PIM and PSM for Smart Antenna Specification

Version 1.0

OMG Document Number: formal/2009-01-01
SDRF Document Number: SDRF-07-S-0016-V2.0.0
Standard document URL: http://www.omg.org/spec/smartant/1.0
Associated files*: http://www.omg.org/spec/smartant/20081101
http://www.omg.org/spec/smartant/20081102

* original files: dtc/2008-11-05 (IDL), dtc/2008-11-06 (XMI)
USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details a joint Object Management Group/SDR Forum specification in accordance with the terms, conditions and notices set forth below. This document does not represent a commitment to implement any portion of this specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG), the SDR Forum, and their assignees a nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

Intellectual Property Rights

The attention of adopters is directed to the possibility that compliance with or adoption of any OMG or SDR Forum specification may require use of an invention covered by Intellectual Property Rights (IPR). Neither the OMG nor the SDR Forum shall be responsible for identifying IPR for which a license may be required by any joint specification, or for conducting legal inquiries into the legal validity or scope of IPR that are brought to its attention. The OMG and SDR Forum shall make available, upon request, notifications of intellectual property rights that are received by each respective organization. OMG and SDR Forum specifications are prospective and advisory only. Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP, THE SDR FORUM, AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. In no event shall the Object Management Group or any of the companies listed above be liable for errors contained herein or for direct, indirect, incidental, special, consequential, reliance or cover damages, including loss of profits, revenue, data or use, incurred by any user or any third party in connection with the furnishing, performance, or use of this material, even if advised of the possibility of such damages.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™, Unified Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™, CWM™, CWM Logo™, IIOP™, MOF™, OMG Interface Definition Language (IDL)™, and OMG SysML™, are trademarks of the Object Management Group. SDR Forum™, is a trademark of the Software defined Radio Forum, Inc. All other products or company names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) and the SDR Forum are and shall at all times be the sole entities that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software developed only partially matching the applicable compliance points may claim only that the software was based on this specification, but may not claim compliance or conformance with this specification. In the event that testing suites are implemented or approved by Object Management Group, Inc. or the SDR Forum, software developed using this specification may claim compliance or conformance with the specification only if the software satisfactorily completes the testing suites.
OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).
Table of Contents

Preface ... iv

1 Scope ... 1

2 Conformance .. 1

2.1 Conformance by a Model of a Specific Application .. 1

2.2 Conformance by a Tool .. 1

2.2.1 Definition of Terms for Discussion of Tool Conformance 1

2.2.2 Categories of Tool Conformance ... 2

2.3 Conformance on the part of a Component PSM .. 2

3 References .. 3

3.1 Normative References .. 3

3.1.1 UML and Profile Specifications .. 3

3.1.2 CORBA Core Specifications .. 3

3.1.3 UML Models ... 4

3.2 Non-normative References ... 5

3.2.1 Common and Data Link Layer Facilities Specification, v1.0 5

3.2.2 UML Profile for Component Framework Specification, v1.0 5

3.2.3 Communication Channel and Equipment Specification, v1.0 5

4 Terms and Definitions ... 5

5 Symbols and abbreviated terms .. 7

6 Additional Information ... 7

6.1 Changes to Adopted OMG Specifications ... 7

6.2 Guide to this Specification .. 7

6.3 Acknowledgements ... 8

6.4 Security and Regulatory .. 8

6.4.1 Security ... 8

6.4.2 Regulatory .. 8

6.5 Smart Antenna System ... 8

6.6 Classification of Smart Antennas ... 9

6.6.1 Beamforming ... 9
6.6.2 Diversity Combining ... 9
6.6.3 Space-Time Equalization .. 9
6.6.4 Multiple Input Multiple Output (MIMO) .. 9

7 UML Profile for Smart Antenna ... 11
 7.1 Types .. 11
 7.2 CommEquipment for Smart Antenna ... 11
 7.2.1 ArrayAntenna ... 11

8 Platform Independent Model (PIM) .. 13
 8.1 Control Facilities .. 15
 8.1.1 SACcontrol .. 15
 8.1.2 AlgorithmControl ... 16
 8.1.3 SynchronizationControl ... 17
 8.1.4 RFControl ... 18
 8.2 Synchronization Facilities ... 18
 8.2.1 SASynchronization ... 19
 8.2.2 Calibration ... 19
 8.2.3 CalibrationComponent .. 19
 8.2.4 Synchronization ... 20
 8.2.5 SynchronizationComponent ... 20
 8.3 Algorithm Facilities ... 20
 8.3.1 SAAAlgorithm ... 21
 8.3.2 Beamforming ... 22
 8.3.3 BeamformingComponent ... 23
 8.3.4 SpaceTimeCoding .. 23
 8.3.5 STComponent .. 24
 8.3.6 SpatialMultiplexing .. 24
 8.3.7 SpatialMultiplexingComponent ... 24
 8.3.8 ChannelEstimation ... 24
 8.3.9 ChannelEstimationComponent .. 25
 8.3.10 DOAESetimation ... 25
 8.3.11 DOAESetimationComponent ... 26

9 PSM for Smart Antenna ... 27
 9.1 Mapping Rule .. 27
 9.2 IDL Mapping ... 28
Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry standards consortium that produces and maintains computer industry specifications for interoperable, portable and reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to enterprise integration that covers multiple operating systems, programming languages, middleware and networking infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG Specifications Catalog is available from the OMG website at:

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

- UML
- MOF
- XMI
- CWM
- Profile specifications.

OMG Middleware Specifications

- CORBA/IOP
- IDL/Language Mappings
- Specialized CORBA specifications
- CORBA Component Model (CCM).
Platform Specific Model and Interface Specifications

- CORBAservices
- CORBAfacilities
- OMG Domain specifications
- OMG Embedded Intelligence specifications
- OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English. However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in *italics* are defined in the glossary. Italic text also represents the name of a document, specification, or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/technology/agreement.htm.
1 Scope

This Specification responds to the requirements set by the "Request for Proposals of PIM and PSM for Smart Antenna"(sbc/06-12-10) of a smart antenna subsystem that can be utilized to expand a single antenna system to an array antenna system.

The Smart Antenna specification is physically partitioned into three major chapters: UML Profile for Smart Antenna (SA), SA PIM, and SA PSM. UML Profile for SA defines a language for modeling a smart antenna system by expanding the UML language.

