Reducing Project Re-Work By The Use Of Model Based
Systems Engineering Processes and Tools

Steven Saunders
Raytheon Australia Pty Ltd
PO Box 165, North Ryde
NSW 2113, AUSTRALIA
Phone: +612-8870-6555
Fax: +612-8870-6599
ssaunders@raytheon.com.au

ABSTRACT

1t is recognised that errors in requirements, injected into a project during the requirements
definition phase, have the potential for significant project re-work later in the project.
Project re-work may result in schedule and cost overruns affecting project profitability and
useability. Sources of requirements defects include the inability of the human mind to
comprehend highly complex systems and to convey this into understandable specifications,
the inability to view all aspects of the system in a coordinated manner and poor
specification writing practices to name a few. In this paper, the author proposes that
another source of requirements defects is due to systems engineers starting their process
with requirements analysis rather than functional analysis. The implementation of a Model
Based Systems Engineering (MBSE) environment and methodology is described along with
quantitative results based upon analysis of project requirements specifications developed
over the past five years. As the current Model Based Systems Engineering environment was
deployed two years ago, sufficient data exists to identify trends in specification quality both
before and after deployment of MBSE. Current analysis presented indicates an emerging
trend to real project savings for current projects using the deployed Model Based Systems
Engineering methodology. Initial measurements indicate a 68 percent reduction in
specification defects is being realised in current programs.

INTRODUCTION

Many studies have been conducted into the causes of project cost over runs and failures.
A common cause identified results from incorrectly or poorly defined system
requirements at the start of a project [Kasser and Williams 1998]. It is also understood
that errors injected early in the development cycle have a higher potential cost impact to
projects than defects injected later [Sampson 2000]. Techniques have been identified
that enables quantification of requirement defects [Gilb 2002], however only an estimate
of their impact on project costs can be made. Compounding the likelihood of defects in
requirements specifications are limitations of human's short term memory, making it
difficult to comprehend all aspects of complex systems currently being defined in
industry. Research shows that humans find it difficult to hold sufficient information to
work on more than around seven or so non-correlated pieces of information concurrently
[Kline 1995].

Raytheon Australia suspected a problem with the systems requirements definition
process (ie., it was allowing incomplete, inconsistent, ambiguous and un-verifiable

requirements to be generated). To address these problems, an improvement plan was
initiated in 2001 in order to reduce the number of requirements defects being introduced
early in the project life cycle. A three pronged strategy was implemented to;
a) Update processes to break down system complexity in order to assist the
derivation of a balanced view of complex system solutions,
b) Deploy a modern systems engineering tool which is compatible with the new
process, and
c) Deploy staff training on the process and tool.

The overall goal of the improvement plan was to re-align the thinking and support
environment to the engineering of systems solutions rather than the generation of
documents such as specifications. Key in achieving this goal was the implementation of
a model based systems engineering methodology. More recently, it was decided to base
this model upon the FRAT model [Mar 2002]. The FRAT model implemented enables
any system to be viewed in four concurrent views; the Functional, Requirements,
Architecture and Test views. Simplification of system complexity to a minimum of four
views assists the systems engineer to comprehend the system to be designed.

At the end of 2002, a Raytheon Australia six sigma project was run to complete the
improvement plan and to quantify the effects of any improvements. As a result of this
activity, a 68% reduction in requirement defects is currently being realised. Whilst the
real project cost savings of this reduction in defects can only be validated after current
projects are completed, it is logical to expect a reduction in program re-work over the
life of current and future programs.

ROOT CAUSES OF REQUIREMENTS DEFECTS

Using historical data from actual projects, the author has conducted an analysis of
project re-work from past project defect reports. Where causes of defects were traced
back to system requirements, the requirements were analysed to determine the root
cause. Where system requirements contributed to the project defect, the requirement was
considered defective. In the sample taken, a majority of requirement defects could be
attributable to;

a) Un-verifiable requirements,

b) Ambiguous requirements,

¢) Orphan requirements (not related to a system function),

d) Missing requirements, and

e) Functional behaviour not understood.

Many other sources of requirement defects exist [Gilb 2002]. However, for the purposes
of addressing high impact root causes, the above factors were prioritised for correction.
Missing or incorrect requirements can also be attributed to poor requirements elicitation
techniques, often driven by schedule pressure to get a specification delivered. Heydt
provides a list of elicitation techniques which may be used during requirements
definition [Heydt 2002].

DEFINING A REQUIREMENTS DEFINITION METHODOLOGY

Requirements Or Functional Analysis First?

