. = = ———— % B == =
B = iA1=

S — [ey)

——

OBJECT MANAGEMENT GROUP®

XML Metadata Interchange (XMI) Specification

Version 2.5.1
Change bar version

Date: June 2015

OMG Document Number: formal/2015-06-08

Standard document URL: http://www.omg.org/spec/XMl1/2.5.1

Normative Machine Consumable Files:
http://www.omg.org/spec/XMI/20131001/XMl.xsd
http://www.omg.org/spec/XMI/20131001/XMI-model.xmi

Associated Schema File:
http://www.omg/spec/XMI1/20110501/XMI-Canonical.xsd

Copyright © 2010-2011, Adaptive

Copyright © 2010-2011, Atego

Copyright © 2003, Ceira Technologies, Inc.
Copyright © 2003, Compuware Corporation
Copyright © 2003, Data Access Technologies, Inc.
Copyright © 2003, DSTC

Copyright © 2003, Gentleware

Copyright © 2003, Hewlett-Packard

Copyright © 2003, International Business Machines
Copyright © 2003, IONA

Copyright © 2003, MetaMatrix

Copyright © 2010-2011, NASA

Copyright © 2010-2011, No Magic, Inc.
Copyright © 2015, Object Management Group
Copyright © 2003, Softeam

Copyright © 2010-2011, Sparx Systems Pty Ltd
Copyright © 2003, SUN

Copyright © 2003, Telelogic AB

Copyright © 2003, Unisys

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to al of the terms and conditions bel ow, the owners of the copyright in this specification hereby grant you afully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and specia purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specificationsisfor informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specificationsin your possession or control.

PATENTS

The attention of adoptersis directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THISPUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS"' AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THISMATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk asto the quality and performance of software devel oped using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rightsin Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.SA.

TRADEMARKS

IMM®, MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified
Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™,
XMI Logo™, CWM™ CWM Logo™, [IOP™ | MOF™ | OMG Interface Definition Language (IDL)™, and OMG
Systems Modeling Language (OMG SysML)™ are trademarks of the Object Management Group. All other products or
company names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) isand shall at al times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software devel oped only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

OMG'S ISSUE REPORTING PROCEDURE

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsi stencies, or inaccuracies they may find by completing the Issue Reporting Form listed on
the main web page http://mmw.omg.org, under Documents, Report a Bug/lssue (http://www.omg.org/report_issue.htm).

Table of Contents

e 1Y = o = v
(S oo] o1 PP RPPPTR 1
pZ 011 (0] 1 4= o o7 > 1
N R 1= 1= - | PSPPSR 1
2.2 Required Compliance 1
2.2.1 XMl Schema COMPHANCEuuuiiiiiiiiiae et aa e e e 1
2.2.2 XMl Document COMPIIANCEuuiiieiiiieiiiii ittt ee e e e e e 1
2.2.3 Software COMPHANCEooo i et a e e 2
2.3 Optional ComplianCe POINTSuuuiuiiiiiiieiie e s e e e e e e e eeeeeeeeenenne 2
2.3.1 XMl Extension and Differences ComplianCecccccccciiiiiiiiiiiiriiii e 2
2.3.2 Canonical XMI SChEMAcoiiiiiiiiiiiiiiie e e 2
P22 TS T - Vg (o] o o= 1 I 1Y, 1IN o o] o SR 2
2.3.4 Canonical XMI IMPOIT ...ccciiiiiiiieie e e e e e e e e s s e e e e e e e s e e e sna e e rneeaaeeeean 2
3 Normative REfEIreNCESccovviiiiiiii e e aaens 2
4 Terms and DefiNitiONSccooiiiiiiii e e 3
B SYMDOIS . 3
6 Additional INfOrmMationuuiiiiiii e 4
6.1 Relationship to existing standards for MOF and XMIcccccoeiviiiiiiiiiiiiiiieeciienn, 4
6.2 ACKNOWIEAGMENLS ...ttt e e e e e e e e e e eeeeenennas 4
7 XMI Document and Schema Design PrinCiplescccooovvviiiiiiieiiiiieieeee, 5
7.1 PUIPOSE ..ottt ettt ettt ettt e e et e et et e e e e e e e et e e e e e e e e eaa e eenas 5
7.2 Use Of XML SChemMASccooiiiiiieiicrie e e e e e e e e e e aaenannees 5
7.2.1 XML Validation of XMI DOCUMENLScccoooiiiiiiiiiiiiceeeeeeee s e e e 6
7.2.2 Requirements for XMI SCREMASccooiiiiiiiiiiiiii et 6
7.3 BaSIC PriNCIPIES oeuiiiiii ittt e s s e e e e e e e e e e e e e e e aaaraannaa 6
7.3.1 Required XML DeCIarations..........uuuuieeeiiiiiiiiiiiieieieeeee e s sssseienteere e e ae e e s e e snnsnnveneeeeeeeaees 6
7.3.2 Model Class REPreSENtAtiONc.eiiirieeiiiiiiiiiiieireeree e s s e s ssreererr e e e e e e s s s snrrnrarereeaeees 7
7.3.3 Model EXtension MECNANISIMcciiiiiiiiiii ittt 7
7.4 XMI Schema and Document SrUCtUrecoooeieiiiiiiiiii e e 7
T.5 XMIEMOGEI ...t e e e e e e e e e e e e eera s 8
7.5.1 XML Schema for the XMI MOEL.........cccooiiiiiiiiiie e 8
7.5.2 XMl MOAEI CIASSES ...ovvtutuiiiiiiiiiii ittt i e e e e e e et e ettt s e s e e e s e e e e e e e aaaeaeaeees 8
T.5.3 XM it a e e e e e e e rarr 10
T A (= =] o o 10
7.5.5 DOCUMENTIALION ..iiiiiiiiiiiiiiiiiiit e e e e e e e e e e e e e et et e e e e e e e et e e e s e e e e e e e eeeaaaaeaaeees 11
7.5.6 Add, Replace, and DEIeteoeeeiiiiiiiiiiiie e 12

XML Metadata Interchange (XMl), v2.5.1 i

T.6 XML ATTIDULES . .oeeee e ettt 13

7.6.1 Element Identification AttHDULESoeiiiiiiiiiii e 13

7.6.2 LINKING ALLHDULES ...ttt e e e e e e e e 14

7.6.3 TYPE ALIDULE ..ot e e e e e e e 15

A A, B 1Y 1 T PP 15
7.8 Model REPreSENTALIONuuvuuiiiiiiieee ettt e e e e ee e 16
7.8.1 Namespace Qualified XML Element Namesccccccceveeeiiniiiiiiiiieineeee s ee s eeeinvveene e 16

A S 7 |V 11T o] 1o 1= 17

AR S T T O = TSI 2 (=T o] (= FT= 1 = Ui] o 17

7.8.4 DataType-typed Property Representationcccccccvverieeniiiiiiiiiiieeenee e e e s e s 17

7.8.5 Class-typed Property REPreSentationcccoccviieiieieeeeinsiisiiiineeeeee e e e e e ssssnnsnene e 19

7.8.6 CompOosite REPreSENtAtiONcccueuiiiiiiiiiae et a e 19

7.8.7 Datatype RepreSentationooceeiiiiiiiiiaiiae e 19

7.8.8 Inheritance RePreSENtatiONc...uuiiiiiiiiia it 21

7.8.9 AssOciation RepPreSentationc....eeeiiiiiaiaiiiiiieei e 21

7.8.10 Derived INFOrMAtION ..o e e e e 21

7.9 Transmitting Incomplete Metadataoooeveeiiiiiiiiiiiii e 22
7.9.1 Interchange of Model Fragments ... 22

7.9.2 XMIENCOQING ..ttt ettt e et e e e e e st e e e e e e e e e e e e snnbene e 22

7.9.3 EXAMPIE .ottt e e e r e e e e e e e e aa e e e e e 22

7408 0 T I 01 14 T S 22
4% O R =T To T T o o L= S 22

285 0 2 R o1 (] o S 23

40 0 T b T o L= {0} 0 1 S 25

7.11 Tailoring Schema ProduCiON ... 26
7. 111 XMITAG VAIUEBS ...ttt e e e e e e ettt e e e e e e e e e e e nnnnbneeees 27

7.11.2 Tag Value CONSIFAINTScooiiiiiiiie ettt e e e e e e e e s snebebbeeeaaeas 28

7.11.3 XML Element vS XML ARIDULEuuiiiiiiiiieiiie e 29

7.11.4 Summary of XMI Tag Scope and AffeCt ... 29

7.11.5 Effects on Document ProdUCHIONcoiiiiiiiiiiiiiiiiiiiee e 31

7.11.6 Example: Customize the XML Schema for a GIS Modelcccoveieeiiiiiiiiiiiiiiin. 32

7.12 Transmitting Metadata DIfferencesoooovveeiiiiiiiiiiiie e 37
4 2 Y o) (A7 1 o] o PP URP PP 37

7.12.2 DEfINITIONS oottt e e e e e e e e bbb e e e e e e e e e e e e nabere e 38

7.12.3 DIfFEIENCES ...ttt e e bbbt e e e e e e e e b b e 38

A Y | =t g To o To [T PP URT TP 38

7.12.5 Example of DIffErENCESccoooiiiiiie e 39

7.13 Document Exchange with Multiple TOOISovvviiiiiiiiiiiiiee e, 40
0 T R = 111 o PR PR PP 40

A R I e (o ot =T LU OO PT SRR 41

A0 T T b a1 o] - SR 41

7.14 General Datatype MechaniSImcooiiiiiiiiiiiiiii e 42
7.15 IMpPort RECONCIHALIONuvvviiiiiiii e et e e e e e 43
8 XML Schema ProdUCLiONoiieiiiiieeiee e 45
8.1 PUIMPOSE .ottt ettt e et e et e e et e et e e e e e anan 45
8.1.1 NOtation fOr EBNF ..ottt e e e e e e e e 45

8.2 XMI VErSiON 2 SCREIMASuuuiiiiiiiiiiiiieieie e e e e e 45

XML Metadata Interchange (XMl), v2.5.1

B.2.1 EBINF o 45

8.2.2 Fixed SChema DECIArationScccceiiiiiiiiiiiieeee e 53

9 XML Document ProdUCLIONcoivuiiiiieiii i e e e 55
9.1 PUIMPOSE ..ottt 55
S B2 €11 o =T = | PR 55
9.3 SerialiZation MOUEIooveiiii e e eaa s 55
9.4 XMI Representation of the Core Packagesccoovviiiiiiiiiiiii e 56
S T V(@] == Tod - Vo [56

S A OV (@]l T <= Vo [SRS 59

9.5 EBNF Rules RepPresSentationccccoeeoiiioiieiiiiiieeeeeeeiiiis s e e e e e e e e e aaeeeenennnnns 60
9.5.1 Overall DOCUMENT SITUCTUIEu.iiiiiiie ettt e e e e et e e e e e e et eeeeeeees 60

0.5.2 ODJECE SEIUCTUI.....eeeiiieiee ettt e e e e e e e e e e s e e eaa s 62

Lo IR TR I 4 (=] 4 1Y (o] o PO RPPPRPP 64

10 XML Schema Infoset MOdEloovieniiiniiii e 65
O TR R 7= 1= = | 65
10.2 XML SChema SITUCIUIEScceviiiiiiie et e e e e e e e e e 65
10.2.1 XSDANNOTALION ...ccoiiiiiiiiiiieiiieieitite e e e e e e e e e e e e e eeeeeeeeeeeeeeeeeeebe e b e bbb s eseseaeeeaeens 73

10.2.2 XSDAHINDULEDECIAIALIONvvvvviiiiiiiiiiieiiie e e e e e e e 74

10.2.3 XSDALtributeGroupDEefiNItioNcccceeeiii i 74

10.2.4 XSDAHIDULEUSE ..ottt ettt e e s e s e s e e e eeaeas 75

10.2.5 XSDCOMPIEXTYPECONIENT ...ooviiieeeee i ettt e e e s s s e e e e e e e e s s rareraeeeeeaeeas 75

10.2.6 XSDCoMPIEXTYPEDEINIION ..vuviiiiieieeeie e e e e e e 75

10.2.7 XSDCOMPONENL ...ciiiiieieieieeeeeieeieieiet s e e s s s e e e e e e e e e aeaeeeeteeeaeeeeeaereretannnnnaaaaaaeaeaeaaaaeaeeees 77

10.2.8 XSDFEALUIE ...ccvviiiiieeiiiiiie et e e e e ettt e e e e e s aet s e e e e e aaaa s e e e eee e e e eeeasaansaaeaees 77

10.2.9 XSDldentityConstraintDefiNitioncccciiiiiiiieee e 78

0 2 O IS 1Y, o T =1 [(0T o SRR 78
10.2.11 XSDNamMeEACOMPONENTuuviiiiireeeeeeiseiiienteerrereeeeeessssssresrrrrreeaeeeaassnsresrrrrrereeeeses 79
10.2.12 XSDSCNEIMA ...ciiceiiieeeiie et e e e e e e e e e e e e e e e e et et e teeeeeeabe b e s bbb s e s 79

O 0t T T S 1 I 1 Yoo] o L 81
10.2.14 XSDSIMPIETYPEDERINItION ...ovveeiiiiieeii i 81
O T T T I I = 1 o PPN 84
10.2.16 XSDTYPEDEINITION ..ot e e e e e e e e e e e e e eeeeeas 84
10.2.17 XSDWIIACAIccooeieiiieieiiriiii e et e e e e e e e e et e et e et e e e e e e e e e e aaeaeaaees 85
10.2.18 XSDXPathDEfINItIONccoviiiiiiiiiiiiititiii et e e e re bbb 86

10.3 XML Schema DatatyPeSccooeiiiiiiiiiiiiiiiiiiieie et a e e e e 86
10.3.1 XSDBOUNAEAFACELvuuiieeiiiiiiiie et e e e s e e e e e e e e e e e e eaabansaeeeens 89

10.3.2 XSDCaArdiNalityFaCETuuiiiiiieiiaieeeii ettt e e e e e e e e nb b eeeeaaaeaeas 89

10.3.3 XSDCONSrAININGFACELuuieiiiiiiiiieie it e e e eaaaaa e e as 89

10.3.4 XSDENUMETAtIONFACELiiiiiiiiiie et e e ee b eeeaeees 89

10.3.5 XSDFIXEUFACEL ...uuiiiiiiiiiii ettt e e e e e e s e e e e e e e e e e e e eaabansaeeeens 89

10.3.6 XSDFUNAMENTAIFACETcooiviiiiiieiiieeiee e eeaab s e eeaees 89

R T A S B = 1o =) AR 89

10.3.8 XSDFractioNDIGIESFACETuueeiiiiiaiieiiiiiiiee ettt e e e e e 90

10.3.9 XSDLENGINFACELccoiiiiee e e e e e 90

10.3.10 XSDMAXEXCIUSIVEFACELcovvuiiiiiiiiiiiie et e e 90
10.3.11 XSDMAXFACEL ...coeuiiiiiiieiie et et e et e e e e e e et e e et e e e et e e eaa e eat e eananaes 90
10.3.12 XSDMaXINCIUSIVEFACEToovveiiiiiiiieii e e e e ee e 91

XML Metadata Interchange (XMl), v2.5.1 iii

10.3.13 XSDMaxXLengthFacetcccccviiiiiiiiiie e e e 91

10.3.14 XSDMINFACELceiviiviiiiriiiititiiii et ee et e e s e e e e e e e e e eeeeeeeeeeeeeareee et bbb eeeaeeaeeeaeeas 91

10.3.15 XSDMINEXCIUSIVEFACET ...uuvutiiiiiiiiiiiiiiii et 91

10.3.16 XSDMININCIUSIVEFACEL ...uvuvitiiiiiiiiieieiiie ettt e e 91

10.3.17 XSDMINLeNGIhFACELccceviiiiiiiiiie e e e r e e e 91

10.3.18 XSDNUMECFACELvvtiriiiiiiiiiiiiieiiieieeee et e ettt e s e s e e e e e e e e aaaaeaees 91

10.3.19 XSDOIUEIEAFACELcevvvevirririiiiiieiiiiieie e et e e e e e e e ee e et et et e e e et re bbb e e e e aseeaeeaeens 92

10.3.20 XSDPAMEIMFACEL ..vvuiiiiieiiiii e e e e e et e e e e e e e s e e e eeeeans 92

10.3.21 XSDRepPEAtAbIEFACELcccceeiieieiie e 92

10.3.22 XSDTOtaIDIGItSFACETcccceviiiiiieieeee e e i et e e e e e e e e e e e e e e e e e snnrenreeeeees 92

10.3.23 XSDWhItESPACEFACELcccceiieeiieece e e e e e e 92

O e T g o] = 93
ANNeXx A - BiblIographyoi i 99
ANNeX B - CanoniCal XMlcoouuiiiiiiiiieceie e 101

XML Metadata Interchange (XMl), v2.5.1

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Formal
Specifications are available from this URL:

http: //www.omg.org/spec

Specifications are organized by the following categories:
Business Modeling Specifications

Middleware Specifications
+ CORBA/IIOP
. Data Distribution Services
e Speciaized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications
* UML, MOF, CWM, XMI
. UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications
. CORBA Services
e CORBAFzcilities

XML Metadata Interchange (XMl), v2.5.1 v

OMG Domain Specifications
CORBA Embedded Intelligence Specifications
CORBA Security Specifications

Signal and Image Processing

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as SO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note — Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to
http: //www.omg.org/report_issue.htm.

Vi XML Metadata Interchange (XMl), v2.5.1

1 Scope

This International Standard supports the Meta Object Facility (MOF) Core defined in ISO/IEC 19508. MOF is the
foundation technology for describing metamodels. It covers awide range of domains, and is based on a constrained subset
of UML. XML Metadata Interchange (XMI) is awidely used XML interchange format. It defines the following aspects
involved in describing objects in XML:

» Therepresentation of objectsin terms of XML elements and attributes.

» The standard mechanismsto link objects within the same file or across files.

» Thevalidation of XMI documents using XML Schemas.

» Object identity, which allows objects to be referenced from other objectsin terms of IDs and UUIDs.

XMI describes solutions to the above issues by specifying EBNF production rules to create XML documents and Schemas
that share objects consistently.

2 Conformance

2.1 General

This sub clause describes the required and optional points of compliance with the XMI specification. The terms “XMI
Document” and “XMI Schema’ are defined in Clause 4.

2.2 Required Compliance

2.2.1 XMI Schema Compliance

XMI Schemas must be equivalent to those generated by the XMI Schema production rules specified in this document.
Equivalence means that XMI documents that are valid under a schema produced by the XMI Schema production rules
would be valid in a conforming XMI Schema and that those XMI documents that are not valid under a schema produced
by the XMI Schema production rules are not valid in a conforming XM| Schema.

2.2.2 XMl Document Compliance

XMI Documents are required to conform to the following points:

» The XMI document must be “valid” and “well formed” as defined by the XML recommendation, whether used with or
without the document’s corresponding XMI Schema(s). Although it is optional not to transmit and/or validate a
document with its XMI Schema(s), the document must still conform as if the check had been made.

« The XMI document must be equivalent to those generated by the XMI Document production rules specified in this
document. Equivalence for two documents requires a one to one correspondence between the elementsin each
document, each correspondence identical in terms of element name, element attributes (name and value), and contained
elements. Elements declared within the XMI documentation and extension elements are excepted.

XML Metadata Interchange (XMl), v2.5.1 1

2.2.3 Software Compliance

Software is XMI schema compliant when it produces XML schemas that are XMI schema compliant. Software is XMI
document compliant when it produces or consumes XML documents that are XMI document compliant.

2.3 Optional Compliance Points

2.3.1 XMl Extension and Differences Compliance

XMI Documents optionally conform to the following points:

» Theguidelines for using the extension elements suggested in 7.5 are found there and in 7.11. Tools should place their
extended information within elements that are not in the XM I namespace or within elements that have the XMl
namespace and atag name of “ Extension.” They should also declare the nature of the extension using the standard XM
elements where applicable, and preserve the extensions of other tools that fall within the XMI namespace.

» Processing of XMI differencing elements (in 7.11.5) is an optiona compliance point.
2.3.2 Canonical XMI Schema

Software is Canonical XMI Schema compliant if it is able to generate an XML Schema (for the metamodel(s) supported
by the software) conformant with the rules in Annex B.

2.3.3 Canonical XMI Export

Software is Canonical XMI Export compliant if it is able to export (either by default or on demand) complete export of
models (for the metamodel (s) supported by the software) in XMI format conformant with the rules in Annex B.

2.3.4 Canonical XMI Import

Software is Canonical XMI Import compliant if it is able to completely import any model file (for the metamodel(s)
supported by the software) in XMI format conformant with the rules in Annex B.

Note that, since Canonical XMI isvalid XMI, general XMI| Document Compliance (see second part of 2.2.3) implies (and
requires) conformance with Canonical XMI Import.

3 Normative References

The following referenced documents are indispensable for the application of this document. For dated references, only the
edition cited applies. For undated references, the latest edition of the referenced document (including any amendments)

applies.

« [MOF] “ISO/IEC 19508:2014 Information technology - Object Management Group - Meta Object Facility Core.”
(OMG Specification Meta Object Facility (MOF) Core Specification, Version 2.4.2 - http://www.omg.org/spec/M OF/
24.2)

2 XML Metadata Interchange (XMl), v2.5.1

4

[UMLInfra] “ISO/IEC 19505-1:2012 Information technology - Object Management Group - Unified Modeling
Language (OMF UML) - Part 1: Infrastructure.” (OMG Specification Unified Modeling Language (OMG UML)
Version 2.4.1 - Part 1: Infrastructure - http://www.omg.org/spec/UML/2.4.1/Infrastructure)

[UML Super] “I1SO/IEC 19505-2:2012 Information technology - Object Management Group - Unified Modeling
Language (OMF UML) - Part 2: Superstructure.” (OMG Specification Unified Modeling Language (OMG UML)
Version 2.4.1 - Part 2: Superstructure - http://www.omg.org/spec/UML/2.4.1/Superstructure)

[XML] “Extensible Markup Language (XML) 1.0 (Fifth Edition) W3C Recommendation 26 November 2008
http://mww.w3.0rg/ TR/2008/REC-xml-20081126/

[XMLSchema] “XML Schema Part 1: Structures Second Edition” W3C Recommendation 28 October 2004
http://www.w3.0rg/ TR/2004/REC-xml schema-1-20041028/

[XMLSchema?] “XML Schema Part 2: Datatypes Second Edition” W3C Recommendation 28 October 2004
http://mww.w3.0rg/ TR/2004/REC-xml schema-2-20041028/

[XLink] “XML Linking Language (XLink) Version 1.1 W3C Recommendation 26 May2010
http://mww.w3.0rg/ TR/2010/REC-xlink 11-20100506/

[XPointerFramework] “XPointer Framework” W3C Recommendation 25 March 2003
http://mww.w3.0rg/ TR/2003/REC-xptr-framework-20030325/

[XPointerElement] “ X Pointer element() Scheme” W3C Recommendation 25 March 2003
http://www.w3.0rg/ TR/2003/REC-xptr-el ement-20030325/

[XPointerXmls] “XPointer xmins() Scheme” W3C Recommendation 25 March 2003
http://mww.w3.0rg/ TR/2003/REC-Xptr-xmlns-20030325/

[NAMESP] “Namespacesin XML 1.0 (Third Edition)” W3C Recommendation 8 December 2009
http://www.w3.0rg/TR/2009/REC-xml-names-20091208/

[INFOSET] “XML Information Set (Second Edition)” W3C Recommendation 4 February 2004
http://mwww.w3.0rg/TR/2004/REC-xml-infoset-20040204/

Terms and Definitions

The following are the only terms defined in this International Standard. There are no other terms used in this standard
with meanings that cannot be found in other standards.

Canonical XM1: A specific constrained format of XMI that minimizes variability and provides predictable identification
and ordering. The constraints are detailed in Annex B.

5

Symbols

There are no symbols defined in this International Standard.

XML Metadata Interchange (XMl), v2.5.1

6 Additional Information

6.1 Relationship to existing standards for MOF and XMI

This International Standard is aligned with [MOF2] and [UML 2], which are not backwards compatible with the following
existing International Standards:

« [UML1Z] ISO/IEC 19501:2005, Information Technology - Open Distributed Processing - Unified Modeling Language
(UML) Version 1.4.2

+ [MOF1] ISO/IEC 19502:2005, Information technology - Meta Object Facility (MOF)
« [XMI1] ISO/IEC 19503:2005, Information technology - XML Metadata Interchange (XMI)

Because existing specifications reference these 2005 standards, and they are not superseded by this International Standard,
these 2005 standards remain in force.

There are no normative references to these 2005 standards required in this International Standard.

6.2 Acknowledgments

The following companies submitted and/or supported parts of this specification:

88 Solutions, Adaptive, Ceira Technologies, Inc., Compuware Corporation, DSTC, Hewlett-Packard, International
Business Machines, IONA, MetaMatrix, Raytheon, Softeam, Sun Microsystems, Telelogic, AB, Unisys, University of
Kent.