SA PIM provides a set of interfaces for interfacing with the signal processing module, RF module, and controller module. SA PSM provides a rule for transforming the elements of the profile and SA PIM into the platform specific model for CORBA IDL and XML.

The SA specification is related to “Communication Channel and Equipment Specification (formal/07-03-02)” volume in such a way that stereotypes and classes that have not been commented in the SA specification are defined in it.

2 Conformance

There are two kinds of conformance with respect to the SA profile: conformance on the part of an SA model and conformance on the part of an MDA tool.

2.1 Conformance by a Model of a Specific Application

A UML model of a specific SA either conforms to the SA profile or it does not. Such a UML model conforms to the SA profile if it satisfies all the constraints imposed by the profile package.

2.2 Conformance by a Tool

2.2.1 Definition of Terms for Discussion of Tool Conformance

To support the discussion of conformance by a MDA tool, we define two terms: “identified subset of UML 2.0” and “all constructs defined by the profile.” The identified subset of UML 2.0 for the profile is the set of packages contained in the UML 2.0 Superstructure specification Part 1 (Structure). Part 1 includes the following packages and the transitive closure of all packages contained by these packages and of all packages upon which these packages depend:

- Classes
- Composite Structures
- Components
- Deployments

Here after we sometimes use the abbreviated term identified subset to refer to the identified subset of UML 2.0. The term all constructs defined by the profile is defined to mean all constructs that are part of the package's identified subset of UML 2.0, plus all extensions to that subset that the profile defines. Thus this term includes UML constructs that are part of the identified subset but that are not extended by the profile.
2.2.2 Categories of Tool Conformance

A tool is considered to be a conformant simple modeling tool for the communication channel profile if it does both of the following:

- Supports expression of all the constructs defined by the profile, via UML 2.0 notation.
- Supports the UML 2.0 XMI exchange mechanism for the identified subset and for UML 2.0 profiles.

A tool is considered to be a conformant CORBA/XML-based forward engineering tool for the profile if it does the following:

- Supports the PIM-to-PSM Mapping defined in Chapter 9.
- Produces communication channel manager components PSMs that are conformant to the behavior defined in the PIM.

Alternately, if a tool only produces a component skeleton, the skeleton must not make it impossible for a full component based on the skeleton to qualify as a conformant component – in other words, the skeleton must be able to form the basis of a conformant component.

A forward engineering tool that targets a platform technology other than CORBA/XML can legitimately claim a degree of conformance to the communication channel profile and PIM derived from the Profile if it conforms to the PIM-to-PSM Mapping and produces components PSMs that are conformant components to the behavior in defined in the PIM, or produces component skeletons that can form the basis of conformant components. In practice this requires the definition of an alternate PIM-PSM mapping.

A forward engineering tool of this nature for the platform “X” is considered to be a conformant X-Based forward engineering tool for the profile.

2.3 Conformance on the part of a Component PSM

The interfaces and components as defined in sections 7 and 8 of this specification are not required to be used for a given platform or application. A platform or application uses the interfaces and component definitions that meet their needs. Conformance is at the level of usage as follows:

- A PSM implementation (no matter what language) of an interface defined in this specification needs to be conformant to the interface definition as described in the specification.
- A PSM implementation (no matter what language) of a component defined in this specification needs to be conformant to the component definition (ports, interfaces realized, properties, etc.) as described in the specification.

A component is considered to be a conformant for CORBA/XML platform if it does all of the following:

- Implements the CORBA interfaces that the component PSM defines
- Implements the XML serialization formats that the component PSM defines.
- Implements the semantics that the component PIM defines.

Note that the component PIM essentially defines the semantics for the CORBA interfaces and XML serialization formats. The semantics for a CORBA interface defined in the component PSM are defined by the semantics of the corresponding element(s) in the component PIM. It is possible to deduce the corresponding elements in the PIM for such a CORBA interface by reversing the PIM-PSM Mapping.
3 References

3.1 Normative References

3.1.1 UML and Profile Specifications

3.1.1.1 UML Language Specification

Unified Modeling Language (UML) Superstructure Specification Version 2.1.2
Formal OMG Specification, document number: formal/2007-11-02
The Object Management Group, November 2007
[http://www.omg.org]

Unified Modeling Language (UML) Infrastructure Specification Version 2.1.2
The Object Management Group, November 2007
[http://www.omg.org]

3.1.1.2 OCL Language Specification

Object Constraint Language (OCL) Specification Version 2.0
The Object Management Group, May 2006
[http://www.omg.org]

3.1.1.3 UML Profile for CORBA Specification

UML Profile for CORBA Specification Version 1.0
Formal OMG Specification, document number: formal/2002-04-01
The Object Management Group, April 2002
[http://www.omg.org]

3.1.1.4 MOF 2.0/XMI Mapping Specification

Meta Object Facility (MOF) 2.0 XMI Mapping Specification, Version 2.1.1
Formal OMG Specification, document number: formal/2007-12-01
The Object Management Group, December 2007
[http://www.omg.org]

3.1.2 CORBA Core Specifications

3.1.2.1 CORBA Specification

Common Object Request Broker (CORBA/IIOP), Version 3.1
Formal OMG Specification, document number: formal/2007-12-01
The Object Management Group, December 2007
[http://www.omg.org]
3.1.2.2 Real-time CORBA Specifications

3.1.2.2.1 Real-time CORBA Specifications (Dynamic Scheduling)

Real-time - CORBA Specification (Dynamic Scheduling), Version 2.0
The Object Management Group, November 2003
[http://www.omg.org]

3.1.2.2.2 Real-time CORBA Specifications (Static Scheduling)

Real-time - CORBA Specification (Static Scheduling), Version 1.2
The Object Management Group, January 2005
[http://www.omg.org]

3.1.2.3 CORBA/e Specification

CORBA/e Specification
Draft Adopted OMG Specification, document number: ptc/06-08-03
The Object Management Group, August 2006
[http://www.omg.org]

3.1.3 UML Models

3.1.3.1 UML Profile for Communication Channel

UML Profile for Communication Channel XMI File
Formal OMG document number: formal/07-03-07
The Object Management Group, March 2007
[http://www.omg.org]

3.1.3.2 UML Profile for Component Framework

UML Profile for Component Framework XMI File
Formal OMG document number: formal/07-03-07
The Object Management Group, March 2007
[http://www.omg.org]

3.1.3.3 Common and Data Link Layer Facilities PIM

Common and Data Link Layer Facilities PIM XMI File
Formal OMG document number: formal/07-03-07
The Object Management Group, March 2007
[http://www.omg.org]
3.2 Non-normative References

3.2.1 Common and Data Link Layer Facilities Specification, v1.0
Common and Data Link Layer Facilities Specification
Formal OMG document number: formal/2007-03-05
The Object Management Group, March 2007
[http://www.omg.org]

3.2.2 UML Profile for Component Framework Specification, v1.0
Component Framework Specification
Formal OMG document number: formal/2007-03-05
The Object Management Group, March 2007
[http://www.omg.org]

3.2.3 Communication Channel and Equipment Specification, v1.0
Communication Channel and Equipment Specification
Formal OMG document number: formal/2007-03-02
The Object Management Group, March 2007
[http://www.omg.org]

4 Terms and Definitions

For the purposes of this document, the following terms and definitions apply.