Historically, many texts and literature have led to an interpretation that the systems
engineering process begins with requirements analysis. This then is followed by
functional analysis. Industry guidelines and standards did little to dispel this
interpretation (for example IEEE 1220-1994). Experience on projects confirms the view
that rather than defining requirements first followed by functions, systems engineering
involves functional analysis followed (if not done in parallel) by requirements analysis.
This is logical as functions define what the system must do whilst requirements define
how well to do these functions. In effect, there can be no functional requirement without
a corresponding function (and visa versa).

This premise has been tested on historical projects where specifications were found
where requirements without corresponding functions have led to confusion over the
meaning of the requirement. Whilst no quantitative data currently exists to show these
issues resulted in project re-work, there are some indicators in the sample taken by the
author indicating the misunderstanding of the real requirement is a direct relationship to
the lack of a corresponding function in the system functional model. Further support to
the concept that functional analysis leads requirements analysis has been identified [Mar
2002]. Mar indicates the misinterpretation of requirements analysis leading functional
analysis is the result of systems engineering practitioners reading and following unclear
guidelines verbatim.

Buede [2002] provides an excellent example of the power of functional analysis as the
first step in the systems engineering process in his paper on the Concepts of Systems
Engineering as Practiced by the Wright Brothers. The design process used by the Wright
Brothers involved a “function-space-search” rather than a “design-space-search”. Buede
claims the Wright Brothers were successful in developing the first powered flight by
man where others had failed partially due to the fact they focused on functions before
requirements and design.

Extending the Functional - Requirements View
Recognising functional requirements and functions cannot exist in isolation leads to the
concept that there is a requirements and functional view of any system. However, there
are more views required to fully define a system. A minimum of four views have been
identified [Mar 2002].

a) The Functional view describes what the system does (behavioural model),

b) The Requirements view describes how well the system performs the functions,

c) The Architectural view (or answers) describes how the system is built,

d) The Test view describes how the system is to be tested (or verified).

Mar refers to this four view model as the FRAT model, as depicted in Figure 1. The
order of the letters in the acronym FRAT are also important in that this defines the
preferred order of systems engineering, Functional followed by Requirements,
Architecture then Test views. The four views in the FRAT Model should be considered
the minimum required to accurately define a solution to a system at any level of
decomposition. However, additional views are often required to more accurately capture
the need (eg. Operational View, Logistics View etc).

Test View

»

Functional Architectural
View ./ ¢ View
Requirements
View

Figure 1 FRAT Model

Analysis of historical specifications shows instances where it was evident the systems
engineer had overlooked the purpose of requirements definition and focused on writing
requirement statements. In some instances, the decoupling of functions from
requirements have led to ambiguous requirements and potential later project re-work.
For this reason, it was decided to focus future systems engineering on the use of a model
based approach to systems engineering. This model based systems engineering approach
would be consistent with the FRAT model.

SELECTION OF A SYSTEMS ENGINEERING TOOL

Requirements Centric Systems Engineering Tool

The term Requirements Centric Systems Engineering (RCSE) is used to describe
Systems Engineering where the primary product is considered to be specifications and
requirements traceability. RCSE is characterised by the use of tools such as
wordprocessors or databases to capture requirements. Any behavioral modeling such as
logical or functional modeling is performed in separate tools with no link to the
Requirements Management tool.

RCSE does not naturally support the concept of understanding the functional behaviour
of a system as the systems engineer must manually correlate data from different views
potentially developed in different tools. In instances where less experienced engineers
become involved, this can result in a specification document with well-formed
requirement statements but with little consideration of the functional behaviour of the
system to be realised. This specification provides a false sense of progress as it may
appear to be complete, however the important information, the required behaviour of the
system, may be incomplete, inaccurate or conflicting. This process is depicted in Figure
2

-

Specifications
Requirements P

Derivation

Elicitation Mapping %

Specification

NEETEIEE

Requirements —

¢ Coupling =
Trace
Reports

unctional and Physical Design
Using Separate Tool(s)

Figure 2 RCSE Environment

Model Based Systems Engineering

The term Model Based Systems Engineering (MBSE) is used to describe the conduct of
systems engineering where the primary product is the system model. Here the term
"model" refers to a consistent linked set of data, which represents as a minimum, the
four key views of the system in the FRAT model. The mindset of the systems engineer is
to complete the model. Specifications and traceability are considered to be incidental or
artifacts of the process rather than the product of the process. This process is depicted in

Figure 3.
D
e
Database

Reports

Requirements
Derivation

Requirements
Elicitation

=
=
Al

Non-Functional
Requirements

Functional

Requirements;
Aligéation™

Functional Model

Figure 3 Model Based SE Environment

Use of a Model Based Systems Engineering Tool

Prior to selecting and deploying a systems engineering tool for use in the organisation,
consideration was made to ensure the tool complements the MBSE processes. Effort has
been applied to lessen the focus on the specification artifacts and to promote the
function-space search approach to the systems engineer. Features have been built into the
tool and environment to enable the artefacts of the engineering process (the documents
and trace reports) to be generated from simple pull down menus.