4 XML Metadata Interchange (XMl), v2.5.1

7 XMI Document and Schema Design Principles

7.1 Purpose

This clause contains a description of the XML documents produced from instances of MOF models, and XML schemas
that may be used to allow some XML validation of these documents. The use of schemas in XMI is described first,
followed by a brief description of some basic principles, which includes a short description of each XML attribute and
XML element defined by XMI. Those descriptions are followed by more complete descriptions that provide examples
illustrating the motivation for the XM schema design in the areas of model class specification, transmitting incomplete
metadata, linking, tailoring schema production, transmitting metadata differences, and exchanging documents between
tools.

It is possible to define how to automatically generate a schema from the MOF model to represent any M OF-compliant
model. That definition is presented in Clause 8.

You may specify tag value pairs as part of the MOF model to tailor the schemas that are generated, but you are not
required to do so. Using these tag value pairs requires some knowledge of XML schemas, but the schemas that are
produced might perform more validation than the default schemas. Sub clause 7.11 describes the tag values, their affect
on schema production, and their impact on document serialization.

7.2 Use of XML Schemas

An XML schema provides a means by which an XML processor can validate the syntax and some of the semantics of an
XML document. This International Standard provides rules by which a schema can be generated for any valid XMl -
transmissible MOF-based model. However, the use of schemas is optional; an XML document need not reference a
schema, even if one exists. The resulting document can be processed more quickly, at the cost of some loss of confidence
in the quality of the document.

Although XML schemas are optional in general terms, it is incumbent on standards bodies that define MOF2 instances to
produce corresponding XMI 2 Schemas for them.

It can be advantageous to perform XML validation on the XML document containing MOF model data. If XML
validation is performed, any XML processor can perform some verification, relieving import/export programs of the
burden of performing these checks. It is expected that the software program that performs verification will not be able to
rely solely on XML validation for all of the verification since XML validation does not perform all of the verification that
could be done.

Each XML document that contains model data conforming to this International Standard contains: XML elements that are
required by this International Standard, XML elements that contain data that conform to a model, and, optionally, XML
elements that contain metadata that represent extensions of the model. Models are explicitly identified in XML elements
required by this International Standard. Some model information can also be encoded in an XML schema. Performing
XML validation provides useful checking of the XML elements that contain metadata about the information transferred,
the transfer information itself, and any extensions to the model.

The XML Namespace specification has been adopted by the W3C, allowing XMI to use multiple models at the same time.
XML schema validation works with XML namespaces, so you can choose your own namespace prefixes in an XML
document and use a schema to validate it. The namespace URIs, not the namespace prefixes, are used to identify which
schemas to use to validate an XML document.

XML Metadata Interchange (XMl), v2.5.1 5

7.2.1 XML Validation of XMI Documents

XML validation can determine whether the XML elements required by this International Standard are present in the XML
document containing model data, whether XML attributes that are required in these XML elements have values for them,
and whether some of the values are correct.

XML validation can also perform some verification that the model data conforms to a model. Although some checking
can be done, it isimpossible to rely solely on XML validation to verify that the information transferred satisfies all of a
model’s semantic constraints. Complete verification cannot be done through XML validation because it is not currently
possible to specify all of the semantic constraints for a model in an XML schema, and the rules for automatic generation
of a schema preclude the use of semantic constraints that could be encoded in a schema manually, but cannot be
automatically encoded.

Finally, XML validation can be used to validate extensions to the model, because extensions must be represented as
elements; if those elements are defined in a schema, the schema can be used to verify the elements.

7.2.2 Requirements for XMI Schemas

Each schema used by XMI must satisfy the following requirements:;

» All XML elements and attributes defined by the XMI specification must be imported in the schema. They cannot be put
directly in the schemaiitself, since thereis only one target namespace per schema.

» Model constructs have corresponding element declarations, and may have an XML attribute declaration, as described
bel ow. In addition, some constructs al so have a complexType declaration. The declarations may utilize groups, attribute
groups, and types, as described below.

« Any XML elements that represent extensions to the model may be declared in a schema, although it is hot necessary to
do so.

By default, XMI schemas allow incomplete metadata to be transmitted, but you can enforce the lower bound of
multiplicities if you wish. See 7.9 for further details.

7.3 Basic Principles

This sub clause discusses the basic organization of an XML schema for XMI. Detailed information about each of these
topics isincluded later in this chapter.

7.3.1 Required XML Declarations

This International Standard requires that XML element declarations, types, attributes, and attribute groups be included in
schemas to enable XML validation of metadata that conforms to this International Standard.

All XML elements defined by this International Standard are in the namespace “http://www.omg.org/spec/X M| /ver sion-
namespace,” where version-namespace is the version of the XMI specification being used. The XML namespace
mechanism can be used to avoid name conflicts between the XMI elements and the XML elements from your MOF
models.

6 XML Metadata Interchange (XMl), v2.5.1

In addition to required XML element declarations, there are some attributes that must be defined according to this
International Standard. Every XML element that corresponds to a model class must have XML attributes that enable the
XML element to act as a proxy for alocal or remote XML element. These attributes are used to associate an XML
element with another XML element. There are also other required attributes to let you put datain XML attributes rather
than XML elements. You may customize the declarations using MOF tag values.

7.3.2 Model Class Representation

Every model class is represented in the schema by an XML element whose name is the class name, as well as a
complexType whose name is the class name. The declaration of the type lists the properties of the class. By default, the
content models of XML elements corresponding to model classes do not impose an order on the properties.

By default, XMI alows you to serialize features using either XML elements or XML attributes; however, XMI allows you
to specify how to serialize them if you wish. Composite and multivalued properties are always serialized using XML
elements.

7.3.3 Model Extension Mechanism

Every XMI schema contains a mechanism for extending a model class. Zero or more extension elements are included in
the content model of each class. These extension elements have a content model of ANY, allowing considerable freedom
in the nature of the extensions. The processContents attribute is lax, which means that processors will validate the
elements in the extension if a schemais available for them, but will not report an error if there is no schema for them. In
addition, the top level XMI element may contain zero or more extension elements, which provides for the inclusion of
any new information. One use of the extension mechanism might be to transmit data that represents extensions to a
model.

Tools that rely on XMI are expected to store the extension information and export it again to enable round trip
engineering, even though it is unlikely they will be able to process it further. XML elements that are put in the extension
elements may be declared in schemas, but are not required to be.

7.4 XMI Schema and Document Structure

Every XMI schema consists of the following declarations:
« An XML version processing instruction. Example: <?XML version="1.0"?>

« An optional encoding declaration that specifies the character set, which follows the 1SO-10646 (also called extended
Unicode) standard. Example: <?XML version="1.0" ENCODING="UCS-2" 7>

« Any other valid XML processing instructions.
» A schema XML element.
« Animport XML element for the XMI namespace.
» Declarations for a specific model.
Every XMI document consists of the following declarations, unless the XMI is embedded in another XML document:

« An XML version processing instruction.

XML Metadata Interchange (XMl), v2.5.1 7

» An optional encoding declaration that specifies the character set.
« Any other valid XML processing instructions.

XMI imposes no ordering requirements beyond those defined by XML. XML Namespaces may also be declared in the
XMI element as described below.

The top element of the XMI information structure is either the XMI element, or an XML element corresponding to an

instance of a class in the MOF model. An XML document containing only XMI information will have XMI as the root
element of the document. It is possible for future XML exchange formats to be developed that extend XMI and embed
XMI elements within their XML elements.

7.5 XMl Model

This sub clause describes the model for XMI document structure, called the XMI model. The XMI model is an instance
of MOF for describing the XMI-specific information in an XMI document, such as the version, documentation,
extensions, and differences.

Using an XMI model enables XMI document metadata to be treated in the same fashion as other MOF metadata, allowing
use of standard MOF APIs for access to and construction of XMI-specific information in the same manner as other MOF
objects. A valid XMI document may contain XM| metadata but is not required to.

7.5.1 XML Schema for the XMI Model

When the XMI model is generated as an XML Schema following the XMI schema production rules, the result is a set of
XML element and attribute declarations. These declarations are shown in Clause 7 and given the XML namespace name
of the form “http://www.omg.org/spec/X MI/version-namespace,” where version-namespace is the XML namespace for
the version of the XMI specification being used. Every XMI-compliant schema must include the declarations of the
following XML elements by importing the declarations in the XMI namespace “ http://www.omg.org/spec/XMI/version-
namespace.” The version of this XMI specification is 2.4.1, and its XMI namespace is “ http://www.omg.org/spec/XMI/
20110701,” and the XSD file can be found at “http://www.omg.org/spec/XM1/20110701/XMI .xsd.”

In addition, there are attribute declarations and attributeGroup declarations that must be imported. These include the id
attribute, and the IdentityAttribs, LinkAttribs, and ObjectAttribs attribute groups. These constructs are not defined in the
XMI model.

In the declarations that follow, the XML Schema namespace, whose URI is “http://www.w3.0rg/2001/ XML Schema,” has
the namespace prefix “xsd.” The XMI namespace is the default namespace.

7.5.2 XMI Model Classes

There are three diagrams that describe the XMI model. The details of the classes are described in the sub clauses below.
This sub clause gives an overview of the model.

Figure 7.1 shows the XMI element, documentation, and extension elements. The XMI class is an overall default container
for XMI document metadata and contents. The attributes of the XMI class are the documentation, differences (add,

replace, delete in Figure 7.2), and extensions. The Documentation class contains many fields to describe the document for
non-computational purposes. The Extension class contains the metadata for external information. The String datatype and

8 XML Metadata Interchange (XMl), v2.5.1

the Integer datatype come from the PrimitiveTypes package used by MOF Core and UML Infastructure. The
PrimitiveTypes package also contains UnlimitedNatural and Boolean. The DateTime primitive type has XML Schema
data type of “http://www.w3.0rg/2001/X ML Schema#dateTime.”

XMI Documentation «dataType»
documentation : Documentation contact : String [0..1] DateTime
difference : Difference [0..*] exporter : String [0..1]
extension : Extension [0..*] exporterVersion : String [0..1]

exporterID : String [0..1]
longDescription : String [0..1]
shortDescription : String [0..1]
notice : String [0..1]

owner : String [0..1]

extender : String [1] timestamp : DateTime [0..1]
extenderID : String [0..1]

Extension

Figure 7.1- The XMI Model for the XMI element, documentation, and extension

The differences information (Figure 7.2) is described as additions, deletions, and replacements to target objects. The
objects referenced by the differences may be in the same or different documents. The differences information consists of
the Add, Delete, and Replace classes, which specify a set of differences and refer to MOF objects that are added or
removed. Note that the Element class is a placeholder for specifying that a Difference has a target that can refer to any
objects. The Element class is not included in the required element declarations.

The XML Schema declarations for each element of the XML model are given in the following sub clauses. They may be
generated by following the XMI production of XML Schema rules defined in Clause 7, except for the XMI class and the
XMI attributes described in 7.6.

UML::Element +lowner
0.1

{readOnly, union}

+/ownedElement

0.*
{readOnly, union}

+addition | 0..* +target | 0..* +replacement | 0..*
Difference [} gfcontainer
0.1
+difference
T 0.*
Add Delete Replace
position : Integer [0..1] position : Integer [0..1]

Figure 7.2 - The XMI Model for differences

XML Metadata Interchange (XMl), v2.5.1 9

7.5.3 XMl

The root level XML element for XMI documents containing only XM data may be the XMI element, but it must be the
XMI element if there are multiple elements. Its declaration is:

<xsd:complexType name="XMI">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:any processContents="strict"/>

</xsd:choice>

</xsd:complexType>
<xsd:element name="documentation" type="Documentation"/>
<xsd:element name="difference" type="Difference"/>
<xsd:element name="extension" type="Extension"/>
<xsd:element name="XMI" type="XMI"/>

Note that in the schema that the elements for documentation, difference and extension may not validly be included in the
xsd:choice for XMI since that already has xsd:any. However are the elements that must be used within the XMI elements.
The Documentation, Difference, and Extension elements (starting with uppercase), defined in the following sub clauses,
may only be used if they are root elements, not nested underneath XMI, and qualified with the XMI namespace: for
example xmi:Documentation.

Each version of XMI is unambiguously identified by its unique namespace URI of the form
“http://www.omg.org/spec/ X MI/version-namespace.”

The XMI element need not be the root element of an XML document; you can include it inside any XML element that
was not serialized according to this International Standard. If a document contains only XMI information, the XM
element may not be present when there is only a single top-level object, but is often useful for consistency and for
elements such as Documentation. The start of XMI information and identification of the XMI version is indicated by the
presence of the XMI namespace declaration, regardless of whether the XMI element itself is present. Clause 8 contains
examples of the use of the XMI element.

The XMI class has the XMI tag org.omg.xmi.contentType set to “any” to indicate that any XMI element may be present
in the XMI stream.

See “Overall Document Structure” on page 60" for details on how the XMI class is serialized.
The XMI model package has the following tag settings:

« tag org.omg.xmi.nsURI set to “ http://www.omg.org/spec/X M| /ver sion-namespace”
- tag org.omg.xmi.nsPrefix set to “xmi”

- tag org.omg.xmi.superClassFirst set to “true”

« tag org.omg.xmi.useSchemaExtension set to “true”

- tag org.omg.xmi.element set to “true”

- tag org.omg.xmi.attribute set to “false”

7.5.4 Extension

The Extension class is designed to contain extended information outside the scope of the user model. Extensions are a
multivalued attribute of the XMI class and may also be embedded in specific locations in an XMI document. The Schema
for extension is:

10 XML Metadata Interchange (XMI), v2.5.1

<xsd:complexType name="Extension">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:any processContents="lax"/>

</xsd:choice>

<xsd:attribute ref="id"/>

<xsd:attributeGroup ref="ObjectAttribs"/>

<xsd:attribute name="extender" type="xsd:string" use="optional"/>

<xsd:attribute name="extenderID" type="xsd:string" use="optional"/>
</xsd:complexType>

<xsd:element name="Extension" type="Extension"/>

The extender attribute should indicate which tool made the extension. It is provided so that tools may ignore the
extensions made by other tools before the content of the extensions element is processed. The extender|D is an optional
internal ID from the extending tool that allows the element to be uniquely located within the tool. The other attributes
allow individual extensions to be identified and to act as proxies for local or remote extensions.

The Extension class in the MOF model has the tag org.omg.xmi.contentType set to “any” and the
org.omg.xmi.processContents tag set to “lax.” The extender and extenderID attributes have the tag attribute set to “true.”

7.5.5 Documentation

The Documentation class contains information about the XMI document or stream being transmitted, for instance the
owner of the document, a contact person for the document, long and short descriptions of the document, the exporter tool
which created the document, the version of the tool, the date and time the document was created, and copyright or other
legal notices regarding the document. The data type of al the attributes of Documentation is string except for the
timestamp which is DateTime. The XML Schema generated for Documentation is:

<xsd:complexType name="Documentation">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="contact" type="xsd:string"/>
<xsd:element name="exporter" type="xsd:string"/>
<xsd:element name="exporterVersion" type="xsd:string"/>
<xsd:element name="longDescription" type="xsd:string"/>
<xsd:element name="shortDescription" type="xsd:string"/>
<xsd:element name="notice" type="xsd:string"/>
<xsd:element name="owner" type="xsd:string"/>
<xsd:element name=timestamp” type="xsd:datetime” />
<xsd:element ref="Extension"/>
</xsd:choice>
<xsd:attribute ref="id"/>
<xsd:attributeGroup ref="ObjectAttribs"/>
<xsd:attribute name="contact" type="xsd:string" use="optional"/>
<xsd:attribute name="exporter" type="xsd:string" use="optional"/>
<xsd:attribute name="exporterVersion" type="xsd:string" use="optional"/>
<xsd:attribute name="longDescription" type="xsd:string" use="optional"/>
<xsd:attribute name="shortDescription" type="xsd:string" use="optional"/>
<xsd:attribute name="notice" type="xsd:string" use="optional"/>

XML Metadata Interchange (XMI), v2.5.1 11

<xsd:attribute name="owner" type="xsd:string" use="optional"/>
</xsd:complexType>

<xsd:element name="documentation” type="Documentation"/>

7.5.6 Add, Replace, and Delete

The Add class represents an addition to a target object in this document or other documents. The target is constrained to
reference only one object. The position attribute indicates where to place the addition relative to other XML elements of
that type within the target. The default, -1, indicates to add the new elements at the end of those elements for the target
element. The addition attribute refers to the set of objects to be added. Both of these attributes have the tag
org.omg.xmi.attribute set to “true.”

The Replace class represents the removal of atarget set of objects and the addition of the objects referred to in the
replacement attribute. The position attribute indicates where to place the replacements relative to other XML elements of
that type within their container (they should all be of the same XML type). The default, -1, indicates to add the new
elements at the end of those elements for the target element. The replacement attribute refers to the objects that will
replace the target elements. Both of these attributes have the tag org.omg.xmi.attribute set to “true.” Note that, unlike
Delete, the replaced elements are only removed from the container not deleted.

The Delete class represents a deletion of the target set of objects in this document or other documents.
The Difference class is the superclass for the Add, Replace, and Delete classes (see Figure 7.2 and 7.12).

The declarations for these classes are:

<xsd:complexType name="Difference">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="target">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:any processContents="skip"/>
</xsd:choice>
<xsd:anyAttribute processContents="skip"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="difference" type="Difference"/>
<xsd:element name="container" type="Difference"/>
<xsd:element ref="Extension"/>
</xsd:choice>
<xsd:attribute ref="id"/>
<xsd:attributeGroup ref="0ObjectAttribs"/>
<xsd:attribute name="target" type="xsd:IDREFS" use="optional"/>
<xsd:attribute name="container" type="xsd:IDREFS" use="optional"/>
</xsd:complexType>

<xsd:element name="Difference" type="Difference"/>

<xsd:complexType name="Add">
<xsd:complexContent>

12 XML Metadata Interchange (XMI), v2.5.1

<xsd:extension base="Difference">
<xsd:attribute name="position" type="xsd:integer" use="optional"/>
<xsd:attribute name="addition" type="xsd:IDREFS" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="Add" type="Add"/>

<xsd:complexType name="Replace">
<xsd:complexContent>
<xsd:extension base="Difference">
<xsd:attribute name="position" type="xsd:string" use="optional"/>
<xsd:attribute name="replacement" type="xsd:IDREFS" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="Replace" type="Replace"/>

<xsd:complexType name="Delete">
<xsd:complexContent>
<xsd:extension base="Difference"/>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="Delete" type="Delete"/>

7.6 XMI Attributes

This sub clause describes the fixed XML attributes that are used in the XMI production of XML documents and Schemas.
By defining a consistent set of XML attributes, XMI provides a consistent architectural structure enabling consistent
object identity and linking across all assets.

7.6.1 Element Identification Attributes

Three XML attributes are defined by this International Standard to identify XML elements so that XML elements can be
associated with each other. The purpose of these attributes is to allow XML elements to reference other XML elements
using XML IDREFs, XLinks, and XPointers.

Two of these attributes are declared in an attribute group called I dentityAttribs; the id attribute is declared globally.
Placing these attributes in an attribute group prevents errors in the declarations of these attributes in schemas. Its
declaration is as follows:

<xsd:attribute name="id" type="xsd:ID" use="optional"/>

<xsd:attributeGroup name="IdentityAttribs">
<xsd:attribute name="label" type="xsd:string" use="optional"
form="qualified"/>

XML Metadata Interchange (XMI), v2.5.1 13

<xsd:attribute name="uuid" type="xsd:string" use="optional”
form="qualified"/>
</xsd:attributeGroup>

76.11 id

XML semantics require the values of this attribute to be unique within an XML document; however, the value is not
required to be globally unique. This attribute may be used as the value of the idref attribute defined in the next sub
clause. It may also be included as part of the value of the href attribute in XLinks. An example of the use of this attribute
and the other attributes in this sub clause can be found in 7.10.3.

If the metaclass has (or inherits) a Property with isld = ‘true,” then the value of that property may be used as the basis of
the xmi:id and/or xmi:uuid attributes.

This is not mandatory, and the exact algorithm to be used is not specified in this International Standard. However it is
important, to be avalid XML document, that the value for xmi:id is unique across all elements within the file. The
xmi:uuid is not so constrained, but if the same value is used in multiple XML elements, then they are all deemed to
reference the same MOF element (e.g., they may represent different aspects).

7.6.1.2 label

This attribute may be used to provide a string label identifying a particular XML element. Users may put any valuein this
attribute.

The value of the label attribute is ignored on import.

7.6.1.3 uuid

The purpose of this attribute is to provide a globally unique identifier for an XML element. The values of this attribute
should be globally unique strings prefixed by the type of identifier. If you have access to the UUID assigned in MOF, you
may put the MOF UUID in the uuid XML attribute when encoding the MOF data in XMI.

UUIDs should use URIs as the unique string. Refer to 6.4.1.1 of the MOF Facility and Object Lifecycle Specification for
an example of a scheme for detailed URI production rules.

An example URI for the metaclass UseCase in the UML2 metamodel 1ooks like this;
http://www.omg.org/spec/UML//20200901/uml.xml#UseCase

7.6.2 Linking Attributes

XMI alows the use of several XML attributes to enable XML elements to refer to other XML elements using the values
of the attributes defined in the previous sub clause. The purpose of these attributes is to allow XML elements to act as
simple XLinks or to hold a reference to an XML element in the same document using the XML IDREF mechanism.

The attributes described in this sub clause are included in an attribute group called LinkAttribs. The attribute group
declaration is:

<xsd:attributeGroup name="LinkAttribs">
<xsd:attribute name="href" type="xsd:anyURI" use="optional"/>
<xsd:attribute name="idref" type="xsd:IDREF" use="optional"
form="qualified"/>
</xsd:attributeGroup>

14 XML Metadata Interchange (XMI), v2.5.1

The link attributes act as a union of two linking mechanisms, any one of which may be used at one time. The mechanisms
are the XLink href for advanced linking across or within a document, or the idref for linking within a document.

XMI offers another mechanism for linking, using the name of the property involved in the reference instead of href or
idref. See 7.10 for more information.

7.6.2.1 Simple XLink Attributes

The href attribute declared in the above entity enables an XML element to act in a fashion compatible with the simple
XLink according to the XLink and XPointer W3C recommendations. The declaration and use of href is defined in the
XLink and XPointer specifications. XM| enables the use of simple XLinks. XMI does not preclude the use of extended
XLinks, athough it is not anticipated that many XMI tools will support them. The XLink specification defines many
additional XML attributes, and it is permissible to use them in addition to the attributes defined in the LinkAttribs group.

To use simple XLinks, set href to the URI of the desired location. The href attribute can be used to reference XML
elements whose id attributes are set to particular values. The id attribute value can be specified using a special URI form
for XPointers defined in the XLink and XPointer recommendations.

7.6.2.2 idref

This attribute allows an XML element to refer to another XML element within the same document using the XML IDREF
mechanism. In XMI documents, the value of this attribute should be the value of the id attribute of the XML element
being referenced.

7.6.3 Type Attribute

The type attribute is used to specify the type of object being serialized, when the type is not known from the model. This
can occur if the type of a reference has subclasses, for instance. The declaration of the attribute is:

<xsd:attribute name="type" type="xsd:QName" form="qualified"/>

Rather than including the IdentityAttribs, and LinkAttribs attribute groups, and the version and type attributes in the
declarations for each MOF class, the XMI namespace includes the following declaration of the ObjectAttribs attribute
group for the attribute declarations that pertain to objects:

<xsd:attributeGroup name="0ObjectAttribs">
<xsd:attributeGroup ref="ldentityAttribs"/>
<xsd:attributeGroup ref="LinkAttribs"/>
<xsd:attribute name="type" type="xsd:QName"
form="qualified"/>
</xsd:attributeGroup>

7.7 XMI Types

The XMI namespace contains a type called Any. It isused in the XMI schema production rules for class attributes, class
references, and class compositions. The declaration of this type is part of the fixed declarations for XMI. The Any type
allows any content and any attributes to appear in elements of that type, skipping XML validation for the element’s
content and attributes. The declaration of the type is as follows:

<xsd:complexType name="Any">
<xsd:choice minOccurs="0" maxOccurs="unbounded">

XML Metadata Interchange (XMI), v2.5.1 15

<xsd:any processContents="skip"/>
</xsd:choice>
<xsd:anyAttribute processContents="skip"/>
</xsd:complexType>

By using this type, the XMI schema production rules generate smaller schemas than if this type was declared multiple
times in a schema. Also, using the Any type enables some changes to be made to the Any type declaration without
affecting generated XM schemas.

7.8 Model Representation

This sub clause describes how to represent information using XM

» How classes, properties, composites, multiple elements, datatypes, and inheritance are represented in XMI compliant
XML schemeas.

» How instances of classes are represented in XMI compliant XML documents.

The production rules for these representations are given in EBNF form in the “XML Schema Production” and “XML
Document Production” clauses.

7.8.1 Namespace Qualified XML Element Names

When the official schema for a model is produced, the schema generator must use the namespace URI specified by the
Package::URI property on the package representing the metamodel, which may be overridden by the org.omg.xmi.nsURI
tag to identify uniquely the XML namespace in the model. XML processors will use hamespace URIs to identify the
schemas to be used for XML validation, as described in the XML schema specification.

