N

• maxLength N

wstring <N>

wstring <N>
unbounded string wstring

string derived by restriction of

• minlength N

• pattern

wstring

wstring
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// OMG IDL

wstring Country;
const short N=5;
wstring Place<N>;

7.4.6 Mapping for Any

The anyType represents an abstraction called the ur-type that is the base type from which all simple and complex types 
are derived. An anyType type does not constrain its content in any way. It is possible to use anyType like other type. It 
can be mapped to the OMG IDL datatype any.

Example:

<!--WSDL -->
<element name="T" type="anyType"/>

// OMG IDL

any T;

7.4.7 Anonymous XML Types

Anonymous types are deprecated in CORBA. While it is allowable, in some cases, to map an anonymous XML type 
specification to an anonymous IDL type spec (e.g., for sequences as members of an IDL struct), there are cases that 
require an explicit IDL type name (e.g., for operation parameters).

Whenever it is explicitly required by the IDL syntax, the anonymous XML types are mapped to an explicit IDL typedef.

The name of the type to use for the generated IDL typedef is constructed by prefixing the name of the element (which has 
an anonymous XML type specification attached) with the string "T_."  In case of collision with another type starting with 
"T_," the translator will add sufficient extra "_" character(s) to the end of the prefix to resolve the collision.

7.5 Mapping for Complex XML Schema Types
This section shows how complex XML schema types used in WSDL are mapped to CORBA.

7.5.1 Mapping for Sequence Group Element

The sequence element in WSDL specifies that the child elements must appear in the order it is specified. It can be mapped 
to the OMG IDL struct datatype.

Example:

<!--WSDL -->
<complexType name = “myStruct">

<sequence>
<element name="member_1" type="short"/>
<element name="member_2" type="long"/>
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</sequence>
</complexType>

// OMG IDL

struct  myStruct  {
short member_1:
long   member_2;

};

7.5.2 Mapping for Choice Group Element

The choice group element in WSDL allows only one of its children to appear in an instance. It can be mapped to 
discriminated union of OMG IDL with the discriminator type taken as IDL datatype long. 

Example:

<!--WSDL -->
<complexType name="myUnion">

<choice>
<element name="c" type="char"/>
<element name="s" type="short"/>

</choice>
</complexType>

// OMG IDL

union myUnion switch (long) {
case 1: char c;
case 2: short s;

};

7.5.3 Mapping for All Group Element

The all element in WSDL specifies that the child elements do not need to appear in the order they are specified. It is  
mapped to the OMG IDL struct datatype, using the same rules as for a Sequence Group Element.

The interaction translator is responsible to arrange the child elements in the proper order to be mapped to the 
corresponding IDL Struct.

Example:

<!--WSDL -->
<complexType name = "myAll">

<all>
<element name="a_member_1" type="short"/>
<element name="a_member_2" type="long"/>

</all>
</complexType>
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/ OMG IDL
struct myAll {

short a_member_1:
long a_member_2;

};

7.5.4 Mapping Elements with Cardinality Constraints to IDL Sequence Member

For use in the complex type mappings above, there is a special rule for mapping elements of an XML complex type, when 
those elements have minOccurs=0, or maxOccurs>1.

If an element, which is a member of an XML complex type, has minOccurs=0 or has maxOccurs>1, that element will be 
mapped to an unnamed IDL Sequence.

Example:

<complexType name = "mesgInfoType"> 
               <xsd:sequence>
                               <xsd:element name="infoItem1" type="short"/>
                               <xsd:element name="optInfo" type="myStruct"  minOccurs="0"/>
               </xsd:sequence>
</xsd:complexType>

// OMG IDL
struct mesgInfoType {
  short infoItem1:
  sequence<myStruct> optInfo;
};

7.5.5 Mapping Attributes of Complex Type

Attributes of sequence and all group complex types are mapped as additional members of the IDL struct.   

Complex types that use attribute groups have the attributes in that group mapped explicitly as members of the IDL struct, 
in the same order as if the attribute group definitions were expanded in line. 

If a Complex Type with simpleContent has one or more attributes, that complex type is mapped to an IDL Struct, with the 
first member of the IDL struct being of the simple type and having the name "value."  The attributes are each mapped as 
additional members of the IDL Struct.

If an XML schema attribute is defined anonymously (e.g., it uses an inline enumeration extension of string), the mapping 
shall generate an explicit IDL typedef using the "T_" prefix applied to the name of the attribute as the type name, just as 
for XML schema elements that are defined anonymously.

Attributes of a choice group element are not mapped.

