

ISO/IEC 19503:2005(E)

Date: July 2005

XML Metadata Interchange Specification
Version 2.0.1
formal/05-05-06

This version is also available from ISO as ISO/IEC 19503.

 ISO/IEC 19503:2005(E)
Contents

Foreword .. ix
Introduction ... xi

1 Scope ..1

2 Normative references ..1
2.1 Identical Recommendations | International Standards ... 1
2.2 International Standards .. 1

3 Abbreviations ...2

4 XMI Schema Design Principles ...3
4.1 Purpose .. 3
4.2 Use of XML Schemas ... 3

 4.2.1 XML Validation of XMI documents .. 4
 4.2.2 Requirements for XMI Schemas ... 4

4.3 Basic Principles .. 4
 4.3.1 Required XML Declarations .. 4
 4.3.2 Metamodel Class Representation ... 5
 4.3.3 Metamodel Extension Mechanism .. 5

4.4 XMI Schema and Document Structure ... 5
4.5 XMI Model .. 6

 4.5.1 XML Schema for the XMI Model ... 6
 4.5.2 XMI Model Classes .. 6
 4.5.3 XMI.. 8
 4.5.4 Extension .. 9
 4.5.5 Documentation ... 10
 4.5.6 Add, Replace, and Delete ... 10

4.6 XMI Attributes ... 12
 4.6.1 Element Identification Attributes .. 12
 4.6.2 Linking Attributes... 13
 4.6.3 Version Attribute .. 14
 4.6.4 Type Attribute .. 14

4.7 XMI Type .. 14
4.8 Metamodel Class Specification .. 15

 4.8.1 Namespace Qualified XML Element Names.. 15
 4.8.2 Metamodel Multiplicities .. 15
 4.8.3 Class Specification .. 16
 4.8.4 Attribute Specification ... 16
 4.8.5 Reference Specification .. 18
 4.8.6 Containment Specification .. 18
 4.8.7 Inheritance Specification ... 18
 4.8.8 Derived Information ... 18

4.9 Transmitting Incomplete Metadata ... 18
 4.9.1 Interchange of Model Fragments .. 19
 4.9.2 XMI Encoding... 19
 4.9.3 Example .. 19
© ISO/IEC 2005 - All rights reserved iii

ISO/IEC 19503:2005(E)
4.10 Linking .. 19
 4.10.1 Design Principles .. 19
 4.10.2 Linking ... 20
 4.10.3 Example from UML .. 22

4.11 Tailoring Schema Production ... 23
 4.11.1 XMI Tag Values... 23
 4.11.2 Tag Value Constraints ... 24
 4.11.3 Scope .. 25
 4.11.4 XML element vs XML attribute .. 25
 4.11.5 UML profile for XML and XMI .. 25
 4.11.6 Effects on Document Production ... 26
 4.11.7 Summary of XMI Tag Scope and Affect .. 27

4.12 Transmitting Metadata Differences .. 28
 4.12.1 Definitions ... 29
 4.12.2 Differences .. 29
 4.12.3 XMI Encoding .. 29
 4.12.4 Example .. 30

4.13 Document Exchange with Multiple Tools ... 31
 4.13.1 Definitions ... 31
 4.13.2 Procedures .. 32
 4.13.3 Example .. 32

4.14 General Datatype Mechanism .. 33

5 XML Schema Production..35
5.1 Purpose .. 35
5.2 XMI Version 2 Schemas... 35

 5.2.1 EBNF ... 35
 5.2.2 Fixed Schema Declarations .. 43
 5.2.3 Schema Production Rules for Non-Primitive Data .. 48

6 XML Document Production ..49
6.1 Purpose ... 49
6.2 Introduction ... 49
6.3 EBNF Rules Representation .. 49

 6.3.1 Overall Document Structure .. 50
 6.3.2 Overall Content Structure .. 51
 6.3.3 Object Structure .. 52
 6.3.4 References.. 55
 6.3.5 Object Contents .. 57
 6.3.6 Packages .. 59
 6.3.7 Attributes ... 59
 6.3.8 Other Types of Links ... 60

6.4 Additional Examples ... 60
 6.4.1 Inheritance ... 60
 6.4.2 Nested Packages ... 61
 6.4.3 Derived Types and References ... 62

6.5 Document Production Rules for Non-Primitive Data ... 63
 6.5.1 Structure Type ... 63
 6.5.2 Enumeration Type... 63
 6.5.3 Alias Type .. 63
iv © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
 6.5.4 Collection Type ... 63

7 Production of MOF from XML.. 65
7.1 Introduction ... 65
7.2 DTD to MOF... 65
7.3 XML to MOF ... 66
7.4 XML Schema to MOF ... 67

8 XML Schema Model .. 71
8.1 Introduction ... 71
8.2 XML Schema Structures .. 71

 8.2.1 XSDSchema .. 83
 8.2.2 XSDAttribute ... 83
 8.2.3 XSDElementRef .. 83
 8.2.4 XSDAttributeGroup ... 83
 8.2.5 XSDAttributeGroupRef .. 83
 8.2.6 XSDType ... 83
 8.2.7 XSDBuiltInType ... 84
 8.2.8 XSDComplexType ... 84
 8.2.9 XSDComplexTypeContent .. 84
 8.2.10 XSDSchemaContent ... 84
 8.2.11 XSDElement .. 84
 8.2.12 XSDSimpleBase .. 85
 8.2.13 XSDPattern ... 85
 8.2.14 XSDEnumeration .. 85
 8.2.15 XSDInclude ... 85
 8.2.16 XSDImport ... 85
 8.2.17 XSDGroup ... 85
 8.2.18 XSDGroupKind .. 86
 8.2.19 XSDGroupScope ... 86
 8.2.20 XSDGroupContent .. 86
 8.2.21 XSDGroupRef ... 86
 8.2.22 XSDKey .. 86
 8.2.23 XSDKeyRef ... 86
 8.2.24 XSDUnique ... 86
 8.2.25 XSDUniqueContent.. 87
 8.2.26 XSDSelector .. 87
 8.2.27 XSDField ... 87
 8.2.28 XSDObject .. 87
 8.2.29 XSDAnnotatedElement ... 87
 8.2.30 XSDDocumentation.. 87
 8.2.31 XSDAppInfo .. 87
 8.2.32 XSDAnnotation ... 87
 8.2.33 XSDSimpleContent ... 88
 8.2.34 XSDComplexContent .. 88
 8.2.35 XSDSimpleComplex .. 88
 8.2.36 XSDSimpleTypeContent ... 88
 8.2.37 XSDSimpleRestrict... 88
 8.2.38 XSDSimpleList .. 88
 8.2.39 XSDSimpleUnion .. 88
© ISO/IEC 2005 - All rights reserved v

ISO/IEC 19503:2005(E)
 8.2.40 XSDSimpleType .. 89
 8.2.41 XSDFacet .. 89
 8.2.42 XSDLength .. 89
 8.2.43 XSDMinLength .. 89
 8.2.44 XSDMaxLength ... 89
 8.2.45 XSDMinInclusive ... 89
 8.2.46 XSDMaxInclusive .. 89
 8.2.47 XSDMinExclusive.. 90
 8.2.48 XSDMaxExclusive ... 90
 8.2.49 XSDTotalDigits .. 90
 8.2.50 XSDFractionDigits ... 90
 8.2.51 XSDWhiteSpace ... 90
 8.2.52 XSDAny... 90
 8.2.53 XSDAnyAttribute ... 90
 8.2.54 XSDAttributeRef .. 91
 8.2.55 XSDNamedElement .. 91
 8.2.56 XSDOccurs ... 91
 8.2.57 XSDTopLevelAttrbute ... 91
 8.2.58 XSDTopLevelElement ... 91

8.3 XML Schema Simple Datatypes... 91
 8.3.1 XSDDate ... 95
 8.3.2 XSDDecimal .. 95
 8.3.3 XSDDecimalType .. 95
 8.3.4 XSDDouble ... 96
 8.3.5 XSDCentury .. 96
 8.3.6 XSDBinary... 96
 8.3.7 XSDBinaryType ... 96
 8.3.8 XSDBooleanType.. 96
 8.3.9 XSDBoolean.. 96
 8.3.10 XSDByte .. 96
 8.3.11 XSDDoubleType ... 97
 8.3.12 XSDFloat.. 97
 8.3.13 XSDFloatType.. 97
 8.3.14 XSDInt ... 97
 8.3.15 XSDInteger .. 97
 8.3.16 XSDCDATA ... 97
 8.3.17 XSDID ... 97
 8.3.18 XSDIDREF .. 97
 8.3.19 XSDIDREFS .. 98
 8.3.20 XSDListType ... 98
 8.3.21 XSDList ... 98
 8.3.22 XSDLong ... 98
 8.3.23 XSDMonth ... 98
 8.3.24 XSDName ... 98
 8.3.25 XSDNCName .. 98
 8.3.26 XSDNegativeInteger .. 98
 8.3.27 XSDNMTOKEN... 99
 8.3.28 XSDNonNegativeInteger.. 99
 8.3.29 XSDNonPositiveInteger .. 99
 8.3.30 XSDPositiveInteger ... 99
 8.3.31 XSDQName ... 99
vi © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
 8.3.32 XSDQNameType .. 99
 8.3.33 XSDRecurringDate .. 99
 8.3.34 XSDRecurringDay ... 100
 8.3.35 XSDRecurringDuration .. 100
 8.3.36 XSDRecurringDurationType .. 100
 8.3.37 XSDShort .. 100
 8.3.38 XSDToken ... 100
 8.3.39 XSDString ... 100
 8.3.40 XSDStringType ... 100
 8.3.41 XSDTime ... 101
 8.3.42 XSDTimeDuration ... 101
 8.3.43 XSDTimeDurationType ... 101
 8.3.44 XSDTimeInstant .. 101
 8.3.45 XSDTimePeriod .. 101
 8.3.46 XSDUnionType ... 101
 8.3.47 XSDUnsignedByte .. 101
 8.3.48 XSDUnsignedInt .. 102
 8.3.49 XSDUnsignedLong .. 102
 8.3.50 XSDUnsignedShort ... 102
 8.3.51 XSDURIReference .. 102
 8.3.52 XSDURIReferenceType .. 102
 8.3.53 XSDValueConstraint ... 102
 8.3.54 XSDYear ... 102
 8.3.55 XSDDecimalRange ... 103
 8.3.56 XSDIntegerRange ... 103
 8.3.57 XSDPatterned ... 103

Annex A - Conformance Issues ...105
Annex B - References ...107
Annex C - Legal Information ..109
Index...113

© ISO/IEC 2005 - All rights reserved vii

ISO/IEC 19503:2005(E)
viii © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO
member bodies). The work of preparing International Standards is normally carried out through ISO technical
committees. Each member body interested in a subject for which a technical committee has been established has the right
to be represented on that committee. International organizations, governmental and non-governmental, in liaison with
ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all
matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the
technical committees are circulated to the member bodies for voting. Publication as an International Standard requires
approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO
shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 19503 was prepared by Technical Committee ISO/IEC/TC JTC1, Information technology, Subcommittee SC 32,
Data Management and Interchange in collaboration with the Object Management Group (OMG), following the
submission and processing as a Publicly Available Specification (PAS) of the OMG XML Metadata Interchange
Specification Version 2.0 (formal/05-05-01).

ISO/IEC 19503 is related to:

• ISO/IEC 19501:2005, Information technology -- Unified Modeling Language (UML)

• ISO/IEC 19502:2005, Information technology -- XML Meta Object Facility (MOF)

Apart from this Foreword, the text of this International Standard is identical with that for the OMG specification for XMI,
v 2.0.1 (formal/05-05-06).
© ISO/IEC 2005 - All rights reserved ix

ISO/IEC 19503:2005(E)
x © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
Introduction
The main purpose of XMI is to enable easy interchange of metadata between application development lifecycle tools
(such as modeling tools based on the Unified Modeling Language (UML), ISO/IEC 19501, and metadata repositories/
frameworks based on the Meta Object Facility (MOF), ISO/IEC 19502) in distributed heterogeneous environments. XMI
integrates three key industry standards:

• XML - eXtensible Markup Language, a W3C standard.

• UML - Unified Modeling Language, an OMG modeling specification, which is now an ISO/IEC standard
 (ISO/IEC 19501).

• MOF - Meta Object Facility (ISO/IEC 19502).

The OMG adopted the XMI (version 1.0) in February 1999. It was developed as a response to a request for proposal,
issued by the OMG Analysis and Design Task Force, for a model and metadata interchange facility. The purpose of the
facility was to support the interchange of metadata (such as ODP UML models). The most recent revision of XMI, 2.0,
was submitted by the XMI Revision Task Force in October, 2002, and includes corrections and clarifications to the
original specification, and changes to accommodate revisions to the 1.4 version of MOF.

The rapid growth of distributed processing has led to a need for a coordinating framework for this standardization and
ITU-T Recommendations X.901-904 | ISO/IEC 10746, the Reference Model of Open Distributed Processing (RM-ODP)
provides such a framework. It defines an architecture in which support of distribution, interoperability, and portability can
be integrated. RM-ODP Part 2 (ISO/IEC 10746-2) defines the foundational concepts and modeling framework for
describing distributed systems. RM-ODP Part 3 (ISO/IEC 10746-3) specifies a generic architecture of open distributed
systems, expressed using the foundational concepts and framework defined in Part 2.

While not limited to this context, the XMI standard is relevant to work on the standardization of Open Distributed
Processing (ODP).
© ISO/IEC 2005 - All rights reserved xi

ISO/IEC 19503:2005(E)
xii © ISO/IEC 2005 - All rights reserved

INTERNATIONAL STANDARD ISO/IEC 19503:2005(E)
Information technology - XML Metadata Interchange (XMI)

1 Scope
This International Standard provides specifications for:

a. A set of XML Schema Definitions (XSD) production rules for transforming MOF based metamodels into XML
 Schemas.

b. A set of XML Document production rules for encoding and decoding MOF based metadata.

c. Design principles for XMI based Schemas and XML documents.

d. A set of production rules for importing XML DTDs to a MOF based metamodel.

This International Standard enhances metadata management and metadata interoperability in distributed object
environments in general and in distributed development environments in particular. While this International Standard
addresses stream based metadata interoperability in the object analysis and design domain, XMI (in part because it is
MOF based) is equally applicable to metadata in many other domains.

2 Normative references
The following referenced documents are indispensable for the application of this document. For dated references, only the
edition cited applies. For undated references, the latest edition of the referenced document (including any amendments)
applies.

2.1 Identical Recommendations | International Standards
• ISO/IEC 10746-2:1995, Information technology -- Open Distributed Processing -- Reference Model: Foundations

• ISO/IEC 10746-3:1995, Information technology -- Open Distributed Processing -- Reference Model: Architecture

2.2 International Standards
• ISO/IEC 19501:2005, Information technology -- Open Distributed Processing -- Unified Modeling Language (UML)

Version 1.4.2

• ISO/IEC 19502:2005, Information technology -- Meta Object Facility (MOF)

• ISO/IEC 19503:2005, Information technology -- XML Metadata Interchange (XMI)
© ISO/IEC 2005 - All rights reserved 1

ISO/IEC 19503:2005(E)
3 Abbreviations

DTD Document Type Definition

MOF Meta Object Facility

UML Unified Modeling Language

XMI XML Metadata Interchange

XSD XML Schema Definition
2 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
4 XMI Schema Design Principles

4.1 Purpose
This Clause contains a description of the XML Schemas that may be used with the XMI specification to allow some
metamodel information to be verified through XML validation. The use of schemas in XMI is described first, followed by
a brief description of some basic principles, which includes a short description of each XML attribute and XML element
defined by XMI. Those descriptions are followed by more complete descriptions that provide examples illustrating the
motivation for the XMI schema design in the areas of metamodel class specification, transmitting incomplete metadata,
linking, tailoring schema production, transmitting metadata differences, and exchanging documents between tools.

It is possible to define how to automatically generate a schema from the MOF metamodel to represent any MOF-
compliant metamodel. That definition is presented in Clause 5.

This Clause describes XMI 2.0 schemas; Clause 5 describes how to create XMI 2.0 schemas.

You may specify tag value pairs as part of the MOF metamodel to tailor the schemas that are generated, but you are not
required to do so. Using these tag value pairs requires some knowledge of XML schemas, but the schemas that are
produced might perform more validation than the default schemas. See Clause 7 for a complete description of how to
generate XML schemas using these tag value pairs. Sub clause 4.11, “Tailoring Schema Production,” on page 23 describes
the tag values, their affect on schema production, and their impact on document serialization.

4.2 Use of XML Schemas
An XML schema provides a means by which an XML processor can validate the syntax and some of the semantics of an
XML document. This specification provides rules by which a schema can be generated for any valid XMI-transmissible
MOF-based metamodel. However, the use of schemas is optional; an XML document need not reference a schema, even
if one exists. The resulting document can be processed more quickly, at the cost of some loss of confidence in the quality
of the document.

It can be advantageous to perform XML validation on the XML document containing MOF metamodel data. If XML
validation is performed, any XML processor can perform some verification, relieving import/export programs of the
burden of performing these checks. It is expected that the software program that performs verification will not be able to
rely solely on XML validation for all of the verification, however, since XML validation does not perform all of the
verification that could be done.

Each XML document that contains metamodel data conforming to this specification contains: XML elements that are
required by this specification, XML elements that contain data that conform to a metamodel, and, optionally, XML
elements that contain metadata that represent extensions of the metamodel. Metamodels are explicitly identified in XML
elements required by this specification. Some metamodel information can also be encoded in an XML schema.
Performing XML validation provides useful checking of the XML elements that contain metadata about the information
transferred, the transfer information itself, and any extensions to the metamodel.

The XML Namespace specification has been adopted by the W3C, allowing XMI to use multiple metamodels at the same
time. XML schema validation works with XML namespaces, so you can choose your own namespace prefixes in an XML
document and use a schema to validate it. The namespace URIs, not the namespace prefixes, are used to identify which
schemas to use to validate an XML document.
© ISO/IEC 2005 - All rights reserved 3

ISO/IEC 19503:2005(E)
4.2.1 XML Validation of XMI documents

XML validation can determine whether the XML elements required by this specification are present in the XML
document containing metamodel data, whether XML attributes that are required in these XML elements have values for
them, and whether some of the values are correct.

XML validation can also perform some verification that the metamodel data conforms to a metamodel. Although some
checking can be done, it is impossible to rely solely on XML validation to verify that the information transferred satisfies
all of a metamodel’s semantic constraints. Complete verification cannot be done through XML validation because it is not
currently possible to specify all of the semantic constraints for a metamodel in an XML schema, and the rules for
automatic generation of a schema preclude the use of semantic constraints that could be encoded in a schema manually,
but cannot be automatically encoded.

Finally, XML validation can be used to validate extensions to the metamodel, because extensions must be represented as
elements; if those elements are defined in a schema, the schema can be used to verify the elements.

4.2.2 Requirements for XMI Schemas

Each schema used by XMI must satisfy the following requirements:

• All XML elements and attributes defined by the XMI specification must be imported in the schema. They cannot be
put directly in the schema itself, since there is only one target namespace per schema.

• Metamodel constructs have corresponding element declarations, and may have an XML attribute declaration, as
described below. In addition, some constructs also have a complexType declaration. The declarations may utilize
groups, attribute groups, and types, as described below.

• Any XML elements that represent extensions to the metamodel may be declared in a schema, although it is not
necessary to do so.

By default, XMI schemas allow incomplete metadata to be transmitted, but you can enforce the lower bound of
multiplicities if you wish. See 4.9, “Transmitting Incomplete Metadata,” on page 18 for further details.

4.3 Basic Principles
This sub clause discusses the basic organization of an XML schema for XMI. Detailed information about each of these
topics is included later in this Clause.

4.3.1 Required XML Declarations

This specification requires that XML element declarations, types, attributes, and attribute groups be included in schemas
to enable XML validation of metadata that conforms to this specification. Some of these XML elements contain metadata
about the metadata to be transferred. For example, the identity of the metamodel associated with the metadata, the tool
that generated the metadata, whether the metadata has been verified, etc.

All XML elements defined by this specification are in the namespace “http://www.omg.org/XMI.” The XML namespace
mechanism can be used to avoid name conflicts between the XMI elements and the XML elements from your MOF
models.
4 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
In addition to required XML element declarations, there are some attributes that must be defined according to this
specification. Every XML element that corresponds to a metamodel class must have XML attributes that enable the XML
element to act as a proxy for a local or remote XML element. These attributes are used to associate an XML element with
another XML element. There are also other required attributes to let you put data in XML attributes rather than XML
elements. You may customize the declarations using MOF tag values.

4.3.2 Metamodel Class Representation

Every metamodel class is represented in the schema by an XML element whose name is the class name, as well as a
complexType whose name is the class name. The declaration of the type lists the attributes of the class; references to
association ends relating to the class; and the classes that this class contains, either explicitly or through composition
associations. By default, the content models of XML elements corresponding to metamodel classes do not impose an
order on the attributes and references.

By default, XMI allows you to serialize features using either XML elements or XML attributes; however, XMI allows you
to specify how to serialize them if you wish. Containment references and multivalued attributes always are serialized
using XML elements.

4.3.3 Metamodel Extension Mechanism

Every XMI schema contains a mechanism for extending a metamodel class. Zero or more extension elements are
included in the content model of each class. These extension elements have a content model of ANY, allowing
considerable freedom in the nature of the extensions. The processContents attribute is lax, which means that processors
will validate the elements in the extension if a schema is available for them, but will not report an error if there is no
schema for them. In addition, the top level XMI element may contain zero or more extension elements, which provides
for the inclusion of any new information. One use of the extension mechanism might be to associate display information
for a particular tool with the metamodel class represented by the XML element. Another use might be to transmit data
that represents extensions to a metamodel.