The XML element name for each model Class, and Association in a document is its short name. The name for XML tags
corresponding to model Properties is the short name of the property. The name of XML attributes corresponding to model
properties (DataType-typed or Class-typed) is the short name of the property, since each tag in XML has its own naming
context.

Each namespace is assigned a logical URI. The logical URI is placed in the namespace declaration of the top level
element in XML documents that contain instances of the model. The XML namespace specification assigns logical hames
to namespaces that are expected to remain fixed throughout the life of all uses of the namespace since it provides a
permanent global name for the resource. An example is “http://www.omg.org/spec/UML/20110701.” There is no
requirement or expectation by the XML Namespace specification that the logical URI be resolved or dereferenced during
processing of XML documents.

The following is an example of a UML model in an XMI document using namespaces.

<xmi:XMI xmIns:uml="http://www.omg.org/spec/UML/20110701"
xmlns:xmi="http://www.omg.org/spec/XMI1/20110701">
<uml:Class name="C1" xmi:type="uml:Class” xmi:id="_1">
<ownedAttribute xmi:type="uml:Property" xmi:id="_2" name="al"
visibility="private"/>
</uml:Class>
</xmi:XMI>

16 XML Metadata Interchange (XMI), v2.5.1

The model has a single class named C1 that contains a single attribute named al with visibility private. The XMI element
declares the version of XMI and the namespace for UML with the logical URI.

7.8.2 Multiplicities

In XMI 1, the multiplicities from the model were ignored, since DTDs were not able to validate multiplicities without
ordering the content of XML elements. By default, XMI 2 produces schemas that ignore multiplicities also.

You may tailor the schemas produced by XMI by specifying tag values in the model. Two of the tags,
“org.omg.xmi.enforceMaximummMultiplicity” and “org.omg.xmi.enforceMinimumMultiplicity” allow you to specify that
multiplicities are to be used in a schema rather than being ignored.

Model multiplicities map directly from the EMOF definition of multiplicity, which is a lower bound and an upper bound,
to schema XML attributes called “minOccurs’ and “maxOccurs.” The minOccurs XML attribute corresponds to
MultiplicityElement’s lower property, and the maxOccurs XML attribute corresponds to its upper property. If the lower
bound for a property is null, the org.omg.xmi.enforceMinimumMultiplicity tag is ignored, and minimum multiplicity is
not enforced in the Schema (minimum multiplicity is effectively “0”). Similarly, if the upper bound for a property is null,
the org.omg.xmi.enforceMaximumMultiplicity tag is ignored, and maximum multiplicity is not enforced in the Schema
(the multiplicity is effectively unbounded).

7.8.3 Class Representation

A class is represented by an XML element, with an XML element or attribute for each property. The XML element for
the class includes the inherited properties.

In the examples that follow in this sub clause, “xsd” is the namespace prefix for the XML schema namespace
(“ http://www.w3.0rg/2001/X ML Schema”) and “xmi” is the namespace prefix for the XMI namespace.

The representation of a class named “c” is shown below for the simplest case where “c” does not have any Properties:
<xsd:element name="c" type="c"/>

<xsd:complexType name="c">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
</xsd:complexType>

If the class has properties, the XML elements for them are put in the all group of the content model, as explained below.
7.8.4 DataType-typed Property Representation

The representation of properties of class “c” uses XML elements and XML attributes. If the property types are primitives
or enumerations, then by default XML attributes and XML elements are declared for these types. The reasons for the
XML element choice are several, including: the values to be exchanged may be very large values and unsuitable for XML
attributes, and may have poor control of whitespace processing with options that apply only to element contents. The
default encoding can be changed using the XMI “org.omg.xmi.attribute” and “org.omg.xmi.element” tags. See 7.11.3 for
information on how these tags affect encoding. See 7.11.1 for a complete list of XMI tags.

XML Metadata Interchange (XMI), v2.5.1 17

The declaration of a property named “a’ is as follows:

<xsd:element name="a" type="type specification"/>

The XML element corresponding to the property is declared in the content of the complexType corresponding to the class
that owns the attribute. The type specification is either an XML schema data type, an enumeration data type, or a class
from the model.

For properties whose types are primitive types (for example, String) and whose upper bound multiplicity is 1, an XML
attribute must also be declared in the XML element corresponding to model class “c,” and the XML element must be put
in the content model of the XML element for class “c.” The declaration of “c” appears as follows without multiplicity
enforcement:

<xsd:element name="c" type="c"/>

<xsd:complexType name="c">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="a" type="xsd:string" nillable="true"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="a" type="xsd:string" use="optional"/>
</xsd:complexType>
</xsd:element>

An element is also declared to be of XML type string if the class contains a Tag org.omg.xmi.schemaType with value
“string.”

For multi-valued DataType-typed Properties, no XML attributes are declared; each value is encoded as an XML element.

When “a” is a property with enumerated val ues, the type used for the declaration of the XML element and XML attribute
corresponding to the model attribute is as follows:

<xsd:simpleType base="enumName" >
<xsd:restriction base="xsd:string">
<xsd:enumeration value="v1"/>
<xsd:enumeration value="v2"/>
</xsd:restriction>
</xsd:simpleType>

where enumName is the name of the enumeration type, and v1 and v2 are the names of the EnumerationL iterals.

If a property has enumerated values, an XML element and an XML attribute is put in the complexType for the class “c,”
their declaration is as follows:

<xsd:element name="a" type="enumName"/>
<xsd:attribute name="a" type="enumName" use="optional"/>
If a property is a multi-valued enumeration, the declaration of the XML attribute is omitted.
The semantics of default values differs between MOF/UML and XML Schema, so the XML Schema will never contain

default values for Properties.

18 XML Metadata Interchange (XMI), v2.5.1

7.8.5 Class-typed Property Representation

A Class-typed property references another model element. Each such reference is represented as an XML element and/or
an XML attribute. The XML element declaration for a property named “r” for aclass “c” is:

<xsd:element name="r" minOccurs="0" maxOccurs="unbounded”>
<xsd:attributeGroup ref="LinkAttribs"/>
</xsd:element>

This element is declared in the content of the complexType for the class that owns the property. This declaration enables
any object to be serialized, enhancing the extensibility of models.

The attribute declaration for the property, which also is included in the complexType declaration for the class that owns
the property, is as follows:

<xsd:attribute name="r" type="xsd:IDREFS" use="optional"/>

7.8.6 Composite Representation

Each property that is a composite is represented by an XML element, but not by an XML attribute.

The XML element declaration for a composite property named “r” for a class “c” of type “ClassType” is:
<xsd:element name="r" type="ClassType” minOccurs="0" maxOccurs="unbounded” />

This element is declared in the content of the complexType for the class that owns the property.

If the org.omg.xmi.allowM etamodel Extension tag is set to true, then the name of the type is replaced by “xmi:Any”: this
declaration enables any object to be serialized, enhancing the extensibility of models.

If org.omg.xmi.useSchemaExtension is false (the default), the names of all non-abstract subtypes must also be included
(in alphabetical order of immediate children with depth first expansion): if ClassType has subclasses CTS1 and CTS2, and
CTS1 has subclass CTS1S1, then the declaration needs to make use of an anonymous complex type:

<xsd:element name="r" minOccurs="0" maxOccurs="unbounded” >

<xsd:complexType>

<xsd:choice>
<ref="ClassType"/>
<ref="CTS1"/>
<ref="CTS1S1"/>
<ref="CTS2"/>

</xsd:choice>

</xsd:complexType>
</xsd:element>

7.8.7 Datatype Representation

Like classes, datatypes are classifiers and can have instances that are represented by XML elements. Unlike classes,
datatypes do not have object identity, so there are no identification attributes in their representation.

The representation of a datatype named “dt” is shown below:

XML Metadata Interchange (XMI), v2.5.1 19

<xsd:element name="dt" type="dt"/>

<xsd:complexType name="dt">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attributeGroup ref="xmi:LinkAttribs"/>
<xsd:attribute name="version" type="xsd:string" use="optional"
form="qualified"/>
<xsd:attribute name="type" type="xsd:QName" use="optional"
form="qualified"/>
</xsd:complexType>

In the instance document, the value of a simple datatype appears as an attribute value or as character content.

In CMOF datatypes, other than Primitive and Enumeration Types, can have properties, which in effect allows them to be
structured datatypes. During serialization, structured datatypes are treated like classes with properties, reusing the
document production rules starting with rule 2a:XMIObjectElement (see 9.5.2) with the following adaption:

» The name of the structured datatype is used instead of the class name.

Serializing structured datatypes analogous to classes is the default. The org.omg.xmi.valueSeparator tag has no effect on
this form of serialization.

Primarily for backward compatibility, flattening of structured datatypes may be performed if all of the following
conditions hold:

 The structured datatypes are not nested (i.e., do not contain structured datatypes as one or more fields).
» Thefields have multiplicity [1..1].
» Thetag org.omg.xmi.flattenStructuredDataTypes (which defaultsto false) is set to true.

As an example, here is a datatype called Point with two properties representing the X and Y coordinates of the point:

«dataType»
Point

X : Integer
y : Integer

Using the class-like default serialization, an example of a graph with two points would serialize as:

<g:Graph xmi:type="g:Graph”>
<points xmi:type="g:Point” x="0" y="0"/>
<points xmi:type="g:Point” x="1" y="5"/>
</g:Graph>

But using the specia case flattened serialization (with org.omg.xmi.flattenStructuredDataTypes=true), the point
coordinates would serialize as strings. The separator between the coordinate values is controlled by
org.omg.xmi.valueSeparator:

20 XML Metadata Interchange (XMI), v2.5.1

<TwoPointsOnAGraph point1="0,0" point2="1,5" />

A structured datatype may be more than one level deep - its properties can in turn be structured datatypes. For example:

<<datatype>>
Rectangle
upperLeft : Point
lowerRight : Point

This example shows the nesting of two structured datatypes. The only valid serialization for a property called area of type
Rectangle is:

<display xmi:type="g:Viewport”>
<area xmi:type="g:Rectangle” >
<upperLeft xmi:type="g:Point” x="0" y="5"/>
<lowerRight xmi:type="g:Point” x="4" y="0"/>
</area>
</display>

7.8.8 Inheritance Representation

XML schemas have a mechanism for extending types, but it does not support extending from more than one type, and
using that mechanism imposes an order on the content models of the types that are derived from other types. Since XMl
attempts to minimize order dependencies, XMI by default does not use schema extension to represent inheritance. In its
place, XMI specifies that inheritance will be copy-down inheritance and therefore uses xmi:type instead of xsi:type.

Multiple inheritance is treated in such away that the Properties that occur more than once in the inheritance hierarchy are
only included once in their subclasses. For associations (Class-typed Properties), the actual class referenced is used, and
subclasses may be used on the other end of the reference.

7.8.9 Association Representation

Associations are classifiers whose instances are Links. There are cases where it makes sense to serialize Links: for
example where the Association owns al of its ends, to link existing elements, or to add a new element to a composition
without replacing the existing contents (e.g., to add a Property to a Class where including a new value for
package::packagedElement would lose, or require repeating, the complete current list).

7.8.10 Derived Information

Whether or not information is derived information is orthogonal to whether or not that information is serialized. The
org.omg.xmi.serialize tag is provided optionally to include derived data. This capability provides more control to the
metamodelers, allowing them to customize exactly which information is present in their files. In some cases, derived
information may be more condensed than the information it is derived from. In these cases, serialization of only the
derived information may be desirable to keep the size of the XM file as small as possible.

XML Metadata Interchange (XMI), v2.5.1 21

7.9 Transmitting Incomplete Metadata

Starting with XMI version 2.0, an implementation can decide whether to support the exchange of model fragments.

7.9.1 Interchange of Model Fragments

In practice, most information is related. The ability to transfer a subset of known information is essential for practical
information interchange. In addition, as information models are developed, they will frequently need to be interchanged
before they are complete.

The following guidelines apply for interchanging incomplete models via XMI:

« Information may be missing from amodel. The transmission format should not require the addition or invention of new
information.

» Model fragments may be disjoint sets. Each set may be transmitted in the same XMI file or in different XMl files.

» “Incomplete” indicates a quantity of information less than or equal to “complete.” Additional information beyond that
which the model prescribes may be transmitted only via the extension mechanism.

» Semantic verification is performed on the metadata that is actually present asif it was included in complete metadata.
7.9.2 XMl Encoding

The interchange of model fragments is accomplished by lowering the lower bound of multiplicities whose lower bound is
greater than 0.

7.9.3 Example

The following is an example of an incomplete UML 1.4 model:

<UML:Model name="model1" xmi:id="id1">
<ownedElement xmi:type="UML:Class" name="class1" xmi:id="id2">
<feature xmi:type="UML:Attribute" name="attributel"
type="typel"/>
</ownedElement>
<ownedElement xmi:type="UML:Datatype" name="Integer" xmi:id="typel"/>
</UML:Model>

7.10 Linking

The goal is to provide a mechanism for specifying references within and across documents. Although based on the
XLinks standard, it is downwards compatible and does not require XLinks as a prerequisite.

7.10.1 Design Principles

 Linksarebased on XLinksto navigate to the document (which may be the current document) and X Pointersto navigate
to the element within the document.

» Link definitions are encapsulated in the attribute group LinkAttribs defined in 7.6.2.

22 XML Metadata Interchange (XMI), v2.5.1

» Elements act as aunion, where they are either adefinition or a proxy. Proxies use the LinkAttribs attribute group to
define the link, and contain no nested elements.

« LinkAttribs supports external links through the XLink attributes, and internal links through the xmi:idref and xmi:id
attributes.

» Links are alwaysto elements of the same type or subclasses of that type. Restricting proxies to reference the same
element type reduces complexity, enhances reliability and type safety, and promotes caching.

» When acting as a proxy, XML attributes may be defined, but not contents. The XML attributes act as a cache or guide
that gives an indication if the link should be followed: however there is no guarantee that these cached values
accurately represent the current values of the linked element.

 Proxies may be chained.
» When following the link from a proxy, the definition of the proxy is replaced by the referenced element.

- ltisefficient practiceto uselocal proxies of the same element within a document to link to asingle proxy that holds an
external reference. For example: there could be local proxies defined for references to the predefined DataTypes such
as Integer, UnlimitedNatural, String, and Boolean.

7.10.2 Linking

For XMI, the most common linking requirements are:
 Linking to an XML element in the same document using the element’sid.
+ Linking to an XML element in a different document using the element’sid.
» Linking to an XML element using the element’s uuid or label, in the same or a different document.

The following sub clauses describe how XMI supports these requirements.

7.10.2.1 Linking within a Document

Every construct that can be referred to has alocal XML ID, a string that is locally unique within a single XML file.
Attributes representing Class-typed properties in the metamodel, or XML idref attributes can refer to other XML elements
within the same XML file by specifying the target element’s XML ID.

7.10.2.2 Linking across Documents

1. Using the XMI href attribute to locate an XMl id

This is the simplest form of cross document linking. With help from the XMI org.omg.xmi.idName tag, it can be
backward compatible with XMI 1.2 and later.

Here, the XMI href attribute is used to locate an XML element in another XML document by its XMI id. The value of
href must be a URI reference, as defined by IETF RFC 2396: Uniform Resource Identifiers. The URI reference must be
of the form URI#id_value, where URI locates the XML file containing the XML element to link to, and id_value is the
value of the XML element’'s XMI id attribute.

As an example:
<mgr xmi:id="mgr_1" href="Co.xml#emp_2"/>

locates XML element <Employee xmi:id="emp_2" ... /> in file Co.xml.

XML Metadata Interchange (XMI), v2.5.1 23

2. Using an XLink simple link and XPointer bare name to locate an XMl id

Thisis alittle more complicated than using the XMI href attribute, and does not provide any more function. It does have
the advantage that standard XLink and X Pointer software can follow the link.

Here, an xlink:href attribute is used, where XLink is the prefix for the XLink namespace. The XLink prefix must be
declared in the document that contains the Xlink:href attribute. For example:

<xmi:XMI version="2.1" xmIns:xlink="http://www.w3.0rg/1999/XLink"
xmlns:xmi=" http://schema.omg.org/spec/XMl/2.1" >

The value of xlink:href must again be a URI reference of the form URI#id_value. In this case, id value is technically an
XPointer bare name, but it looks just like the id_value for the XMI href attribute.

The XML element with the xlink:href must also have an xlink:type="simple” attribute, to identify it as a simple link.
As an example:

<mgr xmi:id="mgr_1" xlink:href="Co.xml#emp_2" xlink:type="simple"/>

locates XML element <Employee xmi:id="emp_2" ... />in file Co.xml.

3. Using an XLink simple link and full XPointer to locate an XMl uuid or label

An XLink simple link and a form of full XPointer can be used to locate an XML element in an XML document by its
XMI uuid or label. This describes the form for uuid; the form for label is strictly analogous. Again:

» Anxlink:href attribute is used, where XLink isthe prefix for the XLink namespace. The xlink prefix must be declared
in the document containing the xlink:href attribute.

« The value of xlink:href must be a URI reference.

However this time, the URI reference has a more complicated form:
URI#xpointer ((//*[@xmi:uuid="value'])[1])

The xpointer expression is a series of instructions for finding the first element in the target file whose xmi:uuid has that
value.

As an example:

<mgr xmi:id="mgr_1"
xlink:href="Co.xml#xpointer((//*[@xmi:uuid="emp_2'N[1])"
xlink:type="simple"/>

locates XML element <Employee xmi:uuid="emp_2".../>infile Co.xml, aslong asit is the first element with that uuid
in the file.

Since a URI can identify the same file that contains the href, this also supports locating XML elements by XMI uuid in
the same document.
4. Using full XLink and XPointer to locate almost anything

XLink and XPointer provide rich and complex capabilities for locating XML elements, far beyond what XMI requires.
Consequently it is not expected that XMI implementations supporting linking across documents provide this level of
support. The W3C XLink and XPointer specifications define what is possible and how it works.

24 XML Metadata Interchange (XMI), v2.5.1

5. Using the MOF2 facility Basic Encoding Scheme

The MOF2 Facility specification provides a means of encoding URIs to refer to elements in facilities: these may be
realized through XMI files, database-backed repositories or other mechanisms. Hence it is usually not appropriate to make
use of xmi:id values that are in general transient and limited in scope: rather names and unique ids are made use of. Full
details are contained in that specification.

As an example hereis alink to an activity called CalculateHoursWorked which is within ProcessModel within
PayrollModels; PayrollModels is located via facility http://mof.adaptive.com:8083/M odel sFacility.

<activity
href="http://mof.adaptive.com:8083/ModelsFacility/PayrolIModels?ProcessModel/MonthlyProcess/
CalculateHoursWorked” />

7.10.3 Example for UML

This sub clause is informative.

There is an association between Model Elements and Constraints in UML. Operation is a subclass of Element. This
example shows an association between Operations and four Constraints with roles ownedRule and constrainedElement.
Each of the methods of linking is shown. The Constraints are shown in both definition and proxy form. Note that one of
the constrainedElement elements contains href=" #xpointer (descendent(1,0peration,xmi:label,0p1)).” Thisis an example
of case 4 (using full XLink and XPointer to locate almost anything).

Document 1, docl.xml (omitting root and namespace declarations)::

<uml:Operation xmi:id="idO1" xmi:type="uml:Operation" xmi:label="op1"
Xxmi:uuid="DCE:1234">
<ownedRule xmi:id="idC1" xmi:type="uml:Constraint" xmi:label="co1"
xmi:uuid="DCE:abcd">
<specification xmi:type="uml:OpaqueExpression">
<body>First Constraint definition</body>
</specification>
<constrainedElement xmi:idref="idO1"/>
</ownedRule>
<ownedRule xmi:idref="idC2" />
<ownedRule xmi:idref="idC3" />
<ownedRule href="doc2.xml#dC4" />
</uml:Operation>
<uml:Constraint xmi:id="idC2" xmi:type="uml:Constraint" xmi:label="co02"
xmi:uuid="DCE:efgh">
<specification xmi:type="uml:OpaqueExpression">
<body>Second Constraint definition</body>
</specification>
<constrainedElement xmi:idref="idO1" />
</uml:Constraint>
<uml:Constraint xmi:id="idC3" xmi:type="uml:Constraint" xmi:label="co3"
xmi:uuid="DCE:ijkl">
<specification xmi:type="uml:OpaqueExpression">
body>Third Constraint definition</body>
</specification>

XML Metadata Interchange (XMI), v2.5.1 25

<constrainedElement href="#xpointer(descendent(1,0Operation,xmi:label,op1))"/>
</uml:Constraint>

Document 2, doc2.xml (omitting root and namespace declarations):

<uml:Constraint xmi:id="idC4" xmi:type="uml:Constraint" xmi:label="co04"
xmi:uuid="DCE:mnop">
<specification xmi:type="uml:OpaqueExpression">
<body>Fourth Constraint definition</body>
</specification>
<constrainedElement href="docl.xml#dO1"/>
</uml:Constraint>

Thefirst constraint is a definition. The constrainedElement role contains an Operation proxy that has a local reference to
the initial Operation definition using xmi:idref. The second constraint is a proxy referencing a constraint definition using
the xmi:idref of “idC2.” The third constraint is a proxy reference to the definition using xmi:idref to the constraint
“idC3.” The fourth constraint is an XPointer reference proxy to the definition of the constraint using the href to the file
doc2.xml with id “idC4.”

Following the definition of the operation and its 3 constraint proxies are the definitions of two of the constraints. The
second document contains the third constraint definition.

The use and placement of references is freely determined by the document creator. It is likely that most documents will
make internal and external references for a number of reasons: to minimize the amount of duplicate declarations, to
compartmentalize the size of the document streams, or to refer to useful information outside the scope of transmission.
For example, the href of an XLink could contain a query to arepository that will recall additional related information. Or
there may be a set of XMI documents created, one file per package to be transferred, where there are relationships
between the packages.

7.11 Tailoring Schema Production

This sub clause describes how to tailor schema production by specifying particular MOF tags to augment a MOF model.
It also explains the impact the tailored schemas have on document production.

Note that the MOF definition of the association between ModelElement and Tag is not a composition and does not have
a reference as part of ModelElement. This allows Tags to be contained in separate Packages and ‘remotely’ reference the
tagged elements. For XMI purposes this means that the following tags can be incrementally added to an existing model
without needing to be embedded in it - and thus changing it. Typically, the Tags could be in a separate Package and a
‘super’ package could import (via Packagel mport) this Tags package and the model package to drive the Schema
generation. This conveniently allows different Tag sets to be used with the same model (there would be a separate * super’
package for each). And the ‘super’ package extent allows runtime model access to the Tags package for introspection of
the tags that were used for the generation.

26 XML Metadata Interchange (XMI), v2.5.1

7.11.1 XMI Tag Values

The following table specifies the XMI tags that allow you to tailor the schemas that are produced and the documents that
are produced using XMI. Each of the names has a prefix of “org.omg.xmi.” The prefix is not included in the names to
make the table easier to read.

Table 7.1- XMI Tag Values Summary

Tag Name Value Type Default value Description
Naming tags
xmiName string nil Provides an alternate name from the M OF namefor

writing to XMI. Useful in cases where the MOF
name has characters that conflict with XML. This
valueis used rather than the MOF name.

nsURI string nil The namespace URI of the MOF package.

nsPrefix string Package::name The namespace prefix of the MOF package; thisis
used in schemas. (Any legal XML prefix may be
used in documents.)

XML Syntax tags

serialize string non-derived If non-derived, thenthe M OF construct is serialized
unlessitisderived. ‘true’ forces the construct to be
serialized regardless of whether it is derived; and
‘false’ suppressesit regardless.

attribute boolean false If false, do not serialize the MOF construct as an
XML attribute unless element is also false.

element boolean false If false, do not serialize the MOF construct as an
XML element unless attribute is also false.

remoteOnly boolean false If set ononeend of abidirectional relationship, only
seridlizes that end if it isremote.

href boolean false If true, use the href attribute rather than the idref

attribute for links within a document. This also
prohibits the use of XML attributes for class-typed
properties.

valueSeparator string . The value of a structured datatype (i.e., a datatype
that has properties) is represented as the values of
the properties separated (by default) by a comma.
Thistag allows the specification of a different

separator.

Ordering

superClasskFirst boolean false If true, serialize the super class content first.

ordered boolean false If true, serialize object content in the order it is
defined in aMOF model. Where properties have
isOrdered=false then the order used is alphabetic
order of the string rendition of that property value

Content

includeNils boolean true If false, do not serialize nil values.

XML Metadata Interchange (XMI), v2.5.1 27

Table 7.1- XMI Tag Values Summary

Tag Name Value Type Default value Description

XML Schema Production

enforceM aximum boolean false If true, enforce maximum multiplicities; otherwise,
Multiplicity they are “unbounded.”

enforceMinimum boolean false If true, enforce minimum multiplicities; otherwise,
Multiplicity they are“0.”

useSchemaExtensions boolean false If true, use schema extensions to represent

inheritance in the MOF model.

schemaType string nil The name of a datatype defined in the XML

Schema Datatype specification.

contentType string complex Defines the schema content type. Other valid

valuesare: any, mixed, empty, and simple.

processContents string strict If the contentTypeisany, thistag is used to specify

the value of the processContents attribute of the any
element. Other valid values are; lax, skip.

form

string nil Specifies the value of the form attribute for
attributes. Other valid values are qualifed and
unqualified.

allowMetamodel Extension | boolean false Whether the XML Schema generated should allow

for the original metamodel to be extended —
allowing subclasses outside the metamodel to be
substituted.

flattenStructuredDataTypes | boolean false If set to true, instances of non-nested structured

datatypes with field multiplicities[1..1] may be
serialized as a string of values separated by the
separator defined by the valueSeparator tag.