If an attribute of the complex type is optional, then it is mapped to a struct member that is a sequence (just as if it were 
an element with minOccurs=0). Optional attributes are represented as IDL sequences in order to allow zero members, to 
cover the case of the attribute not being present.
WSDL-SOAP to CORBA Interworking, v1.0        19



Example:

<xsd:complexType>  taggedShort
               <xsd:simpleContent>
                               <xsd:extension base="xsd:short">
                                              <xsd:attribute name="type" tag="xsd:string" use="optional"/>
                               </xsd:extension>
               </xsd:simpleContent>
</xsd:complexType>

// OMG IDL
struct taggedShort {
  short value;
  sequence<wstring> tag;
};

7.6 Mapping for SOAP Array Type
SOAP Array type extends the “SOAP-ENC:Array” type defined in the SOAP 1.1 encoding Schema. SOAP array datatype 
is mapped to either a sequence or array OMG IDL construct based on the following cases:

1. One-dimensional SOAP array without size specification maps to OMG IDL unbounded sequence datatype.

2. One-dimensional SOAP array with size specification maps to OMG IDL bounded sequence datatype.

3. Multi-dimensional array with size specification maps to OMG IDL array datatype.

4. Multi-dimensional array without size specification cannot be mapped to an IDL construct and it is valid for the 
translation mechanism to generate an error for this case.

The name of the mapped IDL sequence or array datatype is generated from the value of the <xsd:complexType> element. 

The type of the SOAP array item, mentioned in the “type” attribute of the <xsd:element> or in the “wsdl:arrayType” 
attribute, becomes the base type of the mapped IDL sequence or array. This type is mapped to an OMG IDL construct 
according to the datatype mapping rules in this specification. 

The IDL sequence or array bound is determined from the “maxOccurs” attribute of the <xsd:element>. If “maxOccurs” 
value is “unbounded” for a multi-dimensional array, it can’t be mapped.

The dimension of the array is determined from the “SOAP-ENC:arrayType” attribute.

The following example shows the mapping of a SOAP Array datatype to OMG IDL unbounded sequence.

<!--WSDL -->
<xsd:complexType name = “ArrayOfLong">

<xsd:complexContent>
<xsd:restriction base="SOAP-ENC:Array">

<xsd:attribute 
ref="SOAP-ENC:arrayType" 
wsdl:arrayType="xsd:int[]"/>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>
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// OMG IDL

typedef sequence<long> ArrayOfLong;

The following example shows the mapping of a SOAP Array datatype to OMG IDL bounded sequence.

<!--WSDL -->
<xsd:complexType name = “ArrayOfLong">

<xsd:complexContent>
<xsd:restriction base="SOAP-ENC:Array">

<xsd:sequence>
<xsd:element 

name="item" type="xsd:int"
minOccurs="10" maxOccurs="10"/>

</sequence>
<xsd:attribute 

ref="SOAP-ENC:arrayType" 
wsdl:arrayType="xsd:int[]"/>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

// OMG IDL

typedef sequence<long, 10> ArrayOfLong;

7.7 Mapping IDL Name
Normally, names in WSDL map to identical names in IDL. However, names (e.g., IDL keywords) that cannot be used in 
IDL need to be converted. Following the OMG specification “Java™ Language to IDL Mapping Specification,” the 
conversion below shall be applied. 

1. IDL keyword

If the WSDL identifier clashes with an IDL keyword, prepend an underscore “_” (to form an escaped identifier). 

For example, the WSDL name oneway is mapped to the OMG IDL identifier _oneway.

2. WSDL Names starting with underscore

If the WSDL identifier begins with an underscore “_,” the underscore is replaced by “J_.”  

For example, the WSDL name _fred is mapped to J_fred in IDL.

3. Unicode characters in WSDL

IDL does not support Unicode. Thus, if ‘$’ or a kanji character is included in the identifier, it is replaced by “U” and 
a 4-digit hexadecimal number (in upper case). 

For example, the WSDL name a$b is mapped to aU0024b in IDL.

4. Method is overloaded 

IDL does not support overloaded methods. If the WSDL operation is overloaded, two underscores “__” are added to 
the method name, followed by IDL type names of the parameters separated by two underscores “__.” A space in the 
type (like in long long) is replaced with an underscore “_.” The underscore at the beginning of an escaped identifier is 
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removed. 

For example, if the WSDL mapping results in the following two IDL operations, they are transformed as shown 
below:

void hello();
void hello(in long x, in abc y);

This is transformed as:

void hello__();
void hello__long__abc(in long x, in abc y);

If the in/out parameter names are overloaded in the same method, it is an error. Also, if a method that doesn’t include 
in/out is overloaded, it is an error.

5. WSDL identifiers that differ only in case 

IDL names are not case sensitive. Thus, if there are two or more names that are distinguished only by case, an under-
score “_” is appended to the original name, and then decimal numbers indicating the positions of the uppercase char-
acters are appended, separated by an underscore. Indices are zero based. 

For example, the WSDL names jack, Jack, and jAcK are mapped to IDL as jack_, Jack_0, and jAcK_1_3 respec-
tively.

However, it is an error for the following names to be distinguished only by case. 

• module name

• interface name

6. If the identifiers are not unique after application of the mapping rules above, it is an error. 

7.8 Identifier Information File
The Identifier Information file is a text file in XML format that collects identifiers. 

• <name>~</name> sets the name before conversion (IDL) .

• <name_to>~</name_to> sets the name after conversion (WSDL).