Common Object Request Broker Architecture (CORBA)
An OMG distributed computing platform specification that is independent of implementation languages.

Component
A component can always be considered an autonomous unit within a system or subsystem. It has one or more ports, and its internals are hidden and inaccessible other than as provided by its interfaces. A component represents a modular part of a system that encapsulates its contents and whose manifestation is replaceable within its environment. A component exposes a set of ports that define the component specification in terms of provided and required interfaces. As such, a component serves as a type, whose conformance is defined by these provided and required interfaces (encompassing both their static as well as dynamic semantics).

Facility
The realization of certain functionality through a set of well defined interfaces.

Interface Definition Language (IDL)
An OMG and ISO standard language for specifying interfaces and associated data structures.
Metadata

The Data that represents a model. For example, a UML model; a CORBA object model expressed in IDL; and a relation database schema expressed using CWM.

Metamodel

A model of models

Model

A formal specification of the function, structure and/or behavior of an application or system.

Model Driven Architecture (MDA)

An approach to IT system specification that separates the specification of functionality from the specification of the implementation of that functionality on a specific technology platform.

Platform

A set of subsystems/technologies that provide a coherent set of functionality through interfaces and specified usage patterns that any subsystem that depends on the platform can use without concern for the details of how the functionality provided by the platform is implemented.

Platform Independent Model (PIM)

A model of a subsystem that contains no information specific to the platform, or the technology that is used to realize it.

Platform Specific Model (PSM)

A model of a subsystem that includes information about the specific technology that is used in the realization of it on a specific platform, and hence possibly contains elements that are specific to the platform.

Request for Proposal (RFP)

A document requesting OMG members to submit proposals to the OMG's Technology Committee. Such proposals must be received by a certain deadline and are evaluated by the issuing task force.

Unified Modeling Language (UML)

An OMG standard language for specifying the structure and behavior of systems. The standard defines an abstract syntax and a graphical concrete syntax.

UML Profile

A standardized set of extensions and constraints that tailors UML to particular use.
5 Symbols and abbreviated terms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORBA</td>
<td>Common Object Request Broker Architecture</td>
</tr>
<tr>
<td>DOA</td>
<td>Direction Of Arrival</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital Signal Processor</td>
</tr>
<tr>
<td>FPGA</td>
<td>Field Programmable Gate Array</td>
</tr>
<tr>
<td>GPP</td>
<td>General Purpose Processor</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output</td>
</tr>
<tr>
<td>IDL</td>
<td>Interface Definition Language</td>
</tr>
<tr>
<td>IIOP</td>
<td>Internet Inter-ORB Protocol</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standards Organization</td>
</tr>
<tr>
<td>N/A</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>OMG</td>
<td>Object Management Group</td>
</tr>
<tr>
<td>ORB</td>
<td>Object Request Broker</td>
</tr>
<tr>
<td>OS</td>
<td>Operating System</td>
</tr>
<tr>
<td>PIM</td>
<td>Platform Independent Model</td>
</tr>
<tr>
<td>PSM</td>
<td>Platform Specific Model</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>SA</td>
<td>Smart Antenna</td>
</tr>
<tr>
<td>SDR</td>
<td>Software Defined Radio</td>
</tr>
<tr>
<td>SWRadio</td>
<td>Software Radio Components</td>
</tr>
<tr>
<td>UML</td>
<td>Unified Modeling Language</td>
</tr>
<tr>
<td>XML</td>
<td>eXtensible Markup Language</td>
</tr>
</tbody>
</table>

6 Additional Information

6.1 Changes to Adopted OMG Specifications

The specifications contained in this document require no changes to adopted OMG specifications.

6.2 Guide to this Specification

This specification consists of three major parts, contained in the following chapters 7 to 9.

- Chapter 7 defines the modeling language used in this specification in form of a UML profile for smart antenna components.
• Chapter 8 contains the Smart Antenna Facilities Platform Independent Model (PIM). The UML language defined in Chapter 7 is used to specify this PIM.

• In chapter 9, the mapping process from the Platform Independent Model (PIM) to a Platform Specific Model (PSM) is described.

6.3 Acknowledgements

The following organizations (listed in alphabetical order) contributed to this specification:

• BAE Systems
• Hanyang University
• L-3 Communications
• MITRE
• PrismTech
• Raytheon
• SDR Forum
• Virginia Tech University

6.4 Security and Regulatory

There are two subjects that are not included herein: Security and Regulatory. These subjects impact the broader software radio (and other device-bound) topics (sensors, robotics, etc). As such, this document will, in a future release, address a specialization of the general solution adopted by the broader security and regulatory standardization community.

Therefore the following sections apply:

6.4.1 Security

This architecture document does not include the functionality for security regarding certification of the source code or over the air delivery of new characteristics for the Smart Antenna or security functional protection mechanisms. The addition of such mechanisms is not expected to alter the architecture defined herein.

6.4.2 Regulatory

This architecture document does not include the functionality for managing regulatory requirements for the Smart Antenna. The Smart Antenna herein described functionality could most likely require the addition of finer control and explicit regulatory controls. The addition of such controls is not expected to alter the architecture defined herein; although finer power/bandwidth/ERP may be required to meet regulations.