7.11.2 Tag Value Constraints

There are constraints on the values of the XMI tags in addition to the ones specified in the above table. Here is a list of

them:

28

If org.omg.xmi.includeNilsistrue (the default), and the value of a property is empty, the value must be represented by
an XML element regardless of the value of the org.omg.xmi.attribute tag.

For class scope or multi-valued construct scope, if org.omg.xmi.enforceMinimumMultiplicity or
org.omg.xmi.enforceM aximumMultiplicity is true, the org.omg.xmi.ordered tag must be true as well (to validate
multiplicities, schemas require element content to be serialized in a particular order). The multiplicity tags require the
use of serializing in elements. For singlevalued construct scope, when org.omg.xmi.enforceMinimumMultiplicity is
true and lower bound of the multiplicity = 0 or 1, then there is no need to enforce the use of the ordered tag or the use of
elements for document serialization.

If the lower bound for a property is null, the org.omg.xmi.enforceMinimumMultiplicity tag isignored, and minimum
multiplicity is not enforced in the Schema (minimum multiplicity is effectively “0”). Similarly, if the upper bound for a
property is null, the org.omg.xmi.enforceM aximumM ultiplicity tag isignored, and maximum multiplicity is not
enforced in the Schema (the multiplicity is effectively unbounded).

XML Metadata Interchange (XMl), v2.5.1

« If the MOF model has multiple inheritance, then org.omg.xmi.useSchemaExtensions must be false,
« If org.omg.xmi.useSchemaExtensions s true, org.omg.xmi.superClassFirst must be true al so.
« If org.omg.xmi.href istrue, org.omg.xmi.element must be true as well for every reference that is serialized.

» Theorg.omg.xmi.attribute tag may not be specified on containment references, multi-valued attributes, attributes
without simple data types, or features with the following tags astrue: org.omg.xmi.element, org.omg.xmi.includeNils,
org.omg.xmi.enforceMinimumM ultiplicity, org.omg.xmi.enforceM aximumMuultiplicity, and org.omg.xmi.href.

« If org.omg.xmi.href is true, the org.omg.xmi.attribute must be false and org.omg.xmi.element must be true.
7.11.3 XML Element vs XML Attribute

You may choose features (DataType-typed or Class-typed properties) to appear as XML attributes, XML elements, or
both, based on the model and tagsin the model. The following is alist of the conditions for mapping a feature to an XML
construct.

7.11.3.1 XML attribute only

» Thefeature has an attribute tag set to true.

7.11.3.2 XML element only

» Thefeature isa containment, or

« has an org.omg.xmi.element tag set to true, or

« has an org.omg.xmi.href tag set to true, or

» isamulti-valued property, or

 isaproperty whosetypeis not asimple datatype.

7.11.3.3 Both XML attribute and element
« Thedefault

7.11.4 Summary of XMI Tag Scope and Affect

The table below contains the following information:
« Affect: the second column identifies the MOF constructs that are affected by a given XMl tag.

 Scope: columns 3 through 5 identify the scope of each tag. If the scope is Package Scope, atag set on the package
appliesto all the affected constructs within the package. If the scope is class Scope, atag set on the class appliesto all
affected constructs within the class. If the scope is Construct Scope, the tag affects only the specific construct it is set
on.

By setting a tag on a Package or Class, you avoid setting the same tags repeatedly for classes in the package, and for
Properties belonging to the Class. For example, the org.omg.xmi.element tag applies to Properties. If the
org.omg.xmi.element tag is set to true for a Class, the Class itself is not affected, but each Property belonging to the Class
is treated as if the org.omg.xmi.element tag were set to true for all of them.

XML Metadata Interchange (XMI), v2.5.1 29

The org.omg.xmi.xmiName, org.omg.xmi.serialize, org.omg.xmi.contentType, org.omg.xmi.schemaType, and
org.omg.xmi.remoteOnly tags apply only to the constructs for which they are specified. For example, setting the
org.omg.xmi.xmiName of a MOF class to “c” means that the name “c¢” should be used in XMI schemas and documents
for that class; it does not constrain the names of the features of the class.

Table 7.2 - XMI Tags, the MOF Constructs they affect, and their scope

XMI Tag MOF Constructs Affected Package Class Construct
Scope Scope Scope
xmiName Class, Property X
ordered Class, Property X X X
serialize Property X
element Property X X X
attribute Property X X X
enforceM aximumMultiplicity Property X X X
enforceMinimumMultiplicity Property X X X
form Property X X X
remoteOnly Property X
href Property X X X
includeNils Property X
schemaType Property X
valueSeparator Property X X X
alowM etamodel Extension Property X X
nsURI Package X X
flattenStructuredDataTypes Property X X X
nsPrefix Package X X
processContents Class, Property, Package X X X
useSchemaExtensions Class X X
contentType Class X
superClassFirst Class X X X
30 XML Metadata Interchange (XMI), v2.5.1

7.11.5 Effects on Document Production

The values of the XMI tags affect how documents are serialized. In general, the more validation a schema performs, the
more restrictions there are on the XMI documents that validate using the schemas. There are two reasons for this. First,

schemas cannot validate multiplicities without imposing an order on element content. Second, if the schema extension
mechanism is used, superclass elements must be serialized in element content before subclass elements.

Here are some examples of how the XMI tags affect document production. Assume that there is a MOF model with class

“Super” and class “Sub.” Sub inherits from Super. Super has attribute a of type String, and Sub has attribute b of type

String. If the namespace URI is “URI,” and the prefix is “p,” here is the default schema produced from the MOF model:

<xml version="1.0" encoding="UTF-8"?>

<xsd:schema
targetNamespace="URI"
xmlns:xmi="http://www.omg.org/spec/XMI/20110701"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:p="URI">

<xsd:import
namespace="http://www.omg.org/spec/XMI/20110701"
schemalLocation="XMIl.xsd"/>

<xsd:complexType name="Super">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="a" type="xsd:string"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="a" type="xsd:string" use="optional"/>
</xsd:complexType>

<xsd:element name="Super" type="p:Super"/>

<xsd:complexType name="Sub">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:string"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="a" type="xsd:string" use="optional"/>
<xsd:attribute name="b" type="xsd:string" use="optional"/>
</xsd:complexType>

<xsd:element name="Sub" type="p:Sub"/>

</xsd:schema>

XML Metadata Interchange (XMl), v2.5.1

31

Note that the content model for Sub allows attribute a or attribute b to be serialized first if they are serialized as elements.
For example, if p is the namespace prefix for a namespace whose uri is “URI” in an XML document, the following
instance of Sub validates against the default schema:

<p:Sub>
Valuel
<a>Value2

</p:Sub>

The following is also legal:

<p:Sub>
<a>Value2
Valuel

</p:Sub>

If org.omg.xmi.useSchemaExtensions is true, the declaration of the Sub complexType uses the XML schema extension
mechanism, as follows:

<xsd:complexType name="Sub">
<xsd:complexContent>
<xsd:extension base="p:Super">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="b" type="xsd:string"/>
</xsd:choice>
<xsd:attribute name="b" type="xsd:string" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

This declaration of the Sub type imposes an ordering on the content of Sub instances. With this declaration attribute a
must be serialized before attribute b, so the first instance of Sub above does not validate with this schema, but the second
does validate. Also, any xmi:extension elements must be serialized in Sub instances before elements corresponding to
attribute b.

7.11.6 Example: Customize the XML Schema for a GIS Model

This sub clause is informative.

This example uses amodel from GIS. It shows the flexibility that XMI tags give the modeler in tailoring an XML schema
for a metamodel: in this case an EMOF metamodel.

32 XML Metadata Interchange (XMI), v2.5.1

CityFeature -cityMember Gl
dateCreated : DateTime
Road River Mountain
classification : String centerLineOf : GM_Curve elevation : Integer

number : String
linearGeometry : GM_Curve

Figure 7.3 - GIS meta model
Note: The definition of type “GM_Curve” is intentionally not shown to keep the example focused and simple.
The default XML schema for this model is:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xmi="http://www.omg.org/spec/XMI/20110701">

<xsd:import namespace="http://www.omg.org/spec/XMI1/20110701" schemaLocation="XMI.xsd"/>

<xsd:complexType name="Road">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="classification" type="xsd:string" nillable="true"/>
<xsd:element name="number" type="xsd:string" nillable="true"/>
<xsd:element name="linearGeometry" type="xsd:string" nillable="true"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="classification" type="xsd:string" use="optional"/>
<xsd:attribute name="number" type="xsd:string" use="optional"/>
<xsd:attribute name="linearGeometry" type="xsd:string" use="optional"/>
</xsd:complexType>

<xsd:element name="Road" type="Road"/>

<xsd:complexType name="CityFeature">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
</xsd:complexType>

<xsd:element name="CityFeature" type="CityFeature"/>
<xsd:complexType name="River">

XML Metadata Interchange (XMl), v2.5.1

<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="centerLineOf" type="xsd:string" nillable="true"/>
<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

<xsd:attribute name="centerLineOf" type="xsd:string" use="optional"/>

</xsd:complexType>

<xsd:element name="River" type="River"/>

<xsd:complexType name="CityModel">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="dateCreated" type="xsd:string" nillable="true"/>
<xsd:element name="cityMember" type="CityFeature" minOccurs="0" maxOccurs="unbounded” />
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="dateCreated" type="xsd:string" use="optional"/>
</xsd:complexType>

<xsd:element name="CityModel" type="CityModel"/>

<xsd:complexType name="Mountain">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="elevation" type="xsd:int" nillable="true"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="elevation" type="xsd:int" use="optional"/>
</xsd:complexType>

<xsd:element name="Mountain" type="Mountain"/>

<xsd:element name="GIS">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="Road"/>
<xsd:element ref="CityFeature"/>
<xsd:element ref="River"/>
<xsd:element ref="CityModel"/>
<xsd:element ref="Mountain"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
</xsd:schema>

34 XML Metadata Interchange (XMI), v2.5.1

Some things to notice about the default schema include;

It does not use the XML schema extension element to express inheritance. Thisis because XML schema does not
support multiple inheritance. Instead, declarations of the superclass(es) are repeated in the subclass. For models that
only use single inheritance, the * org.omg.xmi.useSchemaExtensions’ tag signals that the xsd:extension element should
be generated rather than repeating the declarations.

XMI allows attributes with primitive values (like String) to be serialized either as XML attributes or as XML elements.
This makes the default schema verbose, since it needs to take into account both possibilities. The XMI
‘org.omg.xmi.element’ tag can be used to signal that attributes can be serialized only as XML elements. Similarly, the
XMI ‘org.omg.xmi.attribute’ tag signals the other case.

The dateCreated attribute of the CityModel class hastype string. Thisisbecause Date is not in the set of MOF primitive
datatypes. This could be addressed by including datatype ‘ Date’ in the model and having XMI tag
‘org.omg.xmi.schemaType’ with value http://www.w3.0rg/2001/X M L Schemattdate.

xsd:choiceis used to represent attributes, but does not constrain cardinality. This makesit possible to leave out an
attribute or to repeat it a number of times without being caught when validating a document with the schema. You can
set XMI tags “ org.omg.xmi.enforceMaximumMultiplicity,” “org.omg.xmi.enforceMinimumMultiplicity,” and
“org.omg.xmi.ordered” to “true.” Also, the XMI tag “org.omg.xmi.attribute” must be “false” (the default). Thereisa
disadvantage to using these tags: in order to validate multiplicity, schemas require the XML elements be serialized in
the same order as declared in the schema.

The schema declaration for cityMember has type xmi:Any instead of type CityFeature:

<xsd:element name="cityMember" type="xmi:Any"/>

It would be useful to be able to constrain the attribute to the correct type - in this case CityFeature instead of Any. In the
default case, where XM1 tag org.omg.xmi.useSchemaExtensions="false,” using xmi:Any instead of CityFeature allows
the subclasses of CityFeature (Road or River) to be serialized and validated by the schema. If we used type=CityFeature,
the validator would not recognize the additiona attributes in Road and River, and the document would be considered
invalid. However, with XMI tag org.omg.xmi.useSchemaExtensions="true,” the correct type can safely be used.

By applying all the XMI tags described above, we can tailor the schema to look like:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

xmlns:xmi="http://www.omg.org/spec/XMI1/20110701" >

<xsd:import namespace="http://www.omg.org/spec/XMI/20110701"

schemalLocation="XMl.xsd"/>

<xsd:annotation>
<xsd:documentation>PACKAGE: Cambridge</xsd:documentation>
</xsd:annotation>

<xsd:annotation>
<xsd:documentation>CLASS: Road</xsd:documentation>
</xsd:annotation>

<xsd:complexType name="Road">
<xsd:extension base="CityFeature">
<xsd:sequence>
<xsd:element name="classification" type="xsd:string" nillable="true"/>

XML Metadata Interchange (XMl), v2.5.1

35

<xsd:element name="number" type="xsd:string" nillable="true"/>

<xsd:element name="linearGeometry" type="xsd:string" nillable="true"/>

</xsd:sequence>
</xsd:extension>
</xsd:complexType>

<xsd:element name="Road" type="Road"/>

<xsd:annotation>
<xsd:documentation>CLASS: CityFeature</xsd:documentation>
</xsd:annotation>

<xsd:complexType name="CityFeature">
<xsd:sequence>
<xsd:element ref="xmi:Extension" minOccurs="0"
maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
</xsd:complexType>

<xsd:element name="CityFeature" type="CityFeature"/>

<xsd:annotation>
<xsd:documentation>CLASS: River</xsd:documentation>
</xsd:annotation>

<xsd:complexType name="River">
<xsd:extension base="CityFeature">
<xsd:sequence>
<xsd:element name="centerLineOf" type="xsd:string" nillable="true"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexType>

<xsd:element name="River" type="River"/>

<xsd:annotation>
<xsd:documentation>CLASS: CityModel</xsd:documentation>
</xsd:annotation>

<xsd:complexType name="CityModel">
<xsd:sequence>
<xsd:element name="dateCreated" type="xsd:date" nillable="true"/>
<xsd:element name="cityMember" type="CityFeature" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element ref="xmi:Extension" minOccurs="0"
maxOccurs="unbounded"/>
</xsd:sequence>

36

XML Metadata Interchange (XMl), v2.5.1

<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
</xsd:complexType>

<xsd:element name="CityModel" type="CityModel"/>

<xsd:annotation>
<xsd:documentation>CLASS: Mountain</xsd:documentation>
</xsd:annotation>

<xsd:complexType name="Mountain">
<xsd:sequence>
<xsd:element name="elevation" type="xsd:int" nillable="true"/>
<xsd:element ref="xmi:Extension" minOccurs="0"
maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
</xsd:complexType>

<xsd:element name="Mountain" type="Mountain"/>

<xsd:element name="GIS">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="Road"/>
<xsd:element ref="CityFeature"/>
<xsd:element ref="River"/>
<xsd:element ref="CityModel"/>
<xsd:element ref="Mountain"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>

</xsd:schema>

7.12 Transmitting Metadata Differences

7.12.1 Motivation

Sub clause 7.12 is informative and is not required for conformance.

The goal isto provide a mechanism for specifying the differences between documents so that an entire document does not
need to be transmitted each time. This design does not specify an algorithm for computing the differences, just aform for
transmitting them.

XML Metadata Interchange (XMI), v2.5.1 37

Up to now we have seen how to transmit an incomplete or full model. This way of working may not be adequate for all
environments. More precisely, we could mention environments where there are many model changes that must be
transmitted very quickly to other users. For these environments the full model transmission can be very resource
consuming (time, network traffic, ...) making it very difficult or even not viable for finding solutions for cooperative
work.

The most viable way to solve this problem is to transmit only the model changes that occur. In this way different instances
of amodel can be maintained and synchronized more easily and economically. Concurrent work of a group of users
becomes possible with a simple mechanism to synchronize models. Transmitting less information allows synchronizing
models more efficiently.

7.12.2 Definitions

The idea is to transmit only the changes made to the model (differences between new and old model) together with the
necessary information to be able to apply the changes to the old model.

A. New - Old = Difference

Model differencing is the comparison of two models and identifying the differences between them in areversible fashion.
The difference is expressed in terms of changes made to the old document to arrive at the new document.

B. New = Old + Difference

Model merging is the ability to combine difference information plus a common reference model to construct the
appropriate new model.

7.12.3 Differences

Differences must be applied in the order defined. A later difference may refer to information added by a previous
difference by linking to its contents. Model integrity requires that all the differences transmitted are applied. The
following are the types of differences recognized, the information transmitted, and the changes they represent:

» Delete (reference to deleted elements): The Delete element refersto particular elements and specifies a deep removal of
the referenced elements and all of their contained elements (determined through composite associations).

» Add (reference to containing element, new elements, optional position): The Add element refersto a particular element
of the old model and specifies a deep addition. The elements and their contents are added at the optional position
specified relative to e ements of that type within the target element (e.g., packagedElement), the default being at the
end. The optional position form is based on XPointer’s position form. 1 means the first position, -1 means the last
position, and higher numbers count across the contents in the specified direction.

» Replace (reference to replaced elements, replacement elements, optional position): This operation removes the old
elements from their container (they must all have the same container) but does not delete them. The new elements are
added at the specified position within the same container (as per Add).

7.12.4 XMI Encoding

The following are the elements used to encode the differences.

7.12.4.1 delete

The target element’s link attributes contain a link to the element to be deleted.

38 XML Metadata Interchange (XMI), v2.5.1

7.12.4.2 add

The addition attribute of add references the elements to be added, which must all be of the same XML type. The target
element’s link attributes contain a link to the single container element for the new ones and an optional position. The
numbering corresponds to XPointer numbering, where 1 is the first and -1 is the last element and it is used to count the
elements of the same type as the ones to be added within the container. The type used is that of the XML element (which
typically represents a composite property) as opposed to the xmi:type. The new elements are positioned after the element
with the indicated position.

7.12.4.3 replace

The target of replace is the set of elements to be replaced that must all be of the same XML type and have the same
container. The replacement attribute of replace references the elements to be added to that container, and must again all
be of the same XML type. The optional position attribute uses numbering corresponding to X Pointer numbering, where 1
isthe first and -1 is the last element and it is used to count the elements of the same type as the ones to be added within
the container (after removal of the target elements). The type used is that of the XML element (which typically represents
a composite property) as opposed to the xmi:type. The new elements are positioned after the element with the indicated
position.

7.12.5 Example of Differences

This example will delete a class and its attributes, add two classes, and replace a class within a package. The original
document, called original .xml:

<xmi:XMI xmlIns:umI="http://www.omg.org/spec/UML/20110701"
xmlns:xmi=" http://www.omg.org/spec/UML/20110701">
<uml:Package xmi:id="ppp" xmi:label="p1">
<packagedElement xmi:type="uml:Class" xmi:id="ccc" name="c1">
<ownedAttribute xmi:type="uml:Property" name="al"/>
<ownedAttribute xmi:type="uml:Property " name ="a2"/>
</packagedElement >
</uml:Package>
</xmi:XMI>

The differences document:

<xmi:XMI xmlIns:umI="http://www.omg.org/spec/UML/20110701"
xmlns:xmi=" http://www.omg.org/spec/UML/20110701">
<difference xmi:type="xmi:Delete">
<target href="original.xml#ccc"/>
</difference/>
<difference xmi:type="xmi:Add" addition="Class_1 Class_2">
<target href="original.xml#ppp"/>
</difference>
<packagedElement xmi:type="uml:Class" xmi:id="Class_1" name="c2">
<packagedElement xmi:type="uml:Class" xmi:id="Class_2" name="c3">
<difference xmi:type="xmi:Replace" position="0" replacement="c4">
<target href="original.xml#Class_2"/>
</difference>
<packagedElement xmi:type="uml:Class" xmi:id="Class_3" name="c4">
</xmi:XMI>

XML Metadata Interchange (XMI), v2.5.1 39

Here's how the 3 differences change the document as they’re applied.
The delete:

<xmi:XMI xmIns:uml="http://www.omg.org/spec/UML/20110701"
xmlns:xmi=" http://www.omg.org/spec/UML/20110701">
<uml:Package xmi:id="ppp" xmi:label="p1">
</uml:Package>

</xmi:XMI>

Next, the add:

<xmi:XMI xmIns:uml="http://www.omg.org/spec/UML/20110701"
xmlns:xmi=" http://www.omg.org/spec/UML/20110701">
<uml:Package xmi:id="ppp" xmi:label="p1">
<packagedElement xmi:type="uml:Class" xmi:id="Class_1" name="c2">
<packagedElement xmi:type="uml:Class" xmi:id="Class_2" name="c3">
</uml:Package>
</xmi:XMI>

Finally, the replace:

<xmi:XMI xmIns:uml="http://www.omg.org/spec/UML/20110701"
xmlns:xmi=" http://www.omg.org/spec/UML/20110701">
<uml:Package xmi:id="ppp" xmi:label="p1">
<packagedElement xmi:type="uml:Class" xmi:id="Class_3" name="c4">
<packagedElement xmi:type="uml:Class" xmi:id="Class_1" name="c2">
</uml:Package>
<uml:Class xmi:type="uml:Class" xmi:id="Class_2" name="c3">
</xmi:XMI>

Note that Class 2 is not deleted but merely removed from the package ppp.

7.13 Document Exchange with Multiple Tools

This sub clause contains a recommendation for an optional methodology that can be used when multiple tools interchange
documents. In this methodology, the xmi:uuid and extensions are used together to preserve tool-specific information. In
particular, tools may have particular requirements on their 1Ds, which makes |D interchange difficult. Extensions are used
to hold tool-specific information, including tool-specific IDs.

The basic policy is that the XML ID is assigned by the tool that initially creates a construct. The UUID will most likely
be the same as the ID the tool would choose for its own use. Any other modifiers of the document must preserve the
original UUID, but may add their own as part of their extensions.

In order to allow the use of such schemes as outlined here, XMI Extensions must be persistently maintained by the
importing tool.

7.13.1 Definitions

General:

« MC - Model construct. An XML element that contains an xmi.uuid attribute.

40 XML Metadata Interchange (XMI), v2.5.1

» Extension - Extensions use the extension element. Extensions to MCs may be nested in MCs, linked to the extensions
section(s) of the document, or linked outside the document. Each extension contains a tool-specific identifier in the
extender attribute. Extensions are considered private to a particular tool. An MC may have zero or more extensions.
Extensions may be nested.

IDs:

« xmi:uuid - The universally unique ID of an MC, expressed as the xmi:uuid attribute. Example: <Class
xmi:uuid="ABCDEFGH">

» extender|D - Thetool-specific ID of an MC. The extenderID is stored in an extension of the MC when it differs from
the xmi:uuid.

Tool ID poalicies:
Every tool is either Open or Closed.
» Opentooal - A tool that will accept any xmi:uuid asitsown. Open tools do not need to add extensionsto contain atool-
specificid.
» Closed tool - A tool that will not accept an xmi:uuid created by another tool. Closed tools store their ids in the

extender | D attribute of an XMI.extension. The extender attribute of the XM|.extension is set to the name of the closed
tool.

7.13.2 Procedures

Document Creation:

» The Creating Tool writesanew XMI| document. Each MC isassigned an xmi:uuid. If the xmi:uuid differs from the
extender| D, an extension for that tool is added containing the extender|D.

Document Import:

» Theimporting tool reads an existing XMI document. Extensions from other tools may be stored internally but not
interpreted in the event a Modification will occur at alater time. One of the following cases occurs:

1. If theimporting tool is an Open tool, the xmi:uuids are accepted internally and no conversion is needed.

2. If theimporting tool is a closed tool, the tool looks for a contained extension that it recognizes (identified by
extender) with an extenderID. If one does not exist, the importing tool createsits own internal id.

Document Modification:
« Themodifying tool writes the MCs and any extensions preserved from import.
» For new MCs, the MC is assigned an xmi:uuid.

 Closed tools add an extension including their internal id in the extenderD.

7.13.3 Example

This sub clause describes a scenario in which Tool 1 creates an XMI document that isimported by Tool2, then exported to
Tool1, and then athird tool imports the document. All the tools are closed tools.

XML Metadata Interchange (XMI), v2.5.1 41

1. A modéd iscreated in Tool 1 with one class and written in XMI.
<UML:Class xmi:label="c1" xmi:uuid="abcdefgh"/>

2. Theclassisimported into Tool2. Tool2 assigns extenderI D “ JIKLMNOPQRST.” A second classis added with name
“c2" and uuid “X012345678."

3. Themodel is merged back to XMI:

<UML:Class xmi:label="c1" xmi:uuid="abcdefgh">

<xmi:Extension extender="Tool2" extenderID="JKLMNOPQRST"/>
</UML:Class>
<UML:Class xmi:label="c2" xmi:uuid="X012345678"/>

4. The model isimported into Tool1. Tool1 assigns extenderI D “ijkimnop” to “c2” and anew class“c3” is created with
uuid “ grstuvwxyz.”