Tools that rely on XMI are expected to store the extension information and export it again to enable round trip
engineering, even though it is unlikely they will be able to process it further. XML elements that are put in the extension
elements may be declared in schemas, but are not required to be.

4.4 XMI Schema and Document Structure
Every XMI schema consists of the following declarations:

• An XML version processing instruction. Example: <? XML version=”1.0” ?>

• An optional encoding declaration that specifies the character set, which follows the ISO-10646 (also called extended
Unicode) standard.
Example: <? XML version=”1.0” ENCODING=”UCS-2” ?>.

• Any other valid XML processing instructions.

• A schema XML element.

• An import XML element for the XMI namespace.

• Declarations for a specific metamodel.

Every XMI document consists of the following declarations, unless the XMI is embedded in another XML document:
© ISO/IEC 2005 - All rights reserved 5

ISO/IEC 19503:2005(E)
• An XML version processing instruction.

• An optional encoding declaration that specifies the character set.

• Any other valid XML processing instructions.

XMI imposes no ordering requirements beyond those defined by XML. XML Namespaces may also be declared in the
XMI element as described below.

The top element of the XMI information structure is either the XMI element, or an XML element corresponding to an
instance of a class in the MOF metamodel. An XML document containing only XMI information will have XMI as the
root element of the document. It is possible for future XML exchange formats to be developed that extend XMI and
embed XMI elements within their XML elements.

4.5 XMI Model
This sub clause describes the model for XMI document structure, called the XMI model. The XMI model is an instance
of MOF for describing the XMI-specific information in an XMI document, such as the version, documentation,
extensions, and differences.

Using an XMI model enables XMI document metadata to be treated in the same fashion as other MOF metadata, allowing
use of standard MOF APIs for access to and construction of XMI-specific information in the same manner as other MOF
objects. A valid XMI document may contain XMI metadata but is not required to.

4.5.1 XML Schema for the XMI Model

When the XMI model is generated as an XML Schema following the XMI schema production rules, the result is a set of
XML element and attribute declarations. These declarations are shown in Clause 8 and given the XML namespace “http:/
/www.omg.org/XMI.” Every XMI-compliant schema must include the declarations of the following XML elements by
importing the declarations in the XMI namespace “http://www.omg.org/XMI.”

In addition, there are attribute declarations and attributeGroup declarations that must be imported also. These include the
id attribute, and the IdentityAttribs, LinkAttribs, and ObjectAttribs attribute groups. These constructs are not defined in
the XMI model.

In the declarations that follow, the XML Schema namespace, whose URI is “http://www.w3.org/2001/XMLSchema,” has
the namespace prefix “xsd;” the XMI namespace is the default namespace.

4.5.2 XMI Model Classes

There are three diagrams that describe the XMI model. The details of the classes are described in the sub clauses below.
This sub clause gives an overview of the model.

Figure 4.1 shows the XMI element, documentation, and extension elements. The XMI class is an overall default container
for XMI document metadata and contents. The attributes of the XMI class are the version, documentations, differences
(add, replace, delete in Figure 4.2), and extensions. The Documentation class contains many fields to describe the
document for non-computational purposes. The Extension class contains the metadata for external information. The String
datatype is the data type for strings in the MOF model with XML Schema data type of “http://www.w3.org/2001/
XMLSchema#string.” The Integer datatype is the data type for integers in the MOF model with XML Schema data type
of “http://www.w3.org/2001/XMLSchema#integer.”
6 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
Figure 4.1 - The XMI Model for the XMI element, documentation, and extension

The differences information (Figure 4.2) is described as additions, deletions, and replacements to target objects. The
objects referenced by the differences may be in the same or different documents. The differences information consists of
the Add, Delete, and Replace classes, which specify a set of differences and refer to MOF objects that are added or
removed. Note that the RefBaseObject class is a placeholder for specifying that a Difference has a target that can refer to
any objects. The RefObject class is not included in the required element declarations.

The XML Schema declarations for each element of the XML model are given in the following sub clauses. They may be
generated by following the XMI production of XML Schema rules defined in Clause 7, except for the XMI class and the
XMI attributes described in 4.6, “XMI Attributes,” on page 12.

XMI

<<0..1>> version : String
<<0..1>> documentation : Documentation
<<0..1>> difference : Difference
<<0..1>> extension : Extension

Documentation

<<0..*>> contact : String
<<0..*>> exporter : String
<<0..*>> exporterVersion : String
<<0..*>> longDescription : String
<<0..*>> shortDescription : String
<<0..*>> notice : String
<<0..*>> owner : String

Extension

extender : String
<<0..1>> extenderId : String

<<datatype>>
String
© ISO/IEC 2005 - All rights reserved 7

ISO/IEC 19503:2005(E)
Figure 4.2 - The XMI Model for differences

4.5.3 XMI

The top level XML element for XMI documents containing only XMI data is the XMI element. Its declaration is:

<xsd:complexType name="XMI">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:any processContents="strict"/>
 </xsd:choice>
 <xsd:attribute ref="id"/>
 <xsd:attributeGroup ref="IdentityAttribs"/>
 <xsd:attributeGroup ref="LinkAttribs"/>
 <xsd:attribute name="type" type="xsd:QName" use="optional"
 form="qualified"/>
 <xsd:attribute name="version" type="xsd:string" use="required" fixed="2.0"
 form="qualified"/>
</xsd:complexType>

<xsd:element name="XMI" type="XMI"/>

RefBaseObject
(from MOF)

Difference

Add
<<0..1>> position : integer

Delete Replace

<<0..1>> position : Integer

<<datatype>>
integer

+addition

0..*

0..* +target
0..*

+replacement

+container

0..1

0..*

+difference
8 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
The version attribute is required to be set to “2.0.” This indicates that the metadata conforms to this version of the XMI
specification. Revised versions of this standard will have another number assigned by the OMG.

The XMI element need not be the root element of an XML document; you can include it inside any XML element that
was not serialized according to this specification. If a document contains only XMI information, the XMI element is
typically not present when there is only a single top-level object. The xmi:version attribute is used to denote the start of
XMI information and identify the XMI version, when the XMI element itself is not present. Clause 8 contains examples
of the use of the XMI element.

The XMI class has the tag contentType set to “any” to indicate that any XMI element may be present in the XMI stream.

The attribute version has the tag form set to “qualified,” the tag fixedValue set to “2.0,” the tag attribute set to “true,” and
the tag enforceMinimumMultiplicity set to “true.”

Since the XMI model is an instance of MOF, it can be serialized using the same rules as any other MOF metamodel, with
one exception. Using the default serialization rules would result in the XMI version attribute appearing twice in XMI
elements: once directly from the XMI version attribute, and once through the inclusion of the ObjectAttribs group.
Therefore, the version attribute that belongs to the ObjectAttribs attribute group must be excluded from the XMI type
declaration. See 6.3.1, “Overall Document Structure,” on page 50 for details on how the XMI class is serialized.

The serialization of the XMI element is special — it is defined by the XML Document Production rules in Clause 8.

The XMI model package has the following tag settings:

• tag nsURI set to “http://www.omg.org/XMI”

• tag nsPrefix set to “xmi”

• tag superClassFirst set to “true”

• tag useSchemaExtension set to “true”

4.5.4 Extension

The Extension class is designed to contain extended information outside the scope of the user metamodel. Extensions are
a multivalued attribute of the XMI class and may also be embedded in specific locations in an XMI document. The
Schema for extension is:

<xsd:complexType name="Extension">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:any processContents="lax"/>
 </xsd:choice>
 <xsd:attribute ref="id"/>
 <xsd:attributeGroup ref="ObjectAttribs"/>
 <xsd:attribute name="extender" type="xsd:string" use="optional"/>
 <xsd:attribute name="extenderID" type="xsd:string" use="optional"/>
</xsd:complexType>

<xsd:element name="Extension" type="Extension"/>
© ISO/IEC 2005 - All rights reserved 9

ISO/IEC 19503:2005(E)
The extender attribute should indicate which tool made the extension. It is provided so that tools may ignore the
extensions made by other tools before the content of the extensions element is processed. The extenderID is an optional
internal ID from the extending tool. The other attributes allow individual extensions to be identified and to act as proxies
for local or remote extensions.

The Extension class in the MOF model has the tag contentType set to “any” and the processContents tag set to “lax.” The
extender and extenderID attributes have the tag attribute set to “true.”

4.5.5 Documentation

The Documentation class contains information about the XMI document or stream being transmitted, for instance the
owner of the document, a contact person for the document, long and short descriptions of the document, the exporter tool
that created the document, the version of the tool, and copyright or other legal notices regarding the document. The data
type of all the attributes of Documentation is string. The XML Schema generated for Documentation is:

<xsd:complexType name="Documentation">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="contact" type="xsd:string"/>
 <xsd:element name="exporter" type="xsd:string"/>
 <xsd:element name="exporterVersion" type="xsd:string"/>
 <xsd:element name="longDescription" type="xsd:string"/>
 <xsd:element name="shortDescription" type="xsd:string"/>
 <xsd:element name="notice" type="xsd:string"/>
 <xsd:element name="owner" type="xsd:string"/>
 <xsd:element ref="Extension"/>
 </xsd:choice>
 <xsd:attribute ref="id"/>
 <xsd:attributeGroup ref="ObjectAttribs"/>
 <xsd:attribute name="contact" type="xsd:string" use="optional"/>
 <xsd:attribute name="exporter" type="xsd:string" use="optional"/>
 <xsd:attribute name="exporterVersion" type="xsd:string" use="optional"/>
 <xsd:attribute name="longDescription" type="xsd:string" use="optional"/>
 <xsd:attribute name="shortDescription" type="xsd:string" use="optional"/>
 <xsd:attribute name="notice" type="xsd:string" use="optional"/>
 <xsd:attribute name="owner" type="xsd:string" use="optional"/>
</xsd:complexType>

<xsd:element name="Documentation" type="Documentation"/>

4.5.6 Add, Replace, and Delete

The Add class represents an addition to a target set of objects in this document or other documents. The position attribute
indicates where to place the addition relative to other XML elements. The default, -1, indicates to add the new elements
at the end of the target element. The addition attribute refers to the set of objects to be added. Both of these attributes
have the tag attribute set to “true.”

The Replace class represents the deletion of the target set of objects and the addition of the objects referred to in the
replacement attribute. The position attribute indicates where to place the replacement relative to other XML elements.
The default, -1, indicates to add the replacing elements at the end of the target element. The replacement attribute refers
to the object that will replace the target element. Both of these attributes have the tag attribute set to “true.”
10 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
The Delete class represents a deletion to a target set of objects in this document or other documents.

The Difference class is the superclass for the Add, Replace, and Delete classes.

The declarations for these classes are:

<xsd:complexType name="Difference">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="target">
 <xsd:complexType>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:any processContents="skip"/>
 </xsd:choice>
 <xsd:anyAttribute processContents="skip"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="difference" type="Difference"/>
 <xsd:element name="container" type="Difference"/>
 <xsd:element ref="Extension"/>
 </xsd:choice>
 <xsd:attribute ref="id"/>
 <xsd:attributeGroup ref="ObjectAttribs"/>
 <xsd:attribute name="target" type="xsd:IDREFS" use="optional"/>
 <xsd:attribute name="container" type="xsd:IDREFS" use="optional"/>
</xsd:complexType>

<xsd:element name="Difference" type="Difference"/>

<xsd:complexType name="Add">
 <xsd:complexContent>
 <xsd:extension base="Difference">
 <xsd:attribute name="position" type="xsd:string" use="optional"/>
 <xsd:attribute name="addition" type="xsd:IDREFS" use="optional"/>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="Add" type="Add"/>

<xsd:complexType name="Replace">
 <xsd:complexContent>
 <xsd:extension base="Difference">
 <xsd:attribute name="position" type="xsd:string" use="optional"/>
 <xsd:attribute name="replacement" type="xsd:IDREFS" use="optional"/>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="Replace" type="Replace"/>
© ISO/IEC 2005 - All rights reserved 11

ISO/IEC 19503:2005(E)
<xsd:complexType name="Delete">
 <xsd:complexContent>
 <xsd:extension base="Difference"/>
 </xsd:complexContent>
</xsd:complexType>

<xsd:element name="Delete" type="Delete"/>

4.6 XMI Attributes
This sub clause describes the XML attributes that are used in the production of XML documents and Schemas. By
defining a consistent set of XML attributes, XMI provides a consistent architectural structure enabling consistent object
identity and linking across all assets.

4.6.1 Element Identification Attributes

Three XML attributes are defined by this specification to identify XML elements so that XML elements can be associated
with each other. The purpose of these attributes is to allow XML elements to reference other XML elements using XML
IDREFs, XLinks, and XPointers.

Two of these attributes are declared in an attribute group called IdentityAttribs; the id attribute is declared globally,
because you may change the name of the id attribute using the idName tag. Placing these attributes in an attribute group
prevents errors in the declarations of these attributes in schemas. Its declaration is as follows:

<xsd:attribute name="id" type="xsd:ID"/>

<xsd:attributeGroup name="IdentityAttribs">
 <xsd:attribute name="label" type="xsd:string" use="optional"
 form="qualified"/>
 <xsd:attribute name="uuid" type="xsd:string" use="optional"
 form="qualified"/>
</xsd:attributeGroup>

id
XML semantics require the values of this attribute to be unique within an XML document; however, the value is not
required to be globally unique. This attribute may be used as the value of the idref attribute defined in the next sub
clause. It may also be included as part of the value of the href attribute in XLinks. An example of the use of this attribute
and the other attributes in this sub clause can be found in 4.10.3, “Example from UML,” on page 22.

label
This attribute may be used to provide a string label identifying a particular XML element. Users may put any value in this
attribute.
12 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
uuid
The purpose of this attribute is to provide a globally unique identifier for an XML element. The values of this attribute
should be globally unique strings prefixed by the type of identifier. If you have access to the UUID assigned in MOF, you
may put the MOF UUID in the uuid XML attribute when encoding the MOF data in XMI. For example, to include a DCE
UUID as defined by The Open Group, the UUID would be preceded by “DCE:”. The values of this attribute may be used
in the href attribute in simple XLinks. XMI does not specify which UUID convention is chosen.

The form of the UUID (Universally Unique Identifier) is taken from a standard defined by the Open Group (was Open
Software Foundation). This standard is widely used, including by Microsoft for COM (GUIDs) and by many companies
for DCE, which is based on CORBA. The method for generating these 128-bit IDs is published in the standard and the
effectiveness and uniqueness of the IDs is not in practice disputed.

When a UUID is placed in an XMI file, the form is “id namespace:uuid.” The id namespace of UUIDs is typically DCE.
An example is “DCE:2fac1234-31f8-11b4-a222-08002b34c003.”

The MOF refID() is often used as the uuid in XMI implementations.

4.6.2 Linking Attributes

XMI requires the use of several XML attributes to enable XML elements to refer to other XML elements using the values
of the attributes defined in the previous sub clause. The purpose of these attributes is to allow XML elements to act as
simple XLinks or to hold a reference to an XML element in the same document using the XML IDREF mechanism. See
4.10, “Linking,” on page 19.

The attributes described in this sub clause are included in an attribute group called LinkAttribs. The attribute group
declaration is:

<xsd:attributeGroup name="LinkAttribs">
 <xsd:attribute name="href" type="xsd:string" use="optional"/>
 <xsd:attribute name="idref" type="xsd:IDREF" use="optional"
 form="qualified"/>
</xsd:attributeGroup>

The link attributes act as a union of two linking mechanisms, any one of which may be used at one time. The mechanisms
are the XLink href for advanced linking across or within a document, or the idref for linking within a document.

Simple XLink Attributes
The href attribute declared in the above entity enables an XML element to act in a fashion compatible with the simple
XLink according to the XLink and XPointer W3C recommendations. The declaration and use of href is defined in the
XLink and XPointer specifications. XMI enables the use of simple XLinks. XMI does not preclude the use of extended
XLinks. The XLink specification defines many additional XML attributes, and it is permissible to use them in addition to
the attributes defined in the LinkAttribs group.

To use simple XLinks, set href to the URI of the desired location. The href attribute can be used to reference XML
elements whose id attributes are set to particular values. The id attribute value can be specified using a special URI form
for XPointers defined in the XLink and XPointer recommendations.
© ISO/IEC 2005 - All rights reserved 13

ISO/IEC 19503:2005(E)
idref
This attribute allows an XML element to refer to another XML element within the same document using the XML IDREF
mechanism. In XMI documents, the value of this attribute should be the value of the id attribute of the XML element
being referenced.

4.6.3 Version Attribute

The version attribute must be present for XMI objects that are not serialized in an XMI XML element and are not
serialized in an XML element representing another object. The attribute value, if present, must be 2.0, indicating that the
object was serialized according to this specification:

<xsd:attribute name="version" type="xsd:string" fixed="2.0"/>

4.6.4 Type Attribute

The type attribute is used to specify the type of object being serialized, when the type is not known from the model. This
can occur if the type of a reference has subclasses, for instance. The declaration of the attribute is:

<xsd:attribute name="type" type="xsd:QName" form="qualified"/>

Rather than including the IdentityAttribs, and LinkAttribs attribute groups, and the version and type attributes in the
declarations for each MOF class, the XMI namespace includes the following declaration of the ObjectAttribs attribute
group for the attribute declarations that pertain to objects:

<xsd:attributeGroup name="ObjectAttribs">
 <xsd:attributeGroup ref="IdentityAttribs"/>
 <xsd:attributeGroup ref="LinkAttribs"/>
 <xsd:attribute name="version" type="xsd:string" use="optional" fixed="2.0"
 form="qualified"/>
 <xsd:attribute name="type" type="xsd:QName" use="optional"
 form="qualified"/>
</xsd:attributeGroup>

4.7 XMI Type
The XMI namespace contains a type called Any. It is used in the XMI 2.0 schema production rules for class attributes,
class references, and class compositions. The declaration of this type is part of the fixed declarations for XMI 2.0. The
Any type allows any content and any attributes to appear in elements of that type, skipping XML validation for the
element’s content and attributes. The declaration of the type is as follows:

<xsd:complexType name="Any">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:any processContents="skip"/>
 </xsd:choice>
 <xsd:anyAttribute processContents="skip"/>
</xsd:complexType>

By using this type, the XMI 2.0 schema production rules generate smaller schemas than if this type was declared multiple
times in a schema. Also, using the Any type enables some changes to be made to the Any type declaration without
affecting generated XMI 2.0 schemas.
14 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
4.8 Metamodel Class Specification
This sub clause describes in detail how to represent information about metamodel classes in an XMI compliant schema. It
uses the EBNF grammar in the “XML Schema Production” clause to describe the manner in which attributes,
associations, and containment relationships are represented in an XML schema, including how inheritance between
metamodel classes is handled. It uses a short example to explain the encoding.

4.8.1 Namespace Qualified XML Element Names

When the official schema for a metamodel is produced, the schema generator must choose one or more namespace URIs
that uniquely identify the XML namespaces in the metamodel. XML processors will use those namespace URIs to
identify the schemas to use for XML validation, as described in the XML schema specification.

The XML element name for each metamodel class, package, and association in a document is its short name. The name
for XML tags corresponding to metamodel attributes and references is the short name of the attribute or reference. The
name of XML attributes corresponding to metamodel references and metamodel attributes is the short name of the
reference or attribute, since each tag in XML has its own namespace.

Each namespace is assigned a logical URI. The logical URI is placed in the namespace declaration of the XMI element in
XML documents that contain instances of the metamodel. The XML namespace specification assigns logical names to
namespaces that are expected to remain fixed throughout the life of all uses of the namespace since it provides a
permanent global name for the resource. An example is “http://schema.omg.org/spec/UML/1.4.” There is no requirement
or expectation by the XML Namespace specification that the logical URI be resolved or dereferenced during processing
of XML documents.

The following is an example of a UML model in an XMI document using namespaces.

<xmi:XMI version="2.0"
 xmlns:UML="http://schema.omg.org/spec/UML/1.4"
 xmlns:xmi="http://schema.omg.org/spec/XMI/2.0">
 <UML:Class name="C1">
 <feature xmi:type="UML:Attribute" name="a1" visibility="private"/>
 </UML:Class>
</xmi:XMI>

The model has a single class named C1 that contains a single attribute named a1 with visibility private. The XMI element
declares the version of XMI and the namespace for UML with the logical URI.

4.8.2 Metamodel Multiplicities

In XMI 1.1, the multiplicities from the metamodel were ignored, since DTDs were not able to validate multiplicities
without ordering the content of XML elements. By default, XMI produces schemas that ignore multiplicities also.

You may tailor the schemas produced by XMI by specifying tag values in the MOF metamodel. Two of the tags,
“org.omg.xmi.enforceMaximumMultiplicity” and “org.omg.xmi.enforceMinimumMultiplicity” allow you to specify that
multiplicities are to be used in a schema rather than being ignored.

Metamodel multiplicities map directly from the MOF definition of multiplicity, which is a lower bound and an upper
bound, to schema XML attributes called “minOccurs” and “maxOccurs.” The minOccurs XML attribute corresponds to
the lower bound for the multiplicity, and the maxOccurs XML attribute corresponds to the upper bound for the
multiplicity.
© ISO/IEC 2005 - All rights reserved 15

ISO/IEC 19503:2005(E)
4.8.3 Class Specification

Every metamodel class is decomposed into three parts: attributes, associations, and compositions. A class is represented
by an XML element, with an XML element for each attribute, reference, and composition. The XML element for the class
includes the inherited attributes, associations, and composition.

In the examples that follow in this sub clause, “xsd” is the namespace prefix for the XML schema namespace (“http://
www.w3.org/2001/XMLSchema”), and “xmi” is the namespace prefix for the XMI namespace.

The representation of a metamodel class named “c” is shown below for the simplest case where “c” does not have any
attributes, associations, or containment relationships:

<xsd:element name="c" type="c"/>

<xsd:complexType name="c">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
</xsd:complexType>

If the class has attributes, associations, or compositions, the XML elements for them are put in the all group of the content
model, as explained below.