The current systems engineering environment supports concurrent functional analysis,
requirements analysis, synthesis and test (all four views in the FRAT model). Figure 4
provides a screen capture from the deployed systems engineering tool showing four
windows, each providing a view into the FRAT model. In the functional view, the
systems engineer may view hierarchical and/or functional flows to help characterise the
functions and behaviour of the system. As the functional model matures, requirements
are derived from customer requirements and traced to functions by simple drag and drop
operations. As requirements are further analysed, changes/additions to the functional
model are made. This iteration between functional and requirements views continues,
building the functional model and the completeness of the requirements set. Experience
from the systems engineers shows this is vastly more productive than sitting in front of a
specification document template and trying to manufacture requirements.

As the functional model matures, the physical realisation can be constructed in the
architecture view. Non-functional requirements such as power, weight, quality
requirements are imposed on physical elements. In parallel with the definition of
requirements, Raytheon Australia has dictated the capturing of verification statements
for each requirement. Verification statements are objects in the systems engineering
database which provide a clear statement on how each requirement is envisaged to be
verified. Initially this was seen by systems engineers as an added burden however it has
been found that this rigour has minimised the number of requirements that are specified
in an un-verifiable way. By-products of this step are;
a) the initial test specification is drafted at the same time as the requirements
baseline is being formulated, and
b) removal of a second iteration at interpreting the requirement and verification
approach is avoided, saving duplication of effort.

Using the tool, relationships between views is clearly evident leading to;
a) a higher level of understanding on what the system does (behavioural model),
b) how requirements are related,
c) how requirements are to be verified,
d) whether the conceptual solution is realisable,
e) identification of missing functions, and
f) identification of missing requirements.

A oo, BASE Geien Fusotonst fiikilgodeio

Bl Edl Cmdts Lo Dptoee Yaw Wedos: Wolng et ez Yo Fethe

P o e M P = e [R e
I£1_1_IE]

jm”*’"‘-@ witive ¥l Fypctional View |

ﬁ

D]_—EI- 18-507 F ol podirns Bebt Foai ol o] Pl etiescks
| § Thea switars BHALL pooovider e tnscindang |
o b it e dlspley dignieeind e scalas i
) . nad gl clianis
i W 147 [Werilicstion Tesk) Havipstion Aligreenl
5 Ao B3 Hadpetion OO
E B 18-500 Hovipstion Srten Foncions] Pegur eoenk
i flet oA 18-504 Hawd pation Sqeieds Tnderlace: P oo endetsl
£} ZJJ—EI' 18-505 Mawpshan Seden Inlerlice Ramurenent: i
Tk "
— T sz:'“w:_?al; N s _ -
T ST = =
- | s _J's.'.‘-&.-z *f'}l Architect |
A | 'J - I

E-E:iﬁ-dxﬂmnﬁ-!ﬁw!ﬁdmwn&uhﬂih\h
Hapthacn Hulp
E’Jﬂl._J_J_JEIEE_J_JlJ

]ﬁﬁ] "'|Et |§g|ﬁ| |@ j.ﬁ.| |-1*|"i1];_| I:F]i:;i|

Lbtdar YWema Aaghacn

ﬂﬂﬂlﬁlmﬂ.ﬁlnhwwqﬁrnﬂu

:l Fhumral d'l
‘_ 0
L
s
B Tl e I
na aa s L :
ariip gl Sryar Fappdiom Cragageriryg E
) | - i EI
£ =
i1 1% ik
Fawgaijry Waniyuvnn _]
5 Werhmesion || . Flallom
SrnEs T
g .
bl Physical View] ER

e[

e Al e S P31 | 1 2

:“' |:"|I‘| IA7 (Weciicaon Tadk] Hengeiion Shgnreni

Pace o Harngubon chatonhe Hay plot sod vanfy he
dsplay cun ke sdpusted in wcde ard digroeod to makch e
Harrizukon Charl

W -4 rWeriicaton Tack] Mo i wdl ool

W =3 (Wechicuion Tusk| Haiguion Parformance

qmmmnt rwardlcation Taskl: 27, I Folder: enfiction
Test View

Architect

Figure 4 Screen Capture of the Systems Engineering Tool Showing all
Four Views in the FRAT Model

Deployment and Training

Concurrently with the deployment of revised processes and tools, a training program has
been deployed to further emphasise the "function-space" solution search concepts and to
break down pre-conceived notions that systems engineers "just write" specifications.