5. The model is merged back to XMI:

<UML:Class xmi:label="c1" xmi:uuid="abcdefgh">

<xmi:Extension extender="Tool2" extenderID="JKLMNOPQRST"/>
</UML:Class>
<UML:Class xmi:label="c2" xmi:uuid="X012345678">

<xmi:Extension extender="Tooll" extenderID="ijkimnop"/>
</UML:Class>
<UML:Class xmi:label="c3" xmi:uuid="qrstuvwxyz"/>

6. A third closed tool, Tool3, addsitsids:

<UML:Class xmi:label="c1" xmi:uuid="abcdefgh">
<xmi:Extension extender="Tool2" extenderID="JKLMNOPQRST"/>
<xmi:Extension extender="Tool3" extenderID="s1234"/>

</UML:Class>

<UML:Class xmi:label="c2" xmi:uuid="X012345678">
<xmi:Extension extender="Tool1l" extenderID="ijkimnop"/>
<xmi:Extension extender="Tool3" extenderIlD="s5678"/>

</UML:Class>

<UML:Class xmi:label="c3" xmi:uuid="grstuvwxyz">

<xmi:Extension extender="Tool3" extenderlD="s90ab"/>
</UML:Class>

7. Anopen tool imports and modifies the file. There are no changes because the xmi:uuids are used by the tool.

7.14 General Datatype Mechanism

The ability to support general data types in XMI has significant benefits. The applicability of XMI is significantly
expanded since domain models are likely to have a set of domain-specific data types. This genera solution allows the
user to provide a domain datatype model with a defined mapping to the XML data types.

Data types are defined in the model and the XML serialization of the datatypes is described in terms of the XML schema
datatypes.

42 XML Metadata Interchange (XMI), v2.5.1

MOF complex data types are treated as MOF classes with each field treated as a MOF attribute with a primitive type
mapped to XML schema.

The Tag org.omg.xmi.schemaType indicates that this class is a datatype with XML schema mapping. The value of the tag
indicates the schema type. For example, http://www.w3.0rg/2001/XML Schema#int is the int datatype.

7.15 Import Reconciliation

The following are cases where an element in an imported XMI file will resolve to an existing element in the importer:
only one of the following need apply:

- both elements have uuids that are identical.
» the XMI element has extenderI D and extender that are identical to those associated with the element in the importer.
+ both elements have identical values of a Property with islD=true.
- both elements are in the same extent and would have identical values for the basic URI scheme.
Should elements match as above, then the element in the importer is updated as follows:

- |If property Pisexplicitly included in the XMl file, then the value of that property is updated to the value(s) from the
XMl file. If multivalued, then any existing values not in the new set are removed.

« If Pisincluded but empty in the XMl file, the property is unset; if mandatory, it isinstead set to its default value.
« If Pisnot explicitly included in the XMI file, then any existing value in the importer is unchanged.

Should a matching element be referenced from the Differences element, then the actions are carried out in order prior to
the main import.

XML Metadata Interchange (XMI), v2.5.1 43

44

XML Metadata Interchange (XMl), v2.5.1

8 XML Schema Production

8.1 Purpose

This clause describes the rules for creating a schema from a MOF-based metamodel. The conformance rules are stated in
Clause 2.

8.1.1 Notation for EBNF

The rule sets are stated in EBNF notation. Each rule is numbered for reference. Rules are written as rule number, rule
name, for example 1la. SchemaStart. Text within quotation marks are literal values, for example “<xsd:element.” Text
enclosed in double slashes represents a placeholder to be filled in with the appropriate external value, for example //Name
of Attribute//. Literals should be enclosed in single or double quotation marks when used as the values for XML attributes
in XML documents. The suffix “*” is used to indicate repetition of an item O or more times. The suffix “?" is used to
indicate repetition of an item O or 1 times. The suffix “+” is used to indicate repetition of an item 1 or more times. The
vertical bar “|” indicates a choice between two items. Parentheses “()” are used for grouping items together.

EBNF ignores white space; hence these rules do not specify white space treatment. However, since white space in XML
is significant, the actual schema generation process must insert white space at the appropriate points.

8.2 XMl Version 2 Schemas

8.2.1 EBNF

The EBNF for XMI Version 2 schemas is listed below with rule descriptions between sub clauses.

1. Schema ::= la:SchemaStart
1d:Imports?
le:FixedDeclarations
2:PackageSchema+
1f:SchemaEnd

la. SchemaStart ::= "<xsd:schema”
“ xmlns:xsd='http://www.w3.0rg/2001/XMLSchema’"”
“ //XMI URL// "
1lb:NamespaceDecl*
lc:TargetNamespace?

nyn

1b. NamespaceDecl = "xmlns:" //Namespace prefix// "="

nrn //Namespace URI// "'
lc. TargetNamespace ::= "targetNamespace='" //Namespace URI// "'"
1d. Imports::= //Import statements for referenced metamodels//

XML Metadata Interchange (XMI), v2.5.1 45

le. FixedDeclarations

"<xsd:import”
“ //XMI URL// />"

1f. SchemaEnd ::= "</xsd:schema>"
1lg. XMIFixedAttribs ::= "<xsd:attribute ref='xmi:id’/>"
"<xsd:attributeGroup ref='xmi:ObjectAttribs’/>"
1h. Namespace ::= (//Name of prefix// ":")?
1. A schema consists of a schema XML element that contains import statements, fixed declarations, plus declarations

for the contents of the Packages in the metamodel.

la. The schema XML element consists of the schema namespace attribute, namespace attributes for the other
namespaces used in the schema, if any, and an optional target namespace attribute. These rules are written as if
the namespace name for the schema namespace is “xsd” and the namespace name for the XMI namespace is
“xmi,” but you can substitute other names for these hamespace names and still conform to this International
Standard.

1b. Each namespace used in the schema must have a namespace attribute that identifies the namespace prefix and
the namespace URI. If the namespace name is " the attribute name should be “xmins.” The namespace is taken
by default from the URI property on the Package representing the metamodel, which may be overridden by the
org.omg.xmi.nsURI tag. The prefix is declared by the org.omg.xmi.nsPrefix in the metamodel.

1c. The target namespace is set to the URI property of the Package representing the metamodel.

1d. For each Packagelmport in the metamodel there is a XML Schema import element. The namespace attribute will be
set to the URI property of the Package defining the metamodel. The schemalocation attribute is optional for XMl
and may be set to the location of the generated XMI-complaint XML Schema for that metamodel.

le. The schema declarations that are in the XMI namespace are listed in 8.2.2.

1f. The end of the schema XML element.

1g. The fixed XMI attributes present on the major elements provide element identity and element linking. The identity
attribute name is “xmi:id.”

1h. A namespace is a namespace prefix followed by a “:". If no namespace prefix is given, the rule is a blank.

2. PackageSchema ::= (2:PackageSchema

| 3:ClassSchema

| 6:StructuredDataTypeDef
| 7:AssociationDef

| 8:EnumSchema) *

2. The schema contribution from a Package consists of the declarations for any contained Packages, Classes,
Structured Data Types (those with properties), Associations, and Enumerations.

The order of definitionswithin the packageis by element type (which includestheir subtypes) asfollows: Package,
Class, Datatype, and alphabetically by name within each element type.

46 XML Metadata Interchange (XMI), v2.5.1

3 ClassSchema := 4:ClassTypeDef
5:ClassElementDef
4 ClassTypeDef ::= "<xsd:complexType name='" //Name of Class// "'"
("mixed='true’")?
won
("<xsd:complexContent>"
| "<xsd:extension base='" 4a:ClassTypeName "’'>")?
(("<xsd:choice minOccurs='0’ "
" maxOccurs='unbounded’>")
| "<xsd:sequences>")?
(4b:ClassContents
| ("<xsd:any minOccurs='0’ maxOccurs='unbounded’ ")
" processContents='" // ProcessContents Value // "' />")?
("</xsd:choice>"
| "</xsd:sequences")?
4g:ClassAttListItems
("</xsd:extension>"
| "</xsd:complexContent>")?
"</xsd:complexType>"
4a. ClassTypeName ::= lh:Namespace //Name of Class//
4b. ClassContents := 4d:ClassAttributes
4e:ClassReferences
4f:ClassCompositions
4c:Extension
4c. Extension := ("<xsd:element ref='xmi:extension’/>")*
4d. ClassAttributes ::= ("<xsd:element name='" //Name of DataType-typed Property// "'"
("nillable='true’")?
(4m:MinOccursAttrib)?
(4n:MaxOccursAttrib)?
(("type='" //Name of type// "'/>")
| ("type='xmi:Any'/>")))*
4e. ClassReferences ::= ("<xsd:element name='" //Name of Class-typed Property// "'"

(4m:MinOccursAttrib)?

(4n:MaxOccursAttrib)?

nsn

"<xsd:complexType>"
"<xsd:attributeGroup ref="linkAttribs' />"

"</xsd:complexType>"
"</xsd:element>")*

XML Metadata Interchange (XMl), v2.5.1

47

4f. ClassCompositions ::= ("<xsd:element name=’" //Name of Class-typed Property// "'"
(4m:MinOccursAttrib)?
(4n:MaxOccursAttrib)?

((" type='" 4a:ClassTypeName "'/>")
| (" type='xmi:Any'/>")
| (s
("<xsd:complexType>"
"<xsd:choice>"
("<xsd:element ref='" 4a: ClassTypeName "'/>")*
"«/xsd:choice>"
"</xsd:complexType>")*
</xsd:element>")))
4g. ClassAttListItems ::= 1g:XMIFixedAttribs 4h:ClassAttribAtts
4h. ClassAttribAtts ::= (41i:ClassAttribRef
| 4j:ClassAttribData
| 4k:ClassAttribEnum)*

4i. ClassAttribRef ::= "<xsd:attribute name=’" //Name of attribute// "’"
(((" type='xsd:IDREFS'" | " type='xsd:IDREF'")
(" use='optional'" | " use='required'"))
| (" type='xsd:anyURI' use='optional'"))
/s
47 . ClassAttribData ::= "<xsd:attribute name='" //Name of attribute// "'"
"type='xsd:string’ "
("use='optional’" | "use=’required’")
("form='" // Form value // "'")?
/s
4k. ClassAttribEnum ::= "<xsd:attribute name=’'" //Name of attribute// "’"
"type='" 8a:EnumTypeName "'"
("use='optional’" | "use='required’"))
n/sm
41. // rule deleted//
4m. MinOccursAttrib ::= "minOccurs='" // Minimum // "'"
4n. MaxOccursAttrib ::= "maxOccurs='" // Maximum // "'"
48

XML Metadata Interchange (XMl), v2.5.1

These rules describe the declaration of a Class in the metamodel as an XML complex type with a content model
and XML attributes.
« If either of the tags org.omg.xmi.enforceM aximumMultiplicity or
org.omg.xmi.enforceMinimumMultiplicity is true, the contents of the class are put in a sequence;
otherwise, they are put in a choice.

« If the org.omg.xmi.contentType tag is complex (the default), the class content declarations appear as
defined by rule 4b; however, if the org.omg.xmi.contentType value is empty, they do not appear, and if the
org.omg.xmi.contentType value is any, the “xsd:any” element declaration appears instead of the class
content.

« If the org.omg.xmi.contentType value is mixed, then the mixed attribute isincluded.

- If .org.omg.xmi.useSchemaExtensionsiis true, the complex type for the class is derived by extension from
the complex type for its superclass.

Thisruleisfor areference to the type for the class, which is the name of the Class prefixed by the namespace, if
present and not the default namespace.

4b.

The complex type for the Class contains XML elements for the contained DataType-typed and Class-typed
properties and Compositions of the Class, plus an extension element, regardless of whether they are marked as
derived. The org.omg.xmi.serialize tag can be used to control whether these constructs are serialized. If
org.omg.xmi.useSchemaExtensions is false or not present, inherited DataType-typed and Class-typed properties
and Compositions are included; otherwise, only local DataType-typed and Class-typed properties, and
Compositions are included.

The XML element name for each DataType-typed property of the Classis listed as part of the content model of
the Class element. This includes the DataType-typed properties defined for the Class itself as well as al of the
DataType-typed properties inherited from superclasses of the Class. The typeis “xsd:string” for simple
properties, the name of an enumeration for enumerated properties, or the value of the org.omg.xmi.schemaType
tag, if present. For complex properties (possible in CMOF only), when org.omg.xmi.useSchemaExtensions is
true, the name of the property type is used from rule 4, and when org.omg.xmi.useSchemaExtensionsis false,
xmi:Any is used.

« If the org.omg.xmi.includeNils tag is false, then the “nillable” attribute is not included in the declaration.

« If org.omg.xmi.enforceMinimumMultiplicity istrue, the minOccurs attribute is included.

« If org.omg.xmi.enforceMaximumMultiplicity is true, the maxOccurs attribute is included.

XML Metadata Interchange (XMl), v2.5.1

49

Thisrule appliesto Class-typed Properties that are not composite. The XML element name for each Class-typed

Property of the Classislisted in the content model of the Class. Thelist includesthe Class-typed Property defined
for the Classitself, aswell asall Class-typed Propertiesinherited from the superclasses of the Class. Thetypeisthe
classnamefor the Property typeif org.omg.xmi.useSchemaExtensionsis“true” or if the org.omg.xmi.contentType
is“complex;” otherwise, the type alows any object to be serialized.

« If org.omg.xmi.enforceMinimumMultiplicity is true, the minOccurs attribute is set to the lowerValue for
the Property in the metamodel (unlessit is 1 in which case minOccursis omitted), otherwiseit is set to “0”
regardless.

« If org.omg.xmi.enforceM aximumMuultiplicity is true, the maxOccurs attribute is set to the upperValue for
the Property in the metamodel (unlessit is 1 in which case maxOccursis omitted), otherwiseit is set to
“unbounded” regardless For Class-typed Properties (following 7.8.5), when
org.omg.xmi.useSchemaExtensions is true, the name of the property typeis used from rule 4, and when
org.omg.xmi.useSchemaExtensions is false, xmi:Any is used.

4f,

The XML element namefor each Class-typed Property of the Classthat isacompositeislisted in the content model
of the class. Thelist includes the Class-typed Properties defined for the Classitself, aswell as all Class-typed
Propertiesinherited from the superclasses of the Class. Thetypeisthe class name for the Class-typed Property type
if org.omg.xmi.useSchemaExtensionsis “true.”

- If alowMetamodel Extensionsis true, the type allows any object to be serialized and xmi:Any is used.
Otherwise the list of candidate typesisincluded: thisis the name of the Property type (if not abstract) and
the name of any non-abstract subclass. Thelist isin alphabetical order of immediate subclasses with depth
first expansion.

« If org.omg.xmi.enforceMinimumMultiplicity istrue, the minOccurs attributeis set to the lowerValue for
the Property in the metamodel (unlessit is 1 in which case minOccurs is omitted), otherwiseit is set to “0”
regardless.

« If org.omg.xmi.enforceMaximumM ultiplicity is true, the maxOccurs attribute is set to the upperValue for
the Property in the metamodel (unlessit is 1 in which case maxOccursis omitted), otherwiseit is set to
“unbounded” regardless. For Class-typed Properties (following 7.8.5 and/or 7.8.6), when
org.omg.xmi.useSchemaExtensions is true, the name of the property typeisused from rule 4, and when
org.omg.xmi.useSchemaExtensions is false, xmi:Any is used.

In addition to the standard identification and linkage attributes, the attribute list of the Class element can contain
XML attributes for the DataType-typed Properties and non-composite Class-typed Properties of the Class, when
the limited facilities of the XML attribute syntax allow expression of the necessary values. Inherited propertiesare
included unlessthe org.omg.xmi.useSchemaExtensionstag istrue, in which case only local propertiesareincluded.

4i.

Class-typed Properties can be expressed as XML id reference XML attributes. If the upper bound of the
multiplicity of the Property is 1, thetypeis IDREF otherwiseit isIDREFS. If the lower bound is greater than 0 and
org.omg.xmi.enforceMinimumMultiplicity is true, then use= required, otherwise use=optional ..

4.

Single-valued DataType-typed Properties of a Class that have a string representation for their data are mapped to
XML attributes of type “xsd:string;” unlessthe org.omg.xmi.schemaTypetag is present, in which caseitsvalueis
used for the type. Multi-valued DataType-typed Properties of a Class cannot be so expressed, since the XML
attribute syntax does not allow repetition of values. If the multiplicity of the attribute is exactly one, and
org.omg.xmi.enforceMinimumMultiplicity is true, the attribute is required to be present.

4K.

Single-valued DataType-typed Properties that have enumerated values are mapped to XML attributes whose type
isthe enumerated type. If the multiplicity of the attribute is exactly one, and
org.omg.xmi.enforceMinimumMultiplicity is true, the attribute is required to be present.

50

XML Metadata Interchange (XMl), v2.5.1

4m. | Thevalue for minimum isthe minimum multiplicity.
4n. The value for maximum is the maximum multiplicity.
5. ClassElementDef ::= "<xsd:element name='" //Name of class// "'"
"type=’' “4a:ClassTypeName "' />"
‘ 5. ‘ Thisrule declares an XML element for a classin a metamodel.
6. StructuredDataTypeDef::= "<xsd:complexType name='" //Name of DataType// "' "
(" mixed='true’")?
n > n
("<xsd:complexContent>"
"<xsd:extension base='" 6a:DataTypeName"'>"
("<xsd:choice minOccurs='0’
maxOccurs='unbounded’ >"
| "<xsd:sequence>")?
(6b: DataTypeContents |
"<xsd:any minOccurs=’0’ maxOccurs='unbounded’
processContents='" // ProcessContents Value //
nir / > n) ?
("</xsd:choice>" | "</xsd:sequence>")?
4g:ClassAttListItems
"«/xsd:extension>"
"</xsd:complexContent>") ?
"</xsd:complexType>"
6a. DataTypeName ::= lh:Namespace //Name of DataType//
6b. DataTypeContents ::= 4d: ClassAttributes
4c:Extension
6. These rules describe the declaration of a structured DataType in the metamodel as an XML complex type with a
content model and XML attributes. The rules for declaring the Properties are the same as for Classes except that
compositions and references do not apply to DataTypes
6a. Thisruleisfor areference to the type for the class, which is the name of the DataType prefixed by the namespace,
if present and not the default namespace.
6b. The complex type for the DataType contains XML elements for the contained Properties, plus an extension
element. The org.omg.xmi.serialize tag can be used to control whether these constructs are serialized. If
org.omg.xmi.useSchemaExtensions is false or not present, inherited Properties are included; otherwise, only local
Properties are included.

XML Metadata Interchange (XMl), v2.5.1

51

7. AssociationDef "<xsd:element name=’'" 7a:AssnElmtName "’>"
"<xsd:complexType>"
("<xsd:all>" | "<xsd:sequence>")"
7b:AssnContents
("</xsd:all>" | "</xsd:sequence>")
7d:AssnAtts
"</xsd:complexType>"
"<«/xsd:element>"
7a. AssnElmtName ::= lh:Namespace //Name of association//
7b. AssnContents := 7c:AssnEndDef
7c:AssnEndDef
4c:Extension
7c. AssnEndDef := "<xsd:element"
"name='" //Name of association end// "’'>"
"<xsd:complexType>"
1g:XMIFixedAttribs
"</xsd:complexType>"
"«/xsd:element>"
7d. AssnAtts ::= 1g:XMIFixedAttribs
7. The declaration of an Association consists of the names of its AssociationEnd XML elements (whether or not they
are owned by the Association). If org.omg.xmi.ordered istrue, then asequenceisused (with the order of ends being
that form the metamodel), otherwise a choice.
Ta. The use of the name of the XML element representing the Association.
7d. The fixed identity and linking XML attributes are the Association XML attributes.
8. EnumSchema = "<xsd:simpleType name='" 8a:EnumTypeName "'>"
"<xsd:restriction base='xsd:string’>"
8c:EnumLiterals
"«/xsd:restrictions"
"</xsd:simpleType>"
8a. EnumTypeName ::= lh:Namespace 8b:EnumName
8b. EnumName := // Name of enumeration //
8c. EnumLiterals ::= ("<xsd:enumeration value='" 8d:EnumLiteral "' />")+
8d. EnumLiteral ::= // Name of enumeration literal //
8. The enumeration schema contribution consists of a simple type derived from string whose legal values are the
enumeration literals.
8a The name of the enumeration in XML schema references.
8b.
52 XML Metadata Interchange (XMI), v2.5.1

8c. Each enumeration literal is put in the value XML attribute of an enumeration XML element.

8d. The name of the enumeration literal.

8.2.2 Fixed Schema Declarations

There are some elements of the schema that are fixed, constituting a form of “boilerplate” necessary for every XMl 2
schema. These elements are described in this sub clause. These declarations are in the namespace
"http://www.omg.org/spec/XMI/20llO70l"

Only the schema content of the fixed declarations is given here. For a complete description of the semantics of these
declarations, see Clause 9.

The fixed declarations are contained in file XMI.xsd that may be imported into generated XML Schemas; or these
declarations may be copied.

XML Metadata Interchange (XMl), v2.5.1

53

54

XML Metadata Interchange (XMl), v2.5.1

9 XML Document Production

9.1 Purpose

This clause specifies the XMI production of an XML document from a model based on the MOF 2 Core. The EMOF and
CMOF packages of MOF 2 are shared by both UML 2 and MOF 2, so that XMI production rules support both. XMl
describes an XML syntax that leverages the capability of XML schema. A set of objects are written to an XML document
following the grammar defined here.

Key requirements for successful model interchange are:

» All significant aspects of the metadata are included in the XML document and can be recovered fromit. No
information is lost.

» The XML document is as compact as possible without loss of information.

« The XML document reflects the model being serialized in an intuitive way, in order to gain acceptance in the XML
community at large.

The first requirement has been addressed by both XM1 1 and 2. The second and third requirements have been highlighted
by organizations like eBXML and GIS, in which XMI 1 did not find acceptance. XMI 2 made great progress in reducing
document size and improving readability. This International Standard maintains that progress, and streamlines the
specification to make it easier to understand and implement.

9.2 General

XMI’s XML document production process is defined as a set of production rules. When these rules are applied to a model
or model fragment, the result is an XML document. The inverse of these rules can be applied to an XML document to
reconstruct the model or model fragment. In both cases, the rules are implicitly applied in the context of the specific
metamodel for the metadata being interchanged.

The production rules are provided as a specification of the XML document production and consumption processes. They
should not be viewed as prescribing any particular algorithm for XML producer or consumer implementations.

9.3 Serialization Model

The number of XML serialization patterns available for use by XMI are small. These serialization patterns are shown in
Figure 9.2. By limiting the XM| EBNF rules to these patterns, then mapping each modeling element to a pattern, we can
reduce the size of the EBNF in the XMI spec, thus simplifying it.

XML Metadata Interchange (XMI), v2.5.1 55

+containedltems
0.*

XMlInfoltems

+referencedElement -
XMIElement |. XMIReferenceltem XMIAttribute
0“*

XMIObjectElement| [XMIValueElement XMIReferenceElement XMIReferenceAttribute XMIValueAttribute

Figure 9.1- Serialization Model

An XMIObjectElement isan XML element that can contain other information items (XML elements and attributes). An
XMIValueElement is an XML element that can have a value, but cannot contain other XML elements or attributes. An
XMIReferenceElement is an XML element with an idref or href attribute that references another XMIElement, by id,
URI, or URI and XPointer. An XMIReferenceAttribute is an XML attribute that references an XMIElement by id. An
XMIValueAttribute is simply an XML attribute with a value.

9.4 XMl Representation of the Core Packages

XMI production rules are defined for elementsin in UML as constrained by the EMOF and CMOF compliance levelsin
the MOF 2 Core. The rules for these packages are consistent and build upon each other: the rules for CMOF refine the
EMOF rules. The rules are defined by mapping the model elements to the serialization model.

9.4.1 EMOF Package

The overall rules are shown in the table below.

Instance of Model Element XMI Representation

A Class XMIObjectElement

A Property, typeis aPrimitiveType or Enumeration |Choice of:

1. XMIValueAttribute

2. Nested XMV alueElement

The value of an Enumeration isits name.

When the value of a Property isnull, it is serialized as
XMIV alueElement with attribute nil="true’.

When the Property is multi-valued, it is serialized as multiple nested
XMIVaueElements.

56 XML Metadata Interchange (XMI), v2.5.1

Instance of Model Element

XMI Representation

A Property, typeis not a PrimitiveType or
Enumeration,
isComposite = false

Choice of:
1. XMIReferenceAttribute
2. Nested XMIReferenceElement

A Property, typeis not a PrimitiveType or
Enumeration,
isComposite = true

Choice of:

1. XMIObjectElement

2. Nested XMIReferenceElement
3. Nested XMIReferenceAttribute

Normally, serialized properties with isComposite = true are serialized
as nested X M| ObjectElements.