6.5 Smart Antenna System

A Smart antenna is an antenna array system that is aided by a processing system that processes the signals received by the array or transmitted by the array using suitable array algorithms to improve wireless system performance. An antenna array consists of a set of distributed antenna elements (dipoles, monopoles or directional antenna elements) arranged in certain geometry (e.g., linear, circular or rectangular grid) where the spacing between the elements can vary. The signals collected by individual elements are coherently combined in a manner that increases the desired signal strength and reduces the interference from other signals. A smart antenna can be viewed as a combination of antenna elements, using
some form of RF, IF or baseband array combination, that transmit or receive RF signals using "smart" algorithms. A software defined smart antenna is a smart antenna in which certain operating characteristics, such as the field of regard, frequency of operation, access mode, or transmit/receive waveforms can be altered by firmware or software download after its manufacture.

6.6 Classification of Smart Antennas

Based on the signal processing technique followed at the baseband output of the antenna array, smart antennas can be grouped into four basic types based on: 1) Beamforming 2) Space time equalization 3) Diversity combining 4) Multiple input multiple output(MIMO) processing.

6.6.1 Beamforming

Through Beamforming, a smart antenna algorithm can receive predominantly from a desired direction (direction of the desired source) compared to some undesired direction (direction of interfering sources). This implies that the digital processing has the ability to shape the radiation pattern for both reception and transmission and to adaptively steer beams in the direction of the desired signals and put nulls in the direction of the interfering signals. This enables low co-channel interference and large antenna gain to the desired signal. Beamforming systems can be implemented in two ways; fixed beamforming systems or fully adaptive systems. A fixed beamforming system has a beamforming network(BFN) followed by RF switches which operate in the RF/analog domain. The switches are controlled by a control logic which selects a particular beam. Here the processing required is minimal as the control logic has to choose one of the predetermined set of weights to select a beam. In adaptive beamforming, the antenna gains or weights are chosen adaptively through running array algorithms in the digital domain.

6.6.2 Diversity Combining

A major limiting factor in wireless communication is multipath fading where the amplitude of the received signal fluctuates over time. The occurrence of a deep fade where the signal amplitude becomes very small can impair the communications link for a conventional or a single antenna system. When multiple antennas are used it becomes less likely that two or more antennas undergo deep fades at the same time. This diversity in the received signal, for the same transmitted information, is exploited by smart antenna processing schemes. Many simple algorithms, such as maximal ratio combining, equal gain combining, and selection diversity have been developed to take advantage of using antenna arrays to exploit diversity reception in wireless systems. These algorithms weight the received signal similar to beamforming but based on a different criterion used in the algorithm.

6.6.3 Space-Time Equalization

The preceding two techniques usually assume that the signal of interest is a narrowband signal compared to the coherence bandwidth of the channel and is thus subjected to a flat fading across the bandwidth of the signal. Multipath fading in wireless communication can also introduce a frequency distortion to the received signal. By means of a temporal processing for each antenna element and a spatial combining of the temporally processed received signals, a frequency-selective fading introduced by the frequency distortion described above can significantly be mitigated.

6.6.4 Multiple Input Multiple Output (MIMO)

As the name suggests this scheme requires array processing at the transmitter and receiver. There are two different types of MIMO schemes: one uses spatial multiplexing to enhance data rate for a given bandwidth (thus, the spectral efficiency) and the other uses space time coding using diversity combining techniques to combat fading. In the multiplexing scheme, data is serial to parallel converted and transmitted simultaneously over multiple antenna elements. The receiver also uses multiple antenna elements to receive the signal and applies a maximum likelihood (ML) algorithm to retrieve the
simultaneously transmitted symbols. One key assumption in this case is that the propagation environment has to provide rich scattering; in other words, the propagation channel has to include a large number of scattering objects that will generate independent fading at the antenna elements. In the case of space-time coding, symbols to be transmitted are coded over multiple antennas and symbol time durations in such a way that the receiver can easily regenerate the transmitted signals by doing linear processing on a received signal. The space-time codes rely on the orthogonality present in the coded symbols for proper detection, and additionally they require the fading to be independent between the antenna elements for best performance results.
7 UML Profile for Smart Antenna

This section defines the UML Profile for a Smart Antenna only. The set of stereotypes and types that are not described in this section are defined in UML Profile for SWRadio components.

7.1 Types

- Complex (real: Float, imag: Float)
 Complex data type denote a general complex number.

- ComplexSequence
 ComplexSequence is an unbounded sequence of Complex.

- ArrayAntennaType
 ArrayAntennaType, a specialization of String, denote the physical configuration of an array antenna (e.g., Phased Array, Circular Array, etc.)

7.2 CommEquipment for Smart Antenna

7.2.1 ArrayAntenna

Description

The ArrayAntenna stereotype, shown in Figure 7.1, represents an antenna array which consists of multiple antenna elements. The ArrayAntenna class shall have one or more AntennaElements.

![ArrayAntenna Stereotype](image)

Figure 7.1 - ArrayAntenna Stereotype

Attributes

- maxRadiationPattern: RadiationPatternType
 The maxRadiationPattern attribute indicates the maximum radiation pattern that the device is able to achieve.
• <<characteristicproperty>>minRadiationPattern: RadiationPatternType
 The minRadiationPattern attribute indicates the minimum radiation pattern that the device is able to achieve.

• <<configureproperty>>radiationPattern: RadiationPatternType
 The radiationPattern attribute represents the current radiation pattern configured in the device.

• <<characteristicproperty>>type: ArrayAntennaType
 The type attribute indicates the physical type of the array antenna.

• <<configureproperty>>maxMutualCoupling: Decibel
 The maxMutualCoupling is the maximum mutual coupling value between antenna elements.

• <<characteristicproperty>>bandwidth: Hertz
 The bandwidth attribute indicates the bandwidth of the physical array antenna.

• <<characteristicproperty>>interElementDistance: FloatSequence
 The interElementDistance attribute represents the physical distances between all the pairs of adjacent antenna elements in meter.

• <<characteristicproperty>>CenterFreq: Hertz
 The CenterFreq attribute represents the center of the operating frequency of the array antenna.

M1 Associations

• arrayElemnt: AntennaElement [1..*]
 The individual radiating element object of the ArrayAntenna.

Constraint

An ArrayAntenna shall have at least one AnalogInputPort or one AnalogOutputPort.
8 Platform Independent Model (PIM)

The SA PIM provides interfaces used to configure and control a Smart Antenna Subsystem. In order to specify a SA PSM, we have to first define a standard PIM because a SA specification should be valid regardless of platform types. The SA Facilities has a dependency on the Communication Channel and Equipment Physical Layer Facilities as shown in Figure 8.1. The SA PIM consists of three facilities each of which has been defined in accordance with their functions. These three facilities operate in conjunction with each other to define the PIM for Smart Antenna.