Emphasis is being placed on systems engin

eers doing value added engineering and

having documents generated for them from the model.

Current uptake on the concepts has been very encouraging with engineers readily

adapting to the model based approach. It is

being found that a higher focus is being

placed on understanding the behaviour of the systems currently in development which in
itself is driving out many requirements and conflicts that may not have been evident if

model based systems engineering was not bein

g adopted.

MEASUREMENT OF RESULTS
A simplified model of sources of errors and the phases these errors are injected into the
end product is provided in Figure 5.

€, Errors in Specified Requirements

€, Mlssmg Requirements

Requirements Development Re-Work
Errors i Errors Errors
Stakeholder l l Product plus l sp Dlell\frted f’]r;)dfuci
Needs i Requirements Defects plus Latent Detects
—> Requ1re.n.16nts » Development > Re-Work | E——
Definition
Errors Captured Errors Captured Errors Captured
and Removed in- and Removed in- and Removed in-
phase phase phase

Figure 5 Model of Sources of Errors in an Engineering Development

In this model, stakeholder needs are transformed into system requirements in the
requirements definition phase. During this phase, requirement defects are introduced and
are manifested in the form of;
= ¢,- Errors in specified requirements (e.g. ambiguous, conflicting, un-verifiable
requirements etc), and
= ¢,- Unspecified requirements errors (missing requirements).

During production, a percentage of requirement defects are promulgated into errors and
re-work in the end product.

€ =ketjey

Where €p is rework cost and k and j are variables dependent upon the organisation,
people and processes. As k and j are subject to change over longer periods of time, it is
assumed k and j are constant over the period of the current process improvement
activity.

In order to quantify the effect of process change, a set of specification quality rules were
defined. These rules enable a count of non-compliances against each rule and provide a
metric on specification quality. By definition, this process can only detect breaches of
the rules for specified requirements (€s). For the purpose of quantifying the savings to
projects due to the requirements process improvement activity, only relative change was
sought. It is assumed the defects related to unspecified deficits (€u) remains constant. In
addition, as only a relative change is being measured, the absolute value of the constant
(k) is not required to be determined.

The rules applied to each requirement were;
a) All words are unambiguous to the weakest audience,

Defects / Shall

b) All words are clear with regard to the intent of the weakest of the intended
audience,

c) The source of the requirement is provided and traceable,

d) The distinction between comments and requirements is explicit and obvious,

e) The requirement has an unique identifier,

f) The requirement is quantifiable,

g) The requirement is verifiable and

h) The requirement is free from design data.

Using a sample of past and present project specifications, the above rules were critically
applied by independent reviewers and the results normalised to defects per requirement
statement (note: a single requirement statement can have multiple defects if more than
one rule is broken). This formed a baseline metric for requirements defects contained

within specifications before the new processes and tools were deployed and current
defect densities after deployment.

Results of the Defect Reduction Project

Specifications are only now starting to be created using the new processes and
methodologies. Figure 6 shows the results of both the historical and current specification
defect densities, normalised to defects per requirement statement (or "shall").

Despite the uncertainty introduced by a low sample size and interpretation issues
between reviewers (especially as seen on the July 2000 Specification), there is a notable
decrease in defect density after March 2002 when the new processes and environment
were deployed. The average defect density before the improvement program was 1.05
defects/shall. After the improvement program, average defect density has reduced to 0.33
defects/shall, a 68 percent reduction in defects to specifications.