In the case where the model is split across more than onefile then a
nested X MIReferenceElement would be used. Exceptionally, even
within onefile, it may be the case that a containing object has more
than one serialized class-typed property with isComposite = true that,
contain the same object or include it among their collection of objects.
In such an exceptional case, because of MOF contstraints, only one of
those properties can have an opposite with a non-empty slot. Objects
of the property with the non-empty opposite slot are serialized as
nested X M10bjectElements, and the other references to the same
object are serialized either as XMIReferenceAttributes or nested
XMIReferenceElements.

The following additional rules are defined to suppress redundant information. They can be overriden using XM1I tags.

« Derived information is not serialized.

 Properties whose values are the default values are not serialized except there the value is being used to specify the
default itself: specificaly if it isthe value of the property Property::defaultValue in a metamodel.

« For Properties with isComposite=true where that Property is used for nesting the owned element in this XMI file, the

opposite Property is not serialized.

Examples

<complexco:Department xmi:id="Department_1"/>

Figure 9.2 - Instance of a class, the namespace name is its package name

<Department number="13"/>

Figure 9.3 - Instance of a class with primitive typed property

XML Metadata Interchange (XMl), v2.5.1

57

Stoplight
id : String
state : StopGo

<Stoplight id="906" state="red"/>

<<enumeration>>
StopGo

red
green

Figure 9.4 - Instance of a class with an enumerated property

Figure 9.5 - Multi-valued property with each value serialized as an XML element

PtyClass2

<<0..*>> tlvocl : Integer

<PtyClass2>

<tlvocl>1001</tlvocl>
<tlvocl1>1001</tlvocl>

</PtyClass2>

Department

+department

+member

Employ ee

id : String

name : String

Figure 9.6 - Composite property serialized as XML elements the opposite property is not serialized

<Department id="13">
<member name="Glozic” xmi:type="Employee” />

<member name="Andrews” xmi:type="Employee” />

</Department>

58

XML Metadata Interchange (XMl), v2.5.1

9.4.2 CMOF Package

The overall rules are the same as for the EMOF Package, with additions shown in the table below.

Instance of Model Element

XMI Representation

Properties of aDataTlype

Choice of:

1. XMIObjectElement

2. XMIValueAttribute

3. Nested XMIVaueElement

By default instances of structured datatypes are serialized asif they
were classes, as described in 7.8.7. This can be overridden by the tag
org.omg.xmi.flattenStructuredDatatypes in which case the values of
the Properties are serialized asa singl e string separated (by default) by
commas. The default separator can be overridden by the XMI
org.omg.xmi.valueSeparator tag.

An Association

XMIObjectElement

The following additional rules are defined to suppress redundant information. They can be overriden using XMI tags:

» Additional to thefirst bullet in rules for the EMOF package: for some metamodels, it may be desirable to seriaize
particular derived Properties instead of the information they are derived from because the derived form is more
compact. In this case default behavior can be overridden by setting the org.omg.xmi.serialize tag to ‘true’ for the
derived property. This means that either the base or derived form can be serialized, but for a particular metamodel
construct only one may be chosen. To alow import, derived properties should only be made serializable if they are
writeable (isReadOnly=false) and it is possible to reverse-derive the base information from the derived form.

« Inthe case where a Property redefines another Property, only the redefining Property is serialized. (Note that when
serializing an instance of a concrete supertype whose Property has been redefined, the supertype is unaware of the
redefinition, and the Property as defined on the supertypeis serialized.)

No specia serialization rules need to be defined for subsetted Properties. Following EMOF rule 1, when one of the
subsetted or subsetting Properties is derived, it is not serialized by default. Properties that are not derived are serialized.

Examples

package XMI[[E9.7 Datatypes with Properties U

Figure 9.7 - Datatypes with properties

XML Metadata Interchange (XMl), v2.5.1

wdataTypes wdataTypes wdataTypes
ViewPort Rectangle Paint
name : String label : String [0..1] *x : Integer
area : Rectangle upperLeft : Point ¥ Integer
lowerRlight : Point

59

<display xmi:type="g:Viewport” name="normal”>
<area xmi:type="g:Rectangle”label="">

<upperlLeft xmi:type="g:Point” x="1" y="2"/>
<lowerRight xmi:type="g:Point” x="3" y="4"/>

</area>
</display>

9.5

EBNF Rules Representation

The XML produced by XMI is represented here in Extended Backus Naur Form (EBNF). The XML specification does not
require XML processors to preserve the order of XML attributes within an XML element. Therefore, although this
grammar indicates that XML attributes should be serialized in a particular order for each XML element, the XML
attributes may be serialized in any order. Also, XML attributes are normalized by XML processors, so whitespace may
not be preserved. You may choose to serialize parts of objects as XML elements rather than XML attributes using the
org.omg.xmi.element tag, as explained below.

The following sub clauses provide the production rules. The items in italics are terminal values.

9.5.1 Overall Document Structure

1:Document ::= la:XMI | //Content Elements//

la:

1b

XMI "<xmi:XMI"

le:Namespaces ">"
(2a:XMIObjectElement) *
(3:Extension)*
"</xmi:XMI>"
to 1d: // rules deleted //

le:Namespaces ::= 1f:XMINamespaceDecl ?
("xmlns:" 1h:NgPrefix "=’" 1i:NsURI "'™"
) *
1f:XMINamespaceDecl ::= "xmlns:xmi='http://www.omg.org/spec/XMI/20100901""
lg:Namespace ::= (lh:NsPrefix> ":")?
1h:NsPrefix ::= Name of namespace prefix
1i:NsURI ::= URI of namespace
60 XML Metadata Interchange (XMI), v2.5.1

The content of an XMI document may be enclosed in an XMI XML element, but it does not need to be. The
XML specification requires that there be one root element in an XML document for the document to be well
formed. The XMI elements (identified via the XMI namespace) may appear anywhere in an arbitrary XML
document, intermingled with non-XMI elements — though this can be somewhat restricted through the use of
the org.omg.xmi.contentType tag.

la

An XMI element has XML attributes that declare namespaces and specify the version of XMI, and the XMI
element contains XML elements that make up the header, content, differences, and extensions for the XM
document.

le.

The XMI namespace and the namespaces associated with a model must be declared or already be visible to
the XMI element in the XML document. Since there is no requirement that the XMI XML element be the root
element, these namespaces may be declared in XML elements that contain the XM element.

The namespace declarations must include the following if tag org.omg.xmi.includeNils is true for at least one
Property in the metamodel, or org.omg.xmi.useSchemaExtensions is true:

xmins:xsi="http://www.w3.0rg/2001/X M L Schema-instance”

1g.

The use of a namespace prefix, including a":" separator. If the namespace prefix is blank, the result is the
empty string.

1h.

A particular namespace prefix. Document producers can choose their own namespace prefixes, as long as
doing so results in legal XML documents, or they may choose to use the value of the org.omg.xmi.nsPrefix

tag.

1i.

The logical URI of the namespace. Note that namespaces are resolved to logical URIs, as opposed to physical
ones, so that there is no expectation that this URI will be resolved and that there will be any information at
that location. The URI is obtained from the org.omg.xmi.nsURI tag.

XML Metadata Interchange (XMl), v2.5.1

61

9.5.2 Object Structure

2:XMIElement ::= 2a:XMIObjectElement
| 2b:XMIValueElement
| 2c:XMIReferenceElement
("<" 2k:QName 2d:XMIAttributes "/>")
| ("<" 2k:QName 2d:XMIAttributes ">"

2a:XMIObjectElement

(2:XMIElement) *
"</" 2k:QName ">")
("<" //xmiName// ">" //value//
"o/" //xmiName// ">")

2b:XMIValueElement

| ("<xsi:nil='true'/>")
"<" //xmiName//
21:LinkAttribs "/>"

2c:XMIReferenceElement: :

2d:XMIAttributes

(le:Namespaces) ?
(2e:IdentityAttribs)?
(2g:TypeAttrib)
(2h:FeatureAttrib) *

2e:IdentityAttribs = (2f:IdAttribName "='" //id// "'")?
("xmi:label='" //label// "'")?
("xmi:uuid='" //uuid// "’'")2

2f :IdAttribName = "xmi:id"

2g:TypeAttrib ::= "xmi:type='" 2k:QName "’"

21 :XMIValueAttribute
| 2j:XMIReferenceAttribute

2h:FeatureAttrib

21i:XMIValueAttribute := //xmiName// "='" value "'"
2j:XMIReferenceAttribute ::= //xmiName// "='"
(//ref1d//)+ "'

2k :QName ::= (//prefix// ":")? //xmiName//
21:LinkAttribs ::= "xmi:idref='" //refIid// "’"

| 2m:Link
2m:Link = "href='" 2n:URIref "'"
2n:URIref = (2k:QName)? //URI reference//

62 XML Metadata Interchange (XMI), v2.5.1

2a

An object has a starting element, contents, and a closing element. If the contents are empty, you may end the
starting element with “/>". You use this production rule to serialize top-level objects and to serialize objects
that are the values of Properties.

« If the object is atop-level object, the tag name is the namespace prefix followed by “:” and the XMI name
for the object. The XMI name for the object is either the name of the object’s class or the value of the
org.omg.xmi.xmiName tag.

« If the object isthe value of an attribute or reference, the XMI name is the name of the Property, or the value
of the org.omg.xmi.xmiName tag. The namespace prefix isignored for an object that isthe value of a
Property.
The order of the elements for properties must follow any prescribed XML Schema ordering as defined in
Clause 10 — even if no XML Schema has actually been generated. Furthermore if the ordered tag is true, the
values of multi-valued properties must follow the order in the model (if isOrdered is true for the property)
otherwise alphabetic order of the string rendition of that property value.

2b.

Each value of a property is represented by an XML element; for multi-valued properties, there is one XML
element for each value. Null values may be serialized as well, unless the value of the org.omg.xmi.includeNils
tag is “false,” in which case you may not serialize null values.

2c.

Use this production rule to serialize a reference to an object using an XML element. If you use identity
attributes, the values of the identity attributes must match the values of the identity attributes for the object
that is referenced.

2d.

The XML attributes for an object are the optional start attributes, identity attributes, and attributes
corresponding to an object’s Properties. The start attributes must be written if the object is a top-level object
and it.

2e.

The identity attributes consist of an optional id, label, and uuid. If the element has a MOF uuid, it may be
used here.

2f.

The name of the identity attribute is “id” in the XMI namespace.

2g.

You must specify the class name using the “type” attribute. The value of this attribute is defined by the XML
Schema Part 1: Structures specification to be a QName, consisting of a namespace prefix for the value's class
(if thereis one and it is not the default prefix for the document), a“:” and the name of the value's class. The
QName can be either “xmi” (referring to the XMI namespace) or “xsi” (referring to the XML Schema
Instance namespace). See the schema specification for more details. You may only use the XML schema
instance type attribute if org.omg.xmi.useSchemaExtensions is true.

2h.

The XML attributes of the element correspond to Properties whose type is a data value or enumeration, or
Class-typed properties whose values are objects in the document. A specific Property shall be serialized in an
object either as an XML attribute or as XML elements but not both. You must not serialize a Property as an
XML attribute if the value of the org.omg.xmi.element tag is “true.” You must not serialize a Property at all if
the value of the org.omg.xmi.serialize tag is “false;” or the value of that tag is “non-derived” and the Property
has isDerived="true.” You must not serialize a Class-typed Property at all if the org.omg.xmi.remoteOnly tag
is true and the Property has a value that is an object in the same XML document. You may serialize classifier-
level attributes with an object.

XML Metadata Interchange (XMl), v2.5.1

63

2i.

Use this production rule to serialize a Property whose type is not an object and whose value can be
represented by a string. Multi-valued DataType-typed Properties cannot be serialized as XML attributes. If the
Property’s type is one of the types defined by the XML Schema Part 2: Datatypes specification, serialize the
value as specified in that specification.

Also use this production rule if the Property type is an enumeration and whose value is one of the legal
enumeration literals. If the org.omg.xmi.xmiName is specified for the literal, the value of that tag should be
used; otherwise, the name of the enumeration literal specified in the model is used.

5.

Use this production rule to serialize Class-typed Properties whose values are objects that are serialized in the
same document. The value of the XML attribute contains the XM1 ID of each referenced object, separated by
a space.

2k.

The name of an XMI element or attribute with an optional namespace prefix.

2l

Use the idref attribute to specify the id of an XML element that is referenced in the document; use the href
attribute to specify an XML element in another document. If the org.omg.xmi.href tag is “true,” you must not
use the idref attribute; use the href attribute for references within the document and across documents.

2m.

An XMI link. The value of the href attribute is a URI reference that refers to an XML element in another
document or in the same document.

2n.

A URI Reference, optionally preceded by the type of the object being referenced. The URI reference refers to
an XML element in another document or in the same document. For example, if the href is
“someFile.xmi#someld,” the href refers to an XML element in the “someFilexmi” document whose XMI 1D
is“someld.” If the URI reference is’"#anotherld,” it refers to an XML element whose XMI ID is “anotherld”
in the same document. XLinks are also supported in XMI. See 7.10.2, 'Linking’ for more information. See the
W3C XLink and XPointer specification for production rules. The URI reference can be preceded by the type
of the object being referenced. For example, a Property’s type is a Classifier, which is abstract. When one of the
concrete subclasses of Classifier is actually instantiated, it is not clear which one it is unless the URI is
dereferenced. By serializing the QName emof:Class, you can tell it is a Class without needing to load and
process the file at the URI.

9.5.3 Extension

3:Extension ::= "<xmi:extension" “xmi:type=’'xmi:Extension’”
(" extender='" // extender // "'")?
(" extenderID='" // extenderID // "'")?

">"
// Extension elements //

"</xmi:extension>"

3. Extension elements may be provided to complement the serialized model with additional information, such as
tool-specific diagram data, for example. Each extension element has an optional extender and extenderID
attribute; its content can be anything (see for examples).

64 XML Metadata Interchange (XMI), v2.5.1

10 XML Schema Infoset Model

10.1 General

This clause describes the MOF model for XML Schema using UML notation. The model is a straightforward mapping
from the XML Schema specification: classes in the model have a direct correspondence to XML Schema components.

This model replaces the XSD model in the XMI 2.0 specification (http://www.omg.org/technol ogy/documents/formal/
xmi.htm), which was created prior to the introduction of the XML Infoset and the XML Schema abstract data model into
the XML Schema specification. This model is called the XML Schema Infoset Model to distinguish it from the earlier
version.

The specification of the XML Schema Infoset model assumes a strong working knowledge of XML Schema and refers
throughout to the XML Schema specification for the detailed description of constructs that are defined by XML Schema.

The description of the model is divided into two sub clauses: the first describing elements of the model that primarily
represent XML Structures, and the second describing elements that primarily represent XML Schema Datatypes.

The final sub clause shows an example of an XML Schema represented as an instance of the XSD Infoset model.
The model diagrams are color coded for easier reading:

« Yellow - concrete classes

» Turquoise - abstract classes

» Orange - enumerations

» Gray - datatypes

10.2 XML Schema Structures

This sub clause defines the model elements corresponding to XML Schema Subpart 1, Structures. There are eight
diagrams in this sub clause. The first set of diagrams show aspects of the XSD Infoset model that represent the XML
Schema abstract data model defined in the XML Schema specification:

» Figure10.1

» Figure 10.2 on page 67
» Figure 10.3 on page 68
 Figure 10.4 on page 69

The next set of diagrams show aspects of the model that represent the XML Schema concrete syntax:

» Figure 10.5 on page 70
» Figure 10.6 on page 71
» Figure 10.7 on page 72

The final diagram (Figure 10.8 on page 73) shows how concrete components resolve into abstract components.

XML Metadata Interchange (XMI), v2.5.1 65

The sub clauses following these diagrams describe the model classes in detail. The sub clauses are alphabetically ordered

by class name.

XSDComponent

_—

XSDScope XSDAnnotation XSDAttributeUse XSDTerm XSDXPathDefinition
[\
XSDSchema XSDConplexTypeContent XSDNamedComponent XSDWildcard XSDMode IGroup

i

b

XSDParticle

XSDRedefinableComponent

&

XSDTypeDefinition

XSDModelGroupDefinition

2

XSDSimpleTypeDefinition

XSDComplexTypeDefinition

Figure 10.1- Component Hierarchy

XSDAttributeGroupDefinition

XSDFeature

&

XS DElementDecl aration

XSDAttributeDeclaration

XSDNotationDeclaration

XSDldentityConstraintDefinition

The Component Hierarchy diagram introduces classes representing the abstract XML Schema components. Schema
components are the building blocks that comprise the abstract data model of the schema. An XML Schemais a set of

schema components.

66

XML Metadata Interchange (XMl), v2.5.1

0.* +attributeDeclarations XSDSchema +notationDeclarations 0..*
0..* +typeDefinitions +atributeGroup Definitions 0.*
0..*| +elementDeclarations 0.* | +identityConstraintDefinitions 0..* | *modelGroupDefinitions

*
XSDElementDeclaration 0. XSDldentityConstraintDefinition XSDModelGroupDefinition
®*
o1 +identityConstraintDefinitions 0.1
0.* " +subs titutionGrou pAffiliation +referencedKey
+substitutionGroup Hields | 1.* 1 |+selector +modelGroup | 1
1 +typeDefinition
i XSDXPathDefinition XSDModelGroup
= XSDTypeDé€finition L
+baseTypeDefinition +particles | 1.*
+attributeWildcard
XSDSimpleTypeDefinition XSDComplexTypeDefinition XSDWildcard XSDParticle
0.1
1 . .
0.1 | +contentType 0..1 | +atributeWildcard Herm | 1
+baseTypeDefinition
o XSDComplexTypeContent XSDTerm
1 | +typeDefiniton +attributeUses | 0..*
XSDAttributeDeclaration L XSDAttributeUse 0. XSDAttributeGroupDefinition

+attributeDeclaration

+scope

XSDFeature XSDScope

0.1

Figure 10.2 - Component Relations

+attributeUses

XSDNotationDeclaration

The Component Relations diagram shows the interrelationships between XML Schema components: which components
can contain or reference other components. The XSDAnnotation relations are shown separately in Figure 10.4 on page 69.

This is closely aligned with the (non-normative) Schema Components Diagram in XML Schema Part 1: Structures.

XML Metadata Interchange (XMl), v2.5.1

67

XSDNamedComponent XSDAttributeUse <<enumeration>> XSDXPathDefinition <<enumeration>>
name : String required : Boolean XSDldentityConstraintCategory variety : XSDXPathVariety XSDXPathVariety
targetNamespace : String value : Value key value : String selector

constraint : XSDConstraint keyref field
XSDSchema % UnIg 2
XSDFeature <<enumeration>>
Ve Vel XSDConstraint XSDldentityConst raint Definition XSDRedefinableComponent
constraint : XSDConstraint default identityConstraintCategory : XSDIdentityConstraintCategory|
$ fixed

XSDNotationDeclaration

XSDElementDeclaration systemIdentifier : String
nillable : Boolean publicldentifier : String
disallowedSubstitutions : XSDDisallowedSubstitutions [0..*]
substitutionGroupExclusions : XSDSubstitutionGroupExclusions [0..*]
abstract : boolean

XSDAttributeDeclaration

<<enumeration>> <<enumeration>> <<enumeration>> — - —
XSDCom positor XSDSubstitutionGroupExclusions XSDDisallowedSubstitutions XSDModelGroupDefinition XSDAttributeGroupDefinition
all extension substitution
choice restriction extension na—
sequence restriction XSDTypeDefinition
XSDModel Group Z>
compositor : XSDCompositor SRS [
XSDVariety XSDSimpleTypeDefinition XSDComplexTypeDefinition
XSDParticle atomic variety : XSDVariety derivationMethod : XSDDerivationMethod = restriction
minOccurs : Integer = 1 list final : XSDSimpleFinal [0..*] final : XSDComplexFinal [0..%]
maxOccurs : UnlimitedNatural = 1 union abstract : Boolean
<<enumeration>> contentTypeCategory : XSDContentTypeCategory
XSDSimpleFinal prohibitedSubstitutions : XSDP rohibited Substitutions [0. .*]
XSDWildcard list
namespaceConstraintCategory : XSDNamespaceConstraintCategory restriction <<enumeration>>
namespaceConstraint : String [0..] union XSDComplexFinal
processContents : XSDProcessContents extension
restriction <<enumeration>>
<<enumeration>> <<enumeration>> XSDContentTypeCategory
XSDNamespaceConstraintCat egory XSDProcessContents <<enumeration>> <<enumeration>> empty
any strict XSDProhibitedSubstitutions XSDDerivationMethod | | simple
not |a>§ extension extension mixed
set skip restriction restriction elementOnly

Figure 10.3 - Component Properties

The Component Properties diagram shows the properties of the XML Schema component classes that are associated with
the abstract data model. The enumerations that are used as property types are also shown.

68 XML Metadata Interchange (XMI), v2.5.1

XSDAttributeUse

XSDAttributeDeclaration

>

XSDSchema

+annotation

+annotation

XSDAttributeG roupDefinition

XSDElementDeclaration

XSDNotationDeclaration

XSDXPathDefinition

XSDModelGroup P

+annotation

0.1/0..1]0..

+annotations

1| 0.* 0.1

@ XSDFacet

+annotation

0..

7

XSDConstrainingFacet

N

XSDRepeatableFacet

+annotation
0..1

+annotation
0..1

+annotation

XSDModelGroupDefinition

XSDAnnotation

+annotations
+annotations

XSDldentity ConstraintDefinition

0..1
+annotation
o>
0.1 0.1 |0
+annotation
+annotation

XSDWildc ard

+annotations

.1 0..* 0..

XSDParticle

Figure 10.4 - Component Annotations

L

+contentAnnotation Z%

0..*

+derivationAnnotation
0..1

+annotation
0..1

XSDTypeDefinition

XSDSimpleTypeDefinition

XSDComplexTypeDefinition

The annotation schema component provides for human- and machine-targeted annotations of other schema components.

The Component Annotations diagram models the structure and usage of the annotation component by other abstract

components.

XML Metadata Interchange (XMl), v2.5.1

69

+schema

0..1| +incorporatedSchema

XSDConcreteComponent
0.1 1 .
+rootContainer | q Z> 0..1 | *container
XSDComponent XSDAttributeGroupContent XSDSchemaContent XSDP articleContent
XSDScope XSDNamedComponent XSDRedefineContent XSDSchemabDirective
g .
XSDRedefinableComponent XSDImport XSDSchemaCompositor
0..1|+annotation
- +annotation
XSDSchema XSDAnnotation XSDinclude XSDRedefine
<@
0.1
0..* | +annotations

0..1] +resolvedSchema

Figure 10.5 - Concrete Components

The Concrete Components diagram shows the additions and extensions to the abstract XML Schema components for
representing the concrete syntax. For example, it introduces classes X SDImport (for the import element) and XSDInclude

(for the include element).

70

XML Metadata Interchange (XMl), v2.5.1

XSDConcreteComponent <<datatype>> <<datatype>>
element : DOMElement DOMElement DOMDocument
‘ ‘ <<datatype>> <<datatype>>
XSDSchemaContent XSDComponent DOMNode DOMALtr
Z% $ <<javaclass>> org.w3c.dom.Node
—— | | |
XSDSchemaDirective XSDScope XSDFacet XSDAnnotation
schemalocation : String lexicalValue : String applicationinformation : DOMElement [0..*]
Q userinformation : DOMElement [0..%]
XSDSchema attributes : DOMALtr [0..¥]
document : DOMDocument
XSDimport schemalocation : String XSDNamedComponert XSDTerm

namespace : String

targetNamespace : String

attributeFormDefault : XSDForm = unqualified
elementFormDefault : XSDForm = unqualified
finalDefault : XSDProhibitedSubstitutions [0..*]
blockDefault : XSDDisallowedSubstitutions [0..*]
version : String

XSDWildcard
lexicalNamespaceConstraint : String [0..*]

Figure 10.6 - Concrete Properties

XSDAttributeUse " ‘
. - <.<enumerat|0n>_> : ‘ <<enumeration>>
I DAL U 57 XSDDisallowedSubstitutions XSDRedefinableComponent XSDFeature XSDForm
lexicalValue : String bstitut
substitution form : XSDForm qualified
extension lexicalValue : Strini i
<<enumeration>> restriction g |unqualified
XSDAttributeUseCategory all ‘ Q
optional -
prohibited <<enumeration>> XSDTypeDefinition S)GDElemer?tI‘DecIaratlo-n ‘
required XSDProhibitedSubstitutions lexicalFinal : XSDProhibitedSubstitutions [0..*]
; block : XSDDisallowedSubstitutions [0..*]
extension Z>
<<enumeration>> restriction
XSDSimpleFinal all ‘ <<enumeration>>
list XSDComplexTypeDefinition XSDComplexFinal
restriction : — lexicalFinal : XSDComplexFinal [0..*] extension
union XSDSimpleTypeDefinition block : XSDProhibitedSubstitutions [0..*] restriction
all lexicalFinal : XSDSimpleFinal [0..¥] mixed : Boolean all

The Concrete Properties diagram shows the additional properties required to represent the concrete syntax.