• <name_to>~</name_to> is not generated if identifiers were not converted.
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.

*: 0 or more 
?: 0 or 1 
+: 1 or more 

7.9 Input Data
Input data is a WSDL file containing a WSDL document. Structure of a WSDL document is shown below.

<?xml version="1.0"?>
<definitions    >

<types> </types>
<message> </message>
<portType> </portType>
<binding> </binding>
<service> </service>

</definitions>

7.10 Output Data

7.10.1 IDL File

Format of the generated IDL file is as follows:

module module_name {
interface interface_name {

typedef  type  type_name;
exception exception_structure_name {

data_type member_name;
};

<module>*
   <name>~</name>
   <name_to>~</name_to>?
   <interface>*
     <name>~</name>
     <name_to>~</name_to>?
     <typedef>*
       <name>~</name>
       <name_to>~</name_to>?
     </typedef>
     <exception>*
       <name>~</name>
       <name_to>~</name_to>?
     </exception>
     <method>*
       <name>~</name>
       <name_to>~</name_to>?
     </method>
   </interface>
</module>

module information

interface information

typedef information(includes struct, enum)

exception information

method information
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type_name  operation_name(in|inout|out 
data_type parameter_name,...)
[raises( exception_structure_name,.... )];

};
};

7.10.2 SOAP Information File

This file contains the information that is missing from IDL but necessary for the SOAP-CORBA gateway. Information 
described in the SOAP information file is as follows.

7.10.3 Identifier Information File

This file contains a table of original names and converted names, in case names (identifiers) are converted. The <name> 
element is generated even if they are not converted.

Parameter Name Parameter Value Description

SOAPAction Method name and 
ACTION information

Specify the method name with full scope in the IDL 
(e.g., ::module1::interface1::op1).

Following the method name, specify the value of soapAction property 
in <soap:body> element.

Separate the method name and the value of soapAction by one or more 
spaces.
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A Sample Input and Output of WSDL to IDL

A.1 Input: Sample WSDL
Example 5: SOAP binding of request-response RPC operation over HTTP. The type of startTime and endTime is changed 
from "xsd:timeInstant" to "xsd:string."

<?xml version="1.0"?>
<definitions name="StockQuote"

 targetNamespace="http://example.com/stockquote.wsdl"
xmlns:tns="http://example.com/stockquote.wsdl"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://example.com/stockquote/schema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>
<schema targetNamespace="http://example.com/stockquote/schema"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns="http://www.w3.org/2001/XMLSchema">
<complexType name="TimePeriod">

<all>
<element name="startTime" type="xsd:string"/>
<element name="endTime" type="xsd:string"/>

</all>
</complexType>
<complexType name="ArrayOfFloat">

<complexContent>
<restriction base="soapenc:Array">

<attribute ref="soapenc:arrayType" 
wsdl:arrayType="xsd:float[]"/>

</restriction>
</complexContent>

</complexType>
</schema>

</types>

<message name="GetTradePricesInput">
<part name="tickerSymbol" type="xsd:string"/>
<part name="timePeriod" type="xsd1:TimePeriod"/>

</message>

<message name="GetTradePricesOutput">
<part name="result" type="xsd1:ArrayOfFloat"/>
<part name="frequency" type="xsd:float"/>

</message>

<portType name="StockQuotePortType">
<operation name="GetTradePrices" 

parameterOrder="tickerSymbol timePeriod frequency">
<input message="tns:GetTradePricesInput"/>
<output message="tns:GetTradePricesOutput"/>

</operation>
</portType>

<binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="GetTradePrices">
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<soap:operation soapAction="http://example.com/GetTradePrices"/>
<input>

<soap:body use="encoded" 
namespace="http://example.com/stockquote"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>

<soap:body use="encoded" 
namespace="http://example.com/stockquote"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>

</operation>
</binding>

<service name="StockQuoteService">
<documentation>My first service</documentation>
<port name="StockQuotePort" binding="tns:StockQuoteSoapBinding">

<soap:address location="http://example.com/stockquote"/>
</port>

</service>
</definitions>

A.2 Output: Sample OMG IDL
#pragma prefix “http_//example.com"

module stockquote_wsdl {

interface StockQuotePortType {
typedef sequence<float> ArrayOfFloat;
typedef struct TimePeriod {

wstring startTime;
wstring endTime;

};

ArrayOfFloat GetTradePrices(
in  wstring tickerSymbol,
in TimePeriod timePeriod,
out float frequency);

};
};

A.3 Output: Sample SOAP Information File
# SOAP inforamtion file
# list of SOAPAction information
SOAPAction   ::StockQuoteService::StockQuoteSoapBinding::GetTradePrices  http://example.com/
GetTradePrices
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A.4 Output: Sample Identifier Information File
<module>

<name>stockquote_wsdl</name>
<interface>

<name>StockQuotePortType</name>
<typedef>

<name>ArrayOfFloat</name>
</typedef>
<typedef>

<name>TimePeriod</name>
</typedef>
<method>

<name>GetTradePrices</name>
</method>

</interface>
</module>
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