Figure 8.1 - Package Diagram

Three facilities are used to control the entire Smart Antenna Subsystem:

- Control Facilities
- Synchronization Facilities
- Algorithm Facilities

Figure 8.2 illustrates the relation of the three facilities of SA. The Control Facilities, which include SAControl component, RFControl interface, SynchronizationControl interface, and AlgorithmControl interface, are used to control all algorithm operations performed in the digital signal processing parts and RF/IF operations such as analog to digital or digital to analog conversion. The Synchronization Facilities, which include SASynchronization component, CalibrationComponent component, Calibration interface, SynchronizationComponent component, and Synchronization interface, are used for RF chain calibration and symbol (or frame) synchronization. The CalibrationComponent component processes signals fed by the RFIFComponent component and the SynchronizationComponent component processes signals fed by the ModemComponent component. The Algorithm Facilities, which include the SAAlgorithm component, the Algorithm components, and interfaces are used to execute all the algorithms that are needed for the Smart Antenna System to provide improved performance compared to Single Antenna System. The Algorithm components include BeamformingComponent, STCComponent, SpatialMultiplexingComponent, DOAEstimationComponent, and ChannelEstimationComponent respectively. The interfaces consist of Beamforming, SpaceTimeCoding, SpatialMultiplexing, DOAEstimation, and ChannelEstimation. Algorithm components process signals fed by the ModemComponent component of the Communication Channel and Equipment of the SWRadio components specification (refer to Section 3.2.3). The Smart Antenna Subsystem shall implement a single SAControl component and one or more Algorithm component(s). More detailed explanations about interfaces among facilities in the SA are provided in the following sections.
8.1 Control Facilities

In this section, each function and interface provided by the Control Facilities is described. Figure 4 illustrates Control Facilities that include SAControl component, SynchronizationControl interface, AlgorithmControl interface, and RFControl interface. It can be observed from Figure 8.3 that RFControl interface, SynchronizationControl interface, and AlgorithmControl interface shall be realized by SAControl.
component, in order for SAControl component to control RFIFComponent component, SASynchronization component, and SAAlgorithm component, respectively, according to the functions to be performed in the SAControl component.

Figure 8.3 - Control Facilities

8.1.1 SAControl

Description

The SAControl component takes on the definition as described in the UML Profile for Component Framework::Infrastructure::Service in addition to the realization of RFControl interface, AlgorithmControl interface, and SynchronizationControl interface. The SAControl component is used to control the entire Smart Antenna Subsystem.

Semantics

The SAControl’s operational state shall be based upon the operational state of its Device components. The SAControl’s usage state shall be IDLE when all of its Device components are IDLE. The SAControl’s usage state becomes ACTIVE when any of its Device components is not IDLE. The SAControl’s usage state shall be BUSY when all of its Device components are not IDLE. If the SAControl’s administrative state is SHUTTING_DOWN or LOCKED, then its Device components shall be unavailable for application instantiation.
Attributes

- <<readwrite>>OperationMode: SAOperationMode
 The OperationMode attribute determines the operation mode of the Smart Antenna Subsystem. The operation mode shall be one of three modes, TRANSMIT, RECEIVE, and COMBINATION. This attribute is only used when the SAControl’s state is ACTIVE.

Types and Exceptions

- <<enumerationproperty>>SAOperationMode (TRANSMIT, RECIEVE, COMBINATION)
 The SAOperationMode defines the operation mode of the Smart Antenna Subsystem.
 TRANSMIT: The Smart Antenna Subsystem operates in transmitting mode.
 RECEIVE: The Smart Antenna Subsystem operates in receiving mode.
 COMBINATION: The Smart Antenna Subsystem operates in both transmitting and receiving mode.

8.1.2 AlgorithmControl

Description

The AlgorithmControl interface is used to control SAAlgorithm components.

Attributes

- <<readonly>>Algorithms: SAAlgorithm [1..*]
 The AlgorithmControl interface shall contain the set of SAAlgorithm components. The SAAlgorithm references are used to control multiple SAAlgorithm components.

Operations

- registerAlgorithm(SAAlgorithm registeringAlgorithm)
 This operation is used to register the SAAlgorithm component with the AlgorithmControl interface. The SAAlgorithm component shall be registered with the AlgorithmControl interface in its initialization process. When the AlgorithmControl interface receives a registerAlgorithm call from the SAAlgorithm component, a reference to the SAAlgorithm component is provided. The AlgorithmControl interface adds the SAAlgorithm reference to its Algorithms attribute.

- unregisterAlgorithm(SAAlgorithm registeringAlgorithm)
 This operation is used to unregister a SAAlgorithm component from the AlgorithmControl interface.

Types and Exceptions

- <<exception>>InvalidObjectReference
 The InvalidObjectReference exception is raised when the SAAlgorithm reference received in the registerAlgorithm call is nil or any error is encountered during the unregisterAlgorithm call on the AlgorithmControl interface.
8.1.3 SynchronizationControl

Description

The SynchronizationControl interface is used to control the SynchronizationComponent and CalibrationComponent components.

Attributes

- <<readonly>>Synchronization: SynchronizationComponent [1]
 The SynchronizationControl interface shall contain one SynchronizationComponent component. The SynchronizationComponent reference is used to control a SynchronizationComponent component.

- <<readonly>>Calibration: CalibrationComponent [0..1]
 If the Smart Antenna Subsystem is implemented with beamforming, then the SynchronizationControl shall contain one CalibrationComponent, otherwise the CalibrationComponent may not be required. The CalibrationComponent reference is used to control a CalibrationComponent component.

Operations

- registerSynch(SynchronizationComponent registeringSynch)
 This operation is used to register SynchronizationComponent component with SynchronizationControl interface. The SynchronizationComponent component shall be registered with SynchronizationControl interface in its initialization process. When the SynchronizationControl interface receives a registerSynch call from a SynchronizationComponent component, the SynchronizationComponent reference is provided. The SynchronizationControl interface adds the SynchronizationComponent reference to the Synchronizations attribute.

- unregisterSynch(SynchronizationComponent registeringSynch)
 This operation is used to unregister a SynchronizationComponent component from the SynchronizationControl interface.