4.8.4 Attribute Specification

The representation of attributes of metamodel class “c” uses XML elements and XML attributes. If the metamodel
attribute types are primitives or enumerations, then by default XML attributes are declared for them as well as XML
elements. The reasons for this encoding choice are several, including: the values to be exchanged may be very large
values and unsuitable for XML attributes, and may have poor control of whitespace processing with options which apply
only to element contents. The default encoding can be changed using the XMI “attribute” and “element” tags. See 4.11.4,
“XML element vs XML attribute,” on page 25 for information on how these tags affect encoding. See 4.11.1, “XMI Tag
Values,” on page 23 for a complete list of XMI tags.

The declaration of each attribute named “a” is as follows:

<xsd:element name="a" type="type specification"/>

The XML element corresponding to the attribute is declared in the content of the complexType corresponding to the class
that owns the attribute. The type specification is either an XML schema data type, an enumeration data type, or a class
from the metamodel.

For attributes whose types are string type and whose upper bound multiplicity is 1, an XML attribute must also be
declared in the XML element corresponding to metamodel class “c,” and the XML element must be put in the content
model of the XML element for class “c;” the declaration of “c” appears as follows without multiplicity enforcement:

<xsd:element name="c" type="c"/>

<xsd:complexType name="c">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="a" type="xsd:string" nillable="true"/>
16 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 <xsd:attribute name="a" type="xsd:string" use="optional"/>
 </xsd:complexType>
</xsd:element>

An element is also declared to be of XML type string if the class contains a Tag org.omg.xmi.schemaType with value
“string.”

For multi-valued attributes, no XML attributes are declared; each value is encoded as an XML element.

When “a” is an attribute with enumerated values, the type used for the declaration of the XML element and XML attribute
corresponding to the metamodel attribute is as follows:

<xsd:simpleType base="enumName" >
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="v1"/>
 <xsd:enumeration value="v2"/>
 </xsd:restriction>
</xsd:simpleType>

where enumName is the name of the enumeration type, and v1 and v2 are the enumeration literals.

If an attribute has enumerated values, an XML element and an XML attribute is put in the complexType for the class “c;”
their declaration is as follows:

 <xsd:element name="a" type="enumName"/>

 <xsd:attribute name="a" type="enumName" use="optional"/>

If an attribute is a multi-valued enumeration attribute, the declaration of the XML attribute is omitted.

In some MOF models, enumerations have a prefix substring that should be removed before placing the enumeration
literals in the schema. The Tag “org.omg.xmi.xmiName” indicates the name for the enumeration literal that should be
used in XMI documents and schemas.

Default values for property and enumeration attributes may be specified in schemas using the Tag
“org.omg.xmi.defaultValue” attached to the attribute. The default value should be the XML string representation to be
placed in the schema. Default values for attributes should be specified in schemas with care since XML allows the
processor reading the document the option of not processing a schema as an optional optimization. When tools skip
processing the schema, they do not obtain the default value of XML attributes. Instead, they would have to know the
default value from understanding the metamodel. The form for specifying defaults, where “d” is the default, is:

For string attributes, the corresponding XML attribute declaration in the XML element corresponding to the class is:

<xsd:attribute name="a" type="xsd:string" default="d"/>

For enumeration attributes, the corresponding XML attribute declaration in the XML element corresponding to the class
is:

<xsd:attribute name="a" type="enumTypeName" default="d"/>
© ISO/IEC 2005 - All rights reserved 17

ISO/IEC 19503:2005(E)
NOTE: When reading documents with XML elements specifying model attribute values, be sure to use the value in the XML
element rather than the default value from the unused XML attribute.

4.8.5 Reference Specification

Each reference is represented in an XML element and/or an XML attribute. The XML element declaration for a reference
named “r” for a metamodel class “c” of type “classType” is:

<xsd:element name="r" type="xmi:Any"/>

This element is declared in the content of the complexType for the class that owns the reference. This declaration enables
any object to be serialized, enhancing the extensibility of models. A user can override this declaration using the
useSchemaExtension tag or the contentType tag.

The attribute declaration for the reference, which also is included in the complexType declaration for the class that owns
the reference, is as follows:

<xsd:attribute name="r" type="xsd:IDREFS" use="optional"/>

4.8.6 Containment Specification

Each association end that represents containment is represented by an XML element, but not by an XML attribute. The
form of the XML element is identical to that for association roles.

4.8.7 Inheritance Specification

XML schemas have a mechanism for extending types, but it does not support extending from more than one type, and
using that mechanism imposes an order on the content models of the types that are derived from other types. Since XMI
attempts to minimize order dependencies, XMI by default does not use schema extension to represent inheritance. In its
place, XMI specifies that inheritance will be copy-down inheritance. For attributes and compositions, copy-down
inheritance is required. For associations (AssociationEnds with references), the actual class referenced is used, and
subclasses may be used on the other end of the reference.

Multiple inheritance is treated in such a way that the attributes, associations, and compositions of classes that occur more
than once in the inheritance hierarchy are only included once in their subclasses. For associations (AssociationEnds with
references), the actual class referenced is used, and subclasses may be used on the other end of the reference.

4.8.8 Derived Information

Derived information is orthogonal to serialization. The serialization tag is provided to optionally suppress serialized data.
This capability provides more control to the end users, allowing them to customize exactly which information is present
in their files.

4.9 Transmitting Incomplete Metadata
In XMI 2.0 a schema generator can decide whether to support the exchange of model fragments.
18 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
4.9.1 Interchange of Model Fragments

In practice, most information is related. The ability to transfer a subset of known information is essential for practical
information interchange. In addition, as information models are developed, they will frequently need to be interchanged
before they are complete.

The following guidelines apply for interchanging incomplete models via XMI:

• Information may be missing from a model. The transmission format should not require the addition or invention of
new information.

• Model fragments may be disjoint sets. Each set may be transmitted in the same XMI file or in different XMI files.

• “Incomplete” indicates a quantity of information less than or equal to “complete.” Additional information beyond that
which the metamodel prescribes may be transmitted only via the extension mechanism.

• Semantic verification is performed on the metadata that is actually present as if it was included in complete metadata.

4.9.2 XMI Encoding

The interchange of model fragments is accomplished by lowering the lower bound of multiplicities whose lower bound is
greater than 0.

4.9.3 Example

The following is an example of an incomplete UML model:

<UML:Model name="model1" xmi:id="id1">
<ownedElement xmi:type="UML:Class" name="class1" xmi:id="id2">

<feature xmi:type="UML:Attribute" name="attribute1"
 type="type1"/>

</ownedElement>
 <ownedElement xmi:type="UML:Datatype" name="Integer" xmi:id="type1"/>
</UML:Model>

4.10 Linking
The goal is to provide a mechanism for specifying references within and across documents. Although based on the
XLinks standard, it is downwards compatible and does not require XLinks as a prerequisite.

4.10.1 Design Principles

• Links are based on XLinks to navigate to the document (which may be the current document) and XPointers to
navigate to the element within the document.

• Link definitions are encapsulated in the attribute group LinkAttribs defined in 4.6.2, “Linking Attributes,” on page 13.

• Elements act as a union, where they are either a definition or a proxy. Proxies use the LinkAttribs attribute group to
define the link, and contain no nested elements.

• LinkAttribs supports external links through the XLink attributes, and internal links through the xmi:idref and xmi:id
attributes.
© ISO/IEC 2005 - All rights reserved 19

ISO/IEC 19503:2005(E)
• Links are always to elements of the same type or subclasses of that type. Restricting proxies to reference the same
element type reduces complexity, enhances reliability and type safety, and promotes caching. In XMI 2.0, subclasses
are also allowed, to permit more flexibility in combining models and metamodels.

• When acting as a proxy, XML attributes may be defined, but not contents. The XML attributes act as a cache which
gives an indication if the link should be followed.

• Proxies may be chained.

• When following the link from a proxy, the definition of the proxy is replaced by the referenced element.

• It is efficient practice for maximizing caching and encapsulation to use local proxies of the same element within a
document to link to a single proxy that holds an external reference.

• Association role elements typically contain proxies that link to the definitions of the classes that participate in the
association.

4.10.2 Linking

For XMI, the most common linking requirements are:

• Linking to an XML element in the same document using the element’s id.

• Linking to an XML element in a different document using the element’s id.

• Linking to an XML element using the element’s uuid, in the same or a different document.

The following sub clauses describe how XMI supports these requirements.

Linking within a Document
The idref attribute may be used to specify the XML ID of an XML element within the current XML document. Every
construct that can be referred to has a local XML ID, a string that is locally unique within a single XML file.

Linking across Documents
Supporting links across documents is optional.

1. Using the XMI href attribute to locate an XMI id.
This is the simplest form of cross document linking. With help from the XMI idName tag, it can be backward compatible
with XMI 1.2 and later.

Here, the XMI href attribute is used to locate an XML element in another XML document by its XMI id. The value of
href must be a URI reference, as defined by IETF RFC 2396: Uniform Resource Identifiers. The URI reference must be
of the form URI#id_value, where URI locates the XML file containing the XML element to link to, and id_value is the
value of the XML element’s XMI id attribute.

As an example:

<mgr xmi:id="mgr_1" href="Co.xml#emp_2"/>

locates XML element <Employee xmi:id="emp_2" … /> in file Co.xml.
20 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
2. Using an XLink simple link and XPointer bare name to locate an XMI id.
This is a little more complicated than using the XMI href attribute, and does not provide any more function. It does have
the advantage that standard XLink and XPointer software can follow the link.

Here, an xlink:href attribute is used, where XLink is the prefix for the XLink namespace. The XLink prefix must be
declared in the document that contains the Xlink:href attribute, for example:

<xmi:XMI version="2.0" xmlns:xlink="http://www.w3.org/1999/XLink"
 xmlns:xmi=" http://schema.omg.org/spec/XMI/2.0">

The value of xlink:href must again be a URI reference of the form URI#id_value. In this case, id_value is technically an
XPointer bare name, but it looks just like the id_value for the XMI href attribute.

The XML element with the xlink:href must also have an xlink:type="simple" attribute, to identify it as a simple link.

As an example:

<mgr xmi:id="mgr_1" xlink:href="Co.xml#emp_2" xlink:type="simple"/>

locates XML element <Employee xmi:id="emp_2" … /> in file Co.xml.

3. Using an XLink simple link and full XPointer to locate an XMI uuid.
An XLink simple link and a form of full XPointer can be used to locate an XML element in an XML document by its
XMI uuid. Again:

• An xlink:href attribute is used, where XLink is the prefix for the XLink namespace. The xlink prefix must be declared
in the document containing the xlink:href attribute.

• The value of xlink:href must be a URI reference.

However this time, the URI reference has a more complicated form:

 URI#xpointer((//*[@xmi:uuid='value'])[1])

The xpointer expression is a series of instructions for finding the first element in the target file whose xmi:uuid has that
value.

As an example:

<mgr xmi:id="mgr_1"
 xlink:href="Co.xml#xpointer((//*[@xmi:uuid='emp_2'])[1])"
 xlink:type="simple"/>

locates XML element <Employee xmi:uuid="emp_2"…/> in file Co.xml, as long as it’s the first element with that uuid
in the file.

Since a URI can identify the same file that contains the href, this also supports locating XML elements by XMI uuid in
the same document.

4. Using full XLink and XPointer to locate almost anything.
XLink and XPointer provide rich and complex capabilities for locating XML elements, far beyond what XMI requires.
Consequently it is not expected that XMI implementations supporting linking across documents provide this level of
support. The W3C XLink and XPointer specifications define what’s possible and how it works.
© ISO/IEC 2005 - All rights reserved 21

ISO/IEC 19503:2005(E)
4.10.3 Example from UML

There is an association between ModelElements and Constraints in UML. Operations are a subclass of ModelElements.
This example shows an association between Operations and four Constraints with roles constraint and
constrainedElement. Each of the methods of linking is shown. The Constraints are shown in both definition and proxy
form.

Document 1
<UML:Operation xmi:id="idO1" xmi:label="op1" xmi:uuid="DCE:1234">

<constraint xmi:id="idC1" xmi:label="co1" xmi:uuid="DCE:abcd">
<body>First Constraint definition</body>
<constrainedElement xmi:idref="idO1"/>

</constraint>
<constraint xmi:idref="idC2" />
<constraint xmi:idref="idC3" />
<constraint href="doc2.xml#idC4" />

</UML:Operation>
<UML:Constraint xmi:id="idC2" xmi:label="co2" xmi:uuid="DCE:efgh">

<body>Second Constraint definition</body>
<constrainedElement xmi:idref="idO1" />

</UML:Constraint>
<UML:Constraint xmi:id="idC3" xmi:label="co3" xmi:uuid="DCE:ijkl">

<body>Third Constraint definition</body>
<constrainedElement

href="#xpointer(descendent(1,Operation,xmi:label,op1))"/>
</UML:Constraint>

Document 2
<UML:Constraint xmi:id="idC4" xmi:label="co4" xmi:uuid="DCE:mnop">

<body>Fourth Constraint definition</body>
<constrainedElement href="doc1.xml#idO1"/>

</UML:Constraint>

The first constraint is a definition. The constrainedElement role contains an Operation proxy that has a local reference to
the initial Operation definition using xmi:idref. The second constraint is a proxy referencing a constraint definition using
the xmi:idref of “idC2.” The third constraint is a proxy reference to the definition using xmi:idref to the constraint
“idC3.” The fourth constraint is an XPointer reference proxy to the definition of the constraint using the href to the file
doc2.xml with id “idC4.”

Following the definition of the operation and its 3 constraint proxies are the definitions of two of the constraints. The
second document contains the third constraint definition.

The use and placement of references is freely determined by the document creator. It is likely that most documents will
make internal and external references for a number of reasons: to minimize the amount of duplicate declarations, to
compartmentalize the size of the document streams, or to refer to useful information outside the scope of transmission.
For example, the href of an XLink could contain a query to a repository that will recall additional related information. Or
there may be a set of XMI documents created, one file per package to be transferred, where there are relationships
between the packages.
22 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
4.11 Tailoring Schema Production
This sub clause describes how to tailor schema production by specifying particular MOF tags as part of a MOF
metamodel. It also explains the impact the tailored schemas have on document production.

Note that the MOF definition of the association between ModelElement and Tag is not a composition and does not have
a reference as part of ModelElement. This allows Tags to be contained in separate Packages and ‘remotely’ reference the
tagged elements. For XMI purposes this means that the following tags can be incrementally added to an existing
metamodel without needing to be embedded in it - and thus changing it. Typically, the Tags could be in a separate
Package and a ‘super’ package could cluster this Tags package and the metamodel package to drive the Schema
generation. This conveniently allows different Tag sets to be used with the same metamodel (there would be a separate
‘super’ package for each). And the ‘super’ package extent allows runtime metamodel access to the Tags package for
introspection of the tags that were used for the generation.

4.11.1 XMI Tag Values

Table 4.1 specifies the XMI tags that allow you to tailor the schemas that are produced and the documents that are
produced using XMI. Each of the names has a prefix of “org.omg.xmi.” but the prefix is not included in the names to
make the table easier to read.

Table 4.1- XMI Tag Values Summary

Tag Name Value Type Default value Description

Naming tags

xmiName string nil Provides an alternate name from the MOF name for
writing to XMI. Useful in cases where the MOF name
has characters that conflict with XML. This value is
used rather than the MOF name.

idName string xmi:id The value is the name of the id attribute.

nsURI string nil The namespace URI of the MOF package.

nsPrefix string nil The namespace prefix of the MOF package; this is
used in schemas. (Any legal XML prefix may be used
in documents.)

XML Syntax tags

serialize boolean true If false, suppresses serialization of the MOF
construct. Typically applied to derived features.

attribute boolean false If true, serializes the MOF construct as an XML
attribute.

element boolean false If true, serializes the MOF construct as an XML
element.

remoteOnly boolean false If set on one end of a bidirectional relationship, only
serializes that end if it is remote.
© ISO/IEC 2005 - All rights reserved 23

ISO/IEC 19503:2005(E)
4.11.2 Tag Value Constraints

There are constraints on the values of the XMI tags in addition to the ones specified in the above table. Here is a list of
them:

• If includeNils is true, and the value of an attribute is nil, the value must be represented by an XML element regardless
of the value of the attribute tag. Note that MOF references cannot be set to nil.

• If enforceMinimumMultiplicity or enforceMaximumMultiplicity is true, the ordered tag must be true as well (to
validate multiplicities, schemas require element content to be serialized in a particular order). The multiplicity tags
require the use of serializing in elements.

href boolean false If true, use the href attribute rather than the idref
attribute for links within a document.

Ordering

superClassFirst boolean false If true, serialize the super class content first.

ordered boolean false If true, serialize object content in the order it is
defined in a MOF metamodel.

Content

includeNils boolean false If false, do not serialize nil values.

XML Schema Production

enforceMaximumMultiplicity boolean false If true, enforce maximum multiplicities; otherwise,
they are “unbounded.”

enforceMinimumMultiplicity boolean false If true, enforce minimum multiplicities; otherwise,
they are “0.”

useSchemaExtensions boolean false If true, use schema extensions to represent inheritance
in the MOF metamodel.

schemaType string nil The name of a datatype defined in the XML Schema
Datatype specification.

contentType string empty Defines the schema content type. Other valid values
are: complex, any, mixed, complex, and simple.

processContents string strict If the contentType is any, this tag is used to specify
the value of the processContents attribute of the any
element. Other valid values are: lax, skip.

form string nil Specifies the value of the form attribute for attributes.
Other valid values are qualified and unqualified.

defaultValue string nil Specifies the default value for attributes.

fixedValue string nil Specifies the fixed value for attributes.

Table 4.1- XMI Tag Values Summary

Tag Name Value Type Default value Description
24 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
• If useSchemaExtensions is true, the MOF metamodel must not have multiple inheritance.

• If useSchemaExtensions is true, superClassFirst must be true also.

• If href is true, element must be true as well for every reference that is serialized.

• The attribute tag may not be specified on containment references, multi-valued attributes, attributes without simple
data types, or features with the following tags as true: element, includeNils, enforceMinimumMultiplicity,
enforceMaximumMultiplicity, and href.

4.11.3 Scope

With the exception of xmiName, serialize, and remoteOnly, all of these tags apply to all constructs within the scope of the
construct they are assigned to. If they are specified for a MOF package, they apply to constructs within the scope of the
MOF package. If they are specified for a MOF class, they apply to the MOF class and the features of the class. For
example, if you set the element tag to true for a MOF class, you should serialize the values of all features of the class
using XML elements rather than XML attributes.

The xmiName, serialize, contentType, schemaType, and remoteOnly tags apply only to the constructs for which they are
specified. For example, setting the xmiName of a MOF class to “c” means that the name “c” should be used in XMI
schemas and documents for that class; it does not constrain the names of the features of the class.

4.11.4 XML element vs XML attribute

You may choose features (MOF attribute or reference) to appear as XML attributes, XML elements, or both based on the
model and tags in the model. The following is a list of the conditions for mapping a feature to an XML construct.

XML attribute only
• The feature has an attribute tag set to true.

XML element only
• The feature is a containment reference, or

• the feature has an element tag set to true, or

• the feature has an href tag set to true, or

• the feature is a multi-valued attribute, or

• the feature is an attribute whose type is not a simple data type.

Both XML attribute and element
• The default.

4.11.5 UML profile for XML and XMI

The tags defined above define a UML profile for XML and XMI. The tags placed on a UML element are transferred
directly to the corresponding MOF element when converting UML to MOF. In addition, a UML element with a
stereotype of one of the above non-prefixed tag names are transferred to a MOF tag of the same name and value true. A
UML profile for MOF supplements this profile by providing exact mappings from UML models to MOF models.
© ISO/IEC 2005 - All rights reserved 25

ISO/IEC 19503:2005(E)
An example of the UML profile for XML and XMI would be placing the <<element>> stereotype on a UML attribute that
should always be written as an XML element. The corresponding MOF tag would have value true.

4.11.6 Effects on Document Production

The values of the XMI tags affect how documents are serialized. In general, the more validation a schema performs, the
more restrictions there are on the XMI documents that validate using the schemas. There are two reasons for this. First,
schemas cannot validate multiplicities without imposing an order on element content. Second, if the schema extension
mechanism is used, superclass elements must be serialized in element content before subclass elements.

Here are some examples of how the XMI tags affect document production. Assume that there is a MOF metamodel with
class “Super” and class “Sub.” Sub inherits from Super. Super has attribute a of type string, and Sub has attribute b of
type string. If the namespace URI is “URI,” and the prefix is “p,” here is the default schema produced from the MOF
metamodel:

<xml version="1.0" encoding="UTF-8"?>
<xsd:schema
 targetNamespace="URI"
 xmlns:xmi="http://www.omg.org/XMI"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:p="URI">

<xsd:import
 namespace="http://www.omg.org/XMI"
 schemaLocation="xmi20.xsd"/>

<xsd:complexType name="Super">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="a" type="xsd:string"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 <xsd:attribute name="a" type="xsd:string" use="optional"/>
</xsd:complexType>

<xsd:element name="Super" type="p:Super"/>

<xsd:complexType name="Sub">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="a" type="xsd:string"/>
 <xsd:element name="b" type="xsd:string"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 <xsd:attribute name="a" type="xsd:string" use="optional"/>
 <xsd:attribute name="b" type="xsd:string" use="optional"/>
</xsd:complexType>
26 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
<xsd:element name="Sub" type="p:Sub"/>

</xsd:schema>

Note that the content model for Sub allows attribute a or attribute b to be serialized first if they are serialized as elements.
For example, if p is the namespace prefix for a namespace whose uri is “URI” in an XML document, the following
instance of Sub validates against the default schema:

<p:Sub>
 Value1
 <a>Value2
</p:Sub>

The following is also legal:

<p:Sub>
 <a>Value2
 Value1
</p:Sub>

If useSchemaExtensions is true, the declaration of the Sub complexType uses the XML schema extension mechanism, as
follows:

<xsd:complexType name="Sub">
 <xsd:complexContent>
 <xsd:extension base="p:Super">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="b" type="xsd:string"/>
 </xsd:choice>
 <xsd:attribute name="b" type="xsd:string" use="optional"/>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

This declaration of the Sub type imposes an ordering on the content of Sub instances. With this declaration, attribute a
must be serialized before attribute b, so the first instance of Sub above does not validate with this schema, but the second
does validate. Also, any xmi:extension elements must be serialized in Sub instances before elements corresponding to
attribute b.