XML Metadata Interchange (XMl), v2.5.1

71

‘ XSDParticleContent ‘

1| +content Z>
\
XSDTerm XSDSchema 0.* _| XxSDSchemaContent
+contents +attributeContents
A 5
XSDModelGroup XSDElementDeclaration XSDAttrib uteGroupContent XSDRedefineContent XSDSchemabDirective
’ +contents | Q..* 0.7 ﬁ +eontents 4
+identity ConstraintDefinitions XSDRedefine > XSDSchemaCompositor
0.*
XSDldentityConstraintDefinition XSDAttributeUse ‘
{ XSDTypeDefinition XSDNotationDeclaration
+ields | 1.* 1 | +selector 1| +content
XSDWildcard XSDXPathDefinition XSDAttributeDeclaration XSDAttributeGroupDefinition XSDModelGroupDefinition
W\ 0..1 +attributeWildcardContent ’ ?
1
+modelGroup 0.1
XSDComplexTypeContent
+anonymous TypeDefinition
+contents 0..1| +anonymousTypeDefinition
O. .*
| | | o |
XSDParticle XSDSimpleTypeDefinition XSDConstrainingFacet XSDComplexTypeDefinition €
+facet Contents
+content 0.1 t O"i *+contents ?
0..1| +attributeWildcardContent

Figure 10.7 - Concrete Containment

The Concrete Containment diagram models the contents of concrete components.

72 XML Metadata Interchange (XMI), v2.5.1

+rootVersion +schemaForSchema

1

0..1 toriginalVersion

XSDSchema

1

+incorporatedVersions

0..1+incorporatedSchema
0”*

\
0..1 +resolvedSchema

? 0..%|,+referencingDirectives

XSDS chem aDirective

R

XSDSchemaCompositor

XSDSimpleTypeDefinition

0..* | +syntheticFacets

XSDFacet

XSDComplexTypeDefinition

+syntheticPatrticle

0.1 +syntheticWildcard | 0..1
XSDParticle XSDW ildcard
0..1

XSDAttributeDeclaration XSDAttributeGroupDefinition | g
1 1
+resolvedAttributeDeclaration +resolvedAttribute GroupDefinition
XSDElementDeclaration XSDModelGroupDefinition
1 1
+resolvedElementDeclaration +resolvedModelG roupDefinition

Figure 10.8 - Concrete Schema Composition

+syntheticWildcard

The Concrete Schema Composition diagram shows how concrete components resolve to abstract components.

10.2.1 XSDAnnotation

A representation of the model object “Annotation.” Access to the contents of an annotation is provided via their DOM

representation.

applicationlnformation

This represents the application information infoset property (i.e., alist of appinfo elements).

user Information

This represents the user information infoset property (i.e., alist of documentation elements).

attributes

This represents the attributes infoset property.

XML Metadata Interchange (XMl), v2.5.1

10.2.2 XSDAttributeDeclaration

A representation of the model object ‘ Attribute Declaration.’
attributeDeclarationReference
This concrete property is false when the X SDAttributeDeclaration refers to itself as its resolvedAttributeDeclaration.

An infoset feature will never return an instance for which this is true since this is a concrete attribute that is used to
represent an attribute declaration with a ref attribute.

annotation

References the X SDAnnotation for this declaration.

anonymousTypeDefinition

This concrete reference represents a simple type definition defined within the body of an attribute element.
typeDefinition

This represents the type definition infoset property.

resolvedAttributeDeclaration

This concrete reference represents the attribute declaration resolved by the ref attribute.

10.2.3 XSDAttributeGroupDefinition

A representation of the model object ‘ Attribute Group Definition.’
attributeGroupDefinitionReference

This concrete property is false when the X SDAttributeGroupDefinition refers to itself asits
resolvedAttributeGroupDefinition.

annotation

This represents the annotation infoset property.

contents

This concrete reference represents the contents defined within the body of an attributeGroup element.
attributeUses

This represents the attribute uses infoset property. It is computed from the contents.

attributeWildcardContent

This concrete reference represents the attribute wildcard defined within the body of an attributeGroup element.
attributeWildcard

This represents the attribute wildcard infoset property. It is computed from the attribute wildcard content.

74 XML Metadata Interchange (XMI), v2.5.1

resolvedAttributeGroupDefinition
This concrete reference represents the attribute group definition resolved by the ref attribute.
syntheticWldcard

This contains the attribute wildcard infoset property, if the rules require a synthesized component.
10.2.4 XSDAttributeUse

A representation of the model object ‘Attribute Use.’

required

This represents the required infoset property.

value

This represents the value of the value constraint infoset property. It is computed from the lexical value.
constraint

This represents the constraint of the value constraint infoset property.

use

This concrete attribute represents the value of the use attribute.

lexical Value

This concrete attribute represents the value of the default or fixed attribute.
attributeDeclaration

This represents the attribute infoset property. It is computed from the content.
content

This concrete reference represents the underlying concrete attribute element.

10.2.5 XSDComplexTypeContent

A representation of the model object ‘Complex Type Content.’ It is the contentType of X SDComplexTypeDefinitions.

10.2.6 XSDComplexTypeDefinition

A representation of the model object ‘Complex Type Definition.’
derivationMethod

This represents the derivation method infoset property.

final

This represents the final infoset property. It is computed from the lexical final.

XML Metadata Interchange (XMl), v2.5.1

abstract
This represents the abstract infoset property.
contentTypeCategory

This represents the category of the content type infoset property. It is computed from the type of the content and from the
setting of mixed.

prohibitedSubstituations

This represents the prohibited substitutions infoset property. It is computed from the block.
lexicalFinal

This concrete attribute represents the value of the final attribute.

block

This concrete attribute represents the value of the block attribute.

mixed

This concrete attribute represents the value of the mixed attribute.

contentAnnotation

This concrete reference represents the annotation content of a complexContent element or a simpleContent element.
baseTypeDefinition

This represents the base type definition infoset property.

content

This concrete reference represents the simple type content or particle content of a complexType element. It will be null,
an XSDSimpleTypeDefinition, or an XSDParticle.

contentType

This represents the value of the content type infoset property. It is computed from the content. It will be null, an
XSDSimpleTypeDefinition, or an XSDParticle.

attributeUses

This represents the attribute uses infoset property. It is computed from the attribute contents.
attributeContents

This concrete reference represents the attribute contents defined within the body of a complexType element.
attributeWildcard

This represents the attribute wildcard infoset property. It is computed from the attribute wildcard content.
attributeWildcardContent

This concrete reference represents the attribute wildcard defined within the body of an complexType element.

76 XML Metadata Interchange (XMI), v2.5.1

rootTypeDefinition

This walks the base type definitions until it hits the one that has the ur-type definition as its base type definition.
syntheticParticle

This represents the value of the content type infoset property, if the rules require a synthesized particle.
syntheticWldcard

This represents the attribute wildcard infoset property, if the rules require a synthesized wildcard.
10.2.7 XSDComponent

A representation of the model object ‘Component.’ It is the root of the infoset hierarchy.
10.2.8 XSDFeature

A representation of the model object ‘Feature.” It is used to represent aspects common to ‘ Element Declarations' and
‘Attribute Declaration.’

value

This represents the value of the attribute value constraint or element value constraint infoset property. It is computed from
the lexical value.

constraint
This represents the constraint of the attribute value constraint or element value constraint infoset property.
form

This concrete attribute represents the value of the attribute form attribute or the element form attribute. It, along with the
attribute form default and element form default of the schema, affects the target namespace of locally scoped features.

lexical Value

This concrete attribute represents the value of the attribute fixed or default attribute or the element fixed or default
attribute.

global

This indicates whether the feature is globally scoped. Its value is false if the feature is declared within a complex type
definition, an attribute group definition, or a model group definition.

featureReference
This is the same result as either the ‘Element Reference’ attribute or the ‘ Attribute Reference’ attribute.
scope

This represents the attribute scope or element scope infoset property.

XML Metadata Interchange (XMI), v2.5.1 77

resolvedFeature

This is the same result as either the ‘ Resolved Element Declaration’ reference or the ‘Resolved Attribute Declaration’
reference.

type

This is the same result as either the element ‘ Type Definition’ reference or the attribute ‘ Type Definition’ reference.
10.2.9 XSDldentityConstraintDefinition

A representation of the model object ‘Identity Constraint Definition.’
identityConstraintCategory

This represents the identity constraint category infoset property.
annotation

This represents the annotation infoset property.

referencedKey

This represents the referenced key infoset property.

selector

This represents the selector infoset property.

fields

This represents the fields infoset property. The fields are of type XSDXPathDefinition.

10.2.10 XSDModelGroup

A representation of the model object ‘Model Group.’

compositor

This represents the compositor infoset property.

annotation

This represents the annotation infoset property.

contents

This concrete reference represents the particle contents defined within the body of a sequence, choice, or all element.
particles

This represents the particles infoset property.

78 XML Metadata Interchange (XMI), v2.5.1

10.2.11 XSDNamedComponent

A representation of the model object ‘Named Component.’ It is used to represent aspects common to attribute
declarations, attribute group definitions, complex type definitions, element declarations, identity constraint definitions,
model groups definitions, notation declarations, and simple type definitions.

name

This represents the value of the attribute declaration name, attribute group definition name, complex type definition name,
element declaration name, identity constraint definition name, model group definition name, notation declaration name, or
simple type definition name (*) infoset property.

targetNamespace

This represents the value of the attribute declaration target namespace, attribute group definition target namespace,
complex type definition target namespace, element declaration target namespace, identity constraint definition target
namespace, model group definition target namespace, notation declaration target namespace, or simple type definition
target namespace (*) infoset property. It is computed from the target namespace of the schema and should typically not be
set directly; in the case of locally scoped features, the value is also affected by the form.

aliasName

This is a constructed name for an anonymous component. In order to make it relatively meaningful, it can be constructed
by using the name of the containing component and an indication of the relation to that component, For example,
“E_._type” would be the alias name of the anonymous type definition of the element “E” and “LT_._item” would be the
alias name of the anonymous item type definition of the list type defintion “LT.”

uRl

This is equivalent to the string
<target namespace>#<name>

where a null target namespace is taken to mean an empty string.
aliasURI

This is equivalent to the string
<target namespace>#<alias name>

where a null target namespace is taken to mean an empty string.
gName

This concrete attribute is this named component's ‘ QName.’

10.2.12 XSDSchema

A representation of the model object ‘ Schema.’
document

This is the optional DOM document of this schema (i.e., the owner of the element).

XML Metadata Interchange (XMI), v2.5.1 79

schemal_ocation

This concrete attribute represents the URI of the resource that contains this schema. It is used to complete any relative
schemal ocation URI in an import, include, or redefine.

targetNamespace

This concrete attribute represents the value of the targetNamespace attribute.
attributeFormDefault

This concrete attribute represents the value of the attributeFormDefault attribute.
elementFormDefault

This concrete attribute represents the value of the elementFormDefault attribute.

finalDefault

This concrete attribute represents the value of the finalDefault attribute.

blockDefault

This concrete attribute represents the value of the blockDefault attribute.

version

This concrete attribute represents the value of the version attribute.

contents

This concrete reference represents the contents defined within the body of a schema element.
elementDeclarations

This represents the element declarations infoset property. It is computed from the contents.
attributeDeclarations

This represents the attribute declarations infoset property. It is computed from the contents.
attributeGroupDefinitions

This represents the attribute group definitions infoset property. It is computed from the contents.
typeDefinitions

This represents the type definitions infoset property. It is computed from the contents.

model GroupDefinitions

This represents the model group definitions infoset property. It is computed from the contents.
identityConstraintDefinitions

This represents the model group definitions infoset property. It is computed from the contents.

80 XML Metadata Interchange (XMI), v2.5.1

notationDeclarations

This represents the notation declarations infoset property. It is computed from the contents.
annotations

This represents the annotations infoset property. It is computed from the contents.
referencingDirectives

This represents the directives that have this schema as their ‘ Resolved Schema’ reference or ‘Incorporated Schema’
reference.

rootVersion
This walks the original versions until it hits one that has no original version.
original\Version

This represents the schema from which an incorporated version originates. The root version has itself as its original
version.

incorporatedVversions

This represents those versions of this schema that have been included into a schema with a different namespace or have
been otherwise redefined.

schemaFor Schema

This represents the ‘schema for schemas.’ It is computed from the schema for schema namespace.

10.2.13 XSDScope

A representation of the model object ‘Scope.” This is used to represent the types the scope property of XSDFeature (i.e.,
‘Schema’ and ‘Complex Type Definition.’

10.2.14 XSDSimpleTypeDefinition

A representation of the model object ‘ Simple Type Definition.” For the properties with names of the form
effectiveXxxFacet, effective means that the value of the property is computed based on the direct facets of this type, or, if
the facet is not present, is computed recursively from the base type.

variety

This represents the variety infoset property. It is computed based on the presence or absence of an item type or of member
types.

final
This represents the final infoset property. It is computed from the lexical final.
lexicalFinal

This concrete attribute list represents the value of the final attribute.

XML Metadata Interchange (XMI), v2.5.1 81

validFacets
This computed attribute list represents the facet name of each type of facet that is valid for this simple type definition.
contents

This concrete reference list represents the anonymous simple type definition content of a restriction, list, or union
element.

facetContents

This concrete reference list represents the facet contents of a restriction. There are properties with names of the form
XxxFacet that provide direct access to the individual facets.

facets
This represents the facets infoset property. It is computed from the facet contents.
member TypeDefinitions

This represents the member type definitions infoset property. When constructing a union type, each anonymous member
type should be added to both this list and to the contents list. The variety is determined automatically by the presence of
member type definitions.

fundamental Facets

This represents the fundamental facets infoset property. It is a computed property.
baseTypeDefinition

This represents the base type definition infoset property.

primitiveTypeDefinition

This represents the primitive type definition infoset property.

itemTypeDefinition

This represents the item type definition infoset property. When constructing a list type, an anonymous item type should be
both set using this method and added to the contents list. The variety is determined automatically by the presence of an
item type definition.

rootTypeDefinition

This walks the base type definitions until it hits that one that has the ur-type definition as its base type definition.
minFacet

This represents the XSDMinFacet of the facet contents.

maxFacet

This represents the XSDMaxFacet of the facet contents.

maxl nclusiveFacet

This represents the XSDMaxInclusiveFacet of the facet contents.

82 XML Metadata Interchange (XMI), v2.5.1

mininclusiveFacet
This represents the XSDMinlInclusiveFacet of the facet contents.
minExclusiveFacet
This represents the XSDMinExclusiveFacet of the facet contents.

maxExclusiveFacet

This represents the X SDMaxExclusiveFacet of the facet contents.

|lengthFacet

This represents the X SDLengthFacet of the facet contents.
whiteSpaceFacet

This represents the X SDWhiteSpaceFacet of the facet contents.
enumer ationFacets

This represents the X SDEnumerationFacet of the facet contents.
patternFacets

This represents the X SDPatternFacet of the facet contents.

cardinalityFacet

This represents the XSDCardinalityFacet of the fundamental facets.

numericFacet

This represents the X SDNumericFacet of the fundamental facets.
maxLengthFacet

This represents the XSDMaxL engthFacet of the facet contents.
minLengthFacet

This represents the XSDMinL engthFacet of the facet contents.
total DigitsFacet

This represents the X SDTotal DigitsFacet of the facet contents.
orderedFacet

This represents the X SDOrderedFacet of the fundamental facets.
boundedFacet

This represents the X SDBoundedFacet of the fundamental facets.
effectiveMaxFacet

This represents the XSDMaxFacet of the facets.

XML Metadata Interchange (XMl), v2.5.1

83

effectiveWhiteSpaceFacet

This represents the X SDWhiteSpaceFacet of the facets.
effectiveMaxLengthFacet

This represents the XSDMaxL engthFacet of the facets.
effectiveFractionDigitFacet

This represents the X SDFractionDigitsFacet of the facets.
effectivePatternFacet

This represents the X SDPatternFacet of the facets.
effectiveEnumer ationFacet

This represents the X SDEnumerationFacet of the facets.
effectiveTotal DigitsFacet

This represents the X SDTotal DigitsFacet of the facets.
effectiveMinLengthFacet

This represents the XSDMinLengthFacet of the facets.
effectivelL engthFacet

This represents the XSDLengthFacet of the facets.
effectiveMinFacet

This represents the XSDMinL engthFacet of the facets.
syntheticFacets

This represents the facets infoset property, if the rules require a synthesized facet.

10.2.15 XSDTerm

A representation of the model object ‘ Term.” It is used as the type for the X SDParticle term property.
10.2.16 XSDTypeDefinition

A representation of the model object ‘ Type Definition.” It is used to represent aspects common to ‘ Simple Type
Definitions' and ‘ Complex Type Definitions.’

annotation

This concrete reference represents the direct annotation content of a complexType element or a simpleType element.

84 XML Metadata Interchange (XMI), v2.5.1

derivationAnnotation

This concrete reference represents the direct annotation content of a complex content extension, complex content
restriction, simple content extension, simple content restriction, simple type restriction, simple type list, or simple type
union element.

annotations

This represents the complex type definition annotation or simple type definition annotation infoset property. It is
computed from the annotation, content annotation, derivationAnnotation.

rootType
This walks the base types until it hits that one that has the ur-type definition as its base type.
baseType

This represents the same result as either the simple ‘Base Type Definition’ reference or the complex ‘Base Type
Definition’ reference.

simpleType
This represents either the * Simple Type Definition’ itself or the complex ‘Content Type' reference, if it is simple.
complexType

This represents the complex ‘ Content Type' reference, if it is complex (i.e., if itisa‘Particle’).
10.2.17 XSDwildcard

A representation of the model object ‘Wildcards.’
namespaceConstraintCategory

This represents the category of the namespace constraint infoset property.
namespaceConstraint

This represents the value of the namespace constraint infoset property. It is computed from the lexical namespace
constraint and should typically not be modified directly.

processContents

This represents the process contents infoset property.

| exical NamespaceConstraint

This concrete attribute represents the value of the any namespace or anyAttribute namespace attribute.
annotation

This concrete reference represents the annotation content of an any or anyAttribute element.
annotations

This represents the annotation infoset property. It is computed from the annotation.

XML Metadata Interchange (XMI), v2.5.1 85

10.2.18 XSDXPathDefinition

A representation of the model object ‘ XPath Definition.” It represents a field or selector of an Identity-constraint
Definition. It defines a restricted XPath. It is used to represent the types of object returned by the 'Fields' reference list
and the ‘ Selector’ reference.

variety

This attribute represents whether thisis a field or a selector.

value

This concrete attribute represents the value of the selector xpath or field xpath attribute.
annotation

This concrete reference represents the annotation contents defined within the body of a field or selector element.

10.3 XML Schema Datatypes

‘ XSDSimnleT Definii <<enumeration>>
imple eDefinition i
XSDComponent +simpleTypeDefinition oo XF;Dvyp' ; XSPVanety
+baseTypeDefinition® yvariety atomic
A u..1 jmnal : ASDSimpleFinal [0..*] list
<& .
+fundamentalFacets U ion
XSDFacet 1 1
h 0.1 <<enumeration>>
0.1 L XSDSimpleFinal
0..*| +facets +primitiveTypeDefinition 0"L list
— +itemT Definiti restriction
XSDConstrainingFacet XSDFundamentalFacet 'tem typebenniion union
+mem berTypeDefinitions
XSDFixedFacet ‘
- XSDRepeatableFacet XSDBoundedFacet XSDOrderedFacet
fixed : Boolean
$ value : Boolean value : XSDOrdered
‘ ‘ XSDNumericFacet XSDCardinalityFacet
XSDEnumerationFacet XSDPatternFacet value : Boolean value : XSDCardinality
value : Element [0..%] value : String [0..*]
[[[[<<enumeration>>
XSDMinFacet XSDLengthFacet XSDW hiteSpaceFacet XSDMaxFacet XSDOrdered
value : Value value : Integer value : XSDW hiteSpace value : Value false
partial
XSDMinLengthFacet XSDMaxLengthFacet total
value : Integer value : Integer
<<enumeration>>
XSDMininclusiveFacet XSDMaxInclusiveFacet XSDCardinality
finite
countablyInfinite
XSDMinExclusiveFacet XSDMaxE xc lusiveFacet -
<<enumeration>>
XSDW hiteSpace
preserve
XSDTotalDigits Facet XSDFractionDigitsFacet replace
value : Integer value : Integer collapse

Figure 10.9 - Component Hierarchy, Relations, and Properties (Part 2: Datatypes)

86 XML Metadata Interchange (XMI), v2.5.1

The Component Hierarchy, Relations, and Properties (Part 2: Datatypes) diagram represents the abstract XML Schema
components as defined in XML Schema Part 2: Datatypes. Each datatype has a value space, which is the set of values for
that datatype. A facet is a single defining aspect of a -value space:. Generaly speaking, each facet characterizes a -value
space: along independent axes or dimensions. The facets of a datatype serve to distinguish those aspects of one datatype
that differ from other datatypes.

Facets are of two types: fundamental facets that define the datatype, and constraining facets constrain the permitted values
of a datatype. For example, the XML Schema string datatype has the following constraining facets:

« length

« minLength

« maxLength

* pattern

+ enumeration

 whiteSpace

In contrast, the boolean dataype has these constraining facets:

* pattern

» whiteSpace

XML Metadata Interchange (XMI), v2.5.1 87

XSDConcreteComponent
XSDNamedComponert
aliasName : String
- uRl : String
XSDRedefinableComponent ; =
: P aliasURI : String +resolvedFeature | 1 ATRANE
circular : Boolean gName : String global : Boolean
Z> 1 featureReference : Boolean
| | +type $
XSDModelGroupDefinition XSDTypeDefinition | tbaseType 1
modelGroupDefinitionReference : Boolean 1 XSDEIementDecIaratj on
elementDeclarationReference : Boolean
circular : Boolean
XSDAttributeGroupDefinition
attributeGroupDefinitionReference : Boolean XSDAttributeDeclaration
‘ /rl 1 attributeDeclarationReference : Boolean
0--1¢/+com lexType + iti *rootType
_ plexTyp root TypeDefinition :)7_,1 - XSDFacet
LB simpietype facetName : String
iti effectieValue : Value
XSDComplexTypeDefinition +rootTypeDefinition
XSDNumericFacet -
1 -+numericFacet 1.\ +boundedFacet XSDBoundedFacet
XSDSimpleTypeDefinition 1
XSDOrderedFacet 1 +orderedFacet validFacets : String [O*] +CardirBlityFacet 1 -
XSDCardinalityFacet
XSDMinFacet 0.1 +minFacet
O mnrace +maxFacet 0-1 | xsDMaxFacet
inclusive : Boolean 0.1 seffectiveMing . : P
exclusive : Boolean|_— efectiveMinFacet +effectiveMaxFacet 0.1 _|inclusive : Boolean
exclusive : Boolean
XSDMininclusiveFacet | 0--1 +mininclusiveFacet +maxinclusiveFacet 0.1 :
XSDMaxInclusiveFacet
XSDMinExclusiveFacet | 01 +minExclusiveFacet +maxExclusiveFacet 0.1 _
XSDMaxExclusiveFacet
* +enumerationFacets
XSDEnumerationFacet [q 10 " ffectiveE ionF +pattemFacets 0.
..1+effectiveEnumerationFacet
+effectivePatternFacet 0.1 | XSDPatterrFacet
0.1 +lengthFacet +whiteSpaceFacet 0.1
XSDLengthFacet ; ;
0.1 +effectiveLengthFacet +effectiveWhiteSpaceFacet 0.1 XSDWhiteSpaceFacet
0.1 i
SO Ler o +minLengthFacet +maxLengthFacet 0.1
inLengthFace ™
g 0.1 +effectiveMinLengthFacet +effectiveMaxLengthFacet (1 XSDMaxLengthFacet
XSDTotlDigitsFacet 0.1 +totalDigitsFacet +ractionDigitsFacet 0.1
.. i \gi . o XSDFractionDigitsFacet
0..1 +effectiveTotalDigitsFacet +effectiveFractionDigitsFacet 0.1 g

Figure 10.10 - Supplemental

The Supplemental diagram primarily models the relationships between type definitions and facets.

88 XML Metadata Interchange (XMI), v2.5.1

10.3.1 XSDBoundedFacet

A representation of the model object ‘Bounded Facet.’
value

This represents the value infoset property. It is a computed property.
10.3.2 XSDCardinalityFacet

A representation of the model object ‘Cardinality Facet.’
value

This represents the value infoset property. It is a computed property.
10.3.3 XSDConstrainingFacet
A representation of the model object ‘Constraining Facet.’

10.3.4 XSDEnumerationFacet

A representation of the model object ‘Enumeration Facet.’
value

This represents the value infoset property. It is computed from the ‘Lexical Value' attribute.
10.3.5 XSDFixedFacet

A representation of the model object ‘Fixed Facet.’
fixed
This represents the fractionDigitsFacet fixed, lengthFacet fixed, maxExclusiveFacet fixed, maxInclusiveFacet fixed,

maxL engthFacet fixed, minExclusiveFacet fixed, mininclusiveFacet fixed, minLengthFacet fixed, total DigitsFacet fixed,
whiteSpaceFacet fixed infoset property.

10.3.6 XSDFundamentalFacet
A representation of the model object ‘ Fundamental Facet.’
10.3.7 XSDFacet

A representation of the model object ‘Facet.’
lexical Value

This concrete attribute represents the value of the value attribute of the facet element.