- registerCal(CalibrationComponent registeringCal)
 This operation is used to register CalibrationComponent component with SynchronizationControl interface. CalibrationComponent component shall be registered with SynchronizationControl interface in its initialization process. When the SynchronizationControl interface receives a registerSynch call from a CalibrationComponent component, the CalibrationComponent reference is provided. The SynchronizationControl interface adds the CalibrationComponent reference to the Synchronizations attribute.

- unregisterCal(CalibrationComponent registeringCal)
 This operation is used to unregister a CalibrationComponent component from the SynchronizationControl interface.

Types and Exceptions

- <<exception>>InvalidSynchObjectReference
 The InvalidObjectReference exception is raised when the SynchronizationComponent reference received in the registerSynch call is nil or any error is encountered during the unregisterSynch call on the SynchronizationControl interface.
The InvalidCalObjectReference exception is raised when the CalibrationComponent reference received in the registerSynch call is nil or any error is encountered during the unregisterSynch call on the SynchronizationControl interface.

8.1.4 RFControl

Description

The RFControl interface is used to control RFIFComponent components.

Attributes

- **<<readonly>>** RFDevices: RFIFComponent [1..*]
 The RFControl interface shall contain the set of RFIFComponent components. The RFIFComponent references are used to control multiple RFIFComponent components.

- **<<configureproperty>>** RFDeviceNames: String [1..*]
 This attribute represents the name of RFIFComponent. To get an RFIFComponent instance, RFControl interface requests a reference of the component from the NamingService with the name of the RFIFComponent.

- **<<configureproperty>>** AntennaCount: UShort
 The AntennaCount attribute represents the number of Antenna elements.

8.2 Synchronization Facilities

In this section each function and interface in Synchronization facilities is described. Figure 5 illustrates Synchronization Facilities that include the SAASynchronization component, Calibration interface, CalibrationComponent component, SynchronizationComponent component, and Synchronization interface.
8.2.1 SASynchronization

Description

The SASynchronization component is an abstract component from which the CalibrationComponent component and SynchronizationComponent component shall inherit.

Constraint

The SASynchronization component shall provide one ControlPort and at least one DataControlPort or DataPort.

8.2.2 Calibration

Description

The Calibration interface is used to calibrate the entire RF/IF chains of the Smart Antenna System.

Attributes

- **readonly>>CalibrationTable: ComplexSequence**
 The CalibrationTable attribute represents the output of the Calibration. Each element of the CalibrationTable represents a calibration-output which corresponds to each of the RF/IF chains.

- **readonly>>ReferenceLevel: Float**
 The ReferenceLevel attribute represents the value normalized to a unit power or some non-unit input level.

- **configureproperty>>ContinuousRun: Boolean**
 The ContinuousRun attribute indicates whether or not the calibration is executed continuously.

- **configureproperty>>CalibrationAccuracy: ComplexSequence**
 The CalibrationAccuracy attribute represents the required variance of calibration-output. The required accuracy shall be configured in a ComplexSequence to represent both amplitude and phase.

- **configureproperty>>CalibrationPeriod: TimeType**
 The CalibrationPeriod attribute is used to control the calibration period.

- **queryproperty>>CalibrationTime: TimeType**
 The CalibrationTime attribute return the time required for processing a single calibration using the active settings.

8.2.3 CalibrationComponent

Description

The CalibrationComponent component realizes the Calibration interface and extends the SASynchronization component. Calibration is to compensate for amplitude and phase differences of the RF/IF chain associated with each antenna in transmit and receive mode. The problem of calibration has arisen because the amplitude and phase characteristics of the signal path associated with each antenna are different from each other. Especially even if the optimal weight vector is computed from the received signal for uplink, downlink beam-forming can never be
optimized without accurate calibration. In other words, the objective of calibration is to compensate for the mutual coupling effects between antenna array elements as well as for the mismatches of channel amplitude and/or channel phase in Smart Antenna Systems.

8.2.4 Synchronization

Description

The Synchronization interface is used for symbol (or frame) synchronization of the Smart Antenna Subsystem.

Attributes

- `<configureproperty>`ObservationLength: ULong
 The ObservationLength attribute is used to configure the observation length in samples.

- `<readonly>`Timing: TimeType
 The Timing attribute represents the acquired symbol (or frame) timing.

- `<configureproperty>`Threshold: ULongLong
 The Threshold attribute is used to configure the threshold for signal detection. Since signals in the baseband are represented by complex numbers without unit, the Threshold attribute also has no unit.

8.2.5 SynchronizationComponent

Description

The SynchronizationComponent component realizes the Synchronization interface and extends the SASynchronization component. Symbol (or frame) synchronization is a process which detects the symbol (or frame) timing. Synchronization is performed prior to symbol demodulation (or frame decoding) and the smart antenna algorithm operation. To enhance the performance of the Smart Antenna System, accurate symbol (or frame) timing is required. In addition, to guarantee the QoS (Quality of Service) of the initial network access, fast and robust acquisition of the initial access signal shall be provided to the Smart Antenna System.

8.3 Algorithm Facilities

In this section each function and interface in the Algorithm facilities is described. Figure 6 illustrates the Algorithm Facilities which include the SAAlgorithm component, Algorithm components, and the interfaces. The Algorithm components are the BeamformingComponent, STCComponent, SpatialMultiplexingComponent, DOAEstimationComponent, and ChannelEstimationComponent. And, the interfaces are the Beamforming interface, SpaceTimeCoding interface, SpatialMultiplexing interface, ChannelEstimation interface, and DOAEstimation interface.
8.3.1 SAAlgorithm

Description

The SAAlgorithm component is an abstract component from which all the components in the Algorithm Facilities shall inherit. In other words, this component provides every interface for controlling all the Algorithm components.

Attributes

- `<configureproperty>` Active: Boolean
 The Active attribute indicates that the SAAlgorithm component is activated.

- `<configureproperty>` OperationType: AlgorithmOperationType
 The OperationType attribute sets an operation type of SAAlgorithm components. The operation type shall be one of the following three types, CONTINUOUS, SINGLE_BURST, and REPEATED_BURST.

- `<readonly>` Convergence: Boolean
 The Convergence attribute indicates whether the algorithm is confident that its link quality is high enough to satisfy the configured QoS.

- `<queryproperty>` AvailableAlgorithm: AlgorithmType[1..*]
 The AvailableAlgorithm attribute represents a list of the algorithms available for use on the SAalgorithm.