4.11.7 Summary of XMI Tag Scope and Affect

Table 4.2 contains the following information:

• Affect: the second column identifies the MOF constructs that are affected by a given XMI tag.

• Scope: columns 3 through 5 identify the scope of each tag. If the scope is Package Scope, a tag set on the package
applies to all the affected constructs within the package. If the scope is Class Scope, a tag set on the class applies to all
affected constructs within the class. If the scope is Construct Scope, the tag affects only the specific construct it’s set
on.
© ISO/IEC 2005 - All rights reserved 27

ISO/IEC 19503:2005(E)
By setting a tag on a package or class, you avoid setting the same tags repeatedly for classes in the package, and for
attributes and association ends belonging to the class. For example, the element tag applies to attributes and association
ends. If the element tag is set to true for a class, the class itself is not affected, but each attribute and association end
belonging to the class is treated as if the element tag were set to true for all of them.

4.12 Transmitting Metadata Differences
The goal is to provide a mechanism for specifying the differences between documents so that an entire document does not
need to be transmitted each time. This design does not specify an algorithm for computing the differences, just a form for
transmitting them.

Up to now we have seen how to transmit an incomplete or full model. This way of working may not be adequate for all
environments. More precisely, we could mention environments where there are many model changes that must be
transmitted very quickly to other users. For these environments the full model transmission can be very resource
consuming (time, network traffic, ...) making it very difficult or even not viable for finding solutions for cooperative
work.

Table 4.2- XMI Tags, the MOF Constructs They Affect, and Their Scope

XMI Tag MOF Constructs Affected Package Scope Class Scope Construct Scope

xmiName Class, Attribute,
AssociationEnd

 X

serialize Attribute, AssociationEnd X X X

element Attribute, AssociationEnd X X X

attribute Attribute, AssociationEnd X X X

enforceMaximumMultiplicity Attribute, AssociationEnd X X X

enforceMinimumMultiplicity Attribute, AssociationEnd X X X

form Attribute, AssociationEnd X X X

remoteOnly AssociationEnd X X X

href AssociationEnd X X X

includeNils Attribute X X X

schemaType Attribute X

defaultValue Attribute X

fixedValue Attribute X

nsURI Package X X

nsPrefix Package X X

idName Class X X X

useSchemaExtensions Class X X X

contentType Class X X X

superClassFirst Class X X X
28 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
The most viable way to solve this problem is to transmit only the model changes that occur. In this way different instances
of a model can be maintained and synchronized more easily and economically. Concurrent work of a group of users
becomes possible with a simple mechanism to synchronize models. Transmitting less information allows synchronizing
models more efficiently.

4.12.1 Definitions

The idea is to transmit only the changes made to the model (differences between new and old model) together with the
necessary information to be able to apply the changes to the old model.

A. New - Old = Difference

Model differencing is the comparison of two models and identifying the differences between them in a reversible fashion.
The difference is expressed in terms of changes made to the old document to arrive at the new document.

B. New = Old + Difference

Model merging is the ability to combine difference information plus a common reference model to construct the
appropriate new model.

4.12.2 Differences

Differences must be applied in the order defined. A later difference may refer to information added by a previous
difference by linking to its contents. Model integrity requires that all the differences transmitted are applied. The
following are the types of differences recognized, the information transmitted, and the changes they represent:

• Delete (reference to deleted element): The delete operation refers to a particular element of the old model and
specifies a deep removal of the referenced element and all of its contents.

• Add (reference to containing element, new element, optional position): The add operation refers to a particular
element of the old model and specifies a deep addition. The element and its contents are added. The contents of the
new element are added at the optional position specified, the default being as the last element of the contents. The
optional position form is based on XPointer’s position form. 1 means the first position, -1 means the last position, and
higher numbers count across the contents in the specified direction.

• Replace (reference to replaced element, replacement element, optional position): This operation deletes the old
element but not its contents. The new element and its contents are added at the position of the old element. The original
contents of the old element are then added to the contents of the new element at the optional position specified, the
default being at the end.

4.12.3 XMI Encoding

The following are the elements used to encode the differences:

delete
The delete element’s link attributes contain a link to the element to be deleted.

add
The contents of add is the element to be added. The link attributes contain a link to the element to be deleted and an
optional position element. The numbering corresponds to XPointer numbering, where 1 is the first and -1 is the last
element.
© ISO/IEC 2005 - All rights reserved 29

ISO/IEC 19503:2005(E)
replace
The contents of replace is the element to replace the old element with. The attributes contain a link to the element to be
replaced and an optional position element for the replacing element’s contents. The numbering corresponds to XPointer
numbering, where 1 is the first and -1 is the last element.

4.12.4 Example

This example will delete a class and its attributes, add a second class, and rename a package.

The original document:

<xmi:XMI version="2.0" xmlns:UML="org.omg/UML"
 xmlns:xmi="http://www.omg.org/XMI">

<UML:Package xmi:id="ppp" xmi:label="p1">
<ownedElement xmi:type="UML:Class" xmi:id="ccc" xmi:label="c1">

<feature xmi:type="UML:Attribute" xmi:label="a1"/>
<feature xmi:type="UML:Attribute" xmi:label="a2"/>

</ownedElement>
</UML:Package>

</xmi:XMI>

The differences document:

<xmi:XMI version="2.0" xmlns:UML="org.omg/UML"
 xmlns:xmi="http://www.omg.org/XMI">

<difference xmi:type="xmi:Delete">
 <target href="original.xml#ccc"/>
 </difference/>

<difference xmi:type="xmi:Add" addition="Class_1">
 <target href="original.xml#ppp"/>
 </difference>

<UML:Class xmi:id="Class_1" xmi:label="c2"/>
<difference xmi:type="xmi:Replace" replacement="ppp">

 <target href="original.xml#ppp"/>
 </difference>

<UML:Package xmi:id="ppp" xmi:label="p2"/>
</xmi:XMI>

Here’s how the 3 differences change the document as they’re applied.

The delete:

<xmi:XMI version="2.0" xmlns:UML="org.omg/UML"
 xmlns:xmi="http://www.omg.org/XMI">
 <UML:Package xmi:id="ppp" xmi:label="p1"/>
</xmi:XMI>

Next, the add:

<xmi:XMI version="2.0" xmlns:UML="org.omg/UML"
 xmlns:xmi="http://www.omg.org/XMI">
 <UML:Package xmi:id="ppp" xmi:label="p1">
30 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
 <ownedElement xmi:type="UML:Class" xmi:label="c2"/>
 </UML:Package>
</xmi:XMI>

Finally, the replace:

<xmi:XMI version="2.0" xmlns:UML="org.omg/UML"
 xmlns:xmi="http://www.omg.org/XMI">
 <UML:Package xmi:id="ppp" xmi:label="p2">
 <ownedElement xmi:type="UML:Class" xmi:label="c2"/>
 </UML:Package>
</xmi:XMI>

4.13 Document Exchange with Multiple Tools
This sub clause contains a recommendation for an optional methodology that can be used when multiple tools interchange
documents. In this methodology, the xmi:uuid and extensions are used together to preserve tool-specific information. In
particular, tools may have particular requirements on their IDs that make ID interchange difficult. Extensions are used to
hold tool-specific information, including tool-specific IDs.

The basic policy is that the XML ID is assigned by the tool that initially creates a construct. The UUID will most likely
be the same as the ID the tool would choose for its own use. Any other modifiers of the document must preserve the
original UUID, but may add their own as part of their extensions.

4.13.1 Definitions

General:

• MC - Model construct. An XML element that contains an xmi.uuid attribute.

• Extension - Extensions use the extension element. Extensions to MCs may be nested in MCs, linked to the extensions
area(s) of the document, or linked outside the document. Each extension contains a tool-specific identifier in the
extender attribute. Extensions are considered private to a particular tool. An MC may have zero or more extensions.
Extensions may be nested.

IDs:

• xmi:uuid - The universally unique ID of an MC, expressed as the xmi:uuid attribute. Example: <Class
xmi:uuid=”ABCDEFGH”>

• extenderID - The tool-specific ID of an MC. The extenderID is stored in an extension of the MC when it differs from
the xmi:uuid.

Tool ID policies:

Every tool is either Open or Closed.

• Open tool - A tool that will accept any xmi:uuid as its own. Open tools do not need to add extensions to contain a tool-
specific id.

• Closed tool - A tool that will not accept an xmi:uuid created by another tool. Closed tools store their ids in the
extenderID attribute of an XMI.extension. The extender attribute of the XMI.extension is set to the name of the
closed tool.
© ISO/IEC 2005 - All rights reserved 31

ISO/IEC 19503:2005(E)
4.13.2 Procedures

Document Creation:
The Creating Tool writes a new XMI document. Each MC is assigned an xmi:uuid. If the xmi:uuid differs from the
extenderID, an extension for that tool is added containing the extenderID.

Document Import:
The importing tool reads an existing XMI document. Extensions from other tools may be stored internally but not
interpreted in the event a Modification will occur at a later time. One of the following cases occurs:

• If the importing tool is an Open tool, the xmi:uuids are accepted internally and no conversion is needed.

• If the importing tool is a Closed tool, the tool looks for a contained extension (identified by extender) with an
extenderID. If one does not exist, the importing tool creates its own internal id.

Document Modification:

• The modifying tool writes the MCs and any extensions preserved from import.

• For new MCs, the MC is assigned an xmi:uuid.

• Closed tools add an extension including their internal id in the extenderID.

4.13.3 Example

This sub clause describes a scenario in which Tool1 creates an XMI document that is imported by Tool2, then exported to
Tool1, and then a third tool imports the document. All the tools are closed tools.

1. A model is created in Tool1 with one class and written in XMI.

<UML:Class xmi:label="c1" xmi:uuid="abcdefgh"/>

2. The class is imported into Tool2. Tool2 assigns extenderID “JKLMNOPQRST.” A second class is added with name
“c2” and extenderID “X012345678.”

3. The model is merged back to XMI:

<UML:Class xmi:label="c1" xmi:uuid="abcdefgh">
 <xmi:Extension extender="Tool2" extenderID="JKLMNOPQRST"/>

 </UML:Class>
 <UML:Class xmi:label="c2" xmi:uuid="X012345678"/>

4. The model is imported into Tool1. Tool1 assigns extenderID “ijklmnop” to “c2” and a new class “c3” is created with
extenderID “qrstuvwxyz.”

5. The model is merged back to XMI:

<UML:Class xmi:label="c1" xmi:uuid="abcdefgh">
 <xmi:Extension extender="Tool2" extenderID="JKLMNOPQRST"/>

</UML:Class>
<UML:Class xmi:label="c2" xmi:uuid="X012345678">

<xmi:Extension extender="Tool1" extenderID="ijklmnop"/>
</UML:Class>
<UML:Class xmi:label="c3" xmi:uuid="qrstuvwxyz"/>
32 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
6. A third closed tool, Tool3, adds its ids:

<UML:Class xmi:label="c1" xmi:uuid="abcdefgh">
<xmi:Extension extender="Tool2" extenderID="JKLMNOPQRST"/>
<xmi:Extension extender="Tool3" extenderID="s1234"/>

</UML:Class>
<UML:Class xmi:label="c2" xmi:uuid="X012345678">

 <xmi:Extension extender="Tool1" extenderID="ijklmnop"/>
 <xmi:Extension extender="Tool3" extenderID="s5678"/>

</UML:Class>
<UML:Class xmi:label="c3" xmi:uuid="qrstuvwxyz">

 <xmi:Extension extender="Tool3" extenderID="s90ab"/>
</UML:Class>

7. An open tool imports and modifies the file. There are no changes because the xmi:uuids are used by the tool.

4.14 General Datatype Mechanism
The ability to support general data types in XMI has significant benefits. The applicability of XMI is significantly
expanded since domain metamodels are likely to have a set of domain-specific data types. This general solution allows
the user to provide a domain datatype metamodel with a defined mapping to the XML data types.

Data types are defined in the model and the XML serialization of the datatypes is described in terms of the XML schema
datatypes.

MOF complex data types are treated as MOF classes with each field treated as a MOF attribute with a primitive type
mapped to XML schema.

The Tag org.omg.xmi.schemaType indicates that this class is a datatype with XML schema mapping. The value of the tag
indicates the schema type. For example, http://www.w3.org/2001/XMLSchema#int is the int datatype.
© ISO/IEC 2005 - All rights reserved 33

ISO/IEC 19503:2005(E)
34 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
5 XML Schema Production

5.1 Purpose
This sub clause describes the rules for creating a schema from a MOF-based metamodel. The conformance rules are
stated in Annex A.

Notation for EBNF
The rule sets are stated in EBNF notation. Each rule is numbered for reference. Rules are written as rule number, rule
name, for example 1a. SchemaStart. Text within quotation marks are literal values, for example “<xsd:element.” Text
enclosed in double slashes represents a placeholder to be filled in with the appropriate external value, for example //Name
of Attribute//. Literals should be enclosed in single or double quotation marks when used as the values for XML attributes
in XML documents. The suffix “*” is used to indicate repetition of an item 0 or more times. The suffix “?” is used to
indicate repetition of an item 0 or 1 times. The suffix “+” is used to indicate repetition of an item 1 or more times. The
vertical bar “|” indicates a choice between two items. Parentheses “()” are used for grouping items together.

EBNF ignores white space; hence these rules do not specify white space treatment. However, since white space in XML
is significant, the actual schema generation process must insert white space at the appropriate points.

5.2 XMI Version 2 Schemas

5.2.1 EBNF

The EBNF for XMI Version 2 schemas is listed below with rule descriptions between sub clauses:
© ISO/IEC 2005 - All rights reserved 35

ISO/IEC 19503:2005(E)

1. Schema ::= 1a:SchemaStart

 1d:ImportsAndIncludes?

 1e:FixedDeclarations

 2:PackageSchema+

 1f:SchemaEnd

1a. SchemaStart ::= "<xsd:schema

 xmlns:xsd=’http://www.w3.org/2001/XMLSchema’

 xmlns:xmi=’http://www.omg.org/XMI’"

 1b:NamespaceDecl*

 1c:TargetNamespace?

 ">"

1b. NamespaceDecl ::= "xmlns:" //Namespace name// "="

 "’" //Namespace URI// "’"

1c. TargetNamespace ::= "targetNamespace=’" //Namespace URI// "’"

1d. ImportsAndIncludes::= // Imports and includes //

1e. FixedDeclarations ::= "<xsd:import

 namespace=’http://www.omg.org/XMI’/>"

1f. SchemaEnd ::= "</xsd:schema>"

1g. XMIFixedAttribs ::= ("<xsd:attribute ref=’xmi:id’"

 "use=’optional’>" |

 "<attribute name=’" // Id attrib name // "’"

 "type=’xsd:ID’ use=’optional’")

 "<xsd:attributeGroup ref=’xmi:ObjectAttribs’/>"

1h. Namespace ::= (//Name of namespace// ":")?

1. A schema consists of a schema XML element that contains import and include statements, fixed declarations,
plus declarations for the contents of the Packages in the metamodel.

1a. The schema XML element consists of the schema namespace attribute, namespace attributes for the other
namespaces used in the schema, if any, and an optional target namespace attribute. These rules are written as if
the namespace name for the schema namespace is “xsd” and the namespace name for the XMI namespace is
“xmi,” but you can substitute other names for these namespace names and still conform to this specification.

1b. Each namespace used in the schema must have a namespace attribute that identifies the namespace name and
the namespace URI. If the namespace name is "" , the attribute name should be “xmlns.” The namespace is
declared by the nsPrefix and nsURI tags in the metamodel.

1c. If the schema has a target namespace, the targetNamespace attribute is present.

1d. If the schema uses declarations from other schemas, the appropriate include or import statements must be
present.

1e. The schema declarations that are in the XMI namespace are listed in 6.3.2, “Overall Content Structure,” on
page 51.
36 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)

2. PackageSchema ::= (2:PackageSchema

 | 3:ClassSchema

 | 13:EnumSchema)*

 6:PackageElementDef

3. ClassSchema ::= 4:ClassTypeDef

 5:ClassElementDef

1f. The end of the schema XML element.

1g. The fixed XMI attributes present on the major elements provide element identity and element linking. If the
org.omg.xmi.idName tag has a value, that value is the name of the ID attribute; otherwise, the name is “xmi:id”.

1h. A namespace is a namespace name followed by a “:”. If no namespace name is given, the rule is a blank.

2. The schema contribution from a Package consists of the declarations for any contained Packages, Classes,
Associations without References, enumerations, and an XML element declaration for the Package itself.

3. The class schema contribution consists of a type declaration based on the attributes and references of the class,
and an element declaration for the Class itself.
© ISO/IEC 2005 - All rights reserved 37

ISO/IEC 19503:2005(E)

4. ClassTypeDef ::= "<xsd:complexType name=’" //Name of Class//

 ("mixed=’true’")?

 "’>"

 ("<xsd:complexContent>"

 "<xsd:extension base=’" 4a:ClassTypeName "’")?

 ("<xsd:choice minOccurs=’0’

 maxOccurs=’unbounded’>" |

 "<xsd:sequence>")?

 (4b:ClassContents |

 "<xsd:any minOccurs=’0’ maxOccurs=’unbounded’

 processContents=’" // ProcessContents Value //

 "’/>")?

 ("</xsd:choice>" | "</xsd:sequence>")?

 4g:ClassAttListItems

 ("</xsd:extension>"

 "</xsd:complexContent>")?

 "</xsd:complexType>

4a. ClassTypeName ::= 1h:Namespace //Name of Class//

4b. ClassContents ::= 4d:ClassAttributes

 4e:ClassReferences

 4f:ClassCompositions

 4c:Extension

4c. Extension ::= ("<xsd:element ref=’xmi:extension’/>")*

4d. ClassAttributes ::= ("<xsd:element name=’" //Name of Attribute// "’"

 ("nillable=’true’")?

 (4m:MinOccursAttrib)?

 (4n:MaxOccursAttrib)?

 (("type=’" //Name of type// "’/>") |

 ("type='xmi:Any'/>")))*

4e. ClassReferences ::= ("<xsd:element name=’" //Name of Reference// "’"

 (4m:MinOccursAttrib)?

 (4n:MaxOccursAttrib)?

 (("type=’" 4a:ClassTypeName "’/>") |

 ("type='xmi:Any'/>")))*

4f. ClassCompositions ::= ("<xsd:element name=’" //Name of Reference// "’"

 (4m:MinOccursAttrib)?

 (4n:MaxOccursAttrib)?

 (("type=’" 4a:ClassTypeName "’/>") |

 ("type='xmi:Any'/>")))*

4g. ClassAttListItems ::= 1g:XMIFixedAttribs 4h:ClassAttribAtts

4h. ClassAttribAtts ::= (4i:ClassAttribRef

 | 4j:ClassAttribData

 | 4k:ClassAttribEnum)*

4i. ClassAttribRef ::= "<xsd:attribute name=’" //Name of attribute// "’"

 ("type=’xsd:IDREFS’ use=’optional’/>" |

 "type=’xsd:IDREF’ use=’required’/>")

4j. ClassAttribData ::= "<xsd:attribute name=’" //Name of attribute// "’"
38 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
 "type=’xsd:string’ "

 ("use=’optional’" | "use=’required’")

 ("default=’" 4l:ClassAttribDflt "’")?

 ("fixed=’" 4p:ClassAttribFixed "’")?

 ("form=’" // Form value // "’")?

 "/>"

4k. ClassAttribEnum ::= "<xsd:attribute name=’" //Name of attribute// "’"

 "type=’" 8a:EnumTypeName "’"

 (("use=’default’"

 "value=’" 4l:ClassAttribDflt "’") |

 ("use=’optional’" | "use=’required’")) "/>"

4l. ClassAttribDflt ::= //Default value//

4m. MinOccursAttrib ::= "minOccurs=’" // Minimum // "’"

4n. MaxOccursAttrib ::= "maxOccurs=’" // Maximum // "’"

4o. Class AttribFixed ::= //Fixed value//

4. These rules describe the declaration of a Class in the metamodel as an XML complex type with a content
model and XML attributes. If either of the tags org.omg.xmi.enforceMaximumMultiplicity or
org.omg.xmi.enforceMinimumMultiplicity is true, the contents of the class are put in a sequence; otherwise,
they are put in a choice. If the org.omg.xmi.contentType tag is complex, the class content declarations appear
as defined by rule 4b; however, if the contentType value is empty (the default), they do not appear, and if the
contentType value is any, the “xsd:any” element declaration appears instead of the class content. If the
contentType value is mixed, then the mixed attribute is included. If org.omg.xmi.useSchemaExtensions is true,
the complex type for the class is derived by extension from the complex type for its superclass.

4a. This rule is for a reference to the type for the class, which is the name of the Class prefixed by the namespace,
if present and not the default namespace.

4b.
4c.

The complex type for the Class contains XML elements for the contained Attributes, References and
Compositions of the Class, plus an extension element, regardless of whether they are marked as derived. The
org.omg.xmi.serialize tag can be used to control whether these constructs are serialized. If
org.omg.xmi.useSchemaExtensions is false or not present, inherited Attributes, References, and Compositions
are included; otherwise, only local Attributes, References, and Compositions are included.