XML Metadata Interchange (XMI), v2.5.1 89

facetName

This concrete attribute represents the name of this type of facet.

effectivevValue

This represents a generic version of the value infoset property of this facet.
annotation

This represents the annotation infoset property; each type of facet has an annotation.
simpleTypeDefinition

This represents the containing simple type definition of the facet.

10.3.8 XSDFractionDigitsFacet

A representation of the model object ‘Fraction Digits Facet.’
value

This represents the value infoset property. It is computed from the ‘Lexical Value' attribute.
10.3.9 XSDLengthFacet

A representation of the model object ‘Length Facet.’
value

This represents the value infoset property. It is computed from the ‘Lexical Value' attribute.
10.3.10 XSDMaxExclusiveFacet

A representation of the model object ‘Max Exclusive Facet.’

10.3.11 XSDMaxFacet

A representation of the model object ‘Max Facet.” It represents aspects common to ‘Max Exclusive Facet’ and ‘Max
Inclusive Facet.’

value

This represents the value infoset property. It is computed from the ‘Lexical Value' attribute.
inclusive

The value is true if this is an XSDMaxInclusiveFacet.

exclusive

The value is true if this is an XSDMaxExclusiveFacet.

90 XML Metadata Interchange (XMI), v2.5.1

10.3.12 XSDMaxInclusiveFacet
A representation of the model object ‘Max Inclusive Facet.’
10.3.13 XSDMaxLengthFacet

A representation of the model object ‘Max Length Facet.’
value

This represents the value infoset property. It is computed from the ‘Lexical Value' attribute.

10.3.14 XSDMinFacet

A representation of the model object ‘Min Facet.’ It represents aspects common to ‘Min Exclusive Facet’ and ‘Min
Inclusive Facet.’

value

This represents the value infoset property. It is computed from the ‘Lexical Value' attribute.
inclusive

The value is true if this is an XSDMinlnclusiveFacet.

exclusive

The value is true if this is an XSDMinExclusiveFacet.
10.3.15 XSDMinExclusiveFacet

A representation of the model object ‘Min Exclusive Facet.’
10.3.16 XSDMiniInclusiveFacet

A representation of the model object 'Min Inclusive Facet'.
10.3.17 XSDMinLengthFacet

A representation of the model object ‘Min Length Facet.’
value

This represents the value infoset property. It is computed from the ‘Lexical Value' attribute.
10.3.18 XSDNumericFacet

A representation of the model object ‘Numeric Facet.’

XML Metadata Interchange (XMl), v2.5.1

91

value

This represents the value infoset property. It is a computed property.
10.3.19 XSDOrderedFacet

A representation of the model object ‘Ordered Facet.’
value

This represents the value infoset property. It is a computed property.
10.3.20 XSDPatternFacet

A representation of the model object ‘ Pattern Facet.’
value

This represents the value infoset property. It is computed from the ‘Lexical Value' attribute. value is a multi-valued
property, in which each value is a String representing a pattern. The overall effect of the patterns is the logical
intersection.

10.3.21 XSDRepeatableFacet

A representation of the model object ‘ Repeatable Facet.’

Both pattern and enumeration facets may be repeated in the concrete syntax and yet they are merged into a single
component in the infoset model. As a result, instances of these two facets are synthesized by the effectivePatternFacet
and effectiveEnumerationFacet properties of X SDSimpleTypeDefinition.

annotations

This represents the enumeration annotation, or pattern annotation infoset property. It is computed from the concrete
annotation content.

10.3.22 XSDTotalDigitsFacet

A representation of the model object ‘ Total Digits Facet.’
value

This represents the value infoset property. It is computed from the ‘Lexical Value' attribute.

10.3.23 XSDWhiteSpaceFacet

A representation of the model object ‘White Space Facet.’
value

This represents the value infoset property. It is computed from the ‘Lexical Value' attribute.

92 XML Metadata Interchange (XMI), v2.5.1

10.4 Example

This sub clause shows how a simple XML Schema is represented as an instance of the XML Infoset model. The schema
in this example is:

<xs:schema targetNamespace=t1 xmins:xs=http://www.w3.0rg/2001/X ML Schema>
<xs.element name="e01" type="ct01"/>
<xs.complexType name="ct01">
<xs:choice>
<xs.element name="inline" type="xs:string" minOccurs="2" maxOccurs="3"/>
<xs.any namespace="##other"/>
</xs.choice>
</xs.complexType>
</xs:schema>

The information in the xs:schema tag is represented by an :XSDSchema.

:XSDSchema
targetNamespace="t1"

The information in the xs:element tag adds in an XDSElementDeclaration (excluding for the moment the reference to its
type).

:XSDSchema

targetNamespace="t1"

:XSDElementDeclaration

conten
name="e01"
targetNamespace="t1"

XML Metadata Interchange (XMI), v2.5.1 93

The information in the xs:complexType tag adds an :X SDComplexTypeDefinition. Since this is the type for element €01,
the : X SDElementDeclaration references the :X SDComplexTypeDefinition through the typeDefinition property.

:XSDSchema

targetNamespace="t1"

:XSDElementDeclaration

conten
name="e01"
targetNamespace="t1"

cont

:XSDComplexTypeDefinition

name="ct01"
typeDefinition targetNamespace="t1

Complex type ctOlcontains an xs:choice tag. This means that the content type of the complex type definition is a pair
consisting of

» elementonly. Thisis represented by the contentTypeCategory property in the X SDComplexTypeDefinition.

» The particle corresponding to the <choice>. Particles corresponding to a <choice> have terms that are model groups.
This particleis represented in the instance diagram by an X SDParticle that references an X SDModel Group whose
compositor has the value “choice.”

94 XML Metadata Interchange (XMI), v2.5.1

:XSDElementDeclaration

name="e01”
targetNamespace="t1"

cont

:XSDSchema

targetNamespace="t1"

conten

:XSDComplexTypeDefinition

content

:XSDParticle

name="ct01”

targetNamespace="t1"

contentTypeCategory=
elementonly

typeDefinition

:XSDModel Group
compositor=choice

The first element within the choice is an xs:element tag named “inline.” This means that the model group has a particle
whose term is an element declaration. The minOccur s and maxOccur s attributes in the xs:element tag are represented

by the X SDParticle’s minOccurs and maxOccurs properties. The type attribute in the tag is represented by an
XSDSimpleTypeDefinition for the XML Schema string type. This is shown in the instance diagram below.

XML Metadata Interchange (XMl), v2.5.1

95

:XSDSchema
targetNamespace="t1"

:X SDElementDeclaration

name="e01"
targetNamespace="11"

content

cont

content

:XSDComplexTypeDefinition

:XSDParticle

name="ct01"

targetNamespace="t1"

contentTypeCategory=
elementonly

typeDefinition

:XSDSimpleTypeDefinition

name="string"
targetNamespace=
“http://www.w3.0rg/2001/XM L Schema”

typeDefinition
sl

content

:XSDModel Group

compositor=choice
content

particl
:XSDParticle

minOccurs: 2
maxOccurs: 3

:X SDElementDecl aration

name="inling”
targetNamespace="t1"

The second element within the choice is an xs:any tag. This means that the model group has another particle, whose term
isawildcard. Thisis show in the instance diagram by an XSDInstance and an XSDWildcard, completing the

representation of the schema:

96

XML Metadata Interchange (XMl), v2.5.1

:XSDElementDeclaration

name="e01"
targetNamespace="t1"

cont

:XSDSchema
targetNamespace="t1"

conten

content

typeDefinition

:XSDComplexTypeDefinition

name="ct01”

targetNamespace="11"

contentTypeCategory=
elementonly

:XSDSimpleTypeDefinition

name="string”
targetNamespace=

“http://www.w3.0rg/2001/X ML Schema”

XML Metadata Interchange (XMl), v2.5.1

:XSDModelGroup

compositor=choice
content

:XSDParticle
particles particles
:XSDParticle :XSDParticle
4 minOccurs; 2
maxOccurs; 3
content content
:XSDElementDeclaration :XSDWildcard
typeDefinition o])
l¢&— | name="inline" |exical NamespaceConstrai nt=" ##other”
targetNamespace="t1" namespaceConstrai ntCategory=not

namespaceConstrai nt=(“//t1")

97

98

XML Metadata Interchange (XMl), v2.5.1

[XLINK]
[XPath]
[UML1]

[MOF1]
[XMI1]

Annex A
Bibliography

XLinks, a working draft of the W3C. http://www.w3.0rg/TR/WD-xlink and
http://wvww.w3.0rg/TR/NOTE-xlink-principles

XPointer, technical recommendation of the W3C.
http://www.w3.0rg/TR/xpath

ISO/IEC 19501:2005, Information technology - Open Distributed Processing -
Unified Modeling Language (UML) Version 1.4.2

ISO/IEC 19502:2005, Information technology - Meta Object Facility (MOF)
ISO/IEC 19503:2005, Information technology - XML Metadata Interchange (XMI)

The following is the Open Group DCE standard on UUIDs.

[UUID]

CAE Specification

DCE 1.1: Remote Procedure Call

Document Number: C706

http://www.opengroup.org/onlinepubs/9629399/toc.htm
http://www.opengroup.org/onlinepubs/9629399/apdxa.htm (Definition/creation of UUIDS)

XML Metadata Interchange (XMl), v2.5.1

99

100 XML Metadata Interchange (XMI), v2.5.1

B.1

Annex B
Canonical XMl

(normative)

Overview

Canonical XMI constitutes a specific constrained format of XMI that minimizes variability and provides more predictable
identification and ordering. Use of Canonical XMI is not mandatory - it is governed by 3 separate Conformance Points
(see 2.3.2 through 2.3.4). However note that in general it will be easier, especially for import, for tools to conform to
Canonical XMI compared to ‘full’ XMI - since there is significantly less variation that needs to be handled.

A Canonical Ml fileisitself avalid XMI file.

B.2

Constraints and Tag Equivalents

The following are the constraints for Canonical XMI:

1
2.
3.
4.

Always use an explicit XML encoding of “UTF-8."
Always use aroot smi:XMI element.
All namespaces used must be declared on the XMI element in the order of usage within the XML document.

An element will always have a closing tag except where it is areference where a single tag must be used. In other
words the shorthand <element/> must not be used except where it solely contains an xmi:idref or href attribute.

Use XML elementsfor al properties except for the following XM properties, which are XML attributes, and in the
following order:

xmi:id
Xmi:uuid
xmi:type

xmi:type is always present except where the element is areference (using xmi:idref or href) when it is never present
[as of XMI 2.4 thisis standard XMI].

xmi:id and xmi:uuid are always present except they are not present for values that are datatypes (depicted using the
keywords datatype, enumeration, primitive) in the UML or Profile specification.

xsi:nil is never used.

Links are only serialized as Associations (see XML Schema production rule 7, AssociationDef), if thereis no Class-
based element in the same XMI file whose metaclass owns a property which could be used to link to the same
element. In other words, use only class properties unless use of an Association isthe only aternative: the Association
owns both its ends, or the Class owning the end is not in the same XMl file.

XML Metadata Interchange (XMI), v2.5.1 101

10. hrefsare never used to reference elementsin the same XM file (xmi:idregs are used instead).
11. xmi:difference, xmi:documentation, xmi:extension, xmi:label are never present.

12. For pairs of opposite properties that satisfy the rules for being serialized, values must be serialized for each (XM
generally would alow one of the pair to be omitted).

13. All data values must use the XML Canonical Lexical Representation as defined at:
http://www.w3.org/ TR/xmlschema-2/#canonical-lexical -representation. That means, for example, that boolean
values must be represented as “true” or “false” and not “1” or “0.”

Canonical XMI corresponds to the following XMI tags being set to the following non-default values on the metamodel (or
Profile):

» org.omg.xmi.element = true (forces use of XML elements rather than attributes)
« org.omg.xmi.superClassFirst = true (forces ordering of properties)
« org.omg.xmi.ordered = true (forces ordering of values within a property)
» org.omg.xmi.includeNils = false (eliminates xsi:nil)
The following are only relevant for XML Schema generation:
« org.omg.xmi.contentType = complex (disallows XML content outside of XMI elements)
- org.omg.xmi.enforceMinimumMultiplicity = true (checks minimum multiplicity)
 org.omg.xmi.enforceMaximumM ultiplicity = true (checks maximum multiplicity)

- org.omg.xmi.allowM etamodel Extension = false (removes need for xmi:Any) [thisis actually the default val ue]

B.3 Canonical XMI Schema

B.3.1 Fixed Declarations

The fixed declarations in the XSD file for XM itself are significantly reduced. The entire content of the file becomes as
follows: this Schema is accessible using the URL http://www.omg.org/spec/XM1/20100901/X MI-Canonical .xsd.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd=http://www.w3.0rg/2001/XMLSchema

xmlns="http://www.omg.org/spec/XMI/20100901"
targetNamespace="http://www.omg.org/spec/XMI/20100901">

<xsd:attribute name="id" type="xsd:ID"/>
<xsd:attributeGroup name="IdentityAttribs"s
<xsd:attribute name="uuid" type="xsd:string" use="optional" form="qualified"/>

</xsd:attributeGroup>

<xsd:attributeGroup name="LinkAttribs">

102 XML Metadata Interchange (XMI), v2.5.1

http://www.w3.org/2001/XMLSchema

<xsd:attribute name="href" type="xsd:anyURI" use="optional"/>
<xsd:attribute name="idref" type="xsd:IDREF" use="optional" form="qualified"/>
</xsd:attributeGroup>

<xsd:attributeGroup name="ObjectAttribs">
<xsd:attributeGroup ref="IdentityAttribs"/>
<xsd:attributeGroup ref="LinkAttribs"/>
<xsd:attribute name="type" type="xsd:QName" form="qualified"/>
</xsd:attributeGroup>

<xsd:complexType name="XMI">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:any processContents="strict"/>
</xsd:choice>
<xsd:attribute ref="id"/»>
</xsd:complexType>

<xsd:element name="XMI" type="XMI"/>

</xsd:schema>
B.3.2 Schema Production Rules
The following represent revised schema production rules, superseding those in sub clause 8.2.1: this represents the

removal of options caused by forcing values into the tags as per sub clause B.1. Thus the text accompanying the
production rules still applies.

4. ClassTypeDef ::= "<xsd:complexType name='" //Name of Class// "’'>"
("<xsd:complexContents>" |
"«xsd:extension base='" 4a:ClassTypeName "’'>")?

"<xsd:sequences>”
4b:ClassContents
"</xsd:sequence>"
4g:ClassAttListItems
("</xsd:extension>" |
"</xsd:complexContent>")?
"</xsd:complexType>"
4a. ClassTypeName ::= lh:Namespace //Name of Class//
4b. ClassContents ::= 4d:ClassAttributes
4e:ClassReferences
4f:ClassCompositions
("<xsd:element name='" //Name of DataType-typed Property/

4d. ClassAttributes
/ nrsoun

(4m:MinOccursAttrib)?
(4n:MaxOccursAttrib)?
"type='" //Name of type// "' />)*

XML Metadata Interchange (XMI), v2.5.1 103

4e. ClassReferences
nrsrn

4f. ClassCompositions
nrsrn

4g. ClassAttListItems
4m. MinOccursAttrib
4n. MaxOccursAttrib

6. StructuredDataTypeDef:

6a.
6b.

DataTypeName
DataTypeContents

7. AssociationDef

AssnElmtName
AssnContents

7a.
7b.

104

/

"</xsd:choice></xsd:complexType></xsd:element>"))

::= "minOccurs="'"
::= "maxOccurs="'"

("<xsd:element name='" //Name of Class-typed Property//

(4m:MinOccursAttrib)?
(4n:MaxOccursAttrib)?
"<xsd:complexType>

"xsd:attributeGroup ref=’'linkAttribs’

</xsd:complexType>

s)*

("<xsd:element name='" //Name of Class-typed Property//

(4m:MinOccursAttrib
(4n:MaxOccursAttrib
"type='" 4a:ClassTypeName "' />")
><xsd:complexType><xsd:choice>"

((
| (u

)?
)?

("<xsd:element ref='" 4a: ClassTypeName "' />")*

1g:XMIFixedAttribs

// Minimum //
// Maximum //

)*

nrsn

nrsn

:= "<xsd:complexType name='"//Name of DataType// "’'>"

("<xsd:complexContent>"

"«xsd:extension base='"

"<xsd:sequences>"

6a:DataTypeName " '>")?

6b: DataTypeContents

"</xsd:sequence>"

4g:ClassAttListItems

("</xsd:extension>"
"</xsd:complexContent>"
"</xsd:complexType>

)?

1lh:Namespace //Name of DataType//
::= 4d: ClassAttributes

"<xsd:element name='"
"<xsd:complexType>
<xsd:sequence>"
7b:AssnContents
"</xsd:sequence>"
7d:AssnAtts
"</xsd:complexType>
</xsd:element>"

:= 7c:AssnEndDef

7c:AssnEndDef

7a:AssnElmtName "’ >"

::= lh:Namespace //Name of association//

XML Metadata Interchange (XMl), v2.5.1

7c. AssnEndDef ::= "<xsd:element"
"name='" //Name of association end// "’'>"
"<xsd:complexType>"
1g:XMIFixedAttribs
"</xsd:complexType>"
"«/xsd:element>"

7d. AssnAtts ::= 1g:XMIFixedAttribs

B.4 Canonical XMl Document Production Rules

The following represent revised document production rules, superseding those in sub clause 9.5.1: this represents the
removal of options caused by forcing values into the tags as per B2 above. Thus the text accompanying the production
rules still applies.

This represents the complete set of document production rules with the exception of 1e through 1i, and 2k which are
unchanged.

la:XMI ::= "<xmi:XMI"
le:Namespaces ">"
(2a:XMIObjectElement) *
"</xmi:XMI>"

2:XMIElement ::= 2a:XMIObjectElement
| 2b:XMIValueElement
| 2c:XMIReferenceElement

2a:XMIObjectElement ::= "<" 2k:QName 2d:XMIAttributes ">"
(2:XMIElement) *
"</" 2k:QName ">"

2b:XMIValueElement = "< //xmiName// ">" //value//
"«/" //xmiName// ">")

2c:XMIReferenceElement::= "<" //xmiName//
21:LinkAttribs "/>"

2d:XMIAttributes ti= (2e:IdentityAttribs)?
(2g:TypeAttrib)

2e:IdentityAttribs ::= (“xmi:id ='" //ida// "'"
"xmi:uuid="" //uuid// "'")?

2g:TypeAttrib "xmi:type='" 2k:QName "'"

XML Metadata Interchange (XMI), v2.5.1 105

B.5 Ordering

Canonical XMI requires both an xmi:id and an xmi:uuid on each element representing an ‘object’ (i.e., not an instance of
a datatype).

B.5.1 Ordering of Elements

The order of the top level elements in the XMI file (direct descendants of the XMI element) is in alphabetic order of
XML element name (based on the metamodel classifier as defined in 7.8.1) and then by aphabetic order of xmi:uuid.

B.5.2 Property Elements

Properties of an element are ordered by the class in which they are defined. Properties defined by a superclass appear
before those of its subclasses. Where a class inherits from more than one direct superclass, properties from the class with
the alphabetically earlier class name appear before those of an alphabetically later class name.

Note that if a property is redefined in a subclass, its position in the order remains the position of the original redefined
property within the parent class.

B.5.3 Property Content for Class-typed Properties

For ordering of elements within the serialization of a class-typed property value (usually an association end), where the
property does not have isOrdered="true’ in the metamodel, the ordering is as follows:

« All nested elements precede all link elements (those referencing another element)
Within the set of nested elements the order is aphabetically ordered by the value of the xmi:uuid.

« Within the set of link elements all links using xmi:idref prededed elements using href
The set of xmi:idreg elementsis a phabetically ordered by the value of the xmi:idref, and the set of href
elements is alphabetically ordered by the value of the href.

B.5.4 Property Content for DataType-typed Properties

For ordered of elements within the serialization of a data-typed property value, where the property does not have
isOrdered="true’ in the metamodel, there will be no links nor xmi:uuids and the ordering is as follows. Note that for
structured Datatypes the properties will be ordered as per B.5.1.

« For structured datatypes the nested elements are al phabetically ordered by the values of their properties, taken in order
(if the values of the first properties are identical the second is compared and so on).

« For simple datatypes the nested elements are sorted al phabetically by their values.

Note that alphabetic ordering is used - so that, even if the property is of type Integer, “10” will precede “9.”

B.6 Identification

Canonical XMI does not constrain the values to be used for xmi:uuids, since these represent a persistent and generally
available identity. However the use of the MOF2 Facility Basic Encoding Scheme is strongly encouraged.

106 XML Metadata Interchange (XMI), v2.5.1

Where exporting tools do not internally support the concept of uuid, a fallback is to use the full path name of the XMl
document followed by ‘# and the xmi:id.

For xmi:ids the rules are as follows: these are based on the algorithm used for the normative UML metamodel.

1. Theidentifier of an object isthe value of the first property, ordered according to B.5.2, that hasisID = true and a non-
empty value. If this gives no identifier, the value of a property called “name” isused if one exists.

2. Thebase name for an object isitsidentifier. If there is no identifier, the base nameis*“_” for atop level object,
otherwise the name of the property containing the object (e.g., packagedElement) [in other words the unprefixed
name of the XML element which has the xmi:id attribute].

3. Any base name charactersthat are not valid XML id characters (defined using ther production NCNameChar in http:/
mww.w3.0rg/TR/REC-xml-names/) should be replaced with underscore ‘. Hyphen ‘-’ characters should aslo be
replaced with*_". If atop level object does not start with a Letter or underscore* ', then an underscore‘_’ should be
prefixed.

4. If the object has no identifier, or the base name (after character replacement) is a duplicate of an earlier (by export
order) sibling base name, then:
a. append underscore*_’ if thelast character is not already underscore‘_’;

b. append a sequence number, starting with 1 when the object has no name, and 2 if it does. It is possible that an
earlier sibling name containsa‘_n’ suffix that creates a name collision. In this case increment the sequence
number until no collision exists.

5. Thexmi:id for aroot object isthe base name. The xmi:id for a nested object is the xmi:id of its parent followed by
hyphen ‘-’ followed by its base name.

See B.7 for examples.

B.7 Example

The following is docl.xml from sub clause 7.10.3 in canonical XMI.

<uml :Operation xmi:id="opl" xmi:uuid="DCE:1234" xmi:type="uml:Operation"s>
<name>opl</name>
<ownedRule xmi:id="opl-c01l" xmi:uuid="DCE:abcd" xmi:type="uml:Constraint"s>
<name>col</names>
<specification xmi:id="opl-c0l-specification” xmi:uuid="DCE:abcdel"
xmi: type="uml :OpaqueExpression">
<body>First Constraint definition</body>
</specifications>
<constrainedElement xmi:idref="opl"/>
</ownedRule>
<ownedRule xmi:id="opl-co2" xmi:uuid="DCE:efgh" xmi:type="uml:Constraint"s>
<name>co2</name>
<specification xmi:id="opl-co2-specification" xmi:uuid="DCE:abcde2"
xmi: type="uml :OpaqueExpression">
<body>Second Constraint definition</body>
</specifications>

XML Metadata Interchange (XMI), v2.5.1 107

<constrainedElement xmi:idref="opl"/>
</ownedRule>
<ownedRule xmi:id="opl-co3" xmi:uuid="DCE:ijkl" xmi:type="uml:Constraint"s>
<name>co3</name>
<specification xmi:id="opl-co3-specification" xmi:uuid="DCE:abcde3"
xmi: type="uml : OpaqueExpression" >
<body>Third Constraint definition</body>
</specification>
<constrainedElement xmi:idref="opl"/>
</ownedRule>
<ownedRule href="doc2.xml#co4"/>

</uml :Operation>

108 XML Metadata Interchange (XMI), v2.5.1

	1 Scope
	2 Conformance
	2.1 General
	2.2 Required Compliance
	2.3 Optional Compliance Points

	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Relationship to existing standards for MOF and XMI
	6.2 Acknowledgments

	7 XMI Document and Schema Design Principles
	7.1 Purpose
	7.2 Use of XML Schemas
	7.3 Basic Principles
	7.4 XMI Schema and Document Structure
	7.5 XMI Model
	7.6 XMI Attributes
	7.7 XMI Types
	7.8 Model Representation
	7.9 Transmitting Incomplete Metadata
	7.10 Linking
	7.11 Tailoring Schema Production
	7.12 Transmitting Metadata Differences
	7.13 Document Exchange with Multiple Tools
	7.14 General Datatype Mechanism
	7.15 Import Reconciliation

	8 XML Schema Production
	8.1 Purpose
	8.2 XMI Version 2 Schemas

	9 XML Document Production
	9.1 Purpose
	9.2 General
	9.3 Serialization Model
	9.4 XMI Representation of the Core Packages
	9.5 EBNF Rules Representation

	10 XML Schema Infoset Model
	10.1 General
	10.2 XML Schema Structures
	10.3 XML Schema Datatypes
	10.4 Example
	B.1 Overview
	B.2 Constraints and Tag Equivalents
	B.3 Canonical XMI Schema
	B.4 Canonical XMI Document Production Rules
	B.5 Ordering
	B.6 Identification
	B.7 Example

	Annex A - Bibliography
	Annex B - Canonical XMI