- `<configureproperty>` ActiveAlgorithm: String
 The ActiveAlgorithm attribute either sets or gets the active algorithm.
• <<configureproperty>>preData: Complex
 The preData attribute represents the pre-processing data which are used for calculating the beamforming weight vector. For example, the pre-processing data denote the pre-despreading data for CDMA systems and the pre-FFT data for OFDM(A) systems.

• <<configureproperty>>postData: Complex
 The postData attribute represents the post-processing data which are used for calculating the beamforming weight vector. For example, the post-processing data denote the despread data for CDMA systems and the FFT data for OFDM(A) systems.

Types and Exceptions

• <<enumerationproperty>>AlgorithmOperationType (CONTINUOUS, SINGLE_BURST, REPEATED_BURST)
 The AlgorithmOperationType defines data processing operation type.
 CONTINUOUS: SAAlgorithm components process input signals continuously.
 SINGLE_BURST: SAAlgorithm components process the single burst input signal.
 REPEATED_BURST: SAAlgorithm components process repetitively the single burst input signal.

• AlgorithmType(Name: String, Delay: TimeType, PowerConsumption: Float, TolerableBandwidth: Hertz)
 Name: The name of an algorithm as a String.
 Delay: The time required for a single execution.
 PowerConsumption: The power consumption for a single algorithm execution.
 TolerableBandwidth: The maximum bandwidth that a given algorithm can guarantee its normal operation.

Constraint

The SAAlgorithm component shall provide one ControlPort and at least one DataControlPort or DataPort.

8.3.2 Beamforming

Description

The Beamforming interface is used to control the BeamformingComponent.

Attributes

• <<readonly>>BFWeights: ComplexSequence
 The BFWeights attribute weight vectors are computed by the BeamformingComponent. When this attribute is read, the BeamformingComponent computes a new value from the received signals. When this attribute is set up, the BeamformingComponent applies a given vector that provides the desired radiation pattern.

• <<configureproperty>>PolarUnit: Boolean
 The PolarUnit attribute is used to switch between the real/imag mode and the mag/phase mode of the Weights attribute.

• <<readwrite>>NullBFDirection: FloatSequence
 The NullBFDirection attribute is used to specify the directions of the nulls in degrees to block known sources of interference.
- **FixedBFGainDirection**: FloatSequence
 The **FixedBFGainDirection** attribute is used to specify fixed gains (dB) in fixed directions (degrees) to amplify weak signals in known directions.

- **SideLobeLevel**: FloatSequence
 The **SideLobeLevel** attribute is used to limit the side lobe level in decibel (dB).

- **OrderedEigenvalues**: FloatSequence
 The **OrderedEigenvalues** attribute presents the eigen channel quality metrics used in the **BeamformingComponent**.

- **OrderedEigenvectors**: ComplexSequence
 The **OrderedEigenvectors** attribute presents the eigen channel quality metrics used in the **BeamformingComponent**.

- **MaxEigenChannels**: Short
 The **MaxEigenChannels** attribute configures maximum number of eigen channels to be used in the **BeamformingComponent**.

8.3.3 BeamformingComponent

Description

The **BeamformingComponent** component extends the **SAAlgorithm** component and realizes the **Beamforming** interface. A beamforming algorithm in the **BeamformingComponent** computes the weight vectors for both RX and TX operations. The weight vectors adaptively steer beams along the direction of desired signals and puts nulls along the direction of interfering signals.

8.3.4 SpaceTimeCoding

Description

The **SpaceTimeCoding** interface is used to control **STCComponent**.

Attributes

- **STCPattern**: STCMapping[1..*]
 The **STCPattern** attribute represents the actual definition of the STC mapping. Each input symbol of the **STCComponent** is mapped to one of the transmit antennas according to the **STCMapping**.

Types and Exceptions

- **STCMapping (NumAnt: UShort, codePattern: ComplexSequence)**
 - **NumAnt**: Number of transmit antenna.
 - **codePattern**: The actual space time code pattern is a ComplexSequence. If the number of transmit antennas (i.e. **NumAnt**) is **N**, the space time codes are represented as an **N** by **N** matrix. Each element of the codePattern corresponds to each element of the matrix in the following manner. The first element of the codePattern corresponds to the first element of the first column of the matrix. Similarly, the second element of the codePattern is for the second element of the first column of the matrix. And **N+1**th element of the codePattern is for the first element of the second column of the matrix and **N+2**th element of the codePattern is for the second element of the second column of the matrix. Finally, **N**²th element of the codePattern is for the last (Nth) element of the last (Nth) column of the matrix.
8.3.5 STCComponent

Description

The STCComponent component extends the SAAlgorithm component and realizes the SpaceTimeCoding interface. The STCComponent is for Space Time Coding (STC) processing. Space Time Coding (STC) is a method employed to improve the reliability of data transmission in wireless communication systems by using multiple transmit antennas. STCs rely on transmitting multiple, redundant copies of a data stream to the receiver in the hope that at least some of them may survive the physical path between transmission and reception in a good enough state to allow reliable decoding.

8.3.6 SpatialMultiplexing

Description

The SpatialMultiplexing interface is used to control the SpatialMultiplexingComponent.

Attributes

- `<queryproperty>`AvailableSMScheme: SpatialMultiplexingType[1..*]
 The AvailableSMScheme attribute represents a list of the spatial multiplexing schemes available for use on the SpatialMultiplexingComponent.

- `<configureproperty>`ActiveSMScheme: SpatialMultiplexingType
 The ActiveSMScheme attribute either sets or activates the SpatialMultiplexingType.

Types and Exceptions

- `<Primitive>`SpatialMultiplexingType
 The SpatialMultiplexingType, a specialization of String, denotes the type of the algorithm used for spatial multiplexing. (e.g., V-BLAST, D-BLAST, H-BLAST, etc.).

8.3.7 SpatialMultiplexingComponent

Description

The SpatialMultiplexingComponent component extends the SAAlgorithm component and realizes the SpatialMultiplexing interface. The SpatialMultiplexingComponent is for spatial multiplexing. Spatial multiplexing is a transmission technique in MIMO wireless communication that transmits independent and separately encoded data signals from each of the multiple transmit antennas.

8.3.8 ChannelEstimation

Description

The ChannelEstimation interface is used to control the ChannelEstimationComponent.
Attributes

- <<readonly>>ChannelImpulse: ComplexSequence
 The ChannelImpulse attribute represents the channel estimation vector that is calculated by the ChannelEstimationComponent component.