4d. The XML element name for each Attribute of the Class is listed as part of the content model of the Class
element. This includes the Attributes defined for the Class itself as well as all of the Attributes inherited from
superclasses of the Class. The type is “xsd:string” for simple attributes, the name of an enumeration for
enumerated attributes, or part of the value of the org.omg.xmi.schemaType tag, if present. If the
org.omg.xmi.includeNils tag is false, then the “nillable” attribute is not included in the declaration.
If org.omg.xmi.enforceMinimumMultiplicity is true, the minOccurs attribute is included.
If org.omg.xmi.enforceMaximumMultiplicity is true, the maxOccurs attribute is included.
© ISO/IEC 2005 - All rights reserved 39

ISO/IEC 19503:2005(E)
4e. The XML element name for each Reference of the Class is listed in the content model of the Class. The list
includes the References defined for the Class itself, as well as all References inherited from the superclasses
of the Class. The type is the class name for the Reference type if org.omg.xmi.useSchemaExtensions is “true”
or if the org.omg.xmi.contentType is “complex;” otherwise, the type allows any object to be serialized.
If org.omg.xmi.enforceMinimumMultiplicity is true, the minOccurs attribute is included.
If org.omg.xmi.enforceMaximumMultiplicity is true, the maxOccurs attribute is included.

4f. The XML element name for each Reference of the Class that is a composite Reference is listed in the content
model of the class. The list includes the References defined for the Class itself, as well as all References
inherited from the superclasses of the Class. The type is the class name for the Reference type if
org.omg.xmi.useSchemaExtensions is “true” or if the org.omg.xmi.contentType is “complex;” otherwise, the
type allows any object to be serialized.
If org.omg.xmi.enforceMinimumMultiplicity is true, the minOccurs attribute is included.
If org.omg.xmi.enforceMaximumMultiplicity is true, the maxOccurs attribute is included.

4g.
4h.

In addition to the standard identification and linkage attributes, the attribute list of the Class element can
contain XML attributes for the Attributes and non-composite References of the Class, when the limited
facilities of the XML attribute syntax allow expression of the necessary values. Inherited attributes and
references are included unless the org.omg.xmi.useSchemaExtensions tag is true, in which case only local
attributes and references are included.

4i. References can be expressed as XML id reference XML attributes. If the multiplicity of the attribute is exactly
one, and org.omg.xmi.enforceMinimumMultiplicity is true, the type is IDREF and the attribute is required.

4j. Single-valued Attributes of a Class that have a string representation for their data are mapped to XML
attributes of type “xsd:string”, unless the org.omg.xmi.schemaType tag is present, in which case its value is
used for the type. Multi-valued Attributes of a Class cannot be so expressed, since the XML attribute syntax
does not allow repetition of values. If the multiplicity of the attribute is exactly one, and
org.omg.xmi.enforceMinimumMultiplicity is true, the attribute is required to be present.

4k. Single-valued Attributes that have enumerated values are mapped to XML attributes whose type is the
enumerated type. If the multiplicity of the attribute is exactly one, and
org.omg.xmi.enforceMinimumMultiplicity is true, the attribute is required to be present.

4l. If an Attribute is expressed as an XML attribute, its default value may be expressed in the schema if there is
a MOF Tag “org.omg.xmi.defaultValue” attached to the Attribute. The value of this Tag must be expressible
as an XML attribute string.

4m. The value for minimum is the minimum multiplicity.

4n. The value for maximum is the maximum multiplicity.

4o. If an Attribute is expressed as an XML attribute, its fixed value may be expressed in the schema if there is a
MOF Tag “org.omg.xmi.fixedValue” attached to the Attribute. The value of this Tag must be expressible as an
XML attribute string.
40 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)

5. ClassElementDef ::= "<xsd:element name=’" //Name of class// "’"

 "type=’ 4a:ClassTypeName "’/>"

6. PackageElementDef ::= "<xsd:element name=’" //Name of package// "’>"

 "<xsd:complexType>

 <xsd:choice minOccurs=’0’ maxOccurs=’unbounded’>"

 6b:PkgContents

 "</xsd:choice>"

 6g:PkgAttListItems

 "</xsd:complexType>

 </xsd:element>"

6a. PkgElmtName ::= 1h:Namespace //Name of package//

6b. PkgContents ::= 6c:PkgAttributes

 6d:PkgClasses

 6e:PkgAssociations

 6f:PkgPackages

 4c:Extension

6c. PkgAttributes ::= ("<xsd:element name=’"

 //Qualified name of Attribute// "’"

 "type=’ //Name of type// "’/>")*

6d. PkgClasses ::= ("<xsd:element ref=’" 4a:ClassTypeName "’/>")*

6e. PkgAssociations ::= (7:AssociationDef)*

6f. PkgPackages ::= ("<xsd:element ref=’" 6a:PkgElmtName "’/>")*

6g. PkgAttListItems ::= 1g:XMIFixedAttribs 6h:PkgAttribAtts

6h. PkgAttribAtts ::= 4h:ClassAttribAtts

__

5. This rule declares an XML element for a class in a metamodel.
© ISO/IEC 2005 - All rights reserved 41

ISO/IEC 19503:2005(E)
__

7. AssociationDef ::= "<xsd:element name=’" //Name of association// "’>"

 "<xsd:complexType>

 <xsd:choice minOccurs=’0’ maxOccurs=’unbounded’>"

 7b:AssnContents

 "</xsd:choice>"

 7d:AssnAtts

 "</xsd:complexType>

 </xsd:element>"

7a. AssnElmtName ::= 1c:Namespace //Name of association//

7b. AssnContents ::= 7c:AssnEndDef

 7c:AssnEndDef

 4c:Extension

7c. AssnEndDef ::= "<xsd:element"

 "name=’" //Name of association end// "’>"

 "<xsd:complexType>"

 1g:XMIFixedAttribs

 "</xsd:complexType>"

 "</xsd:element>"

7d. AssnAtts ::= 1g:XMIFixedAttribs

6. The schema contribution from the Package consists of an XML element definition for the Package, with a
content model specifying the contents of the Package.

6a. This rule is for the use of a package name.

6b. The Package contents consist of any classifier level Attributes, Associations without References, Classes, nested
Packages, and an extension.

6c. Classifier level Attributes of a Package are also known as static attributes. Such Attributes inherited from
Packages from which this Package is derived are also included.

6d. Each Class in the Package is listed. Classes contained in Packages from which this Package is derived are also
included.

6e. It is possible that the Package contains Associations that have no References (i.e., no Class contains a Reference
that refers to an AssociationEnd owned by the Association). Every such Association contained in the Package or
Package from which the Package is derived is listed as part of the Package contents in order that its information
can be transmitted as part of the XML document.

6f. Nested Packages are listed. Nested Packages included in Packages from which this Package is derived are also
included.

6g.
6h.

The Package XML attributes are the fixed identity and linking XML attributes, as well as the XML attribute
declarations corresponding to the classifier-level attributes for the classes in the package.
42 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)

8. EnumSchema ::= "<xsd:simpleType name=’" 8b:EnumName "’>"

 "<xsd:restriction base=’xsd:string’>"

 8c:EnumLiterals

 "</xsd:restriction>"

 "</xsd:simpleType>"

8a. EnumTypeName ::= 1h:Namespace 8b:EnumName

8b. EnumName ::= // Name of enumeration //

8c. EnumLiterals ::= ("<xsd:enumeration value=’" 8d:EnumLiteral "’/>")+

8d. EnumLiteral ::= // Name of enumeration literal //

__

5.2.2 Fixed Schema Declarations

There are some elements of the schema that are fixed, constituting a form of “boilerplate” necessary for every XMI 2.0
schema. These elements are described in this sub clause. These declarations are in the namespace “http://www.omg.org/
XMI.”

Only the schema content of the fixed declarations is given here. For a complete description of the semantics of these
declarations, see Clause 7.

The fixed declarations are:

<schema xmlns="http://www.w3.org/2001/XMLSchema"

7. The declaration of an unreferenced Association consists of the names of its AssociationEnd XML elements.

7a. The use of the name of the XML element representing the Association.

7b. The contents of an Association element are its 2 AssociationEnd elements.

7c. An AssociationEnd element for an unreferenced Association will always be a single identifier reference using
the standard fixed attributes (e.g., idref): there is no possibility of nested elements (it is not a composition) nor
of varying multiplicity since only simple links (pairs of references) are being represented here.

7d. The fixed identity and linking XML attributes are the Association XML attributes.

8. The enumeration schema contribution consists of a simple type derived from string whose legal values are the
enumeration literals.

8a. The name of the enumeration in XML schema references.

8b.
8c.

Each enumeration literal is put in the value XML attribute of an enumeration XML element.

8d. The name of the enumeration literal.
© ISO/IEC 2005 - All rights reserved 43

ISO/IEC 19503:2005(E)
<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns="http://www.omg.org/XMI"

 targetNamespace="http://www.omg.org/XMI">

<xsd:annotation>

 <xsd:documentation>

 The following attribute and attribute group declarations are included

 in the types for MOF classes, but they are not defined in the XMI

 model.

 </xsd:documentation>

</xsd:annotation>

<xsd:attribute name="id" type="xsd:ID"/>

<xsd:attributeGroup name="IdentityAttribs">

 <xsd:attribute name="label" type="xsd:string" use="optional"

 form="qualified"/>

 <xsd:attribute name="uuid" type="xsd:string" use="optional"

 form="qualified"/>

</xsd:attributeGroup>

<xsd:attributeGroup name="LinkAttribs">

 <xsd:attribute name="href" type="xsd:string" use="optional"/>

 <xsd:attribute name="idref" type="xsd:IDREF" use="optional"

 form="qualified"/>

</xsd:attributeGroup>

<xsd:attributeGroup name="ObjectAttribs">

 <xsd:attributeGroup ref="IdentityAttribs"/>

 <xsd:attributeGroup ref="LinkAttribs"/>

 <xsd:attribute name="version" type="xsd:string" use="optional"

 fixed="2.0" form="qualified"/>

 <xsd:attribute name="type" type="xsd:QName" use="optional"

 form="qualified"/>

</xsd:attributeGroup>

<xsd:annotation>

 <xsd:documentation>PACKAGE: XMIPackage</xsd:documentation>

</xsd:annotation>

<xsd:annotation>

 <xsd:documentation>CLASS: XMI</xsd:documentation>

</xsd:annotation>

<xsd:complexType name="XMI">

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:any processContents="strict"/>
44 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
 </xsd:choice>

 <xsd:attribute ref="id"/>

 <xsd:attributeGroup ref="IdentityAttribs"/>

 <xsd:attributeGroup ref="LinkAttribs"/>

 <xsd:attribute name="type" type="xsd:QName" use="optional"

 form="qualified"/>

 <xsd:attribute name="version" type="xsd:string" use="required"

 fixed="2.0" form="qualified"/>

</xsd:complexType>

<xsd:element name="XMI" type="XMI"/>

<xsd:annotation>

 <xsd:documentation>CLASS: Documentation</xsd:documentation>

</xsd:annotation>

<xsd:complexType name="Documentation">

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="contact" type="xsd:string"/>

 <xsd:element name="exporter" type="xsd:string"/>

 <xsd:element name="exporterVersion" type="xsd:string"/>

 <xsd:element name="longDescription" type="xsd:string"/>

 <xsd:element name="shortDescription" type="xsd:string"/>

 <xsd:element name="notice" type="xsd:string"/>

 <xsd:element name="owner" type="xsd:string"/>

 <xsd:element ref="Extension"/>

 </xsd:choice>

 <xsd:attribute ref="id"/>

 <xsd:attributeGroup ref="ObjectAttribs"/>

 <xsd:attribute name="contact" type="xsd:string" use="optional"/>

 <xsd:attribute name="exporter" type="xsd:string" use="optional"/>

 <xsd:attribute name="exporterVersion" type="xsd:string"

 use="optional"/>

 <xsd:attribute name="longDescription" type="xsd:string"

 use="optional"/>

 <xsd:attribute name="shortDescription" type="xsd:string"

 use="optional"/>

 <xsd:attribute name="notice" type="xsd:string" use="optional"/>

 <xsd:attribute name="owner" type="xsd:string" use="optional"/>

</xsd:complexType>

<xsd:element name="Documentation" type="Documentation"/>

<xsd:annotation>

 <xsd:documentation>CLASS: Extension</xsd:documentation>

</xsd:annotation>

<xsd:complexType name="Extension">

 <xsd:choice minOccurs="0" maxOccurs="unbounded">
© ISO/IEC 2005 - All rights reserved 45

ISO/IEC 19503:2005(E)
 <xsd:any processContents="lax"/>

 </xsd:choice>

 <xsd:attribute ref="id"/>

 <xsd:attributeGroup ref="ObjectAttribs"/>

 <xsd:attribute name="extender" type="xsd:string" use="optional"/>

 <xsd:attribute name="extenderID" type="xsd:string" use="optional"/>

</xsd:complexType>

<xsd:element name="Extension" type="Extension"/>

<xsd:annotation>

 <xsd:documentation>CLASS: Difference</xsd:documentation>

</xsd:annotation>

<xsd:complexType name="Difference">

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="target">

 <xsd:complexType>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:any processContents="skip"/>

 </xsd:choice>

 <xsd:anyAttribute processContents="skip"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="difference" type="Difference"/>

 <xsd:element name="container" type="Difference"/>

 <xsd:element ref="Extension"/>

 </xsd:choice>

 <xsd:attribute ref="id"/>

 <xsd:attributeGroup ref="ObjectAttribs"/>

 <xsd:attribute name="target" type="xsd:IDREFS" use="optional"/>

 <xsd:attribute name="container" type="xsd:IDREFS" use="optional"/>

</xsd:complexType>

<xsd:element name="Difference" type="Difference"/>

<xsd:annotation>

 <xsd:documentation>CLASS: Add</xsd:documentation>

</xsd:annotation>

<xsd:complexType name="Add">

 <xsd:complexContent>

 <xsd:extension base="Difference">

 <xsd:attribute name="position" type="xsd:string" use="optional"/>

 <xsd:attribute name="addition" type="xsd:IDREFS" use="optional"/>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>
46 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
<xsd:element name="Add" type="Add"/>

<xsd:annotation>

 <xsd:documentation>CLASS: Replace</xsd:documentation>

</xsd:annotation>

<xsd:complexType name="Replace">

 <xsd:complexContent>

 <xsd:extension base="Difference">

 <xsd:attribute name="position" type="xsd:string" use="optional"/>

 <xsd:attribute name="replacement" type="xsd:IDREFS"

 use="optional"/>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:element name="Replace" type="Replace"/>

<xsd:annotation>

 <xsd:documentation>CLASS: Delete</xsd:documentation>

</xsd:annotation>

<xsd:complexType name="Delete">

 <xsd:complexContent>

 <xsd:extension base="Difference"/>

 </xsd:complexContent>

</xsd:complexType>

<xsd:element name="Delete" type="Delete"/>

<xsd:complexType name="Any">

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:any processContents="skip"/>

 </xsd:choice>

 <xsd:anyAttribute processContents="skip"/>

</xsd:complexType>

<xsd:element name="XMIPackage">

 <xsd:complexType>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element ref="Difference"/>

 <xsd:element ref="Add"/>

 <xsd:element ref="Replace"/>

 <xsd:element ref="Delete"/>

 <xsd:element ref="XMI"/>

 <xsd:element ref="Documentation"/>

 <xsd:element ref="Extension"/>

 </xsd:choice>

 </xsd:complexType>

</xsd:element>
© ISO/IEC 2005 - All rights reserved 47

ISO/IEC 19503:2005(E)
</xsd:schema>

5.2.3 Schema Production Rules for Non-Primitive Data

MOF 1.4 added a set of non-primitive data types. The schema production rules for these data types are defined using the
existing production rules in 5.2.1, “EBNF,” on page 35. They are described in the following sub clauses.

Structure Type
The schema production rules for a structure type with structure fields are the same as for a class with attributes. The
production rules for classes are defined starting with 3:ClassSchema. For structure types, use the structure type name
instead of class name, and the structure field names instead of attribute names.

Enumeration Type
The schema production rules for enumeration types are defined starting with 8:EnumSchema.

Alias Type
The schema production rules for an alias type are the same as for its base type, but using the alias type name instead of
the base type name.

Collection Type
The schema production rules for a collection type are the same as for a class that has one attribute with the same type and
multiplicity as the collection type. The production rules for classes are defined starting with 3:ClassSchema. For
collection types, use the collection type name instead of class name. Use the collection type’s type name instead of
attribute name.
48 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
6 XML Document Production

6.1 Purpose
This Clause specifies the XMI Version 2 production of an XML document from a MOF model. XMI Version 2 describes
an XML syntax that leverages the new capability of XML schema, resulting in smaller, more powerful documents and
enhanced human readability. A set of MOF objects are written to an XML document following the grammar defined here.
It is essential for successful model interchange that this specification be complete and unambiguous. It is also essential
that all significant aspects of the metadata are included in the XML document and can be recovered from it.

6.2 Introduction
XMI’s XML document production process is defined as a set of production rules. When these rules are applied to a model
or model fragment, the result is an XML document. The inverse of these rules can be applied to an XML document to
reconstruct the model or model fragment. In both cases, the rules are implicitly applied in the context of the specific
metamodel for the metadata being interchanged.

The production rules are provided as a specification of the XML document production and consumption processes. They
should not be viewed as prescribing any particular algorithm for XML producer or consumer implementations.

6.4, “Additional Examples,” on page 60 contains additional examples beyond those in the EBNF.

6.3 EBNF Rules Representation
The XML produced by XMI is represented here in Extended Backus Naur Form (EBNF). The XML specification does not
require XML processors to preserve the order of XML attributes within an XML element. Therefore, although this
grammar indicates that XML attributes should be serialized in a particular order for each XML element, the XML
attributes may be serialized in any order. Also, XML attributes are normalized by XML processors, so whitespace may
not be preserved. You may choose to serialize parts of objects as XML elements rather than XML attributes using the
org.omg.xmi.element tag, as explained below.

The following sub clauses provide the production rules.
© ISO/IEC 2005 - All rights reserved 49

ISO/IEC 19503:2005(E)
6.3.1 Overall Document Structure

1:Document ::= 1a:XMI | 2:ContentElements

1a:XMI ::= "<" 1b:XMINamespace "XMI" 1c:StartAttribs ">"

 (2:ContentElements)?

 (5j:Extension)*

 "</" 1b:XMINamespace "XMI>"

1b:XMINamespace ::= (//NsName// ":") ?

1c:StartAttribs ::= 1d:XMIVersion 1e:Namespaces

1d:XMIVersion ::= 1b:XMINamespace "version=’" //XMIVersion// "’"

1e:Namespaces ::= 1f:XMINamespaceDecl ?

 ("xmlns:" 1h:NsName "=’" 1i:NsURI "’")*

1f:XMINamespaceDecl ::= "xmlns=’http://www.omg.org/XMI’" |

 "xmlns:" //NsName// "=’http://www.omg.org/XMI’"

1g:Namespace ::= (1h:NsName> ":")?

1h:NsName ::= //Name of namespace//

1i:NsURI ::= //URI of namespace//

1. The content of an XMI document may be enclosed in an XMI XML element, but it does not need to be. The
XML specification requires that there be one root element in an XML document for the document to be well-
formed.

1a. An XMI element has XML attributes that declare namespaces and specify the version of XMI, and the XMI
element contains XML elements that make up the header, content, differences, and extensions for the XMI
document.

1b. This rule represents the use of the XMI namespace name, XMINsName, in an XMI document. If NsName is
"", this rule produces ""; otherwise, this rule produces NsName followed by ":". For example, if the XMI
namespace name is "xmi", then the XML element specified in the XMI production rule has a tag name of
"xmi:XMI." If the XMI namespace name is "", then the XML element specified in the XMI production rule has
a tag name of "XMI."

1c. The start attributes include the version attribute and the declaration of namespaces used in the document.

1d. The version must be “2.0” for XMI documents that conform to this specification.

1e. The XMI namespace and the namespaces associated with a model must be declared or already be visible to the
XMI element in the XML document. Since there is no requirement that the XMI XML element be the root
element, these namespaces may be declared in XML elements that contain the XMI element.
50 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
6.3.2 Overall Content Structure

__

2:ContentElements ::= (3:ObjectAsElement)*

 (6:ClassAttributes)*

 (7:OtherLinks)*

__

1g. The use of a namespace name, including a “:” separator. If the namespace name is blank, the result is the
empty string.

1h. A particular namespace name. Document producers can choose their own namespace names, as long as doing
so results in legal XML documents, or they may choose to use the value of the org.omg.xmi.nsPrefix tag.

1i. The logical URI of the namespace. Note that namespaces are resolved to logical URIs, as opposed to physical
ones, so that there is no expectation that this URI will be resolved and that there will be any information at that
location. The URI is obtained from the org.omg.xmi.nsURI tag.

2. The contents are the XML representations of top level objects, classifier level attributes, and other links. The
top level objects will include those that have a composite link with no reference from the composite to
component.
© ISO/IEC 2005 - All rights reserved 51

ISO/IEC 19503:2005(E)
6.3.3 Object Structure

3:ObjectAsElement ::= "<" 3a:ObjectTagName 3c:ObjectAttribs ("/>")?

 5:ObjectContents

 3b:ObjectEndTag

3a:ObjectTagName ::= 1g:Namespace // XMI name//

3b:ObjectEndTag ::= ("</" 3a:ObjectTagName ">")?

3c:ObjectAttribs ::= (1c:StartAttribs)?

 3d:IdentityAttribs

 (3f:TypeAttrib)?

 3g:FeatureAttribs

3d:IdentityAttribs ::= (3e:IdAttribName "=’" // id // "’")?

 (1b:XMINamespace "label=’" //label// "’")?

 (1b:XMINamespace "uuid=’" //uuid// "’")?