Specification Defects (Per Shall)

2.50

MBSE Processes
Deployed &

Training Provided
2.00

1.50

Avg Defect Density 1.05 Defects / Shal

0.50 1

0.33 Defects / Shall

—
0

| | P P | | | | P | | | | | | | | | P |

f f ——t — f f f f — f f f f f f f f f ——t f
© © e} © © D [} fo2} [} [=2] (2] o o o o o O = ™ = - @ N N N N N N (a2} (a0 [sel
2 Q2 2 2 2 2 22 Q2 Q2 Q2 2 2 22282 22?LIILP eI eeewv
= > 005 o > C = > 05 (o8 > c = > =5 o > c = > 05 o > C = > 05 o > c = >
g ® 3 9 &6 &8 & & 3 9 &8 &8 &8 & 3 90 0 8 &8 & 3 ¢ O 8 &8 ¥ 32 9o o0 88 & &
= = w zZz S = = »w zZz - = = »w zZz - = = » z S = = »w zZz - = =

Figure 6 Measured Specification Defect Density Over a Range Of
Specifications Since 1998

Future Work

Current work has focused on measuring the relative reduction in defects in specified
requirement statements. The quantitative cost of requirements defects to projects has not
been validated with a sufficiently large sample size to provide statistically reliable data.
Further work is planned to analyse existing program data in order to quantify the ratio of
specification defects to rework effort (in hours and hence dollars). When complete this
activity will provide validated quantifiable cost of requirements defects to programs.
This data will be used to identify further cost savings measures that may be
implemented.

In addition, it has been found the use of a MBSE environment makes it easier to identify
missing functions and requirements. It is expected this should lead to a reduction in
missing requirements in future specifications. Further work is planned to identify and
implement a plan to measure these savings (if any). When complete, a true indication of
the overall return on investment will be made available.

CONCLUSION

Over the past decade, the author has seen many examples of requirements engineering
where an undue emphasis has been applied to writing requirement statements in a
specification and calling the end product the completion of requirements analysis.
Instances can be found where the true understanding of what systems engineering is
intended to do has been lost in the drive to baseline a specification document. The author
proposes one cause of this has been the overlooked understanding that requirements
definition actually involves understanding (modeling) the system and relationships
between requirements, functional, architecture and test views of a system. Furthermore,
it is suggested that functional analysis should precede requirements analysis. This is due
to the need to define what the system must do before the performance of the system can
be specified.

This paper has described the process of implementing a MBSE methodology and the
deployment of a systems engineering tool which favours a model based systems
engineering approach. In the new environment, the final specification and traceability are
considered artifacts of the new process rather than the primary product. MBSE has been
found to help systems engineers understand the behaviour and purpose of complex
systems by providing correlated views into the system solution. It has been found a
minimum of four views are required to adequately visualise any system.

Measurements of defects contained within specified requirements indicates a reduction
of 68 percent has been achieved in specification defects over a two year process
improvement program. Further un-measured improvements in specification quality are
anticipated due to significantly improved visibility and understanding of complex system
behaviour provided from the MBSE environment.

REFERENCES

Buede, Dennis, The Concepts of Systems Engineering as Practiced by the Wright
Brothers, Proceedings of the INCOSE 2002 Symposium.

Gilb, Tom, Requirements-Driven Management, Draft book manuscript found
at http://www.result-planning.com, 5 Sept 2002.

Heydt, Harold J., Tools for Requirements Discovery, Creation, and Elicitation,
Proceedings of the INCOSE 2002 Symposium.

IEEE, IEEE Trial-Use Standard for Application and Management of the

Systems Engineering Process, IEEE Std 1220-1994, 1994.

Kasser, Joseph, and Williams, Victoria R., What Do You Mean You Can't Tell Me if My
Project is in Trouble?, Proceedings of FESMA98 Symposium,
1998.

Kline, Stephen J., Conceptual Foundations for Multi-Disciplinary — Thinking,
Stanford University Press, 1995.

Mar, Brian W. and Morais, Bernard G., FRAT - A Basic Framework for Systems
Engineering, Proceedings of the INCOSE 2002 Symposium.

Sampson, Mark E., Guiding Principles for Next Generation Computer-Aided Systems
Engineering Tools, Proceedings of the INCOSE 2000 Symposium.

ABOUT THE AUTHOR

Steve Saunders received his Bachelor of Electrical Engineering, from the University of
Technology Sydney (UTS) with first class Honors in 1990. He has worked with
Rockwell International, Boeing Australia and now Raytheon Australia on Australian
Defence projects in various Systems Engineering, Design and Test roles.

Steve currently is the Systems Engineering Manager for Raytheon Australia Naval
Systems Division and has a strong interest in improving System Engineering maturity
and the agility of Systems Engineering to support the rapidly evolving technology
environment within the Defence Industry.

	ABSTRACT
	INTRODUCTION
	ROOT CAUSES OF REQUIREMENTS DEFECTS
	DEFINING A REQUIREMENTS DEFINITION METHODOLOGY
	SELECTION OF A SYSTEMS ENGINEERING TOOL
	REFERENCES
	ABOUT THE AUTHOR