- <<readwrite>>ChannelCoherenceTime: TimeType
 The ChannelCoherenceTime attribute represents the channel coherence time.

- <<configureproperty>>ChannelEstimationPeriod: TimeType
 The ChannelEstimationPeriod attribute is used to control the channel estimation period. This attribute would be especially important to trade overhead time and processing against the rate of change in the channel due to platform motion, etc.

- <<configureproperty>> ChannelEstimationAccuracy: Complex
 The ChannelEstimationAccuracy attribute represents the required accuracy of the channel estimation.

- <<readonly>>OrderedEigenvalues: FloatSequence
 The OrderedEigenvalues attribute presents the eigen channel quality metrics used in ChannelEstimationComponent.

- <<readonly>>OrderedEigenvectors: ComplexSequence
 The OrderedEigenvectors attribute presents the eigen channel quality metrics used in ChannelEstimationComponent.

- <<readwrite>>MaxEigenChannels: Short
 The MaxEigenChannels attribute configures the maximum number of eigen channels to be used in ChannelEstimationComponent.

8.3.9 ChannelEstimationComponent

Description

The ChannelEstimationComponent component extends the SAAlogrithm component and realizes the ChannelEstimation interface. The Space-time equalization system or diversity combining system is implemented using the ChannelEstimationComponent. Space-time Equalization is a receiving technique which makes use of temporal processing on the signals received from multiple antennas to correct frequency distortion in the received signal path. And, diversity combining is another receiving technique that mitigates the multipath fading effects, which are inherent in practical wireless networks, by combining the signals of multiple antennas.

8.3.10 DOAEstimation

Description

The DOAEstimation interface is used to control the DOAEstimationComponent.

Attributes

- <<readonly>>DOA: FloatSequence
 The DOA attribute represents the direction of arrival (DOA) angle in degree.
• <<configureproperty>>NumOfArrivals: UShort
 The NumOfArrivals specifies the maximum number of DOA estimations for a single signal having multipath.

• <<configureproperty>>DOAEstSignalType: ShortSequence
 The DOAEstimationSignalType attribute specifies the type of the various signals to estimate.

• <<queryproperty>>DOAEstQuality: ULong
 The DOAEstQuality attribute indicates the DOA estimation quality.

8.3.11 DOAEstimationComponent

Description

The DOAEstimationComponent component extends the SAAlgorithm component and realizes the DOAEstimation interface.
9 PSM for Smart Antenna

9.1 Mapping Rule

This section defines a reference PSM that consists of the normative CORBA interface and the normative XML that are based upon the PIM and UML Profile for Smart Antenna. The PIM to PSM transformation rules are not universal rules for creating *any* PSM, but only used for the purpose of this specification. Non-CORBA PSMs may also be fully compliant to this specification as a whole. The rule set for transforming Smart Antenna PIM (UML packages, interfaces, types, and exceptions) to the CORBA interface and the XML is as follows:

1. UML interfaces and interface extensions are mapped to CORBA interfaces. The CORBA interface names are without the prefix "I" in the interface name as used in the radio Management PIM Facilities.

2. UML attributes with readonly and readwrite map to CORBA attributes in CORBA interfaces.

3. UML attributes with configureproperty, queryproperty, and testproperty do not map to CORBA attributes in CORBA interfaces. Instead XML definitions are used that follow the Property types as defined in UML Profile for Component Framework::Application, Device Components::Properties section and UML Profile for Smart Antenna in the Chapter 7.

4. UML classes without operations that are not stereotyped and used for type definitions map to CORBA Struct stereotypes in the CORBA interfaces and modules. The parent classes do not get translated into CORBA types, instead the parent class attributes are added to the subclass in the CORBA definition.

5. UML <<datatype>> map to CORBA basic types. Primitive types are mapped to CORBA primitive types and primitive sequence types are mapped to CORBA Typedef of primitive sequence types.

6. UML exceptions and exception extensions map to CORBA exceptions. There is no specialization of exceptions in CORBA so the (UML Profile for Component Framework::Application and Device Components::BaseTypes) SystemException definition does not appear in the generated CORBA interfaces but all the specialization exceptions of SystemException are in the CORBA interfaces with the same attributes as defined for SystemException.

7. UML attributes that have a cardinality of many [*] map to a CORBA Typedef of sequence types.

8. UML operations and <<optional>> operations map to operations in the CORBA interfaces.

9. Transformations are only performed for concrete classes, not for template classes. Concrete classes that bind to template classes are used in the PSM.

10. For Interfaces that reference a component stereotype for a type, the “component” qualifier is removed from the name. For Example, FileManagerComponent would become FileManager as the type for the parameter or attribute.

11. UML attributes with constant stereotype map to CORBA constants in CORBA interfaces.

12. Basic types (e.g., Any, Object) map to CORBA types.

13. Object references map to the name of CORBA objects.
9.2 IDL Mapping

Table 9.1 - IDL Mapping

<table>
<thead>
<tr>
<th>PIM Name</th>
<th>IDL FileName</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAControl</td>
<td>DfSWRadioSmartAntenna.idl</td>
</tr>
<tr>
<td>AlgorithmControl</td>
<td>DfSWRadioSmartAntenna.idl</td>
</tr>
<tr>
<td>RFControl</td>
<td>DfSWRadioSmartAntenna.idl</td>
</tr>
<tr>
<td>SynchronizationControl</td>
<td>DfSWRadioSmartAntenna.idl</td>
</tr>
<tr>
<td>Calibration</td>
<td>DfSWRadioSmartAntenna.idl</td>
</tr>
<tr>
<td>ChannelEstimation</td>
<td>DfSWRadioSmartAntenna.idl</td>
</tr>
<tr>
<td>SAAAlgorithmDevice</td>
<td>DfSWRadioSmartAntenna.idl</td>
</tr>
<tr>
<td>Beamforming</td>
<td>DfSWRadioSmartAntenna.idl</td>
</tr>
<tr>
<td>DOAEstimation</td>
<td>DfSWRadioSmartAntenna.idl</td>
</tr>
<tr>
<td>SpaceTimeCoding</td>
<td>DfSWRadioSmartAntenna.idl</td>
</tr>
<tr>
<td>SpatialMultiplexing</td>
<td>DfSWRadioSmartAntenna.idl</td>
</tr>
<tr>
<td>Synchronization</td>
<td>DfSWRadioSmartAntenna.idl</td>
</tr>
</tbody>
</table>