3e:IdAttribName ::= 1b:XMINamespace "id" | // id attrib name //

3f:TypeAttrib ::= (1b:XMINamespace | 1g:Namespace)

 "type=’" 3a:ObjectTagName "’"

3g:FeatureAttribs ::= (3h:DataValueAttrib

 | 3i:EnumValueAttrib

 | 3j:RefValueAttrib)*

3h:DataValueAttrib ::= 3l:AttribName "=’" //value// "’"

3i:EnumValueAttrib ::= 3l:AttribName "=’" //enumeration literal// "’"

3j:RefValueAttrib ::= 3l:AttribName "=’" 3k:RefValues "’"

3k:RefValues ::= (//reference id// " ")*

3l:AttribName ::= // XMI name of attribute //

3. An object has a starting element, contents, and a closing element. If the contents are empty, you may end the
starting element with “/>.” You use this production rule to serialize top-level objects and to serialize objects that
are the values of attributes and references. You may also use this production rule to serialize structured types. To
serialize structured types, use the name of the structure rather than the class name, and use the attribute
production rules to serialize the fields of the structure and their values.

 <department xmi:id="Department_1"/>

Example 6.1 - Instance of a class with empty contents
52 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
3a. If the object is a top-level object, the tag name is the namespace name followed by “:” and the XMI name for
the object. The XMI name for the object is either the name of the object’s class or the value of the
org.omg.xmi.xmiName tag. If the object is the value of an attribute or reference, the XMI name is the name of
the attribute or reference, or the value of the org.omg.xmi.xmiName tag. The namespace name is ignored for an
object that is the value of an attribute or reference.

 <complexco:department xmi:id="Department_1"/>

Example 6.2 - Instance of a class, namespace name is its package name

3b. The end tag name is the same as the start tag name, preceded with a “/.” An end tag need not be written if there
is no content for the object.

3c. The XML attributes for an object are the optional start attributes, identity attributes, and attributes
corresponding to an object’s features (its attributes and references). The start attributes must be written if the
object is a top-level object and it is not inside an XMI element specified by production rule 1a:XMI.

 <Company xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
 xmi:id=Company_1" name="Acme">

</Company>

Example 6.3 - Company is the top-level object in a document with no XMI element

3d. The identity attributes consist of an optional id, label, and uuid. If the element has a MOF uuid, it may be used
here.

3e. By default, the name of the identity attribute is “id” in the XMI namespace. However, if an
org.omg.xmi.idName tag has been specified, the name of the identity attribute is the value of that tag.

3f. If the class of the object cannot be determined unambiguously from the model, you must specify the class name
using the “type” attribute in either the XMI namespace or the schema instance namespace whose URI is “http:/
/www.w3.org/2001/XMLSchema-instance”. The value of this attribute is defined by the XML Schema Part 1:
Structures specification to be a QName, consisting of a namespaces name for the value’s class (if there is one
and it is not the default namespace for the document), a “:”, and the name of the value’s class. Refer to the
schema specification for more details. You may only use the XML schema instance type attribute if
org.omg.xmi.useSchemaExtensions is true. 6.4.3, “Derived Types and References,” on page 62 provides an
example of the use of the “type” attribute.
© ISO/IEC 2005 - All rights reserved 53

ISO/IEC 19503:2005(E)
3g. The XML attributes of the element correspond to attributes whose type is a data value or enumeration, or
references whose values are objects in the document. You may not serialize an attribute or reference as both an
XML element and an XML attribute in the same object. You must not serialize an attribute or reference as an
XML attribute if the value of the org.omg.xmi.element tag is “true.” You must not serialize an attribute or
reference at all if the value of the org.omg.xmi.serialize tag is “false.” You must not serialize a reference at all
if the org.omg.xmi.remoteOnly tag is true and the reference has a value that is an object in the same XML
document. You may serialize classifier-level attributes with an object.

3h. Use this production rule to serialize an attribute whose type is not an object and whose value can be
represented by a string. Multi-valued attributes cannot be serialized as XML attributes. If the attribute’s type is
one of the types defined by the XML Schema Part 2: Datatypes specification, serialize the value as specified in
that specification.

<Department xmi:id="Department_1" number="13"/>

Example 6.4 -. Instance of a class with a single valued attribute

3i. Use this production rule to serialize an attribute whose type is an enumeration and whose value is one of the
legal enumeration literals. If the org.omg.xmi.xmiName is specified for the literal, the value of that tag should
be used; otherwise, the name of the enumeration literal specified in the model is used.

<Stoplight xmi:id="Stoplight_6" id="SL06" state="red" />

Example 6.5 - Instance of a class with an enumerated attribute

3j.
3k.

Use this production rule to serialize references whose values are objects that are serialized in the same
document. The value of the XML attribute contains the XMI ID of each referenced object, separated by a
space.

 Stoplight

id : String
state : StopGo

<<enumeration>>
StopGo

green
red
54 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
6.3.4 References

__

4:ReferenceElement ::= "<" 3a:ObjectTagName

 (1c:StartAttribs)?

 3d:IdentityAttribs

 (3f:TypeAttrib)?

 4a:LinkAttribs

 "/>"

4a:LinkAttribs ::= 1b:XMINamespace "idref=’" //reference id// "’"

 | 4b:Link

4b:Link ::= "href='" //URI reference// "'"

__

<Class1 xmi:id="Class1_1" LinktoTargetClass="TargetClass_1 TargetClass_2"/>
<TargetClass xmi:id="TargetClass_1" id="TC1 instance"/>
<TargetClass xmi:id="TargetClass_2" id="TC2 instance"/>

Example 6.6 - Association from an instance of a class to instances of another class

3l. The name of the XML attribute is the name of the model attribute or reference, or the value of the
org.omg.xmi.xmiName tag for the attribute or reference.

Class1 +LinktoTargetClass

o ..*

TargetClass

id : String
© ISO/IEC 2005 - All rights reserved 55

ISO/IEC 19503:2005(E)

4. Use this production rule to serialize a reference to an object using an XML element. If you use identity
attributes, the values of the identity attributes must match the values of the identity attributes for the object that
is referenced.

4a. Use the idref attribute to specify the id of an XML element that is referenced in the document; use the href
attribute to specify an XML element in another document. If the org.omg.xmi.href tag is “true,” you must not
use the idref attribute; use the href attribute for references within the document and across documents.

4b. An XMI link. The value of the href attribute is a URI reference that refers to an XML element in another
document or in the same document. For example, if the href is “file:someFile.xmi#someId,” the href refers to
an XML element in the “someFile.xmi” document whose XMI ID is “someId.” If the href is “#anotherId,” the
href attribute refers to an XML element whose XMI ID is “anotherId” in the same document. XLinks are also
supported in XMI. See 4.10.2, “Linking,” on page 20 for more information. See the W3C XLink and XPointer
specification for production rules.

Document CompanyKey_1.xml contains a link to external document CompanyKey_2.xml for the
employeeOfTheMonth association:
 <Company xmi:id="Company_1" name="Acme">
 <employeeOfTheMonth href="CompanyKey_2.xml#Employee_1" />
 </Company>

Document CompanyKey_2.xml contains the target of the link, and link back to original document:
 <Employee xmi:id="Employee_1" name="Fatale, Natasha">
 <company href="CompanyKey_1.xml#Company_1" />

Example 6.4 - Linking across documents

Company

Department
number : Integer

+department
0..*

1 0..1

+company

Employee
manager : Boolean

+department +employee

-employeeOfTheMonth

0..1 0..*

0..1
56 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
6.3.5 Object Contents

5:ObjectContents ::= (5a:AttributeAsElmt

 | 5h:ReferenceAsElmt>

 | 5i:CompositeAsElmt)*

 (5j:Extension)*

5a.AttributeAsElmt ::= (5b:AttribValueAsElement) *

 | 5f:NullValue

5b:AttribValueAsElmt ::= 3:ObjectAsElement

 | 4:ReferenceElement

 | 5c:DataValue

 | 5d:EnumLiteral

5c:DataValue ::= "<" 5e:AttribTagName ">"

 //value//

 "</" 5e:AttribTagName ">"

5d:EnumLiteral ::= "<" 5e:AttribTagName ">"

 //enumeration literal//

 "</" 5e:AttribTagName ">"

5e:AttribTagName ::= // XMI name for attribute//

5f:NullValue ::= "<" 5e:AttribTagName 5g:NullAttrib "/>"

5g:NullAttrib ::= 1g:Namespace "nil=’true’"

5h:ReferenceAsElmt ::= 4:ReferenceElement

5i:CompositeAsElmt ::= 3:ObjectAsElement

5j:Extension ::= "<" 1b:XMINamespace "extension"

 (" extender=’" // extender // "’")?

 (" extenderID=’" // extenderID // "’")?

 ">"

 // Extension elements //

 "</" 1b:XMINamespace "extension>"

__

5. The contents of an object are the attributes, references, and compositions that are serialized as XML elements,
as well as the extensions. Note that ‘contents’ (component objects that are reached via composite links) without
a composite reference are not subject to this production rule and so not written as nested elements: instead they
are written as top-level elements. Any particular reference or single-valued attribute may be expressed as an
XML element or XML attribute, but not both. You can specify whether an attribute or reference is serialized as
an XML element or an XML attribute by using the org.omg.xmi.element tag. If the value of the
org.omg.xmi.superClassFirst tag is “true,” you must serialize inherited attributes, references, and compositions
first, beginning at the top of the class hierarchy.
© ISO/IEC 2005 - All rights reserved 57

ISO/IEC 19503:2005(E)

5a. Each value of an attribute is represented by an XML element; for multi-valued attributes, there is one XML
element for each value. Null values may be serialized as well, unless the value of the org.omg.xmi.includeNils
tag is “false,” in which case you may not serialize null values.

5b.
5c.

If the attribute value is an object, it is serialized using the 3:ObjectAsElement production rule unless the object
is in another document, in which case the 4:ReferenceElement production rule is used.

<Company xmi:id="Company_1" name="Acme">
 <HQAddress xmi:id="Address_1" Street="Side Street"
</Company>City="Hometown"/>

Example 6.4 - Value of attribute HQAddress is an object

Use this production rule to save values of attributes that are neither objects nor enumeration literals. If the type
of the attribute is one of the types defined by the XML Schema Part 2: Datatypes specification, the value must
be serialized according to that specification.

<PtyClass2 xmi:id="PtyClass2_1">
 <T1V0C1>1001</T1V0C1>
 <T1V0C1>2001</T1V0C1>
</PtyClass2>

Example 6.5 - Multi-valued attribute, with each value serialized as an element

Company
HQAddress : Address

Address

Street : String
City : String

PtyClass2
<<*>> T1VOC1 : Integer
58 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
6.3.6 Packages

6:Package ::= "<" 6a:PackageTagName 3c:ObjectAttribs ">"

 (7:ClassAttributes | 8:OtherLinks)*

 "</" 6a:PackageTagName ">"

6a:PackageTagName ::= 1g:Namespace //XMI name//

__

6.3.7 Attributes

7:ClassAttributes ::= (5a:AttributeAsElmt)*

5d. The enumeration literal is either the name of the literal from the model or the value of the
org.omg.xmi.xmiName tag.

5e. The XMI name for the attribute is either the name of the attribute from the model or the value of the
org.omg.xmi.xmiName tag.

5g. The null attribute has the name “nil” in a namespace whose URI is “http://www.w3.org/2001/XMLSchema-
instance.”

5i. Use this production to serialize composite relationships as elements.

<Department xmi:id="Department_1" number="13">
 <employee xmi:id="Employee_2" name ="Glozic, Dejan" />
 <employee xmi:id="Employee_3" name ="Andrews, Gilbert" />
 <employee xmi:id="Employee_4" name ="Beisiegel, Gloria" />
</Department>

Example 6.6 - Aggregation serialized as elements

5j. Each extension element has an optional extender and extenderID attribute; its content can be anything.

6. This element is only serialized if there are classifier-level attributes that have not been serialized in objects, or
other links that have not been serialized with objects, either.

Department

number : Integer

Person

name : String
 0..1 0..*

+department +employee
© ISO/IEC 2005 - All rights reserved 59

ISO/IEC 19503:2005(E)
6.3.8 Other Types of Links

8:OtherLinks ::= "<" 8a:AssocTagName 3c:ObjectAttribs ">"

 (8b:AssociationEndRef 8b:AssociationEndRef)*

 "</" 8a:AssocTagName ">"

8a:AssocTagName ::= //XMI name for the association//

8b:AssociationEndRef ::= 4:ReferenceElement

6.4 Additional Examples

6.4.1 Inheritance

Attributes and associations are inherited from parent classes. For example, in the model below, CollegeStudent inherits
directly from Student and Citizen, and indirectly from Person.

7. All classifier-level attributes are expressed using the XML element form, unless they have already been
serialized in objects.

8. All associations that have no references are placed here. Each associationEnd’s links are contained as pairs of
nested XML elements.

8a. The tag name of the association is the name of the association specified in the model or the value of the
org.omg.xmi.xmiName tag.

8b. A reference to the linked element from the AssociationEnd; the tag name of the referenced element should be
the XMI name for the association end, which is either the name of the association end specified in the model
or the value of the org.omg.xmi.xmiName tag.
60 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
6.4.2 Nested Packages

The following model shows the Education package, which contains another package called Students, where the Students
package has an org.omg.xmi.nsPrefix tag set to “Students:”

An instance of CollegeStudent can include attributes inherited from each of these parent classes:

<CollegeStudent xmi:id="CollegeStudent_1"
 PersonName="Andrew Pham" GPA="4.95" SSN="1234567890" />

<<Abstract>>
Person

PersonName : String
Address : String

Student
Status : String
Parents : String
GPA : String

CollegeStudent

Scholarships : String
LoanAmount : Currency

Citizen

SSN : Integer
Passport : Integer
RegisterVoter : Boolean
State : String

<<Abstract>>
Person

PersonName : String
Address : String

Student

Status : String
Parents : String
GPA : Single

Students
© ISO/IEC 2005 - All rights reserved 61

ISO/IEC 19503:2005(E)
The Students package contains class CollegeStudent:

The package nesting can be expressed in the qualifier for the CollegeStudent element:

6.4.3 Derived Types and References

In the following example, class Company has attribute HQAddress whose type is another class, the Address class:

Address has a subclass, USAddress. An instance of Company can use xsi:type to indicate that its HQAddress is actually
of type USAddress and includes a zipcode:

Similarly, if a model contains a reference to a class that has a subclass, xmi:type can be used in an instance to indicate
that the reference is actually to the subclass.

Student
(from Education)

Status : String
Parents : String
GPA : Single

CollegeStudent

Scholarships : String
LoanAmount : Currency

<Students:CollegeStudent xmi:id="CollegeStudent_1"
 PersonName="Andrew Pham" GPA="4.95" SSN="1234567890" />

Company

HQAddress : Address

Address

Street : String
City : String

USAddress

zipcode : Decimal

<Company xmi:id="Company_1" name="Acme">
 <HQAddress xmi:type="USAddress" xmi:id="Address_1"
 Street="Side Street" City="Hometown" zipcode="90210"
62 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
6.5 Document Production Rules for Non-Primitive Data
MOF 1.4 added a set of non-primitive data types. The document production rules for these data types are defined using
the existing production rules in 6.3, “EBNF Rules Representation,” on page 49. They are described in the following sub
clauses.

6.5.1 Structure Type

The document production rules for a structure type with structure fields are the same as for a class with attributes. The
production rules for classes are defined starting with 3:ObjectAsElement. For structure types, use the structure type's
name instead of class name, and the structure field names instead of attribute names.

Example: ST is a structure type with structure fields sf1 (type String) and sf2 (type A). A is a class with attributes a1
(type String) and a2 (type String). An instance of ST is serialized as:

<ST xmi:id="ST_1" sf1="xxxx">
 <sf2 xmi:id="sf2_1" xmi:type="A" a1="yyyy" a2="zzzz"/>
</ST>

6.5.2 Enumeration Type

The document production rules for enumeration types are defined by rules 3i:EnumValueAttrib and 5d:EnumLiteral.

6.5.3 Alias Type

The document production rules for an alias type are the same as for its base type, but using the alias type’s name instead
of the base type’s name.

6.5.4 Collection Type

The document production rules for a collection type are the same as for a class that has one attribute with the same type
and multiplicity as the collection type. The production rules for classes are defined starting with 3:ObjectAsElement. For
collection types, use the collection type name instead of class name. Use the collection type’s type name instead of
attribute name.

Example: CT is a collection type. CT’s type is A, and it has multiplicity 0..*. A is a class with attributes a1 (type String)
and a2 (type String). An instance of CT of size 3 is serialized as:

<CT xmi:id="CT_1">
 <A xmi:id="A_1" a1="string" a2="another string"/>
 <A xmi:id="A_2" a1="stuff" a2="more stuff"/>
 <A xmi:id="A_3" a1="xxxx" a2="yyyy"/>
</CT>
© ISO/IEC 2005 - All rights reserved 63

ISO/IEC 19503:2005(E)
64 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
7 Production of MOF from XML

7.1 Introduction
XML is increasingly becoming an information source, supplementing existing sources such as analysis (UML), software
(Java, C++), components (EJB, IDL, Corba Component Model), and databases (CWM). Although XML does not define
objects, it can be used as an input source of true object definitions by supplementing the XML with additional information
or conventions.

This Clause describes the following algorithms for producing object definitions in MOF from XML input sources:

• DTD to MOF production

• XML to MOF production

• XML Schema to MOF production

This sub clause describes mappings to produce MOF declarations from XML documents, DTDs, and XML schemas. The
mappings are not unique since XML-only forms of information are not rich enough to produce an unambiguous MOF
representation.

These mechanisms are not necessary for reading XMI documents, since XMI is rich enough to interchange complete
MOF information without loss or ambiguity.

The approach in these productions has been to provide reverse mappings for only the most common declarations used in
XML. The productions are in two parts: rules and parameterized mappings. Each of the three XML information sources
has its own rule to extract the corresponding class and attribute declarations they represent. The parameterized mappings
are MOF rules to produce the simplest MOF classes and attributes with specific parameters that may be customized by an
implementation that has additional domain knowledge beyond the production inputs.

7.2 DTD to MOF
When a DTD is used to create a MOF metamodel, the DTD is read declaration by declaration, and MOF definitions are
added accordingly. For each type of declaration, one of the following MOF definitions is added by following the
particular rule. The mapping may be customized by setting the parameters in the second table.

As an example, this DTD would by default produce these MOF declarations:

DTD:
<!ELEMENT Car (Engine, Door*)>
<!ATTLIST Car make CDATA #IMPLIED model CDATA #IMPLIED>
<!ELEMENT Engine (#PCDATA)>
<!ELEMENT Door EMPTY>
<!ATTLIST Door side CDATA #REQUIRED>

MOF:
Class Car {
 Attribute make : String;
 Attribute model : String;
 Association engine : Engine 1..* containment one-way;
 Association door : Door 1..* containment one-way;
}

© ISO/IEC 2005 - All rights reserved 65

ISO/IEC 19503:2005(E)
Class Engine {
 Attribute value : String 0..1;
}

Class Door {
 Attribute side : String 0..1;
}

7.3 XML to MOF
When an XML document has no additional type information, it is possible to generalize to produce a minimal MOF
representation. The mapping uses the same optional parameters as the DTD to MOF mapping.

The processing of the generalization follows these steps:

1. Parse the XML document into a DOM tree.

2. Select an existing MOF metamodel or create an empty MOF metamodel.

3. Perform a depth-first traversal of the XML document’s DOM tree. At each node, apply the appropriate generalization
operation from the table, based on the type of parent and child nodes encountered.

Rule DTD Declaration MOF Definition

1 <!ELEMENT E> Class E with Supertype (E).

2 <!ATTLIST E A Type Occurs> Attribute named A of Class E with type AttributeType(E, A, Type) and
multiplicity AttributeMult(E, A, Occurs).

3 <!ELEMENT E (F)> TypedElement(E,F) Attribute or Association to Class F and name
RoleName(E, F).

4 <!ELEMENT E (#PCDATA)> Attribute named TextName(E) of type AttributeType(E, TextName(E)).

5 <!ELEMENT E ANY> TypedElement(E, “ANY”) Attribute or Association to Supertype(“Any”)
and name RoleName(E, “ANY”).

Parameters Defaults

Supertype(Element name) Node

AttributeType (Element name, Attribute name, Type name)

AttributeNult (Element name, Attribute name, Occurs style)
TypedElement (Element name, TypedElementname)

String for Type CDATA
Lookup MOF type for IDREF
0..1
Association: containment by value, multiplicity 0..*,
one way navigable, Attribute: multiplicity 0..*

RoleName (Element name, TypedElement name) LowerCase TypedElement name

TextName(Element name) “value”
66 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
This is an example result from mapping from an XML document to MOF:

XML:
<Car make="Ford" model="Mustang">
 <Engine>240 HP</Engine>
 <Door side="left"/>
 <Door side="right"/>
</Car>

MOF:
Class Car {
 Attribute make : String;
 Attribute model : String;
 Association engine : Engine 1..* containment one-way;
 Association door : Door 1..* containment one-way;
}

Class Engine {
 Attribute value : String 0..1;
}

Class Door {
 Attribute side : String 0..1;
}

7.4 XML Schema to MOF
The following subset of the example of XML Schema, representing a portion of the purchase order example of the XML
Schema specification, part 0, mapped to MOF using the reverse engineering table below.

The processing follows these steps:

1. The XML Schema is parsed.

2. Schema declarations corresponding to one of the three rules are processed while traversing the XML Schema depth-
first.

Rule DOM Parent Node DOM Child Node MOF Definition

1 Element E None Class E with Supertype(E)

2 Element E Attribute A Attribute named A of Class E with type
AttributeType(E,A, “CDATA”) and
multiplicity AttribiteMult(E,A, “#IMPLIED”)

4 Element E Element F TypedElement(E,F) Attribute or Association to Class F and name
RoleName(E,F)

5 Element E Text,
CharacterData, or
CDATASection

Attribute named TextName(E) of type
AttributeType(E, TextName(E))
© ISO/IEC 2005 - All rights reserved 67

ISO/IEC 19503:2005(E)
XML Schema:
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="purchaseOrder" type="PurchaseOrderType"/>

 <xsd:element name="comment" type="xsd:string"/>

 <xsd:complexType name="PurchaseOrderType">
 <xsd:sequence>
 <xsd:element name="shipTo" type="USAddress"/>
 <xsd:element name="billTo" type="USAddress"/>
 <xsd:element ref="comment" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="orderDate" type="xsd:date"/>
 </xsd:complexType>

 <xsd:complexType name="USAddress">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zip" type="xsd:decimal"/>
 </xsd:sequence>
 <xsd:attribute name="country" type="xsd:NMTOKEN"
 fixed="US"/>
 </xsd:complexType>

</xsd:schema>

MOF:
<Class name="PuchaseOrder">

<attribute name="shipTo" type="USAddress"/>
<attribute name="billTo" type="USAddress"/>
<attribute name="comment" type="mof:String" multiplicty="0..1"/>
<attribute name="orderDate" type="mof:String"/>

</Class>
<Class name="USAddress>

<attribute name="name" type="mof:String"/>
<attribute name="street" type="mof:String"/>
<attribute name="city" type="mof:String"/>
<attribute name="state" type="mof:String"/>
<attribute name="zip" type="mof:Integer"/>
<attribute name="country" type="mof:String"/>

</Class>
68 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
Data types map to “mof:String” unless defined in the user model, except “xsd:decimal” and its restrictions map to
“mof:Integer” and “xsd:boolean” maps to “mof:boolean.”

Rule XML Schema MOF Definition

1 Element(E), ComplexType(E), SimpleType(E) with base (S) Class E with Supertype(S)

2 Sequence(L), List(L), Choice(L) containing Rule 1 (E2) and
minOccurs(min), MaxOccurs(max)

Attribute E2 of AttributeType (E, L, E2) with
multiplicity min..max

3 Attribute(A) Type(T) Attribute A with AttributeType(E, A, T)
© ISO/IEC 2005 - All rights reserved 69

ISO/IEC 19503:2005(E)
70 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
8 XML Schema Model

8.1 Introduction
This sub clause describes the MOF model for XML Schema declarations using UML notation. The model is a
straightforward mapping from the XML Schema specification, where classes in the model have a direct correspondence to
a definition in XML Schema. This definition assumes a strong working knowledge of XML Schema and refers throughout
to the XML Schema specification for the detailed description of constructs that are defined by XML Schema.

8.2 XML Schema Structures
This model corresponds to the structures defined in the XML Schema Part 1, Structures.
© ISO/IEC 2005 - All rights reserved 71

ISO/IEC 19503:2005(E)
Figure 8.1 - XML Schema top level declarations

The top level XML Schema declarations consist of the description of the schema itself (namespace prefix, target
namespace, etc.) and the declarations within the schema. These declarations include global scope Attributes, global scope
Elements, attribute groups, type declarations (extending from XSDGroup), and imports from other schemas.

XSDObject

 XSDSchema

namespacePrefix : String
largeNamespace : String
version : String
finalDefault : String
blockDefault : String
elementFormDefault : String
attributeFormDefault : String
language : String

XSDType XSDTopLevelAttribute XSDAttributeGroup XSDGroup

XSDSchemaContent+ content

0 . . *
{ordered}

XSDTopLevelElement

XSDInclude
schemaLocation : String

XSDImport

namespace : String
namespacePrefix : String
schemaLocation : String

1 1

+includedFromAnotherSchema

+importedFromAnotherSchema
72 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
Figure 8.2 - XML Schema Attribute Declarations

An XML attribute has a name inherited from XSDNamedElement, and a simple type that is either defined within its scope
or referred to externally. The attribute may be annotated.

The attribute may be defined within an attribute group for reuse later. Attribute groups may refer to other attribute groups.

A top level attribute may be referred to by other attribute uses.

XSDObject

XSDAnnotatedElement
XSDAnyAttribute

namespace : String
processContents : String

XSDAttributeGroup

+anyAttribute
0 ..1

1 +attrGrpReferences

+refAttributeGroup 0. .*

XSDAttribute

usage : String
form : String
default : String
fixed : String

XSDSimpleBase

0. .* +attribute

+refAttribute +referencedType

0 ..10. .*

+attribute

0 ..1 +type

XSDAttributeRefXSDTopLevelAttribute +referencedAttribute +attributeReferences

1..1 0..*

Type association = Anonymous/unnamed type
ReferencedType association = Type defined globally

XSDAttributeGroupRef
© ISO/IEC 2005 - All rights reserved 73

ISO/IEC 19503:2005(E)
Figure 8.3 - XML Schema Element declaration

An Element declaration includes a name from XSDNamedElement, an annotation from XSDAnnotatedElement, and may
be used as content for a schema or a group.

The element may define new types in its own declaration or refer to types declared elsewhere.

A top level element declaration may be referred to by element references.

XSDObject XSDNamedElement

XSDOccurs

XSDElement

abstract : Boolean
nillable : Boolean
final : String
block : String
default : String
fixed : String
form : String

XSDSchemaContent

XSDGroupContent

XSDType

XSDElementRef

+elementContent

0..*

+content

+type
 0..1

0..1

+referencedType

1..1 +referencedElement

0..* +elementReferences

XSDAnnotatedElement

XSDTopLevelElement
74 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
Figure 8.4 - XML Schema Complex type declaration

A complex type is both a type and an annotated element. The complex type has complexTypeContent that may be a group
of types and declared simple or complex types. The type may have attributes, or refer to attributes or attribute groups.

Complex type contents may be derived by extension or restriction, and may be simple or complex.

XSDType+baseType

0..1

XSDAnnotatedElement XSDObject

XSDComplexType XSDComplexTypeContent

XSDGroupContent XSDAttribute XSDAttributeGroupRef

XSDAttributeRef

XSDAnyAttribute

XSDSimpleComplex

derivedByExtension : String

XSDSimpleContent XSDComplexContent

0..*

+complexTypeContent

+content

0..*
{ordered}

0..1 +anyAttribute

+anyAttribute

0..1

+complexTypeChildren
0..*
© ISO/IEC 2005 - All rights reserved 75

ISO/IEC 19503:2005(E)
Figure 8.5 - XML Schema Simple type content declarations

The content of a simple type is described in terms of facets. These facets include white space, digit representation, length,
ranges, patterns, enumerations, unions, and lists.

XSDSimpleTypeContentXSDSimpleType

XSDObject

XSDMaxInclusive

XSDTotalDigits

XSDWhiteSpace

XSDFractionDigits

XSDLength

XSDMinLength

XSDMaxLength

XSDMinInclusive

XSDMaxExclusive

XSDMinExclusive

XSDPattern

value : StringXSDEnumeration

value : String
XSDSimpleRestrict

XSDSimpleList XSDSimpleUnion

+stContent

+content 0..1

0..* +enum
0..* +pattern

1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..10..1

0..1
76 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
Figure 8.6 - XML Schema Facets

There are many types of facets used in simple type content declarations. They share a common root, XSDFacet, an
abstract class that declares the value of the facet, and if the facet is fixed.

XSDObject

 XSDFacet

value : String
fixed : Boolean

XSDLength XSDMinLength XSDMaxLength XSDEnumeration XSDWhiteSpace

XSDMinInclusive XSDMaxInclusive XSDMinExclusive XSDMaxExclusive

XSDPattern XSDFractionDigits XSDTotalDigits
© ISO/IEC 2005 - All rights reserved 77

ISO/IEC 19503:2005(E)
Figure 8.7 - XML Schema Type declaration

An XML Schema Type may be declared in a schema or within an element. The type may be a simple or complex type.
Simple types may be one of the built-in, predefined types from XML Schema part 2, data types, or they may be a user-
defined simple type.

 An element has a type. A type can be referenced by many elements.
Type association = Anonymous/unnamed type
ReferencedType association = Type defined globally

+elementContent

XSDElement

0..*

XSDType
+content

+type

0..1

0..1 +referencedType

XSDComplexType

abstract : Boolean
final : String
block : String
mixed : Boolean

XSDSimpleBase

XSDBuiltInType

kind: XSDBuiltInTypeKind

XSDSimpleType XSDSimpleTypeContent

0..1 +content

+stContent

1

+simpleTypeChildren
0..*

1..*
{ordered}

+baseType
78 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
Figure 8.8 - XML Schema annotated elements

Many XML Schema declarations may contain annotations. These elements are attributes, attribute groups, elements,
simple and complex types, facets, and schemas. An annotation may include documentation or application information.

XSDObject

XSDAnnotatedElement XSDAnnotation
value : String
source : String

XSDAttribute XSDAttributeGroup XSDComplexType XSDDocumentation
language : String

XSDAppInfo

XSDFacet XSDElement XSDSimpleType XSDSchema

0 . . *

+annotate
© ISO/IEC 2005 - All rights reserved 79

ISO/IEC 19503:2005(E)
Figure 8.9 - XML Schema group declarations

A group may contain other groups, references to other groups or elements, or contain declarations of additional groups
and elements in terms of choice, sequence, or all. Groups with Any content may also be declared.

XSDGroupContent

XSDGroup XSDGroupRef XSDGroupScope

groupKind : XSDGroupKind

XSDElementRef

XSDAny

namespace : String
processContents : String

1 . . *

+scopeContent

1 0 ..*

+groupReferences

+referencedGroup

+groupContent
1

80 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
Figure 8.10 - XML Schema key declaration

A key declaration is made based on the uniqueness of the content of an element. The elements contents are measured
based on selections on its attributes. Keys may refer to other keys.

XSDObject

XSDElement XSDUniqueContent XSDSelector

value : String

XSDField
value : String

XSDUnique XSDKey XSDKeyRef

+unique

0..*

+selector

1

+field

1..*

+keyReferences

0..*

1+referencedKey
© ISO/IEC 2005 - All rights reserved 81

ISO/IEC 19503:2005(E)
Figure 8.11 - XML Schema name declarations

Attributes, attribute groups, elements, simple and complex types, groups, unique content, and schemas are named.

Figure 8.12 - XML Schema occurrence particles

The occurrence particle in declarations of elements, element references, anys, groups, and group references is factored
into the Occurs abstract class.

XSDNamedElement

name : String

XSDAttribute XSDAttributeGroup XSDElement XSDGroup

XSDSchema XSDSimpleType XSDUniqueContent

XSDComplexType

XSDOccurs
minOccurs : String
maxOccurs : String

XSDAny

namespace : String
processContents : String

XSDElement

abstract : Boolean
nillable : Boolean
final : String
block : String
default : String
fixed : String
form : String

XSDElementRef XSDGroupRef

XSDGroupScope

groupKind : XSDGroupKind
82 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
8.12.1 XSDSchema

XSDSchema is an XML Schema Declaration.

Extends: XSDObject, XSDNamedElement, XSDAnnotatedElement

Attributes:
namespacePrefix : String
targetNamespace : String
version : String
finalDefault : String
blockDefault : String
elementFormDefault : String
attributeFormDefault : String
language : String

8.12.2 XSDAttribute

An XML Schema attribute declaration.

Extends: XSDComplexTypeContent, XSDNamedElement, XSDAnnotatedElement

Attributes:
usage : String
form : String
default : String
fixed : String

8.12.3 XSDElementRef

A reference to an XML Schema element declaration.

Extends: XSDGroupContent, XSDOccurs

8.12.4 XSDAttributeGroup

An XML Schema attribute group declaration.

Extends: XSDSchemaContent, XSDNamedElement, XSDAnnotatedElement

8.12.5 XSDAttributeGroupRef

A reference to an attribute group.

Extends: XSDComplexTypeContent

8.12.6 XSDType

An XML Schema abstract type.

Extends: XSDSchemaContent
© ISO/IEC 2005 - All rights reserved 83

ISO/IEC 19503:2005(E)
8.12.7 XSDBuiltInType

An XML Schema predefined datatype.

Extends: XSDSimpleBase

8.12.8 XSDComplexType

A ComplexType can derive from another Complex Type or another Simple Type. Complex types may have substantial
structure.

Extends: XSDType, XSDNamedElement, XSDAnnotatedElement

Attributes:
abstract : Boolean
final : String
block : String
mixed : Boolean

8.12.9 XSDComplexTypeContent

The content of an XML Schema.

Extends: XSDObject

8.12.10 XSDSchemaContent

The content of an XML Schema.

Extends: XSDObject

8.12.11 XSDElement

An XML Schema element declaration.

Extends: XSDObject, XSDNamedElement, XSDOccurs, XSDAnnotatedElement, XSDGroupContent,
XSDSchemaContent.

Attributes:
abstract : Boolean
nullable : Boolean
final : String
block : String
default : String
fixed : String
form : String
84 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
8.12.12 XSDSimpleBase

An abstract base class for XML Schema simple types.

Extends: XSDType

8.12.13 XSDPattern

A pattern constraint on a datatype.

Extends: XSDFacet

Attributes:
value : String

8.12.14 XSDEnumeration

An enumeration constraint on a datatype.

Extends: XSDFacet

Attributes:
value : String

8.12.15 XSDInclude

An XML Schema include declaration.

Extends: XSDSchemaContent

Attributes:
schemaLocation : String

8.12.16 XSDImport

An XML Schema import declaration.

Extends: XSDSchemaContent

Attributes:
namespace : String
namespacePrefix : String
schemaLocation : String

8.12.17 XSDGroup

An XML Schema group declaration.

Extends: XSDSchemaContent, XSDGroupContent, XSDNamedElement
© ISO/IEC 2005 - All rights reserved 85

ISO/IEC 19503:2005(E)
8.12.18 XSDGroupKind

Declares whether the groups contents will be one of each of its contents, a choice of one of its contents, or a sequence of
all of its contents.

Enumeration literals:
all
choice
sequence

8.12.19 XSDGroupScope

A nested XML Schema group declaration that may be declared as all, choice, or sequence.

Extends: XSDGroupContent, XSDOccurs

Attributes:
groupKind : XSDGroupKind

8.12.20 XSDGroupContent

An abstract class representing contents of an XML Schema group declaration.

Extends: XSDComplexTypeContent

8.12.21 XSDGroupRef

A reference to an XML Schema group declaration.

Extends: XSDGroupContent, XSDOccurs

8.12.22 XSDKey

The declaration of a Key.

Extends: XSDUniqueContent

8.12.23 XSDKeyRef

A reference to the declaration of a key.

Extends: XSDUniqueContent

8.12.24 XSDUnique

The concrete declaration of the unique fields.

Extends: XSDUniqueContent
86 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
8.12.25 XSDUniqueContent

The type of content that is uniquely keyed.

Extends: XSDObject, XSDNamedElement

8.12.26 XSDSelector

The selector of an XML Schema uniqueness declaration.

Attributes:
value : String

8.12.27 XSDField

The fields to apply the selector of an XML Schema uniqueness declaration.

Attributes:
value : String

8.12.28 XSDObject

XSDObject in an abstract superclass to facilitate modeling of XML Schema.

8.12.29 XSDAnnotatedElement

XSDAnnotatedElement is an abstract class for XML Schema constructs that may be annotated.

Extends: XSDObject

8.12.30 XSDDocumentation

XSD documentation is the documentation of an XML Schema construct.

Extends: XSDAnnotation

Attributes:
language : String

8.12.31 XSDAppInfo

Provides application specific information.

Extends: XSDAnnotation

8.12.32 XSDAnnotation

An XML Schema annotation.

Extends: XSDObject
© ISO/IEC 2005 - All rights reserved 87

ISO/IEC 19503:2005(E)
Attributes:
value : String
source : String

8.12.33 XSDSimpleContent

XML Schema declaration of the content of a simple type.

Extends: XSDSimpleComplex

8.12.34 XSDComplexContent

XML Schema declaration of the content of a simple type.

Extends: XSDSimpleComplex

8.12.35 XSDSimpleComplex

XML Schema extended simple or complex types. Types may be extended by extension or restriction.

Extends: XSDComplexTypeContent

Attributes:
derivedByExtension : Boolean

8.12.36 XSDSimpleTypeContent

The declaration of simple type contents.

Extends: XSDObject

8.12.37 XSDSimpleRestrict

A simple type restriction.

Extends: XSDSimpleTypeContent

8.12.38 XSDSimpleList

A simple type list.

Extends: XSDSimpleTypeContent

8.12.39 XSDSimpleUnion

A simple type union.

Extends: XSDSimpleTypeContent
88 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
8.12.40 XSDSimpleType

An XML Schema simple type declaration. Simple types have minimal structure.

Extends: XSDBuiltInType, XSDNamedElement, XSDAnnotatedElement

8.12.41 XSDFacet

XML Schema type declarations use a series of facets to define the particular behavior. The XSDFacet is an abstract class
that is specialized by the type of facet.

Extends: XSDObject, XSDAnnotatedElement

Attributes:
value : String
fixed : Boolean

8.12.42 XSDLength

The length facet.

Extends: XSDFacet

8.12.43 XSDMinLength

The minLength facet.

Extends: XSDFacet

8.12.44 XSDMaxLength

The maxLength facet.

Extends: XSDFacet

8.12.45 XSDMinInclusive

The minInclusive facet.

Extends: XSDFacet

8.12.46 XSDMaxInclusive

The maxInclusive facet.

Extends: XSDFacet
© ISO/IEC 2005 - All rights reserved 89

ISO/IEC 19503:2005(E)
8.12.47 XSDMinExclusive

The minExclusive facet.

Extends: XSDFacet

8.12.48 XSDMaxExclusive

The maxExclusive facet.

Extends: XSDFacet

8.12.49 XSDTotalDigits

The totalDigits facet.

Extends: XSDFacet

8.12.50 XSDFractionDigits

The fractionDigits facet.

Extends: XSDFacet

8.12.51 XSDWhiteSpace

The whiteSpacefacet.

Extends: XSDFacet

8.12.52 XSDAny

The Any content for an XML Schema group content declaration.

Extends: XSDGroupContent, XSDOccurs

Attributes:
namespace : String
processContents : String

8.12.53 XSDAnyAttribute

The XML Schema reference to any attributes with non-schema namespace.

Extends: XSDObject

Attributes:
namespace : String
processContents : String
90 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
8.12.54 XSDAttributeRef

A reference to an XML attribute.

Extends: XSDComplexTypeContent

8.12.55 XSDNamedElement

Attributes:
name : String

8.12.56 XSDOccurs

An abstract class representing the min and max occurrence of an XML Schema particle.

Attributes:
minOccurs : String
maxOccurs : String

8.12.57 XSDTopLevelAttrbute

Attributes at the top level of a schema may be referenced from other declarations.

Extends: XSDAttribute, XSDSchemaContent

8.12.58 XSDTopLevelElement

Elements at the top level of a schema may be referenced from other declarations.

Extends: XSDElement, XSDSchemaContent

8.13 XML Schema Simple Datatypes
The XML Schema simple data types are defined in terms of a basic set of simple primitive types and a set of commonly
used derived types.

Each data type is constrained in terms of the applicable facets described in the XSDFacets in 8.2, “XML Schema
Structures,” on page 71. Each facet is a subclass of the abstract XSDFacet. The data types use specific facets, modeled as
the data types’ attributes.
© ISO/IEC 2005 - All rights reserved 91

ISO/IEC 19503:2005(E)
Figure 8.13 - XML Schema data types

XSDBuiltInType

<<*>>enumeration:

XSDDoubleType
<<*>>enumeration:
XSDDouble

XSDStringType
<<*>>enumeration:String
whitespace:
XSDWhiteSpace

XSDRecurring
DurationType

period : String

<<*>>enumeration:

XSDCNameType
<<*>>enumeration:
XSDCName

XSDUnionType
<<*>>enumeration:
XSDObject

XSDBooleanType

XSDObject
(from schema)

XSDListType
<<*>>enumeration:
XSDList <<*>>enumeration:

XSDTimeDuration

XSDBinaryTypeXSDTimeDurationType

XSDEncoding
<<*>>enumeration:
XSDBinary

XSDURIReference
Type
<<*>>enumeration:
XSDURIReference

XSDType
(from
schema)

XSD
Decimal

XSDFloat XSDBoolean XSDDouble XSDList XSDString XSDTime
Duration

XSDBinary XSDURI
Reference

XSD
Integer

XSDIDREFS XSDDATA XSDRecurring
Duration

XSDCName

XSDURIReference
localPart:XSDNoName

XSDLong XSDNonPositive
Integer

XSDNonNegative
Integer

XSDToken

XSDRecurring
Day

XSDRecurring
Date

XSDTime

XSDInt XSDNegativeInteger
XSDUnsignedLong XSDPositiveInteger

XSDShort

XSDByte

XSDUnsignedInt

XSDUnsignedShort

XSDUnsignedByte

XSDName XSDNMTOKEN

XSDNCName

XSDID XSDIDREF

XSDTimePeriod XSDTimeInstant

XSDDate XSDMonth XSDYear XSDCentury

1
+itemType

+memberTypes

1..*

XSDFloat

XSDRecurringDuration

XSDFloatType

duration String

namespaceName:

XSDDecimalType

precision:Integer
scale : Integer
<<*>>enumeration:
XSDDecimal

encoding:

(from xmlschema)
92 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
The XML Schema model consists of a set of basic primitive types, all of which have a “type” suffix. These types are then
instantiated as a set of type instances that may be referred to in user schema definitions. These instantiated types are then
further specialized to provide a wide range of useful derived types. The derivation of these types is described in terms of
restriction as opposed to extension.

Figure 8.14 - XSL Schema types with decimal ranges

The XSDDecimalRange abstract class consolidates the declarations of the decimal range inclusive and exclusive
minimum and maximum.

XSDDecimalRange

maxExclusive : XSDMaxExclusive
maxInclusive : XSDMaxInclusive
minExclusive : XSDMinExclusive
minInclusive : XSDMinInclusive

XSDDecimalType

precision : Integer
scale : Integer
<<*>> enumeration : XSDDecimal

XSDDoubleType

<<*>>enumeration : XSDDouble

XSDFloatType

<<*>> enumeration : XSDFloat

XSDRecurringDurationType

period : String
duration : String
<<*>> enumeration : XSDRecurringDuration

XSDTimeDurationType

<<*>>enumeration : XSDTimeDuration
© ISO/IEC 2005 - All rights reserved 93

ISO/IEC 19503:2005(E)
Figure 8.15 - XSL Schema types with integer ranges

The XSDIntegerRange abstract class consolidates the declarations of the integer range in terms of length, minimum
length, and maximum length.

XSDIntegerRange

length : XSDLength
maxLength : XSDMaxLength
minLength : XSDMinLength

XMLNCNameType

<<*>> enumeration : XMLNCName

XSDBinaryType
encoding : XSDEncoding
<<*>> enumeration : XSDBinary

XSDListType

<<*>> enumeration : XSDList

XSDQNameType

<<*>> enumeration : XSDQName

XSDStringType

<<*>> enumeration : String
whiteSpace : XSDWhiteSpace

XSDURIReferenceType

<<*>> enumeration : XSDURIReference
94 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
Figure 8.16 - XML Schema pattern facet used in types

The pattern facet, enabling matches of the types to conform to a regular expression, is used by the majority of the
primitive data types in XML Schema.

8.16.1 XSDDate

The XML Schema date data type.

Extends: XSDTimePeriod

8.16.2 XSDDecimal

The XML Schema decimal data type.

Extends: XSDObject

8.16.3 XSDDecimalType

An XML Schema decimal type definition.

Extends: XSDBuiltInType, XSDDecimalRange, XSDPatterned

XSDPatterned

pattern : XSDPattern

XML NCNameType

XSDFloatType

XSDBinaryType

XSDStringType

XSDBooleanType

XSDQNameType

XSDDecimalType

XSDRecurringDurationType XSDURIReferenceType XSDUnionType XSDTimeDurationType

XSD DoubleType
© ISO/IEC 2005 - All rights reserved 95

ISO/IEC 19503:2005(E)
Attributes:
precision : Integer
scale : Integer
enumeration : XSDDecimal

8.16.4 XSDDouble

The XML Schema double data type.

Extends: XSDObject

8.16.5 XSDCentury

The XML Schema century data type.

Extends: XSDTimePeriod

8.16.6 XSDBinary

The XML Schema binary data type.

Extends: XSDObject

8.16.7 XSDBinaryType

An XML Schema binary type definition.

Extends: XSDBuiltInType, XSDIntegerRange, XSDPatterned

Attributes:
encoding : XSDEncoding
enumeration : XSDBinary

8.16.8 XSDBooleanType

An XML Schema boolean type definition.

Extends: XSDBuiltInType, XSDPatterned

8.16.9 XSDBoolean

The XML Schema boolean data type.

Extends: XSDObject

8.16.10 XSDByte

The XML Schema byte data type.

Extends: XSDShort
96 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
8.16.11 XSDDoubleType

An XML Schema double type definition.

Extends: XSDDecimalRange, XSDPatterned, XSDBuiltInType

Attributes:
enumeration : XSDDouble

8.16.12 XSDFloat

The XML Schema float data type.

Extends: XSDObject

8.16.13 XSDFloatType

An XML Schema floating type definition.

Extends: XSDDecimalRange, XSDPatterned, XSDBuiltInType

Public Attributes:
enumeration : XSDFloat

8.16.14 XSDInt

The XML Schema int data type.

Extends: XSDLong

8.16.15 XSDInteger

The XML Schema integer data type.

Extends: XSDDecimal

8.16.16 XSDCDATA

The XML Schema CDATA data type.

Extends: XSDString

8.16.17 XSDID

Extends: XSDNCName

8.16.18 XSDIDREF

Extends: XSDNCName
© ISO/IEC 2005 - All rights reserved 97

ISO/IEC 19503:2005(E)
8.16.19 XSDIDREFS

The XML Schema IDREFS data type.

Extends: XSDList

8.16.20 XSDListType

An XML Schema list type definition.

Extends: XSDBuiltInType, XSDIntegerRange

Attributes:
enumeration : XSDList

8.16.21 XSDList

The XML Schema list data type.

Extends: XSDObject

8.16.22 XSDLong

The XML Schema long data type.

Extends: XSDInteger

8.16.23 XSDMonth

The XML Schema month data type.

Extends: XSDTimePeriod

8.16.24 XSDName

The XML Schema name data type.

Extends: XSDToken

8.16.25 XSDNCName

The XML Schema NCName data type.

Extends: XSDName

8.16.26 XSDNegativeInteger

The XML Schema negative integer type.

Extends: XSDNonPositiveInteger
98 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
8.16.27 XSDNMTOKEN

The XML Schema NMToken data type.

Extends: XSDStringType, XSDToken

8.16.28 XSDNonNegativeInteger

The XML Schema non-negative integer data type.

Extends: XSDInteger

8.16.29 XSDNonPositiveInteger

The XML Schema non-positive integer data type.

Extends: XSDInteger

8.16.30 XSDPositiveInteger

The XML Schema positive integer data type.

Extends: XSDNonNegativeInteger

8.16.31 XSDQName

The XML Schema QName data type.

Extends: XSDObject

Attributes:
namespaceName : XSDURIReference
localPart : XSDNCName

8.16.32 XSDQNameType

An XML Schema qualified name type definition.

Extends: XSDBuiltInType, XSDIntegerRange, XSDPatterned

Attributes:
enumeration : XSDQName

8.16.33 XSDRecurringDate

The XML Schema recurring date data type.

Extends: XSDRecurringDuration
© ISO/IEC 2005 - All rights reserved 99

ISO/IEC 19503:2005(E)
8.16.34 XSDRecurringDay

The XML Schema recurring day data type.

Extends: XSDRecurringDuration

8.16.35 XSDRecurringDuration

The XML Schema recurring duration data type.

Extends: XSDObject

8.16.36 XSDRecurringDurationType

An XML Schema recurring duration type definition.

Extends: XSDBuiltInType, XSDDecimalRange, XSDPatterned

Attributes:
period : String
duration : String
enumeration : XSDRecurringDuration

8.16.37 XSDShort

The XML Schema short data type.

Extends: XSDInt

8.16.38 XSDToken

The XML Schema token data type.

Extends: XSDCDATA

8.16.39 XSDString

The XML Schema string data type.

Extends: XSDObject

8.16.40 XSDStringType

An XML Schema string type definition.

Extends: XSDBuiltInType, XSDIntegerRange, XSDPatterned

Attributes:
enumeration : String
whiteSpace : XSDWhiteSpace
100 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
8.16.41 XSDTime

The XML Schema time data type.

Extends: XSDRecurringDuration

8.16.42 XSDTimeDuration

The XML Schema time duration data type.

Extends: XSDObject

8.16.43 XSDTimeDurationType

An XML Schema time duration type definition.

Extends: XSDBuiltInType, XSDDecimalRange, XSDPatterned

Attributes:
enumeration : XSDTimeDuration

8.16.44 XSDTimeInstant

The XML Schema time instant data type.

Extends: XSDRecurringDuration

8.16.45 XSDTimePeriod

The XML Schema time period data type.

Extends: XSDRecurringDuration

8.16.46 XSDUnionType

An XML Schema union type definition. The member types association are the set of possible types allowed in the union.

Extends: XSDBuiltInType, XSDPatterned

Attributes:
enumeration : XSDObject

8.16.47 XSDUnsignedByte

The XML Schema unsigned byte data type.

Extends: XSDUnsignedShort
© ISO/IEC 2005 - All rights reserved 101

ISO/IEC 19503:2005(E)
8.16.48 XSDUnsignedInt

The XML Schema unsigned int data type.

Extends: XSDUnsignedLong

8.16.49 XSDUnsignedLong

The XML Schema unsigned long data type.

Extends: XSDNonNegativeInteger

8.16.50 XSDUnsignedShort

The XML Schema unsigned short data type.

Extends: XSDUnsignedInt

8.16.51 XSDURIReference

The XML Schema URI Reference data type.

Extends: XSDObject

8.16.52 XSDURIReferenceType

An XML Schema URI reference type definition.

Extends: XSDBuiltInType, XSDIntegerRange, XSDPatterned

Attributes:
enumeration : XSDURIReference

8.16.53 XSDValueConstraint

Attributes:
use : XSDUse
value : XSDString

8.16.54 XSDYear

The XML Schema year data type.

Extends: XSDTimePeriod
102 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
8.16.55 XSDDecimalRange

An abstract class consolidating the min and max inclusive and exclusive range.

Attributes:
maxExclusive : XSDMaxExclusive
maxInclusive : XSDMaxInclusive
minExclusive : XSDMinExclusive
minInclusive : XSDMinInclusive

8.16.56 XSDIntegerRange

An abstract class consolidating the length, min and max range.

Attributes:
length : XSDLength
maxLength : XSDMaxLength
minLengthXSDMinLength :

8.16.57 XSDPatterned

An abstract class consolidating the pattern regular expression.

Attributes:
pattern : XSDPattern
© ISO/IEC 2005 - All rights reserved 103

ISO/IEC 19503:2005(E)
104 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
Annex A
(normative)

Conformance Issues

A.1 Introduction
This Clause describes the required and optional points of compliance with the XMI specification. “XMI Document” and
“XMI Schema” are defined as documents and schemas produced by the XMI production (document and XML schema)
rules defined in this specification.

A.2 Required Compliance

A.2.1 XMI Schema Compliance

XMI Schemas must be equivalent to those generated by the XMI Schema production rules specified in this document.
Equivalence means that XMI documents that are valid under the XMI Schema production rules would be valid in a
conforming XMI Schema and that those XMI documents that are not valid under the XMI Schema production rules are
not valid in a conforming XMI Schema.

A.2.2 XMI Document Compliance

XMI Documents are required to conform to the following points:

• The XMI document must be “valid” and “well-formed” as defined by the XML recommendation, whether used with or
without the document’s corresponding XMI Schema(s). Although it is optional not to transmit and/or validate a docu-
ment with its XMI Schema(s), the document must still conform as if the check had been made.

• The XMI document must be equivalent to those generated by the XMI Document production rules specified in this doc-
ument. Equivalence for two documents requires a one to one correspondence between the elements in each document,
each correspondence identical in terms of element name, element attributes (name and value), and contained elements.
Elements declared within the XMI documentation and extension elements are excepted.

A.2.3 Software Compliance

Software is XMI schema compliant when it produces XML schemas that are XMI schema compliant.

Software is XMI document compliant when it produces or consumes XML documents that are XMI document compliant.

A.3 Optional Compliance Points

A.3.1 XMI Extension and Differences Compliance

XMI Documents optionally conform to the following points:
© ISO/IEC 2005 - All rights reserved 105

ISO/IEC 19503:2005(E)
• The guidelines for using the extension elements suggested in 4.5, “XMI Model,” on page 6 and 4.11, “Tailoring
Schema Production,” on page 23. Tools should place their extended information within the designated extension areas,
declare the nature of the extension using the standard XMI elements where applicable, and preserve the extensions of
other tools where appropriate.

• Processing of XMI differencing elements (4.12, “Transmitting Metadata Differences,” on page 28) is an optional com-
pliance point.

A.3.2 Reverse engineering Compliance

• Each of the reverse engineering productions in this Annex is an independent optional compliance point:
• XML to MOF
• DTD to MOF
• Schema to MOF

A.3.3 XML Schema Model Compliance

Use of the normative XML Schema model by instantiation, code generation, invocation, or serialization as defined by the
MOF specification and this XMI specification for metamodel document and schema conformance.
106 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
Annex B
(informative)

References

[XML] XML, a technical recommendation standard of the W3C. http://www.w3.org/TR/REC-xml

[XMLSchema] XML Schemas, a proposed recommendation of the W3C.
Primer: http://www.w3.org/TR/xmlschema-0/,
Structured types: http://www.w3.org/TR/xmlschema-1/ and
Data types: http://www.w3.org/TR/xmlschema-2/ .

[NAMESP] Namespaces, a technical recommendation of the W3C. http://www.w3.org/TR/REC-xml-names

[XLINK] XLinks, a working draft of the W3C. http://www.w3.org/TR/WD-xlink and http://www.w3.org/TR/
NOTE-xlink-principles

[XPath] XPointer, technical recommendation of the W3C. http://www.w3.org/TR/xpath

[UML] UML, an adopted standard of the OMG. http://www.omg.org

[MOF] MOF 1.4, an adopted standard of the OMG. http://www.omg.org

[XMI] XMI 1.2, an adopted standard of the OMG. http://www.omg.org

The following is the Open Group DCE standard on UUIDs.

[UUID] CAE Specification
DCE 1.1: Remote Procedure Call
Document Number: C706
http://www.opengroup.org/onlinepubs/9629399/toc.htm
http://www.opengroup.org/onlinepubs/9629399/apdxa.htm (Definition/creation of UUIDs).
© ISO/IEC 2005 - All rights reserved 107

ISO/IEC 19503:2005(E)
108 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
Annex C
(normative)

Legal Information

C.1 Copyright Information
Copyright © 1998, 1999, 2000, 2001 IBM Corporation
Copyright © 2003, Object Management Group
Copyright © 1998, 1999, 2000, 2001 Softeam
Copyright © 1998, 1999, 2000, 2001 Unisys Corporation

C.2 Use Of Specification - Terms, Conditions & Notices
The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

C.3 Licenses

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above
and this permission notice appear on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold
or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy
immediately any copies of the specifications in your possession or control.

C.4 Patents

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.
© ISO/IEC 2005 - All rights reserved 109

ISO/IEC 19503:2005(E)
C.5 General Use Restrictions

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

C.6 Disclaimer Of Warranty

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

C.7 Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

C.8 Trademarks

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, UML®,
XMI®, and IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™,
CORBA logos™, OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™,
CORBAservices™, CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's Everywhere™,
Unified Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™,
Model Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

C.9 Compliance

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
110 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

C.10 Issue Reporting

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.
© ISO/IEC 2005 - All rights reserved 111

ISO/IEC 19503:2005(E)
112 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
A
Add class 10
Affect 27
Alias type 48, 63
Attribute 16, 25
Attribute specification 16
Attributes 12

C
Class 16
Class schema 37
Class specification 16
Collection type 48, 63
Compliance 105
Containment specification 18
Content structure 51

D
Data types 63
Datatype mechanism 33
DCE 13
Declarations 4
Definitions 29
Delete class 11
Derived information 18
Derived types and references 62
Difference class 11
Differences 28, 29
Document exchange 31
Document production 26
Document production rules 63
Document structure 50
Documentation class 10
DTD to MOF 65

E
EBNF notation 35
EBNF rules 49
Element 25
Enumeration type 48, 63
Extended Backus Naur Form (EBNF) 49
Extensions 5

F
Fixed schema declarations 43

G
General datatype mechanism 33

I
Incomplete metadata 18
Inheritance 60
Inheritance specification 18
Interchange of model fragments 19

L
Linking 19, 20
Linking requirements 20

M
Metadata differences 28
Metamodel class representation 5
Metamodel class specification 15

Metamodel extension mechanism 5
Model classes 6
MOF 65, 66, 67
Multiple tools 31

N
Namespace 15
Nested packages 61
Notation for EBNF 35

O
Object contents 57
Object structure 52

P
Package schema 37
Packages 59
Procedures 32
production rules 49

R
ransmitting incomplete metadata 18
Reference specification 18
References 55
Replace class 10
Required XML declarations 4
Requirements for XMI schemas 4

S
Schema production 23
Schema production rules 48
Scope 25, 27
Simple data types 91
Simple XLinks 13
Structure type 48, 63
Structures 71

T
Tag value constraints 24
Tag-Value 17
Tailoring schema production 23
timestamp 9
Transmitting Incomplete Metadata 18
Transmitting Metadata Differences 28
Transmitting metadata differences 28
Type 14
Type attribute 14

U
UML example 22
UML profile for XML and XMI 25
UUID 13

V
Value 17
verified 9
Version attribute 14

X
xmi

extenderID 10
id 12
idref 14
© ISO/IEC 2005 - All rights reserved 113

ISO/IEC 19503:2005(E)
label 12
position 10
uuid 13
version 9

XMI element 8
XMI encoding 19, 29
XMI model 6
XMI model classes 6
XMI tags 23
XMI.element.att 12
XMI.extension 9
XMI.link.att 13
XMIDataType 17
XML attribute only 25
XML element only 25
XML schema annotated elements 79
XML schema attribute declarations 73
XML schema complex type declaration 75
XML schema element declaration 74
XML schema facets 77
XML schema for the XMI model 6
XML schema group declarations 80
XML schema key declaration 81
XML schema name declarations 82
XML schema occurrence particles 82
XML schema pattern facet used in types 95
XML schema simple data types 91
XML schema simple type content declarations 76
XML schema to MOF 67
XML schema top level declarations 72
XML schema type declaration 78
XML to MOF 66
XSDAnnotatedElement 87
XSDAnnotation 87
XSDAny 90
XSDAnyAttribute 90
XSDAppInfo 87
XSDAttribute 83
XSDAttributeGroup 83
XSDAttributeGroupRef 83
XSDAttributeRef 91
XSDBinary 96
XSDBinaryType 96
XSDBoolean 96
XSDBooleanType 96
XSDBuiltInType 84
XSDByte 96
XSDCDATA 97
XSDCentury 96
XSDComplexContent 88
XSDComplexType 84
XSDComplexTypeContent 84
XSDDate 95
XSDDecimal 95
XSDDecimalRange 103
XSDDecimalType 95
XSDDocumentation 87
XSDDouble 96
XSDDoubleType 97
XSDElement 84
XSDElementRef 83

XSDEnumeration 85
XSDFacet 89
XSDField 87
XSDFloat 97
XSDFloatType 97
XSDFractionDigits 90
XSDGroup 85
XSDGroupContent 86
XSDGroupKind 86
XSDGroupRef 86
XSDGroupScope 86
XSDID 97
XSDIDREF 97
XSDIDREFS 98
XSDImport 85
XSDInclude 85
XSDInt 97
XSDInteger 97
XSDIntegerRange 103
XSDKey 86
XSDKeyRef 86
XSDLength 89
XSDList 98
XSDListType 98
XSDLong 98
XSDMaxExclusive 90
XSDMaxInclusive 89
XSDMaxLength 89
XSDMinExclusive 90
XSDMinInclusive 89
XSDMinLength 89
XSDMonth 98
XSDName 98
XSDNamedElement 91
XSDNCName 98
XSDNegativeInteger 98
XSDNMTOKEN 99
XSDNonNegativeInteger 99
XSDNonPositiveInteger 99
XSDObject 87
XSDOccurs 91
XSDPattern 85
XSDPatterned 103
XSDPositiveInteger 99
XSDQName 99
XSDQNameType 99
XSDRecurringDate 99
XSDRecurringDay 100
XSDRecurringDuration 100
XSDRecurringDurationType 100
XSDSchema 83
XSDSchemaContent 84
XSDSelector 87
XSDShort 100
XSDSimpleBase 85
XSDSimpleComplex 88
XSDSimpleContent 88
XSDSimpleList 88
XSDSimpleRestrict 88
XSDSimpleType 89
XSDSimpleTypeContent 88
114 © ISO/IEC 2005 - All rights reserved

 ISO/IEC 19503:2005(E)
XSDSimpleUnion 88
XSDString 100
XSDStringType 100
XSDTime 101
XSDTimeDuration 101
XSDTimeDurationType 101
XSDTimeInstant 101
XSDTimePeriod 101
XSDToken 100
XSDTopLevelAttrbute 91
XSDTopLevelElement 91
XSDTotalDigits 90
XSDType 83
XSDUnionType 101
XSDUnique 86
XSDUniqueContent 87
XSDUnsignedByte 101
XSDUnsignedInt 102
XSDUnsignedLong 102
XSDUnsignedShort 102
XSDURIReference 102
XSDURIReferenceType 102
XSDValueConstraint 102
XSDWhiteSpace 90
XSDYear 102
XSL schema types with decimal ranges 93
XSL schema types with integer ranges 94
© ISO/IEC 2005 - All rights reserved 115

ISO/IEC 19503:2005(E)
116 © ISO/IEC 2005 - All rights reserved

	Foreword
	Introduction
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 International Standards

	3 Abbreviations
	4 XMI Schema Design Principles
	4.1 Purpose
	4.2 Use of XML Schemas
	4.3 Basic Principles
	4.4 XMI Schema and Document Structure
	4.5 XMI Model
	4.6 XMI Attributes
	4.7 XMI Type
	4.8 Metamodel Class Specification
	4.9 Transmitting Incomplete Metadata
	4.10 Linking
	4.11 Tailoring Schema Production
	4.12 Transmitting Metadata Differences
	4.13 Document Exchange with Multiple Tools
	4.14 General Datatype Mechanism

	5 XML Schema Production
	5.1 Purpose
	5.2 XMI Version 2 Schemas

	6 XML Document Production
	6.1 Purpose
	6.2 Introduction
	6.3 EBNF Rules Representation
	6.4 Additional Examples
	6.5 Document Production Rules for Non-Primitive Data

	7 Production of MOF from XML
	7.1 Introduction
	7.2 DTD to MOF
	7.3 XML to MOF
	7.4 XML Schema to MOF

	8 XML Schema Model
	8.1 Introduction
	8.2 XML Schema Structures
	8.13 XML Schema Simple Datatypes
	A.1 Introduction
	A.2 Required Compliance
	A.3 Optional Compliance Points

	A - Conformance Issues
	B - References
	C - Legal Information

